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Abstract. In this paper we study the security of the Bluetooth stream cipher
E0 from the viewpoint it is a “difference stream cipher”, that is, it is defined

by a system of explicit difference equations over the finite field GF(2). This

approach highlights some issues of the Bluetooth encryption such as the in-
vertibility of its state transition map, a special set of 14 bits of its 132-bit state

which when guessed implies linear equations among the other bits and finally

a small number of spurious keys, with 83 guessed bits, which are compatible
with a keystream of about 60 bits. Exploiting these issues, we implement an

algebraic attack using Gröbner bases, SAT solvers and Binary Decision Dia-

grams. Testing activities suggest that the version based on Gröbner bases is
the best one and it is able to attack E0 in about 279 seconds on an Intel i9

CPU. To the best of our knowledge, this work improves any previous attack
based on a short keystream, hence fitting with Bluetooth specifications.

1. Introduction

The Bluetooth protocol [6] is one of the most important players in the “wireless
revolution” of consumer electronics. This communication protocol has started in
1999 in the mobile phones market and now it is present in almost all mobiles,
personal computers, wireless headset and speakers, remote controllers and many
other devices. Recently, the pandemic crisis has involved Bluetooth as an excellent
tool to trace close proximity contacts. Bluetooth is a secure protocol which relies its
privacy on the E0 stream cipher. This cipher consists of four independent Linear
Feedback Shift Registers which are combined by means of a non-linear Finite State
Machine.

By assuming a “known-plaintext attack”, the cryptanalysis of a stream cipher is
generally based on the knowledge of some amount of bits of its keystream (see, for
instance, [20, 25]). Following the introduction of the Bluetooth protocol, a number
of cryptanalytic results has been obtained that can be essentially divided into two
main classes: long or short keystream attacks. Indeed, an attack is generally faster
when providing a large number of keystream bits (see, for instance, [2, 12, 15]) but
this is actually forbidden by the Bluetooth design which has the payload of each
frame associated to a single key consisting of only 2745 bits. According to this,
the cryptanalysis of E0 in the present paper is based on a very short keystream
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Università degli Studi di Milano, Grant ref. PSR20.

1



2 R. LA SCALA, S. POLESE, S.K. TIWARI, AND A. VISCONTI

containing about 60 bits. Note that in addition to these data, we essentially assume
the knowledge of 83 bits of a 132-bit internal state of E0 by brute force. To
determine the remaining bits is very fast by Gröbner bases computations which
lead to a total running time for our attack of approximately 279 seconds.

Another main distinction in the attacks to Bluetooth encryption is that some of
them are correlations attacks as in [24] but one has also algebraic cryptanalysis [4].
In the class of algebraic attacks to E0 or similar stream ciphers, the most common
approach involves Binary Decision Diagrams (briefly BDDs) as in [21, 22, 27, 28]
and just few papers considered other solvers of polynomial systems as Gröbner bases
and XL-algorithm [1, 3, 8]. The cryptanalysis we propose is based on Gröbner bases
which show to be feasible solvers for polynomials systems having a few number of
solutions. Indeed, the stream cipher E0 tends to have few keys that are compatible
with a small number of keystream bits and this can be considered a possible flaw.

By means of a complete implementation of the proposed method, we compare
the performance of Gröbner bases with SAT solvers and BDDs using a large test
set. Another practical algebraic attack to E0 one has in the literature is the BDD-
based attack described in [27]. Our Gröbner bases timings are much better than
the runtimes we obtain for SAT solvers and BDDs where the latter ones confirm
and improve the timings in [27].

Note that Bluetooth protocol implements a reinitialization of the initial state of
E0 using the last 128 keystream bits obtained by clocking the cipher 200 times.
Since our algebraic attack can be performed using less than 128 keystream bits, a
double initialization can be recovered simply by applying the attack twice.

The paper is structured as follows. In Section 2 we explain how to solve a
polynomial system with coefficients and solutions in a finite field by means of a
guess-and-determine strategy, that is, by using the exhaustive evaluation over the
finite field of a subset of variables and Gröbner bases as solvers of the remaining
variables. We explain that this method is feasible especially when the system has a
single or few solutions. In Section 3 we review and expand the theory of difference
stream ciphers that has been recently introduced in [18] to cryptanalyze stream and
block ciphers. In particular, we show that the invertibility property of the explicit
difference system governing the evolution of the internal state of a difference stream
cipher is a possible issue for its security. Moreover, we study methods to eliminate
the variables of this explicit difference system in order to speed-up an algebraic
attack to the keys that are consistent with a given keystream.

In Section 4 we describe the Bluetooth stream cipher E0 and in Section 5 and
6 we show that it is an invertible difference stream cipher by providing its explicit
difference equations together with the ones of its inverse system. In Section 6 we
explain how cryptanalytic methods for difference stream ciphers are applied in our
attack to the Bluetooth encryption. In Section 7 we present the choice of the 83
variables that are brute forced in the guess-and-determine strategy and we explain
how 14 of them have been single out by the difference stream cipher structure of
E0 in order to speed-up the Gröbner bases computations.

In Section 8 we present a complete statistics of our practical algebraic attack to
E0 by comparing Gröbner bases with SAT solvers and BDDs. The test set we use
are 217 random evaluations of the 83 variables for 23 different keys. The testing
activity clearly shows that Gröbner bases perform better than the other solvers
with a total running time of about 279 seconds with an Intel i9 processor. To the
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best of our knowledge, the complexity 283 also improves any previous attack with
short keystreams (see, for instance, [20, 27]). A full cryptanalysis of E0, including
its double initialization trick, it is therefore available with complexity 284. We end
the paper with Section 9 where some conclusions are drawn.

2. Guess-and-determine strategy

In algebraic cryptanalysis, to attack a stream, block or public key cipher es-
sentially consists in solving a system of polynomial equations over a finite field
K = GF(q) which has generally a single or few K-solutions. Indeed, this assump-
tion is a natural one if a reasonable amount of data as plaintexts, ciphertexts,
keystreams and so on, is available for the attack and few keys are compatible with
such data. To fix notations, let r, n > 0 be two integers and consider the polynomial
system

(1)


f1 = 0
...

...
fn = 0

where fi ∈ P = K[x1, . . . , xr], for all 1 ≤ i ≤ n. Denote by J = ⟨f1, . . . , fn⟩ the
ideal of P generated by the polynomials fi and consider

L = ⟨xq
1 − x1, . . . , x

q
r − xr⟩ ⊂ P.

The generators of the ideal L are called “field equations” because of the following
well-known result (see, for instance, [14]).

Proposition 2.1. Let K̄ be the algebraic closure of K and denote

V (J) = {(α1, . . . , αr) ∈ K̄r | fi(α1, . . . , αr) = 0 (1 ≤ i ≤ n)}.
Put VK(J) = V (J) ∩ Kr and call VK(J) the set of the K-solutions of J , that is, of
the polynomial system (1). We have that V (L) = Kr and VK(J) = V (J +L) where
J + L ⊂ P is a radical ideal.

An immediate upper bound to the complexity of computing VK(J) is clearly

λ = qr

by assuming that the evaluation of all polynomials fi over a vector (β1, . . . , βr) ∈ Kr

is performed in unit time. If K = GF(2), we have that SAT solvers may slightly im-
prove such complexity for special systems (see, for instance, [4], Paragraph 13.4.2.1).
Applications of the SAT solving to boolean polynomial systems arising in cryptog-
raphy are found, for example, in [7, 10, 26]. Another approach to polynomial
system solving is symbolic computation, that is, to compute consequences of the
equations of the system (1) which allow to obtain easily its solutions. A suitable
method consists in computing a Gröbner basis (see, for instance, [16, 23]) of the
ideal J = ⟨f1, . . . , fn⟩ ⊂ P . Indeed, by the Nullstellensatz Theorem for finite fields
(see [14]) one obtains the following result.

Proposition 2.2. Assume that the polynomial system (1) has a single or no K-
solution. Then, the (reduced) universal Gröbner basis G of the ideal J +L, that is,
its Gröbner basis with respect to any monomial ordering of P is

G =

{
{x1 − α1, . . . , xr − αr} if VK(J) = {(α1, . . . , αr)},

{1} otherwise.
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Observe that Gröbner bases have generally bad exponential complexity with
respect to the number of variables r which is even worse than brute force complexity
λ = qr (see, for instance, [4], Section 12.2). Nevertheless, if the number of variables
r is moderate and the polynomial system (1) has few K-solutions then Gröbner
bases (in general symbolic computation) become an effective tool for solving it.
Indeed, by Proposition 2.2 we can choose most efficient monomial orderings as
DegRevLex to solve the system. Moreover, when there are no solutions and the
Gröbner basis is simply G = {1} then the Buchberger algorithm is stopped once a
constant in K is obtained as an element of the current basis, say H. If there is a
single solution, another optimization consists in stopping the algorithm once each
variable xi (1 ≤ i ≤ r) is obtained as the leading monomial of an element in H.

In the case VK(J) consists of few K-solutions, note that the cost of obtaining
them is again essentially that of computing a DegRevLex-Gröbner basis of J + L.
In fact, for solving one needs to convert this basis into a Lex-Gröbner basis by means
of the FGLM-algorithm [11] which has complexity O(rd3) where d = #VK(J) =
dimK P/(J +L). If the integer d is small, such complexity is dominated by the cost
of computing the DegRevLex-Gröbner basis.

To simplify notations and statements, from now on we assume that the poly-
nomial system (1) has a single K-solution, that is, VK(J) = {(α1, . . . , αr)}. A
standard way to reduce the complexity of solving a polynomial system with a large
number of variables consists in solving equivalently many systems having less vari-
ables that are obtained by evaluating some subset of variables, say {x1, . . . , xs}
(0 ≤ s ≤ r), in all possible ways over the finite field K. In other words, for all
vectors (β1, . . . , βs) ∈ Ks one defines the linear ideal

Eβ1,...,βs
= ⟨x1 − β1, . . . , xs − βs⟩ ⊂ P

and consider the corresponding ideal

Jβ1,...,βs
= J + L+ Eβ1,...,βs

.

Moreover, we denote by

Hβ1,...,βs
= {f1(β1, . . . , βs, xs+1, . . . , xr), . . . , fn(β1, . . . , βs, xs+1, . . . , xr),

xq
s+1 − xs+1, . . . , x

q
r − xr, x1 − β1, . . . , xs − βs} ⊂ P

the generating set of Jβ1,...,βs
and we assume that Hβ1,...,βs

can be computed in a
negligible time. One has clearly that

V (Jβ1,...,βs
) =

{
{(α1, . . . , αr)} if (β1, . . . , βs) = (α1, . . . , αs),

∅ otherwise.

This approach is generally called a guess-and-determine (or hybrid [5]) strategy
which has sequential running time

µs =
∑

(β1,...,βs)∈Ks

τβ1,...,βs

where τβ1,...,βs is the time for computing a DegRevLex-Gröbner basis of Jβ1,...,βs

starting with the generating set Hβ1,...,βs . Denote by τs the average runtime of such
a computation, that is

τs = (
∑

τβ1,...,βs
)/qs.

For a sufficiently large number 0 ≤ s ≤ r of evaluated variables, one has generally
that τs ≤ qr−s, that is, the total running time µs = qsτs of a guess-and-determine
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strategy improves the brute force complexity. This motivates the use of Gröbner
bases. An optimization of this strategy is achieved for a choice of the subset of
variables {x1, . . . , xs} such that µs is minimal. Obviously, if r is a large number of
variables the search for this optimal choice may be not a trivial task.

Observe that for all qs − 1 vectors (β1, . . . , βs) ̸= (α1, . . . , αs) the computed
Gröbner basis is always G = {1}, that is, the average computing time τs is essen-
tially obtained for inconsistent polynomial systems where Gröbner bases behave
generally better than SAT solvers. This is another motivation for using Gröbner
bases in a guess-and-determine strategy. The superiority of Gröbner bases can be
explained by observing that the UNSAT case is obtained by a SAT solver essen-
tially by exploring the full space. On the other hand, a symbolic method proves the
inconsistency of a system of equations by constructing some consequence of them of
type 1 = 0. For an experimental evidence of this, see for instance [18] and Section
8 of the present paper where we show that Gröbner bases perform better than SAT
solver and Binary Decision Diagrams when attacking the stream cipher E0.

Note finally that if V (Jβ1,...,βs
) contains many solutions, one can determine their

number without actually solving as

#V (Jβ1,...,βs
) = dimK P/Jβ1,...,βs

.

This K-dimension of the quotient algebra P/Jβ1,...,βs
can be easily computed by

means of a DegRevLex-Gröbner basis of the ideal Jβ1,...,βs
(see, for instance, [16,

23]).

3. Difference stream ciphers

Aiming to apply a guess-and-determine strategy to the cryptanalysis of the Blue-
tooth stream cipher E0, we review briefly here the theory of difference stream ci-
phers and their algebraic attacks. Indeed, we will show in Section 5 that E0 is such
a cipher. For all details we refer to the recent paper [18].

Let K be any field and fix an integer n > 0. Consider a set of variables
X(t) = {x1(t), . . . , xn(t)}, for all integers t ≥ 0 and put X =

⋃
t≥0 X(t). For

the corresponding polynomial algebra R = K[X] we consider the algebra endo-
morphism σ : R → R such that xi(t) 7→ xi(t + 1), for all 1 ≤ i ≤ n and t ≥ 0.
The algebra R under the action of σ is called the algebra of (ordinary) difference
polynomials. Fix now some integers r1, . . . , rn ≥ 0 and define the subset

X̄ = {x1(0), . . . , x1(r1 − 1), . . . , xn(0), . . . , xn(rn − 1)} ⊂ X.

We finally denote by R̄ = K[X̄] ⊂ R the corresponding subalgebra.

Definition 3.1. Consider some polynomials f1, . . . , fn ∈ R̄. A system of (alge-
braic ordinary) explicit difference equations is by definition an infinite system of
polynomial equations of the kind

x1(r1 + t) = σt(f1),
...

xn(rn + t) = σt(fn).

(t ≥ 0)
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over the infinite set of variables X. Such a system is denoted briefly as

(2)


x1(r1) = f1,

...
xn(rn) = fn.

An n-tuple of functions (a1, . . . , an) where each ai : N → K (1 ≤ i ≤ n) satisfies the
above system is called a K-solution of (2). Put r = r1 + . . . + rn and for all t ≥ 0
define the vector

v(t) = (a1(t), . . . , a1(t+ r1 − 1), . . . , an(t), . . . , an(t+ rn − 1)) ∈ Kr.

We call v(t) the t-state of the K-solution (a1, . . . , an). In particular, v(0) is called
its initial state.

Definition 3.2. Consider an explicit difference system (2). We define the algebra
endomorphism T̄ : R̄ → R̄ by putting, for any i = 1, 2, . . . , n

xi(0) 7→ xi(1), . . . , xi(ri − 2) 7→ xi(ri − 1), xi(ri − 1) 7→ fi.

If r = r1 + . . .+ rn, we denote by T : Kr → Kr the polynomial map corresponding
to T. In other words, if v(t) is the t-state of a K-solution (a1, . . . , an) we have that
T(v(t)) = v(t+1), for all clocks t ≥ 0. We call T̄ the state transition endomorphism
and T the state transition map of the explicit difference system (2).

Since v(t) = Tt(v(0)), it is clear that the K-solutions (a1, . . . , an) of (2) are in
one-to-one correspondence with their initial states

v(0) = (a1(0), . . . , a1(r1 − 1), . . . , an(0), . . . , an(rn − 1)).

An important class of explicit difference systems are the ones such that for any
t ≤ t′ we can compute a t-state by the knowledge of a t′-state.

Definition 3.3. Consider the state transition endomorphism T̄ : R̄ → R̄ and the
corresponding state transition map T : Kr → Kr of an explicit difference system
(2). We call the system invertible if T̄ is an automorphism. In this case, T is also
a bijective map.

An invertibility criterion for endomorphisms of polynomial algebras can be ob-
tained in terms of symbolic computation and Gröbner bases. For a comprehensive
reference we refer to the book [30].

Theorem 3.4. Let X = {x1, . . . , xr}, X ′ = {x′
1, . . . , x

′
r} be two disjoint variable

sets and define the polynomial algebras P = K[X], P ′ = K[X ′] and Q = K[X∪X ′] =
P⊗P ′. Consider an algebra endomorphism φ : P → P such that x1 7→ g1, . . . , xr 7→
gr (gi ∈ P ) and the corresponding ideal J ⊂ Q which is generated by the set
{x′

1 − g1, . . . , x
′
r − gr}. Moreover, we endow the polynomial algebra Q by a product

monomial ordering such that X ≻ X ′. Then, the map φ is an automorphism of P
if and only if the reduced Gröbner basis of J is of the kind {x1 − g′1, . . . , xr − g′r}
where g′i ∈ P ′, for all 1 ≤ i ≤ r. In this case, if φ′ : P ′ → P ′ is the algebra
endomorphism such that x′

1 7→ g′1, . . . , x
′
r 7→ g′r and ξ : P → P ′ is the isomorphism

x1 7→ x′
1, . . . , xr 7→ x′

r, we have that ξ φ−1 = φ′ ξ.

Based on the above result, we introduce the following notion for invertible sys-
tems.



AN ALGEBRAIC ATTACK TO THE BLUETOOTH STREAM CIPHER E0 7

Definition 3.5. Denote R̄′ = K[X̄ ′] where

X̄ ′ = {x′
1(0), . . . , x

′
1(r1 − 1), . . . , x′

n(0), . . . , x
′
n(rn − 1)}

and put Q = K[X̄ ∪ X̄ ′] = R̄ ⊗ R̄′. Consider an invertible system (2) and the
corresponding ideal J ⊂ Q which is generated by the following polynomials, for any
i = 1, 2, . . . , n

x′
i(0)− xi(1), . . . , x

′
i(ri − 2)− xi(ri − 1), x′

i(ri − 1)− fi.

Assume that Q is endowed with a product monomial ordering such that X̄ ≻ X̄ ′

and let

G =
⋃
i

{xi(1)− x′
i(0), . . . , xi(ri − 1)− x′

i(ri − 2), xi(0)− f ′
i}

be the reduced Gröbner basis of J . Denote by gi the image of f ′
i under the algebra

isomorphism R̄′ → R̄ such that, for any i = 1, 2, . . . , n

x′
i(0) 7→ xi(ri − 1), x′

i(1) 7→ xi(ri − 2), . . . x′
i(ri − 1) 7→ xi(0).

The inverse of an invertible system (2) is by definition the following explicit differ-
ence system

(3)


x1(r1) = g1,

...
xn(rn) = gn.

The following results are proved in [18].

Proposition 3.6. Let T̄, S̄ : R̄ → R̄ be the state transition automorphisms of an
invertible system (2) and its inverse system (3), respectively. Denote by ξ : R̄ → R̄
the algebra automorphism such that

xi(0) 7→ xi(ri − 1), xi(1) 7→ xi(ri − 2), . . . , xi(ri − 1) 7→ xi(0).

One has that ξS̄ = T̄−1ξ.

By the above proposition we obtain immediately the following result explaining
how to practically reverse the evolution of the state of an invertible system by using
the corresponding inverse system.

Proposition 3.7. Let (3) be the inverse system of an invertible system (2). If
(a1, . . . , an) is a K-solution of (2), consider its t-state (t ≥ 0)

v = (a1(t), . . . , a1(t+ r1 − 1), . . . , an(t), . . . , an(t+ rn − 1)).

Denote by (b1, . . . , bn) the K-solution of (3) whose initial state is

v′ = (a1(t+ r1 − 1), . . . , a1(t), . . . , an(t+ rn − 1), . . . , an(t)).

If the t-state of (b1, . . . , bn) is

u′ = (b1(t), . . . , b1(t+ r1 − 1), . . . , bn(t), . . . , bn(t+ rn − 1)),

then the initial state of (a1, . . . , an) is

u = (b1(t+ r1 − 1), . . . , b1(t), . . . , bn(t+ rn − 1), . . . , bn(t)).

From now on, we will assume that K = GF(q) is a finite field.
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Definition 3.8. A difference stream cipher C is by definition an explicit difference
system (2) together with a polynomial f ∈ R̄. Let (a1, . . . , an) be a K-solution of
(2) and denote as usual by v(t) ∈ Kr (r = r1+ . . .+rn) its t-state. The initial state
v(0) is called the key of the K-solution (a1, . . . , an) and the function b : N → K such
that b(t) = f(v(t)) for all t ≥ 0, is called the keystream of (a1, . . . , an). We call f
the keystream polynomial of the cipher C. Finally, the cipher C is said invertible
if such is the system (2).

A “known-plaintext attack” to a stream cipher essentially implies the knowledge
of the keystream as the difference between the known ciphertext and plaintext
streams. Indeed, the keystream is usually provided after a sufficiently high number
of clocks in order to prevent cryptanalysis. This motivates the following notion.

Definition 3.9. Let C be a difference stream cipher consisting of the system (2)
and the keystream polynomial f . Let b : N → K be the keystream of a K-solution of
(2) and fix a clock T ≥ 0. Consider the ideal

J =
∑
t≥T

⟨σt(f)− b(t)⟩ ⊂ R

and denote by VK(J) the set of the K-solutions of J . An algebraic attack to C by
the keystream b after T clocks consists in computing the K-solutions (a1, . . . , an) of
the system (2) such that (a1, . . . , an) ∈ VK(J). In other words, by considering the
ideal corresponding to (2), that is

I =
∑
t≥0

⟨x1(r1 + t)− σt(f1), . . . , xn(rn + t)− σt(fn)⟩ ⊂ R

we want to compute VK(I + J) = VK(I) ∩ VK(J).

Since the given function b is the keystream of a K-solution of (2), say (a1, . . . , an),
we have clearly that (a1, . . . , an) ∈ VK(I + J) ̸= ∅. For actual ciphers, we have
generally that VK(I + J) = {(a1, . . . , an)}. We will assume such a unique solution
from now on.

In practice, a finite number of values of the keystream b is actually provided in
algebraic attacks. In other words, for a fixed integer bound B ≥ T , we consider the
polynomial algebra RB = K[XB ] over the finite variable set XB =

⋃
0≤t≤B X(t)

and the ideals IB , JB ⊂ RB whose finite generating sets are respectively

{xi(ri + t)− σt(fi) ∈ RB | 1 ≤ i ≤ n, t ≥ 0},
{σt(f)− b(t) ∈ RB | t ≥ T}.

It is shown in [18] that for a sufficiently large bound B, the uniqueness of the
K-solution is preserved and we have that

VK(IB + JB) = {(a′1, . . . , a′n)}
where each function a′i : {0, . . . , B} → K (1 ≤ i ≤ n) is such that a′i(t) = ai(t)
for all 0 ≤ t ≤ B. Since K-solutions are in one-to-one correspondence with their
initial states that are the keys of a difference stream cipher, this means that we
can perform an actual algebraic attack without obtaining any spurious, that is,
incorrect key once a sufficiently large number of keystream values is provided.

If the explicit difference system (2) is invertible we can essentially assume that
the initial keystream clock is T = 0. In fact, by means of the notion of inverse
system in Definition 3.5 the computation of the T -state is completely equivalent to
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the computation of the initial state, that is, the key. Moreover, if we consider the
ideal

J ′ =
∑
t≥0

⟨σt(f)− b(T + t)⟩ ⊂ R

we have that the initial states of the K-solutions in VK(I + J ′) are exactly the T -
states of the K-solutions in VK(I + J). By putting B′ = B−T , an algebraic attack
to an invertible difference stream cipher is therefore reduced to the computation of
VK(IB′ + J ′

B′). Since T is generally an high value of clock, for invertible ciphers
this is a very effective optimization of the algebraic cryptanalysis because this trick
reduces drastically the number of variables to solve. Indeed, instead of solving
equations in the polynomial algebra RB (0 ≤ T ≤ B) we can solve equivalent
equations in RB′ (B′ = B − T ).

Another possible option to reduce the number of variables may consist in elim-
inating all variables except for the initial variables, that is, the variables of the
set X̄ by means of the explicit difference equations of the system (2). In this way
one obtains the equations satisfied by the keys of a difference stream cipher having
a given keystream. To explain this, we introduce the following notions (see also
[13, 17]).

Definition 3.10. A commutative algebra A together with an algebra endomorphism
α : A → A is called a difference algebra. An ideal J ⊂ A such that α(J) ⊂ J
is said a difference ideal. Let (A,α), (B, β) be two difference algebras. An algebra
homomorphism φ : A → B is called a difference algebra homomorphism if φα = βφ.

Note that the kernel of a difference algebra homomorphism is clearly a difference
ideal. In our context, we consider the difference algebras (R, σ) and (R̄, T̄). The
ideal I =

∑
t≥0 ⟨x1(r1 + t) − σt(f1), . . . , xn(rn + t) − σt(fn)⟩ is a difference ideal

of R. We denote hence I = ⟨x1(r1) − f1, . . . , xn(rn) − fn⟩σ to mean that the set
{x1(r1)− f1, . . . , xn(rn)− fn} generates I as a difference ideal.

Theorem 3.11. Let φ : R → R̄ be the algebra homomorphism such that its restric-
tion to R̄ is the identity map and for all t ≥ 0 one has that

xi(ri + t) 7→ T̄t(fi) (1 ≤ i ≤ n).

It holds that φ is a difference algebra homomorphism and its kernel is I = kerφ.

Proof. Since φ is an algebra homomorphism, it is sufficient to show that the prop-
erty φσ = T̄φ holds over the variables. For the variables xi(0), . . . , xi(ri − 2)
(1 ≤ i ≤ n) this is trivial since the actions of σ, T̄ coincide and the restriction of φ
to R̄ is the identity map. Moreover, we have

φ(σ(xi(ri − 1)) = φ(xi(ri)) = fi = T̄(xi(ri − 1)) = T̄(φ(xi(ri − 1))).

In the same way, for all t > 0 one has

φ(σ(xi(ri − 1 + t)) = φ(xi(ri + t)) = T̄t(fi) = T̄T̄t−1(fi) = T̄(φ(xi(ri − 1 + t))).

We show now that Kerφ = I. Since I = ⟨x1(r1) − f1, . . . , xn(rn) − fn⟩σ and
φ(xi(ri)− fi) = fi − fi = 0, we have that I ⊂ Kerφ.

Consider now a polynomial f ∈ R. By means of the identities xi(ri+ t) ≡ σt(fi)
modulo I (1 ≤ i ≤ n, t ≥ 0) we have that f ≡ f̄ modulo I, for some polynomial
f̄ ∈ R̄. Assume now that f ∈ Kerφ. Since I ⊂ Kerφ, we have that f̄ ∈ Kerφ.
Because the restriction of φ to R̄ is the identity map, we have that f̄ = 0 and hence
f ∈ I. □
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Denote by σ′ : R/I → R/I the algebra endomorphism which is induced by
σ : R → R since σ(I) ⊂ I. By the above result we obtain immediately the following
one.

Corollary 3.12. The difference algebras (R/I, σ′) and (R̄, T̄) are isomorphic by
means of the difference algebra isomorphism φ′ : R/I → R̄ which is induced by φ.

In terms of bijective polynomial maps corresponding to algebra isomorphisms,
the above result can be restated in the following way.

Proposition 3.13. Consider VK(I) the set of all K-solutions of (2). The map
ι : VK(I) → Kr (r = r1 + . . .+ rn) such that

(a1, . . . , an) 7→ (a1(0), . . . , a1(r1 − 1), . . . , an(0), . . . , an(rn − 1))

is bijective and ι, ι−1 are both polynomial maps.

From the above result we obtain that the set of keys that are compatible with
the given keystream b, that is, ι(VK(I + J)) is indeed the set of the K-solutions of
some polynomial system in R̄. In other words, we have that ι(VK(I + J)) = VK(J̄)
for some ideal J̄ ⊂ R̄. We look for a generating set of J̄ .

Proposition 3.14. We have that

J̄ =
∑
t≥T

⟨T̄t(f)− b(t)⟩.

Proof. Since f ∈ R̄, it is sufficient to observe that the polynomial σt(f) maps to
T̄t(f) under the difference algebra homomorphism φ. □

A possible problem with the equations satisfied by the keys compatible with a
given keystream is that they could have a very high degree if the explicit differ-
ence system (2) is non-linear. To avoid this problem, one can perform a partial
elimination only with the lowest degree equations of the system (2). We make
use of this approach when attacking the cipher E0 in the next sections since its ex-
plicit difference system contains linear equations, that is, LFSRs. We formalize this
partial elimination approach by the following results which are a straightforward
generalization of the previous ones.

Fix an integer 0 ≤ m ≤ n. Denote

X̄ ′
m = {x1(0), . . . , x1(r1 − 1), . . . , xm(0), . . . , xm(rm − 1)},

X̄ ′′
m =

⋃
t≥0

{xm+1(t), . . . , xn(t)}

and put X̄m = X̄ ′
m ∪ X̄ ′′

m ⊂ X. Denote by R̄m = K[X̄m] ⊂ R the corresponding
subalgebra. We define the endomorphism T̄m : R̄m → R̄m such that

xi(0) 7→ xi(1), . . . , xi(ri − 2) 7→ xi(ri − 1), xi(ri − 1) 7→ fi (1 ≤ i ≤ m),

xi(t) 7→ xi(t+ 1) (m+ 1 ≤ i ≤ n).

We have clearly that T̄0 = σ and T̄n = T̄. Define the ideal Īm ⊂ R̄m such that

Īm =
∑
t≥0

⟨xm+1(rm+1 + t)− T̄t
m(fm+1), . . . , xn(rn + t)− T̄t

m(fn)⟩.

Note that T̄m(Īm) ⊂ Īm and Īm = ⟨xm+1(rm+1) − fm+1, . . . , xn(rn) − fn⟩T̄m
.

Denote by T̄′
m : R̄m/Īm → R̄m/Īm the algebra endomorphism which is induced by

T̄m : R̄m → R̄m.
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Theorem 3.15. Let φm : R → R̄m be the algebra homomorphism such that its
restriction to R̄m is the identity map and for all t ≥ 0 one has that

xi(ri + t) 7→ T̄t
m(fi) (1 ≤ i ≤ m).

It holds that φm is a difference algebra homomorphism and its kernel is I = kerφm.

Corollary 3.16. The difference algebras (R/I, σ′) and (R̄m/Īm, T̄′
m) are isomor-

phic by means of the difference algebra isomorphism φ′
m : R/I → R̄m/Īm which is

induced by φm.

In terms of corresponding polynomial maps, we have the following result.

Proposition 3.17. Consider VK(Īm) the set of all K-solutions of the system of
polynomial equations

xm+1(rm+1 + t) = T̄t
m(fm+1)

...
xn(rn + t) = T̄t

m(fn)

(t ≥ 0)

over the set of variables X̄m. The map ιm : VK(I) → VK(Īm) such that

(a1, . . . , an) 7→ (a1(0), . . . , a1(r1 − 1), . . . , am(0), . . . , am(rn − 1), am+1, . . . , an)

is bijective and ιm, ι−1
m are both polynomial maps.

Proposition 3.18. We have that ιm(VK(I + J)) = VK(Īm + J̄m) where

J̄m =
∑
t≥T

⟨T̄t
m(f)− b(t)⟩ ⊂ R̄m

Note that actual computations with the ideal J̄m are done by assuming that
T ≤ t ≤ B for a sufficiently large bound B ≥ T . Moreover, for an invertible cipher
we always assume that T = 0.

Finally, it is useful to observe the following. Suppose that R is endowed with a
monomial ordering ≻ such that, for all t ≥ 0

xi(ri + t) ≻ σt(fi) (1 ≤ i ≤ m).

In this case, for any polynomial g ∈ R̄m we can compute T̄t
m(g) in an alternative

way. Consider the ideal

Im =
∑
t≥0

⟨x1(r1 + t)− σt(f1), . . . , xm(rm + t)− σt(fm)⟩

= ⟨x1(r1)− f1, . . . , xm(rm)− fm⟩σ ⊂ R

whose generating set is a Gröbner basis because its leading monomials are distinct
linear ones. We have that T̄t

m(g) is indeed the normal form of the polynomial g
modulo Im with respect to the given monomial ordering. For more details, see [18].

4. The stream cipher E0

From now on, we assume that the finite base field is K = GF(2) = Z2. In order
to avoid confusion, in the present section we denote by +̇ the sum in Z and by +
the sum in K. The Bluetooth stream cipher E0 is obtained by four Linear Feedback
Shift Registers (briefly LFSRs) that are combined by a Finite State Machine (FSM)
as described in Figure 1.
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Figure 1. E0 Bluetooth Stream Cipher

The four LFSRs are respectively defined by the following primitive polynomials
with coefficients in K

p1 = x25 + x17 + x13 + x5 + 1,
p2 = x31 + x19 + x15 + x7 + 1,
p3 = x33 + x29 + x9 + x5 + 1,
p4 = x39 + x35 + x11 + x3 + 1.

For all clocks t ≥ 0, the state of the FSM consists of 4 bits which are stored in
a pair of 2-bit delay elements, say

(d(t), c(t)), (d(t+ 1), c(t+ 1)) ∈ K2.

It is useful to define the corresponding integer numbers

C(t) = d(t)2 +̇ c(t),

C(t+ 1) = d(t+ 1)2 +̇ c(t+ 1).

At any clock, the lower delay element stores the previous value of the upper element,
that is, (d(t+1), c(t+1)) stores in (d(t), c(t)). Then, the new 2-bit (d(t+2), c(t+2))
for the upper delay element of the combiner is computed by putting

(d(t+ 2), c(t+ 2)) = (g1(t+ 1), g0(t+ 1)) + (d(t+ 1), c(t+ 1)) + T (d(t), c(t))

where T : K2 → K2 is the linear bijection

(d(t), c(t)) 7→ (c(t), d(t) + c(t))

and the 2-bit (g1(t+ 1), g0(t+ 1)) ∈ K2 is defined as follows. Consider the sum

F (t) = x(t) +̇ y(t+ 6) +̇ z(t) +̇u(t+ 6) ∈ Z
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and define the integer

G(t+ 1) =

⌊
F (t+ 1) +̇C(t+ 1)

2

⌋
.

Since 0 ≤ G(t + 2) ≤ 3, we define the 2-bit element (g1(t + 1), g0(t + 1)) ∈ K2 as
the binary representation of G(t+ 1), namely

G(t+ 1) = g1(t+ 1)2 +̇ g0(t+ 1).

Finally, for all t ≥ 0 the keystream bits of the cipher E0 are computed as the sum

k(t) = x(t+ 1) + y(t+ 7) + z(t+ 1) + u(t+ 7) + c(t+ 1) ∈ K.

5. E0 is a difference stream cipher

We show now that we can obtain E0 as a difference stream cipher, that is, we
can translate it into a system of difference equations. The four independent LFSRs
correspond immediately to the following subsystem of linear difference equations

(4)


x(25) = x(0) + x(5) + x(13) + x(17),
y(31) = y(0) + y(7) + y(15) + y(19),
z(33) = z(0) + z(5) + z(9) + z(29),
u(39) = u(0) + u(3) + u(11) + u(35),

Let us consider now the FSM combiner. Since 0 ≤ F (t) ≤ 4, the binary repre-
sentation of F (t) consists of a 3-bit element (f2(t), f1(t), f0(t)) ∈ K3, that is

F (t) = f2(t)2
2 +̇ f1(t)2 +̇ f0(t).

Clearly, we can view F (t) = x(t) +̇ y(t+ 6) +̇ z(t) +̇u(t+ 6) as a function K4 → Z
with variable set {x(t), y(t + 6), z(t), u(t + 6)} and therefore f0(t), f1(t), f2(t) as
Boolean functions K4 → K with the same variable set. By converting the latter
functions into their Algebraic Normal Form (briefly ANF), that is, as elements of
the polynomial algebra K[x(t), y(t+ 6), z(t), u(t+ 6)] modulo the identities

x(t)2 + x(t) = y(t+ 6)2 + y(t+ 6) = z(t)2 + z(t) = u(t+ 6)2 + u(t+ 6) = 0

we obtain that

f0(t) = x(t) + y(t+ 6) + z(t) + u(t+ 6),
f1(t) = x(t)y(t+ 6) + x(t)z(t) + x(t)u(t+ 6) + y(t+ 6)z(t)

+ y(t+ 6)u(t+ 6) + z(t)u(t+ 6),
f2(t) = x(t)y(t+ 6)z(t)u(t+ 6).

Standard methods to obtain the ANF involves Support and Minterm Representa-
tion of Boolean functions and we refer to the book [32] for all details about them.

We consider now the following sum of integers

F (t) +̇C(t) = f2(t)2
2 +̇ f1(t)2 +̇ f0(t) +̇ d(t)2 +̇ c(t)

whose binary representation, as a result of carries, is

F (t) +̇C(t) = (f2(t) + f1(t)d(t) + f0(t)c(t)d(t) + f1(t)f0(t)c(t))2
2

+̇ (f0(t)c(t) + f1(t) + d(t))2 +̇(f0(t) + c(t)).
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By dividing by 2, we obtain that

F (t) +̇C(t)

2
= (f2(t) + f1(t)d(t) + f0(t)c(t)d(t) + f1(t)f0(t)c(t))2

+̇ (f0(t)c(t) + f1(t) + d(t)) +̇(f0(t) + c(t))2−1.

and therefore it holds that⌊
F (t) +̇C(t)

2

⌋
= (f2(t) + f1(t)d(t) + f0(t)c(t)d(t) + f1(t)f0(t)c(t))2

+̇ (f0(t)c(t) + f1(t) + d(t)).

Since, by definition, we have that

G(t+ 1) = g1(t+ 1)2 +̇ g0(t+ 1) =

⌊
F (t+ 1) +̇C(t+ 1)

2

⌋
we conclude that

g1(t+ 1) = f2(t+ 1) + f1(t+ 1)d(t+ 1) + f0(t+ 1)c(t+ 1)d(t+ 1)
+ f1(t+ 1)f0(t+ 1)c(t+ 1),

g0(t+ 1) = f0(t+ 1)c(t+ 1) + f1(t+ 1) + d(t+ 1).

Finally, by using the definition

(d(t+ 2), c(t+ 2)) = (g1(t+ 1), g0(t+ 1)) + (d(t+ 1), c(t+ 1)) + (c(t), d(t) + c(t))

we obtain that

d(t+ 2) = f2(t+ 1) + f1(t+ 1)d(t+ 1) + f0(t+ 1)c(t+ 1)d(t+ 1)
+ f1(t+ 1)f0(t+ 1)c(t+ 1) + d(t+ 1) + c(t),

c(t+ 2) = f0(t+ 1)c(t+ 1) + f1(t+ 1) + d(t+ 1) + c(t+ 1) + d(t) + c(t).

Define now the variable set

X̄ = {x(0), . . . , x(24), y(0), . . . , x(30), z(0), . . . , z(32),
u(0), . . . , u(38), c(0), c(1), d(0), d(1)}

and the corresponding polynomial algebra R̄ = K[X̄]. By the above calculations,
we have that E0 is a difference stream cipher whose evolution of the internal state
v(t) ∈ K132 (t ≥ 0) is described by the following system of explicit difference
equations

(5)



x(25) = x(0) + x(5) + x(13) + x(17),
y(31) = y(0) + y(7) + y(15) + y(19),
z(33) = z(0) + z(5) + z(9) + z(29),
u(39) = u(0) + u(3) + u(11) + u(35),
c(2) = g′0,
d(2) = g′1

where the non-linear polynomials g′0, g
′
1 ∈ R̄ are defined as

g′0 = x(1)c(1) + y(7)c(1) + z(1)c(1) + u(7)c(1) + x(1)y(7) + x(1)z(1)
+x(1)u(7) + y(7)z(1) + y(7)u(7) + z(1)u(7) + c(1) + d(1) + c(0) + d(0),

g′1 = x(1)y(7)z(1)u(7) + x(1)y(7)d(1) + x(1)z(1)d(1) + x(1)u(7)d(1)
+ y(7)z(1)d(1) + y(7)u(7)d(1) + z(1)u(7)d(1) + x(1)c(1)d(1)
+ y(7)c(1)d(1) + z(1)c(1)d(1) + u(7)c(1)d(1) + x(1)y(7)z(1)c(1)
+x(1)y(7)u(7)c(1) + x(1)z(1)u(7)c(1) + y(7)z(1)u(7)c(1) + d(1) + c(0).



AN ALGEBRAIC ATTACK TO THE BLUETOOTH STREAM CIPHER E0 15

Finally, the keystream polynomial f ∈ R̄ of E0 is defined as

f = x(1) + y(7) + z(1) + u(7) + c(1).

In other words, for each clock t ≥ 0 a keystream of E0 is obtained by evaluating
the polynomial f over the t-state v(t) ∈ K132 of a K-solution of (5).

Note that Bluetooth specifications [6] require that the keystream outputs after
a reinitialization at clock T = 200. Finally, remark that our description of E0
matches with the sample data contained in Appendix IV of those specifications
once all initial states of the LFSRs are reversed and one considers the initial state
of the FSM as (c(0), d(0), c(1), d(1)). Indeed, the initial states of the non-linear
equations of (5) are (c(0), c(1)) and (d(0), d(1)).

6. An algebraic attack to E0

As a result of Theorem 3.4 and Definition 3.5, we have that the explicit difference
system (5) of E0 is invertible with inverse system

x(25) = x(20) + x(12) + x(8) + x(0),
y(31) = y(24) + y(16) + y(12) + y(0),
z(33) = z(28) + z(24) + z(4) + z(0),
u(39) = u(36) + u(28) + u(4) + u(0),
c(2) = h0,
d(2) = h1

where the polynomials h0, h1 ∈ R̄ are defined as

h0 = x(24)y(24)z(32)u(32) + x(24)y(24)z(32)c(1) + x(24)y(24)u(32)c(1)
+x(24)z(32)u(32)c(1) + y(24)z(32)u(32)c(1) + x(24)y(24)d(1)
+x(24)z(32)d(1) + y(24)z(32)d(1) + x(24)u(32)d(1) + y(24)u(32)d(1)
+ z(32)u(32)d(1) + x(24)c(1)d(1) + y(24)c(1)d(1) + z(32)c(1)d(1)
+u(32)c(1)d(1) + d(1) + d(0),

h1 = x(24)y(24)z(32)u(32) + x(24)y(24)z(32)c(1) + x(24)y(24)u(32)c(1)
+x(24)z(32)u(32)c(1) + y(24)z(32)u(32)c(1) + x(24)y(24)d(1)
+x(24)z(32)d(1) + y(24)z(32)d(1) + x(24)u(32)d(1) + y(24)u(32)d(1)
+ z(32)u(32)d(1) + x(24)c(1)d(1) + y(24)c(1)d(1) + z(32)c(1)d(1)
+u(32)c(1)d(1) + x(24)y(24) + x(24)z(32) + y(24)z(32) + x(24)u(32)
+ y(24)u(32) + z(32)u(32) + x(24)c(1) + y(24)c(1) + z(32)c(1)
+u(32)c(1) + c(1) + c(0) + d(0).

We recall that this inverse system is easily obtained by computing a suitable
Gröbner basis. The invertibility of the system (5) allows us to attack equiva-
lently any internal state. A convenient choice consists hence in attacking the state
corresponding to the clock where the keystream starts to output.

With the notations of the Section 3, in our experiments we choose to compute
VK(IB + JB) for a clock bound B in the range 57 ≤ B ≤ 69, that is, we use for the
attack the knowledge of a number K of keystream bits in the range 51 ≤ K ≤ 63.
To reduce the number of tests, we consider K odd.

In this range we have found very few K-solutions at each instance, in a suitably
large test set, of a guess-and-determine strategy for solving VK(IB + JB). This
strategy is based on the exhaustive evaluations of 83 variables and in the next
section we explain how 14 of such variables have been chosen to speed-up the
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computations. The considered test set consists of 217 evaluations for 23 different
keys.

For each guess of the 83 variables, we are able to determine the number of K-
solutions of the corresponding polynomial system as theK-dimension of the quotient
algebra modulo the ideal generated by the system and the field equations (see
Section 2). Such dimension is easily obtained as a by-product of the DegRevLex-
Gröbner basis that is computed at each evaluation.

These K-solutions for wrong guesses of the 83 variables corresponds to spurious
keys which can be detected by using some additional very small number of values
of the keystream. Indeed, for K = 63 the number of spurious keys for each guess is
on the average close to zero. Note that a good trade-off consists in using a value of
K that lies approximately in the middle of the range 51 ≤ K ≤ 63 because the cost
of solving grows significantly with K but the cost of computing and comparing a
few extra keystream bits is indeed very small.

Since the explicit difference system of E0 contains the combiner equations which
are of degree 2 and 4, the approach we use to define the polynomial system to solve is
the partial elimination described in Proposition 3.17 and Proposition 3.18. Namely,
we perform elimination by the linear difference equations, that is, the LFSRs of the
system (5). Once we fix a clock bound B, the corresponding polynomial system is
defined over the following variable set

{x(0), . . . , x(24), y(0), . . . , y(30), z(0), . . . , z(32),
u(0), . . . , u(38), c(0), . . . , c(B), d(0), . . . , d(B)}.

In our guess-and-determine strategy, a subset of 83 such variables are evaluated
over the finite field K = GF(2) in an exhaustive way, leading to Gröbner bases
computations that take few tens of milliseconds on the average.

We observe that other partial eliminations could be considered, including total
elimination of all variables except for the initial ones that are

{x(0), . . . , x(24), y(0), . . . , y(30), z(0), . . . , z(32),
u(0), . . . , u(38), c(0), c(1), d(0), d(1)}.

Indeed, we have experimented that all these variants increase the degree of the
eliminated polynomials in a way that either makes them impossible to be computed
or leads to polynomial systems which are more difficult to solve.

7. Fourteen useful variables

The set of the 83 evaluated variables that we have used to attack E0 by means
of a guess-and-determine strategy applied to its difference stream cipher structure
is the following one

{x(0), . . . , x(24), y(0), . . . , y(26), y(29), z(0), . . . , z(10), z(29), . . . , z(32),
u(0), . . . , u(9), u(35), u(36), u(37), c(0), d(0)}.

Fourteen of the above variables have been single out by means of the arguments
in this section. The remaining 69 variables have been obtained by an experimental
optimization.
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The monomial ordering that we use for computing Gröbner bases and normal
forms during the attack to E0 is defined as the DegRevLex-ordering over the fol-
lowing variable set

{x(0), y(0), z(0), u(0), x(1), y(1), z(1), u(1), . . .}
∪ {c(0), c(1), . . .} ∪ {d(0), d(1), . . .}

induced by putting

x(0) ≺ y(0) ≺ z(0) ≺ u(0) ≺ x(1) ≺ y(1) ≺ z(1) ≺ u(1) ≺ . . .

≺ c(0) ≺ c(1) ≺ . . . ≺ d(0) ≺ d(1) ≺ . . .

We consider the following polynomials which belong to the difference ideal I
corresponding to the explicit difference system (5)

C0 = c(2) + x(1)c(1) + y(7)c(1) + z(1)c(1) + u(7)c(1) + x(1)y(7) + x(1)z(1)
+x(1)u(7) + y(7)z(1) + y(7)u(7) + z(1)u(7) + c(1) + d(1) + c(0) + d(0),

C1 = c(3) + x(2)c(2) + y(8)c(2) + z(2)c(2) + u(8)c(2) + x(2)y(8) + x(2)z(2)
+x(2)u(8) + y(8)z(2) + y(8)u(8) + z(2)u(8) + c(2) + d(2) + c(1) + d(1),

D0 = d(2) + x(1)y(7)z(1)u(7) + x(1)y(7)d(1) + x(1)z(1)d(1) + x(1)u(7)d(1)
+ y(7)z(1)d(1) + y(7)u(7)d(1) + z(1)u(7)d(1) + x(1)c(1)d(1)
+ y(7)c(1)d(1) + z(1)c(1)d(1) + u(7)c(1)d(1) + x(1)y(7)z(1)c(1)
+x(1)y(7)u(7)c(1) + x(1)z(1)u(7)c(1) + y(7)z(1)u(7)c(1) + d(1) + c(0).

The above polynomials clearly arise from the combiner equations. Note that these
polynomials are in normal form with respect to the linear polynomials in I corre-
sponding to the LFRSs. We also consider the following polynomials corresponding
to the first 3 keystream bits, say b0, b1, b2 ∈ K, of E0

B0 = x(1) + y(7) + z(1) + u(7) + c(1) + b0,
B1 = x(2) + y(8) + z(2) + u(8) + c(2) + b1,
B2 = x(3) + y(9) + z(3) + u(9) + c(3) + b2.

These polynomials belong to the ideal J that imposes to the K-solutions of I to be
compatible with a given keystream (see Section 3). Note that B0, B1, B2 are also
in normal form with respect to the LFSRs. Before computing the K-solutions of
I + J by means of a Gröbner basis, we can perform the normal form of C0, C1, D0

modulo B0, B1, B2 in order to eliminate the variables c(1), c(2), c(3). These normal
forms are the polynomials

G1 = d(1) +A1,
G2 = d(1) + d(2) +A2,
G3 = A3d(1) + d(2) +A4

where

A1 = u(7)x(1) + u(7)y(7) + u(7)z(1) + x(1)y(7) + x(1)z(1) + y(7)z(1)
+ b0(x(1) + y(7) + z(1) + u(7)) + c(0) + d(0) + x(2) + y(8) + z(2)
+u(8) + b0 + b1,

A2 = u(8)x(2) + u(8)y(8) + u(8)z(2) + x(2)y(8) + x(2)z(2) + y(8)z(2)
+ b1(x(2) + y(8) + z(2) + u(8)) + x(1) + x(3) + y(7) + y(9) + z(1)
+ z(3) + u(7) + u(9) + b0 + b1 + b2,

A3 = u(7)x(1) + u(7)y(7) + u(7)z(1) + x(1)y(7) + x(1)z(1) + y(7)z(1)
+ (b0 + 1)(x(1) + y(7) + z(1) + u(7)) + 1,

A4 = u(7)x(1)y(7)z(1) + (b0 + 1)(u(7)x(1)y(7) + u(7)x(1)z(1)
+u(7)y(7)z(1) + x(1)y(7)z(1)) + c(0).
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It is clear that the linear equations G1 = G2 = G3 = 0 in the variables d(1), d(2)
are inconsistent if and only if

G = (A1 + 1)A3 +A2 +A4 ̸= 0.

Note now that the set of K-solutions of the equation G = 0 is a preimage of the
Boolean function K14 → K corresponding to the polynomial G in the 14 variables

{x1, x2, x3, y7, y8, y9, z1, z2, z3, u7, u8, u9, c0, d0}.

By computing the K-dimension of the quotient algebra

K[x1, . . . , d0]/⟨G, x2
1 + x1, . . . , d

2
0 + d0⟩

we have that the number K-solutions of G = 0 is exactly 213, for all bits b0, b1, b3 ∈
K. In other words, the Boolean function corresponding to G is a balanced one, that
is, its two preimages have the same number of elements. Since G1, G2, G3 are linear
polynomials, this implies that the computation of the Gröbner bases of the guess-
and-determine strategy is very fast for half of the evaluations of the considered 14
variables. We can possibly precompute the K-solutions of the equation G = 0 once
given the first 3 keystream bits b0, b1, b2 in order to avoid useless Gröbner bases
computations. In fact, in the experiments of the next section we perform Gröbner
bases for all the evaluations of the 14 variables because they are extremely fast in
the case that G ̸= 0 and one needs the evaluations of 69 additional variables to
obtain fast computations also in the case G = 0.

Remark finally that in our attack to E0, before performing Gröbner bases com-
putations, we always eliminate also the variables c(t + 1) (t ≥ 0) by means of the
polynomials

σt(f) + b(t) = x(t+ 1) + y(t+ 7) + z(t+ 1) + u(t+ 7) + c(t+ 1) + b(t)

where b(t) denotes the keystream bit at clock t.

8. Experimental results

In this section we report the results of our testing activity. Firstly, we code
an algebraic attack to the difference stream cipher E0 using Gröbner bases, SAT
solvers and Binary Decision Diagrams. Secondly, we run it on a couple of servers
where the second one is used only to allow parallel computations with large memory
consumption for BDDs. The servers have the following hardware configurations:

• Intel(R) Core(TM) i9-10900 CPU@2.80GHz, 10 Cores, 20 Threads and 64
Gb of RAM — server A, for short;

• 2 x Intel(R) Xeon(R) Gold 6258R CPU@2.7GHz, 56 Cores, 112 Threads
and 768 Gb of RAM — server B, for short.

On both these machines we install a Debian-based Linux distribution as operating
system.

As described in the previous sections, for both Gröbner bases and SAT solvers we
make use of a guess-and-determine strategy based on the evaluation of 83 variables
and the knowledge of a small numberK of keystream bits in the range 51 ≤ K ≤ 63.
Note that Bluetooth specifications require a reinitialization of the initial state of
the explicit difference system (5) by means of the last 128 keystream bits obtained
in the first 200 clocks. Because our algebraic attack can be performed using less
than 128 keystream bits, a full attack to E0 is achieved by simply running our code
twice.
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To compare Gröbner bases with SAT solvers, we execute 220 different tests on
the server A. More precisely, we consider 217 random guesses of the 83 variables
and we use 23 random keys. For each number K of keystream bits, we gather
average, min and max computing times for performing DegRevLex-Gröbner bases
and SAT solving and we report these data in Table 1. The timings are expressed in
milliseconds that are denoted as “ms”. The chosen Gröbner bases implementation
for our testing activity is slimgb of the computer algebra system Singular [9]
and the considered SAT solver is cryptominisat [29]. Note that SAT solving is
applied to the the same polynomial systems where Gröbner bases are computed
once these systems are converted in the Conjunctive Normal Form (briefly CNF).
Note that the ANF-to-CNF conversion time is essentially negligible since we apply
this transform only once and for each evaluation of the 83 variables we just add the
corresponding linear equations to the CNF.

Table 1. GB vs SAT
K GB avg GB min/max SAT avg SAT min/max

51 31ms 1/411ms 196ms 105/1007ms

53 34ms 2/480ms 220ms 121/876ms

55 41ms 2/522ms 230ms 134/638ms

57 52ms 3/620ms 245ms 143/645ms

59 64ms 3/799ms 283ms 161/777ms

61 79ms 3/1115ms 300ms 174/732ms

63 96ms 4/1287ms 326ms 191/862ms

According to Section 7, all minimum computing times are actually obtained for
guesses of the 14 special variables such that G ̸= 0.

Table 2. GB data
K deg(GB)=0 deg(GB)=1 deg(GB)=2 deg=1 avg sol deg=2 avg sol

51 83.781% 15.243% 0.975% 1.442 3.154

53 94.023% 5.971% 0.005% 1.047 3

55 98.438% 1.561% 0.0001% 1.011 3

57 99.613% 0.386% 0% 1.004

59 99.901% 0.098% 0% 1

61 99.976% 0.023% 0% 1

63 99.993% 0.006% 0% 1

Table 2 presents, for different values of K, the number of Gröbner bases of
a certain degree and the average number of (spurious) solutions we compute by
means of such bases. We express the number of Gröbner bases of some degree as a
percentage of the total number of Gröbner bases in our test set which is 220 for any
K. The degree of a Gröbner basis is the highest degree of its elements up to field
equations. A Gröbner basis of degree 0 corresponds to an inconsistent polynomial
system, that is, we have no spurious solutions. Gröbner bases of degree strictly
greater than 2 were not found in our tests.

Data gathered show that the average number of spurious solutions for each
Gröbner basis drops down very quickly as the number K of keystream bits slightly
increases. If we set K ≥ 59, more than 99.9% of the Gröbner bases provide no
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spurious solution. The remaining 0.1% consists of Gröbner bases of degree 1 with
a single solution. Such a solution can be read immediately from the basis and de-
tected as a spurious one by using few additional keystream bits. In fact, for K = 63
the probability to have spurious solutions is close to zero.

In order to validate the timings collected using Gröbner bases and SAT solvers,
we also code a BDD-based algebraic attack to E0 and compare new results with
those presented in Table 1 and in the literature [27, 28]. Indeed, BDDs have been
generally considered the standard in E0 cryptanalysis. We install BuDDy library
package 2.4 [19] on our machines and following the approach described in Section
3 of [27], we generate a number K of BDDs (consisting of unknown key variables)
each of which is associated with a Boolean equation. This set of K equations
corresponds to the number K of given keystream bits. This means that sometimes
these equations are equal to 0, sometimes to 1. In the former case, we take the
complement of the Boolean equation, whereas in the latter we do not. Now, we have
several Boolean equations in unknown key variables equate to 1 and we have to find
a common solution for these equations. Such a solution can be found by ANDing
our set of BDDs. Notice that AND operations are usually extremely expensive both
in time and memory, therefore the ordering to perform ANDing is of fundamental
importance. Among the various approaches described in [27] such as sequential
ANDing, ANDing with fixed interval, random ANDing, RSAND and so on, we
adopt RSAND because it takes the overall used memory under control, reducing
(recursively) the number of BDDs by half until it gets the final BDD.

Now, we are able to conduct an extensive testing to gauge the performance of
our BDD-based attack. We initially consider the same set of 83 variables previously
used with Gröbner bases and SAT solvers. More precisely, we set 57 ≤ K ≤ 63,
collect several random guesses of 83 variables, use 23 random keys and try to recover
the remaining 49 key bits. Recall that the key for us is the 132-bit internal state
of E0 at the clock where the keystream starts to output.

Despite using RSAND, experimental activities show that none of these tests
ended due to lack of memory of our servers. Indeed, the running code requires
more than 768 Gb of RAM which is the maximum amount of memory available on
our server B. Therefore, we reduce the number of unknown key bits to be recovered
from 49 to 39 and provide some random evaluation of 93 variables. Notice that
the configuration with 39 bits was recovered in 5 seconds on a regular personal
computer by the authors of [27]. On server A, using a single-thread configuration
and a few Mb of memory, we are able to recover 39 unknown key bits in about 0.15
seconds. Interestingly, the set of variables which provide better results is not the
same found with Gröbner bases and SAT solvers but it is a chunk of consecutive
bits which includes all 39 variables of the fourth LFSR, namely u(0), . . . , u(38).
If we increase the number of variables to be solved from 39 to 40, 41, 42 and so
on, our testing activities suggest to include last variables of the third LFSR, that
is, z(32), z(31), z(30), . . . . In particular, we have experimentally verified that a
different chunk of variables, as well as several variations (consecutive and not),
yields worse timings.

We then measure the performance of the better chunk which is identified as

u(0), . . . , u(38), z(32), z(31), z(30), . . .
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and starting from 39 variables we increase this set by one variable at each time.
Table 3 shows the results of the experimental activity with BuDDy library 2.4 on
server A which is slightly faster than server B. The timings are given in seconds
that will be denoted as “s”.

Table 3. BDD with BuDDy 2.4

key bits K exec time mem used # of threads

39 40 0.15s 60Mb 1

40 41 1.07s 240Mb 1

41 42 4.75s 725Mb 1

42 43 19.3s 3Gb 1

43 44 94.5s 13Gb 1

44 45 – out of mem 1

Because elapsed time and memory used grow exponentially, and BuDDy library
does not provide the possibility to run the code on all threads of our servers, we
install Sylvan [31], a decision diagram package which support multi-core architec-
tures. The testing activities suggest that our code is slower on Sylvan and faster
on BuDDy 2.4 when executed in single thread mode. Notice that multiple factors
can cause getting speed results slower than the speed to which you are expected but
this gap is easily bridged by increasing the number of threads used. Exploiting the
power of the modern multi-core architectures, the advantage of Sylvan becomes
more and more evident as the number of unknown key bits to recover increases.

Again, we conducted an extensive testing to gauge the performance of our BDD-
attack. We set K = 41, 43, 45, collect 29 random guesses of 91, 89, 87 variables, use
23 random keys and we try to recover several bits of the key, collecting average
execution time and memory used. Table 4 summarizes the results of our testing
activities with Sylvan on all 112 threads of server B. Notice that, due to time
consumption, last four rows of this table do not refer to 212 different tests — 29

random guesses and 23 random keys — but to a single execution with a random
key.

Table 4. BDD with Sylvan

key bits K exec time mem used # of threads

39 41 1.19s 1.47Gb 112

40 41 1.55s 1.51Gb 112

41 41 1.95s 1.60Gb 112

39 43 1.34s 1.60Gb 112

40 43 2.03s 1.76Gb 112

41 43 4.71s 3.46Gb 112

39 45 3.58s 3.44Gb 112

40 45 5.23s 3.86Gb 112

41 45 14.65s 7.41Gb 112

43 45 68.29s 30Gb 112

44 45 128.37s 36Gb 112

45 46 517.42s 233Gb 112

46 47 — out of mem 112

Our experimental results suggest that BDD-based algebraic attacks to E0 are not
up to those obtained by using Gröbner bases or SAT solvers. In addition to the huge
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difference in computing times, note finally that all our Gröbner bases computations
run in less than 0.5 Gb of memory for K = 63.

9. Conclusions

This paper shows that the notion and theory of difference stream ciphers in-
troduced in [18] can be usefully applied to the algebraic cryptanalysis of realworld
ciphers as E0 that is used in the Bluetooth protocol. In particular, the invertibility
property of the explicit difference system defining the evolution of the state of E0
allows to attack any internal state instead of the initial one, reducing computations
in a significant way. Moreover, the variables elimination obtained by the linear
difference equations corresponding to the LFSRs of E0 contributes to improve the
performance of an algebraic attack. Finally, the difference stream cipher structure
of the Bluetooth encryption reveals that there are 14 special variables which when
evaluated, lead to linear equations among other variables. Such special variables
are useful then to speed-up a guess-and-determine strategy for solving the poly-
nomial system corresponding to the algebraic attack. Our attack is based on the
exhaustive evaluation of 83 state variables, including the 14 useful ones, and the
knowledge of about 60 keystream bits. We show that a low number of spurious keys
are compatible with such short keystream which is a possible flaw of the cipher.
The average solving time by means of a Gröbner basis of the polynomial system
corresponding to each evaluation is about 60 milliseconds. The sequential running
time is hence about 279 seconds by an ordinary CPU which improves any previous
attempt to attack E0 using a short keystream. The complexity 283 also improves
the one obtained by BDD-based cryptanalysis which is generally estimated as 286

(see, for instance, [20, 27]). In fact, Gröbner bases are compared in this paper with
other solvers confirming their feasibility in practical algebraic cryptanalysis already
shown in [18]. We finally observe that the parallelization of the brute force on the
83 variables can be easily used to scale down further the runtime.
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Università degli Studi di Milano, Via Celoria 18, 20133 Milano, Italy

Email address: sergio.polese,andrea.visconti@unimi.it

† Scientific Analysis Group, Defence Research & Development Organization, Met-

calfe House, Delhi-110054, India
Email address: shrawant@gmail.com


