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Abstract

(Fully) homomorphic encryption ((F)HE) allows users to publicly evaluate circuits on en-
crypted data. Although publicly homomorphic evaluation property has various applications,
(F)HE cannot achieve security against chosen ciphertext attacks (CCA2) due to its nature. To
achieve both the CCA2 security and homomorphic evaluation property, Emura et al. (PKC
2013) introduced keyed-homomorphic public key encryption (KH-PKE) and formalized its se-
curity denoted by KH-CCA security. KH-PKE has a homomorphic evaluation key that enables
users to perform homomorphic operations. Intuitively, KH-PKE achieves the CCA2 security un-
less adversaries have a homomorphic evaluation key. Although Lai et al. (PKC 2016) proposed
the first keyed-fully homomorphic encryption (keyed-FHE) scheme, its security relies on the
indistinguishability obfuscation (iO), and this scheme satisfies only a weak variant of KH-CCA
security. Here, we propose a generic construction of a KH-CCA secure keyed-FHE scheme from
an FHE scheme secure against non-adaptive chosen ciphertext attack (CCA1) and a strong dual-
system simulation-sound non-interactive zero-knowledge (strong DSS-NIZK) argument system
by using the Naor-Yung paradigm. We show that there are existing strong DSS-NIZK systems
and IND-CCA1 secure FHE schemes that are suitable for our generic construction. This shows
that there exists a keyed-FHE scheme from simpler primitives than iO.

1 Introduction

1.1 Background

Homomorphic encryption (HE) allows users to convert encryptions of messages m1, . . . ,mℓ into an
encryption of C(m1, . . . ,mℓ) publicly for some circuit C. In particular, fully homomorphic encryption
(FHE) can be used to handle arbitrary circuits. The publicly homomorphic evaluation property is
applied to various applications. For example, suppose (evaluated) encryptions of private data are
stored in a remote server, delegating computations on the encrypted data to the server without
revealing the private data is possible. Thus, users leverage the results of computations on other
devices without compromising data privacy.

Since Gentry proposed the first FHE scheme [26], the research area has gained widespread
attention and many schemes have been proposed (e.g., FHE schemes [6,8–12,27,44], identity-based
FHE (IBFHE) schemes [17,27], and attribute-based FHE schemes [7,27]), where most schemes are
secure under the learning with errors (LWE) assumption.
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Although the public evaluation property is useful, one downside is that HE schemes are vulnera-
ble against adaptive chosen ciphertext attacks (CCA). (In this paper, we use IND-CCA2 or IND-CCA,
IND-CCA1, and IND-CPA as indistinguishability against adaptive chosen ciphertext attacks, non-
adaptive chosen ciphertext (i.e., lunchtime) attacks, and chosen-plaintext attacks, respectively).
Therefore, IND-CCA1 secure FHE schemes have been proposed. For example, Canetti et al. [12]
proposed a generic construction of IND-CCA1 secure FHE from the LWE assumption or a zero-
knowledge succinct non-interactive argument of knowledge (zk-SNARK) [4,5] and IND-CPA secure
FHE. However, IND-CCA1 security can be inadequate for FHE since Loftus et al. [36] showed that
an IND-CCA1 secure FHE scheme is vulnerable against ciphertext validity attacks.

To achieve both CCA2-like security and homomorphic evaluation property, Emura et al. [22,
23] introduced keyed-homomorphic public-key encryption (KH-PKE). Contrary to traditional HE,
the homomorphic evaluation property of KH-PKE is not public. Specifically, KH-PKE has a
homomorphic evaluation key. Thus, only users with the homomorphic evaluation key can perform
homomorphic operations. Due to its nature, KH-PKE can achieve CCA2-like security.1 Suppose
adversaries do not have the homomorphic evaluation key, then, KH-PKE satisfies the IND-CCA2
security. Moreover, KH-PKE satisfies a stronger security than that of HE even if adversaries receive
a homomorphic evaluation key. Suppose adversaries receive the homomorphic evaluation key before
the challenge query, then the strongest security that KH-PKE can satisfy is the IND-CCA1 security
as the case of HE. In contrast, KH-PKE can satisfy a stronger security than the IND-CCA1 security
after the challenge query since adversaries continue making decryption queries until they receive
the homomorphic evaluation key. Moreover, KH-PKE is secure against key recovery and ciphertext
validity attacks [21].

Emura et al. [23] proposed the security notion of KH-PKE, called KH-CCA security, and gave
the KH-PKE schemes under the decisional Diffie-Hellman (DDH) assumption or the decisional
composite residuosity (DCR) assumption. Though their security proofs contain bugs, they have
been corrected in [22]. Libert et al. [35] proposed the first KH-PKE schemes KH-CCA secure
using the Decision Linear (DLIN) assumption or the symmetric external Diffie-Hellman (SXDH)
assumption. Jutla and Roy [32] proposed a KH-PKE scheme based on SXDH assumption. All
KH-PKE schemes support either multiplicative or additive homomorphisms. As another direction,
Maeda and Nuida [38] proposed a two-level KH-PKE scheme based on the SXDH assumption,
which supports one multiplication and any number of additions. Shinoki and Nuida demonstrated
the condition when more than two ciphertexts can be evaluated simultaneously [43].

Lai et al. [33] proposed the first keyed-fully homomorphic encryption (keyed-FHE)2scheme,
which is secure under lattice assumptions and the indistinguishability obfuscation (iO) [1]. However,
known candidates of iO [1] remain arguable.Therefore, constructing keyed-FHE schemes without iO
has to be an interesting open problem. We remark that the keyed-FHE scheme of [33] satisfies only
a weaker security than KH-CCA security. In the security game considered in [33], it is supposed
that an adversary receives a homomorphic evaluation key before the challenge phase. In this case,
the adversary is prohibited to access the decryption oracle.

1.2 Contribution

In this work, we propose a generic construction of keyed-FHE without iO. Our construction is
based on the Naor-Yung paradigm [40, 41] to achieve KH-CCA security. The building blocks of
our construction are IND-CCA1 secure FHE and a strong dual-system unbounded simulation-sound

1Although Desmedt et al. [20] proposed a HE scheme with a designated evaluation called controlled HE, no CCA
security was considered unlike the KH-PKE.

2In this paper, we consider keyed-FHE in a public key setting.
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NIZK (strong DSS-NIZK) [32]. There exist IND-CCA1 secure FHE schemes [12]. As a result, we
can obtain a keyed-FHE instantiation constructed from simpler primitives than iO and its security
is based on a knowledge assumption (this is concretely discussed in Section 5). We remark that
we have to construct a desired strong DSS-NIZK system since there is no existing DSS-NIZK for
IND-CCA1 FHE ciphertexts.

For this purpose, we propose a generic construction of strong DSS-NIZK for IND-CCA1 FHE
ciphertexts from a smooth projective hash proof system (PHPS) and an unbounded simulation-
sound NIZK system. There are statistically secure smooth PHPS [3] and unbounded simulation-
sound NIZK schemes [13,29,34] whose security depends on lattice assumptions or the security of the
commitment schemes used in [13, 29]. We remark that for instantiating our generic construction
of strong DSS-NIZK for IND-CCA1 FHE ciphertexts, it is required that the IND-CCA1 secure
FHE schemes are publicly verifiable (but there exists such a scheme [12]) though our keyed-FHE
construction does not require this property for the underlying FHE schemes.

To sum up, we obtain the first keyed-FHE scheme without iO, and its security is based on
a knowledge assumption3. Furthermore, another advantage of our result is that our keyed-FHE
scheme satisfies stronger security (i.e., KH-CCA security) than the existing one [33].

1.3 Technical Overview

We give a brief overview of our results. Since Lai et al. [33] constructed the keyed-FHE scheme
using iO, the most convincing way to achieve the goal is to remove the iO from the construction.
However, completing the task seems technically difficult because the correctness and security of most
existing KH-PKE schemes [22, 23, 35, 38, 43] extremely depend on the properties of cryptographic
primitives based on the DDH, DCR, or pairing-based assumptions, and it is unclear to construct
these primitives based on the computational assumptions used in the existing FHE schemes. Thus,
we focus on the Jutla and Roy’s KH-PKE scheme [32] by providing a strong variant of NIZK
suitable for constructing a keyed-FHE scheme. Their construction used an ElGamal encryption
scheme and a stronger version of the dual-system unbounded simulation-sound NIZK (DSS-NIZK)
for the Diffie-Hellman language. Due to the nature of one-time simulation-sound NIZK for the
Diffie-Hellman language, their construction satisfies KH-CCA security as noted in [32]. Therefore,
the remaining task to prove the KH-CCA security is how to simulate the homomorphic key reveal
oracle (RevHK) and how to prove the IND-CCA1 security even after the RevHK query. Here, the
properties of strong DSS-NIZK resolve the problems. The homomorphic evaluation key of the
KH-PKE scheme is a trapdoor of the strong DSS-NIZK, which is a secret value used in the zero-
knowledge simulator of (strong) DSS-NIZK. In particular, the trapdoor leakage resilience of strong
DSS-NIZK ensure IND-CCA1 security even after the trapdoor is revealed to an adversary. This is
because the proof generated by a (DSS-)NIZK system contains secret information such as a message,
and there is a possibility that an adversary obtains such secret information after the RevHK oracle
access. Hence, that property of strong DSS-NIZK is necessary to guarantee the KH-CCA security.
To satisfy the required properties, Jutla and Roy constructed the strong DSS-NIZK scheme for the
Diffie-Hellman language using quasi-adaptive NIZK for the same language [31] and an hash proof
system (HPS) [19] that is smooth projective and universal2.

Using a similar approach, we construct the keyed-FHE without iO by replacing (a variant of) the
ElGamal encryption scheme with FHE schemes. For this purpose, we have to overcome some issues.

3Note that even if an IND-CPA secure FHE scheme under (a variant of) the approximate GCD assumption
(e.g., [14, 18, 44]) is employed to construct an IND-CCA1 secure FHE scheme, our generic construction gives no
keyed-FHE scheme based solely on that assumption because there is no existing HPS for approximate GCD-based
ciphertexts.
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First, the Jutla and Roy’s KH-PKE scheme used strong DSS-NIZK for the Diffie-Hellman language
that is not suitable for FHE. Therefore, we construct strong DSS-NIZK for another language that
handles FHE ciphertexts. Here, we observe whether we can construct strong DSS-NIZK for FHE
ciphertexts following a similar approach as Jutla and Roy. They used quasi-adaptive NIZK for the
Diffie-Hellman language and an HPS [19] that is smooth projective and universal2. In this step,
an issue occurs since there is no known lattice-based universal2 HPS. We construct the desired
strong DSS-NIZK for FHE ciphertexts by replacing the universal2 HPS of Jutla-Roy’s DSS-NIZK
with unbounded simulation-sound NIZK and modifying slightly their construction. Second, the
Jutla and Roy’s KH-PKE scheme satisfies KH-CCA security based on simulation-sound NIZK for
the Diffie-Hellman language. That is, just replacing the ElGamal encryption scheme with FHE
schemes does not work well, since their scheme is constructed in a semi-generic way. Here, we
resolve this issue by employing the Naor-Yung paradigm [40, 41], so that our keyed-FHE scheme
works correctly and achieves KH-CCA security. These modifications enable us to construct a keyed-
FHE scheme without iO.

Therefore, this completes a brief overview of our generic keyed-FHE scheme.

1.4 Differences from the Proceedings Version

In the current version, we modify the proceedings version [42], as follows: The evaluation algorithm
of our keyed-FHE scheme explicitly rerandomizes evaluated ciphertexts of the underlying FHE
schemes by adding encryptions of 0, while this rerandomization procedure was not described in the
proceedings version. Furthermore, the detailed proofs of Theorems 1 and 2 (the security proofs of
our keyed-FHE scheme and DSS-NIZK system) are described in Sections 3.2.1 and 4.2, respectively.
Meanwhile, in the proceedings version, we omitted these security proofs, due to the page-limitation.
In addition, we describe a keyed-FHE scheme constructed from IND-CPA secure FHE, zk-SNARK,
and strong DSS-NIZK, in A, while this was also omitted in the proceedings version, because of the
page-limitation.

Here, we give a detailed explanation about the necessity of the rerandomization procedure in our
scheme. In the proceedings version, we implicitly assumed that the evaluation algorithms (denoted
by EvalF,1 and EvalF,2) of the underlying FHE of our keyed-FHE scheme were probabilistic. If EvalF,1
or EvalF,2 is deterministic, the security game Game2 in the proof of Theorem 1 is distinguishable
from the previous security game. Concretely, for the first and the second components (denoted by
ĉt1 and ĉt2) of an evaluated ciphertext, an adversary can distinguish those games by comparing ĉt1
and ĉt2 received from the evaluation oracle, with these components computed by itself. Thus, we
had to assume that both EvalF,1 and EvalF,2 were probabilistic. However, even though EvalF,1 or
EvalF,2 is deterministic, it is possible to rerandomize ĉt1 and ĉt2 by using EvalF,1 and EvalF,2.

In order to clarify the procedure of our keyed-FHE scheme, we explicitly write that the evalua-
tion algorithm of the keyed-FHE scheme (in Section 3) in the current version rerandomizes ĉt1 and
ĉt2 even if EvalF,1 or EvalF,2 is deterministic.

1.5 Organization

The rest of this paper is organized as follows: In Section 2, we describe the notation used in this
paper and definitions of (DSS-)NIZK, PHPS, and (keyed-)FHE. In Section 3, we propose our generic
construction of keyed-FHE and prove its security. In Section 4, we present a generic construction
of DSS-NIZKs from a smooth PHPS and an unbounded-simulation sound NIZK. In Section 5, we
show that there exist existing primitives suitable for constructing keyed-FHE schemes without iO.
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2 Preliminaries

In this section, we describe the notation used in this paper and the definitions of several crypto-
graphic primitives.
Notation. For a positive integer n, let [n] := {1, 2, . . . , n}. For n values x1, x2, . . . , xn and a subset
I ⊆ [n] of indices, let {xi}i∈I be a set of values whose indices are included in I, and let (xi)i∈I be a
sequence of values whose indices are included in I. Probabilistic polynomial-time is abbreviated as
PPT. If a function f : N→ R fulfills f(λ) = o(λ−c) for every constant c > 0 and sufficiently large λ,
then we say that f is negligible in λ and denoted by f(λ) = negl(λ). A probability is overwhelming
if it is 1−negl(λ). For a probabilistic algorithm A, y ← A(x; r) means that A takes as input x and a
picked randomness r, and it outputs y. For algorithms A and BA, (y; z)← (A∥BA)(x) denotes that
the execution of A on input x is followed by that of BA on the same input x including randomness,
and (y; z) is the concatenation of the outputs y and z of the two algorithms A and BA, respectively.

2.1 Non-Interactive Zero-Knowledge Arguments

Definition 1. Let L(R) = {x | ∃w s.t. (x,w) ∈ R} be the language defined by a relation R ⊆
{0, 1}∗ × {0, 1}∗. A non-interactive zero-knowledge argument (NIZK) system for a relation R
consists of three polynomial-time algorithms (Gen,P,V):

• crs ← Gen(1λ): The randomized algorithm Gen called a generator takes as input a security
parameter 1λ, and it outputs a common reference string (CRS) crs.

• π ← P(crs, x, w): The randomized algorithm P called a prover takes as input a CRS crs, a
statement x, and a witness w, and it outputs a proof π.

• 1/0← V(crs, x, π): The deterministic algorithm V called a verifier takes as input a CRS crs,
a statement x, and a proof π, and it outputs 1 or 0.

We describe properties of traditional NIZKs.

Definition 2. It is required that a NIZK system (Gen,P,V) satisfies completeness, soundness, and
zero-knowledge:

Correctness. For every (x,w) ∈ R, it holds that

Pr

[
crs← Gen(1λ);
π ← P(crs, x, w)

: V(crs, x, π) = 1

]
≥ 1− negl(λ).

Soundness. For any PPT algorithm A, it holds that

Pr

[
crs← Gen(1λ);
(x, π)← A(crs)

:
V(crs, x, π) = 1
∧x /∈ L(R)

]
≤ negl(λ).

(Computational) Zero-Knowledge. There exists a PPT simulator Sim = (Sim0, Sim1) such
that for every PPT algorithm A, it holds that∣∣∣Pr[crs← Gen(1λ) : 1← AP(crs,·,·)(crs)]− Pr[(crs, td)← Sim0(1

λ) : 1← ASim∗(·,·)(crs)]
∣∣∣ ≤ negl(λ),

where the Sim∗ oracle on input (x,w) returns ⊥ if (x,w) /∈ R, and otherwise, returns π ←
Sim1(crs, td, x), where the PPT algorithm Sim1 takes as input crs, a trapdoor td, and a statement
x, and outputs a simulated proof π.
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Following [32], we describe several properties of NIZKs which are required for constructing
strong DSS-NIZK.

Definition 3. Let (Gen,P,V) be a NIZK system for a relation R which has the zero-knowledge
simulator Sim = (Sim0, Sim1).

Unbounded Simulation-Soundness. For any PPT adversary A, it holds that

Pr

 (crs, td)← Sim0(1
λ);Q ← ∅;

(x∗, π∗)← ASim1(crs,td,·)(crs)
:

(x∗, π∗) /∈ Q∧
x∗ /∈ L(R)∧
V(crs, x∗, π∗) = 1

 ≤ negl(λ),

where the Sim1 oracle on input x returns π ← Sim1(crs, td, x) and sets Q ← Q∪ {(x, π)}.
Composable Zero-Knowledge. For any PPT adversaries A1 and A2, it holds that∣∣∣Pr [crs← Gen(1λ) : 1← A1(crs)

]
− Pr

[
(crs, td)← Sim0(1

λ) : 1← A1(crs)
]∣∣∣ ≤ negl(λ), and∣∣∣Pr[(crs, td)← Sim0(1

λ) : 1← A
P(crs,·,·)
2 (crs, td)]

− Pr[(crs, td)← Sim0(1
λ) : 1← A

Sim∗(·,·)
2 (crs, td)]

∣∣∣ ≤ negl(λ),

where the Sim∗ oracle on input (x,w) returns ⊥ if (x,w) /∈ R, and otherwise, returns π ←
Sim1(crs, td, x).

Notice that the adversary is allowed to query x such that x /∈ L(R) in the definition of unbounded
simulation-soundness.

2.2 Dual-System Simulation-Sound NIZK

We describe the definition of dual-system (unbounded) simulation-sound NIZK (DSS-NIZK) by
following [32].

Definition 4. Let L(R) = {x | ∃w s.t. (x,w) ∈ R} be the language defined by a relation R ⊆
{0, 1}∗ × {0, 1}∗. A DSS-NIZK system for a relation R consists of polynomial-time algorithms
in three worlds called real world, partial-simulation world, and one-time full simulation world, as
follows:

Real World. A DSS-NIZK in real world consists of three polynomial-time algorithms (Gen,P,V):

• crs ← Gen(1λ): The randomized algorithm Gen called a generator takes as input a security
parameter 1λ, and it outputs a common reference string (CRS) crs.

• π ← P(crs, x, w, lbl): The randomized algorithm P called a prover takes as input a CRS crs, a
statement x, a witness w, and a label lbl ∈ {0, 1}∗, and it outputs a proof π.

• 1/0 ← V(crs, x, π, lbl): The deterministic algorithm V called a verifier takes as input a CRS
crs, a statement x, a proof π, and a label lbl ∈ {0, 1}∗, and it outputs 1 or 0.

Partial-Simulation World. A DSS-NIZK in partial-simulation world consists of three
polynomial-time algorithms (sfGen, sfSim, pV):

• (crs, tds, tdv) ← sfGen(1λ): The randomized algorithm sfGen, called a semi-functional gener-
ator, takes as input a security parameter 1λ, and it outputs a semi-functional CRS crs, and
two trapdoors tds and tdv.
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• π ← sfSim(crs, tds, x, β, lbl): The randomized algorithm sfSim, called a semi-functional simu-
lator, takes as input a CRS crs, a trapdoor tds, a statement x, a membership-bit β ∈ {0, 1},
and a label lbl ∈ {0, 1}∗, and it outputs a proof π.

• 1/0 ← pV(crs, tdv, x, π, lbl): The deterministic algorithm pV, called a private verifier, takes
as input a CRS crs, a trapdoor tdv, a statement x, a proof π, and a label lbl ∈ {0, 1}∗, and it
outputs 1 or 0.

One-time Full Simulation World. A DSS-NIZK in one-time full simulation world consists of
three polynomial-time algorithms (otfGen, otfSim, sfV):

• (crs, tds, tds,1, tdv) ← otfGen(1λ): The randomized algorithm otfGen, called a one-time full
generator, takes as input a security parameter 1λ, and it outputs a CRS crs and three trapdoors
tds, tds,1, and tdv.

• π ← otfSim(crs, tds,1, x, lbl): The randomized algorithm otfSim, called a one-time full simula-
tor, takes as input a CRS crs, a trapdoor tds,1, a statement x, and a label lbl ∈ {0, 1}∗, and
it outputs a proof π.

• 1/0← sfV(crs, tdv, x, π, lbl): The deterministic algorithm sfV, called a semi-functional verifier,
takes as input a CRS crs, a trapdoor tdv, a statement x, a proof π, and a label lbl ∈ {0, 1}∗,
and it outputs 1 or 0.

We remark that the witness relation parameter ρ is introduced in [32] because it considers
quasi-adaptive NIZK. We omit the parameter in this paper.

Definition 5. It is required that a DSS-NIZK system for a relation R satisfies completeness, partial
zero-knowledge, unbounded partial simulation-soundness, and one-time full zero-knowledge:

Completeness. For every (x,w) ∈ R and every lbl ∈ {0, 1}∗, it holds that

Pr

[
crs← Gen(1λ);
π ← P(crs, x, w, lbl)

: V(crs, x, π, lbl) = 1

]
≥ 1− negl(λ).

(Composable) Partial Zero-Knowledge. For any PPT algorithms A0 and A1, it holds that∣∣∣Pr [crs← Gen(1λ) : 1← A0(crs)
]
− Pr

[
(crs, tds, tdv)← sfGen(1λ) : 1← A0(crs)

]∣∣∣ ≤ negl(λ), and∣∣∣∣Pr [ (crs, tds, tdv)
← sfGen(1λ)

: 1← AO.PZK0
1 (crs)

]
− Pr

[
(crs, tds, tdv)
← sfGen(1λ)

: 1← AO.PZK1
1 (crs)

]∣∣∣∣ ≤ negl(λ),

where, let O.PZK0 = (P(crs, ·, ·, ·), sfSim(crs, tds, ·, ·, ·),V(crs, ·, ·, ·)) and O.PZK1 :=
(sfSim∗(crs, tds, ·, ·, ·), sfSim(crs, tds, ·, ·, ·), pV(crs, tdv, ·, ·, ·)) denote tuples of oracles which A
can access, the sfSim∗(crs, tds, x, w, lbl) oracle returns sfSim(crs, tds, x, β = 1, lbl), and the chal-
lenger aborts if either (x,w, lbl) such that (x,w) /∈ R is queried to the first oracle (sfSim∗ or P), or
the second oracle sfSim receives a query (x, β, lbl) such that β = 0 or x /∈ L(R).
Unbounded Partial Simulation-Soundness. For any PPT algorithm A, it holds that

Pr

[
(crs, tds, tdv)← sfGen(1λ);

(x, π, lbl)← AsfSim(crs,tds,·,·,·),pV(crs,tdv ,·,·,·)(crs)
: A wins

]
≤ negl(λ),

where the winning event [A wins] of A is defined as

[A wins] :=

[
((x /∈ L(R) ∨ V(crs, x, π, lbl) = 0)∧
pV(crs, tdv, x, π, lbl) = 1

]
.
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One-time Full Zero-Knowledge. For any PPT algorithm A = (A0,A1), it holds that∣∣∣∣∣∣∣∣Pr


(crs, tds, tdv)← sfGen(λ);

(x∗, β∗, lbl∗, st)← AO.OTZK0
0 (crs);

π∗ ← sfSim(crs, tds, x
∗, β∗, lbl∗)

b← AO.OTZK0
1 (π∗, st);

: b = 1



−Pr


(crs, tds, tds,1, tdv)← otfGen(λ);

(x∗, β∗, lbl∗, st)← AO.OTZK1
0 (crs);

π∗ ← otfSim(crs, tds,1, x
∗, lbl∗);

b← AO.OTZK1
1 (π∗, st)

: b = 1


∣∣∣∣∣∣∣∣ ≤ negl(λ),

where st is internal state-information, let O.OTZK0 = (sfSim(crs, tds, ·, ·, ·), pV(crs, tdv, ·, ·, ·)) and
O.OTZK1 = (sfSim(crs, tds, ·, ·, ·), sfV(crs, tdv, ·, ·, ·)) denote tuples of oracles which A can access,
and the challenger aborts if one of the following conditions holds:

• The generated (x∗, β∗) is not correct for the language L(R), where (x, β) is correct for a
language L(R) (or β is correct for x) if x ∈ L(R) ∧ β = 1, or x /∈ L(R) ∧ β = 0. Otherwise,
(x, β) is not correct for L(R) (or β is not correct for x).

• (x, β, lbl) such that the membership-bit β is not correct for L(R) is queried to the first oracle
sfSim∗.

• The generated (x∗, π∗, lbl∗) is queried to sfV/pV.

Here, for a DSS-NIZK system ΠDN, let Adv
pzk
ΠDN

(λ) be the maximum probability that any PPT

adversary breaks the partial zero-knowledge of ΠDN, let Adv
upss
ΠDN

(λ) be the maximum probability that

any PPT adversary breaks the unbounded partial simulation-soundness of ΠDN, and let AdvotzkΠDN
(λ)

be the maximum probability that any PPT adversary breaks the one-time full zero-knowledge of
ΠDN. Jutla and Roy proved the following facts [32]:

Proposition 1 ( [32, Lemma 4] (true simulation-soundness)). Let ΠDN denote a DSS-NIZK system
for a relation R. Then for any PPT adversary A, it holds that

Pr

[
(crs, tds, tdv)← sfGen(1λ);

(x, π, lbl)← AsfSim(crs,tds,·,·,·)(crs)
: A wins

]
≤ AdvpzkΠDN

(λ) + AdvupssΠDN
(λ),

where the winning event [A wins] of A is defined as [A wins] := [V(crs, x, π, lbl) = 1 ∧ x /∈ L(R)],
and the challenger aborts if A issues a query (y, β, lbl) such that y /∈ L(R) or β = 0, to the sfSim∗

oracle.

Proposition 2 ( [32, Lemma 12] (simulation-soundness of semi-functional verifier)). Let ΠDN de-
note a DSS-NIZK system for a relation R. Then, for any PPT algorithm A = (A0,A1), it holds
that

Pr


(crs, tds, tds,1, tdv)← otfGen(1λ);

(x∗, lbl∗, β∗, st)← AO.OTZK1
0 (crs);

π∗ ← otfSim(crs, tds,1, x
∗, lbl∗);

(x, lbl, π)← AO.OTZK1
1 (π∗, st)

: A wins

 ≤ AdvotzkΠDN
(λ) + AdvupssΠDN

(λ),

where the winning event [A wins] of A is defined as [A wins] := [sfV(crs, tdv, x, π, lbl) = 1∧x /∈ L(R)],
O.OTZK1 is defined in the same way as Definition 5, and the challenger aborts if at least one of
the following conditions hold:
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• For (x, β, lbl) queried to the sfSim∗ oracle, (x, β) is not correct for L(R).

• β∗ is not the correct membership-bit of L(R).

• (x∗, lbl∗, π∗) is queried to sfV.

• The output of A is the same as (x∗, lbl∗, π∗).

Furthermore, a stronger notion of DSS-NIZK, which is introduced in [32], is defined. We
call reveal event when tds is revealed to adversaries where (crs, tds, tdv) ← sfGen(1λ) or
(crs, tds, tds,1, tdv)← otfGen(1λ) [32].

Definition 6 (Strong DSS-NIZK [32]). A DSS-NIZK system with partial simulation trapdoor reveal
oracle is a strong DSS-NIZK system with the following changes to the DSS-NIZK definition:

• The first part of the composable partial zero-knowledge continues to hold.

• The second part of the composable partial zero-knowledge holds under the additional restriction
that the adversary cannot invoke the third oracle (i.e., V or pV oracle) after the reveal event.

• The unbounded partial simulation-soundness continues to hold.

• The trapdoors tds and tds,1 generated by otfGen are same and statistically indistinguishable
from tds generated by sfGen.

• The one-time full zero-knowledge holds under the additional restriction that (x∗, β∗, lbl∗) is
such that x∗ ∈ L(R) and β∗ = 1 and the second oracle (i.e., pV or sfV oracle) is not invoked
after the reveal event.

• The simulation-soundness of sfV (Proposition 2) holds under the additional restriction that sfV
oracle is not invoked after the reveal event. Notice that there is no restriction that (x∗, β∗, lbl∗)
is such that x∗ ∈ L(R) and β∗ = 1.

The adversaries against the above properties are given access to the partial simulation trapdoor reveal
oracle which, on input a request, returns tds for (crs, tds, tdv)← sfGen(1λ) or (crs, tds, tds,1, tdv)←
otfGen(1λ).

2.3 Smooth Projective Hash Proof System

Following [19], we describe the definition of (smooth) projective hash proof systems (PHPSs), as
follows:

Definition 7 (Projective Hash Family [19]). Let X and Π be finite sets. Let H = {Hk}k∈K be
a collection of functions indexed by K so that Hk : X → Π is a hash function for every k ∈ K.
Then, (H,K,X,Π) is called a hash family. Let L be a non-empty proper subset of X. Let S be a
finite set, and α : K → S be a function. H = (H,K,X,Π, L, S, α) is called a projective hash family
(PHF) if for every k ∈ K, the action of Hk on L is determined by α(k).

Definition 8 ((Smooth) PHPS [19]). For a PHF H = (H,K,X,Π, L, S, α) (where languages are
defined by a relation R ⊆ {0, 1}∗ × {0, 1}∗), let Ĥ be a public evaluation function which takes the
projection key α(k), a statement x ∈ L = {x | ∃w s.t. (x,w) ∈ R}, and a witness w such that
(x,w) ∈ R, and it computes Hk(x). The PHF H constitutes a projective hash proof system (PHPS)
if α, Hk, and Ĥ are efficiently computable.
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Furthermore, a PHPS constituted by a PHF H = (H,K,X,Π, L, S, α) is called a labeled PHPS
if the public evaluation function takes an additional input lbl ∈ {0, 1}∗ which is called a label.
A labeled PHPS is ϵ-smooth if the statistical distance between U(H) = (x, α(k), π′) and V (H) =
(x, α(k),Hk(x, lbl)) is at most ϵ for all k ∈ K, all x ∈ X\L, all lbl ∈ {0, 1}∗, and all π′ ∈ Π.

2.4 (Keyed-)Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE). We first describe the syntax and a security definition
of FHE by following [12].

Definition 9. For a security parameter λ, let M =M(λ) be a message space. An FHE scheme
consists of four polynomial-time algorithms (KGen,Enc,Dec,Eval):

• (pk, sk) ← KGen(1λ): The randomized algorithm KGen takes as input a security parameter
1λ, and it outputs a public key pk and a secret key sk.

• ct← Enc(pk,m): The randomized algorithm Enc takes as input a public key pk and a message
m ∈M, and it outputs a ciphertext ct.

• m/⊥ ← Dec(sk, ct): The deterministic algorithm Dec takes as input a secret key sk and a
ciphertext ct, and it outputs a message m ∈M or a rejection symbol ⊥.

• ĉt← Eval(C, (ct(1), ct(2), . . . , ct(ℓ))): The deterministic or randomized algorithm Eval takes as
input a circuit C :Mℓ →M and a tuple of ciphertexts (ct(1), ct(2), . . . , ct(ℓ)), and it outputs
a new ciphertext ĉt.

We require that an FHE scheme meets both correctness and compactness.

Definition 10 (Correctness). An FHE scheme (KGen,Enc,Dec,Eval) satisfies correctness if the
following conditions hold:

• For every (pk, sk) ← KGen(1λ) and every m ∈ M, it holds that Dec(sk, ct) = m with over-
whelming probability, where ct← Enc(pk,m).

• For every (pk, sk) ← KGen(1λ), every circuit C, and every (m(1), . . . ,m(ℓ)) ∈ Mℓ, it
holds that Dec(sk, ĉt) = C(m(1), . . . ,m(ℓ)) with overwhelming probability, where ĉt ←
Eval(C, (ct(1), . . . , ct(ℓ))) and for every i ∈ [ℓ], ct(i) ← Enc(pk,m(i)).

Definition 11 (Compactness). An FHE scheme satisfies compactness if there exists a polynomial
poly such that the output-size of Eval(·, ·) is at most poly(λ) for every security parameter λ.

The IND-CCA1 security of FHE is defined as follows.

Definition 12 (IND-CCA1 security). An FHE scheme ΠFHE = (KGen,Enc,Dec,Eval) is IND-CCA1
secure if for any PPT adversary A = (A0,A1) against ΠFHE, the advantage

Advind-cca1ΠFHE,A
(λ) :=

∣∣∣∣∣∣∣∣∣Pr


(pk, sk)← KGen(1λ);

(m0,m1, st)← A
Dec(sk,·)
0 (pk);

b
$← {0, 1}; ct∗ ← Enc(pk,mb);

b′ ← A1(ct
∗, st)

: b = b′

− 1

2

∣∣∣∣∣∣∣∣∣
is negligible in λ, where st is internal state information.
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In addition, IND-CPA security is defined in the same way as IND-CCA1 security except that the
adversary is not given access to the decryption oracle Dec.

Keyed-Fully Homomorhpic Encryption (Keyed-FHE). Following the definition of KH-PKE
in [22], we describe the definition of keyed-fully homomorphic encryption (keyed-FHE) given by
Lai et al. [33]

Definition 13. For a security parameter λ, let M = M(λ) be a message space. A keyed-FHE
scheme consists of four polynomial-time algorithms (KGen,Enc,Dec,Eval):

• (pk, skd, skh)← KGen(1λ): The randomized algorithm KGen takes as input a security param-
eter 1λ, and it outputs a public key pk, a decryption key skd, and a homomorphic evaluation
key skh.

• ct← Enc(pk,m): The randomized algorithm Enc takes as input a public key pk and a message
m ∈M, and it outputs a ciphertext ct.

• m/⊥ ← Dec(skd, ct): The deterministic algorithm Dec takes as input a decryption key skd
and a ciphertext ct, and it outputs a message m ∈M or a rejection symbol ⊥.

• ĉt/⊥ ← Eval(skh,C, (ct
(1), ct(2), . . . , ct(ℓ))): The deterministic or randomized algorithm Eval

takes as input a homomorphic evaluation key skh, a circuit C : Mℓ → M, and a tuple of
ciphertexts (ct(1), ct(2), . . . , ct(ℓ)), and it outputs a new ciphertext ĉt or a rejection symbol ⊥.

We require that a keyed-FHE scheme satisfies both correctness and compactness.

Definition 14 (Correctness). A keyed-FHE scheme (KGen,Enc,Dec,Eval) satisfies correctness if
the following conditions hold:

• For every (pk, skd, skh) ← KGen(1λ) and every m ∈ M, it holds that Dec(skd, ct) = m with
overwhelming probability, where ct← Enc(pk,m).

• For every (pk, skd, skh)← KGen(1λ), every circuit C :Mℓ →M, and every (m(1), . . . ,m(ℓ)) ∈
Mℓ, it holds that Dec(skd, ĉt) = C(m(1), . . . ,m(ℓ)) with overwhelming probability, where ct ←
Eval(skh,C, (ct

(1), . . . , ct(ℓ))) and for every i ∈ [ℓ], ct(i) ← Enc(pk,m(i)).

Definition 15 (Compactness). A keyed-FHE scheme satisfies compactness if there exists a polyno-
mial poly such that the output-size of Eval(skh, ·, ·, ·) is at most poly(λ) for every security parameter
λ.

As a security notion of keyed-FHE, we describe the definition of KH-CCA security [22]. This
is the same as the security considered in [33] except that the adversary is allowed to access the
decryption oracle until the homomorphic evaluation key is revealed.

Definition 16 (KH-CCA security). A keyed-FHE scheme ΠKFHE = (KGen,Enc,Dec,Eval) is
KH-CCA secure if for any PPT adversary A = (A0,A1) against ΠKFHE, the advantage

Advkh-ccaΠKFHE,A
(λ) :=

∣∣∣∣∣∣∣∣∣Pr


(pk, skd, skh)← KGen(1λ);
(m0,m1, st)← AO.KFHE

0 (pk);

b
$← {0, 1}; ct∗ ← Enc(pk,mb);

b′ ← AO.KFHE
1 (ct∗, st)

: b = b′

− 1

2

∣∣∣∣∣∣∣∣∣
is negligible in λ, where st is state information, and let D be a list which is set as D ← {ct∗} in
Challenge phase, and O.KFHE consists of three oracles (RevHK(),Eval(skh, ·, ·),Dec(skd, ·)) defined
as follows:
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• Homomorphic key reveal oracle RevHK: Given a request, the RevHK oracle returns skh.

• Evaluation oracle Eval: Given an Eval query (C, (ct(1), . . . , ct(ℓ))), the Eval oracle checks
whether the RevHK oracle has been queried before. If so, it returns ⊥. Otherwise, it re-
turns ĉt/⊥ ← Eval(skh,C, (ct

(1), . . . , ct(ℓ))). In addition, if ĉt ̸= ⊥ and one of ciphertexts
ct(1), . . . , ct(ℓ) is in D, it sets D ← D ∪ {ĉt}.

• Decryption oracle Dec: This oracle is not available if A has accessed the RevHK oracle and
obtained the challenge ciphertext ct∗. Given a Dec query ct, the Dec oracle returns Dec(skd, ct)
if ct /∈ D, and returns ⊥ otherwise.

3 Generic Construction of keyed-FHE

3.1 Our Construction

In this section, we propose a keyed-FHE scheme ΠKFHE and prove its security. ΠKFHE is constructed
from two IND-CCA1 secure FHE schemes ΠFHE,1,ΠFHE,2 and a (strong) DSS-NIZK system ΠDN.
We briefly explain an overview of the construction whose spirit is similar to Jutla and Roy’s KH-
PKE scheme [32] except that we use the Naor-Yung paradigm [40]. Let (pk1, sk1) and (pk2, sk2)
denote two pairs of public/secret keys of ΠFHE,1 and ΠFHE,2. A public key pk = (pk1, pk2, crs) of
ΠKFHE consists of two public keys (pk1, pk2) of schemes ΠFHE,1,ΠFHE,2 and the CRS crs of ΠDN,
while the secret key skd = sk1 is the secret key of ΠFHE,1. The ciphertext ct = (ct1, ct2, π) consists
of two FHE ciphertexts (ct1, ct2) both of which are encryptions of m and π is a proof such that
(ct1, ct2) are encryptions of the same message. The decryption algorithm first checks the validity
of π by using the real world verification algorithm VN , then decrypt ct1 by using skd = sk1. To
complete the overview, we show how to evaluate keyed-FHE ciphertexts ct(1), . . . , ct(ℓ) for a circuit
C and obtain ĉt. A point to note is that we should create a proof π̂ without the knowledge of
the message C(m(1), . . . ,m(ℓ)) of ĉt. For this purpose, we use the DSS-NIZK system ΠDN in the
partial-simulation world as the case of Jutla and Roy’s KH-PKE scheme [32]. Then, we set the
homomorphic evaluation key skh = tds as the trapdoor of ΠDN. Therefore, the (composable) partial
zero-knowledge ensures that π̂ can be computed correctly by using the sfSimN algorithm. Here,
we note that the verification algorithm VN can correctly verify the proof created by the sfSimN

algorithm owing to partial zero-knowledge.
To sum up, we use the following primitives: An FHE scheme ΠFHE,i = (KGenF,i, EncF,i,

DecF,i, EvalF,i) with the message space M for i ∈ {1, 2}, and a DSS-NIZK system ΠDN in the
partial-simulation world (sfGenN , sfSimN , pVN )4 for a relation RN = {(ct1, ct2), (m, r1, r2) | ct1 =
EncF,1(pk1,m; r1) ∧ ct2 = EncF,2(pk2,m; r2)}, where (pk1, sk1) ← KGenF,1(1

λ) and (pk2, sk2) ←
KGenF,2(1

λ).
Our scheme ΠKFHE = (KGen,Enc,Dec,Eval) is constructed as follows:

• (pk, skd, skh)← KGen(1λ):

1. (pk1, sk1)← KGenF,1(1
λ), (pk2, sk2)← KGenF,2(1

λ).

2. (crs, tds, tdv)← sfGenN (1λ).

3. Output pk = (pk1, pk2, crs), skd = sk1, and skh = tds.

• ct← Enc(pk,m):

4A proof generated by the sfSimN algorithm can be verified by the real world verification algorithm VN owing to
the partial zero-knowledge property. Thus, we use the VN algorithm in our construction.
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1. ct1 ← EncF,1(pk1,m; r1), ct2 ← EncF,2(pk2,m; r2).

2. π ← PN (crs, (ct1, ct2), (m, r1, r2), ∅).
3. Output ct = (ct1, ct2, π).

• m/⊥ ← Dec(skd, ct): Let ct = (ct1, ct2, π).

1. If VN (crs, (ct1, ct2), π, ∅) = 1, output m← DecF,1(sk1, ct1). Otherwise, output ⊥.

• ĉt/⊥ ← Eval(skh,C, (ct
(1), . . . , ct(ℓ))): Let ct(i) = (ct

(i)
1 , ct

(i)
2 , π(i)) for i ∈ [ℓ].

1. Output ⊥ if VN (crs, (ct
(i)
1 , ct

(i)
2 ), π(i), ∅) = 0 for some i ∈ [ℓ].

2. ĉt
(0)
1 ← EncF,1(pk1, 0), ĉt

(0)
2 ← EncF,2(pk2, 0), where 0 is the additive identity inM.

3. ĉt
′
1 ← EvalF,1(C, (ct

(1)
1 , . . . , ct

(ℓ)
1 )), ĉt

′
2 ← EvalF,2(C, (ct

(1)
2 , . . . , ct

(ℓ)
2 )).

4. ĉt1 ← AddF,1(ĉt
′
1, ĉt

(0)
1 ), ĉt2 ← AddF,2(ĉt

′
2, ĉt

(0)
2 ), where the PPT algorithm AddF,i (i ∈

{1, 2}) evaluates the addition gate overM by using EvalF,i.

5. π̂ ← sfSimN (crs, tds, (ĉt1, ĉt2), 1, ∅).
6. Output ĉt = (ĉt1, ĉt2, π̂).

The correctness of ΠKFHE follows the correctness of ΠFHE,1 and ΠFHE,2, and the completeness of
ΠDN. The first condition of the correctness holds since the completeness of ΠDN ensures that VN

outputs 1 and the correctness of ΠFHE,1 ensures that DecF,1 correctly outputs m with overwhelming
probability. Similarly, the second condition of the correctness also holds since the composable
partial zero-knowledge of ΠDN ensures that VN outputs 1 even if the proof π̂ is computed by the
semi-functional simulator sfSimN . In addition, the output-size of sfSimN used in Eval is equal to
that of PN due to the partial zero-knowledge property, since it is possible to break this property if
these output-sizes are different. Thus, the compactness of ΠKFHE follows the compactness of ΠFHE,1

and ΠFHE,2.

Remark 1. Canetti et al. [12] showed that IND-CCA1 secure FHE can be constructed from IND-CPA
secure FHE and zk-SNARK via the Naor-Yung transformation. Here, circuit C to be evaluated is
a witness and thus the underlying NIZK system needs to be succinct. On the other hand, in our
evaluation algorithm first ciphertexts are evaluated by the evaluation algorithm of the underlying
IND-CCA1 secure FHE schemes, and then the underlying NIZK system proves that two ciphertexts
ĉt1 and ĉt2 have the same plaintext using the trapdoor. So, C is not a witness here, and we do not
have to directly employ zk-SNARK in our construction.

3.2 Security Analysis

Theorem 1 (KH-CCA security of ΠKFHE). If both ΠFHE,1 and ΠFHE,2 are IND-CCA1 secure, and
ΠDN is a strong DSS-NIZK system, then the resulting keyed-FHE scheme ΠKFHE is KH-CCA secure.

Overview of Proof of Theorem 1. Theorem 1 shows the security of our keyed-FHE scheme. For
simplicity, we explain that our scheme satisfies KH-CCA security if the underlying NIZK system ΠDN

meets the properties of strong DSS-NIZKs, and the underlying FHE schemes satisfy IND-CCA1 se-
curity. We give the intuitive explanation. To guarantee security against adaptive chosen ciphertext
attacks before a homomorphic evaluation key (a trapdoor of ΠDN) is revealed by RevHK oracle
access, the underlying DSS-NIZK system must satisfy (one-time) simulation-soundness so that we
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Table 1: Summary of Games in the Proof of Theorem 1

C(m1, . . . ,mℓ)
Game Components of ct∗ computed for Verification of Msg-Rec. of

ct∗2 π∗ Dep. Eval Indep. Eval Dec Dec

Game0 EncF,2(mb) P∗
N Ordinary VN VN DecF,1

Game1 EncF,2(mb) sfSim∗
N Ordinary pVN pVN DecF,1

Game2 EncF,2(mb) sfSim∗
N Random pVN pVN DecF,1

Game3 EncF,2(mb) otfSim∗
N Random sfVN sfVN DecF,1

Game4 EncF,2(0
|mb|) otfSim∗

N Random sfVN sfVN DecF,1
Game5 EncF,2(0

|mb|) otfSim∗
N Random sfVN sfVN DecF,2

“C(m1, . . . ,mℓ) computed for Dep. Eval” denotes a message C(m1, . . . ,mℓ) for ĉt generated by the Eval
oracle on input a dependent Eval query. “Ordinary” (resp. “Random”) means that C(m1, . . . ,mℓ) is
a message whose encryption is generated by the Eval algorithm on input encryptions queried by the
adversary A (resp. encryptions of random messages). “Verification of Indep. Eval” denotes a verification
algorithm in the Eval algorithm run by the Eval oracle on input an independent Eval query. “Verification
of Dec” denotes a verification algorithm in the Dec algorithm run by the Dec oracle on input a Dec
query. “Msg-Rec. of Dec” denotes an algorithm which recovers a message in the Dec algorithm run
by Dec oracle on input a Dec query. For i ∈ {1, 2}, let EncF,i(·) = EncF,i(pki, ·) and DecF,i(·) =
DecF,i(ski, ·). Let P∗

N = PN (crs, (ct∗1, ct
∗
2), (mb, r

∗
1 , r

∗
2), ∅), sfSim∗

N = sfSimN (crs, tds, (ct
∗
1, ct

∗
2), 1, ∅), and

otfSim∗
N = otfSimN (crs, tds,1, (ct

∗
1, ct

∗
2), ∅).

can correctly return the non-malleable ciphertext generated in the challenge phase. The unbounded
(partial) simulation-soundness is required for ΠDN in order to return non-malleable ciphertexts for
evaluation queries. This is because this property ensures that A cannot generate valid evaluated
ciphertexts whose IND-CCA1 FHE ciphertexts are not in the language of the strong DSS-NIZK, by
substituting evaluated ones. Moreover, our scheme needs the partial zero-knowledge and one-time
full zero-knowledge properties of strong DSS-NIZKs, so that the challenge message can be hidden
even if a simulation trapdoor of ΠDN is revealed. Since we assume that the underlying FHE schemes
are IND-CCA1 secure, we can simulate decryption queries until the challenge phase.

Remark 2. Although we assume that the underlying FHE schemes are IND-CCA1 secure in The-
orem 1, we can prove KH-CCA security even when the underlying FHE schemes are IND-CPA
secure. For this purpose, we follow Canetti et al. generic construction [12] and additionally use
a zk-SNARK (this construction is concretely described in A). Nevertheless, we assume IND-CCA1
security of the underlying FHE schemes since it enables us to obtain a much simpler proof.

We explain the overview of the security proof, more concretely. For simplicity, we classify the
queries to the Eval oracle into two types: Dependent Eval queries and independent Eval queries.

• Let a dependent Eval query be a query (C, (ct(1), . . . , ct(ℓ))) issued to the Eval oracle, such that
at least one of ct(1), . . . , ct(ℓ) are in the set D of the derivatives of the challenge ciphertext.

• Let an independent Eval query be a query issued to the Eval oracle, such that all ct(1), . . . , ct(ℓ)

are not in D.

In order to prove Theorem 1, we consider security games Game0, . . . ,Game5 (Table 1 shows the
summary of these games).

• Game0 is the ordinary KH-CCA security game.

14



Table 2: Outline of the Proof of Theorem 1

Game Property

Game0 ≈ Game1
partial zero-knowledge of ΠDN,

true simulation-soundness of ΠDN

Game1 ≈ Game2

one-time full zero-knowledge of ΠDN,
unbounded partial simulation-soundness of ΠDN,

IND-CCA1 security of ΠFHE,1 and ΠFHE,2

Game2 ≈ Game3
one-time full zero-knowledge of ΠDN,

simulation-soundness of sfVN

Game3 ≈ Game4
simulation-soundness of sfVN ,
IND-CCA1 security of ΠFHE,2

Game4 ≈ Game5
one-time full zero-knowledge of ΠDN,

unbounded partial simulation-soundness of ΠDN

Game5 IND-CCA1 security of ΠFHE,1

• Game1 is the same as Game0 except that the P algorithm and the V algorithm are replaced by
the sfSim algorithm and the pV algorithm, respectively, when simulating Challenge phase
and the Eval oracle. The indistinguishability between Game0 and Game1 mainly follows the
partial zero-knowledge of ΠDN.

• Game2 is the same as Game1 except that the derivatives of the challenge ciphertexts are
replaced by encryptions of random messages. The indistinguishability between Game1 and
Game2 mainly follows the unbounded partial simulation-soundness of ΠDN.

• Game3 is the same as Game2 except that the sfSim algorithm and the pV algorithm are replaced
by the otfSim algorithm and sfV algorithm, respectively, when simulating the challenge phase
and the Eval oracle. The indistinguishability between Game2 and Game3 mainly follows the
one-time full zero-knowledge of ΠDN.

• Game4 is the same as Game3 except that the challenge ciphertext generated by ΠFHE,2 is
replaced by an encryption of 0|mb|. The indistinguishability between Game3 and Game4 mainly
follows the IND-CCA1 security of ΠFHE,2.

• Game5 is the same as Game4 except that the decryption oracle uses the DecF,2 algorithm
instead of DecF,1, when decrypting the given ciphertext. The indistinguishability between
Game4 and Game5 mainly follows the one-time full zero-knowledge and unbounded partial
simulation-soundness of ΠDN. In addition, the indistinguishability in Game5 follows the
IND-CCA1 security of ΠFHE,1.

The proof of the indistinguishability between Game0 and Game3 is similar to a part of the security
proof of the Jutla and Roy’s scheme [32] because this indistinguishability follows the properties of
the underlying strong DSS-NIZK (see also Table 2). The remaining proofs are different from the
security proof of [32], because our scheme employs the Naor-Yung paradigm while the Jutla and
Roy’s scheme uses a variant of ElGamal encryption.

Furthermore, we describe the important point of our security proof. The security proofs in
Game4 and Game5 are similar to those of the Naor-Yung paradigm [40]. In these games, the chal-
lenge ciphertext is an invalid one due to reductions from the security of the underlying primitives.
However, when an adversary issues the challenge ciphertext (or derivatives of the challenge ci-
phertext) to the Eval oracle, this oracle must return a valid ciphertext. In order to simulate the
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Eval oracle correctly even in this case, the Eval oracle on input a dependent Eval query returns a
random and valid ciphertext instead of an ordinary evaluated ciphertext, in Game2. The partial
zero-knowledge property and unbounded (partial) simulation soundness mainly ensure that Game2
is indistinguishable from the previous games. Hence, it is possible to replace the ordinary challenge
ciphertext by an invalid one in the security games after Game2.

3.2.1 Proof of Theorem 1

We give the proof of Theorem 1 as follows. Let A be a PPT adversary against ΠKFHE. We recall
that a dependent Eval query is a query (C, (ct(1), . . . , ct(ℓ))) issued to the Eval oracle, such that at
least one of ct(1), . . . , ct(ℓ) are in D, and an independent Eval query is a query issued to the Eval
oracle, such that all ct(1), . . . , ct(ℓ) are not in D.

By definition, we can immediately detect whether A’s Eval queries are dependent or independent.
Let Qdep be the number of dependent Eval queries. Let AdvpzkΠDN,B1

, AdvupssΠDN,B2
(λ), and AdvotzkΠDN,B3

be
the maximum probabilities that any PPT adversaries B1, B2, and B3 break the partial zero-knowledge
in the second part, the unbounded partial simulation-soundness, and the one-time full zero-knowledge
properties of ΠDN, respectively. Let reveal event be the event that the homomorphic evaluation key
(resp. the partial simulation trapdoor) is revealed by accessing the reveal oracle in the KH-CCA
security game (resp. a security game of strong DSS-NIZKs).

We consider security games Game0,Game1, . . . ,Game5. Regarding the summary of these games,
see Table 1. For i ∈ {0, 1, . . . , 5}, let Wi be the event that A outputs b′ ∈ {0, 1} such that b = b′ in
Gamei.
Game0: The same game as the ordinary KH-CCA game. Then, we have Advkh-ccaΠKFHE,A

(λ) =
|Pr[W0]− 1/2|.

Game1: The same game as Game0 except that

• the Dec oracle uses the private verifier pVN instead of the verifier VN when running the Dec
algorithm,

• for all independent Eval queries, the Eval oracle uses the private verifier pVN instead of the
verifier VN when running the Eval algorithm, and

• in Challenge phase, the challenger generates a proof π∗N by using the semi-functional simu-
lator sfSimN with the membership-bit β = 1, instead of the prover PN .

Intuitively, the partial zero-knowledge property of ΠDN guarantees the indistinguishability be-
tween Game0 and Game1. Notice that the reduction algorithm against this property does not issue
statements (ĉt1, ĉt2) /∈ L(RN ) to the given prover oracle of the partial zero-knowledge game, due to
Proposition 1, that is, the true simulation-soundness of ΠDN.

We define Fail as the event that A issues a (dependent or independent) Eval query
(C, (ct(1), . . . , ct(ℓ))) such that DecF,1(sk1, ĉt1) ̸= DecF,2(sk2, ĉt2) and VN (crs, (ĉt1, ĉt2), π̂, ∅) = 1,

where ct(i) = (ct
(i)
1 , ct

(i)
2 , π(i)) for i ∈ [ℓ], ĉtj ← EvalF,j(C, (ct

(1)
j , . . . , ct

(ℓ)
j )) for j ∈ {1, 2}, and

π̂ ← sfSimN (crs, tds, (ĉt1, ĉt2), 1, ∅). Then, we have

|Pr[W0]− Pr[W1]| = |Pr[Fail ∧W0] + Pr[¬Fail ∧W0]− Pr[Fail ∧W1]− Pr[¬Fail ∧W1]|
= |Pr[¬Fail] · (Pr[W0 | ¬Fail]− Pr[W1 | ¬Fail])

+Pr[Fail] · (Pr[W0 | Fail]− Pr[W1 | Fail])|
≤ |Pr[W0 | ¬Fail]− Pr[W1 | ¬Fail]|+ Pr[Fail].
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We show Lemmas 1 and 2 to estimate the upper bound of the probability of distinguishing Game1
from Game0.

Lemma 1. If the event Fail does not occur, then any PPT adversary A cannot distinguish the
two games Game0 and Game1. In particular, there exists a PPT algorithm Dpzk against the
partial zero-knowledge property of ΠDN, such that

|Pr[W0 | ¬Fail]− Pr[W1 | ¬Fail]| ≤ Advpzk
ΠDN,Dpzk(λ).

Proof. We construct a PPT algorithm Dpzk against the partial zero-knowledge property of ΠDN,
as follows: At the beginning of the KH-CCA game, Dpzk takes as input the CRS crs of ΠDN and
generates (pk1, sk1)← KGenF,1(1

λ) and (pk2, sk2)← KGenF,2(1
λ). It gives pk = (pk1, pk2, crs) to A.

The RevHK, Eval, and Dec oracles are simulated as follows:

• RevHK(): Given a request, obtain the simulation trapdoor tds by invoking the reveal oracle
of the partial zero-knowledge game. Return skh = tds.

• Eval(skh, ·): Given (C, (ct(1), . . . , ct(ℓ))) (where ct(i) = (ct
(i)
1 , ct

(i)
2 , π(i)) for every i ∈ [ℓ]), do

the following:

1. If the RevHK oracle has been called, then return ⊥.
2. If ct(i) ∈ D for some i ∈ [ℓ], then verify ct(1), . . . , ct(ℓ) by using VN algorithm. If ct(i) /∈ D

for all i ∈ [ℓ], then verify ct(1), . . . , ct(ℓ) by using the given verifier oracle Vpzk
N .

3. Compute ĉt1 and ĉt2 in the same way as the Eval algorithm, if all ct(1), . . . , ct(ℓ) pass the
verification above. Return ⊥ otherwise

4. Obtain π̂ by issuing ((ĉt1, ĉt2), 1, ∅) to the given semi-functional simulator oracle sfSimpzk
N .

5. Return ĉt = (ĉt1, ĉt2, π̂).

6. Set D ← D ∪ {ĉt} if ct(i) ∈ D for some i ∈ [ℓ].

• Dec(skd, ·): Given ct = (ct1, ct2, π), return ⊥ if the RevHK oracle has been invoked, or ct ∈ D
holds. Return m← DecF,1(sk1, ct1) if the verifier oracle Vpzk

N on input ((ct1, ct2), π, ∅) returns
1, and return ⊥ otherwise.

When A submits (m0,m1), D
pzk samples b

$← {0, 1}, computes ct∗1 ← EncF,1(pk1,mb; r
∗
1) and ct∗2 ←

EncF,2(pk2,mb; r
∗
2), and obtains π∗ by querying ((ct∗1, ct

∗
2), 1, ∅) to the given prover or semi-functional

simulator oracle Ppzk
N . Then, Dpzk returns ct∗ = (ct∗1, ct

∗
2, π

∗) and sets D ← {ct∗}.
When A outputs b′ ∈ {0, 1}, Dpzk outputs 1 if b = b′, and outputs 0 otherwise.
If the algorithm Dpzk simulating the Eval oracle submits ((ĉt1, ĉt2), 1, ∅) such that (ĉt1, ĉt2) /∈

L(RN ), to sfSimpzk
N oracle, then Dpzk fails the simulation above. This event does not occur due

to the condition [¬Fail]. In addition, although it is forbidden for Dpzk to access the given verifier
oracle in the partial zero-knowledge game after the simulation trapdoor tds is revealed, both of the
oracles Eval and Dec do not have to verify given ciphertexts in the KH-CCA security game. Thus,
Dpzk simulates the environment of A correctly even after A invokes the RevHK oracle. Hence, we
have |Pr[W0 | ¬Fail]− Pr[W1 | ¬Fail]| ≤ Advpzk

ΠDN,Dpzk(λ). ■

Lemma 2. If the event Fail occurs, then there exist two PPT algorithms D and F against the
partial zero-knowledge property and the unbounded partial simulation-soundness, respectively, such
that Pr[Fail] ≤ AdvpzkΠDN,D

(λ) + AdvupssΠDN,F
(λ).
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Proof. In order to show Lemma 2, we construct a PPT algorithm Ftss against the true simulation-
soundness (see Proposition 1) of ΠDN, as follows: Given the CRS crs of ΠDN, F

tss gives (pk1, pk2, crs)
to A by computing (pk1, sk1) ← KGenF,1(1

λ) and (pk2, sk2) ← KGenF,2(1
λ). Ftss can simulate the

RevHK, Eval, and Dec oracles by using the decryption key skd = sk1 and the sfSimN oracle of the
true simulation-soundness game. Then, Ftss can check whether the event Fail occurs, since it has
the secret keys sk1 and sk2. If Fail happens, Ftss outputs the evaluated ciphertext (ĉt1, ĉt2, π̂, ∅)
and halts. If Fail does not happen, and A halts, then Ftss aborts. The output of Ftss satisfies
the winning condition of the true simulation-soundness game since the statement (ĉt1, ĉt2) such
that DecF,1(sk1, ĉt1) ̸= DecF,2(sk2, ĉt2) is not in L(RN ), but VN accepts (ĉt1, ĉt2, π̂, ∅). Hence, the
probability Pr[Fail] is negligible due to the true simulation-soundness of ΠDN. From Proposition 1,5

this probability is at most AdvpzkΠDN,D
(λ) + AdvupssΠDN,F

(λ). ■
From Lemmas 1 and 2, it holds that |Pr[W0]− Pr[W1]| ≤ Advpzk

ΠDN,Dpzk(λ) + AdvpzkΠDN,D
(λ) +

AdvupssΠDN,F
(λ).

Game2: The same game as Game1 except that the Eval oracle on input a dependent

Eval query computes a proof on random ciphertexts ĉt1 ← AddF,1(ĉt
′
1,EncF,1(pk1, m̄1)) and

ĉt2 ← AddF,2(ĉt
′
2,EncF,2(pk2, m̄2)) instead of ĉt1 ← AddF,1(ĉt

′
1,EncF,1(pk1, 0)) and ĉt2 ←

AddF,2(ĉt
′
2,EncF,2(pk2, 0)), where m̄1, m̄2 ∈M are distinct values chosen uniformly at random.

Lemma 3 shows the indistinguishability between Game1 and Game2, and the proof of this lemma
is given in Section 3.2.2.

Lemma 3. Assuming that all statements (ĉt1, ĉt2) generated by the Eval algorithm are language
members of L(RN ), then any PPT adversary A cannot distinguish the two games Game1 and Game2.
The probability of distinguishing the two games is at most

O(Qdep) ·
(
AdvotzkΠDN,D1

(λ) + AdvupssΠDN,F1
(λ) + Advind-cca1ΠFHE,1,D2

(λ) + Advind-cca1ΠFHE,2,D
′
2
(λ)

)
.

Game3: Let (otfGenN , otfSimN , sfVN ) be a DSS-NIZK system ΠDN in one-time full simulation world.
The same game as Game2 except that

• the one-time full simulation generator otfGenN of ΠDN is used to generate crsN , instead of
the semi-functional generator sfGenN ,

• for Dec and independent Eval queries, the semi-functional verifier sfVN is used to check given
ciphertexts, instead of the private verifier pVN , when running the Dec and Eval algorithms,
respectively, and

• in Challenge phase, the proof of ΠDN is generated by using the one-time full simulator
otfSimN , instead of the semi-functional simulator sfSimN .

Intuitively, the indistinguishability between Game2 and Game3 is guaranteed by the one-time
full zero-knowledge property of ΠDN. In the same way as the proof of Lemma 2, the simulation-
soundness of sfVN (Proposition 2) ensures that the reduction algorithm against the one-time full
zero-knowledge of ΠDN does not call the semi-functional simulator oracle with ((ĉt1, ĉt2), 1, ∅) such
that (ĉt1, ĉt2) /∈ L(RN ). The following lemma shows the indistinguishability between the two
games:

5Even in the case of strong DSS-NIZKs, Propositions 1 and 2 hold.
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Lemma 4. If ΠN satisfies both one-time full zero-knowledge and unbounded partial simulation-
soundness, then any PPT adversary A cannot distinguish the two games Game2 and Game3. In
particular, there exist three PPT algorithms Dotzk, D, and F such that

|Pr[W2]− Pr[W3]| ≤ AdvotzkΠDN,Dotzk(λ) + AdvotzkΠDN,D
(λ) + AdvupssΠDN,F

(λ).

Proof. In order to show Lemma 4, we construct a PPT algorithm Dotzk against the one-time full
zero-knowledge property of ΠDN. D

otzk is constructed in the same way as the PPT algorithm Dpzk

in Lemma 1 except for the procedures of the Eval oracle and the Challenge phase, as follows:

• Eval(skh, ·): Given (C, (ct(1), . . . , ct(ℓ))) (where ct(i) = (ct
(i)
1 , ct

(i)
2 , π(i)) for every i ∈ [ℓ]), simu-

late the Eval oracle, as follows:

– If the RevHK oracle has been called, then return ⊥.
– If ct(i) ∈ D for some i ∈ [ℓ], do the following:

1. Verify ct(1), . . . , ct(ℓ) by using VN (crs, ·, ·, ·).
2. If all ct(1), . . . , ct(ℓ) pass the verification above, then

∗ compute ĉt
(0)
1 ← EncF,1(pk1, m̄1), ĉt

(0)
2 ← EncF,2(pk2, m̄2), where m̄1, m̄2

$←M.

∗ compute ĉt
′
1 ← EvalF,1(C, (ct

(1)
1 , . . . , ct

(ℓ)
1 )), ĉt

′
2 ← EvalF,2(C, (ct

(1)
2 , . . . , ct

(ℓ)
2 )).

∗ compute ĉt1 ← AddF,1(ĉt
′
1, ĉt

(0)
1 ), ĉt2 ← AddF,2(ĉt

′
2, ĉt

(0)
2 ).

3. Obtain π̂ by issuing ((ĉt1, ĉt2), 1, ∅) to the given semi-functional simulator oracle
sfSimotzk

N .

4. Return ĉt = (ĉt1, ĉt2, π̂) and set D ← D ∪ {ĉt}.
– If ct(i) /∈ D for all i ∈ [ℓ], do the following:

1. Verify ct(1), . . . , ct(ℓ) by using the given private or semi-functional verifier oracle
Votzk
N .

2. Compute ĉt1 and ĉt2 in the same way as the Eval algorithm, if all ct(1), . . . , ct(ℓ) pass
the verification above. Return ⊥ otherwise.

3. Obtain π̂ by issuing ((ĉt1, ĉt2), 1, ∅) to the semi-functional simulator oracle sfSimotzk
N .

4. Return ĉt = (ĉt1, ĉt2, π̂).

• Challenge phase: When A submits (m0,m1), Dotzk chooses b
$← {0, 1}, computes ct∗1 ←

EncF,1(pk1,mb; r
∗
1) and ct∗2 ← EncF,2(pk2,mb; r

∗
2), and obtains π∗ by querying ((ct∗1, ct

∗
2), 1, ∅)

to the one-time full simulator oracle otfSimotzk
N . Then Dotzk returns ct∗ = (ct∗1, ct

∗
2, π

∗) and
sets D ← {ct∗}.

If for all Eval queries, Dotzk invokes the sfSimotzk
N oracle with ((ĉt1, ĉt2), 1, ∅) such that (ĉt1, ĉt2) /∈

L(RN ) and sfVN accepts, then the simulation above fails. In the same way as the proof of Lemma 2,
the probability that this event occurs is at most AdvotzkΠDN,D

(λ)+AdvupssΠDN,F
(λ) due to Proposition 2. In

addition, if A wins in the KH-CCA security game, then Dotzk breaks the one-time full zero-knowledge
property of ΠDN, in the straightforward way. Notice that in the same way as Dpzk, Dotzk correctly
simulates the environment of A even after the reveal event of the KH-CCA security game.

The probability of distinguishing the two games Game2 and Game3 is at most AdvotzkΠDN,Dotzk(λ)+

AdvotzkΠDN,D
(λ) + AdvupssΠDN,F

(λ). ■
Game4: The same game as Game3 except that in Challenge phase, a ciphertext ct∗2 ←
EncF,2(pk2,mb; r

∗
2) is replaced by ct∗2 ← EncF,2(pk2, 0

|mb|; r∗2).
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By using A, it is possible to construct a PPT algorithm Dcca1 against the IND-CCA1 security
of ΠFHE,2, which distinguishes between Game3 and Game4, in the straightforward way. Regarding
this reduction algorithm Dcca1, if A can issue a Dec query (ct1, ct2, π) such that (ct1, ct2) /∈ L(RN )
and sfVN accepts this query, then Dcca1 fails to simulate the environment of A. The probabil-
ity that A issues such a query is at most AdvotzkΠDN,D

(λ) + AdvupssΠDN,F
(λ), by Proposition 2. Hence,

|Pr[W3]− Pr[W4]| ≤ Advind-cca1ΠFHE,2,Dcca1(λ) + AdvotzkΠDN,D
(λ) + AdvupssΠDN,F

(λ) holds.

Game5: The same game as Game4 except that the Dec oracle returns m ← DecF,2(sk2, ct2) if
sfVN (crs, tdv, (ct1, ct2), π, ∅) = 1 holds.

We have |Pr[W5]− 1/2| ≤ Advind-cca1ΠFHE,1,D
(λ) by constructing a PPT algorithm against the

IND-CCA1 security of ΠFHE,1 in the straightforward way. Furthermore, Lemma 5 below shows the
indistinguishability of games Game4 and Game5. The proof of this lemma is given in Section 3.2.3.

Lemma 5. If ΠDN meets both of properties one-time full zero-knowledge and unbounded partial
simulation-soundness, then the probability of distinguishing between Game4 and Game5 is negligible
in λ. This probability is at most

2 · AdvotzkΠDN,Dotzk(λ) + 2 · AdvupssΠDN,Fupss(λ).

From the discussion above, we obtain

Advkh-ccaΠKFHE,A
(λ) ≤ 2 · Advpzk

ΠDN,Dpzk(λ) +O(Qdep) · AdvupssΠDN,Fss(λ) +O(Qdep) · AdvotzkΠDN,Dotzk(λ)

+O(Qdep) · Advind-cca1ΠFHE,1,D
cca1
1

(λ) +O(Qdep) · Advind-cca1ΠFHE,2,D
cca1
2

(λ)

and complete the proof.

3.2.2 Proof of Lemma 3

For j ∈ {0, 1, . . . , Qdep}, we consider security games Game1,j , as follows: Game1,0 is the same
game as Game1. For j ∈ {0, 1, . . . , Qdep − 1}, let Game1,j+1 be the same game as Game1,j except

that for the (Qdep − j)-th dependent Eval query, the Eval oracle chooses distinct m̄j,1, m̄j,2
$← M

and computes ĉt
(0)
1 ← EncF,1(pk1, m̄j,1), ĉt

(0)
2 ← EncF,2(pk2, m̄j,2) instead of ĉt

(0)
1 ← EncF,1(pk1, 0),

ĉt
(0)
2 ← EncF,2(pk2, 0), when generating ĉt1, ĉt2. Notice that Game1,Qdep

is identical to Game2.
We show that A cannot distinguish two games Game1,j and Game1,j+1, computationally (j ∈

{0, 1, . . . , Qdep − 1}). To achieve this, we consider a sequence of security games Game′0, . . . ,Game′6.

Game′0: The same game as Game1,j .

Game′1: The same game as Game′0 except that

• otfGenN is used to generate a CRS and trapdoors of ΠDN,

• for Dec and independent Eval queries, pVN is replaced by sfVN when running the Dec and
Eval algorithms, respectively, and

• for the (Qdep− j)-th dependent Eval query, the Eval oracle generates a proof of ΠDN by using
otfSimN instead of sfSimN .

A PPT algorithm Dotzk
j breaking the one-time full zero-knowledge property of ΠDN can be con-

structed in the same way as the PPT algorithm Dotzk in the proof of Lemma 4.
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If Dotzk
j issues membership-bits β which are not correct, to the given semi-functional simulator

oracle sfSimotzk
N and one-time simulator oracle otfSimotzk

N , then it fails the simulation. During the
simulation of the Eval oracle, Dotzk

j issues language members (ĉt1, ĉt2) of L(RN ), due to the cor-
rectness of ΠFHE and Proposition 2, namely the simulation-soundness of the semi-functional verifier.
In Challenge phase, it also submits a language member, due to the correctness of ΠFHE. Hence,
membership-bits β issued to sfSimotzk

N are correct. In the same way as the proof of Lemma 2, the
probability that Dotzk

j fails the simulation of the oracles is at most AdvotzkΠDN,D
(λ) + AdvupssΠDN,F

(λ).

Therefore, the probability of distinguishing between Game′0 and Game′1 is at most
Advotzk

ΠDN,D
otzk
j

(λ) + AdvotzkΠDN,D
(λ) + AdvupssΠDN,F

(λ).

Game′2: The same game as Game′1 except that given the (Qdep − j)-th dependent Eval query, the

Eval oracle computes ĉt
(0)
2 ← EncF,2(pk2, m̄j,2) instead of ĉt

(0)
2 ← EncF,2(pk2, 0) when generating

ĉt2, where m̄j,2
$←M.

The indistinguishability between Game′1 and Game′2 follows the IND-CCA1 security of ΠFHE,2.
In this reduction, if A issues a Dec query (ct1, ct2, π) such that (ct1, ct2) /∈ L(RN ) and the semi-
functional verifier sfVN accepts this query, then it can distinguish the two games. Due to Proposition
2, the probability that this event occurs is at most AdvotzkΠDN,D

(λ) + AdvupssΠDN,F
(λ).

The probability of distinguishing the two games is at most probability Advind-cca1ΠFHE,2,Dcca1(λ) +

AdvotzkΠDN,D
(λ) + AdvupssΠDN,F

(λ).

Game′3: The same game as Game′2 except that the Dec oracle returns m ← DecF,2(sk2, ct2) if
sfVN (crs, tdv, (ct1, ct2), π, ∅) = 1 holds.

The indistinguishability between Game′2 and Game′3 is proven in the same way as the proof of
Lemma 5. Then, the probability of distinguishing the two games is at most 2 · AdvotzkΠDN,D

(λ) + 2 ·
AdvupssΠDN,F

(λ).

Game′4: The same game as Game′3 except that given the (Qdep − j)-th dependent Eval query, the

Eval oracle computes ĉt
(0)
1 ← EncF,1(pk1, m̄j,1) instead of ĉt

(0)
1 ← EncF,1(pk1, 0), when generating

ĉt1, where m̄j,1
$←M.

It is possible to construct a PPT algorithm which breaks IND-CCA1 security in the straight-
forward way since it can simulate the environment of A by generating secret keys by itself. Thus,
the IND-CCA1 security of ΠFHE,1 guarantees the indistinguishability of the two games, and the
simulation-soundness of sfVN guarantees the correctness of the simulation by the reduction algo-
rithm against the IND-CCA1 security. Thus, the probability of distinguishing the two games is at
most Advind-cca1ΠFHE,1,Dcca1(λ) + AdvotzkΠDN,D

(λ) + AdvupssΠDN,F
(λ).

We consider security games Game′5 and Game′6 which are similar to the above security games
except for how to generate ciphertexts ĉt1, ĉt2 for the (Qdep− j)-th dependent Eval query. Namely,
the security games are defined as follows:

• Let Game′5 be the same game as Game′4 except that the Dec oracle returns m← DecF,1(sk1, ct1)
instead of m← DecF,2(sk2, ct2), when running the Dec algorithm.

• Let Game′6 be the same game as Game′5 except that

– sfGenN is used to generate a CRS and trapdoors of ΠDN,

– for Dec and independent Eval queries, sfVN is replaced by pVN when running the Dec
and Eval algorithms, respectively, and
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– for the (Qdep − j)-th dependent Eval query, the Eval oracle generates a proof of ΠDN by
using sfSimN instead of otfSimN .

From the proofs above,

• the indistinguishability between Game′4 and Game′5 is proved in the same way as the proof of
the indistinguishability between Game′3 and Game′2, and

• Game′6 is indistinguishable from Game′5 with at most probability AdvotzkΠDN,D
(λ)+AdvotzkΠDN,D

(λ)+
AdvupssΠDN,F

(λ), due to the one-time full zero-knowledge and the unbounded partial simulation-
soundness of ΠDN.

In addition, Game′6 is identical to Game1,j+1.
From the discussion above, the probability of distinguishing between Game1,j+1 and Game1,j

is at most 10 · AdvotzkΠDN,D1
(λ) + 8 · AdvupssΠDN,F1

(λ) + Advind-cca1ΠFHE,1,D2
(λ) + Advind-cca1ΠFHE,2,D

′
2
(λ). Therefore, A

distinguishes the two games Game1 and Game2 with at most probability O(Qdep) · (AdvotzkΠDN,D1
(λ) +

AdvupssΠDN,F1
(λ) + Advind-cca1ΠFHE,1,D2

(λ) + Advind-cca1ΠFHE,2,D
′
2
(λ)), and the proof is completed.

3.2.3 Proof of Lemma 5

Let Bad be the event that A submits a decryption query (ct1, ct2, π) such that
sfVN (crs, (ct1, ct2), π, ∅) = 1 and DecF,1(sk1, ct1) ̸= DecF,2(sk2, ct2). For i ∈ [5], let Badi be the
event that Bad occurs in Gamei.

Unless Bad occurs, Game4 and Game5 are identical. Thus, we have

|Pr[W4]− Pr[W5]| ≤ Pr[Bad4]

≤ |Pr[Bad4]− Pr[Bad3]|+ |Pr[Bad3]− Pr[Bad2]|+ Pr[Bad2].

Pr[Bad4] = Pr[Bad3] holds because the difference between Game3 and Game4 does not affect
whether a Dec query meets the condition of the Bad event, or not.

The indistinguishability between Bad3 and Bad2 follows the one-time full zero-knowledge property
of ΠDN. It is possible to construct a PPT algorithm Dotzk

Bad which breaks the security of ΠDN. This
one is the same as Dotzk in the proof of Theorem 1, except that it aborts if Bad occurs. Thus, we
have |Pr[Bad3]− Pr[Bad2]| ≤ Advotzk

ΠDN,D
otzk
Bad

(λ) + AdvotzkΠDN,D
(λ) + AdvupssΠDN,F

(λ).

Finally, we show that Pr[Bad2] is negligible. We can construct a PPT algorithm FupssBad
against the unbounded partial simulation-soundness of ΠDN, as follows: By using the given or-
acles, it can simulate the environment of A in Game2. If A submits a Dec query such that
DecF,1(sk1, ct1) ̸= DecF,2(sk2, ct2) and the given private verifier oracle pVupss

N accepts, then FupssBad
outputs ((ct1, ct2), π, ∅) and halts. This output of FupssBad fulfills the winning condition in the partial
unbounded simulation-soundness game since in the Bad event, the private verifier of ΠDN accepts
((ct1, ct2), π, ∅), and (ct1, ct2) is not in the language L(RN ). Hence, the probability that Bad2
occurs is at most Advupss

ΠDN,F
upss
Bad

(λ).

From the discussion above, we obtain

|Pr[W4]− Pr[W5]| ≤ 2 · AdvotzkΠDN,Dotzk(λ) + 2 · AdvupssΠDN,Fupss(λ),

and the proof is completed.
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4 Strong DSS-NIZK from Smooth PHPS and Unbounded
Simulation-Sound NIZK

In this section, we construct a strong DSS-NIZK system for NP, constructed from a smooth PHPS
and an unbounded simulation-sound NIZK.

4.1 Our Construction

Difference from the strong DSS-NIZK of [32]. Although our construction is similar to the generic
construction [32] of strong DSS-NIZKs for linear subspaces, weaker properties of the underlying
PHPS is sufficient in ours. As mentioned in Section 1.2, the previous construction assumes the
underlying PHPS to be universal2 and uses a true simulation-sound quasi-adaptive NIZK while we
assume that the underlying PHPS does not have to satisfy universal2, and the underlying NIZK
satisfies the unbounded simulation-soundness (Definition 3).

Additional algorithms. In order to construct our strong DSS-NIZK system, we prepare additional
polynomial-time algorithms E1, E2, E3, G, and EG , which are defined as follows:

• ψ ← E1(): E1 samples auxiliary information ψ of a relation R, which can be regarded as
witness of R.

• 1/0← E2(ψ, x): E2 given ψ and a statement x outputs 1 if x is in the language L(R), and 0
otherwise.

• π ← E3(): E3 samples a uniformly random value from Π.

• (xH ;wH) ← (G∥EG)(x, lbl;w) means that G given (x, lbl) ∈ X × {0, 1}∗ outputs xH ∈ XH

(then, we write xH ← G(x, lbl)), and EG given w outputs a witness wH by using the internal
information of G(x, lbl). (G∥EG)(x, lbl;w) outputs (xH ;wH) such that xH is in the language
LH of ΠPHPS (and (xH , wH) is in the relation RH of ΠPHPS) if x is in L(R), but xH is not in
LH (and (xH , wH) /∈ RH) otherwise.

Furthermore, there is a gap between the two languages L(R) and LH (e.g., L(R) ⊂ LH) in general.
This may be a problem to construct G. Thus, we assume that a statement x is publicly verifiable
for a language LX such that L(R) = LH ∩LX , because this assumption is valid when instantiating
our keyed-FHE scheme.

Validity of additional algorithms. The E1, E2, and E3 algorithms are also assumed in the DSS-NIZK
of [32]. Hence, we explain that assuming the remaining algorithms G, EG and the public verifiability
for LX is reasonable.

In the case of constructing a strong DSS-NIZK for IND-CCA1 FHE ciphertexts, we review the
language of the PHPS of [3], which can be simply defined as LH = {ct | ∃w,Encpk(0;w) = ct},
where Encpk(·) is an encryption algorithm of public key encryption. In addition, we suppose that
this public key encryption scheme for LH is an IND-CCA1 secure FHE scheme from IND-CPA
secure FHE schemes and a zk-SNARK [12]. Let LX be the language for the zk-SNARK used in
this IND-CCA1 secure FHE scheme [12].

First, assuming the public verifiability for LX is reasonable because the FHE scheme [12] is
based on the Naor-Yung paradigm, and it is clear that the ciphertexts are publicly verifiable for
LX .

Next, we show that assuming the G algorithm is reasonable. G checks whether two FHE cipher-
texts are in LX . If so, G transforms this pair into a statement in LH by using the technique of the
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“onion encryption” of [37] 6. Notice that just computing ct1 − ct2 is possible as the statement, in
the case where the FHE scheme is some lattice-based one such as [8–11, 15, 26, 28]. Otherwise, it
samples xH /∈ LH and outputs this. Hence, if two ciphertexts are in L(R), then this pair is also in
LH . Otherwise, it is not in LH due to the public verifiability of the IND-CCA1 secure FHE scheme.
Hence, G fulfills the required property. Accordingly, there exits an algorithm EG generating the
corresponding witness (concretely, the randomness used in the onion encryption) by using the G
algorithm. Hence, there exist G and EG .
Our strong DSS-NIZK system. In order to construct our strong DSS-NIZK system ΠDN, we employ
the following primitives:

• An ϵ-smooth labeled PHPS ΠPHPS with a public evaluation function Ĥ, which is constituted
by a PHF H = (H,K,XH , LH ,Π, S, α).

• A NIZK system ΠN = (GenN ,PN ,VN ) for an augmented relation RN =
{((x, xH , πH , lbl), (w,wH)) | (x,w) ∈ R ∧ πH = Ĥ(α(k), (xH , x∥lbl), wH)}, with a PPT simu-
lator (SimN,0, SimN,1) (where R ⊆ X ×W is the relation of ΠDN).

• The above algorithms E1, E2, E3, G, and EG .

Our DSS-NIZK system ΠDN for a relation R is described as follows:

Real World consists of

• crs ← Gen(1λ): Sample k
$← K and compute crsN ← GenN (λ). Output crs =

(α(k), crsN ).

• π ← P(crs, x, w, lbl): Compute (xH ;wH)← (G∥EG)(x, lbl;w), πH ← Ĥ(α(k), (xH , x∥lbl),
wH) and πN ← PN (crsN , (x, xH , πH , lbl), (w,wH)). Output π = (xH , πH , πN )

• 1/0 ← V(crs, x, π, lbl): Output 1 if VN (crsN , (x, xH , πH , lbl), πN ) = 1. Output 0 other-
wise.

Partial Simulation World consists of

• (crs, tds, tdv) ← sfGen(1λ): Sample ψ ← E1() and k
$← K, and compute (crsN , tdN ) ←

SimN,0(1
λ). Output crs = (α(k), crsN ), tds = (k, tdN ), and tdv = (ψ, k).

• π ← sfSim(crs, tds, x, β, lbl):

– If β = 1, then compute xH ← G(x, lbl), πH ← Hk(xH , x∥lbl) and πN ←
SimN,1(crsN , tdN , (x, xH , πH , lbl)).

– If β = 0, then sample a uniformly random πH ← E3() and compute xH ← G(x, lbl)
and πN ← SimN,1(crsN , tdN , (x, xH , πH , lbl)).

Output π = (xH , πH , πN ).

• 1/0← pV(crs, tdv, x, π, lbl): Output 1 if E2(ψ, x) = 1 (namely, it holds that x ∈ L(RN )),
Hk(xH , x∥lbl) = πH , and VN (crsN , (x, xH , πH , lbl), πN ) = 1. Output 0 otherwise.

One-time Full Simulation World consists of

• (crs, tds, tds,1, tdv) ← otfGen(1λ): Sample k
$← K and compute (crsN , tdN ) ←

SimN,0(1
λ). Output crs = (α(k), crsN ), tds = tds,1 = (k, tdN ), and tdv = k.

6Concretely, two FHE ciphertexts Enc(pk1,m1) and Enc(pk2,m2) can be transformed into a ciphertext
Enc(pk1,Enc(pk2,m1 − m2)). If for two FHE ciphertexts Enc(pk1,m1; r1) and Enc(pk2,m2; r2), (m, r1, r2) where
m = m1 = m2 is a witness of the Naor-Yung language, then Enc(pk1,Enc(pk2,m1 −m2)) is a statement in LH .
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• π ← otfSim(crs, tds,1, x, lbl): Compute xH ← G(x, lbl), πH ← Hk(xH , x∥lbl), and πN ←
SimN,1(crsN , tdN , (x, xH , πH , lbl)). Output π = (xH , πH , πN ).

• 1/0 ← sfV(crs, tdv, x, π, lbl): Output 1 if it holds that Hk(xH , x∥lbl) = πH and
VN (crsN , (x, xH , πH , lbl), πN ) = 1. Output 0 otherwise.

4.2 Security Analysis

Theorem 2 shows the properties of ΠDN.

Theorem 2. If the labeled PHPS ΠPHPS is ϵ-smooth, and the NIZK ΠN satisfies unbounded
simulation-soundness, then the resulting NIZK system ΠDN is a strong DSS-NIZK system.

The overview of the proof for this theorem is as follows: We prove Theorem 2 By showing
Lemmas 6, 7, 8, and 9. The completeness of ΠDN is ensured by that of the underlying NIZK and
the definition of the underlying labeled PHPS (see Lemma 6). The partial zero-knowledge and
unbounded partial simulation-soundness of ΠDN (Lemmas 7 and 8, respectively) can be proven in the
same way as the proof of [32, Theorem 21]. Thus, we omit to describe the proofs of Lemmas 7 and
8.

Lemma 6 (Completeness of ΠDN). If the PHF H constitutes the labeled PHPS ΠPHPS and the
NIZK system ΠN satisfies compleneteness, then the proposed strong DSS-NIZK system ΠDN satisfies
Completeness.

Proof. We show that ΠDN satisfies completeness. If the public evaluation function Ĥ of the
underlying PHPS correctly computes πH = Ĥ(α(k), (xH , x∥lbl), wH), and x is in L(R), then the
prover algorithm PN computes a correct proof πN since (x, xH , πH , lbl) is in the language L(RN ).
Thus, the completeness of ΠDN follows the completeness of the underlying NIZK. ■

Lemma 7 (Partial zero-knowledge of ΠDN). If the NIZK system ΠN satisfies composable
zero-knowledge property and unbounded simulation-soundenss, then the resulting strong DSS-NIZk
system ΠDN satisfies partial zero-knowledge property.

Lemma 8 (Unbounded partial simulation-soundness of ΠDN). If the failure probability of the E2

algorithm for the relation R is negligible in λ, then the resulting strong DSS-NIZK system ΠDN

satisfies unbounded partial simulation-soundness.

Finally, we give an explanation of the proof of one-time full zero-knowledge because the difference
between the proofs of [32] and Theorem 2 is this proof, namely the proof of Lemma 9. In the one-
time full zero-knowledge game, an adversary is allowed to submit (x∗, β∗, lbl∗) such that x∗ /∈ L(R)
in order to get a proof π∗ generated by sfSim or otfSim. The difference between pV and sfV is the
verification of x ∈ L(R) with E2. Thus, the outputs of pV and sfV may be different if the adversary
issues (x, π, lbl) to the given verifier oracle, such that x /∈ L(R), (x, π, lbl) ̸= (x∗, π∗, lbl∗), and the
verifier oracle accepts. In the proof of [32], it is proven that this event does not occur due to the
universal2 property of ΠPHPS and a special property of the underlying NIZK. In our proof, the event
occurs with negligible probability, due to the unbounded simulation-soundness of Definition 3. This
is because ((x∗, x∗H , π

∗
H , lbl

∗), π∗) is included in the list Q of the unbounded simulation-soundness
game of ΠN, and issuing the query above (x, π = (xH , πH , πN ), lbl) corresponds to the adversary’s
winning condition in Definition 3 (i.e., (x, xH , πH , lbl) /∈ L(RN ), ((x, xH , πH , lbl), πN ) /∈ Q, and
VN (crsN , (x, xH , πH , lbl), πN ) = 1). Therefore, ΠPHPS does not need to satisfy universal2 property,
and ΠN must fulfill the unbounded simulation-soundness.
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Lemma 9 (One-time full zero-knowledge of ΠDN). If the labeled PHPS ΠPHPS is ϵ-smooth and the
NIZK system ΠN satisfies unbounded simulation-soundness, then the resulting strong DSS-NIZK
system ΠDN satisfies one-time full zero-knowledge property.

Proof. We prove that ΠDN satisfies one-time full zero-knowledge. We consider a sequence of security
games. Game0 is identical to the one-time full zero-knowledge game in the partial simulation world.
Let Game1 be the same game as Game0 except that the proof of (x∗, β∗, lbl∗) is generated by otfSim
instead of sfSim. If β∗ is not correct for x∗, then the challenger aborts in both of the two games.
Thus, we assume that β∗ is correct for x∗. In the case β∗ = 1, sfSim and otfSim are identical. In
the case β∗ = 0, πH generated by sfSim is uniformly at random while πH generated by otfSim is
Hk(xH , x∥lbl). Due to the ϵ-smoothness of ΠPHPS, the statistical distance between the distributions
of the two proofs is at most ϵ. Hence, the adversary distinguishes between Game0 and Game1 with
at most probability ϵ.

Game2 is the same game as Game1 except that the private verifier oracle pV is replaced by
the semi-functional verifier oracle sfV. Let N be the number of queries issued to the private or
semi-functional verifier oracle. Let Game1,0 and Game1,N be the same games as Game1 and Game2,
respectively. For each i ∈ {0, 1, . . . , N − 1}, we consider a security game Game1,i+1 in which the
verifier oracle returns the output of sfV for the (N − i)-th query issued to the verifier oracle, and it
returns that of pV for the j-th query (j ∈ {1, . . . , N − i− 1}). We prove that A cannot distinguish
between Game1,i and Game1,i+1 due to the unbounded simulation-soundness of the underlying
NIZK. To prove this fact, it is sufficient to consider the event in which A issues the (N− i)-th query
(x, π = (xH , πH , πN ), lbl) to the given verifier oracle, such that (x, π, lbl) ̸= (x∗, π∗, lbl∗), x /∈ L(R),
and the sfV oracle accepts (i.e., Hk(xH , x∥lbl) = πH and VN (crsN , (x, xH , πH , lbl), πN ) = 1 hold).
The reasons for this are as follows:

• In the case (x, π, lbl) = (x∗, π∗, lbl∗), both of the two games are aborted.

• In the case x ∈ L(R), both of the verifier oracles in Game1,i and Game1,i+1 return the same
output since the difference between pV and sfV is only the verification by E2.

• In the case Hk(xH , x∥lbl) ̸= πH , both pV and sfV return 0.

• In the case VN (crsN , (x, xH , πH , lbl), πN ) = 0, both pV and sfV return 0.

Hence, Game1,i and Game1,i+1 are identical unless A submits that query. Then, we show that it is
possible to break the unbounded simulation-soundness of ΠN if A issues the (N − i)-th query above.
Let Q be the list of queries and responses in the unbounded simulation-soundness game of ΠN. No-
tice that, in the reduction from the property of ΠN, ((x

∗, x∗H , π
∗
H , lbl

∗), π∗N ) is included in Q. If A
issues the query meeting the additional condition ((x, xH , πH , lbl), πN ) /∈ Q, then this query clearly
fulfills the winning condition of the simulation-soundness game of ΠN. Thus, we consider the ad-
ditional condition ((x, xH , πH , lbl), πN ) ∈ Q. If ((x, xH , πH , lbl), πN ) ∈ Q\{((x∗, x∗H , π∗H , lbl

∗), π∗N )},
then there does not exist the query meeting the condition x /∈ L(R), Hk(xH , x∥lbl) = πH ,
and VN (crsN , (x, xH , πH , lbl), πN ) = 1. The reason for this is as follows: If x ∈ L(R), this
contradicts the assumption x /∈ L(R) of the (N − i)-th query. If x /∈ L(R), then the proof
π = (xH , πH , πN ) is invalid since the sfSimN oracle samples πH uniformly at random, and
Hk(xH , x∥lbl) ̸= πH holds with overwhelming probability. Hence, the (N − i)-th query such that
((x, xH , πH , lbl), πN ) ∈ Q\{((x∗, x∗H , π∗H , lbl

∗), π∗N )} does not meet the above condition x /∈ L(R),
Hk(xH , x∥lbl) = πH , and VN (crsN , (x, xH , πH , lbl), πN ) = 1. Hence, A must issue the (N − i)-th
query such that ((x, xH , πH , lbl), πN ) /∈ Q, x /∈ L(R), and the sfV oracle accepts in order to distin-
guish the two games. That is, if A issues the (N − i)-th query such that (x, π, lbl) ̸= (x∗, π∗, lbl∗),
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x /∈ L(R), Hk(xH , x∥lbl) = πH , and VN (crsN , (x, xH , πH , lbl), πN ) = 1, then this query satisfies the
winning condition of the unbounded simulation-soundness game of ΠN (i.e., ((x, xH , πH , lbl), πN ) /∈ Q,
(x, xH , πH , lbl) /∈ L(RN ), and VN (crsN , (x, xH , πH , lbl), πN ) = 1). Therefore, the indistinguishabil-
ity between Game1,i and Game1,i+1 follows the property of ΠN, and the difference between success
probabilities in Game1 and Game2 is at most N ·AdvussΠN

(λ), where AdvussΠN
(λ) is the maximum prob-

ability that any PPT algorithm breaks the unbounded simulation-soundness of ΠN.
Game3 is identical to Game2 except that sfGen is replaced by otfGen at the beginning of the one-

time full zero-knowledge game. The difference between the two generators is whether ψ is generated
or not. Game2 and Game3 are identical since ψ is not used in both of the two games.

From the discussion above, the adversary breaks the one-time full zero knowledge property of
ΠDN with at most probability ϵ+N · AdvussΠN

(λ), and the proof is completed. ■
Due to Lemmas 6, 7, 8, and 9, the proof of Theorem 2 is completed.

5 Instantiation of Our Construction

In this section, we show that all building blocks of our generic construction of keyed-FHE do not
require iO, by discussing existing schemes which we can apply to our construction.

Although our generic construction of keyed-FHE requires only the IND-CCA1 security for the
underlying FHE scheme, our strong DSS-NIZK system requires public verifiability for the IND-CCA1
secure FHE scheme, as discussed in Section 4.1. There is an IND-CCA1 secure publicly verifiable
FHE scheme [12] under zk-SNARK [4, 5]. We can also construct strong DSS-NIZK using the
following building blocks: (1) the NIZK systems for NP in the (quantum) random oracle model [13,
24] or the standard model [34], and (2) the smooth PHPS [3] for lattice-based ciphertexts. Therefore,
we can obtain a keyed-FHE scheme secure in the (quantum) random oracle model or the standard
model. These details are discussed below.

Canetti et al. [12] proposed generic constructions of IND-CCA1 secure FHE. One of these con-
structions is based on the Naor-Yung paradigm [40] with two IND-CPA secure FHE schemes and a
zk-SNARK [4,5]. This one satisfies both IND-CCA1 security and public verifiability of ciphertexts,
since it is possible to check the validity of ciphertexts owing to the public verifiability of the un-
derlying zk-SNARK. Although they also proposed other generic constructions of IND-CCA1 secure
FHE, these ones need iO or do not necessarily satisfy public verifiability. Hence, we have chosen the
generic construction based on the Naor-Yung paradigm and instantiate this generic construction
by using existing lattice-based FHE schemes such as [8–11,15,26,28] and existing zk-SNARKs such
as [2, 4, 5, 25, 30,39,45].

The remaining part is strong DSS-NIZK. NIZKs used to obtain a strong DSS-NIZK for the
Naor-Yung language can be constructed from a Σ-protocol [29] by using the Fiat-Shamir trans-
formation [24], and there exist such NIZKs in the quantum random oracle model [13] and the
standard model [34]. There exists a smooth (approximate) PHPS [3] for lattice-based ciphertexts.
In addition, it is possible to instantiate the G and EG algorithms (see Section 4.1) which generate
a statement-witness pair of the smooth PHPS [3], by using the IND-CCA1 FHE ciphertexts of [12].
These algorithms are constructed in the same way as those described in Section 4.1. Hence, we
can obtain a strong DSS-NIZK for IND-CCA1 secure (publicly verifiable) FHE ciphertexts by using
existing schemes.

To sum up, we can apply the following existing schemes to the above generic constructions of
public verifiable IND-CCA1 secure FHE and strong DSS-NIZK:

• Existing schemes applied to the publicly verifiable IND-CCA1 secure FHE [12]:
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– IND-CPA secure FHE based on the LWE assumption, such as [8–11,15,26,28].

– zk-SNARKs for arithmetic circuits based on knowledge assumptions, such as [2, 4, 5, 25,
30,39,45], or zk-SNARKs for NP in the quantum random oracle model [16].

• Existing schemes applied to our strong DSS-NIZK:

– Statistically secure smooth PHPS [3].

– Unbounded simulation-sound NIZK such as the NIZK system for NP in the random
oracle model from a Σ-protocol [29] using the Fiat-Shamir transformation [24], the NIZK
system secure in the quantum random oracle model [13], or the NIZK system secure in
the standard model [34]7.

Therefore, there exists a keyed-FHE scheme constructed from simpler primitives than iO, and its
security is based on a knowledge assumption since such an assumption is necessary to ensure the
security of a zk-SNARK.

6 Conclusion

In this paper, we proposed a keyed-FHE scheme constructed from simpler primitives than a strong
primitive iO used in the existing keyed-FHE scheme [33]. To this end, we proposed a generic
construction of keyed-FHE by using two publicly verifiable IND-CCA1 secure FHE schemes and a
strong DSS-NIZK system. In addition, we gave a generic construction of strong DSS-NIZK, which
is constructed from a smooth PHPS and an unbounded simulation-sound NIZK. Furthermore, we
showed that existing primitives can be applied to our generic constructions. As a result, we can
obtain a keyed-FHE scheme constructed from simpler primitives than iO.
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A Keyed-FHE from IND-CPA secure FHE, zk-SNARK, and
Strong DSS-NIZK

We describe the a keyed-FHE scheme constructed from IND-CPA secure FHE, zk-SNARK, and
strong DSS-NIZK, by using a generic construction of IND-CCA1 secure FHE [12] and our keyed-
FHE scheme in Section 3. When replacing IND-CCA1 secure FHE schemes used in the keyed-FHE
scheme in Section 3, with IND-CPA secure FHE schemes, we can construct a keyed-FHE scheme by
adding a zk-SNARK system. Namely, we can obtain a generic construction starting from IND-CPA
secure FHE, zk-SNARK, and strong DSS-NIZK.

To show this fact, we describe the definition of zk-SNARKs by following [4].

Definition 17 (zk-SNARK). A zk-SNARK system for a relation R ⊆ {0, 1}∗ × {0, 1}∗ consists of
three polynomial-time algorithms (Gen,P,V): Let L(R) = {x | ∃w s.t. (x,w) ∈ R} be the language
defined by R.
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• (crs, vrs) ← Gen(1λ): The randomized algorithm Gen takes as input a security parameter 1λ,
and it outputs a CRS crs and a verification key vrs.

• π ← P(crs, x, w): The randomized algorithm P takes as input a CRS crs, a statement x, and
a witness w, and it outputs a proof π.

• 1/0 ← V(vrs, x, π): The deterministic algorithm V takes as input a verification key vrs, a
statement x, and a proof π, and it outputs 1 or 0.

It is required that a zk-SNARK satisfies completeness, knowledge-soundness, zero-knowledge, and
succinctness:

Completeness. For every (x,w) ∈ R, it holds that

Pr

[
(crs, vrs)← Gen(1λ);
π ← P(crs, x, w)

: V(vrs, x, π) = 1

]
≥ 1− negl(λ).

Knowledge-Soundness. For any PPT algorithm A, there exists a polynomial-time extractor ExtA
such that

Pr

 (crs, vrs)← Gen(1λ);
(x, π;w)

← (A∥ExtA)V(vrs,·,·)(crs)
:

V(vrs, x, π)
= 1

∧(x,w) /∈ R

 ≤ negl(λ).

Zero-Knowledge. There exists a PPT simulator Sim = (Sim0, Sim1) such that for any PPT
algorithm A, it holds that∣∣∣Pr[(crs, vrs)← Gen(1λ) : 1← AP(crs,·,·)(crs)]

−Pr
[
(crs, vrs, td)← Sim0(1

λ) : 1← ASim∗(·,·)(crs)
]∣∣∣ ≤ negl(λ),

where the Sim∗ oracle on input (x,w) returns ⊥ if (x,w) /∈ R, and returns π ← Sim1(crs, td, x)
otherwise, where the PPT algorithm Sim1 takes as input crs, a trapdoor td, and a statement x, and
outputs a simulated proof π.

Succinctness. The length of the proof generated by P , as well as the running time of V, is bounded
by poly(λ+ |x|), where x is a statement, and poly is a universal polynomial which does not depend
on R.

In addition, a zk-SNARK system is publicly verifiable if knowledge-soundness holds against the
adversary given vrs, and it is designated verifier otherwise.

To construct the keyed-FHE scheme, we assume the following primitives: an FHE scheme
ΠFHE,i = (KGenF,i, EncF,i, DecF,i, EvalF,i) for i ∈ {1, 2},
a publicly-verifiable zk-SNARK system ΠS = (GenS ,PS ,VS) for a relation{

(ct1, ct2), (m, r1, r2)

∣∣∣∣ ct1 = EncF,1(pk1,m; r1)∧
ct2 = EncF,2(pk2,m; r2)

}
∨

{
(ct1, ct2), ({ct(i)1 , ct

(i)
2 , π

(i)
S }i∈[ℓ],C, r̂1, r̂2)

∣∣∣∣∣ ∀j ∈ {1, 2}, ĉtj = EvalF,j(C, (ct
(k)
j )k∈[ℓ]; r̂j) ∧

∀i ∈ [ℓ],VS(vrsS , (ct
(i)
1 , ct

(i)
2 ), π

(i)
S ) = 1

}
,

a DSS-NIZK system ΠDN in the partial-simulation world (sfGenN , sfSimN , pVN ) for a relation
{(ct1, ct2), (m, r1, r2) | ct1 = EncF,1(pk1,m; r1) ∧ ct2 = EncF,2(pk2,m; r2)}, where (pk1, sk1) ←
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KGenF,1(1
λ), (pk2, sk2) ← KGenF,2(1

λ), and (crsS , vrsS) ← GenS(1
λ). Notice that regarding the

DSS-NIZK system ΠDN, we also use the real world prover and verifier algorithms PN and VN , in
the same way as the keyed-FHE scheme in Section 3.

By using these primitives, we describe the generic construction Π′
KFHE = (KGen,Enc,Dec,Eval),

as follows:

• (pk, skd, skh)← KGen(1λ):

1. (pk1, sk1)← KGenF,1(1
λ), (pk2, sk2)← KGenF,2(1

λ).

2. (crsS , vrsS)← GenS(1
λ).

3. (crsN , tdN,s, tdN,v)← sfGenN (1λ).

4. Output pk = (pk1, pk2, crsS , vrsS , crsN ), skd = sk1, and skh = tdN,s.

• ct← Enc(pk,m):

1. ct1 ← EncF,1(pk1,m; r1), ct2 ← EncF,2(pk2,m; r2).

2. πS ← PS(crsS , (ct1, ct2), (m, r1, r2)).

3. πN ← PN (crsN , (ct1, ct2), (m, r1, r2), lbl), where lbl = πS .

4. Output ct = (ct1, ct2, πS , πN ).

• m/⊥ ← Dec(sk, ct): ct = (ct1, ct2, πS , πN ).

1. If VS(vrsS , (ct1, crs2), πS) = 1 and VN (crsN , (ct1, ct2), πN , πS) = 1, output m ←
DecF,1(sk1, ct1). Otherwise, output ⊥.

• ĉt/⊥ ← Eval(skh,C, (ct
(1), . . . , ct(ℓ))): Let ct(i) = (ct

(i)
1 , ct

(i)
2 , π

(i)
S , π

(i)
N ) for i ∈ [ℓ].

1. Output ⊥ if VS(vrsS , (ct
(i)
1 , ct

(i)
2 ), π

(i)
S ) = 0 for some i ∈ [ℓ], or

VN (crsN , (ct
(i)
1 , ct

(i)
2 ), π

(i)
N , π

(i)
S ) = 0 for some i ∈ [ℓ].

2. ĉt
(0)
1 ← EncF,1(pk1, 0), ĉt

(0)
2 ← EncF,2(pk2, 0), where 0 is the additive identity inM.

3. ĉt
′
1 ← EvalF,1(C, (ct

(1)
1 , . . . , ct

(ℓ)
1 ); r̂1), ĉt

′
2 ← EvalF,2(C, (ct

(1)
2 , . . . , ct

(ℓ)
2 ); r̂2).

4. ĉt1 ← AddF,1(ĉt
′
1, ĉt

(0)
1 ), ĉt2 ← AddF,2(ĉt

′
2, ĉt

(0)
2 ), where the PPT algorithm AddF,i (i ∈

{1, 2}) evaluates the addition gate overM by using EvalF,i.

5. π̂S ← PS(crsS , (ĉt1, ĉt2), ({ct(i)1 , ct
(i)
2 , π

(i)
S }i∈[ℓ],C, r̂1, r̂2)): This is a proof for the witness

({ct(i)1 , ct
(i)
2 , π

(i)
S }i∈[ℓ],C, r̂1, r̂2) such that

– ĉtj = EvalF,j(C, (ct
(1)
j , . . . , ct

(ℓ)
j ); r̂j) for every j ∈ {1, 2}, and

– VS(vrsS , (ct
(i)
1 , ct

(i)
2 ), π

(i)
S ) = 1 for every i ∈ [ℓ].

6. π̂N ← sfSimN (crsN , tdN,s, (ĉt1, ĉt2), 1, π̂S).

7. Output ĉt = (ĉt1, ĉt2, π̂S , π̂N ).

The correctness of Π′
KFHE holds in the same way as the keyed-FHE scheme in Section 3. Namely,

the first condition of the correctness follows the correctness of ΠFHE,1, and the completeness of ΠS and
ΠDN. The second condition of the correctness also holds due to the composable partial zero-knowledge
of ΠDN in addition to the correctness and completeness of the underlying primitives. In addition,
it is clear that the compactness of Π′

KFHE follows the compactness of the two FHE schemes ΠFHE,1

and ΠFHE,2, and the succinctness of ΠS.
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Theorem 3. If both ΠFHE,1 and ΠFHE,2 are IND-CPA secure, ΠS is a zk-SNARK system, and ΠDN

is a strong DSS-NIZK system, then the resulting Π′
KFHE is KH-CCA secure.

The proof of this theorem is similar to that of Theorem 1. Even though a homomorphic
evaluation key is revealed, we have to ensure the confidentiality of the challenge message. To this
end, Π′

KFHE needs the knowledge-soundness and zero-knowledge of the underlying zk-SNARK, while
the keyed-FHE scheme in Section 3 employs the IND-CCA1 security of the underlying FHE schemes.
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