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Abstract

An accountable subgroup multi-signature is a kind of multi-signature scheme in which any sub-

group S of a group G of potential signers jointly sign a message m, ensuring that each member of

S is accountable for the resulting signature. In this paper, we propose three novel pairing-based

accountable subgroup multi-signature (ASM) schemes, which are secure against existential forgery

under chosen-message attacks and computational co-Diffie-Hellman assumption. In the first one, we

use Feldman’s verifiable secret sharing scheme as an implicit authentication and proof-of-possession

for setting up group G. In the second one, the members participating in authentication are decided

by the subgroup. In the third one, we consider a designated combiner managing the authentication

process. All schemes we propose here require fewer computations in the signature generation, signa-

ture aggregation, and verification phases than the pairing-based ASM scheme proposed by Boneh,

Drijvers and Neven. Moreover, our first and third ones solve the open problem of constructing an

ASM scheme in which the subgroup S of signers is unknown before the signature generation. Be-

sides, we give a method of eliminating the combiner in case of knowing the subgroup of signers S
in advance. Further, we extend our proposed schemes to aggregated versions. For N accountable

subgroup multi-signatures, aggregated versions of our proposed schemes output an aggregated signa-

ture with the size of a single group (G1) element and require N +1 pairings in aggregated signature

verification. In contrast, the partially aggregated ASM scheme of Boneh, Drijvers and Neven gives

an aggregated signature with the size of N + 1 group elements and requires 2N + 1 pairings in ag-

gregated signature verification.

Keywords: accountable subgroup multi-signatures, BLS signature, aggregatable signatures

1 Introduction

Digital signature schemes play a crucial role in modern cryptographic protocols for verifying the authen-

ticity of any message, such as official documents, financial transactions, e-mails, etc. In particular, the
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increasing popularity of cryptocurrencies [8, 20, 21] in the last decade made the digital signature schemes

more significant than before. The structures of signature schemes differ according to many reasons such

as use area, system requirements, and users’ needs.

A multi-signature [3, 16, 22, 23, 24, 27] is a kind of digital signature in which a group of signers signs

the same message jointly. In literature, there are some notions related to multi-signatures for different

scenarios, such as group signatures [9, 10], threshold signatures [3, 11, 14, 15], aggregate signatures [5],

ring signatures (also threshold, linkable and traceable variants) [26, 7, 17, 13], accountable subgroup

multi-signatures [4, 19], etc. None of them provide sufficient flexibility regarding the number of signers,

and accountability of the signers at the same time, except accountable subgroup multi-signatures. An

accountable subgroup multi-signature (ASM) [4, 19] is a multi-signature scheme in which any subgroup

S ⊆ G jointly sign a message m, ensuring that each member of S is accountable for the resulting

signature. This notion was firstly defined by Micali et al. in [19] by proposing the first ASM scheme. In

a more recent paper [4], Boneh, Drijvers and Neven proposed another ASM scheme which is based on

BLS signature [6], and solves the open problem in [19], i.e. constructing an ASM scheme in which the

subgroup of signers S ⊆ G is not determined before the signature generation.

In this paper, we focus on accountable subgroup multi-signatures (ASM). We propose three novel ac-

countable subgroup multi-signature schemes based on pairings. We prove that our proposed schemes are

secure against existential forgery under chosen-message attacks, under co-CDH/ψ-co-CDH assumption

in the random oracle model. The first one is the vASM (verifiable ASM) scheme which is a modified BLS

signature. We give a method of generating a membership key via VSS protocol [12], which transforms

the BLS signature scheme into an ASM scheme. The proposed vASM scheme, which also solves the open

problem in [19], requires fewer multiplications and bilinear pairings than the ASM schemes proposed in

[4]. The second one is ASMwSA (ASM with Subgroup Authentication), in which the subgroup of the

signers is known before the protocol starts. So the members participating in authentication are decided

by the subgroup itself. The third one is ASMwCA (ASM with Combiner Authentication) which also

provides a solution to the open problem in [19], in which we construct a scheme such that the subgroup

of signers S is not predetermined. The ASMwSA and ASMwCA schemes also require fewer multiplica-

tions and bilinear pairings than the ASM scheme in [4]. Moreover, we give a method of consecutive and

cumulative signing that eliminates the designated combiner in case the subgroup of signers S is known

before the signature generation. Further, we discuss the aggregated versions of vASM, ASMwSA and

ASMwCA schemes for N distinct accountable subgroup multi-signatures. The aggregated versions of

our schemes, i.e. AvASM, AASMwSA and AASMwCA, output aggregated signatures with the size of a

single group element and require N+1 pairings for aggregated signature verification, in comparison with

the partial aggregated AASM scheme proposed in [4] with the signature size of N + 1 group elements

and verification with 2N + 1 pairings.

The outline of the paper is as follows. In Section 2 we give a brief background information, including

definitions of bilinear pairings, co-CDH/ψ-co-CDH problems, Feldman’s Verifiable Secret Sharing (VSS)

protocol, multi-signatures and accountable subgroup multi-signatures, generalized forking lemma, and

BLS signature scheme. In Section 3 we summarize the ASM scheme given in [4]. Then, in Section 4.1,

we give our vASM scheme and prove its security in the random oracle model. Moreover, in Section 5 we

propose ASMwSA and ASMwCA schemes which are based on subgroup authentication instead of global

authentication. In the same section we prove their security in the random oracle model using generalized

forking lemma. In Section 6, we summarize the partial aggregated ASM (AASM) scheme given in [4],

and discuss the aggregated versions of our proposed schemes and their security. Finally, in Section 7, we

compare our new schemes with ASM and AASM schemes in terms of the number of operations required
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in the phases of the schemes and costs of transmission, broadcasting and storage.

2 Background

In order to provide sufficient background information for readers, we give the definitions of notions that we

mainly use throughout this paper. Namely, we give the definitions of bilinear pairings, computationally

hard problems, Feldman’s VSS protocol, multi-signatures and accountable subgroup multi-signatures,

generalized forking lemma, and BLS signature scheme.

2.1 Bilinear pairings and computational hard problems

Let G1,G2 be two cyclic additive groups of prime order q and GT be cyclic multiplicative group with

the same order.

Definition 2.1. A pairing is a map e : G1×G2 −→ GT which satisfies the bilinearity and non-degeneracy

properties:

• Bilinearity: e(Aα, Bβ) = e(A,B)αβ for all α, β ∈ Zq, A ∈ G1 and B ∈ G2.

• Non-degeneracy: e(A,B) ̸= 1 for all A ∈ G1 and B ∈ G2.

The definitions of underlying hard problems of the schemes in this paper, i.e. computational co-Diffie-

Hellman and computational ψ-co-Diffie-Hellman problems, are given below.

Definition 2.2 (Computational co-Diffie-Hellman Problem [5]). For groups G1 = ⟨g1⟩ and G2 = ⟨g2⟩ of

prime order q, define Advco-CDH
G1,G2

of an adversary A as

Pr

[
y = gαβ1 : (α, β)

$←− Z2
q, y ←− A(gα1 , g

β
1 , g

β
2 )

]
,

where the probability is taken over the random choices of A and the random selection of (α, β). A (τ, ϵ)-

breaks the co-CDH problem if it runs in time at most τ and has Advco-CDH
G1,G2

≥ ϵ. co-CDH is (τ, ϵ)-hard

if no such adversary exists.

Definition 2.3 (Computational ψ-co-Diffie-Hellman Problem [4]). For groups G1 = ⟨g1⟩ and G2 = ⟨g2⟩
of prime order q, let Oψ(.) be an oracle that returns gx1 ∈ G1 on input gx2 ∈ G2. Define Advψ-co-CDH

G1,G2
of

an adversary A as

Pr

[
y = gαβ1 : (α, β)

$←− Z2
q, y ←− AOψ(.)(gα1 , g

β
1 , g

β
2 )

]
,

where the probability is taken over the random choices of A and the random selection of (α, β). A
(τ, ϵ)-breaks the ψ-co-CDH problem if it runs in time at most τ and has Advψ-co-CDH

G1,G2
≥ ϵ. ψ-co-CDH is

(τ, ϵ)-hard if no such adversary exists.

2.2 Feldman’s VSS Protocol

Feldman’s verifiable secret sharing (VSS) scheme [12] is a protocol that is used for sharing a secret

among some predetermined players in a verifiable fashion, in which Shamir’s secret sharing scheme [28]

was directly used to share and reconstruct the secret. In addition to Shamir’s scheme, the shares can be

checked for consistency in Feldman’s scheme. To this end, the dealer computes commitments with the

coefficients of the secret polynomial. By this way, users can verify that they receive consistent shares

from the dealer.

3



Assume that we have n players. Let Fq be a finite field with prime order q and g be a primitive

element in Fq. The dealer shares a secret as follows:

• Chooses a polynomial of degree t− 1 (< q),

f(x) = αt−1x
t−1 + . . .+ α1x+ α0

with distinct and nonzero αk ∈ F∗
q for k = 0, . . . , t− 1, where α0 is the secret to be shared.

• Computes a set of commitments COM = {Ck : Ck = gαk , k = 0, 1, . . . , t− 1}.

• Sends f(i) and COM to the i-th player for i = 1, 2, . . . , n.

After receiving a share and the set of commitments, the i-th player checks

gf(i)
?
=

t−1∏
k=0

Ci
k

k . (2.1)

The received share is consistent with the shared secret only if (2.1) is satisfied. If at least any t or

more players perform Lagrange interpolation with their shares, they can uniquely determine the secret

polynomial, and f(0) will yield the secret.

The commitment set contains C0 = gs, where g is the generator for the cyclic group, and s is the

secret to be shared. This commitment may leak information about the secret s. The security of the

commitments depends on the Discrete Logarithm Problem (DLP), which is defined over cyclic groups. In

some cyclic groups, even with a large order, DLP may not be as hard as it is supposed to be. Therefore

the space that we are working in should be chosen carefully.

In Section 4.1 we use this protocol as an implicit authentication and the proof of possession method.

We use only the sharing, committing and verifying phases of this protocol.

2.3 Multi-signatures and Accountable Subgroup Multi-signatures

Definition 2.4. A multi-signature scheme consists of four algorithms, i.e. ParGen, KeyGen, Sign, and

Verify. Let G = {P1, . . . , Pn} be a set of n players.

• ParGen(1λ) takes the security parameter λ as input, and outputs the public system parameters

par including security parameter, hash functions, cyclic groups, generators, etc.

• KeyGen(par) takes the system parameters par as input, and outputs secret and public key pair,

i.e. sk and pk.

• Sign(par, sk,m) is an interactive protocol which is run by G, in two steps, as follows:

– Individual signature generation takes the system parameters par, secret key ski and

message m as inputs, and outputs the individual signature σi.

– Individual signature aggregation takes a set of individual signatures {σi}i∈G as inputs

and outputs the multi-signature σ.

• Verify(par, {pkj}j∈G , σ,m) takes system parameter par, multi-signature σ, message m, and public

keys of the players in G as inputs, and outputs 1 if it is valid or 0 otherwise.

For the definition of an accountable subgroup multi-signature scheme, we add an interactive group

setup algorithm GSetup, which is a one-time protocol run by all the players in the group G. Then we

modify the Sign and Verify algorithms as follows.
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Definition 2.5. An accountable subgroup multi-signature scheme is a tuple of five algorithms, that is

ParGen, KeyGen, GSetup, Sign, and Verify. Let G = {P1, . . . , Pn} be a set of n players, and PK =

{pk1, . . . , pkn} is the set of public keys of all the users in group G.

• ParGen(1λ) takes the security parameter λ as input, and outputs the public system parameters

par including security parameter, hash functions, cyclic groups, generators, etc.

• KeyGen(par) takes the system parameters par as input, and outputs secret and public key pair,

i.e. sk and pk.

• GSetup(par, ski,PK) is an interactive protocol which is run by all the players in G. It takes

system parameters par, secret keys ski and set of all public keys PK, and outputs a membership

key mki, a set of membership public keys MPK, and a set of commitments COM.

• Sign(par,mki,m) is an interactive protocol which is run by any subset S ⊆ G, in two steps, as

follows:

– Individual signature generation takes the system parameters par, membership key mki

and message m as inputs, and outputs the individual signature σi.

– Individual signature aggregation takes a set of individual signatures {σi}i∈S as inputs

and outputs the accountable subgroup multi-signature σ.

• Verify(par,MPK,COM,S, σ,m) takes system parameter par, multi-signature σ, message m, defi-

nition of the subset S, the set of membership public keys MPK, and the commitment set COM as

inputs, and outputs 1 if it is valid or 0 otherwise.

Correctness and unforgeability are two properties that every accountable subgroup multi-signature

scheme should meet. Correctness means that for any subgroup of signers S ⊆ G and message m, if the

signers Pi ∈ S run the Sign(·) protocol with their membership keysmki, and follow the protocol honestly,

then all of the signers in S outputs exactly the same valid accountable subgroup multi-signature σ, such

that Verify(par,MPK,COM,S, σ,m) = 1. Unforgeability means that it is infeasible for an adversary to

forge a valid multi-signature where at least one honest user follows the protocol properly. Unforgeability

can be described by the following game.

Setup: The challenger randomly picks n values and computes membership public keys MPK and the

commitment set COM, with respect to the indices {1, . . . , n}. Finally it runs the adversary

A(par,MPK,COM), where par is the system parameters.

Signature queries: The adversary Amakes queries on any message m, for any subset S ⊆ {1, . . . , n}
of users, and challenger responds with valid signatures.

Output: The adversary A eventually outputs a subset of indices S, a message m, and an accountable

subgroup multi-signature σ. The adversary A wins the game if Verify(par,MPK,COM,S, σ,m) = 1,

where the message m has been never queried as part of a signing query before.

Definition 2.6. Let Π = {ParGen,KeyGen,GSetup, Sign, V erify} be an accountable subgroup multi-

signature scheme. We say that an adversary A is a (t, qH , qS , ϵ)-forger if it runs in time t, makes at most

qH random oracle queries and qS signing queries, and wins the above game with probability at least ϵ.

We say that the accountable subgroup multi-signature scheme is (t, qH , qS , ϵ)-secure if no such adversary

exists.
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2.4 Generalized forking lemma

In order to prove the security of Schnorr-based signature schemes, Pointcheval and Stern firstly defined

the forking lemma in [25]. Bellare and Neven generalized this lemma in [2]. In the security proofs

of schemes in [4], the authors use the lemma in [1], which is a generalization of the forking lemma by

Bagherzandi, Cheon, and Jarecki. We also use the latter generalized forking lemma in the security proofs

of our two constructions.

LetA be an algorithm that interacts with random-oracle and takes inp as input. Let f = (ρ, h1, . . . , hqH )

be the randomness used in the process of A. Let ρ be A’s random tape, hi be the response to A’s i-th

hash query, qH be the maximal number of hash queries. Let Ω be the space of all randomness vectors

like f , and f |i be defined as f |i = (ρ, h1, . . . , hi−1) for any i ≤ qH . A(inp, f) is considered as successful if

it returns a pair (J, {outj}j∈J), where J is a non-empty multi-set of indexes with |J | = n and {outj}j∈J
is the multi-set of side outputs. Let ϵ be the probability that A(inp, f) is successful for fresh randomness

f
$←− Ω and for an input inp

$←− IG generated by an input generator IG. On input inp, the generalized

forking algorithm GFA proceeds as follows:

• f = (ρ, h1, . . . , hqH )
$←− Ω

• (J, {outj}j∈J)←− A(inp, f)

• If J = ∅, then output “fail”

• Let J = {j1, . . . , jn} such that j1 ≤ . . . ≤ jn.

• For i = 1 to n do

– succi ←− 0,

– ki ←− 0,

– kmax = 8nqH/ϵ. ln(8n/ϵ)

– Repeat until succi = 1 or ki > kmax

∗ ki = ki + 1

∗ f ′′
$←− Ω such that f ′′|ji = f |ji

∗ Let f ′′ = (ρ, h1, . . . , hji−1, h
′′
ji
, . . . , h′′qH )

∗ (J ′′, {out′′j }j∈J′′)←− A(inp, f ′′)

∗ If h′′ji ̸= hji and J ′′ ̸= ∅ and ji ∈ J ′′ then

· out′ji ←− out
′′
ji

· succi ←− 1

• If succi = 1 for all i = 1, . . . , n, then output (J, {outj}j∈J , {out′j}j∈J)

• Else output “fail”

The GFA algorithm is considered to be successful if it does not return “fail”.

Lemma 1 (Generalized Forking Lemma [1]). Let IG be a randomized algorithm generating inp. Let A
be also a randomized algorithm that makes at most qH random-oracle queries in time τ , which succeeds

with probability ϵ. If q > 8nqH/ϵ, then GFA(inp) runs in time at most τ.8n2qH/ϵ ln(8n/ϵ) and succeeds

with probability at least ϵ/8, where the probability is over the choice of inp
$←− IG and the coins of GFA.

The forking lemma tells us that if an adversary obtains a successful forgery, it can obtain another

successful forgery on the same message but with different random oracle query values. We will use this

lemma to prove the security of two of our schemes in the random oracle model.
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2.5 BLS Signature Scheme

Let e be an efficient, non-degenerate bilinear map, e : G1 × G2 −→ GT , in groups (G1,G2, and GT ) and

(g1, g2) be generators of the group pair (G1,G2), respectively. Let H : {0, 1}∗ −→ G1 be a function which

maps any arbitrary binary string onto the group G1. BLS signature scheme has three phases, which we

give below shortly.

1. Key Generation:

Pick a random secret key sk
$←− Zq, and compute the public key pk ←− gsk2 .

2. Signature Generation:

Compute the signature σ = H(m)sk, where m is the message.

3. Verification:

Accept if and only if e(H(m), pk) = e(σ, g2) holds.

The BLS signature was proved to be secure against existential forgery under adaptive chosen message

attacks in the random oracle model in [6].

Definition 2.7. We say that an adversary A (t, qS , qH , ϵ)-breaks a signature scheme if it runs in time

at most t, makes at most qS signature queries and at most qH hash function queries, and the success

probability of A is at least ϵ. A signature scheme is (t, qS , qH , ϵ)-secure against existential forgery under

adaptive chosen-message attacks if no such adversary exists.

Theorem 2.8 (Theorem 3.2. [6]). If solving the co-CDH problem in G1 × G2 is (t′, ϵ′)-hard, then the

BLS signature scheme is (t, qS , qH , ϵ)-secure against existential forgery under adaptive chosen-message

attacks, for

t = t′ − cG1(qH + 2qS), and

ϵ = ϵ′e(qS + 1).

where cG1 is a constant that depends on G1, and e is the base of natural logarithm.

Although Theorem 2.8 was proved in [6] to be secure in the random oracle model, it is not safe to use

it as a multi-signature scheme directly because of the “rogue-key” attack [5]. In order to avoid this attack,

there are some standard measures, such as either using proof-of-possession (PoP) or ensuring that the

messages are distinct. Both methods have some advantages and disadvantages. Signing distinct messages

hinders users from performing efficient verification [4], and using PoP requires additional verification

operations. It is not fully compatible with the applications in cryptocurrencies [18]. In order to eliminate

these disadvantages, Boneh, Drijvers and Neven proposed in [4] a multi-signature scheme, called MSP,

which is a modified version of the BLS scheme. Moreover, they proposed an accountable subgroup

multi-signature (ASM) scheme, a composition of the BLS and MSP schemes.

3 Boneh-Drijvers-Neven ASM Scheme

This section follows the notation given in both [4] and the previous sections. Let PK := {pk1, . . . , pkn}
be the set of public keys of the group members of the group G, and let H0, H2 : {0, 1}∗ −→ G1 and

H1 : {0, 1}∗ −→ Zq be the hash functions. The ASM scheme given in [4] can be stated as follows.
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1. Key Generation: Each user i ∈ G picks a secret key ski
$←− Zq, and computes the corresponding

public key pki ←− gski2 , where g2 is a generator of G2.

2. Group Setup: Each member i ∈ G performs group setup by participating in 1-round interactive

protocol for i = 1, 2, . . . , n.

• Computes aggregated public key apk of the group as apk =
n∏
i=1

pkaii , where ai = H1(pki,PK).

• Sends µij = H2(apk, j)aiski to j-th user for j = 1, 2, . . . , n and j ̸= i.

• After receiving µji, computes µii = H2(apk, i)aiski .

• The membership key of user i is mki =
n∏
j=1

µji.

3. Signature Generation: A signer i ∈ G computes his/her individual signature on the message m

si = H0(apk,m)ski ·mki, (3.1)

and sends si to the combiner.

4. Signature Aggregation: After receiving the individual signatures of the signers, the combiner first

forms the set of signers S ⊆ G. Then, she computes the aggregated subgroup multi-signature

σ = (s, pk), where s =
∏
i∈S

si and pk =
∏
i∈S

pki.

5. Verification: Any verifier who is given {par, apk,S,m, σ} can verify the signature σ = (s, pk) by

checking

e

(
H0(apk,m), pk

)
· e
(∏
j∈S

H2(apk, j), apk

)
?
= e(s, g2). (3.2)

Theorem 3.1 (Theorem 3. [4]). ASM scheme is unforgeable under the ψ-co-CDH problem (Definition

2.3) in the random oracle model. More precisely, ASM scheme is (τ, qH , qS , ϵ)-unforgeable in the random

oracle model if q > 8qH/ϵ and if ψ-co-CDH problem is (τ+qH ·max(τexp12 , τexp21)+qG(l−1)τexp1+qS(τexpl2+

τexp1)+2τpair+τexp31)·8q2H/((1−(qS+qH)/q)·ϵ)·ln (8qH/((1− (qS + qH)/q)ϵ)), (1−(qS+qH)/q)·ϵ/(8qH))-

hard, where l is the maximum number of signers involved in any group setup, τexp1 and τexp2 denote the

time required to compute exponentiations in G1 and G2 respectively, and τexpi1 and τexpi2 denote the

time required to compute i-multi-exponentiations in G1 and G2 respectively, and τpair denotes the time

required to compute a pairing operation.

ASM scheme of Boneh, Drijvers and Neven was proved to be secure in Theorem 3.1 by [4]. This

scheme is a composition of a BLS signature and a group-specific membership key mki of the signer i ∈ G.

Namely, the first part H0(apk,m)ski of (3.1) is a BLS signature on (apk,m) by |S| signers; on the other

hand, the second part mki is a MSP signature on (apk, i) by all the members j ∈ G for i = 1, 2, . . . , n.

The proof of possession (PoP) of the secret keys is also discussed in [4]. The ASM scheme with PoP

includes each user’s signature on their public keys. The i-th user first chooses a secret key ski ∈ Zq,
then computes yi = gski2 , and constructs the PoP by πi = H3(yi)

ski , where H3 : {0, 1}∗ −→ G1 for

i = 1, 2, . . . , n. Then each user has a secret key ski and the public key pair (yi, πi). In order to

compute the aggregated public key (apk) of the group, they first check e(H3(yi), yi)
?
= e(πi, g2), then

they compute Y =
∏
i∈G

pki and h = H4(PK), where H4 : {0, 1}∗ −→ Zq is another hash function. And

then, the aggregated public key is apk = (Y, h). The signature generation, aggregation and verification

phases are the same as the original ASM scheme.
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It is known that using PoP brings additional costs, such as the growth in public key size and extra

checks in the verification. In the PoP variant of ASM scheme [4], each user’s public key consists of two

group elements, and each user computes two extra pairings before computing the aggregated public key

apk.

4 ASM scheme with verifiable group setup

In this section, we set a special signing key and its public companion for a multi-signature. First, each

user generates his secret and public key pair independently. Then all users jointly perform a group

setup in which they participate in a VSS protocol. At the end of this procedure, each user obtains his

membership key and membership public key, which satisfy a common public commitment set generated

in the group setup phase.

4.1 vASM: An ASM scheme with VSS based group setup

We give the steps of the vASM scheme below.

1. Key Generation: Each user i ∈ G picks a secret key ski
$←− Zq, and computes the public key

pki ←− gski2 , where g2 is a generator of G2.

2. Group Setup: Each user i ∈ G proceeds as follows:

• Chooses a polynomial fi(x) = α
(i)
n−1x

n−1 + . . . + α
(i)
1 x + α

(i)
0 ∈ Zq[x], where α

(i)
0 = ski and

α
(i)
k ’s are all nonzero and distinct, for k = 1, . . . , n− 1.

• Computes the set of commitments COMi := {C(i)
k = g

α
(i)
k

2 |k = 0, . . . , n− 1}.

• Sends (fi(j),COMi) to j-th user in G, for j = 1, . . . , n.

• After receiving (fj(i),COMj),

– computes the membership key mki =
∑
j∈G

fj(i).

– computes COM := {Ck =
∏
j∈G

C
(j)
k |k = 0, . . . , n− 1}.

• Checks:

(a) C0
?
=
∏
i∈G

pki

(b) gmki2
?
=
n−1∏
k=0

Ci
k

k

• If either (a) or (b) fails, then she aborts. Else, she makes COM and set of membership public

keys mpki’s public. Define MPK = {mpki}i∈G . Note that these public keys can also be

computed by the verifier, i.e. mpki = gmki2 =
n−1∏
k=0

Ci
k

k .

3. Signature Generation: A signer i ∈ G computes his/her individual signature si = H0(m)mki on the

message m and sends si to the combiner.

4. Signature Aggregation: After receiving the individual signatures of the signers, the combiner first

forms the set of signers S ⊆ G. Then, she computes the aggregated subgroup multi-signature

σ =
∏
i∈S

si.
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5. Verification: Anyone, who is given {par,MPK,COM,S,m, σ}, can verify the signature σ by check-

ing

e
(
H0(m),

∏
i∈S

mpki
) ?

= e(σ, g2). (4.1)

Correctness of the vASM scheme follows from the following equation array.

e
(
H0(m),

∏
i∈S

mpki
)

= e(H0(m),
∏
i∈S

gmki2 )

= e(H0(m), g

∑
i∈S

mki

2 )

= e(H0(m)

∑
i∈S

mki
, g2)

= e(
∏
i∈S

H0(m)mki , g2)

= e(
∏
i∈S

si, g2)

= e(σ, g2)

Remarks on vASM

1. Unlike the threshold multi-signatures [3, 11, 14, 15], ASM schemes [4, 19] provide accountability.

Further, in ASM schemes, any subgroup S ⊆ G can sign a message on behalf of the whole group G,

whereas in threshold schemes, only subgroups with a sufficient cardinality can sign. Moreover, one

can easily transform an ASM scheme into a threshold scheme by setting the threshold as |S| [19].

2. Since the membership key mki of each group member consists of the shares fj(i) of the secret key

of all group members for i, j = 1, 2, . . . , n, the signature σ authenticates the subgroup S ⊆ G and

shows that each member of S is authenticated by the other members of G. Hence, the signature is

created by S on behalf of the whole group G.

3. Notice that C0
?
=
∏
i∈G

pki can be satisfied only if the users know their secret keys. Therefore the

consistency checks (a) and (b) in the group setup phase provide proof of possession for each user

and force all users to be honest. Hence, in the vASM scheme, no user can set a special rogue key.

4. We consider the case that the membership public keys, i.e., mpki for i = 1, 2, . . . , n, are published.

We could also write the verification equation (4.1) as

e
(
H0(m),

n−1∏
k=0

C

∑
i∈S

ik

k

) ?
= e(σ, g2).

However, in this case, the verifier would incur the cost of n exponentiations in G2.

5. If the members in the group G change, the group setup phase must be reset with new random

polynomials fi for i ∈ G. Otherwise, any n corrupted users can obtain any user’s secret key since

the secret polynomials are of degree n−1 (see Section 2.2). In order to avoid this vulnerability, the

polynomials fi in the group setup phase of the vASM scheme can be set to degree r ≥ n − 1. In

this way, at most r−n+1 newcomers can be registered to the group G without resetting the group

setup. On the other hand, this costs extra computational complexity at the group setup phase.
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6. The membership key mki in the vASM scheme is used to sign the message m instead of the secret

key ski by each member i ∈ G so that one can easily check the accountability of the signer at

the verification step. For example, consider the case that Bob has two distinct identities, i.e. his

individual identity “Bob”, and his corporate identity “CFO of Company X ”. Assume that skB

and mkB are Bob’s secret and the membership keys, respectively. In this case, Bob uses skB

for spending his own money; besides, he signs by mkB for spending on behalf of Company X.

As this example shows, user i uses his secret key ski to sign messages and to participate in any

multi-signatures; on the other hand, he participates in the vASM scheme with his membership key

mki.

4.2 Security

We follow the security reduction of the BLS signature scheme given in [6] with a few modifications to

prove the security of the proposed scheme in Section 4.1. First, we give Theorem 4.1 which states the

security reduction of our proposed vASM scheme.

Theorem 4.1. If the ψ-co-CDH problem (Definition 2.3) in G1×G2 is (t′, ϵ′)-hard, then vASM scheme is

(t, qH , qS , ϵ)-secure (see Definition 2.6) against existential forgery under adaptive chosen message attacks

in the random oracle model for all t and ϵ satisfying

t ≤ t′ − texp1(qH + (n+ 1)qS) and ϵ ≥ e(qS + 1) · ϵ′,

where texp1 is the time required by an exponentiation in G1 and n is the maximum number of potential

signers involved in a vASM signature.

Proof. Let F be a forger that (t, qH , qS , ϵ)-breaks the vASM signature scheme. We construct an algorithm

A which (t′, ϵ′)-breaks the ψ-co-CDH problem (see Definition 2.3). Let G1 and G2 be two groups and

g1, g2 be their generators, respectively as in Definition 2.1. Algorithm A is given a triplet (g2, A = gα2 ,

B = gβ1 ), and access to the oracle Oψ(.) which takes gx2 ∈ G2 as input and outputs gx1 ∈ G1. We assume

without loss of generality that the set of indices of our target group is {1, 2, . . . , n}.
Setup. Algorithm A proceeds as follows.

• It chooses n random rj
$←− Zq for j = 1, 2, . . . , n.

• It computes corresponding n membership public keys mpkj = A · grj2 for j = 1, . . . , n.

• Algorithm A computes the commitment set COM = {C0, . . . , Cn−1} with respect to the member-

ship public keys using the system of equations below.
1 1 . . . 1

1 2 . . . 2n−1

...

1 n . . . nn−1

 ·

C0

C1

...

Cn−1

 =


mpk1

mpk2
...

mpkn


Because the above leftmost matrix is an n× n Vandermonde matrix and its entries are the powers

of the indices of the membership public keys, i.e. they are distinct; hence it is invertible. Since

the rightmost matrix is known, A can compute the matrix in the middle, i.e. the commitment set

COM = {C0, C1, . . . , Cn−1}. (Note that we operate in additive groups, but we use a multiplicative

notation as common in the literature. Therefore, matrix operation above gives the desired result

for the vASM commitment set.)

11



• It gives the set of membership public keys MPK = {mpk1, . . . ,mpkn} and the commitment set

COM to the forger F .

Hash query. Algorithm A maintains a list L of tuples ⟨mi, wi, bi, ci⟩ for the i-th query, where

mi, wi, bi, ci are defined below. The list L is initially empty, and when F queries the oracle H, for a

value m ∈ {0, 1}∗, A responds as follows.

1. If the query mi has already been made before, A looks up to the list L, finds the tuple ⟨mi, wi, bi, ci⟩,
and responds with H(mi) = wi ∈ G1.

2. Otherwise, A generates a random ci
$←− {0, 1} with probability Pr[ci = 0] = 1/(qS + 1). Then, A

picks a random bi
$←− Zq, and computes wi ←− B1−ciψ(g2)bi .

3. It adds the tuple ⟨mi, wi, bi, ci⟩ to the list L.

Signature query. A responds to F ’s i-th signature query (mi,Si), where mi is the message to be

signed and Si is the set of indices of the subgroup of signers, as follows:

1. It runs the above hash query algorithm to get the tuple ⟨mi, wi, bi, ci⟩. If ci = 0, then it aborts.

2. Otherwise, it defines σi =
∏
j∈Si

σj , where σj = ψ(A)biψ(g2)rjbi ∈ G1, and j ∈ Si. Note that

σi = w

∑
j∈Si

α+rj

i and therefore σi is a valid vASM signature on message mi by the subgroup Si.
Because

e(σi, g2) = e(w

∑
j∈Si

α+rj

i , g2)

= e(wi, g

∑
j∈Si

α+rj

2 )

= e(wi,
∏
j∈Si

A · grj2 )

= e(H(mi),
∏
j∈Si

mpkj)

as in the verification equation of the vASM scheme.

3. Algorithm A sends σi to forger F .

Output. Forger F outputs a tuple (σf ,mf ,Sf ), where σf is a valid signature on a message mf by

a subgroup Sf .

1. If the signature query has already been made on message mf before, then A aborts.

2. If there is no tuple in the list L containing mf , A runs the hash query algorithm for mf .

3. A checks if σf is a valid signature on mf by the signers in Sf , i.e.

e(H(mf ),
∏
j∈Si

mpkj) = e(σf , g2).

4. If it is not valid, A aborts.

5. Otherwise, A finds the tuple ⟨mf , w, b, c⟩ in the list L.

• If c = 1, then A aborts.
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• Otherwise, we have c = 0 and H(mf ) = w = B.ψ(g2)b. This means that

σf = B

∑
j∈Sf

α+rj

· ψ(g2)
b

∑
j∈Sf

α+rj

.

• Algorithm A computes Bα as follows.

Bα =

(
σf

B

∑
j∈Sf

rj

· ψ(A)b|Sf | · ψ(g2)

∑
j∈Sf

rjb

)|Sf |−1

It is easy to check that the value on the right-hand side is indeed equivalent to Bα = gαβ1 :

(
σf

B

∑
j∈Sf

rj

· ψ(A)b|Sf | · ψ(g2)

∑
j∈Sf

rjb

)|Sf |−1

=

(
B

∑
j∈Sf

α+rj

· ψ(g2)
b

∑
j∈Sf

α+rj

g

∑
j∈Sf

βrj

1 · gbα|Sf |1 · g

∑
j∈Sf

rjb

1

)|Sf |−1

=

(
g
αβ|Sf |
1 · g

β
∑
j∈Sf

rj

1 · gbα|Sf |1 · g
b

∑
j∈Sf

rj

1

g

β
∑
j∈Sf

rj

1 · gbα|Sf |1 · g
b

∑
j∈Sf

rj

1

)|Sf |−1

=
(
g
αβ|Sf |
1

)|Sf |−1

= gαβ1

Above, we gave the construction of Algorithm A. Now we give the success probability and the running

time of it. The probability of A aborts in the signature query phase is equivalent to the probability that

ci = 0. From the hash query algorithm we know that Pr[ci = 0] = 1/(qS + 1). Therefore the probability

that A does not abort after the i-th query will be (1 − 1/(qS + 1))i. Since F makes qS queries, the

probability that A does not abort after the qS-th query is at least (1−1/(qS +1))qS ≥ 1/e. Moreover, by

Definition 2.6, the probability that F outputs a valid forgery is at least ϵ. After a valid forgery, A aborts

if ci = 1, which has probability 1− 1/(qS + 1). Therefore, given a valid forgery, the probability that A
does not abort is 1/(qS + 1). Hence, the overall success probability of Algorithm A is 1/e · ϵ · 1/(qS + 1),

that is ϵ/(e(qS + 1) ≥ ϵ′, as desired.

Moreover, A’s running time is nearly identical to F ’s running time. In addition to F ’s running time,

A’s running time includes the time required to respond to (qH+qS) hash queries and qS signature queries.

Each requires exponentiation in G1, which takes texp1 running time. Note that each hash query requires

a single exponentiation while each signature query requires at most n exponentiations. Therefore the

overall running time of the algorithm A is t+ texp1((qH + (n+ 1)qS)) ≤ t′ as desired.

5 Accountable Subgroup Multi-signature Scenarios with Sub-

group Authentication

In the previous section, we proposed the vASM scheme with a verifiable group setup. In this section, we

propose two more ASM schemes whose group setups are different from the vASM scheme. We slightly
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modify the group setup method of Boneh et al.’s ASM scheme. In the first one, we use components of

a membership key to create a subgroup-specific membership key. In the second one, the users keep a

single component secret and send other components to the combiner.

In some cases, a signer i ∈ S wants to know other signers S ⊆ G in advance. In the ASM scheme

in Section 3, any subgroup S ⊆ G of signers are authorized to sign any message on behalf of the whole

group. Consider that two subgroups make two opposite decisions. Since either of the subgroups signs on

behalf of the entire group G, this causes a conflict. In order to avoid such a case, the legal entities could

presume a unique authorized signer (CEO, CFO, etc.) in S.

In this section, we consider to replace ski with aiski and mki with smki in Equation (3.1) for an

identifier ai and a subgroup-specific membership key smki of the signer i ∈ S ⊆ G. Then, we can combine

two pairings on the left-hand side of Equation (3.2). In the following, we describe two scenarios.

5.1 ASMwSA: Accountable Subgroup Multi-signature with Subgroup Au-

thentication

In ASMwSA, we consider the case that the subgroup S is known before the protocol starts. We discard

the interactive protocol in the group setup phase and make simple modifications to the ASM scheme

given in Section 3. The ASMwSA is as follows:

1. Key Generation: Identical to the Key Generation in Section 3.

2. Group Setup: Each group member i ∈ G computes

• Aggregated public key apk =
∏
i∈G

pkaii , where ai = H1(pki,PK).

• Components of the membership keys µij = H2(apk, j)aiski for j = 1, . . . , n, and stores them.

3. Signature Generation: A signer i ∈ G computes his/her subgroup-specific membership key smki =∏
j∈S

µij and individual signature si = H0(apk,m)aiski · smki on the message m and sends si to the

combiner.

4. Signature Aggregation: After receiving the individual signatures, the combiner computes the ag-

gregated subgroup multi-signature σ =
∏
i∈S

si and spk =
∏
i∈S

pkaii .

5. Verification: Anyone who is given {par, apk, spk,S,m, σ} can verify the signature σ by checking

e

(
H0(apk,m) ·

∏
j∈S

H2(apk, j), spk

)
?
= e(σ, g2).

Note that the correctness property follows from the below equation array.

e(σ, g2) = e

(∏
i∈S

(
H0(apk,m)aiski · smki

)
, g2

)

= e

(
H0(apk,m)

∑
i∈S

aiski
·
(∏
j∈S

H2(apk, j)

)∑
i∈S

aiski

, g2

)

= e

(
H0(apk,m) ·

∏
j∈S

H2(apk, j), g

∑
i∈S

aiski

2

)

= e

(
H0(apk,m) ·

∏
j∈S

H2(apk, j), spk

)
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Remarks on ASMwSA

1. In the group setup phase of ASMwSA, the signers only compute µij and store them, but they do not

send those µij to anyone. In ASMwSA, the i-th signer multiplies her signature si = H0(apk,m)aiski

with smki =
∏
j∈S

µij , instead of mki as in Section 3, which also results in a legitimate aggregated

signature. We note that this eliminates 1 round of transmission cost.

2. In the signature generation phase, H0(apk,m) may be replaced byH0(spk,m) because the subgroup

S is known in advance.

3. We note that the user i ∈ G may compute her individual signature as

si =

(
H0(apk,m) ·

∏
j∈S

H2(apk, j)

)aiski
instead of computing and storing µij ’s in the group setup phase. Although this reduces the storage

costs of the signers, computational cost increases by the extra computations of the hash H2 at the

signature generation of each message.

5.1.1 Security

We follow the security reduction of the MSP signature scheme given in [4] with a few modifications to

prove the security of the proposed scheme in Section 5.1. Below, we give Theorem 5.1 which states the

security reduction of our proposed ASMwSA scheme.

Theorem 5.1. ASMwSA is unforgeable (as defined in Definition 2.6) under the co-CDH problem (Def-

inition 2.2) in the random oracle model. More precisely, ASMwSA is (t, qH , qS , ϵ)-unforgeable in the

random oracle model if q > 8qH/ϵ and if co-CDH problem is

(t+ texpn2 + qH · texp21 + qS · texp1 + (l · tmul1 + 2tpair)) · 8q2H/ϵ · ln (8qH/ϵ), ϵ/(8qH))-hard,

where n = |G| is the number of potential signers and l = |S| is the signers involved in an ASMwSA

signature, texp1 and texp2 denote the time required to compute exponentiations in G1 and G2 respectively,

texpi1 and texpi2 denote the time required to compute i-multi-exponentiations in G1 and G2 respectively,

and tmul1 denotes the multiplication in G1.

Proof. Suppose we have a (t, qH , qS , ϵ)-forger F against ASMwSA scheme. An algorithm A, given (A =

gα1 , B1 = gβ1 , B2 = gβ2 ) where α, β
$←− Zq, and a randomness f = {ρ, h1, . . . , hqS} as input, proceeds as

follows.

• A picks a random index k
$←− {1, . . . , qH}.

• A sets pki = B2.

• A runs the forger F on input pki with random tape ρ.

• A receives PK from F such that pki ∈ PK.

• A maintains three lists, i.e. L0,L1 and L2, which are initially empty.

• A responds F ’s j-th H1-queries on (pkj ,PK) for j = 1, . . . , qH as follows:

– If this is the first query on (pkj ,PK) with pkj ∈ PK and j ̸= i, A chooses a random value

wj
$←− Zq and sets H1(pkj ,PK) = wj . If j = i, it sets H1(pki,PK) = hi. A responds to F

with H1(pkj ,PK).
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– If this query is done before, then A responds to F with earlier values.

– For other types of queries, A responds with a random value in Zq.

– Add the response to the list L1.

• We assume that F makes no repeated H2-queries. A responds F ’s H2 queries of the form (apk, j)

for j = 1, . . . , n as follows:

– A responds with g
r
(2)
j

1 , where r
(2)
j is randomly selected from Zq,

– Add ⟨(apk, j), H2(apk, j), r
(2)
j ⟩ to the list L2.

• We assume that F makes no repeated H0-queries. A responds F ’s j-th H0-query of the form

(apk,mj) for j = 1, . . . , qH as follows:

– If j ̸= k then responds with g
r
(0)
j

1 , where r
(0)
j is randomly selected from Zq.

– If j = k, then responds with A0 = A/(g
r
(2)
i

1 ), where r
(2)
i ∈ Zq is the randomly selected value

for the i-th user’s H2 query.

– Add ⟨(apk,mj), H0(apk,mj), r
(0)
j ⟩ to the list L0.

• For signing queries of F on a message mj and a subset Sj ⊆ G for 1 ≤ j ≤ qS , A proceeds as

follows:

– If i /∈ Sj , then A aborts.

– A looks up the list L0. If H0(apk,mj) = A0, then it aborts.

– If H2(apk, z) /∈ L2 for any z ∈ Sj , then it aborts.

– Otherwise A responds with σi =
(
B
r
(0)
j

1 ·B

∑
u∈Sj

r(2)u

1

)hi
.

Actually, the resulting signature σi is a valid signature and can be verified by the public keys of

the signers in Sj . Because

e
(
σi, g2

)
= e
((
B
r
(0)
j

1 ·B

∑
u∈Sj

r(2)u

1

)hi
, g2
)

= e
(
(H0(apk,mj) ·

∏
z∈Sj

H2(apk, z))hiβ , g2
)

= e
(
H0(apk,mj) ·

∏
z∈Sj

H2(apk, z), pkhii
)

as in the verification equation of the ASMwSA scheme.

• Eventually F outputs a triplet (σf ,mf ,Sf ) where σf is an ASMwSA signature on the message mf

for the subgroup Sf .

• A looks up into list L0 for mf ,

– If H0(apk,mf ) ̸= A0, then A aborts.

– Otherwise, σf is a valid signature on mf for the subgroup Sf with probability ϵ such that

e(H0(apk,mf ) ·
∏
j∈Sf

H2(apk, j), spkf ) = e(σf , g2). (5.1)
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The algorithm’s running time A is equivalent to the running time of the forger F plus some extra

computations that A makes.

• Computing apk: The running time of computing the aggregated public key apk is texpn2 , where n

is the number of potential signers in the group G.

• Hash queries:

– For H0 and H2, the running time is at most texp21 .

– Therefore, overall running time of the hash queries including H0 and H2 will be at most

qH · texp21 .

• Signing queries:

– Computing the signature takes texp1 . Therefore overall running time of the signature queries

is qS · texp1 .

• For verification of the output of F takes l · tmul1 and 2tpair.

• Therefore, overall running time of the algorithmA is t+texpn2 +qH ·texp21+qS ·texp1+(l·tmul1+2tpair).

The probability that A does not abort is equivalent to the probability that A correctly guesses the

hash index of the valid forgery of F , which is 1/qH . Since the forger F ’s success probability is ϵ, the

success probability of the algorithm A is ϵ/qH .

Now we construct an algorithm B which solves co-CDH problem in (G1,G2) on input a co-CDH

instance (A,B1, B2) ∈ G1 ×G1 ×G2 and a forger F . The algorithm B actually runs generalized forking

algorithm GFA on input (A,B1, B2) and algorithm A as described above. B proceeds as follows

• If GFA outputs fail, then B aborts.

• If GFA outputs ({jf}, {out}, {out′}), then

– B parses out as (σ,PK, spk, a1, . . . , an) and out′ as (σ′,PK′, spk′, a′1, . . . , a
′
n′).

– Note that out and out′ were obtained from two executions of A with randomness f and f ′

such that f |jf = f ′|jf for some integer jf ≤ qS . In other words, these executions are identical

to the jf -th H1-query of the type that has not been queried before.

– This means that the arguments of this query are identical, i.e. PK = PK′, and n = n′.

– From the construction of GFA, we know that ai = hjf , a′i = h′jf , and by the forking lemma

(see Lemma 1) we have ai ̸= a′i.

– We know that spk =
∏
j∈S

pkaj and spk′ =
∏
j∈S

pka
′
j .

– Since the algorithm A assigned H1(pkj ,PK)←− aj for all j ̸= i, we have aj = a′j , and therefore

spk/spk′ = pk
ai−a′i
i .

– Notice that A’s output (see (5.1)) satisfies both

e(H0(apk,mf ) ·
∏
j∈Sf

H2(apk, pkj), spkf ) = e(σf , g2)

and

e(H0(apk,mf ) ·
∏
j∈Sf

H2(apk, pkj), spk
′
f ) = e(σ′

f , g2).
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– Then we have

e(A,B
(ai−a′i)
2 ) = e(σf/σ

′
f , g2).

– Hence, (σf/σ
′
f )1/(ai−a

′
i) is the solution to the co-CDH instance (A = gα1 , B1 = gβ1 , B2 = gβ2 )

which is given to algorithm B as input.

Lemma 1 says that if q > 8qH/ϵ, then Algorithm B runs in time at most (t+ texpn2 + qH · texp21 + qS ·
texp1 + (l · tmul1 + 2tpair)) · 8q2H/ϵ · ln (8qH/ϵ), and succeeds with probability at most ϵ/(8qH).

5.2 ASMwCA: Accountable Subgroup Multi-signature with Combiner Au-

thentication

In ASMwCA, each user i ∈ G sends the membership key components, i.e. µij for j ̸= i, to the combiner

so that the signers perform fewer computations, and the main workload passes to the combiner. The

ASMwCA is as follows:

1. Key Generation: Identical to Key Generation in Section 3.

2. Group Setup: Each group member i ∈ G computes:

• The aggregated public key apk of G as apk =
∏
i∈G

pkaii , where ai = H1(pki,PK).

• µii = H2(apk, i)aiski and stores it.

• µij = H2(apk, j)aiski for j = 1, . . . , n and j ̸= i, and sends them to the combiner.

3. Signature Generation: A signer i ∈ G computes individual signature si = H0(apk,m)aiskiµii on

the message m and sends si to the combiner.

4. Signature Aggregation: After receiving the individual signatures of the signers, the combiner first

forms S ⊆ G. Then, she computes the aggregated subgroup multi-signature σ =
∏
i∈S

si.
∏
i∈S

∏
j∈S

µij

for j ̸= i, and aggregated public key spk of the subgroup S as spk =
∏
i∈S

pkaii .

5. Verification: Anyone who is given {par, apk, spk,S,m, σ} can verify signature σ by checking

e

(
H0(apk,m) ·

∏
j∈S

H2(apk, j), spk

)
?
= e(σ, g2).

Since ASMwCA is a modified version of ASMwSA, its correctness property follows from the correct-

ness of the ASMwSA schemes as shown in Section 5.1.

Remarks on ASMwCA

1. The subgroup S ∈ G of the signers is determined by the combiner from the set of received individual

signatures. Hence, no signer knows her co-signers.

2. In the signature generation phase, H0(apk,m) may be replaced by H0(spk,m) so that the signer

could set the subgroup S in advance. This also eliminates the combiner’s corruption at the signature

aggregation phase. Namely, the combiner can not discard the signature si of any user i ∈ S from σ.

However, in this case, computing spk brings additional cost, i.e. l multi-exponentiations for each

signer.
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3. Each user i ∈ G sends µij to the combiner for i, j = 1, 2, . . . , n and j ̸= i. Unlike to scenarios in

Sections 3 and 5.1, each signer i ∈ G does not compute the membership key, but uses only µii for

the signature generation. The other components, µij for i, j = 1, 2, . . . , n and j ̸= i, are taken into

account by the combiner as she forms the subgroup S ⊆ G. Therefore, each user’s computational

cost is reduced, but the workload of the combiner is increased by the number of signers.

4. We note that the user i ∈ G may compute her individual signature as

si =

(
H0(apk,m)H2(apk, i)

)aiski
instead of computing and storing µii in the group setup phase. However, this costs extra compu-

tation of the hash H2 at the signature generation of each message.

5.2.1 Security

Here we assume WLOG that the combiner is the algorithm A. Then the security reduction of the

following theorem will be identical to the security reduction of Theorem 5.1.

Theorem 5.2. ASMwCA is unforgeable (as defined in Definition 2.6) under the co-CDH problem (Def-

inition 2.2) in the random oracle model. More precisely, ASMwSA is (t, qH , qS , ϵ)-unforgeable in the

random oracle model if q > 8qH/ϵ and if co-CDH problem is

(t+ texpn2 + qH · texp21 + qS · texp1 + (l · tmul1 + 2tpair)) · 8q2H/ϵ · ln (8qH/ϵ), ϵ/(8qH))-hard,

where n = |G| is the number of potential signers and l = |S| is the signers involved in a ASMwCA

signature, texp1 and texp2 denote the time required to compute exponentiations in G1 and G2 respectively,

texpi1 and texpi2 denote the time required to compute i-multi-exponentiations in G1 and G2 respectively,

and tmul1 denotes the multiplication in G1.

Proof. As we state above, the only elements to be kept secret are the membership key components

and the secret keys. Since the algorithm A acts as an honest signer, we may assume -without loss of

generality- that Algorithm A also acts as the designated combiner. Hence, the proof follows from the

security proof of Theorem 5.1.

5.3 Eliminating the combiner

Consider the case that the subgroup S := {ki : i = 1, 2, . . . , l} is determined before the signature protocol

starts. In order to eliminate the designated combiner, the signer ki for i = 1, 2, . . . , l proceeds as follows:

• Computes the i-th aggregated signature ski = ski−1 ·
(
H0(spk,m)akiskki · smkki

)
, where ski−1 is

the (i− 1)-th aggregated signature computed by the signer ki−1 ∈ S and sk0 = 1G1 .

• Computes the i-th aggregated public key spkki = spkki−1
· pkakiki

, where spkki−1
is the (i − 1)-th

aggregated public key computed by the signer ki−1 ∈ S and spkk0 = 1G2
.

• Sends (ski , spkki) to the signer ki+1 for i < l.

• Finally the last signer kl outputs the pair skl , spkkl . Then, the aggregated signature and the public

key pair for S will be σ := skl and spk := spkkl . This process is shown in Figure 1.

In ASMwSA and ASMwCA, each signer sends her individual signature to the combiner. On the other

hand, in this scenario, each signer sends the signature to another signer. Hence, this reduces the cost

of network traffic and makes the channel traffic intermittent. However, in this case, each user sends two

group elements instead of one, that is, the transmission size is doubled.
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spkk0 = 1G2 spk1 . . . spk

Figure 1: ASM scheme without a combiner

5.4 Advantages of subgroup-specific membership key

1. Group-specific membership keys in Boneh-Drijvers-Neven ASM scheme given in Section 3 are gen-

erated by one round of interactive protocol, in which all members participate. But in case of using

subgroup-specific ones given in Sections 5.1 and 5.2, no interactive protocol is needed.

2. Even if one user registers/unregisters to/from the group, the apk and the membership key mk need

to be recomputed. This means a new interactive protocol to be held by all the group members again,

which is a big deal for large |G|. Consider the case of using the subgroup-specific membership key

smk instead of group-specific one, i.e. mki. If we use H2(pkj) instead of H2(apk, j) for computing

the components of membership keys, registering/unregistering a member to/from the group G does

not require a new group setup.

3. Users in S ⊆ G do multiplications to get smk; but all group members in G need to do multiplications

to get mk. If |S| is very small with respect to |G|, then the computation of smk is easier. Similarly,

spk can be calculated by less number of multi-exponentiation than apk.

6 Aggregated versions of ASM schemes

In this section, we extend the ASM scheme to a partial aggregated version of ASM, i.e. AASM scheme.

Remember that the ASM signature scheme described in Section 3 outputs a signature σ = (s, pk). Con-

sider N many ASM signatures (apk1,S1,m1, σ1), . . . , (apkN ,SN ,mN , σN ). The AASM scheme outputs

the partial aggregated signature Σ = (pk1, . . . , pkN , s), where s is the aggregation of s1, . . . , sN . In

Section 6.1, we describe the AASM scheme that is given in [4].

6.1 Partially Aggregated ASM Scheme (AASM)

The aggregation of several ASM signatures is discussed in [4], in which they aggregate only the second

component of the signature. The first components are used in the verification phase. On the other

hand, it is noted that the ASM scheme cannot be partially aggregated directly because of the irrelevancy

between membership keys and messages [4]. In addition to the phases of the ASM scheme, two more

phases are defined in [4]. The signature aggregation and aggregated signature verification phases are as

follows. Let H5 : {0, 1}∗ −→ Zq be another hash function.

• Signature Aggregation: Given (par, {(apki,Si,mi, σi)
N
i=1}).

– Parse σi as (si, pki).

– For i = 1, . . . , N , compute bi ←− H5

(
(apki,Si,mi, pki), {(apkj ,Sj ,mj , pkj)

N
j=1}

)
.
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– Compute s←−
N∏
i=1

sbii and output Σ←− (pk1, . . . , pkN , s).

• Aggregate Signature Verification: Given (par, {(apki,Si,mi)
N
i=1},Σ).

– Parse Σ as (pk1, . . . , pkN , s).

– For i = 1, . . . , N , compute bi ←− H5

(
(apki,Si,mi, pki), {(apkj ,Sj ,mj , pkj)

N
j=1}

)
.

– Accept if and only if

N∏
i=1

(
e
(
H0(apki,mi), pk

bi
i

)
· e
( ∏
j∈Si

H2(apki, j), apk
bi
i

)) ?
= e(s, g2). (6.1)

Since the AASM scheme cannot be fully aggregated, the size of the resulting partial aggregated

signature grows linearly by the number of ASM signatures. Besides, the verification (6.1) of the AASM

scheme requires (2N + 1) pairings.

6.2 Aggregated versions of proposed schemes

Our schemes defined in Sections 4.1, 5.1 and 5.2 can also be further turned into aggregated schemes.

Unlike the partial aggregation in the AASM scheme, our proposed schemes can be fully aggregated,

resulting in a single signature size.

6.2.1 Aggregated vASM Scheme (AvASM)

The vASM scheme described in Section 4.1 can be extended to aggregated version AvASM as in Section

6.1. Let H5 be the hash function defined in the previous section.

• Signature Aggregation: Given (par, {(MPKi,Si,mi, σi)
N
i=1}). Output Σ←−

N∏
i=1

σi.

• Aggregate Signature Verification: Given (par, {(MPKi,Si,mi)
N
i=1},Σ).

• Accept if and only if
N∏
i=1

e

(
H0(mi),

∏
j∈Si

mpkj

)
= e(Σ, g2). (6.2)

Correctness of the AvASM scheme follows from the following equation array.

N∏
i=1

e

(
H0(mi),

∏
j∈Si

mpkj

)
=

N∏
i=1

e

(
H0(mi),

∏
j∈Si

g
mkj
2

)

=

N∏
i=1

e

(
H0(mi), g

∑
j∈Si

mkj

2

)

=

N∏
i=1

e

(
H0(mi)

∑
j∈Si

mkj

, g2

)

=

N∏
i=1

e

(
σi, g2

)

= e

(
N∏
i=1

σi, g2

)
= e(Σ, g2)

Next, we reduce the security of the AvASM scheme to the security of the vASM scheme.
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Theorem 6.1. If the vASM scheme is unforgeable in the random oracle model, then the AvASM scheme

is also unforgeable in the random oracle model. More precisely, AvASM is (t, qH , qS , ϵ)-secure against

existential forgery under adaptive chosen message attacks in the random oracle model, for all t and ϵ

satisfying

t ≤ t′ − texp1(qH + (n+ 1)qS) + qS · texpN1 and ϵ ≥ e(qS + 1) · ϵ′

where texp1 is the time required by an exponentiation in G1 and n is the maximum number of potential

signers involved in a single vASM signature.

Proof. Consider the forger F in the security proof of Theorem 4.1. We construct an algorithm A
as in the security proof of Theorem 4.1, except that F now returns an aggregated vASM signature

instead of a single vASM signature, i.e. an AvASM signature Σ, a set {MPKj ,Sj ,mj}Nj=1, and the set

{MPK∗,S∗,m∗}.
Assume that ⟨m∗, w∗, b∗, c∗⟩ is in the list L such that c∗ = 0 and w∗ = B · ψ(g2)b. This gives us

e(B · ψ(g2)b,
∏
j∈S∗

mpkj) ·
n∏
i=1

e

(
H0(mi),

∏
j∈Si

mpkj

)
= e(Σ, g2). (6.3)

Then, A computes σ ← Σ ·
N∏
i=1

( ∏
j∈Si

ψ(mpkj)

)−
∑
j∈Si

(rj+bi)

, and this signature σ satisfies

e(H(m∗),
∏
j∈S∗

mpkj) = e(σ, g2), (6.4)

which is a single vASM signature on message m∗ by the subgroup S∗.

Note that the success probability is the same as the forger in the security proof of the vASM scheme.

On the other hand, Algorithm A computes extra texpN1 multi-exponentiations for extracting σ from

Σ.

6.2.2 Aggregated versions of ASMwSA/ASMwCA Schemes (AASMwSA/AASMwCA)

The ASMwSA and ASMwCA schemes described in Section 5 can be extended to aggregated versions

AASMwSA and AASMwCA as in Section 6.1. In addition to the phases of the described schemes in

Section 5, signature aggregation and aggregate signature verification phases are given below:

• Signature Aggregation: Given (par, {(apki, spki,Si,mi, σi)
N
i=1}), compute Σ←−

N∏
i=1

σi.

• Aggregate Signature Verification: Given (par, {(apki, spki,Si,mi)
N
i=1},Σ), accept if and only if

N∏
i=1

e

(
H0(apki,mi).

∏
j∈Si

H2(apki, j), spki

)
= e(Σ, g2). (6.5)

22



Note that the correctness property follows from the below equation array.

N∏
i=1

e

(
H0(apki,mi).

∏
j∈Si

H2(apki, j), spki

)
=

N∏
i=1

e

(
H0(apki,mi).

∏
j∈Si

H2(apki, j), spki

)

=

N∏
i=1

e

(
H0(apki,mi)

∑
j∈Si

ajskj

·
( ∏
j∈Si

H2(apki, j)

) ∑
j∈Si

ajskj

, g2

)

=

N∏
i=1

e

(
si · smki, g2

)

= e

( N∏
i=1

σi, g2

)
= e

(
Σ, g2

)

As we did in the security proof of AvASM scheme above, we next reduce the security of AASMwSA

and AASMwCA schemes to the security of ASMwSA/ASMwCA schemes.

Theorem 6.2. AASMwSA and AASMwCA are unforgeable (as defined in Definition 2.6) under the ψ-co-

CDH problem (Definition 2.3) in the random oracle model. More precisely, AASMwSA and AASMwCA

are (t, qH , qS , ϵ)-unforgeable in the random oracle model if q > 8qH/ϵ and if ψ-co-CDH problem is

(t+ qH ·max(texpn2 , texp21) + n · qS · (texpn2 + texp1) + 2tpair + texpN1 ) · 8q2H/ϵ · ln (8qH/ϵ), ϵ/(8qH))-hard,

where n is the number of potential signers involved in a AASMwSA and ASMwCA signatures, texp1 and

texp2 denote the time required to compute exponentiations in G1 and G2 respectively, and texpi1 and texpi2
denote the time required to compute i-multi-exponentiations in G1 and G2 respectively.

Proof. Consider the security proof of Theorem 5.1. We construct the same algorithm A, but this time

it’s forger F gives an aggregate multi-signature, i.e. an aggregate multi-signature Σ, a set of tuples

{(apki, spki,Si,mi, σi)
N
i=1}, a set of public keys PK, a subgroup S∗ and a message m∗. We know that

apk∗ and spk∗ can be generated from PK and S∗.

Assume that the algorithm A guesses the k-th query H0(apk∗,m∗) correctly. Then the following

equality holds

e(A0, spk
∗) ·

N∏
i=1

e

(
H0(apki,mi).

∏
j∈Si

H2(apki, j), spki

)
= e(Σ, g2). (6.6)

A looks up the tables L0 and L2:

• L0, for the pairs (apkj ,mj), such that H0(apkj ,mj) = g
r
(0)
j

1 .

• L2, for the pairs (apkj , ij), such that H2(apkj , ij) = g
r
(2)
ij

1 .

Then A computes σ ← Σ ·
N∏
i=1

O(spki)
−

∑
j∈Si

(r
(0)
i +r

(2)
ij

)

, and this signature satisfies

e(H0(apk∗,m∗) ·
∏
j∈S∗

H2(apk∗, j∗), spk∗) = e(σ, g2).

Notice that we have A0 for a single ASMwSA/ASMwCA forgery. Therefore, the rest will be the same

as in the security proof of Theorem 5.1. The running time of Algorithm A will increase because of the

extraction of the σ, which costs extra texpN1 running time. On the other hand, the success probability

stays the same.
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7 Comparison

In Table 1, we compare ASM, ASM-PoP, and the proposed schemes in this paper. Our comparison

contains the number of operations required in each phase of those schemes. For example, consider a

comparison of group setup phases of the schemes ASM and vASM. It can be seen in Table 1 that the

ASM scheme costs of n H2 hashes (onto G1), n exponentiations and (n − 1) multiplications in G1 in

the group setup phase. On the other hand, the vASM scheme has 2n exponentiations and (n2 + n− 2)

multiplications G2 in the group setup.

It can also be seen from Table 1 that the vASM scheme requires fewer operations than ASM and

ASM-PoP in the verification phase. On the other hand, since the set of membership public keys MPK

and the set of commitments COM are published, the broadcasted data size in vASM is linear in the

number of users in G.

The ASMwSA scheme provides efficient group setup, signature aggregation and verification phases;

however, its signature generation requires more multiplications in G1 and extra storage for (n − 1) G1

elements.

The ASMwCA scheme has efficient group setup and verification phases, but it requires more compu-

tations in the signature aggregation phase. On the other hand, it requires extra storage for (n2 − n− 1)

G1 elements.

Consider N distinct accountable subgroup multi-signatures. The ASM scheme proposed by Boneh

et al. supports a partial aggregation. Therefore the AASM scheme outputs an aggregated signature

consists of N many G2 elements and one G1 element. On the other hand, the AvASM outputs an

aggregated signature with only one G1 element. In terms of verification efficiency, we only compare the

number of pairings required in verification equations (since the pairing operations dominate the cost

of verification). All the proposed schemes, i.e. AvASM, AASMwSA, and AASMwCA, require N + 1

pairings for verification whereas the AASM requires 2N + 1.

8 Conclusion

In this work, we propose a novel BLS-based ASM scheme (vASM) that is more efficient than the ones

in [4] in terms of signature generation, signature aggregation, and verification. On the other hand,

our vASM scheme requires a one-time group setup with more multiplications. We propose two more

accountable subgroup multi-signature schemes with subgroup authentication (ASMwSA) and combiner

authentication (ASMwCA), which are also more efficient, but they have storage and transmission dis-

advantages in comparison with the ones in [4]. Moreover, we compare the aggregated versions of the

proposed schemes with the aggregated version of Boneh et al.’s ASM [4]. We see that aggregated ver-

sions of our schemes, i.e. AvASM, AASMwSA, and AASMwCA, are more efficient regarding aggregated

signature size and verification time. According to the requirements of the system involving an ASM

scheme, our schemes could be good alternatives, especially when faster verification is desired. It would

be a good future work to add accountability to known multi-signature schemes by the methods given in

this paper.
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