
Algebraic Meet-in-the-Middle Attack on LowMC

Fukang Liu1, Gaoli Wang4, Willi Meier5, Santanu Sarkar6, Takanori Isobe1,2,3

1 University of Hyogo, Hyogo, Japan
2 National Institute of Information and Communications Technology, Tokyo, Japan

3 PRESTO, Japan Science and Technology Agency, Tokyo, Japan
liufukangs@gmail.com,takanori.isobe@ai.u-hyogo.ac.jp

4 East China Normal University, Shanghai, China
glwang@sei.ecnu.edu.cn

5 FHNW, Windisch, Switzerland
willimeier48@gmail.com

6 Indian Institute of Technology Madras, Chennai, India
santanu@iitm.ac.in

Abstract. We propose a conceptually intuitive technique called algebraic
meet-in-the-middle (MITM) attack in this paper. Different from the
common MITM attacks where some intermediate state values are stored,
several sets of linear equations will be stored in the algebraic MITM
attack. Moreover, at the matching phase, it is necessary to first perform
some linear transformations on the to-be-matched intermediate state
value and only partial state bit information is used for the match. Once
a match is found, retrieve the corresponding linear equation system and
solve it to recover the full necessary information. This new technique fits
very well with LowMC, a popular and important design using partial
nonlinear layers. Based on it, we can reduce the memory complexity of
the simple difference enumeration attack over state-of-the-art. Moreover,
while an efficient algebraic technique to retrieve the full key from a
differential trail of LowMC has been proposed at CRYPTO 2021, its time
complexity is still exponential in the key size. In this work, we show how
to reduce it to constant time when there are a sufficiently large number of
active S-boxes in the trail. Specifically, the guess-and-determine strategy
is no more adopted at the key-recovery phase, instead, we recover the
full key by directly solving an overdefined system of quadratic equations.
With the above new techniques, the attacks on LowMC and LowMC-M
published at CRYPTO 2021 are further improved and some LowMC
instances could be broken for the first time. Our results seem to indicate
that partial nonlinear layers are still not well-understood.

Keywords: LowMC, LowMC-M, algebraic attack, linearization, key
recovery, meet-in-the-middle

1 Introduction

Being the first dedicated symmetric-key primitive design for advanced protocols
like secure multiparty computation (MPC) and fully homomorphic encryption

(FHE), the LowMC block cipher family [7] has attracted lots of attention
from the cryptography community. Especially, one of the alternate third-round
candidate signature schemes in NIST post-quantum cryptography competition [1]
called Picnic [16,3] uses LowMC as the underlying block cipher, whose security
is directly related to the difficulty to recover the key of LowMC from a single
plaintext-ciphertext pair.

Most importantly, the proposal of LowMC directly starts a new trend to
design symmetric-key primitives with different metrics, e.g. low AND depth and
low AND gates. There is a long line of research focusing on such primitive designs
in recent years, like Kreyvrium [15], FLIP [30], Rasta [20], MiMC [6], GMiMC [5],
Jarvis [9], Hades [26], Poseidon [25], Vision [8], Rescue [8] and Ciminion [22].

On the other hand, these primitives also raise new challenges for cryptanalysts
to evaluate their security. One reason is that some of them are defined over a
(large) prime field, which received little attention in symmetric-key cryptanalysis
in the past few decades. Another important reason is that some of them adopt
unusual designs, which makes common cryptanalytic techniques difficult to
apply. However, these also imply that some fatal errors may be overlooked at
the design phase, which is the case of the algebraic attack on full Jarvis [4]
and the guess-and-determine attack on the first version of full FLIP [23].
Moreover, due to the lack of tools to evaluate their security, some designs may
be too aggressive and will soon turn out to be vulnerable against some novel
attacks [13,19,24,27,29,32]. Therefore, developing new cryptanalytic techniques
for these new designs becomes an important task for the fact that the security
of a symmetric-key primitive is highly related to the evolution of cryptanalytic
techniques.

In this paper, we focus on new attacks on LowMC [7] for its special design
strategy of using partial nonlinear layers, which has inspired the designs of
Hades and a real-world hash function Poseidon. Moreover, its applications in the
Picnic signature scheme and the backdoored cipher LowMC-M [31] proposed at
CRYPTO 2020 also make it meaningful to further understand its security.

Cryptanalysis of LowMC. Since its publication, LowMC has been quickly
analyzed with the higher-order differential attack [21] and interpolation attack [19],
which directly made LowMC move to LowMC v2.

To study its security with low data complexity, e.g. its application in the
Picnic signature scheme, the difference enumeration attack [32] was proposed to
break several instances of LowMC v2 with 3 or slightly more chosen plaintexts.
Consequently, the formula to determine the secure number of rounds of LowMC
was updated further [2], and this version is called LowMC v3. For convenience,
LowMC simply refers to LowMC v3 in the following.

However, a recent work [27] at CRYPTO 2021 reveals that some important
LowMC instances are still insecure and they could be broken with 2 chosen
plaintexts only and negligible memory complexity. Devising the attacks with 2
chosen plaintexts is mainly due to the assumption used in the security proof of
the Picnic signature scheme, where LowMC with 2 plaintexts is required to be
secure. Moreover, the idea to attack LowMC with 2 chosen plaintexts can be

2

simply extended to the attack with a large number of chosen plaintexts, as can
be seen from the powerful attacks on LowMC-M in the same paper [27], which
has pushed the designers of LowMC-M to increase the number of rounds.

In another direction, the recent LowMC competition to recover the secret
key from a single plaintext-ciphertext pair has motivated three teams to develop
new attacks [10,11,18,28] on LowMC in this attack scenario. According to
the announcement of the third-round results, the attacks with the MITM
method [11] and the polynomial method [18] were selected as the currently best
attacks. A common feature of both methods [11,18] is the consumption of huge
memory. This seems to indicate that the designers are more concerned about
the time complexity.

Regarding the memory complexity, we cite the statement in [18]: There is
no consensus among researchers on a model that takes memory complexity into
account and the formal security claims of the Picnic (and LowMC) designers
only involve time complexity. Indeed, the memory complexity of an attack may
be reduced as new techniques develop. A very recent related example is the
algebraic technique in [27], which not only significantly reduces the memory
complexity of the original difference enumeration attack [32] on LowMC v2 but
also improves the number of attacked rounds.

Our contributions. We aim to further improve the difference enumeration
attack on LowMC. The general idea of this attack is very simple. Given a pair
of plaintexts and the corresponding ciphertexts, the input difference and output
difference of the cipher is known. The first step is to enumerate all the possible
differential trails such that this input difference can reach this output difference,
i.e. recover the possible difference transitions through each round. The second
step is to retrieve the full secret key from each possible differential trail and test
its correctness via the plaintext-ciphertext pair.

For the first step, the memory complexity of the simple MITM method
in [32] is exponential in the number of attacked rounds. Although the algebraic
technique [27] can make the memory complexity negligible, the number of
attacked rounds is limited. Specifically, the algebraic technique converts the
difference enumeration into the problem to solve a linear equation system.
However, as the number of attacked rounds increases, the linear equation system
will become under-determined, i.e. the number of equations is smaller than the
number of variables, which will increase the time complexity to enumerate all the
possible differential trails as there are many solutions to the under-determined
linear equation system. In addition, it is unclear how to use additional memory
to improve this algebraic technique.

Our first contribution is a new method to handle this under-determined
linear equation system. This is based on the fact that the variables in this
equation system are not independent and there are nonlinear relations inside
them. Our first attempt is to convert solving such a linear equation system
into solving a linear equation system and a nonlinear equation system based
on a new observation on the LowMC S-box. However, it is difficult to bound
its time complexity and it seems inefficient as the number of attacked rounds

3

increases. This motivates us to develop a MITM strategy to exploit the nonlinear
relations inside these variables to efficiently solve this under-determined linear
equation system. This new strategy is shown to outperform both the simple
MITM strategy [32] and the simple algebraic technique [27] and is applicable
to a wide range of LowMC parameters. Specifically, it can not only reduce the
memory complexity of the simple MITM strategy [32] over state-of-the-art but
also improves the number of attacked rounds by using additional memory for
the algebraic technique [27]. In a word, the algebraic technique and the MITM
strategy are combined in the new strategy and this is why we call it the algebraic
MITM attack.

As the number of attacked rounds increases, it is natural that the number
of possible differential trails will increase significantly due to the effect of the
S-boxes. Hence, it becomes crucial to further optimize the time complexity
to retrieve the full key from a random differential trail for the second step.
Otherwise, the final time complexity will exceed that of the brute force. While a
novel and efficient algebraic technique is proposed in [27] to achieve this purpose,
i.e. recovering the key by solving a linear equation system, we observe that
it is still not extremely optimized due to an inefficient way to deal with the
inactive S-boxes in the differential trail. Specifically, the guess-and-determine
strategy is still involved in order to process the inactive S-boxes, which makes
the time complexity to retrieve the full key from a random differential trail still
exponential in the key size. To handle the inactive S-boxes more efficiently, we
directly exploit the nonlinear relations in their inputs and outputs. Specifically,
by introducing intermediate variables for the inactive S-boxes, we convert the
problem to recover the key into solving a linear equation system and a quadratic
equation system in terms of more variables, i.e. the key and the intermediate
variables. To ensure that the whole equation system can be efficiently solved, we
make a compromise that we may fail to recover the correct key with probability
of about 0.5. However, as the success probability is sufficiently high. i.e. 0.5, the
new technique is useful in practice. In a word, by directly solving a quadratic
equation system, the time complexity to retrieve the full key from a random
differential trail is reduced to constant time, i.e. almost close to 1.

Due to the significant improvements for both steps, the attacks on LowMC
and LowMC-M will naturally be improved. It can be found in Table 4 and Table 5
that the security margins (see the column R − r) of LowMC and LowMC-M
decrease quickly and some parameters are extremely vulnerable against our new
attacks.

Outline of this paper. In Section 2, we introduce the notations and briefly
describe LowMC and LowMC-M. Then, an overview of the algebraic MITM
attack is given in Section 3. Next, in Section 4, we revisit the previous difference
enumeration attacks on LowMC and discuss the problems to improve the attacks.
The details of the new methods to enumerate differential trails and to efficiently
recover the full key from a differential trail are explained in Section 5 and Section
6, respectively. The summary of our new attacks on LowMC and LowMC-M is
shown in Section 7 and the paper is concluded in Section 8.

4

2 Preliminaries

2.1 Notation

As there are many parameters for both LowMC [7] and LowMC-M [31], we use n,
k, m, R and D to represent the block size in bits, the key size in bits, the number
of S-boxes in each round, the total number of rounds and the allowed log2 data
complexity for each key, respectively. In addition, rank(M) represents the rank
of the matrix M . M0||M1 represents the composition of two matrices M0 and M1

of the same number of rows. V0|V1 represents the composition of the two vectors
V0 and V1. Ej×j represents an identity matrix of size j × j. (a1, a2, . . . , ai)

T

also represents an i-bit vector. To number the elements in a vector V , we start
the index from 1, i.e. V [i] represents the i-th element in V and V [1] is the first
element. In addition, V [i : j] represents a new vector by taking the i-th element
to the j-th element from V . For example, when V0 = (0, 0)T and V1 = (1, 1, 0)T ,
we have V0|V1 = (0, 0, 1, 1, 0)T and V1[2 : 3] = (1, 0)T . When M0 =

(
0 0
1 1

)
and

M1 =
(
1 0
0 1

)
, we have M0||M1 =

(
0 0 1 0
1 1 0 1

)
.

2.2 Description of LowMC

LowMC [7] is a family of SPN block ciphers proposed at EUROCRYPT 2015. A
notable feature of LowMC is that each user can independently choose parameters
to instantiate it. LowMC follows a common encryption procedure as most block
ciphers. Specifically, it starts with a key whitening (WK) and then iterates a
round function R times. The round function at the (i + 1)-th (0 ≤ i ≤ R − 1)
round can be described as follows:

1. SBoxLayer (S): A 3-bit S-box (z0, z1, z2) = S(x0, x1, x2) with (z0, z1, z2) =
(x0⊕x1x2, x0⊕x1⊕x0x2, x0⊕x1⊕x2⊕x0x1) is applied to the first 3m bits
of the state in parallel, while an identity mapping is applied to the remaining
n− 3m bits.

2. MatrixLayer (L): A regular matrix Li ∈ Fn×n
2 is randomly generated and

the n-bit state is multiplied with Li.
3. ConstantAddition (AC): An n-bit constant Ci ∈ Fn

2 is randomly generated
and is XORed to the n-bit state.

4. KeyAddition (AK): A full-rank n × k binary matrix Ui+1 is randomly
generated. The n-bit round key Ki+1 is obtained by multiplying the k-bit
master key with Ui+1. Then, the n-bit state is XORed with Ki+1.

The whitening key is denoted by K0 and it is also calculated by multiplying the
master key with a random full-rank n× k binary matrix U0.

LowMC-M [31] is a family of tweakable block ciphers built on LowMC
proposed at CRYPTO 2020. The only difference between them is that there is
an additional operation AddSubTweak (AT) after AK and WK in LowMC-M,
where the sub-tweaks are the output of an extendable-output-function (XOF)
function by setting the tweak as the input. A detailed description can be referred

5

to [31]. As both the tweak and XOF are public, we can equivalently view AT as
a known-constant addition operation.

As shown below, in the (i + 1)-th round, the difference of the input state
of S is denoted by ∆i and the difference of the corresponding output state is
denoted by ∆S

i . The difference of plaintexts is denoted by ∆p, i.e. ∆p = ∆0. In
our attacks, ∆i and ∆S

i will be viewed as n-bit vectors.

∆p
WK−→ ∆0

S−→ ∆S
0

AK−→ L−→ AC−→ ∆1 → · · · → ∆R−1
S−→ ∆S

R−1
AK−→ L−→ AC−→ ∆R.

In addition, the compact differential trail is defined as below:

Definition 1. A differential trail ∆0 → ∆1 → · · · → ∆r is called a r-round
compact differential trail when all (∆j , ∆

S
j) (0 ≤ j ≤ r − 1) and ∆r are

known.

3 Overview of the Algebraic MITM Attack

Before moving to the attacks on LowMC, we first give a high-level overview of
the algebraic MITM attack. Consider a function F (ν1, ν2, . . . , νi) : Fi

2 → Fj
2. The

common MITM attack procedure can be abstracted as follows:

1. Offline phase: Precompute the values of F (ν1, ν2, . . . , νi) for a set of
possible assignments to (ν1, ν2, . . . , νi) and store them in a sorted table
denoted by DF .

2. Online phase: Given a challenge, i.e. a value of F (ν1, ν2, . . . , νi), try to
compute the corresponding solutions of (ν1, ν2, . . . , νi). Benefiting from the
pre-processing (offline) phase, this can be efficiently finished via the binary
search in the table DF .

For the algebraic MITM attack, we first divide the variables (ν1, ν2, . . . , νi)
into two sets denoted by I = {νI0 , νI1 , . . . , νIi0} and J = {νJ0

, νJ1
, . . . , νJj0

}
such that I ∩ J = ∅ and I ∪ J = {ν1, ν2, . . . , νi}. In addition, we further assume
that when I is known, F (ν1, ν2, . . . , νi) can be expressed in linear expressions in
J . Note that the expressions will obviously vary for different values of I. Then,
the algebraic MITM attack procedure can be abstracted as follows:

1. Offline phase: For each possible value of I, store the corresponding linear
expressions F (ν1, ν2, . . . , νi) in a table denoted by DE .

2. Online phase: Given a challenge, i.e. a value of µ = F (ν1, ν2, . . . , νi), try
to compute the corresponding solutions of (ν1, ν2, . . . , νi). Different from the
common MITM attack procedure, it is difficult to directly obtain which
value of (ν1, ν2, . . . , νi) will lead to the given challenge µ because the actual
possible values of F (ν1, ν2, . . . , νi) are not precomputed. However, according
to DE , we know that for each value of I, F is linear in J and the linear
expressions are stored. Hence, we aim to efficiently find a value of I
without the knowledge of J such that it may lead to µ. Once it is

6

found, we can immediately retrieve from DE the set of linear expressions
of F (ν1, ν2, . . . , νi) according to this value of I and then solve the linear
equation system µ = F (ν1, ν2, . . . , νi) to recover J , thus obtaining the full
solution of (ν1, ν2, . . . , νi).

If the algebraic MITM attack works as expected, i.e. there is an efficient
method to find a value of I without the knowledge of J such that it may lead to
µ and this can be finished with time complexity 1, the time complexity of the
online phase in both the algebraic MITM attack and the common MITM attack
will be the same. Hence, there is no sacrifice at the time complexity.

However, we can reduce the memory complexity of the common MITM attack
over state-of-the-art. The reduction in the memory complexity is obvious because
the solutions of J are computed on-the-fly in the algebraic MITM attack, i.e. we
only consider all the possible values of I rather than (ν1, ν2, . . . , νi) and leave J
as unknown variables at the offline phase of the algebraic MITM attack.

An intuitive comparison between the two attacks can be referred to Figure 1.

(ν1, ν2, · · · , νi)

(ν1, ν2, · · · , νi)

(ν1, ν2, · · · , νi)

(ν1, ν2, · · · , νi)

·

·

·

DF

µ = F (ν1, ν2, · · · , νi)

directly retrieve

F (ν1, ν2, · · · , νi)

F (ν1, ν2, · · · , νi)

F (ν1, ν2, · · · , νi)

F (ν1, ν2, · · · , νi)

·

·

·

DE

µ = F (ν1, ν2, · · · , νi)

Step 1: determine I

Step 2: retrieve equations(ν1, ν2, · · · , νi)

common MITM attack
algebraic MITM attack

to solve J

store values store equations

Fig. 1: Comparison between the common MITM attack and the algebraic MITM
attack

4 Overview of Previous Difference Enumeration Attacks

The most important application of LowMC is the Picnic signature scheme,
which is an alternate third-round candidate in NIST post-quantum cryptography
competition. Although the security of Picnic is based on the difficulty to recover
the secret key of LowMC under 1 plaintext-ciphertext pair, in its security
proof, it is also assumed that the LowMC instance should be secure up to 2
plaintext-ciphertext pairs. This has motivated the LowMC team to devise the
difference enumeration attack [32] and they succeeded in breaking many LowMC
v2 instances with an extremely low data complexity.

To resist against this attack, the formula to compute the secure number
of rounds of LowMC is further updated. However, a recent improved attack

7

with algebraic techniques proposed at CRYPTO 2021 indicates that some latest
LowMC parameters are still insecure. In the following, we will briefly describe
the above two attacks.

4.1 The Original Attack Framework [32]

The difference enumeration attack [32] is a meet-in-the-middle-style attack, as
depicted in Figure 2. From now on, we call the original difference enumeration
attack [32] Attack-O. The attack procedure7 in general consists of two crucial
steps. First, recover the compact differential trail for 2 chosen plaintexts with a
meet-in-the-middle method, which we call the difference enumeration phase.
Second, compute the key from this recovered differential trail, which we call
the key-recovery phase. Since there must exist a correct compact differential
trail, by restricting that only on average one trail will survive after the difference
enumeration phase, the trail obtained after this phase will be the correct one.

Some notations related to the complexity of the attack. Throughout
this paper, we denote the time complexity of the difference enumeration phase
by Td and the expected time complexity to retrieve the full key from a compact
differential trail by Tk. Moreover, we denote the number of potentially correct
compact differential trails after the difference enumeration phase by Nd. In this
way, the whole time complexity of the attack is Td +NdTk.

An important feature of Attack-O [32] is that Nd ≈ 1, i.e. only one trail will
survive after the difference enumeration phase. Hence, the whole time complexity
of the attack becomes Td + Tk.

Constraints at the difference enumeration phase. In the following, we will
briefly describe the difference enumeration phase of Attack-O. The key-recovery
phase will not be detailed as it is inefficient and it has been significantly improved
with algebraic techniques in [27].

As shown in Figure 2, when targeting a r-round attack, we can split the r
rounds into three parts: the first r0 rounds, the middle r1 rounds and the last
r2 rounds, i.e. r = r0 + r1 + r2. The procedure to find the compact differential
trails can be then summarized as follows:

Step 1. Find an input difference ∆0 such that there will be no active S-boxes in
the first r0 rounds. In this way, ∆r0 is uniquely determined. Therefore,
r0 = ⌊n/(3m)⌋.

Step 2. Enumerate the state differences forwards from∆r0 for the next r1 rounds
and store the set of state differences ∆r0+r1 . Denote such a set by Df

and the size of Df by |Df |.
Step 3. Encrypt a plaintext pair whose XOR difference is ∆0 for r rounds and

obtain the XOR difference ∆r of the ciphertexts.

7 We consider the standard XOR difference for simplicity.

8

Step 4. Enumerate the state differences backwards from ∆r for r2 rounds and
again obtain the state difference ∆r0+r1 . If the obtained ∆r0+r1 is in
Df , one compact differential trail is found and exit. Otherwise, repeat
enumerating ∆r0+r1 from ∆r.

∆r0
∆0 ∆r0+r1

∆r

No active S-boxes Meet-in-the-middle

r0 rounds r1 rounds r2 rounds

r0 rounds r1 rounds r2 rounds

Fig. 2: The original difference enumeration attack framework

Since on average one differential trail is allowed to survive and the time
complexity Td cannot exceed 2k, the constraints8 specified in [32] are

21.86mr1 < 2k, 21.86mr2 < 2k, 21.86m(r1+r2) ≤ 2n. (1)

For the first two constraints, it is necessary to know the fact that for an input
difference of the 3-bit S-box of LowMC, there are on average 29/8 ≈ 21.86 output
differences and vice versa. Hence, the first two constraints mean that the time
complexity to construct the set Df and to enumerate the difference backwards
cannot exceed 2k.

For the last constraint, as the block size is n bits and about 21.86mr1 possible
state differences are stored in Df , the probability to find a match is 2−n+1.86mr1 .
As there are in total 21.86mr2 state differences ∆r0+r1 computed backwards,
we can expect to find on average 2−n+1.86mr1+1.86mr2 matches, i.e. compact
differential trails. To ensure on average one trail survives, we thus have the third
constraint 21.86m(r1+r2) ≤ 2n.

The drawbacks of Attack-O. The most obvious drawback is the consumption
of memory to store Df , which is directly related to the number r1, i.e. the
memory complexity is 21.86mr1 . As r1 increases, the memory complexity increases
exponentially. The second drawback is the strong constraint on Nd, i.e. Nd ≈ 1
is required. Note that the time complexity of the attack is Td + NdTk. Hence,

8 The constraints indeed can be improved with 21.86mr1−3τ < 2k, 21.86mr2 < 2k and
21.86m(r1+r2)−3τ ≤ 2n, where τ = ⌊(n− 3mr0)/3⌋. This is because we can also make
τ S-boxes in the (r0 + 1)-th round inactive. This slight improvement can work for
m > 1. However, it is not used in [32]. One reason we believe is that this is not that
useful to improve the number of attacked rounds and the improvement is slight.
Hence, to make a fair comparison and to make the analysis simpler, this trivial trick
to slightly improve the attack will not be considered in our new techniques.

9

the second drawback can be easily fixed as long as we can make Tk significantly
small, which is indeed what the algebraic techniques [27] achieved.

4.2 The Improved Attack Framework

At CRYPTO 2021, Attack-O has been significantly improved with algebraic
techniques [27]. The first strategy is to allow many possible r-round compact
differential trails to survive after the difference enumeration phase, i.e. Nd can
be much larger than 1. The second strategy is to significantly optimize Tk with
advanced algebraic techniques. The third strategy is to reduce the memory
complexity of the difference enumeration by converting the problem to find a
r-round compact trail into the problem to solve a linear equation system, which
is inspired by Bar-On et al.’s work [12]. For convenience, we call the improved
attack in [27] Attack-I.

To avoid the abuse of notation, we still split the r-round LowMC into three
parts: the first r0 rounds, the middle r1 rounds and the last r2 rounds, while
there will be different constraints for (r1, r2) in Attack-I.

The general idea is still the same with Attack-O, i.e. it consists of the
difference enumeration phase and the key-recovery phase. As the key-recovery
phase will be further optimized in our new attack, its general idea will be
explained later and we will mainly focus on the constraints on (r1, r2) at the
difference enumeration phase in this section.

∆r0
∆0 ∆r0+r1

∆r

No active S-boxes Enumeration

r0 rounds r1 rounds r2 rounds

r0 rounds r1 rounds r2 rounds

Solve linear equations

Fig. 3: The improved difference enumeration attack framework

u1

u2

u3

· · ·

u3m−2

u3m−1

u3m

L

S

S

∆r0

u3m+1

u3m+2

u3m+3

u6m−2

u6m−1

u6m

L

∆r0+1

· · ·

∆r0+r1−2

L

S

S

S

S

· · · · · ·

u3m(r1−2)+1

u3m(r1−2)+2

u3m(r2−2)+3

u3m(r1−1)−2

u3m(r1−1)−1

u3m(r1−1)

∆r0+r1−1

S

S

· · ·

u3m(r1−1)+1

u3m(r1−1)+2

u3m(r2−1)+3

u3mr1−2

u3mr1−1

u3mr1

L

∆r0+r1

Fig. 4: Introduce variables to represent the output differences of the S-boxes.

10

As depicted in Figure 3, the general procedure to find a r-round compact
differential trail can be described as follows:

Step 1. It is the same as Step 1 of Attack-O.
Step 2. It is the same as Step 3 of Attack-O.
Step 3. Introduce 3mr1 variables U ′ = (u1, u2, . . . , u3mr1)

T to represent the
output difference of the all the mr1 S-boxes in the middle r1 rounds, as
depicted in Figure 4. In this way, in the forward direction, ∆r0+r1 can be
written as linear expressions in these variables, i.e. ∆r0+r1 = H ′ ·U ′⊕ c,
where both the coefficient matrix H ′ and the n-bit constant vector c are
fixed.

Step 4. Enumerate the state differences backwards from ∆r for r2 rounds and
obtain the state difference ∆r0+r1 . According to ∆r0+r1 , solve the
linear equation system ∆r0+r1 = H ′ · U ′ ⊕ c and get the solutions of
U ′ = (u1, u2, . . . , u3mr1)

T . For each solution, the difference transitions
in these r1 rounds are specified and the correctness can be checked via
the differential distribution table (DDT). If it is correct, a potentially
correct compact r-round differential trail is found.

The constraints. Indeed, the variables (u3m(r1−1)+1, u3m(r1−1)+2, . . . , u3mr1)
are not necessary. Moreover, based on some properties of the S-box, at least n−
3m+2m linear equations in terms of (u1, u2, . . . , u3m(r1−1)) can be constructed.

Hence, Td = max(21.86mr2 , 21.86mr2+(3mr1−n−2m)). To reach the maximal number
of attacked rounds, r2 = ⌊k/(1.86m)⌋. In this way, it can be found in [27] that
the maximal value of r1 is either ⌊(n + 2m)/(3m)⌋ or ⌊(n + 2m)/(3m)⌋ + 1,
i.e. 21.86mr2+(3mr1−n−2m) < 2k should hold. Roughly speaking, r1 is at most
⌊n/(3m)⌋+ 1.

The advantages of Attack-I. There is no more a strong constraint Nd ≈ 1.
In other words, Nd = 21.86m(r1+r2)−n can be much larger than 1 as long as
NdTk < 2k. As Tk is significantly reduced in [27], the upper bound for Nd

accordingly increases, which implies that the upper bound for r1 + r2 increases
as well. Moreover, computing a compact differential trail is equivalent to solving
a linear equation system in Attack-I and therefore there is no need to use a
large amount of memory to store a set of possible values for ∆r0+r1 computed
forwards, i.e. the memory complexity of Attack-I is negligible.

The drawbacks of Attack-I. The most evident drawback of Attack-I is that
the constraint on r1 is too strong, i.e. its maximal value is about ⌊n/(3m)⌋+ 1,
which will directly limit the number of attacked rounds.

4.3 Problems to Improve the Attacks

The maximal values of (r0, r2) in both Attack-O and Attack-I are the same,
which are specified below:

r0 = ⌊n/(3m)⌋, r2 = ⌊k/(1.86m)⌋. (2)

11

There seems to be little room to improve the upper bounds for (r0, r2).
However, this seems to be not the case for r1. Assuming Tk can be reduced to

1, the maximal value of Nd = 21.86m(r1+r2)−n will then be slightly smaller than
2k, i.e. TkNd < 2k has to hold. In this way, with the simple MITM strategy of
Attack-O, the maximal value for r1 is ⌊k/(1.86m)⌋ and the memory complexity
is 21.86mr1 . With the algebraic techniques of Attack-I, the maximal value for r1
is about ⌊n/(3m)⌋+ 1 and the memory complexity is negligible.

When n is much larger than k and m is small, e.g. (n, k,m) = (1024, 128, 1),
the algebraic technique is more powerful than the simple MITM strategy as
the upper bound for r1 is much larger. Moreover, the memory complexity is
negligible. However, it is not difficult to observe that even allowing attackers to
use memory in Attack-I, it is unclear how to use it to further increase r1, i.e.
what should we store in advance?

When n = k, e.g. (n, k,m) = (128, 128, 1), the simple MITM strategy is more
powerful because it is possible to pick an r1 such that r1 > ⌊n/(3m)⌋+ 1 at the
cost of using 21.86mr1 memory.

Hence, the to-be-solved problems now become clear, as stated below:

Problem 1. For the case when the simple MITM strategy is more powerful at
the cost of using memory, e.g. n = k, how to significantly optimize the memory
complexity?

Problem 2. For the case when the algebraic technique is more powerful, e.g.
n >> k, how to further enlarge r1 by using memory?

5 The Algebraic MITM Attack Framework

In Attack-I, finding a compact differential trail is reduced to solving a linear
equation system with the introduction of intermediate variables. An implicit
assumption in this attack is that these intermediate variables are independent.
Obviously, this is not the fact because we still need to check the validity of the
obtained solutions of these variables via DDT. This motivates us to consider
whether it is possible to exploit some nonlinear relations in these variables.

5.1 A New Observation on the 3-bit S-box

Denote the input difference and output difference of the 3-bit LowMC S-box
by (∆x0, ∆x1, ∆x2) and (∆z0, ∆z1, ∆z2), respectively. We observe that the
following 2 cubic equations are sufficient to fully describe its DDT:

(1⊕∆x0)(1⊕∆x1)(1⊕∆x2) = (1⊕∆z0)(1⊕∆z1)(1⊕∆z2),

(1⊕∆x0)(1⊕∆x1)(1⊕∆x2) = ∆x0∆z0 ⊕∆x1∆z1 ⊕∆x2∆z2 ⊕ 1.

Moreover, when (∆x0, ∆x1, ∆x2) ̸= (0, 0, 0) and (∆z0, ∆z1, ∆z2) ̸= (0, 0, 0),
all the possible values of (∆x0, ∆x1, ∆x2, ∆z0, ∆z1, ∆z2) can be fully described

12

with only 1 quadratic equation, while all the invalid values do not satisfy it, as
specified below:

∆x0∆z0 ⊕∆x1∆z1 ⊕∆x2∆z2 ⊕ 1 = 0. (3)

This quadratic equation perfectly explains the property used in [27] that for each
nonzero input difference, its output differences form an affine space of dimension
2 and vice versa.

Although the above equations are derived by hand, it is also possible to run
a simple algorithm to find them. Specifically, we first guess the degree of the
equations and then determine the coefficients of the terms in the equations,
which can be converted into solving a linear equation system in terms of the
to-be-determined coefficients. Each solution of the coefficients will correspond to
a possible equation. This is a widely-used method [17]. Using this algorithm, we
can simply prove that the DDT of the LowMC S-box cannot be described with
only 1 quadratic or cubic equation.

What does the new property imply? With the algebraic technique to find
a compact differential trail, it seems possible to enlarge r1. Specifically, if not
considering the dependency between the 3m(r1 − 1) variables, we can obtain
at least n − m linear equations in these variables. When n + 2m − 3mr1 ≈
0, these variables can be easily solved as in Attack-I. However, when 3mr1 −
n − 2m >> 0, we may need to enumerate too many solutions to this linear
equation system. However, we may reduce the cost to enumerate the solutions
by solving nonlinear equations based on the new observations. Specifically, after
performing Gaussian elimination on the n−m linear equations, we obtain 3mr1−
2m − n free variables. Then, by utilizing the nonlinear relations in the input
difference and output difference of the 3-bit S-box, degree-3 equations in these
free variables can be constructed because it is unclear which S-box is inactive.
In this way, enumerating the solutions is equivalent to solving a multivariate
system of degree-3 equations.

As r1 increases, the number of free variables 3mr1 − 2m − n increases in a
very fast way. In addition, it is difficult to bound the time complexity to solve
such a system of nonlinear equations. Moreover, when 21.86r2 becomes close to
2k, it is required to solve such an equation system with time complexity close
to 1. One way to remove this constraint is to decrease r2 and increase r1 at
the cost to solve a system of nonlinear equations in much more variables, which
will further make the complexity evaluation difficult. We leave this observation
here. In the following, we will describe a different way to utilize these nonlinear
relations, which is combining the MITM strategy and the algebraic techniques.

5.2 A New Attack Framework

As mentioned above, it is necessary to develop a new technique to solve an
under-determined system of linear equations by utilizing the nonlinear relations
in the variables. Moreover, it is expected that the time complexity to solve these
variables is 1.

13

To avoid the abuse of notation, we still split the r-round LowMC into three
parts as in Attack-O and Attack-I, i.e. the first r0 rounds, the middle r1 rounds
and the last r2 rounds. An overview of the new attack framework is depicted in
Figure 5 and we call it Attack-N.

r0 rounds

r0 rounds

r1 rounds

∆r0
∆0

r1 rounds

∆r0+r1

No active S-boxes Solve linear equations

r2 rounds

r2 rounds

∆r

EnumerationEnumeration

(offline) (online)

Fig. 5: The new difference enumeration attack framework

Focus on (∆r0+r1−1[1 : 3e], ∆S
r0+r1−1), where ∆S

r0+r1−1 is computed by
performing the inverse of the linear transform on ∆r0+r1 and ∆r0+r1−1[1 : 3e]
is obtained by further enumerating the input differences for the first e S-boxes
starting from ∆S

r0+r1−1. Note that ∆S
r0+r1−1[3m+1 : n] = ∆r0+r1−1[3m+1 : n]

due to the partial nonlinear layer.
Let

l = r1 − 1, (4)

γ = ∆r0+r1−1[1 : 3e]|∆r0+r1−1[3m+ 1 : n], (5)

i.e. γ is a (3e+ n− 3m)-bit vector representing the concatenation of the 1st bit
to the 3e-th bit and the (3m+ 1)-th bit to the n-th bit of ∆r0+r1−1.

Similarly, we introduce 3ml variables U = (u1, u2, . . . , u3ml) variables to
represent the output differences of the S-boxes in the first r1 − 1 rounds of the
middle r1 rounds. In this way, we have

γ = M · (u1, u2, . . . , u3ml)
T ⊕ α, (6)

where M is a fixed matrix of size (n − 3m + 3e) × 3ml and α ∈ Fn−3m+3e
2 is

uniquely determined by the fixed state difference ∆r0 .
We now only consider the case when Equation 6 is under-determined, i.e. n−

3m+3e < 3ml. Our aim is to efficiently solve the variables U = (u1, u2, . . . , u3ml)
given an arbitrary γ. For this purpose, we adopt a two-phase method, i.e. the
offline phase and online phase.

Solving the under-determined linear equation system. Before moving to
the details of the two phases, we need to perform some analysis for this under-
determined linear equation system. Our critical observation is that both the
coefficient matrix M and the constant vector α are fixed.

14

Let M = M0||M1, where M0 represents the first q columns of M while M1

represents the last 3ml − q columns of M , i.e. M0 is of size (n − 3m + 3e) × q
and M1 is of size (n− 3m+ 3e)× (3ml − q).

First, let

Q′ = M1||E(n−3m+3e)×(n−3m+3e).

Then, we perform the Gaussian elimination on the matrix Q′ such that M1

becomes the reduced row echelon form. Denote the new matrix after Gaussian
elimination by Q = Q0||Q1, where Q0 is of size (n − 3m + 3e) × (3ml − q) and
Q1 is of size (n− 3m+ 3e)× (n− 3m+ 3e). In this way, we have

Q0 = Q1 ·M1

and Q0 is in reduced row echelon form.
Let

ω = n− 3m+ 3e− rank(Q0). (7)

Then, the elements in the last ω rows of Q0 are all zero.
After obtaining the transform matrix Q1, we apply it to Equation 6, as shown

below:

Q1 · γ = Q1 ·M · (u1, u2, . . . , u3ml)
T ⊕Q1 · α.

Note that the above new equation system is equivalent to the original equation
system Equation 6.

Let

β = Q1 · γ, ϵ = Q1 · α, P = Q1 ·M, P0 = Q1 ·M0. (8)

In this way, P = P0||Q0 due to Q0 = Q1 · M1 and we can further obtain an
equivalent representation of Equation 6, as specified below:

β = P0 · (u1, u2, . . . , uq)
T ⊕Q0 · (uq+1, uq+2, . . . , u3ml)

T ⊕ ϵ. (9)

Note that Q0 is in reduced row echelon form.

Analyzing Equation 9. Since the elements in the last ω rows of Q0 are all zero,
we immediately obtain ω linear equations only involving β, ϵ and (u1, u2, . . . , uq),
as shown below:

β′ = P ′
0 · (u1, u2, . . . , uq)

T ⊕ ϵ′, (10)

where P ′
0 is the submatrix of P0 representing the last ω rows of P0, while β

′ and
ϵ′ are both an ω-bit vector representing the last ω elements of the bit vectors β
and ϵ, respectively. Formally speaking,

β′ = β[n− 3m+ 3e− ω + 1 : n− 3m+ 3e],

15

ϵ′ = ϵ[n− 3m+ 3e− ω + 1 : n− 3m+ 3e]. (11)

Suppose that there are Nu possible values of (u1, u2, . . . , uq), which can be
computed independently of (uq+1, uq+2, . . . , u3ml). In this case, for each possible
value of (u1, u2, . . . , uq), we can uniquely determine β′ as ϵ′ is a constant vector.
Therefore, we can precompute Nu possible values for (u1, u2, . . . , uq, β

′).
As β′ represents an ω-bit vector, it can take in total 2ω values. Hence, for

the computed Nu possible values of (u1, u2, . . . , uq, β
′), we can equivalently say

that on average each β′ corresponds to Nu/2
ω solutions of (u1, u2, . . . , uq).

5.3 The Algebraic MITM Strategy

With the above analysis in mind, it is now easy to explain how to combine
the MITM strategy and the algebraic technique. Note that (u3i+1, u3i+2, u3i+3)
represents the output difference of an S-box. Let us focus on the first 3t variables,
i.e. the variables (u1, u2, . . . , u3t).

The offline phase. For such a configuration, we have q = 3t. Moreover,
there are about 21.86t possible values for (u1, u2, . . . , u3t) if we enumerate the
state difference ∆r0 in the forward direction, thus resulting in Nu = 21.86t.
In other words, on average each β′ will correspond to 21.86t/2ω solutions of
(u1, u2, . . . , u3t), which can be computed in advance via Equation 10. Hence, the
offline phase can be described as follows.

Step 1: Enumerate the state difference ∆r0 forwards to obtain all the solutions
of (u1, u2, . . . , u3t). For each solution, move to step 2. After all solutions
are traversed, move to Step 3.

Step 2: Compute β′ via Equation 10 and insert the tuple (u1, u2, . . . , u3t, β
′)

into a table denoted by Du.
Step 3: Sort the table Du according to β′.

The online phase. For each value of (∆r0+r1−1[1 : 3e], ∆S
r0+r1−1) computed

backwards, we need to find the solutions of (u1, u2, . . . , u3ml). The procedure
can be stated as follows:

Step 1: Compute γ = ∆r0+r1−1[1 : 3e]|∆S
r0+r1−1[3m + 1 : n] and β = Q1 · γ as

well as β′ = β[n− 3m+ 3e− ω + 1, n− 3m+ 3e].
Step 2: For the computed β′, retrieve from Du the corresponding values of the

tuple (u1, u2, . . . , u3t). For each retrieved (u1, u2, . . . , u3t), move to Step
3.

Step 3: Only (u3t+1, u3t+2, . . . , u3ml) in Equation 9 remain unknown, where
q = 3t. As Q0 is in reduced row echelon form, there will be in total
2(3ml−3t)−rank(Q0) = 2(3ml−3t)−(n−3m+3e−ω) = 23m(l+1)−3t−n−3e+ω =
23mr1−3t−n−3e+ω solutions of (u3t+1, u3t+2, . . . , u3ml), which can be
easily enumerated. For each solution of (u1, u2, . . . , u3ml), the difference
transitions in the middle r1 rounds are fully specified and the correctness
can be easily verified via DDT. If it passes the verification, a possible
r-round compact differential trail is obtained.

16

Complexity evaluation. For the offline phase, the time and memory complexity
are both 21.86t. For the online phase, for each β′, there are on average 21.86t/2ω

solutions of (u1, u2, . . . , u3t). For each such solution, there are 23mr1−3t−n−3e+ω

solutions of (u3t+1, u3t+2, . . . , u3ml). In other word, for each given γ, there will
be on average 21.86t−ω+(3mr1−3t−n−3e+ω) = 23mr1−n−3e−1.14t full solutions of
(u1, u2, . . . , u3ml).

5.4 How to Choose Parameters

The time complexity and the memory complexity of the offline phase cannot
exceed 2k and therefore we have

21.86t < 2k. (12)

Second, the total number of potentially correct compact differential trails
cannot exceed 2k. Hence,

Nd = 21.86m(r1+r2)−n < 2k. (13)

Finally, the time complexity to enumerate the differences cannot exceed 2k.
Note that as we need to compute γ = ∆r0+r1−1[1 : 3e]|∆S

r0+r1−1[3m + 1 : n],
it is necessary to enumerate the difference backwards for the last r2 rounds to
compute∆S

r0+r1−1[3m+1 : n] and further enumerate the input differences for the
first e S-boxes in the (r0+r1)-th round to compute∆r0+r1−1[1 : 3e]. Therefore, it
is equivalent to say that e+mr2 S-boxes are taken into account at the backward
difference enumeration phase and the time complexity becomes 21.86(mr2+e). For
each γ computed backwards, we need to perform the online phase to retrieve the
full solution of (u1, u2, . . . , u3ml). Hence, the time complexity to enumerate the
difference is

max(21.86(mr2+e), 21.86(mr2+e)+3mr1−n−3e−1.14t)

= max(21.86(mr2+e), 21.86mr2+3mr1−n−1.14e−1.14t), (14)

which implies

1.86(mr2 + e) < k, 1.86mr2 + 3mr1 − 1.14e− 1.14t < k + n. (15)

5.5 Maximizing the Attacked Rounds Using Less Memory

To ensure the memory complexity is less than that of the simple MITM strategy,
the following additional constraint should be added:

21.86t < 21.86m(r1−1) → t < m(r1 − 1). (16)

We should emphasize that t ≤ m(r1−1) holds because we do not care about the
S-boxes in the last round of the middle r1 rounds. Indeed, we can also apply this
to the simple MITM strategy, i.e. ignoring the S-boxes in the last round of the
middle r1 rounds. This is why we use the constraint 21.86t < 21.86m(r1−1) rather
than 21.86t < 21.86mr1 .

With these constraints in mind, it is possible to discuss Problem 1 and
Problem 2.

17

The parameter (n, k,m,D) = (128, 128, 1, 1). In this case, n − 3m = 125.
First, choose the maximal values for (r0, r2), which are r0 = 42 and r2 = 68
based on r0 = ⌊(n/3m)⌋ and r2 = ⌊(k/1.86m)⌋. Therefore, e = 0 according to
Equation 15. Then, according to Equation 15 and Equation 16, there will be
1.14t > 3r1 − 127 and t < r1 − 1. As the memory complexity of the offline phase
is 21.86t, we expect that t takes the minimal value, i.e. t = ⌈(3r1−129.52)/1.14⌉.
With the constraint t < r1 − 1, the maximal value for r1 is 68 and t = 66.
For r1 = 68 and t = 66, the memory complexity of our new algebraic MITM
strategy is 2122.7, while it is 2124.6 for the simple MITM strategy, which shows
the advantage of the new technique. When r1 becomes smaller, the advantage is
more clear, as shown in Table 1.

Table 1: Comparison between the memory complexity of the algebraic MITM
strategy (M1) and the simple MITM strategy (M0) for different r1.

r1 ≤ 42 43 44 . . . 61 62 63 64 65 66 67 68
t 0 1 3 . . . 47 50 53 55 58 61 63 66

log2M0 1.86(r1 − 1) 78.1 79.9 . . . 111.6 113.4 115.3 117.1 119.0 120.9 122.7 124.6
log2M1 0 1.8 5.5 . . . 87.4 93 98.5 102.3 107.8 113.4 117.1 122.7

The parameter (n, k,m,D) = (128, 128, 10, 1). In this case, n − 3m = 98.
First, r0 = 4 and r2 = 6 are determined in a similar way. Then, we choose e
such that 1.86(mr2 + e) < k and therefore e = 8. Finally, we determine r1 and
t according to Equation 15 and Equation 16. Similarly, t = ⌈(3mr1 − k − n −
1.14e + 1.86mr2)/1.14⌉ = ⌈(3mr1 − 153.52)/1.14⌉ and t < m(r1 − 1). Hence,
the maximal value for r1 is 7 and t = 50. This implies that our attack requires
less memory when r1 ≤ 7. Specifically, for r1 = 7, the memory complexity of
the simple MITM strategy is 2111.6, while our new technique only requires 293

memory.

The parameter (n, k,m,D) = (1024, 128, 1, 1). For such a parameter, r0 =
341, r2 = 68 and e = 0. Based on Equation 12, the maximal value for t is 68.
According to Equation 15, we have 1.14t > 3mr1 − k − n − 1.14e + 1.86mr2 =
3r1 − 1025.52. Therefore, the maximal value for r1 is 367. In other words, by
using 21.86t = 2126.48 memory, our attack can reach up to 341 + 68 + 367 = 776
rounds and the claimed secure number of rounds is exactly 776.

Since there must exist one valid compact differential trails and Nd = 2−214.9,
after the difference enumeration, there will be only 1 valid compact differential
trail surviving. Based on the key-recovery technique in [27], we can recover the
correct key from this trail with time complexity much smaller than 2128, i.e.
2128 >> Tk. Hence, even without optimizing the key-recovery technique in [27],
according to Equation 14, we have already broken the full rounds of such an
instance with time complexity 2126.48+2126.48 = 2127.48 and memory complexity
2126.48.

18

5.6 Advantages of the Algebraic MITM Technique

Based on the above discussions, Problem 1 and Problem 2 have been
successfully addressed. Indeed, the two problems are the same, which is how
to reduce the memory complexity of the simple MITM strategy. For example,
with the simple MITM strategy, the attack on the parameter (n, k,m,D) =
(1024, 128, 1, 1) with (r0, r1, r2) = (341, 367, 68) will require 21.86r1 = 2682.62

memory and it soon becomes ineffective. However, our new technique can reduce
this to 2126.48 and an effective attack is immediately obtained. Compared with
the simple MITM strategy to find differential trails, our new MITM technique
is applicable to a wide range of parameters, i.e. n >> k. Compared with
the algebraic technique, this new technique sheds new insight into how to
combine the algebraic technique and the usage of memory to increase r1. Hence,
the algebraic MITM technique is more generic and can optimize the memory
complexity of the simple MITM strategy over state-of-the-art.

5.7 Relation to the General Algebraic MITM Attack

In the general framework discussed in Section 3, it is necessary to split the
variables into two parts, i.e. I and J . For our new attacks on LowMC, I
corresponds to (u1, u2, . . . , u3t) and J corresponds to (u3t+1, u3t+2, . . . , u3ml).
Our first observation is that there are in total 21.86t rather than 23t possible
values of I due to the nonlinear relations inside I. Moreover, these possible values
can be precomputed independently of J , which is why we can split the variables
into two sets. Moreover, when I is known and a challenge (γ in Equation 4) is
given , J can be computed by solving a linear equation system and the coefficient
matrix will not vary for different values of (I, γ), which implies we do not need
to store the whole linear equation system for different I. To efficiently determine
I for a given γ, we observe that it is possible to first find a deterministic linear
equation system only in terms of (I, γ), which is Equation 10 where β′ is obtained
by applying a fixed linear transform to γ. Then, we can precompute the tuples
(I, β′) at the offline phase. At the online phase, we thus first apply the fixed
linear transform to γ to obtain β′, and then retrieve I from the stored table,
and finally solve the linear equation system in J according to (I, γ). In a word,
due to the deterministic linear equation system in (I, β′), an efficient method to
determine which I will lead to the given challenge γ is found, which addresses
the most important issue in the general algebraic MITM attack framework.

6 Recovering the Key by Solving Quadratic Equations

Based on the above algebraic MITM strategy, we can increase r1 while using less
memory. As r1 increases, there will be much more potentially correct r-round
compact differential trails left, i.e. Nd = 21.86m(r1+r2)−n. To keep NdTk < 2k, it
becomes crucial to further optimize Tk.

Our new key-recovery strategy is essentially built on the algebraic technique
proposed in [27]. Therefore, we first revisit the technique and then describe how
to further optimize it.

19

6.1 The Algebraic Technique in [27]

The algebraic technique to retrieve the full key from a random r-round compact
differential trail is based on the following critical property of the LowMC S-box.

Observation 1 [27] For each valid non-zero difference transition (∆x0, ∆x1, ∆x2)
→ (∆z0, ∆z1, ∆z2), the inputs conforming to such a difference transition will
form an affine space of dimension 1. In addition, (z0, z1, z2) becomes linear
in (x0, x1, x2), i.e. the S-box is freely linearized for a valid non-zero difference
transition. A similar property also applies to the inverse of the S-box.

Example. We give an example for better understanding. If (∆x0, ∆x1, ∆x2) =
(0, 0, 1) and (∆z0, ∆z1, ∆z2) = (0, 0, 1), there will be x0 = 0 and x1 = 0. In
addition, the S-box is freely linearized, i.e. we have z0 = 0, z1 = 0 and z2 = x2.

Based on this simple property, given a random r-round compact differential
trail, the procedure to recover the key can be roughly described9 as follows,
which is further illustrated in Figure 6.

1. Starting from a ciphertext, check the S-boxes in the backward direction
round by round and one by one.
(a) If the S-box is active, write its input as linear expressions in terms of the

output and obtain 2 linear equation10 in terms of the key, i.e. there are
two bits conditions on the output to ensure such a difference transition
and the S-box is freely linearized based on Observation 1.

(b) If the S-box is inactive, guess 2 output bits and write the input as linear
expressions in the output. From the 2 guessed bits, we again obtain 2
linear equations in the key bits.

(c) If more than k linear equations are obtained, move to Step 2.
2. After obtaining more than k linear equations, solve the linear equation

system to determine the full key and test its correctness via the plaintext-
ciphertext pair. If it is the wrong key, try another guess and repeat the same
procedure until all possible guesses are traversed.

Although a novel and efficient way is used to process the active S-boxes in
the algebraic technique, processing the inactive S-boxes is rather inefficient. We
are thus motivated to consider whether there is a more efficient way to handle
them. Although the authors also mentioned to introduce intermediate variables
to represent the input of the inactive S-box [27], the collected equations are still
from the active S-boxes, which makes the complexity evaluation difficult. Hence,
they simply adopted the above guess-and-determine method and provided a
loose upper bound for the average time complexity to retrieve the full key from a
random r-round compact differential trail. While this bound is sufficient to break
some instances, we need to further optimize it because Nd = 21.86m(r1+r2)−n will
become very huge in Attack-N due to the increase of r1.

9 There are some optimizations, but the general idea is still guess-and-determine.
10 This is because the output can be written as linear expressions in the key bits.

Specifically, each S-box is linearized and the round function can be treated as a
linear function. Similar explanations also apply to the inactive S-boxes.

20

(2 equations)

(2 equations)

(2 equations)

(2 equations)

linear in key

S

S

S

S

L

(2 equations)

(2 equations)

(2 equations)

(2 equations)

linear in key

S

S

S

S

L

(2 equations)

(2 equations)

(2 equations)

(2 equations)

linear in key

S

S

S

S

L
· · ·

1 round 1 round1 round

· · · · · · · · ·

Fig. 6: Illustration of the key-recovery phase in [27]

6.2 A New Method to Handle the Inactive S-boxes

In this part, we show that from a random r-round compact differential trail
together with 2 plaintext-ciphertext pairs, it is possible to recover the full key
with time complexity 1 and with success rate of about 0.5.

We still follow the general procedure to recover the key described above,
apart from using a new method to process the inactive S-boxes. First, let us
discuss a useful property of the LowMC S-box. In [28], it is revealed that there
are at most 14 linearly independent quadratic equations to describe the LowMC
S-box, as specified below:

z0 = x0 ⊕ x1x2, z1 = x0 ⊕ x1 ⊕ x0x2, z2 = x0 ⊕ x1 ⊕ x2 ⊕ x0x1,

x0 = z0 ⊕ z1 ⊕ z1z2, x1 = z1 ⊕ z0z2, x2 = z0 ⊕ z1 ⊕ z2 ⊕ z0z1,

z0x1 = x0x1 ⊕ x1x2, z0x2 = x0x2 ⊕ x1x2, z1x0 = x0 ⊕ x0x1 ⊕ x0x2,

z1x2 = x1x2, z2x0 = x0 ⊕ x0x2, z2x1 = x1 ⊕ x1x2,

z0x0 ⊕ x0 = z1x1 ⊕ x0x1 ⊕ x1, z1x1 ⊕ x0x1 ⊕ x1 = z2x2 ⊕ x0x2 ⊕ x1x2 ⊕ x2.

These quadratic equations are useful to handle the inactive S-boxes. Specifically,
instead of only deriving linear equations from the active S-boxes, we can also
derive these quadratic equations from the inactive S-boxes. Hence, the attack
procedure can be described as follows once we utilize the last h S-boxes in the
last ⌈h/m⌉ ≤ r1 + r2 rounds for the key recovery.

Step 1: Choose a threshold amin and initialize two counters a and b as 0.
Step 2: If there are fewer than amin active S-boxes in these h S-boxes11, exit

and return Failure. Otherwise, move to Step 3.
Step 3: Starting from a ciphertext, check the S-boxes in the backward direction

round by round and one by one.

11 It can be observed later that this strong condition can be relaxed. More explanations
can be referred to Appendix B.

21

(a) If the S-box is active, increase a by 1 and write its input as linear
expressions in terms of the output and obtain 2 linear equations
in terms of the key, i.e. there are two bits conditions on the output to
ensure such a difference transition and the S-box is freely linearized
based on Observation 1.

(b) If the S-box is inactive, increase b by 1 and introduce 3 intermediate
variables to represent its input and obtain 14 quadratic equations
in terms of the input bits and output bits.

(c) If

2a ≥ k + 3b, (17)

or

2a < k + 3b,

14b ≥ (k + 3b− 2a) + (k + 3b− 2a)(k + 3b− 2a− 1)/2, (18)

move to Step 4.
Step 4: At this step, we have collected 2a linear equations and 14b quadratic

equations in terms of k+3b variables, i.e. the key bits and the intermediate
variables. If we reach this step according to Equation 17, we only need
to solve 2a linear equations to uniquely determine the k-bit key. If we
reach this step according to Equation 18, we need to first perform the
Gaussian elimination on the 2a linear equations to obtain k + 3b − 2a
free variables. Then, we rewrite the 14b quadratic equations in these
k + 3b − 2a free variables and perform the Gaussian elimination on it,
where each quadratic term is viewed as a new variable12. As Equation 18
holds, we can expect to obtain a unique solution to these k+3b−2a free
variables and then compute the remaining variables according to the 2a
linear equations. For both cases, we obtain a unique solution to the full
key and the correctness can be easily verified via a plaintext-ciphertext
pair. If it is the correct key, output it and return Success.

For better comparison, the new algebraic key-recovery technique is depicted
in Figure 7.

How to choose (amin, h). According to the above procedure, we start solving
the equation system to recover the key only when (a, b) satisfy some constraints.
In addition, before moving to Step 3, we will directly reject some compact
differential trails by counting the number of active S-boxes among the last h
S-boxes. It is possible that the correct differential trail is the rejected one and
our attack will then fail to recover the key. Once moving to the Step 3, we
expect that either Equation 17 or Equation 18 must hold. To achieve a high
success probability and to make either Equation 17 or Equation 18 hold, we
thus add the following constraints on (amin, h):

amin = ⌈(7h)/8⌉,
12 This is called the linearization technique.

22

(14 equations)

(2 equations)

(14 equations)

(2 equations)

linear in key and intermediate variables

S

S

S

S

L

(2 equations)

(14 equations)

(14 equations)

(14 equations)

linear in key and intermediate variables

S

S

S

S

L

(2 equations)

(2 equations)

(14 equations)

(2 equations)

linear in key and intermediate variables

S

S

S

S

L
· · ·

1 round 1 round1 round

· · · · · ·· · ·

Fig. 7: Illustration of the new key-recovery phase, where the inactive S-boxes are
colored in orange

14h− 14amin ≥ (k + 3h− 5amin) + (k + 3h− 5amin)(k + 3h− 5amin − 1)/2,

k + 3h− 5amin > 0.

Suppose there are a′ active S-boxes among the h S-boxes. The first constraint
is based on the well-known statistical property that when amin ≈ (7h)/8, there

is Pr[a′ ≥ amin] =
∑h

i=amin

(
h
i

)
× (7/8)i × (1/8)h−i ≈ 0.5.

The last two constraints can ensure that when the number of free variables
is a positive integer, i.e. there are exactly amin active S-boxes among the last h
S-boxes and (k + 3h − 5amin) > 0, the quadratic equation system can still be
efficiently solved with the linearization technique. Obviously, if (k+3h−5amin) ≤
0 → 2amin ≥ k + 3(h − amin), all the unknowns can be directly computed by
solving the 2amin linear equations. Then, for any a′ satisfying h ≥ a′ ≥ amin,
either Equation 17 or Equation 18 must hold13 if moving to Step 3. Specifically,
the key can be directly recovered by solving an equation system.

Therefore, with the above constraints on (amin, h), we can ensure a success
probability14 of about 0.5 to recover the key.

Some concrete choices for (h, amin) for different key sizes are specified in
Table 2. For example, the best choice is (h, amin) = (81, 71) for k = 128, which
will result in Pr[a ≥ amin] ≈ 0.56. Then, it is required to solve at most 142
linear equations and at most 140 quadratic equations13, which corresponds to
the worst case when a = amin = 71. We simply estimate the cost to solve
these equation systems as 1423/(rn2) times of LowMC encryptions because each
LowMC encryption costs about 2rn2 binary operations.

13 The proof for this claim can be referred to Appendix C.
14 The computed probability is just a lower bound, as explained in Appendix B. Note

that one may choose different (amin, h) (e.g. amin < ⌈(7h)/8⌉) as long as ⌈h/m⌉ ≤
r1 + r2 and follow the same procedure to recover the key. Choosing a = ⌈(7h)/8⌉ is
mainly to utilize a simple statistical property to calculate the probability.

23

Table 2: Choices for (h, amin) for different k

k h amin Pro. linear quadratic cost (Tk)

128 81 71 0.56 142 140 1423/(rn2)
192 124 109 0.51 218 210 2183/(rn2)
256 169 148 0.54 296 294 2963/(rn2)

Comparison. Compared with the algebraic key-recovery technique in [27], the
new method requires no guessing phase and the key is directly computed via
solving a quadratic boolean equation system and a linear equation system. This
is based on a new way to handle the inactive S-box, i.e. we exploit the nonlinear
relations between its input and output rather than linearize it by guessing some
input or output bits as in [27]. The only drawback is that this new technique
cannot work for an arbitrarily given compact differential trail, i.e. its success
rate is about 0.5. However, 0.5 is high enough to claim an effective attack.

6.3 Recovering the Key in the Extended Attack Framework

In the extended framework [27], by using sufficiently many plaintext pairs, i.e.
when D >> 1, it is possible to find a pair of plaintext such that there is no active
S-box in the last r3 = ⌊(D−1)/(3m)⌋ rounds either, as depicted in Figure 8. The
time complexity and data complexity of this phase are both 23mr3+1 because we
need to try 23mr3 pairs of plaintexts. As all the S-boxes are inactive in the last r3
rounds, the constraints on (r1, r2) will not change, i.e. we can still choose (r1, r2)
based on the constraints specified in Section 5.4. However, the key-recovery phase
will change as the last mr3 S-boxes are always inactive. Hence, it is required
to modify the constraints on (amin, h) in the extended framework in order to
efficiently recover the key.

r0 rounds

r0 rounds

r1 rounds

∆r0
∆0

r1 rounds

∆r0+r1

No active S-boxes Solve linear equations

r2 rounds

r2 rounds

∆r0+r1+r2

EnumerationEnumeration

(offline) (online)

r3 rounds

r3 rounds

∆r

No active S-boxes

Fig. 8: The extended attack framework [27] embedded with the algebraic MITM
strategy

Modifying the constraints is not difficult as we can equivalently consider the
case where the last mr3 S-boxes are always inactive in the last h S-boxes used
for key recovery. The modified constraints are specified below:

h′ = h−mr3,

24

amin = ⌈(7h′)/8⌉,
14h− 14amin ≥ (k + 3h− 5amin) + (k + 3h− 5amin)(k + 3h− 5amin − 1)/2.

The success probability is then computed with
∑h′

i=amin

(
h′

i

)
×(7/8)i×(1/8)h

′−i.
In Table 3, we give the accurate values of (h′, amin) for some (mr3, k) that

are relevant to our attacks on LowMC-M. The explanation of this table can be
referred to that for Table 2. Note that in this framework, ⌈h′/m⌉ ≤ r1 + r2.

Table 3: Choices for (h′, amin) for different (mr3, k)

k mr3 h′ amin Pro. linear quadratic cost (Tk)

128 20 114 100 0.54 228 476 4763/(rn2)
128 21 116 102 0.51 232 490 4903/(rn2)
256 20 203 178 0.52 406 630 6303/(rn2)
256 21 205 180 0.50 410 644 6443/(rn2)

7 Improved Attacks on LowMC and LowMC-M

With the above new techniques, we could significantly improve the number
of attacked rounds for both LowMC and LowMC-M. The correctness of these
techniques has been verified by experiments, as shown in Appendix A.

The attacks on LowMC. For the attacks on LowMC, we only consider the
parameters where D = 1, i.e. the data complexity is 2. When D >> 1, we can
trivially use the extended attack framework and we only need to slightly modify
the key-recovery phase. Indeed, the attacks on LowMC-M are achieved under
the extended attack framework. As already mentioned, the attack consists of
two phases: the difference enumeration phase and the key-recovery phase. For
an attack on r = r0 + r1 + r2 rounds of LowMC (refer to Figure 5), we first
determine r0 with r0 = ⌊n/(3m)⌋. Then, we determine (r1, r2) as well as (t, e)
based on the constraints Equation 12, Equation 13 and Equation 15. Examples
have already been given in Section 5.5.

The time complexity of the difference enumeration phase is

21.86t +max(21.86(mr2+e), 21.86mr2+3mr1−n−1.14e−1.14t)

and the memory complexity is 21.86t. The time complexity of the key-recovery
phase is NdTk = 21.86m(r1+r2)−nTk, where Tk is almost 1 and the accurate
estimation of Tk has been explained at Section 6.2. The whole time complexity
Tw is thus

Tw = 21.86m(r1+r2)−nTk + 21.86t +max(21.86(mr2+e), 21.86mr2+3mr1−n−1.14e−1.14t).

25

The improved attacks on LowMC are summarized in Table 4, where D, T,
M, Pro. and R − r represent the log2 data complexity, log2 time complexity,
log2 memory complexity, success probability and security margin, respectively.
In addition, when the memory complexity is negligible, we denote it by −. Note
that for our attacks on LowMC and LowMC-M, we choose the parameters such
that T is not that close to k.

Table 4: Summary of the attacks on LowMC
n k m D R r0 r1 r2 t e r D T M Pro. R− r Ref.

128 128 1 1 182
42 43 67 0 0 152 1 124.62 − 1 30 [27]
42 51 59 21 0 152 1 110.8 39.06 0.56 30 this paper
42 68 67 66 0 177 1 125.38 122.76 0.56 5 this paper

128 128 10 1 20
4 5 6 0 0 15 1 122.8 − 1 5 [27]
4 7 6 53 7 17 1 125.2 98.58 0.56 3 this paper

192 192 1 1 273
64 64 101 0 0 229 1 187.86 − 1 44 [27]
64 101 102 98 0 267 1 189.72 182.28 0.51 6 this paper

192 192 10 1 30
6 7 10 0 0 23 1 186 − 1 7 [27]
6 9 10 67 2 25 1 189.72 124.62 0.51 5 this paper

256 256 1 1 363
85 86 137 0 0 306 1 254.82 − 1 57 [27]
85 136 136 133 0 357 1 253.34 247.38 0.54 9 this paper

256 256 10 1 38
8 9 13 0 0 30 1 241.8 − 1 8 [27]
8 13 13 101 6 34 1 253.82 187.86 0.54 4 this paper

1024 128 1 1 776
341 342 66 0 0 749 1 122.76 − 1 27 [27]
341 367 68 68 0 776 1 127.48 126.48 1 0 this paper

1024 256 1 1 819
341 342 136 0 0 819 1 253 − 1 0 [27]
341 393 136 136 0 870 1 253.96 252.96 1 −51 this paper

The attacks on LowMC-M. LowMC-M is almost the same as LowMC. The
only difference is that after the key addition operation, there is a subtweak
addition operation and the subtweak can be derived from a public tweak. It has
been studied in [14] that by exploiting the freedom of the tweak, in the difference
enumeration attack, r0 can be increased to ⌊(2k+n)/(3m)⌋ by finding a proper
tweak pair with time complexity 2(3mr0−n)/2, i.e. the first r0 rounds contain no
active S-boxes. A detailed explanation can be referred to [27]. Moreover, D = 64
in all the specified parameters for LowMC-M. Hence we utilize the extended
difference enumeration attack framework depicted in Figure 8 where we choose
mr3 ∈ {20, 21} to make full use of the allowed data complexity, i.e. the data
complexity of our attacks on LowMC-M is either 261 or 264 and the last r3
rounds contain no active S-boxes. As for (r1, r2), we determine their values and
estimate the corresponding time/memory complexity as in the above attacks on
LowMC. Due to the costly phase to find a proper tweak pair, the whole time
complexity becomes 2(3mr0−n)/2 + Tw. The improved attacks on LowMC-M are

26

Table 5: Summary of the attacks on LowMC-M
n k m D R r0 r1 r2 r3 t e r D T M Pro. R− r Ref.

128 128 1 64 294
122 43 64 21 0 0 250 64 120 − 1 44 [27]
124 66 66 21 60 0 277 64 124.36 111.6 0.51 17 this paper

128 128 2 64 147
61 22 32 10 0 0 125 61 120 − 1 22 [27]
62 33 33 10 60 0 138 61 124.36 111.6 0.52 9 this paper

128 128 3 64 99
40 15 21 7 0 0 83 64 118.18 − 1 16 [27]
41 22 22 7 60 0 92 64 124.36 111.6 0.51 7 this paper

128 128 10 64 32
12 5 6 2 0 0 25 61 118 − 1 7 [27]
12 7 6 2 53 7 27 61 125.2 98.58 0.52 5 this paper

256 256 1 64 555
253 86 136 21 0 0 496 64 252.96 − 1 59 [27]
253 136 136 21 133 0 546 64 253.34 247.38 0.50 9 this paper

256 256 3 64 186
83 29 45 7 0 0 164 64 250.1 − 1 22 [27]
84 45 45 7 129 1 181 64 252.96 239.94 0.50 5 this paper

256 256 20 64 30
12 5 6 1 0 0 24 61 232 − 1 6 [27]
12 7 6 1 115 15 26 61 251.1 213.9 0.52 4 this paper

summarized in Table 5. Note we consider the latest version of LowMC-M, which
only differs from the original LowMC-M [31] in the number of rounds.

8 Conclusion

We propose a simple yet novel technique called algebraic MITM attack to
analyze LowMC. This new technique can better capture the feature of partial
nonlinear layers. Since using partial nonlinear layers is a relatively new design
strategy, developing new techniques to understand its security is both important
and meaningful. As a consequence of this new technique and an extremely
optimized algebraic key-recovery technique for LowMC, the attacks on LowMC
and LowMC-M are significantly improved. Regarding the LowMC S-box, some
new algebraic properties are discovered, though they are not exploited in a pure
“algebraic” way in this work. It is interesting to investigate whether they can
be used to mount another type of algebraic attacks on LowMC and whether
studying similar equations for DDT is useful for differential attacks on other
ciphers.

References

1. https://csrc.nist.gov/projects/post-quantum-cryptography.
2. Reference Code, 2017. https://github.com/LowMC/lowmc.
3. The Picnic signature algorithm specification, 2019. Available at https://

microsoft.github.io/Picnic/,.
4. M. R. Albrecht, C. Cid, L. Grassi, D. Khovratovich, R. Lüftenegger, C. Rechberger,

and M. Schofnegger. Algebraic Cryptanalysis of STARK-Friendly Designs:

27

https://csrc.nist.gov/projects/post-quantum-cryptography
https://github.com/LowMC/lowmc
https://microsoft.github.io/Picnic/
https://microsoft.github.io/Picnic/

Application to MARVELlous and MiMC. In S. D. Galbraith and S. Moriai, editors,
Advances in Cryptology - ASIACRYPT 2019 - 25th International Conference on
the Theory and Application of Cryptology and Information Security, Kobe, Japan,
December 8-12, 2019, Proceedings, Part III, volume 11923 of Lecture Notes in
Computer Science, pages 371–397. Springer, 2019.

5. M. R. Albrecht, L. Grassi, L. Perrin, S. Ramacher, C. Rechberger, D. Rotaru,
A. Roy, and M. Schofnegger. Feistel Structures for MPC, and More. In K. Sako,
S. A. Schneider, and P. Y. A. Ryan, editors, Computer Security - ESORICS
2019 - 24th European Symposium on Research in Computer Security, Luxembourg,
September 23-27, 2019, Proceedings, Part II, volume 11736 of Lecture Notes in
Computer Science, pages 151–171. Springer, 2019.

6. M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. MiMC: Efficient
Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity.
In J. H. Cheon and T. Takagi, editors, Advances in Cryptology - ASIACRYPT 2016
- 22nd International Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I,
volume 10031 of Lecture Notes in Computer Science, pages 191–219, 2016.

7. M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. Ciphers
for MPC and FHE. In E. Oswald and M. Fischlin, editors, Advances in Cryptology
- EUROCRYPT 2015 - 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science, pages
430–454. Springer, 2015.

8. A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe, and A. Szepieniec. Design of
Symmetric-Key Primitives for Advanced Cryptographic Protocols. IACR Trans.
Symmetric Cryptol., 2020(3):1–45, 2020.

9. T. Ashur and S. Dhooghe. MARVELlous: a STARK-Friendly Family of
Cryptographic Primitives. Cryptology ePrint Archive, Report 2018/1098, 2018.
https://eprint.iacr.org/2018/1098.

10. S. Banik, K. Barooti, F. B. Durak, and S. Vaudenay. Cryptanalysis of LowMC
instances using single plaintext/ciphertext pair. IACR Trans. Symmetric Cryptol.,
2020(4):130–146, 2020.

11. S. Banik, K. Barooti, S. Vaudenay, and H. Yan. New Attacks on LowMC Instances
with a Single Plaintext/Ciphertext Pair. In M. Tibouchi and H. Wang, editors,
Advances in Cryptology - ASIACRYPT 2021 - 27th International Conference on
the Theory and Application of Cryptology and Information Security, Singapore,
December 6-10, 2021, Proceedings, Part I, volume 13090 of Lecture Notes in
Computer Science, pages 303–331. Springer, 2021.

12. A. Bar-On, I. Dinur, O. Dunkelman, V. Lallemand, N. Keller, and B. Tsaban.
Cryptanalysis of SP Networks with Partial Non-Linear Layers. In E. Oswald
and M. Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056
of Lecture Notes in Computer Science, pages 315–342. Springer, 2015.

13. T. Beyne, A. Canteaut, I. Dinur, M. Eichlseder, G. Leander, G. Leurent, M. Naya-
Plasencia, L. Perrin, Y. Sasaki, Y. Todo, and F. Wiemer. Out of Oddity - New
Cryptanalytic Techniques Against Symmetric Primitives Optimized for Integrity
Proof Systems. In D. Micciancio and T. Ristenpart, editors, Advances in Cryptology
- CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO

28

https://eprint.iacr.org/2018/1098

2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III, volume
12172 of Lecture Notes in Computer Science, pages 299–328. Springer, 2020.

14. T. Beyne and C. Li. Cryptanalysis of the MALICIOUS Framework. Report
2020/1032, 2020. https://ia.cr/2020/1032.

15. A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint, M. Naya-Plasencia, P. Paillier,
and R. Sirdey. Stream Ciphers: A Practical Solution for Efficient Homomorphic-
Ciphertext Compression. In T. Peyrin, editor, Fast Software Encryption - 23rd
International Conference, FSE 2016, Bochum, Germany, March 20-23, 2016,
Revised Selected Papers, volume 9783 of Lecture Notes in Computer Science, pages
313–333. Springer, 2016.

16. M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger,
D. Slamanig, and G. Zaverucha. Post-Quantum Zero-Knowledge and Signatures
from Symmetric-Key Primitives. In B. M. Thuraisingham, D. Evans, T. Malkin,
and D. Xu, editors, Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017, pages 1825–1842. ACM, 2017.

17. N. T. Courtois and J. Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations. In Y. Zheng, editor, Advances in Cryptology - ASIACRYPT
2002, 8th International Conference on the Theory and Application of Cryptology
and Information Security, Queenstown, New Zealand, December 1-5, 2002,
Proceedings, volume 2501 of Lecture Notes in Computer Science, pages 267–287.
Springer, 2002.

18. I. Dinur. Cryptanalytic Applications of the Polynomial Method for Solving
Multivariate Equation Systems over GF(2). In A. Canteaut and F. Standaert,
editors, Advances in Cryptology - EUROCRYPT 2021 - 40th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, October 17-21, 2021, Proceedings, Part I, volume 12696 of Lecture Notes
in Computer Science, pages 374–403. Springer, 2021.

19. I. Dinur, Y. Liu, W. Meier, and Q. Wang. Optimized Interpolation Attacks
on LowMC. In T. Iwata and J. H. Cheon, editors, Advances in Cryptology -
ASIACRYPT 2015 - 21st International Conference on the Theory and Application
of Cryptology and Information Security, Auckland, New Zealand, November 29 -
December 3, 2015, Proceedings, Part II, volume 9453 of Lecture Notes in Computer
Science, pages 535–560. Springer, 2015.

20. C. Dobraunig, M. Eichlseder, L. Grassi, V. Lallemand, G. Leander, E. List,
F. Mendel, and C. Rechberger. Rasta: A Cipher with Low ANDdepth and Few
ANDs per Bit. In H. Shacham and A. Boldyreva, editors, Advances in Cryptology -
CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2018, Proceedings, Part I, volume 10991 of Lecture Notes
in Computer Science, pages 662–692. Springer, 2018.

21. C. Dobraunig, M. Eichlseder, and F. Mendel. Higher-Order Cryptanalysis of
LowMC. In S. Kwon and A. Yun, editors, Information Security and Cryptology -
ICISC 2015 - 18th International Conference, Seoul, South Korea, November 25-27,
2015, Revised Selected Papers, volume 9558 of Lecture Notes in Computer Science,
pages 87–101. Springer, 2015.

22. C. Dobraunig, L. Grassi, A. Guinet, and D. Kuijsters. Ciminion: Symmetric
Encryption Based on Toffoli-Gates over Large Finite Fields. In A. Canteaut
and F. Standaert, editors, Advances in Cryptology - EUROCRYPT 2021 - 40th
Annual International Conference on the Theory and Applications of Cryptographic

29

https://ia.cr/2020/1032

Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings, Part II, volume
12697 of Lecture Notes in Computer Science, pages 3–34. Springer, 2021.

23. S. Duval, V. Lallemand, and Y. Rotella. Cryptanalysis of the FLIP Family of
Stream Ciphers. In M. Robshaw and J. Katz, editors, Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 14-18, 2016, Proceedings, Part I, volume 9814 of Lecture Notes
in Computer Science, pages 457–475. Springer, 2016.

24. M. Eichlseder, L. Grassi, R. Lüftenegger, M. Øygarden, C. Rechberger,
M. Schofnegger, and Q. Wang. An Algebraic Attack on Ciphers with Low-Degree
Round Functions: Application to Full MiMC. In S. Moriai and H. Wang, editors,
Advances in Cryptology - ASIACRYPT 2020 - 26th International Conference on
the Theory and Application of Cryptology and Information Security, Daejeon,
South Korea, December 7-11, 2020, Proceedings, Part I, volume 12491 of Lecture
Notes in Computer Science, pages 477–506. Springer, 2020.

25. L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger. Poseidon:
A New Hash Function for Zero-Knowledge Proof Systems. In M. Bailey and
R. Greenstadt, editors, 30th USENIX Security Symposium, USENIX Security
2021, August 11-13, 2021, pages 519–535. USENIX Association, 2021.

26. L. Grassi, R. Lüftenegger, C. Rechberger, D. Rotaru, and M. Schofnegger. On
a Generalization of Substitution-Permutation Networks: The HADES Design
Strategy. In A. Canteaut and Y. Ishai, editors, Advances in Cryptology -
EUROCRYPT 2020 - 39th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020,
Proceedings, Part II, volume 12106 of Lecture Notes in Computer Science, pages
674–704. Springer, 2020.

27. F. Liu, T. Isobe, and W. Meier. Cryptanalysis of Full LowMC and LowMC-M
with Algebraic Techniques. In T. Malkin and C. Peikert, editors, Advances in
Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Conference,
CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part III, volume
12827 of Lecture Notes in Computer Science, pages 368–401. Springer, 2021.

28. F. Liu, T. Isobe, andW. Meier. Low-Memory Algebraic Attacks on Round-Reduced
LowMC. Report 2021/255, 2021. https://ia.cr/2021/255.

29. F. Liu, S. Sarkar, W. Meier, and T. Isobe. Algebraic Attacks on Rasta and Dasta
Using Low-Degree Equations. In M. Tibouchi and H. Wang, editors, Advances
in Cryptology - ASIACRYPT 2021 - 27th International Conference on the Theory
and Application of Cryptology and Information Security, Singapore, December 6-
10, 2021, Proceedings, Part I, volume 13090 of Lecture Notes in Computer Science,
pages 214–240. Springer, 2021.

30. P. Méaux, A. Journault, F. Standaert, and C. Carlet. Towards Stream Ciphers
for Efficient FHE with Low-Noise Ciphertexts. In M. Fischlin and J. Coron,
editors, Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, May 8-12, 2016, Proceedings, Part I, volume 9665 of Lecture Notes in
Computer Science, pages 311–343. Springer, 2016.

31. T. Peyrin and H. Wang. The MALICIOUS Framework: Embedding Backdoors into
Tweakable Block Ciphers. In D. Micciancio and T. Ristenpart, editors, Advances in
Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Conference,
CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part
III, volume 12172 of Lecture Notes in Computer Science, pages 249–278. Springer,
2020.

30

https://ia.cr/2021/255

32. C. Rechberger, H. Soleimany, and T. Tiessen. Cryptanalysis of Low-Data Instances
of Full LowMC v2. IACR Trans. Symmetric Cryptol., 2018(3):163–181, 2018.

A Experimental Verifications

In our experiments, the concrete LowMC instances are generated with the official
reference code [2].

Verify the algebraic difference enumeration. Considering the cost of
the matrix multiplication in the difference enumeration phase, for efficient
verifications, we choose the parameters such that the time complexity of this
phase is about 225. Therefore, we choose to perform experiments on the parameter
(n, k,m, r) = (128, 128, 1, 103). For such a parameter, we choose r0 = 128/3 =
42, r2 = 13, r1 = 48 and e = 0. Then, to keep 21.86r2+3r1−n−1.14t−1.14e be about
225, we choose t = 13. Hence, the theoretical memory complexity is 21.86t = 224.18

and the theoretical time complexity to enumerate the differences backwards is

max(21.86r2 , 21.86r2+3r1−n−1.14t−1.14e) = 225.36.

For such a configuration, it is necessary to introduce 3 × (r1 − 1) = 141
variables (u1, u2, . . . , u141) to represent the output differences of the S-boxes
in the middle r1 − 1 rounds. First, we construct the matrices M , M1, Q0, Q1

and P0 according to the generated LowMC instance [2], the sizes of which are
125 × 141, 125 × 102, 125 × 102 and 125 × 125, respectively. It is found that
ω = n − 3m − rank(Q0) = 128 − 3 − 102 = 23 and hence we obtain 23 linear
equations only in terms of (u1, u2, . . . , u39) and (β103, β104, . . . , β125).

For the offline phase, according to the experiments, the size of the table Du is
17134432 ≈ 224.03, which is almost the same as the expected value 21.86t = 224.18.
As β′ is a 23-bit value, each β′ will correspond to about 21.18 different values of
(u1, u2, . . . , u39) in Du.

At the online phase, for each computed γ in the backward direction, we
first compute β′ according to Equation 8 and Equation 11. Then, retrieve the
corresponding (u1, u2, . . . , u39) from Du according to β′. Finally, determine the
remaining unknowns (u40, u41, . . . , u141) by solving Equation 9, which can be
efficiently solved as Q0 is in reduced row echelon form and rank(Q0) = 102.
In this way, the difference transitions in the middle r1 rounds are fully known
and their correctness can be easily verified via DDT. After the online phase,
we succeed in recovering all the possible compact differential trails with time
complexity of about 225.45, which is alomost consistent with the theoretical value
224.18+1.18 = 225.36.

Verify the optimized key-recovery phase. There are two main concerns
regarding the optimized key-recovery phase. First, what is the actual success
probability? Second, can the key be really efficiently computed via solving an
overdefined system of quadratic equations with the linearization technique? To

31

deal with these concerns, we choose to perform experiments on the parameter
(n, k,m, r) = (128, 128, 1, 177). In this case, r0 = 42 and r1 + r2 = 135 > 81.

For the success probability, we randomly choose 10000 plaintext pairs such
that there is no difference in the first 42 rounds. For each plaintext pair, we record
the corresponding r-round differential trail by tracing the encryption phase and
count the number of active S-boxes in the last 81 rounds. Finally, we compute the
number of plaintext pairs denoted by Np such that the number of active S-boxes
in the last 81 rounds is not smaller than 71. It is found that Np/10000 ≈ 0.56,
which means the success probability is correct.

To verify the correctness of the key recovery, for each recorded r-round
differential trail where there are at least 71 active S-boxes in the last 81 rounds,
we first construct the corresponding overdefined system of quadratic equations
and then solve it with the linearization technique. It is found that the key can
be correctly recovered, thus demonstrating the correctness of the optimized key-
recovery strategy.

B More Explanations for the Success Probability

In our key-recovery procedure, it is required to have at least amin active S-boxes
among the last h S-boxes. Once this condition is not satisfied, we reject the
corresponding trail. Here, we show that this is a strong condition and even if
there are fewer than amin active S-boxes, it is still possible to move to Step 4 of
our key-recovery procedure.

Specifically, suppose we still move to Step 3 of the key-recovery procedure
even if the number of active S-boxes in the given trail is smaller than amin. Note
that at Step 3, we consider the S-box one by one and round by round. Then,
it is possible that after the first h − j S-boxes in the backward direction are
considered, Equation 17 or Equation 18 holds. Specifically, in this case, we have

a+ b = h− j

and either Equation 17 or Equation 18 holds. In this way, whether the last j
S-boxes among the h S-boxes in the backward direction are active or not will
not affect the key recovery. Supposing there are a′ active S-boxes among these
last j S-boxes, even if a + a′ < amin, the key can still be recovered by directly
solving equations, though the total number a + a′ of active S-boxes is smaller
than amin. Hence, the condition is a strong one. Moreover, this also implies that
our computed success probability is just a lower bound.

In the following, we provide a more accurate procedure to judge whether it is
possible to recover the key from a given trail by directly solving equations. For
simplicity, let us consider the case m = 1. The cases m > 1 can be processed in
a similar way.

Step 1. Initialize a counter B with ⌈k/2⌉ as we need at least ⌈k/2⌉ S-boxes.
Step 2. If B > h, exit. Otherwise, compute the number of active S-boxes among

the first B S-boxes in the backward direction and denote it by a. Then,
let b = B − a and move to Step 3.

32

Step 3. If Equation 17 or Equation 18 holds, return Feasible and exit. Otherwise,
increase B by 1 and move to Step 2.

If the procedure exits according to the condition B > h, it means we cannot
efficiently compute the key by solving nonlinear equations with the linearization
technique. Otherwise, we can always efficiently recover the key.

Although the above procedure is more accurate, computing the success
probability that Feasible is returned seems difficult. To compute it, we can
utilize the conditional probability. Denote the event that Feasible is returned
at B = i by Ai and the event that Feasible is not returned at B = i by Ai. Let
d′ = ⌈k/2⌉. Then, the success probability can be expressed as

Pr[Ad′] + Pr[Ad′+1|Ad′] + Pr[Ad′+2|Ad′ Ad′ + 1] + . . .+

Pr[Ad′+i|Ad′ Ad′+1 . . . Ad′+i−1] + . . .+ Pr[Ah|Ad′ Ad′+1 . . . Ah−1].

This is difficult to compute and is obviously not as intuitive as our simple way
to exploit a well-known statistical property.

C More Explanations for the Key-recovery Phase

After fixing (h, amin), we claim that when a > amin, either Equation 17 or
Equation 18 must hold if moving to Step 3. Moreover, in the time complexity
evaluation, we claim that we only need to use at most 2amin linear equations
and at most 14(h − amin) quadratic equations to recover the unknowns. Here,
we give a simple proof for these claims.

First, according to our way to choose (h, amin), whenH = k+3h−5amin > 0,
there is

14h− 14amin ≥ H +H(H − 1)/2.

Note that when H ≤ 0, we can directly solve all the 2amin linear equations to
recover all the unknowns since 2amin ≥ k + 3(h− amin).

Given a satisfying a > amin, let a = amin + i (i > 0). Then, there will be
h− a = h− amin − i inactive S-boxes among the last h S-boxes. In other words,
there will be k+ 3(h− amin − i) unknowns in the constructed equation system.
Although we can collect 2(amin + i) linear equations, we only use 2amin linear
equations for this case and ignore the remaining 2i useful linear equations. In
this way, we need to prove either

2amin ≥ k + 3(h− amin − i) → H − 3i ≤ 0

or

H − 3i > 0,

14h− 14(amin + i) ≥ (H − 3i) + (H − 3i)(H − 1− 3i)/2.

Then, it suffices to only prove

14h− 14(amin + i) ≥ (H − 3i) + (H − 3i)(H − 1− 3i)/2

33

when H − 3i > 0.
Then, it suffices to prove

−14i ≥ −3i− 3Hi+
3i

2
+

9i2

2
→ H ≥ 25

6
+

3i

2
.

As H > 3i and i is a positive integer, it then suffices to prove

3i ≥ 25

6
+

3i

2
→ i ≥ 3.

This means when i ≥ 3, we can only use at most 2amin linear equations and
14(h − amin) − 14i quadratic equations to compute all the k + 3(h − amin − i)
unknowns with the linearization technique. In other words, the worst case is
still a = amin where we need to use 2amin linear equations and 14(h − amin)
quadratic equations.

Then, we are only left with the cases i = 1 and i = 2. It is easy to observe
that the above deduction is not tight. Therefore, it is still possible that when
i = 1 and i = 2, we can also only use at most 2amin linear equations and
14(h − amin) − 14i quadratic equations. Specifically, for a concrete choice of
(h, amin), we can simply check whether

14h− 14(amin + i) ≥ (H − 3i) + (H − 3i)(H − 1− 3i)/2

holds for i ∈ {1, 2}, where H = k + 3h− 5amin. This is equivalent to checking

14(h− amin) ≥ H +H(H − 1)/2 + 17− 3H,

14(h− amin) ≥ H +H(H − 1)/2 + 43− 6H.

It is found that 17 − 3H < 0 and 43 − 6H < 0 for all the choices specified in
Table 2 and Table 3, i.e. H > 8.

All in all, when a > amin, either Equation 17 or Equation 18 must hold if
moving to Step 3. In addition, we need to use at most 2amin linear equations
and 14(h−amin)−14i quadratic equations to compute all the k+3(h−amin− i)
unknowns with the linearization technique.

34

	Algebraic Meet-in-the-Middle Attack on LowMC
	Fukang Liu, Gaoli Wang, Willi Meier, Santanu Sarkar, Takanori Isobe

