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ABSTRACT
Reaching consensus is the single most crucial problem in fault-

tolerant distributed computing. This paper studies asynchronous

consensus with Byzantine failures commonly known as asynchro-

nous binary Byzantine agreement (ABA). ABA is a key component

as well as a bottleneck for (almost) all known asynchronous Byzan-

tine fault-tolerant (BFT) protocols and asynchronous multi-party

computation (MPC) with guaranteed output. This paper addresses

two significant problems in ABA: we propose the first common-

coin based ABA with 2 steps only in a round and the first practical

solution on running ABA in a fully parallelizable manner.

We first present Pillar, a new round-based ABA protocol using

common coins, having 2 steps in a round. Pillar can be directly used

to improve all practical asynchronous BFT protocols implemented

and MPC protocols achieving guaranteed output. To demonstrate

the performance of Pillar, we use it in the BEAT protocol based on

the classic framework of Ben-Or, Kemler, and Rabin and HoneyBad-

gerBFT, and implement a new BFT protocol, called ACE, providing

up to 2x the throughput of BEAT.

We go on to suggest reproposable ABA (RABA), a generalized

ABA primitive that allows a replica to change its mind and vote

twice. In contrast to conventional ABA, RABA requires the protocol

to be biased towards 1, but does not require external validity (via,

e.g., expensive threshold signatures). We use Pillar to build Pisa, a

signature-free RABA protocol that is as efficient as Pillar. We also

show how to turn some other ABA protocols (including the one by

Cachin, Kursawe, and Shoup) to RABA. We then propose a novel

asynchronous BFT framework built on reliable broadcast (RBC) and

RABA. This leads to the first fully parallelizable asynchronous BFT

protocol, allowing all ABA instances to run in a strictly concurrent

manner. Our concrete instantiation, called PACE, consistently and

significantly outperforms existing asynchronous BFT protocols in

terms of all metrics, having much fewer steps than all asynchronous

BFT implemented for all practically large systems. PACE provides

6x the throughput of BEAT when there are 91 replicas. Such a

solution can be directly used as a solution to run ABA in parallel,

a procedure needed not just in BFT but in interactive consistency

and MPC with guaranteed output. Our result, therefore, identifies

RABA as a first-class primitive in distributed computing.

Also, the PACE framework lays the foundation on information-

theoretic asynchronous BFT and asynchronous BFT without public-

key cryptography.

KEYWORDS
asynchronous BFT, binary consensus, blockchain, fault tolerance

1 INTRODUCTION
The consensus problem is one of the most fundamental problems in

fault-tolerant distributed computing. Consensus allows processes

in a distributed system to agree on a common value out of the

values they propose. The consensus problem was formally intro-

duced in the context of Byzantine failures by Lamport, Shostak,

and Pease [43]. This paper focuses on the asynchronous binary

consensus problem with Byzantine failures, commonly known as

"asynchronous binary Byzantine agreement (ABA)." As a funda-

mental primitive, ABA has been extensively studied (e.g., [13, 16,

20, 24, 37, 48, 51, 53, 56, 58, 60]). ABA has recently drawn renewed

attention, as it is the core component for asynchronous BFT (atomic

broadcast) and BFT is deemed as the standard model for permis-

sioned blockchains [6, 23, 57, 61, 62]. Indeed, all known efficient

asynchronous BFT protocols ever implemented (except [32]) directly
rely on ABA as a building block [19, 34, 39, 44, 49, 50]. Moreover, as

demonstrated in RITAS [50], BEAT [34], and Dumbo [39], ABA is

actually the major bottleneck for all these BFT systems. ABA is also

the key building block in asynchronous multi-party computation

(MPC) with guaranteed output [10, 12, 26, 46]. Very often, the BFT

and MPC protocols mentioned above [10, 12, 26, 34, 44, 46, 49],

together with protocols such as interactive consistency [11], need

to run ABA in parallel. How to run ABA in a practical and fully
parallelizable way is also a major open problem in the area.

This paper improves the ABA primitive itself and presents a new

and practical paradigm for running ABA in a fully parallelizable

manner. In particular, we propose the first ABA protocol using 2

steps in a round from regular common coins and assuming authen-

ticated channels only. We propose a novel and generalized ABA

primitive RABA ("allowing one to change its vote") and use it as

a building block for parallel ABA. These results allow us to build

significantly more efficient asynchronous BFT and MPC protocols

and any protocols using ABA.

A close look at ABA. The ABA protocol by Mostefaoui, Moumen,

and Raynal (MMR) [51] is known as the most efficient common-

coin based ABA protocol. It relies on authenticated channels only,

terminating in 2 rounds on average (completing within𝑂 (𝑟 ) rounds
with probability 1− 2

−𝑟
). In each round, MMR ABA has 2 or 3 steps

(without counting the step for common coin). Asynchronous BFT

protocols, such as HoneyBadgerBFT [49] and BEAT [34], in their

proceeding versions, utilize MMR ABA.

MMRABA, however, has a liveness issue reported independently

in [1, 59]. In particular, the protocol assumes perfect random coins

completely independent of the state of all correct replicas at the

point when they query the coin. The property cannot be guaranteed

by any cryptographic coin-flipping protocols. A malicious network

scheduler can force correct replicas to enter the next round of
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consensus with inconsistent values, causing the protocol not to

terminate.

The journal version of MMR [52] does not have the issue but

has 9 to 13 steps for each round. Cobalt ABA [48] also provides a

solution by modifying MMR ABA, having 3 or 4 steps in each round.

Recent BFT implementations including EPIC [44] and Dumbo [39]

use Cobalt ABA. Crain also proposes an ABA protocol assuming

authenticated channels, but uses a high-threshold common coin

protocol which is less efficient to construct [4, 33] and relies on

stronger assumptions [20].

A close look at asynchronous BFT. Because of its intrinsic ro-
bustness, completely asynchronous BFT has been extensively stud-

ied [2, 12, 19, 42, 50, 54]. Having long been viewed as a "theoretical"

approach, several recent asynchronous BFT systems—such as Hon-

eyBadgerBFT [49], BEAT [34], Dumbo [39], and EPIC [44]—have

shown their performance becomes comparable to their partially

synchronous counterparts.

Efficient asynchronous BFT protocols may be roughly divided

into two categories: the BKR (Ben-Or, Kelmer, and Rabin) para-

digm [12] including HoneyBadgerBFT, BEAT, and EPIC, and the

CKPS (Cachin, Kusawe, Petzold, and Shoup) paradigm [19] includ-

ing SINTRA [21] and Dumbo. Both paradigms have their ben-
efits and drawbacks: the BKR framework is information-
theoretically (IT) secure (if assuming an IT common coin
protocol) and achieves quantum safety (as defined in [40]); it
has an 𝑂 (log𝑛) running time. The CKPS framework is com-
putationally secure; it has an 𝑂 (1) running time but a large
hidden constant.

Neglecting the security model, even just considering perfor-

mance, the "common belief" that there is no "one-size-fits-all" BFT

protocol has, thus far, remained true for the case of asynchronous

BFT. For instance, a recent (state of the art) asynchronous BFT,

Dumbo, largely follows but refines CKPS by reducing its commu-

nication complexity, at the price of four more all-to-all communi-

cations and 𝑂 (𝑛3) expensive pairing-based threshold signatures (a

pairing-based signature is about 10x slower than a conventional

signature). Dumbo, however, has 14 steps even in the best-case

scenario (where the ABA instance terminates in one round) and

on average 32 steps. The protocols following the BKR paradigm

terminate in 𝑂 (log 𝑛) rounds but only 6 or 7 steps in the best-case

scenario. It was shown that Dumbo outperforms HoneyBadgerBFT

when 𝑛 is large in the WAN setting, but Dumbo is less efficient

than BEAT (being more efficient than HoneyBadgerBFT) in other

scenarios, for instance, when 𝑛 is small or when there is no con-

tention. Moreover, while one could make protocols in the BKR

paradigm adaptively secure as shown in EPIC [44], it is challeng-

ing to build practical BFT protocols with adaptive security from

CKPS or Dumbo. In particular, the CKPS paradigm uses expensive

threshold cryptography extensively, and it would be inefficient to

replace these cryptographic operations using much more expensive

adaptively secure cryptography [8]. In addition, it is well known

that intractability problems in groups with bilinear pairings (used

in HoneyBadgerBFT, Dumbo, and EPIC) are weaker than the con-

ventional discrete logarithm problems in elliptic curve groups (used

in BEAT).

This work improves upon the BKR framework and all pro-
tocols along this line of research (e.g., all BKR descendants,
all multi-party computation using BKR, asynchronous dis-
tributed key generation [33, 41], interactive consistency).

This work enables asynchronous BFT without public-key
cryptography, information-theoretic asynchronousBFT, highly
efficient asynchronous distributed key generation, and many
other high-level Byzantine-resilient protocols.

1.1 Our Technical Contributions
A nearly optimal common-coin based ABA.We first present

Pillar, a new ABA protocol using authenticated channel and regular

threshold common coins. Pillar has 2 or 3 steps in a round, in

contrast to the state-of-the-art Cobalt ABA protocol requiring 3 or

4 steps or Crain’s ABA requiring high-threshold common coins [31]

(which, as we will argue, are more difficult to construct). We develop

new techniques of building ABA. As demonstrated in prior works,

ABA is the bottleneck for all BFT implementations available. Pillar,

therefore, can be used to improve all these protocols, including

HoneyBadgerBFT, BEAT, Dumbo, and EPIC. Pillar can also be used

to improve asynchronous MPC protocols known [10, 12, 26, 46].

Note that it is fair to say Pillar and MMR ABA have 2 steps, as

the additional step may or may not be triggered. The situation,

especially for the message pattern, is the same as that of Bracha’s

broadcast [16]: Bracha’s broadcast has 3 or 4 steps, but we often

say it is a 3-step protocol. It is easy to show that ABA with 1 step

per round is unachievable assuming optimal resilience, so the best

one can hope for is a 2-step ABA.

RABA.We suggest reproposable ABA (RABA), a newABA primitive

allowing replicas to change votes if needed. We utilize Pillar to build

Pisa, a RABA protocol as efficient as Pillar. We view RABA as a

first-class and powerful primitive, one is essential to improved BFT

in this paper and other applications we briefly introduce shortly.

We also show in the Appendix how to transform some other ABA

protocols (e.g., [20]) to RABA protocols.

A new framework for parallel ABA, BFT, interactive consis-
tency, and MPC. The paper uses RBC and ABA as a black box to

build a new paradigm for parallel ABA.

• The framework leads to the first fully parallelizable asynchro-

nous BFT protocol, allowing all ABA instances to run in a

strictly concurrent way. The improvement can increase the

throughput dramatically but also reduce the latency concretely.
In fact, if calculating the concrete time complexity (exposing all

hidden terms), we find the instantiations from our framework

outperform existing protocols ever implemented for practically

large 𝑛’s, in both best-case and average-case scenarios, and in

terms of the number of cryptographic operations (Table 1 and

Table 5 in Appendix A).

• The framework can be directly applied to interactive consis-

tency [11] without modification.

• The framework improves the state-of-the-art asynchronous

common subset (ACS) framework used in MPC or asynchro-

nous distributed key generation. Note that the CKPS framework

cannot be used in these works.

We rigorously prove the correctness of all our protocols.
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IT secure (using quantum cryptographic steps 𝑛 = 7 steps 𝑛 = 31 steps 𝑛 = 91 steps 𝑛 = 301

IT common coin)? safety? assumption best avg best avg best avg best avg

HoneyBadgerBFT [49]

√ √
pairing 6 22.38 6 34.45 6 43.61 6 53.91

BEAT [34]

√ √
CDH 6 22.38 6 34.45 6 43.61 6 53.91

EPIC [44]

√ √
pairing 6 22.38 6 34.45 6 43.61 6 53.91

Dumbo [39] pairing 15 32 15 32 15 32 15 32

Dumbo-Pillar (Pillar this paper) pairing 14 26 14 26 14 26 14 26

ACE (this paper)

√ √
CDH 5 15.92 5 23.96 5 30.07 5 36.94

PACE (this paper)

√ √
CDH 4 11.48 4 15.62 4 18.69 4 22.13

Table 1: Some asynchronous BFT protocols. Dumbo-Pillar is identical to Dumbo, expect that Dumbo-Pillar uses our more
efficient Pillar ABA as the underlying ABA. IT security means information-theoretic security. HoneyBadgerBFT and BEAT,
strictly speaking, do not attain IT security even if assuming IT secure common coins; they can be made IT secure if following
the technique of EPIC in selecting transactions, so we have "yes" for them for IT security. Quantum safety is defined in
DAG-Rider [40]; quantum security = quantum safety + quantum liveness. We illustrate the number of steps with a system of 𝑛
nodes using several examples. "Best" means the best possible case, while "avg" represents the expected number of steps. We
show in Appendix A that the expected number of steps for PACE is larger than that of Dumbo-Pillar only when 𝑛 > 1,000.

1.2 Our Practical Contributions
On the practical side, we implement two new efficient asynchronous

BFT systems—ACE and PACE. ACE follows the classic framework

of Ben-Or, Kemler, and Rabin [12] and is identical to BEAT except

that the ABA phase now uses Pillar. ACE provides up to 2x the

throughput of BEAT. PACE uses our new framework and Pisa. PACE

significantly outperforms existing asynchronous BFT protocols in

terms of all metrics (latency under no contention, throughput,

latency vs. throughput, and scalability).

It is evident that when 𝑛 is small, PACE has much fewer steps

than Dumbo and others. Even when 𝑛 = 91, PACE needs 19 steps on

average, while Dumbo and BEAT have 32 and 44 steps, respectively.

In fact, Dumbo, even if using our improved ABA, would have fewer

steps only when 𝑛 >1,000. The significant improvement is due

to the more efficient ABA protocol and our new framework that

removes the BKR phase bottleneck. Also, PACE is pairing-free,

while Dumbo requires 8.54×10
5
expensive pairings operations. In

particular, PACE provides 6.1x the throughput of BEAT for the case

of 𝑛 = 91 in WANs.

Remarkably, both ACE and PACE rely on awell-studied, standard,

and pairing-free cryptographic assumption (Computational Diffie-

Hellman for elliptic curves), achieving standard 128-bit security.

Both of them can be easily made adaptively secure at relatively

low cost as in EPIC [44] and made quantum safe (but not quantum

live) [40]. These features are in sharp contrast to constructions

derived from the CKPS paradigm relying heavily on expensive,

computationally secure threshold signatures.

1.3 Derived and Up-Coming Works
We view RABA and the new BFT framework from RBC and RABA

as important contributions to fault-tolerant distributed computing.

This work is the first of several we have:

• The BFT framework introduced here can be used to build the

first practical asynchronous BFT protocol—WaterBear, which

can be implemented and achieve information-theoretic secu-

rity [35].We also provide a quantum secure protocol–WaterBear-

QS, which only relies on authenticated channels and hash func-

tions. The two protocols also achieve adaptive security, assum-

ing no dealers or trusted setup. They offer comparable perfor-

mance to state-of-the-art asynchronous BFT protocols.

• The aforementioned protocols can be used to construct practical

asynchronous distributed key generation (ADKG) protocols.

Implementations are underway.

• The RABA protocol itself is of particular interest and can be

used to construct various new high-level protocols with either

asymptotically or concretely better efficiency.

2 SYSTEM MODEL AND DEFINITIONS
We consider distributed computing protocols, where 𝑓 out of 𝑛

replicas may fail arbitrarily (Byzantine failures). The protocols we

consider in this work (ABA, BFT, and RBC) assume 𝑓 ≤ ⌊𝑛−1

3
⌋,

which is optimal. We consider completely asynchronous systems

making no timing assumptions on message processing or transmis-

sion delays. A (Byzantine) quorum is a set of ⌈𝑛+𝑓 +1
2
⌉ replicas. For

simplicity, we may assume 𝑛 = 3𝑓 + 1 and a quorum size of 2𝑓 + 1.

In our protocols, we may associate each protocol instance with a

unique session identifier 𝑠𝑖𝑑 , tagging each message in the protocol

with 𝑠𝑖𝑑 ; we may omit these identifiers when no ambiguity arises.

Asynchronous (binary) Byzantine agreement (ABA). An ABA

abstraction is specified by propose and decide. Each replica proposes

an initial binary value (vote) for consensus and replicas will decide

on some value. ABA should satisfy the following properties:

• Validity: If all correct replicas propose 𝑣 , then any correct replica
that terminates decides 𝑣 .

• Agreement: If a correct replica decides 𝑣 , then any correct

replica that terminates decides 𝑣 .
• Termination: Every correct replica eventually decides some

value.

• Integrity: No correct replica decides twice.
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Validated Byzantine agreement (VBA). Conventional ABA im-

plements a binary decision. CKPS [19] considers validated Byzan-

tine agreement (VBA) and uses VBA to build efficient Byzantine

atomic broadcast protocols. VBA generalizes ABA in two aspects.

First, decisions in ABA can be a value from an arbitrarily large set.

Second, VBA has a validity condition, external validity, encompass-

ing the standard validity condition as a special case. In VBA, each

replica adds some validation data 𝜋 to the proposed value 𝑣 and

the decided value (𝑣, 𝜋) satisfies a global predicate 𝑄 known to all

parties such that 𝑄 (𝑣, 𝜋) holds. Such a validation proof, in practice,

can be constructed using, e.g., threshold signatures. A VBA with

predicate 𝑄 satisfies the following properties:

• External validity: Every correct replica that terminates decides
𝑣 validated by 𝜋 such that 𝑄 (𝑣, 𝜋) holds.

• Agreement: If a correct replica decides 𝑣 , then any correct

replica that terminates decides 𝑣 .
• Termination: Every correct replica eventually decides some

value.

• Integrity: If all replicas follow the protocol, and if a replica

decides 𝑣 validated by 𝜋 , then some replica proposed 𝑣 validated

by 𝜋 .

As VBA explicitly assumes a computationally bounded adversary,

CKPS additionally bounds the running time of the adversary by

defining the following property:

• Efficiency: The communication complexity of the protocol is

probabilistically uniformly bounded [19].
1

CKPS also defines for VBA on binary values (namely, validated

ABA) an additional and optional validity property, "ABA biased

towards 1," which we simply call biased validity.

• Biased validity: If at least 𝑓 + 1 correct replicas propose 1, then

all correct replicas that terminate decide 1.

This paper does not use VBA but uses a new ABA primitive,

called RABA, which we will introduce in Sec. 7.1. We will compare

VBA and RABA in detail.

BFT.We use BFT and (Byzantine) atomic broadcast interchange-

ably. Syntactically, in BFT, a replica a-delivers (atomically deliver)

transactions, each submitted by some client. The client computes a

final response to its submitted transaction from its responses from

replicas. The correctness of a BFT protocol is specified as follows:

• Agreement: If any correct replica a-delivers a transaction 𝑡𝑥 ,

then every correct replica a-delivers 𝑡𝑥 .
• Total order: If a correct replica a-delivers a message 𝑡𝑥 before

a-delivering 𝑡𝑥 ′, then no correct replica a-delivers a message 𝑡𝑥 ′

without first a-delivering 𝑡𝑥 .
• Liveness: If a transaction 𝑡𝑥 is submitted to all correct replicas,

then all correct replicas eventually a-deliver 𝑡𝑥 .

RBC. We review the definition of Byzantine reliable broadcast

(RBC). A RBC protocol is specified by r-broadcast and r-deliver such
that the following properties hold:

• Validity: If a correct replica 𝑝 r-broadcasts a message𝑚, then 𝑝

eventually r-delivers𝑚.

1
Let 𝑋 be a random variable. We say 𝑋 is probabilistically uniformly bounded (by𝑇 ),

if there exist a fixed polynomial𝑇 (𝑘) and fixed negligible functions 𝛿 (𝑙) and 𝜖 (𝑘)
such that for all 𝑙, 𝑘 ≥ 0, Pr[𝑋 > 𝑙𝑇 (𝑘) ] ≤ 𝛿 (𝑙) + 𝜖 (𝑘) .

• Agreement: If some correct replica r-delivers a message𝑚, then

every correct replica eventually r-delivers𝑚.

• Integrity: For any message𝑚, every correct replica r-delivers
𝑚 at most once. Moreover, if a replica r-delivers a message𝑚

with sender 𝑠 , then𝑚 was previously r-broadcast by replica 𝑠 .

The paper uses AVID RBC of Cachin and Tessaro [22] that

achieves 𝑂 (𝑛 |𝑚 | + 𝜆𝑛2
log𝑛) communication, where 𝜆 is a secu-

rity parameter.

Common coins and thresholds. The common coin protocol out-

puts a binary value at each correct replica [53]. These protocols can

be divided into common coins with the regular thresholds (𝑓 + 1)

and common coins with the high thresholds (2𝑓 +1). Protocols from

both regular coins [48, 51] and high-threshold coins [20, 30, 31]

have been proposed.

It is preferred to use regular common coin protocols over high-

threshold common coin protocols (from both theoretical perspective

and practical perspective): first, without assuming a trusted setup,

it is more expensive to build decentralized key generation protocols

for high-threshold common coins than for regular common coins,

as high-threshold asynchronous verifiable (complete) secret shar-

ing is more expensive than the regular one [4, 33]. Second, even

assuming the trusted setup model, regular common coin protocols

are easier to construct. For instance, the most efficient common

coin protocols due to Cachin, Kursawe, and Shoup [20] include

a regular common coin protocol using the Computational Diffie-

Hellman (CDH) assumption and a high-threshold common coin

protocol that must use the (stronger) Decisional Diffie-Hellman

(DDH) assumption.

3 REVIEWING EFFICIENT ASYNCHRONOUS
BFT AND IDENTIFYING THEIR
BOTTLENECKS

We roughly divide efficient asynchronous BFT approaches into two

categories: the BKR (Ben-Or, Kelmer, and Rabin) paradigm [12]

and the CKPS (Cachin, Kusawe, Petzold, and Shoup) paradigm [19].

HoneyBadgerBFT [49], BEAT [34], and EPIC [44] fall into the BKR

paradigm, while SINTRA [21] and Dumbo [39] rely on the CKPS

paradigm. Both approaches proceed in epochs. In each epoch, all

replicas can propose transactions from their transaction pool as

a proposal. They then agree on a set containing the union of the

proposals proposed by replicas.

From a technical perspective, however, the two methods are

significantly different, leading to BFT protocols with significantly
different performance and security features.

3.1 The BKR Paradigm
The paradigm reduces asynchronous BFT to RBC and ABA. In each

epoch, all replicas first run an RBC phase to reliably broadcast their

proposals. Then they run an ABA phase, where 𝑛 parallel ABA

instances are invoked. The 𝑖-th ABA instance agrees on whether

the proposal of replica 𝑝𝑖 has been delivered in the RBC phase:

Upon RBC delivery of a proposal from 𝑝 𝑗 , the replica proposes 1

to the 𝑗-th ABA instance. If a correct replica 𝑝 𝑗 decides 1 for the

𝑖-th ABA instance, the proposal from 𝑝𝑖 is delivered. Otherwise,

the proposal is not included.

4



(a) BKR (HoneyBadgerBFT, BEAT, EPIC). (b) CKPS, Dumbo, Dumbo-Pillar. (c) Our new paradigm.

Figure 1: Visualizing asynchronous BFT. Assume there are 7 replicas (2 of which may have failed). RBC, CBC, and PRBC stand
for reliable broadcast, consistent broadcast, and provable reliable broadcast, respectively. RBC and CBC have three steps, and
PRBC has four steps. The BKR paradigm has two ABA subphases: replicas have to wait for the slowest ABA in the first subphase
to terminate before invoking the second subphase. Dumbo and Dumbo-Pillar (built on top of CKPS) have one PRBC phase (4
steps), two CBC phase (2× 3 steps), one permutation step ("P"), and three sequential distribution (1 step) and ABA (2 for Pillar
or 3 for Cobalt ABA) instances. (So Dumbo and Dumbo-Pillar have on average 32 and 26 steps, respectively.)

To guarantee throughput, the BKR paradigm requires that if

a replica has not received some proposals during the RBC phase,

the replica abstains from proposing 0 until 𝑛 − 𝑓 ABA instances

terminate with 1. This method ensures that proposals from at least

𝑛 − 𝑓 replicas are delivered. Otherwise, the throughput could be

0. The BKR paradigm breaks the parallelism of the "RBC+ABA"

structure, a performance bottleneck repeatedly pointed out by prior

works [9, 11, 49]. As shown in Figure 1a, the ABA phase has two

subphases: replicas have to wait until at least 𝑛 − 𝑓 ABA instances

terminate with 1 and then invoke the remaining ABA instances

with 0.

HoneyBadgerBFT [49]. HoneyBadgerBFT can be regarded as the

first practical instantiation of the BKR paradigm. As mentioned by

the authors, their protocol "refute(s) the prevailing wisdom that

such (asynchronous BFT) protocols are necessarily impractical."

HoneyBadgerBFT cherrypicks a bandwidth-efficient RBC, the AVID

broadcast of Cachin and Tessaro [22], and the MMR ABA [51]. In

particular, HoneyBadgerBFT uses a pairing-based threshold sig-

nature scheme [14] to generate common coins for MMR. Honey-

BadgerBFT uses a pairing-based threshold encryption scheme to

achieve liveness. The strategy is more efficient than the conven-

tional FIFO strategy used, for instance, by CKPS [19]. Bulk data is

carried only in the RBC phase, which dominates the communication

complexity; the ABA phase has two subphases and dominates the

running time, i.e., 𝑂 (log 𝑛).
BEAT [34]. BEAT is a collection of five asynchronous BFT proto-

cols following the BKR paradigm and being built on top of Hon-

eyBadgerBFT. BEAT0 eliminates the usage of expensive pairing

cryptography, thereby providing better latency and throughput.

The remaining four BEAT protocols essentially explore trade-offs

using different RBC primitives in the BKR framework to attain

various performance trade-offs. BEAT1 and BEAT2 explore how to

optimize latency at the price of having lower throughput. BEAT3

and BEAT4 are BFT storage protocols that keep all transaction

copies in the form of erasure coding; while BEAT3 and BEAT4 sig-

nificantly outperform BEAT0, they are not conventional BFT state

machine replication protocols. Therefore, subsequent protocols

compare themselves with BEAT0 only.

EPIC [44]. EPIC is the first practical asynchronous BFT protocol

with adaptive security, where the adversary can choose to corrupt

replicas at any moment during the execution of the protocol. Prior

protocols, such as SINTRA, HoneyBadgerBFT, and BEAT, achieve

static security only, where the adversary needs to choose the set of

corrupted replicas before the execution of the protocol. EPIC is built

on top of BEAT0 yet with two significant differences: first, EPIC

uses a hybrid transaction selection approach removing the need

for threshold encryption used in BEAT; second, EPIC leverages a

common-coin protocol with adaptive security [8]. However, the

adaptively secure common coin protocol relies on expensive pairing-

based cryptography.While achieving reasonable performance, EPIC

is much less efficient in terms of both latency and throughput than

BEAT; the fact, once again, substantiates the well-established view

of favoring regular cryptography (e.g., elliptic curve) over pairing-

based cryptography.

3.2 The CKPS Paradigm
The CKPS paradigm reduces asynchronous BFT to (multi-valued)

validated Byzantine agreement (VBA). As described in Sec. 2, VBA

generalizes ABA in the sense that VBA allows decisions on a value

from an arbitrarily large set and has external validity. CKPS shows

that VBA can be built using (verifiable) consistent broadcast (CBC)

and ABA. The CKPS protocol terminates in a constant expected

number of rounds, but there are two bottlenecks. First, the CKPS

protocol has a large 𝑂 (𝑛3 |𝑚 |) communication complexity [19] for

the VBA component. Second, it uses a significantly large num-

ber of threshold signatures; unlike other threshold cryptosystems,

the instantiations for threshold signature either rely on expensive

pairing-based cryptography [14] or RSA problems for the same

security level [55].

SINTRA [21]. SINTRA includes an atomic broadcast implemen-

tation of the CKPS paper. It uses Shoup’s RSA threshold signature

scheme and chooses to implement a simpler atomic broadcast pro-

tocol in CKPS that does not terminate in an expected constant

number of rounds. Being the first CKPS instantiation, SINTRA is

not optimized for high throughput.

Dumbo [39]. Dumbo includes two asynchronous BFT protocols—

Dumbo1 and Dumbo2. Dumbo2 performs consistently better than

Dumbo1, so we focus on Dumbo2 only. Dumbo is motivated by the

fact that the VBA construction in CKPS requires a large bandwidth.

Instead of directly applying the bulk data to VBA, Dumbo introduces
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an additional provable RBC (PRBC) phase such that only the PRBC

phase carries bulk data, and the VBA phase takes as input data

fingerprints only. Hence, Dumbo has four more steps from the

PRBC phase, including three expensive 𝑛 to 𝑛 communication and

an additional 𝑂 (𝑛3) pairing operations, incurring higher latency

than CKPS.

Dumbo shares similar performance as HoneyBadgerBFT when

𝑛 is small or medium in WANs but outperforms HoneyBadgerBFT

when 𝑛 becomes larger. Dumbo is less efficient than BEAT when 𝑛

is small in WANs, as BEAT consistently outperforms HoneyBad-

gerBFT. Dumbo did not provide the evaluation in the LAN setting

where cryptographic overhead, instead of communication, may

dominate. In Appendix A, we evaluate the popular BN curve to

understand the latency for Dumbo: the latency for the pairing op-

erations alone, without counting any communication or any other

operations, is larger than the entire latency of BEAT.

The overhead incurred by expensive pairing operations inDumbo

cannot be mitigated using the elliptic curve cryptography as in

BEAT, as Dumbo requires the transferability of threshold signa-

tures. Besides, Dumbo cannot be efficiently made adaptively secure

as in EPIC because Dumbo usesmuchmore threshold cryptographic

operations than BEAT and it would be prohibitively expensive to

replace all threshold cryptography using adaptively secure cryp-

tography.

4 REVIEWING ABA PROTOCOLS
Table 2 summarizes ABA protocols proposed in recent years using

common coins and terminating in an expected constant number of

rounds. We divide these protocols into two categories: ABA assum-

ing authenticated channels and ABA requiring the transferability

of digital signatures.

For instance, CKS ABA runs in two steps per round (essentially

optimal), except its round 0 has three steps. The protocol, however,

heavily relies on expensive threshold signatures. Crain-Sig20 [30],

too, uses threshold signatures. Neither protocol has been imple-

mented in any asynchronous BFT so far.

signature needed steps per round
★

coin type

CKS05 [20] yes 2 or 3
∗

high threshold

MMR14 [51] (insecure) no 2 or 3 regular

MMR journal [52] no 9 to 13 regular

Cobalt18 [48] no 3 or 4 regular

Crain-Sig20 [30] yes 1 or 2
‡

high threshold

Crain20 [31] no 2 to 3
†

high threshold

Pillar (this work) no 2 or 3 regular

Table 2: Comparison of ABA protocols using common coins.
Msg denotes the message complexity. The number of steps
per round does not include the steps for common coins. The
expected number of steps is twice the number of steps per
round for all protocols. MMR ABA has a liveness issue if
instantiated using any common coins. Pillar is as efficient
as MMR ABA.★Steps per round. ∗CKS has 3 steps in round
0. ‡Crain-Sig20 is a variant of CKS with 2 steps in round 0
and 1 step in round greater than 0. †In the ‘happy’ path for
rounds greater than 0, Crain20 may have only 1 step.

MMR ABA uses authenticated channels only and has 2 or 3

steps per round. MacBrough [1] and Tholoniat and Gramoli [59]

indepedently discovered that MMR might never terminate if using

any cryptographic common-coin protocols. MacBrough proposed

a solution in the Cobalt protocol [48] which has 3 or 4 steps in

each round. (In Appendix B, we also describe the pseudocode of

MMRABA and Cobalt ABA and illustrate the liveness issue of MMR

ABA in detail.) The journal version of MMR ABA also recognized

the issue and fixed the problem with more steps than Cobalt ABA.

Cobalt ABA has been implemented in Dumbo and EPIC.

This paper introduces a new ABA protocol (Pillar) that relies on

authenticated channels and regular common coins. Pillar is the most

efficient ABA assuming regular coins. As we argued in Sec. 2, high

threshold common coins are less favorable than regular common

coins, regardless of whether assuming trusted setup.

For all these ABA protocols, the expected number of steps is

simply 2x the steps per round, as they all need on average 2 rounds

to terminate.

5 THE PILLAR ABA PROTOCOL
We present in Figure 2 Pillar, a novel signature-free ABA protocol.

We begin with some notation.

• For 𝑏 ∈ {0, 1}, ¯𝑏 = 1 − 𝑏.
• ∗ in a message may represent 𝑏, ¯𝑏, or ⊥, where 𝑏 ∈ {0, 1}.

For instance, aux𝑟 (∗, 𝑏) may represent aux𝑟 (𝑏,𝑏), aux𝑟 ( ¯𝑏, 𝑏),
aux𝑟 (⊥, 𝑏). bval𝑟 (𝑏, ∗) may represent bval𝑟 (𝑏, 𝑏), bval𝑟 (𝑏, ¯𝑏), or
bval𝑟 (𝑏,⊥). We may simply omit ∗ when there is no ambiguity;

for example, we may write aux𝑟 () to denote aux𝑟 (∗, ∗).
• Let 𝑣𝑎𝑙𝑠 be a vector (multiset) consisting of 0, 1, and⊥.V1 (𝑣𝑎𝑙𝑠) =

𝑏 if the only value in 𝑣𝑎𝑙𝑠 is 𝑏 for 𝑏 ∈ {0, 1,⊥}.
• V2 (𝑣𝑎𝑙𝑠, 𝑏) = 𝑡 if 𝑣𝑎𝑙𝑠 includes 𝑏 only or both 𝑏 and ⊥, where

𝑏 ∈ {0, 1}, and the number of 𝑏’s in 𝑣𝑎𝑙𝑠 is 𝑡 .

• majority(𝑣𝑎𝑙𝑠) = 𝑏 for 𝑏 ∈ {0, 1}, if 𝑏 is a simple majority

in 𝑣𝑎𝑙𝑠 , i.e., the number of 𝑏’s is no less than ⌈(|𝑣𝑎𝑙𝑠 | + 1)/2⌉.
majority(𝑣𝑎𝑙𝑠) = ⊥ otherwise.

5.1 Workflow
As illustrated in Figure 2, the Pillar protocol has two message types:

bval𝑟 () and aux𝑟 (). In each round 𝑟 , a replica 𝑝𝑖 has an input 𝑒𝑠𝑡𝑟
and an auxiliary input𝑚𝑎𝑗𝑟 . The 𝑒𝑠𝑡𝑟 value is a binary value (i.e.,

𝑒𝑠𝑡𝑟 ∈ {0, 1}) and𝑚𝑎𝑗𝑟 ∈ {0, 1,⊥}. In each round, 𝑝𝑖 first broadcasts
a bval𝑟 (𝑒𝑠𝑡𝑟 ,𝑚𝑎 𝑗𝑟 ) message. The value of𝑚𝑎𝑗𝑟 is set to ⊥ in round

0. A correct replica does not change its𝑚𝑎𝑗𝑟 within a round. If 𝑝𝑖
receives more than 𝑓 + 1 bval𝑟 (𝑏) messages such that 𝑏 is different

from its input, it also broadcasts bval𝑟 (𝑏,𝑚𝑎𝑗𝑟 ). If a replica receives
2𝑓 + 1 bval𝑟 (𝑏, ∗) messages with the same 𝑏 value (𝑏 is either 0 or

1), 𝑏 is added to a set 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 .

In addition, 𝑝𝑖 checks the𝑚𝑎𝑗𝑟 values (which form a set𝑚𝑎𝑗𝑠)

in the bval𝑟 (𝑏,𝑚𝑎𝑗𝑟 ) messages. Specifically, 𝛿𝑟 (𝑏) is set to 1 for the

following conditions. If 𝑟 = 0, 𝛿𝑟 (𝑏) is set to 1 for any 𝑏 ∈ {0, 1}.
If 𝑟 > 0, the replica compares 𝑏 with the common coin value

𝑠𝑟−1 in round 𝑟 − 1. If 𝑏 = 𝑠𝑟−1 and 𝑝𝑖 receives only bval𝑟 (𝑏,𝑏)
and bval𝑟 (𝑏,⊥), 𝛿𝑟 (𝑏) is set to 1. If 𝑏 = 𝑠𝑟−1 and 𝑝𝑖 only receives

bval𝑟 (𝑏, 𝑏) (i.e., V1 (𝑚𝑎𝑗𝑠) = 𝑏), 𝛿𝑟 (𝑏) is set to 1. After 𝑝𝑖 receives

𝑛 − 𝑓 bval𝑟 () messages, it sends aux𝑟 (𝑏,𝑏) when 𝛿𝑟 (𝑏) = 1 and

aux𝑟 (⊥, 𝑏) otherwise. A correct replica only sends one aux𝑟 () mes-

sage in each round.
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upon event 𝑝𝑟𝑜𝑝𝑜𝑠𝑒 (𝑠𝑖𝑑, 𝑣𝑖 )
if 𝑟 = 0, 𝑒𝑠𝑡0 ← 𝑣𝑖 ,𝑚𝑎𝑗0 ← ⊥

round r
𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ← ∅
𝑚𝑎𝑗𝑠 ← ∅
broadcast bval𝑟 (𝑒𝑠𝑡𝑟 ,𝑚𝑎𝑗𝑟 ) {1st phase}

upon receiving bval𝑟 (𝑣, 𝑐) from 𝑗

𝑚𝑎𝑗𝑠 ←𝑚𝑎𝑗𝑠 ∪ {𝑐 }
upon receiving 𝑓 + 1 bval𝑟 (𝑏, ∗)
if bval𝑟 (𝑏,𝑚𝑎𝑗𝑟 ) has not been sent

broadcast bval𝑟 (𝑏,𝑚𝑎𝑗𝑟 )
upon receiving 𝑛 − 𝑓 bval𝑟 (𝑏, ∗)
𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ← 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ∪{𝑏 }
if (𝑟 > 0 and ((𝑏 = 𝑠𝑟−1 and V1 (𝑚𝑎𝑗𝑠) = 𝑏) or (𝑏 = 𝑠𝑟−1 and

¯𝑏 ∉𝑚𝑎𝑗𝑠))) or

𝑟 = 0

𝛿𝑟 (𝑏) ← 1

if aux𝑟 (𝑏, ∗) or aux𝑟 ( ¯𝑏, ∗) has not been sent

if 𝛿𝑟 (𝑏) = 1, broadcast aux𝑟 (𝑏,𝑏) {2nd phase}

else broadcast aux𝑟 (⊥, 𝑏)
upon receiving𝑛−𝑓 aux𝑟 (∗, ∗) where the sets of values carried by thesemessages

are 𝑣𝑎𝑙𝑠𝑟 and 𝑎𝑣𝑎𝑙𝑠𝑟 ; 𝑣𝑎𝑙𝑠𝑟 and 𝑎𝑣𝑎𝑙𝑠𝑟 are both subsets of 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 .

𝑠𝑟 ← coin𝑟
if V2 (𝑣𝑎𝑙𝑠𝑟 , 𝑏) ≥ ⌈𝑛+𝑓 +1

2
⌉ {a quorum of replicas voted for 𝑏}

𝑒𝑠𝑡𝑟+1 ← 𝑏

𝑚𝑎𝑗𝑟+1 ← 𝑏

if 𝑏 = 𝑠𝑟 , decide (𝑠𝑖𝑑,𝑏)
if 𝑟 > 0 and (V1 (𝑣𝑎𝑙𝑠𝑟 ) = ⊥ or V2 (𝑣𝑎𝑙𝑠𝑟 , 𝑏) < ⌈𝑛+𝑓 +1

2
⌉)

if V2 (𝑎𝑣𝑎𝑙𝑠𝑟 , 𝑏) ≥ ⌈𝑛+𝑓 +1
2
⌉

𝑒𝑠𝑡𝑟+1 ← 𝑏

𝑚𝑎𝑗𝑟+1 ← 𝑏

if 𝑏 = 𝑠𝑟−1 and 𝑏 = 𝑠𝑟 , decide (𝑠𝑖𝑑,𝑏)
else if {0, 1} ∈ 𝑎𝑣𝑎𝑙𝑠𝑟 and 𝑏 = 𝑠𝑟−1

𝑒𝑠𝑡𝑟+1 ← 𝑏

𝑚𝑎𝑗𝑟+1 ← 𝑏

if 𝑒𝑠𝑡𝑟+1 has not been set yet {all other conditions}

𝑒𝑠𝑡𝑟+1 ← 𝑠𝑟
if 𝑟 = 0,𝑚𝑎𝑗𝑟+1 ← 𝑠𝑟
else𝑚𝑎𝑗𝑟+1 ← majority(𝑣𝑎𝑙𝑠𝑟 )

𝑟 ← 𝑟 + 1, continue to the next round

Figure 2: The Pillar protocol. The code for replica 𝑝𝑖 . Broad-
cast in the code means best-effort broadcast.

Replica 𝑝𝑖 only accepts an aux𝑟 (𝑣1, 𝑣2) message if both 𝑣1 and

𝑣2 are added to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 . Furthermore, a replica does not accept

an aux𝑟 (𝑣, 𝑣) or aux𝑟 (∗,⊥) message, since these values are not

allowed according to our specification. Furthermore, if a replica

sets 𝛿𝑟 (𝑏) = 1 and receives aux𝑟 ( ¯𝑏, ∗), it discards the message.

Upon receiving 𝑛 − 𝑓 aux𝑟 () messages, there are three cases. 1) If

𝑝𝑖 receives a quorum of aux𝑟 (𝑏,𝑏) messages, 𝑝𝑖 compares 𝑏 with

the common coin 𝑠𝑟 . If 𝑏 = 𝑠𝑟 , 𝑝𝑖 decides 𝑏. Otherwise 𝑝𝑖 enters the

next round with 𝑏 as both 𝑒𝑠𝑡𝑟+1 and𝑚𝑎𝑗𝑟+1. 2) If 𝑝𝑖 only receives

aux𝑟 (𝑏,𝑏) and aux𝑟 (⊥, 𝑏) and at least a quorum of the messages

are of the form aux𝑟 (∗, 𝑏), 𝑝𝑖 also compares 𝑏 with both 𝑠𝑟−1 and

𝑠𝑟 . If 𝑏 = 𝑠𝑟−1 and 𝑏 = 𝑠𝑟 , 𝑝𝑖 decides 𝑏. Otherwise, 𝑝𝑖 uses 𝑏 for

𝑒𝑠𝑡𝑟+1 and𝑚𝑎𝑗𝑟+1 and enters the next round. 3) If 𝑝𝑖 receives 𝑛 − 𝑓

aux𝑟 (⊥, 𝑏) and aux𝑟 (𝑏,𝑏) and 𝑠𝑟−1, 𝑝𝑖 compares 𝑏 with 𝑠𝑟 . If 𝑏 = 𝑠𝑟 ,

𝑝𝑖 uses 𝑏 for 𝑒𝑠𝑡𝑟+1 and𝑚𝑎𝑗𝑟+1 and enters the next round.

If none of the cases apply and 𝑒𝑠𝑡𝑟+1 has not been set yet, 𝑝𝑖 uses

the common coin value as the input (i.e., 𝑒𝑠𝑡𝑟+1) for the next round.
Furthermore, 𝑝𝑖 sets𝑚𝑎𝑗𝑟+1 to 𝑠𝑟 for 𝑟 = 0 and majority(𝑣𝑎𝑙𝑠𝑟 ) for
𝑟 > 0. Then 𝑝𝑖 enters the next round.

5.2 Analysis
There are two key elements in our design. First, in addition to the

input value 𝑒𝑠𝑡𝑟 , every replica needs to carry a majority value from

the previous round 𝑚𝑎𝑗𝑟 . This 𝑚𝑎𝑗𝑟 value is used in the bval𝑟 ()

step and will never change in the same round, though a replica

is allowed to broadcast 𝑒𝑠𝑡𝑟 = 1 and 𝑒𝑠𝑡𝑟 = 0. Furthermore, we

require that a replica sends an aux𝑟 (𝑏, 𝑏) message if 𝛿𝑟 (𝑏) = 1.

In round 0, 𝛿𝑟 (𝑏) = 1 for both 𝑏 = 0 and 𝑏 = 1. But in round

𝑟 > 0, since the𝑚𝑎𝑗𝑟 value does not change within a round, correct

replicas will only have 𝛿𝑟 (𝑣) = 1 for at most one value. This is

because if 𝑏 = 𝑠𝑟−1,𝑚𝑎𝑗𝑠 can only contain 𝑏 for a correct replica

to set 𝛿 (𝑏) = 1. If 𝑏 = 𝑠𝑟−1,𝑚𝑎𝑗𝑠 can be either 𝑏 or ⊥, but cannot
contain

¯𝑏. Therefore, it naturally prevents a network scheduler from

scheduling the messages and making some correct replicas have

an 𝑒𝑠𝑡𝑟+1 in the next round that is different from the common coin.

Second, we ensure that if a correct replica decides in round

𝑟 , all replicas will select the same 𝑒𝑠𝑡𝑟+1 and eventually decide

𝑒𝑠𝑡𝑟+1. If a correct replica 𝑝𝑖 decides 𝑏 = 𝑠𝑟 in round 𝑟 , it must

have received 2𝑓 +1 aux𝑟 (𝑏,𝑏), or 𝑏 = 𝑠𝑟−1. If 𝑝𝑖 receives aux𝑟 (𝑏,𝑏)
messages from a quorum of replicas, the 𝛿𝑟 (𝑏) value guarantees that
all correct replicas will send either aux𝑟 (𝑏,𝑏) or aux𝑟 (⊥, 𝑏), but not
aux𝑟 ( ¯𝑏, ¯𝑏). If 𝑝𝑖 only receives aux𝑟 (𝑏,𝑏), any correct replica 𝑝 𝑗 will

receive at least one aux𝑟 (𝑏, 𝑏), making it impossible for 𝑝 𝑗 to receive

either a quorum of aux𝑟 ( ¯𝑏, ∗) messages or aux𝑟 (∗, ¯𝑏) messages and

use 𝑒𝑠𝑡𝑟+1 = ¯𝑏. Furthermore, if 𝑝𝑖 receives 𝑛 − 𝑓 aux𝑟 (𝑏,𝑏) and
aux𝑟 (⊥, 𝑏) such that 𝑝𝑖 decides 𝑏, we know 𝑏 = 𝑠𝑟−1. A correct

replica 𝑝 𝑗 will never receive a quorum of aux𝑟 (∗, ¯𝑏) messages so as

to use
¯𝑏 as 𝑒𝑠𝑡𝑟+1. We prove the correctness of Pillar in Appendix C.

6 THE ACE BFT PROTOCOL
It is shown in [34, 39, 50] ABA is the bottleneck for asynchronous

BFT implementations. Hence, Pillar can be used to improve all

practical asynchronous BFT protocols, including HoneyBadgerBFT,

BEAT, Dumbo, and EPIC. To demonstrate the efficiency of Pillar,

we provide a new asynchronous BFT protocol, called ACE, that

follows the classic BKR framework [12]. ACE is identical to BEAT

except that the ABA phase now uses Pillar instead of Cobalt ABA.

We show the pseudocode of the ACE in Figure 3 that uses the r-
broadcast and r-deliver primitives of RBC, and propose and decide
primitives of ABA. As in BEAT, we use pairing-free, elliptic curve

based threshold common coins [20] (for ABA).

ACE proceeds in epochs initialized as 𝑒 = 0. Each epoch 𝑒 in-

cludes a RBC phase, including 𝑛 parallel RBC instances RBC𝑖 for

𝑖 ∈ [0..𝑛 − 1], and an ABA phase, including 𝑛 ABA instances ABA𝑖

for 𝑖 ∈ [0..𝑛 − 1], where RBC𝑖 is triggered by 𝑝𝑖 ∈ [𝑝0 ..𝑝𝑛−1] to
r-broadcast a proposal𝑚𝑖 (a batch of transactions) selected from

its buffer, and ABA𝑖 is triggered by correct replicas to decide if

𝑚𝑖 has been r-delivered. Following the BKR paradigm, the ABA

phase of ACE is not fully parallel, requiring that if a replica has not

received some proposal from 𝑝 𝑗 during the RBC phase, the replica

must abstain from proposing 0 for ABA𝑗 until 𝑛 − 𝑓 ABA instances

decide 1. To isolate the primitive instances, we tag each message in

the instances with 𝑒 .

7 RABA AND THE PISA RABA PROTOCOL
7.1 Definition of RABA
We introduce a new distributed computing primitive, reproposable

ABA (RABA). Unlike conventional ABA where replicas can vote

once only, RABA allows replicas to change their votes.

Syntactically, a RABA protocol tagged with a unique identifier
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init
𝑒 ← 0

upon selecting𝑚𝑖 from the buffer of 𝑝𝑖
r-broadcast ( [𝑒, 𝑖 ],𝑚𝑖 ) for RBC𝑖

upon r-deliver ( [𝑒, 𝑗 ],𝑚 𝑗 ) for RBC𝑗

if ABA𝑗 has not been started

propose ( [𝑒, 𝑗 ], 1) for ABA𝑗

wait until termination of any 𝑛 − 𝑓 ABA instances

for all ABA𝑗 instances that have not been started

propose ( [𝑒, 𝑗 ], 0)
upon decide ( [𝑒, 𝑗 ], 𝑣) for any value 𝑣 for all ABA instances

let 𝑆 be set of indexes for ABA instances that decide 1

wait until r-deliver ( [𝑒, 𝑗 ],𝑚 𝑗 ) for all ABA𝑗 such that 𝑗 ∈ 𝑆
a-deliver (∪𝑗∈𝑆 {𝑚 𝑗 }) in some deterministic order

𝑒 ← 𝑒 + 1

Figure 3: The ACE protocol. The code for replica 𝑝𝑖 for an
epoch 𝑒.

𝑠𝑖𝑑 is specified by propose(𝑠𝑖𝑑, ·), repropose(𝑠𝑖𝑑, ·), and decide(𝑠𝑖𝑑, ·),
where the input domain is {0, 1}. For our purpose, RABA is "biased

towards 1." Each replica can propose a value 𝑣 at the beginning of

the protocol. Each replica can propose a value only once. A correct

replica that proposed 0 is allowed to change its mind and repropose

1. A replica that proposed 1, however, is not allowed to repropose 0.

(That is, correct replicas should not do this.) If a replica reproposes 1,

it does so at most once. A replica terminates the protocol identified

by 𝑠𝑖𝑑 by generating a decide message. RABA (biased toward 1)

satisfies the following properties:

• Validity: If all correct replicas propose 𝑣 and never repropose 𝑣 ,
then any correct replica that terminates decides 𝑣 .

• Unanimous termination: If all correct replicas propose 𝑣 and
never repropose 𝑣 , then all correct replicas eventually terminate.

• Agreement: If a correct replica decides 𝑣 , then any correct

replica that terminates decides 𝑣 .
• Biased validity: If 𝑓 + 1 correct replicas propose 1, then any

correct replica that terminates decides 1.

• Biased termination: Let𝑄 be the set of correct replicas. Let𝑄1

be the set of correct replicas that propose 1 and never repropose

0. Let𝑄2 be correct replicas that propose 0 and later repropose 1.

If𝑄2 ≠ ∅ and𝑄 = 𝑄1 ∪𝑄2, then each correct replica eventually

terminates.

• Integrity: No correct replica decides twice.

RABA has a slightly different validity property modified for our

RABA syntax. It implies validity for two cases: 1) all correct replicas

propose 1 (and, of course, they cannot repropose 0 according to

our syntax) before termination; 2) all correct replicas propose 0 and

never repropose 1 before termination.

Unanimous termination is weaker than the conventional termi-

nation property: it guarantees termination only when all correct

replicas propose the same input. We levy restriction on correct
replicas only.

Validity and unanimous termination can be combined into a

single property:

• If all correct replicas propose 𝑣 and never repropose 𝑣 , then any

correct replica decides 𝑣 .

The agreement property of RABA is identical to that of ABA and

VBA.

Biased validity in RABA requires that if 𝑓 + 1 replicas, instead of

all correct replicas, propose 1, then a correct replica that terminates

decides 1. The property echoes that of VBA. We stress, however,

RABA is not in the context of "validated" BA (VBA). This is precisely

our goal, as validated BA requires the usage of expensive threshold

signatures or a vector of 𝑛 signatures as proofs which we strive to

avoid. Nevertheless, this also means that when using RABA, we no

longer have the powerful "validation" technique (and we need to

be creative when using RABA).

Our biased termination property ensures that the protocol will

eventually terminate as long as all correct replicas either propose 1

(and never repropose 0) or initially propose 0 but change their minds

to repropose 1. 𝑄1 can be an empty set. 𝑄2 cannot be an empty

set because otherwise biased termination is implied by unanimous

termination.

Unanimous termination and biased termination complement

each other. Remarkably, RABA does not have the usual termination

property. (Correspondingly, our RABA protocol may indeed never

terminate.) To use RABA in our favor, one must use a high-level

protocol to control the inputs of RABA, allowing, when necessary,

replicas to change their votes to attain termination eventually.

Allowing a replica to change itsmind and enabling a non-validated

version of biased validity/termination properties are two central

ideas underlying RABA.

Admittedly, RABA may look somewhat complex. Why not use

two ABA instances instead, one ABA for the "propose" phase and

the other ABA for the "repropose" phase? One possible anomaly

for this idea is that one replica might decide twice. Indeed, it is

possible that while some replica is participating in the second ABA,

the first ABA has terminated; it is also possible that some replicas

terminate for the first ABA, while some other replicas terminate

for the second ABA. According to our RABA definition, this is not

allowed because the "integrity"– no correct replica decides twice– is

introduced to govern both the propose operation and the repropose

operation in a single RABA instance explicitly associated with a

session identifier 𝑠𝑖𝑑 .

The overall formalization of RABA allows hiding—as much as

we could—subtle protocol implementation details, exposing a clean

API that can be neatly fit into a simple and novel asynchronous

BFT framework (to be described shortly).

7.2 Pisa: Efficient RABA Construction from
Pillar

We present a RABA protocol, Pisa, built on top of Pillar. As illus-

trated in Figure 4, we modify the round 𝑟 = 0 protocol of Pillar,

while the code for the round 𝑟 > 0 remains unchanged. In particular,

we make the following major changes in round 0. First, if a correct

replica 𝑝𝑖 proposes 1, it immediately adds 1 to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 , If 𝑝𝑖
has not previously broadcast any aux𝑟 () messages, it broadcasts

aux𝑟 (1, 1). Second, if 𝑝𝑖 proposes 0 and receives 𝑓 + 1 bval𝑟 (1,⊥),
in addition to broadcasting bval𝑟 (1,⊥), it immediately adds 1 to

𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 . If 𝑝𝑖 has not sent any aux𝑟 () message, it also broad-

casts aux𝑟 (1, 1). Third, each replica 𝑝𝑖 that proposes 0 can repropose

1. If the 𝑟𝑒𝑝𝑟𝑜𝑝𝑜𝑠𝑒 () event is triggered, regardless of which round

𝑝𝑖 is in, it broadcasts a bval0 (1,⊥) message if it has not done so.

Last, the value of common coin is set to 1 in round 0. This is to

ensure that if a replica receives 𝑛 − 𝑓 aux𝑟 (1, 1), it will directly ter-

minate the protocol. For each replica that receives both aux𝑟 (1, 1)
8



upon event propose (𝑠𝑖𝑑, 𝑣𝑖 )
if 𝑟 = 0, 𝑒𝑠𝑡0 ← 𝑣𝑖 ,𝑚𝑎𝑗0 ← ⊥

upon event repropose (𝑖𝑑, 1)
broadcast bval0 (1,⊥) {1st phase}

round 0

𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ← ∅
broadcast bval𝑟 (𝑒𝑠𝑡𝑟 ,𝑚𝑎𝑗𝑟 )
if 𝑒𝑠𝑡𝑟 = 1 {biased toward 1}

𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ← {1}
if aux𝑟 () has not been sent, broadcast aux𝑟 (1, 1)

upon receiving bval𝑟 (∗, ∗) from 𝑗

if there are 𝑓 + 1 bval𝑟 (𝑏, ∗)
if bval𝑟 (𝑏,𝑚𝑎𝑗𝑟 ) has not been sent

broadcast bval𝑟 (𝑏,𝑚𝑎𝑗𝑟 )
if 𝑏 = 1 {enter the 2nd phase and biased toward 1}

𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ← 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ∪{𝑏 }
if aux𝑟 () has not been sent, broadcast aux𝑟 (1, 1)

if there are 2𝑓 + 1 bval𝑟 (𝑏, ∗) {2nd phase}

𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ← 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ∪{𝑏 }
if aux𝑟 () has not been sent, broadcast aux𝑟 (𝑏,𝑏)

upon receiving𝑛−𝑓 aux𝑟 (∗, ∗) where the sets of values carried by thesemessages

are 𝑣𝑎𝑙𝑠𝑟 and 𝑎𝑣𝑎𝑙𝑠𝑟 ; 𝑣𝑎𝑙𝑠𝑟 and 𝑎𝑣𝑎𝑙𝑠𝑟 are both subsets of 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 .

if V2 (𝑣𝑎𝑙𝑠𝑟 , 𝑏) ≥ ⌈𝑛+𝑓 +1
2
⌉

𝑒𝑠𝑡𝑟+1 ← 𝑏

𝑚𝑎𝑗𝑟+1 ← 𝑏

if 𝑏 = 1, decide (𝑠𝑖𝑑,𝑏)
else
𝑒𝑠𝑡𝑟+1 ← 1

𝑚𝑎𝑗𝑟+1 ← 1

𝑟 ← 𝑟 + 1, continue to the next round

Figure 4: The Pisa protocol for round 0 only at 𝑝𝑖 .

and aux𝑟 (0, 0), the replica enters the next round using 𝑒𝑠𝑡𝑟+1 = 1

and𝑚𝑎𝑗𝑟+1 = 1.

7.3 Intuition and Analysis
The key to correctness is that in round 0, a replica 𝑝𝑖 puts 1 in

𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 and directly broadcasts aux𝑟 (1, 1) if its initial input is
1. If 𝑝𝑖 proposes 0, receives 𝑓 + 1 bval𝑟 (1,⊥) messages, and has

not sent any aux𝑟 () message, it also adds 1 to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 and

broadcasts aux𝑟 (1, 1). This ensures that if some replicas propose

1, all correct replicas tend to accept 1. If more than 𝑓 + 1 correct

replicas have 1 as their input in round 0, no correct replicas can

receive 2𝑓 + 1 aux𝑟 (0, 0) and use 0 as input for the next round. In

other words, all correct replicas will have 1 as the input for the next

round, achieving the biased validity property.

Such an approach does not guarantee the conventional termi-

nation property of ABA. Consider a scenario with four replicas in

Figure 5 (we use aux𝑟 (𝑣) in the figure, as each replica broadcasts

aux𝑟 (𝑣, 𝑣) in round 0). Replica 𝑝0 proposes 1 while 𝑝1 and 𝑝2 pro-

pose 0. The faulty replica 𝑝3 can send bval𝑟 (0,⊥) to 𝑝2 and 𝑝3 and

make them send aux𝑟 (0, 0). While 𝑝0 can receive 𝑛 − 𝑓 bval𝑟 (0,⊥)
messages, put 0 to its 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 , and accept aux𝑟 (0, 0), it has
already sent aux𝑟 (1, 1). Since 𝑝2 and 𝑝3 can not receive enough

bval𝑟 (1,⊥) messages, they will not put 1 to their 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 . If 𝑝3

does not send any aux𝑟 () messages, 𝑝1 and 𝑝2 are unable to move

to the next round or terminate the protocol.

Pisa can achieve biased termination if a reproposal is allowed.

In particular, a replica is allowed to repropose 1 if it previously

proposed 0. In this particular example, if correct replicas 𝑝1 and

𝑝2 repropose, they will send bval0 (1,⊥). Since 𝑝1 and 𝑝2 are still

in round 0, they are able to collect 𝑛 − 𝑓 bval0 (1,⊥) and put 1 to

𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 . Hence, all replicas will eventually move to the next

round. As we use 1 as the common coin for round 0, correct replicas

will eventually decide 1. Note that prior to the reproposal of 𝑝1 and

𝑝2, the faulty replica 𝑝3 may have sent aux𝑟 (0, 0) to 𝑝1 and 𝑝2. In this

case, both 𝑝1 and 𝑝2 receive 3 aux𝑟 (0, 0) messages and use 0 as input

for round 1. Therefore, even if 𝑝1 and 𝑝2 repropose later, replicas

already move to a new round such that the bval0 (1,⊥) messages

will not be accepted. That is, replicas might not necessarily decide

1 if fewer than 𝑓 + 1 correct replicas propose 1. We prove the

correctness of Pisa in the Appendix.

p0

p1

p2

p3

1

0

0

Send BVAL(1,⊥) and AUX(1) directly

RBCDelivery

BVAL(1,  ) BVAL(0,  ) AUX(1) AUX(0)

coin=1add 1 to bin_value

Cannot accept
AUX(1) since 
1 is not added 
to bin_value

Enter the next round with 1

add 1 to bin_value

coin=1

coin=1
Accept AUX(1)

Figure 5: Example of biased termination of Pisa.

Note that Pisa can terminate with one step (round 0) in the best
case. This is because if all correct replicas propose 1, they directly

add 1 to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠0, and broadcasts bval0 (1,⊥) and aux0 (1, 1) si-
multaneously. As the common coin value is 1 in round 0, all correct

replicas decide in one step. (Jumping ahead, the property explains

why PACE has one less step compared to ACE in the best case.)

8 A NOVEL ASYNCHRONOUS BFT
FRAMEWORK AND THE PACE BFT
PROTOCOL

8.1 The "Two-Subphase" Bottleneck for BKR
While the BKR approach ensures that transactions from at least

𝑛− 𝑓 replicas are delivered, it must experience two ABA subphases,

the first subphase waiting for 𝑛− 𝑓 ABA instances to terminate and

the second subphase dealing with the remaining 𝑓 ABA instances.

Note that an ABA instance terminates on average in 2 rounds, but

the running time of 𝑛 − 𝑓 ABA instances is𝑂 (log 𝑛) in expectation.

If a single ABA instance in the first subphase is "unlucky," all ABA
instances for the second ABA subphase have to wait.

This is a well-known bottleneck for the BKR paradigm (recently

emphasized by HoneyBadgerBFT [49, Section 4.4]). Both Dumbo

and BEAT experimentally validate the bottleneck via performance

breakdown for the building blocks. One attempt to avoid the bot-

tleneck would be that each replica waits for the first 𝑛 − 𝑓 RBCs to

complete, and then propose 1 for the ABA instances corresponding

to those completed and propose 0 for all the others. However, RBC

instances completed for correct replicas may be different. As ABA

ensures the decided value is 1 if all correct replicas unanimously

propose 1, the transactions delivered may be empty. Some works

also study how to reduce the time complexity for 𝑛 parallel ABA

instances to a constant expected number of rounds (in some other

contexts). Ben-Or’s solution tolerates 𝑓 = 𝑂 ( 4

√
𝑛) failures only [9];

Ben-Or and El-Yaniv provide a constant expected time protocol [11]

which would, unfortunately, yield a prohibitively expensive BFT

protocol with 𝑂 (𝑛4) message and communication complexity.
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init
𝑒 ← 0 {epoch number}

upon selecting𝑚𝑖 from the buffer of 𝑝𝑖
r-broadcast ( [𝑒, 𝑖 ],𝑚𝑖 ) for RBC𝑖

upon r-deliver ( [𝑒, 𝑗 ],𝑚 𝑗 ) for RBC𝑗

if RABA𝑖 has not been started

propose ( [𝑒, 𝑗 ], 1) for RABA𝑗

else
repropose ( [𝑒, 𝑗 ], 1) for RABA𝑗

upon delivery of 𝑛 − 𝑓 RBC instances

for RABA instances that have not been started

propose ( [𝑒, 𝑗 ], 0)
upon decide ( [𝑒, 𝑗 ], 𝑣) for any value 𝑣 for all RABA instances

let 𝑆 be set of indexes for RABA instances that decide 1

wait until r-deliver ( [𝑒, 𝑗 ],𝑚 𝑗 ) for all RABA𝑗 such that 𝑗 ∈ 𝑆
a-deliver (∪𝑗∈𝑆 {𝑚 𝑗 }) in some deterministic order

𝑒 ← 𝑒 + 1

Figure 6: A new asynchronous BFT framework. The code for
replica 𝑝𝑖 .

8.2 A New BFT Framework
Our asynchronous BFT framework uses r-broadcast and r-deliver
primitives of RBC, and propose, repropose and decide primitives of

RABA to overcome the two-subphase bottleneck. Figure 6 describes

the pseudocode of our framework. For each epoch, the framework

consists of 𝑛 parallel RBC instances and 𝑛 parallel RABA instances.

In the RBC phase, each replica 𝑝𝑖 r-broadcasts a proposal𝑚𝑖 for

RBC𝑖 . If 𝑝𝑖 r-delivers a proposal from RBC𝑗 , it proposes 1 for RABA𝑗 .

Upon delivery of 𝑛 − 𝑓 RBC instances, instead of waiting for 𝑛 − 𝑓

RABA instances to terminate, 𝑝𝑖 immediately proposes 0 for all

RABA instances that have not been started. If 𝑝𝑖 later delivers a

proposal from some RBC𝑗 , it has proposed 0 for RABA𝑗 , and has

not terminated RABA𝑗 , it reproposes 1 for RABA𝑗 . Let 𝑆 be the set

of indexes that RABA𝑗 decides 1. If RABA𝑗 decides 1, the proposal

from 𝑝 𝑗 is included in the final delivered set. After all RABA in-

stances terminate and all RBC𝑖 (𝑖 ∈ 𝑆) instances are delivered, 𝑝𝑖
a-delivers (∪𝑗 ∈𝑆 {𝑚 𝑗 }).

RABA does not itself attain termination. We use RBC carefully to

"control" the API of RABA and force RABA to meet the unanimous

termination condition or the biased termination condition. To see

this, we distinguish several cases:

• Case 1: All correct replicas propose 1 for some RABA. Accord-
ing to unanimous termination, the RABA instance eventually

terminates with output 1.

• Case 2: All correct replicas propose 0. We further distinguish two

cases:

• Case 2-1: If they never repropose 1, the RABA instance even-

tually terminates due to unanimous termination.

• Case 2-2: If some replicas repropose 1, then these replicas

must have r-delivered the corresponding messages. Due

to the agreement property of RBC, all correct replicas will

deliver the messages and repropose 1. The protocol will

terminate according to biased termination.

• Case 3: Some correct replicas propose 0 and some other correct
replicas propose 1. Similar to Case 2-2, due to agreement of

RBC, correct replicas will eventually repropose 1, and the RABA

instance will terminate.

Thanks to the biased validity property, we can bound the number

of transactions delivered for each epoch, conditioned on protocol

termination. In particular, we prove that in the worst case (with a

network scheduler), transactions from at least 𝑓 + 1 replicas will

be delivered, while in the normal case, transactions from at least

⌈𝑛+𝑓 +1
2
⌉ replicas will be delivered.

While our paradigm does not improve the worst-case running

time of BKR, it does improve the concrete time complexity as shown

in Appendix A. More importantly, it avoids the "two-subphase" bot-

tleneck for BKR. Instead of waiting for at least 𝑛 − 𝑓 ABA instances

to terminate, each replica can now trigger all RABA instances once

𝑛 − 𝑓 RBC instances are delivered. This improvement, not just trig-

gering the ABA phase earlier, allows all RABA instances to run in a

fully parallel manner, essentially avoiding transactions congestion.

8.3 PACE: An Efficient BFT Instantiation
We instantiate our new framework using Pisa as the underlying

RABA protocol. The resulting protocol is called PACE.

The correctness of our framework directly implies the correct-

ness of PACE. It may still be helpful to examine an execution ex-

ample. We discuss the same example in Figure 5. The biased ter-

mination condition for Pisa is met conditioned on RBC delivery

in our framework. The agreement property of RBC ensures that

if a correct replica r-delivers a request𝑚, all correct replicas will

eventually r-deliver𝑚. Namely, if 𝑝0 proposes 1, both 𝑝1 and 𝑝2

will eventually repropose 1. Thus, PACE terminates due to biased

termination. We show the proof of PACE in Appendix E.

8.4 Running Time Comparison
To show the benefit of our framework itself, we let Dumbo-Pillar be

Dumbo using our more efficient ABA construction introduced in

this paper (Pillar). We compare the new protocols introduced in the

paper, ACE and PACE, with HoneyBadgerBFT, BEAT, Dumbo, and

Dumbo-Pillar in Table 1 and in a detailed manner in Appendix A.

Remarkably, if examined concretely instead of just asymptotically,

we find CKPS, Dumbo, and Dumbo-Pillar have much more steps

and expensive pairing operations for best-case and average-case

scenarios than our protocols for any practically large𝑛’s. Evenwhen

𝑛 = 91, PACE needs 19 steps on average, while Dumbo, Dumbo-

Pillar, and BEAT have 32, 26, and 44 steps, respectively; PACE

is pairing-free, while Dumbo-Pillar requires 8.54×10
5
expensive

pairings operations. In the best case, PACE has just 4 steps, while

Dumbo-Pillar has 14 steps. Dumbo-Pillar has fewer expected steps

than PACE only when 𝑛 > 1000. Even compared with DAG-Rider

(21 steps), PACE would have fewer steps when 𝑛 < 150.

9 IMPLEMENTATION AND EVALUATION
Implementation.We first implement the two ABA protocols intro-

duced in this paper—Pillar and Pisa. We then implement ACE and

PACE using Pillar and Pisa, respectively. We compare them with

BEAT-MMR (insecure) and BEAT-Cobalt. The four BFT protocols

are summarized in Table 3.

Overview. We deploy the protocols on Amazon EC2 utilizing up

to 91 t2.medium VMs. Each VM has two vCPUs and 4GB memory.

We evaluate both LAN and WAN settings, where the LAN VMs

are launched in the same data center (DC), and the WAN VMs are
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BEAT-MMR (insecure) BEAT-Cobalt ACE PACE

ABA/RABA MMR Cobalt Pillar Pisa

Table 3: Asynchronous BFT protocols.

evenly distributed in five continents. We evaluate the protocols us-

ing different number of replicas (i.e., network sizes) and batch sizes

(i.e., contention levels). We use the number of the faulty replicas, 𝑓 ,

to denote the network size. All transactions are of size 250 bytes.
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Figure 7: Latency of the protocols under no contention where
the replicas are located in the same DC.

Latency. We evaluate the latency of the four BFT protocols un-

der no contention, where each replica proposes only one batch

of transactions. We report the latency for 𝑓 = 1, 𝑓 = 2, 𝑓 = 5,

𝑓 = 15, and 𝑓 = 30 in WAN. As illustrated in Figure 7, the latency of

BEAT-Cobalt is consistently the highest among the four protocols

since Cobalt ABA has one more step in each round. Meanwhile, the

latency of PACE is much lower than others because Pisa terminates

faster than other ABA protocols, and PACE has only one subphase.
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Figure 8: Throughput for 𝑓 = 1 where the replicas are located
in the same DC.
Throughput. In each epoch, each replica proposes |𝐵 | transactions.
We simply let |𝐵 | be the batch size of transactions. Hence, all replicas
propose in total 𝑛 |𝐵 | transactions for an epoch. We evaluate the

throughput and latency vs. throughput as 𝐵 increases. We report
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Figure 9: Throughput for 𝑓 = 1 where the replicas are from 4

different DCs.
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Figure 10: Latency vs. throughput in the WAN setting with
𝑓 = 1.

the throughput of the four BFT protocols for 𝑓 = 1 in both LAN

(Figure 8) and WAN settings (Figure 9) and report the throughput

vs. latency in Figure 10.

We observe that PACE consistently and significantly outperforms

the other protocols. This is due to the faster (biased) termination

for Pisa and the fully parallel feature of PACE. The throughput of

PACE is around 43,000 tx/sec in the LAN setting and 14,000 tx/sec

in the WAN setting. PACE is 40% and 77% higher throughput than

BEAT-Cobalt in the LAN and WAN settings, respectively.

ACE has 14% and 42% higher throughput than BEAT-Cobalt in

the LAN andWAN environments, respectively. This is also expected,

as our new ABA protocol, Pillar performs better than Cobalt ABA.

In blockchain applications, a typical block size is about 2MB,

roughly matching a batch size |𝐵 |=2,000 in our evaluation for 𝑛 = 4

replicas. Looking at this setting, ACE and PACE achieve 113% and

227% higher throughput than BEAT-Cobalt for WANs, respectively.

BEAT-Cobalt has similar performance as BEAT-MMR in the LAN

setting. However, BEAT-MMR has higher throughput than BEAT-

Cobalt in WANs, as Cobalt has one more step in each round, and

the network latency becomes more relevant in WANs.

Scalability. We evaluate the throughput of PACE, ACE, and BEAT-

Cobalt by varying 𝑓 from 2 to 30 in WANs in Figure 11. We observe
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Figure 11: Scalability where 𝑓 varies from 2 to 30. Thick
lines denote the throughput of PACE, thin lines denote the
throughput of ACE, and dashed lines denote the throughput
of BEAT-Cobalt.

BKR NAIVE (insecure) PACE

𝑓 = 1(𝑛 = 4) 3.00 3.00 3.00

𝑓 = 2(𝑛 = 7) 5.54 5.45 5.66

𝑓 = 5(𝑛 = 16) 11.18 10.81 12.36

𝑓 = 15(𝑛 = 46) 31.24 28.12 33.62

𝑓 = 20(𝑛 = 61) 41.10 38.12 46.37

𝑓 = 30(𝑛 = 91) 61.00 54.75 65.25

Table 4: The number of proposals that are delivered in ABA
protocols for different frameworks. The number 𝑛 is the
total number of replicas and also the maximum number of
proposals that could be delivered.

that for all network sizes, PACE significantly outperforms ACE in

all experiments, while ACE has consistently better throughput than

BEAT-Cobalt.

We find that as the network size 𝑓 increases, the throughput

for these protocols first increases and then decreases. This echoes

the results for HoneyBadgerBFT and EPIC. When 𝑓 grows, the

number of transactions proposed concurrently grows accordingly.

Nevertheless, when 𝑓 further grows, the protocol itself becomes

the bottleneck. All these protocols reach their peaks when 𝑓 = 15.

In the largest experiment (𝑛 = 91), the throughput of PACE is

around 14,558 tx/sec, around 6.1x the throughput of BEAT-Cobalt.

Meanwhile, ACE has about 2x the throughput of BEAT-Cobalt.

It is worth mentioning that the peak throughput in our scalability

experiments can be higher if using larger batches. Indeed, prior

works such as BEAT, EPIC, and Dumbo evaluated at least 10
4
and

larger batch sizes (in our notation). We comment that evaluating a

batch size larger than 5,000 for a network with a large 𝑓 may be

misleading. In all recent asynchronous BFT evaluations, to report

the best possible throughput, each replica needs to propose disjoint

proposals. For 𝑓 = 30 and |𝐵 | =5,000, if each replica proposes

a batch of around 1.2 MB transactions, all 𝑛 = 91 replicas would

propose over 100 MB transactions in total, where 𝑛− 𝑓 = 61 batches

are expected to include non-overlapping transactions. This would

require each replica to have a huge buffer of pending transactions.

Comparing with Dumbo. We do not directly compare our sys-

tems with Dumbo or Dumbo-Pillar, for a variety of reasons: 1) ACE

and PACE belong to the BKR paradigm that achieves information-

theoretic (IT) security if assuming an IT secure common coin pro-

tocol and achieves quantum safety as defined in DAG-Rider [40],

while Dumbo follows the CKPS paradigm that is only computa-

tionally secure (a weaker security model). 2) Dumbo is a patented

and proprietary system and does not have an open-source imple-

mentation. 3) Dumbo, too, can benefit from this paper by using

our improved ABA. 4) We analyze the concrete number of steps

and cryptographic operations of Dumbo-Pillar, HoneyBadgerBFT,

BEAT, ACE, and PACE. According to our concrete analysis in Appen-

dix A, Dumbo-Pillar (even using our two-round ABA), would have

fewer steps than ours only when 𝑛 is prohibitively large (𝑛 > 1000).

5) Even if ACE or PACE may be slower than Dumbo when 𝑛 is large

enough, Dumbo cannot be used in any of the following that the

BKR paradigm or its variants can handle only: MPC without trusted

setup; asynchronous distributed key generation (e.g., [33, 41]), etc.

We, however, roughly compare Dumbo and PACE based on pub-

lished data in terms of throughput and scalability. Note Honey-

BadgerBFT, BEAT, Dumbo, ACE, and PACE use the same VM type

(t2.medium) and use the same message size (250 B). We first observe

that it is evident that PACE has significantly higher throughput

than Dumbo when 𝑛 is small. Even for the largest setting of 𝑓 = 30,

the throughput of PACE is still about 3x that of Dumbo for 𝐵 =

5,000.

The number of proposals delivered in different BFT frame-
works. We devise an experiment to compare the "acceptance rate"

between the BKR framework and our framework. By acceptance

rate, we mean the average number of proposals delivered for each
epoch, if replicas propose disjoint sets of transactions. More specifi-

cally, we need to analyze the number of ABA or RABA instances

that decide 1. Just for performance comparison, we implement an

incorrect framework directly running all instances in parallel: after

delivering 𝑛 − 𝑓 RBC instances, a replica immediately starts the

ABA instances that have not been started by proposing 0. We call

it NAIVE, because in failure cases, its throughput can be 0 [11, 49].

We summarize in Table 4 the number of ABA instances deciding

1, corresponding to the number of proposals delivered in failure-

free scenarios for 𝑓 = 1 in theWAN setting.We run the experiments

50 times for each network size and report the average number for

all experiments. For almost all cases, the number of ABA instances

that terminate with 1 in the BKR framework is close to 𝑛 − 𝑓 . In

contrast, the number of ABA instances that terminate with 1 in

NAIVE is visibly lower. This is because replicas do not wait for

𝑛 − 𝑓 ABA instances to terminate with 1 before starting other ABA

instances. Therefore, the number of delivered batches can be much

lower than 𝑛 − 𝑓 . For our new framework, replicas tend to deliver

1 in ABA, and the number of ABA instances that terminate with 1

is shown to be slightly higher than that in BKR. Roughly, while our

framework reduces the ABA phase latency (from two subphases

to one), the "acceptance rate" (efficiency) of our framework is also

higher.

10 CONCLUSION
We present Pillar that is by far the most efficient ABA protocol

assuming regular common coins and authenticated channels only.

Pillar is nearly optimal, requiring just 2 or 3 steps per round. We
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propose the notion of reproposable ABA (RABA) and use it to solve

a long-standing problem of running ABA concurrently, leading to

a fully parallelizable BFT framework outperforming prior ones in

terms of concrete time complexity. We provide efficient instanti-

ations of RABA and the new BFT framework. We show our BFT

protocol outperforms existing protocols in terms of all metrics for

practically large systems. All our instantiations rely on the well-

established CDH assumption and achieve standard 128-bit security.
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A CONCRETE RUNNING TIME COMPARISON
We provide a concrete running time comparison among HoneyBad-

gerBFT, BEAT, Dumbo, Dumbo-Pillar, ACE, and PACE.

A.1 Concrete Expected Time for our BFT
Framework

We first examine the concrete expected number of rounds for our

new BFT framework and for PACE. Let 𝑋1, 𝑋2, · · · , 𝑋𝑛 be indepen-

dent random variables and for 𝑖 ∈ [1..𝑛] and 𝑘 ≥ 1, Pr[𝑋𝑖 = 𝑘] =
2
−𝑘

. Let 𝑋 (𝑛) = max{𝑋1, · · · , 𝑋𝑛} and 𝑌 (𝑛) = 𝐸 (𝑋 (𝑛) ). We have

𝑌 (𝑛) = 𝐸 (𝑋 (𝑛) ) =
+∞∑︁
𝑘=1

𝑘 [(1 − 2
−𝑘 )𝑛 − (1 − 2

−(𝑘−1) )𝑛] . (1)

It is easy to show the running time of our new framework 𝑌 (𝑛) =
𝑂 (log 𝑛); a computer-aided simulation on Equation 1 shows 𝑌 (𝑛)
is bounded between log

2
(𝑛) + 1 and log

2
(𝑛) + 2 for practically large

𝑛’s, as shown in Figure 12.

For the BKR paradigm, the expected number of ABA rounds

needed is 𝑌 (2𝑓 + 1) + 𝑌 (𝑓 ). The first item and the second item cor-

respond to the first subphase and the second subphase, respectively.

The value is apparently larger than 𝑌 (𝑛) = 𝑌 (3𝑓 + 1).

A.2 Running Time Comparison
To perform a fair comparison, Moreover, we let Dumbo-Pillar incor-

porate the more efficient ABA construction introduced in this pa-

per (namely, Pillar). We compare HoneyBadgerBFT (using Cobalt),

BEAT-Cobalt (using Cobalt), Dumbo-Pillar (using Pillar), DAG-

Rider, ACE (using Pillar), and PACE (using Pisa) in terms of concrete

Figure 12: With a simple python program, we find 𝑌 is lower
bounded by log

2
(𝑛) + 1 and upper bounded by log

2
(𝑛) + 2 (for

𝑛 ≤ 1, 000).

running time complexity—the number of steps and the number of

pairing operations—for both best-case and average-case scenarios.

Both the number of steps and pairing operations are vital to the con-

crete running time: the former dominates the network latency and

the latter dominates the computational latency at replicas. Recall a

pairing operation is about 10x slower than elliptic curve cryptogra-

phy (for the same level of security). Best cases represent scenarios

where all ABA instances terminate in one round. We stress that

best cases are not unusual, e.g., when networks are synchronous

or there is no contention. Average cases represent the usual ex-

pected number of steps and pairing operations. Evaluation for both

scenarios are needed to understand the running time of protocols.

PACE has significantly fewer steps than HoneyBadger and BEAT.

For instance, when𝑛 = 31, PACE has 15.6 steps, while HoneyBadger

and BEAT have 34.5 steps. When 𝑛 = 91, PACE has 18.7 steps,

but HoneyBadger and BEAT have 43.6 steps. This shows that our

improvement is significant.

We find Dumbo-Pillar has (much) more steps and pairing op-

erations, for both best-case and average-case scenarios, than our

protocols for any practically large 𝑛’s. Namely, Dumbo and Dumbo-

Pillar have a large hidden factor in time complexity.

A computer-aided calculation on Equation 1 shows Dumbo-Pillar

has fewer rounds than PACE only when 𝑛 is significantly (prohibi-

tively) large—𝑛 > 1000. It does not seem that the case for this large𝑛

is interesting, because when 𝑛 is about this large, the asynchronous

BFT protocols that we know have (unacceptably) low throughput.

Similarly, DAG-Rider (21 steps) has fewer rounds than PACE when

𝑛 is larger than 150.

In terms of paring operations, PACE is pairing-free, while Dumbo-

Pillar requires 𝑛3 + 12𝑛2
pairing operations. When 𝑛 = 31, 91 and

121, the number of pairing operations in Dumbo-Pillar is 2.72× 10
5
,

8.53 × 10
5
, and 1.95 × 10

6
, respectively.

Dumbo has higher latency than HoneyBadgerBFT and BEAT

when 𝑛 is small or reasonably large and in the LAN setting, while

we have shown that PACE has much better latency than BEAT

in these settings. Thus, PACE outperforms Dumbo and Dumbo-

Pillar in terms of latency in these cases. If using a pairing type

achieving 128 bit security, say, the popular BN curve, we find one
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pairing operation takes about 4.3 ms in the same EC2 machine that

both Dumbo and PACE use. The time for pairing operations alone,

without counting client-to-server, server-to-server, and server-to-

client communication latency, or other cryptographic operations,

has already been far larger than the entire running time of BEAT,

and so larger than ACE or PACE.
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B REVIEW OF MMR AND COBALT ABA
The pseudocode of MMR is given in Figure 13. First, each replica

broadcasts bval𝑟 (𝑒𝑠𝑡𝑟 ) where 𝑒𝑠𝑡𝑟 is the input of the round (in round
0, 𝑒𝑠𝑡𝑟 is the ABA vote). If a replica receives 𝑓 +1 bval𝑟 (𝑣) and has not
broadcast 𝑣 , it broadcasts bval𝑟 (𝑣). Upon receiving 𝑛 − 𝑓 bval𝑟 (𝑣),
a replica adds 𝑣 to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 . Then each replica sends an aux𝑟 ()
message for the first value added to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 . Upon receiving

𝑛 − 𝑓 aux𝑟 () messages such that the set of values carried by these

message, 𝑣𝑎𝑙𝑠 , is a subset of 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 , the replica compares the

value(s) with the common coin. (By default, ⊥ is an element of

𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 .) If there is only one value in 𝑣𝑎𝑙𝑠 messages and the

value is the same as the coin, the replica decides it. Otherwise, the

replica enters the next round and uses the common coin as 𝑒𝑠𝑡𝑟 .

MMR ABA uses authenticated channels only and has 2 or 3

steps per round. In practice, there is a liveness issue discovered

independently in [1, 59]. As illustrated in Figure 14, an adversary

can make correct replicas always move to the next round with

inconsistent values, and the protocol will never terminate.

MacBrough proposed a solution in the Cobalt protocol [48]

which has one additional conf𝑟 () step in each round, also as shown

in Figure 13.

upon event propose(𝑣𝑖 )
if 𝑟 = 0, 𝑒𝑠𝑡0 ← 𝑣𝑖

round 𝑟
𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ← ∅
broadcast bval𝑟 (𝑒𝑠𝑡𝑟 )
upon receiving bval𝑟 (𝑣) from 𝑓 + 1 replicas

if bval𝑟 (𝑣) has not been sent, broadcast bval𝑟 (𝑣)
upon receiving bval𝑟 (𝑣) from 𝑛 − 𝑓 replicas

𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ← 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ∪ {𝑣 }
wait until 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ≠ ∅
broadcast aux𝑟 (𝑣) where 𝑣 ∈ 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟

upon receiving 𝑛 − 𝑓 aux𝑟 () such that the set of values carried by these messages,

𝑣𝑎𝑙𝑠 , is a subset of 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟

broadcast conf𝑟 (𝑣𝑎𝑙𝑠)
upon receiving 𝑛 − 𝑓 conf𝑟 () such that the set of values carried by these messages,

𝑣𝑎𝑙𝑠 , is a subset of 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟

𝑠 ← coin𝑟
if 𝑣𝑎𝑙𝑠 = {𝑏 }
𝑒𝑠𝑡𝑟+1 ← 𝑏

if 𝑏 = 𝑠 , decide(𝑏)
else 𝑒𝑠𝑡𝑟+1 ← 𝑠

𝑟 ← 𝑟 + 1

Figure 13: MMR ABA and Cobalt ABA. Cobalt ABA has the
boxed code, while MMR ABA does not have it.

C PROOF OF CORRECTNESS FOR PILLAR
In this section, we prove the correctness of Pillar.

Lemma C.1. In round 𝑟 > 0, if a correct replica 𝑝𝑖 sets 𝛿𝑟 (𝑣) = 1

and another correct replica sets 𝛿𝑟 (𝑣) = 1, 𝑣 = 𝑣 .

Proof. In round 𝑟 > 0, correct replicasmay send bval𝑟 (∗, 𝑣), bval𝑟 (∗, 𝑣),
or bval𝑟 (∗,⊥) and do not change the𝑚𝑎𝑗𝑟 value in the same round.

There are two cases: 𝑣 = 𝑠𝑟−1 and 𝑣 = 𝑠𝑟−1. We first show the

case for 𝑣 = 𝑠𝑟−1. Assume, towards a contradiction, there exists

a replica 𝑝𝑖 that receives 2𝑓 + 1 bval𝑟 (𝑣, 𝑣) and bval𝑟 (𝑣,⊥). In our

protocol, if 𝑝𝑖 receives 2𝑓 + 1 bval𝑟 (𝑣, 𝑣) and bval𝑟 (𝑣,⊥) and sets

𝛿𝑟 (𝑣) = 1, at least 𝑓 + 1 correct replicas have sent bval𝑟 (𝑣, 𝑣) or

p0

p1

p2

p3

1

0

1

BVAL(1) BVAL(0)

2f+1 BVAL(1)

2f+1 BVAL(0)
AUX(1)

coin share

AUX(0)
coin share

Combine shares, 
learn coin value = 0

bin_values={0,1}

bin_values={0,1}

AUX(1) AUX(0)

2f+1 AUX(1), coin =0, enter next round

enter next round 
with coin value

enter next round 
with coin value

Figure 14: The liveness issue of MMR. A faulty replica 𝑝3 first
sends bval𝑟 (1) to 𝑝0. Since 𝑝0 receives bval𝑟 (1) from 𝑝2 and
itself, 𝑝0 will send aux𝑟 (1) and its threshold signature shares
for the common coin. 𝑝3 generates a share and combines the
𝑓 + 1 = 2 shares to obtain the common coin value (e.g., 0). 𝑝3

then makes 𝑝2 send aux𝑟 (1) by letting 𝑝2 receive 3 bval𝑟 (1).
Also, 𝑝3 sends aux𝑟 (1) to 𝑝0, making 𝑝0 receive 3 aux𝑟 (1) (a
value different from the common coin) and use 1 as the input
for the next round. For 𝑝1 and 𝑝2, since they have added both 0

and 1 in their𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 and receive both aux𝑟 (0) and aux𝑟 (1),
they will enter the next round with the common coin value
0. In this way, the protocol may never terminate.

bval𝑟 (𝑣,⊥), but will never send bval𝑟 (𝑣, 𝑣) or bval𝑟 (𝑣, 𝑣). On the

other hand, if 𝑝 𝑗 sets 𝛿𝑟 (𝑣) = 1, it has received 2𝑓 + 1 bval𝑟 (𝑣, 𝑣),
at least 𝑓 + 1 of which are sent by correct replicas. Therefore, at

least one correct replica has sent both bval𝑟 (𝑣, 𝑣) (or bval𝑟 (𝑣,⊥))
and bval𝑟 (𝑣, 𝑣), which is a contradiction. The case for 𝑣 = 𝑠𝑟−1 can

be proved similarly. If 𝑝𝑖 sets 𝛿𝑟 (𝑣) = 1, it receives 2𝑓 +1 bval𝑟 (𝑣, 𝑣).
If 𝑝 𝑗 sets 𝛿𝑟 (𝑣) = 1, it receives 2𝑓 + 1 bval𝑟 (𝑣, 𝑣) or bval𝑟 (𝑣,⊥). In
other words, at least one correct replica has sent both bval𝑟 (∗, 𝑣)
and bval𝑟 (∗, 𝑣) (or bval𝑟 (∗,⊥)), which is impossible. 2

Lemma C.2. In round 𝑟 > 0, if all correct replicas have the same
input 𝑣 , any correct replica either enters round 𝑟 + 1 with 𝑣 , or decides
𝑣 in round 𝑟 .

Proof. In round 𝑟 > 0, correct replicasmay send bval𝑟 (𝑣, 𝑣), bval𝑟 (𝑣, 𝑣),
or bval𝑟 (𝑣,⊥). Hence, correct replicas will not receive more than

𝑓 + 1 bval𝑟 (𝑣, ∗) and no correct replica will put 𝑣 in its 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 .

Therefore, all correct replicas will send aux𝑟 (𝑣, 𝑣) or aux𝑟 (⊥, 𝑣)
and will not accept aux𝑟 (𝑣, ∗) or aux𝑟 (∗, 𝑣). Each correct replica

therefore eventually receives either 2𝑓 + 1 aux𝑟 (𝑣, ∗) such that

V2 (𝑣𝑎𝑙𝑠𝑟 , 𝑣) ≥ 2𝑓 + 1 or 2𝑓 + 1 aux𝑟 (∗, 𝑣) such that V2 (𝑎𝑣𝑎𝑙𝑠𝑟 , 𝑣) ≥
2𝑓 + 1.

If a replica 𝑝𝑖 receives 2𝑓 + 1 aux𝑟 (𝑣, 𝑣), it either decides 𝑣 (for
the case 𝑣 = 𝑠𝑟 ), or enters the next round with 𝑣 as 𝑒𝑠𝑡𝑟+1 (for the
case 𝑣 ≠ 𝑠𝑟 ). If 𝑝𝑖 receives both aux𝑟 (𝑣, 𝑣) and aux𝑟 (⊥, 𝑣) (or only
aux𝑟 (⊥, 𝑣)), V2 (𝑎𝑣𝑎𝑙𝑠𝑟 , 𝑣) ≥ 2𝑓 + 1 is satisfied. In this case, 𝑝𝑖 will

either decide 𝑣 (for the case 𝑣 = 𝑠𝑟 = 𝑠𝑟−1), or enter the next round

with 𝑣 as 𝑒𝑠𝑡𝑟+1 (for the case 𝑣 ≠ 𝑠𝑟 or 𝑣 ≠ 𝑠𝑟−1). 2

Theorem C.3. (Validity) If all correct replicas propose 𝑣 , then
any correct replica that terminates decides 𝑣 .

Proof. The proof follows from the following two lemmas.

Lemma C.4. In round 𝑟 > 0, if all correct replicas have the same
input 𝑣 , any correct replica that terminates decide 𝑣 .
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Proof. Lemma C.2 shows that correct replicas will either enter round

𝑟 + 1 with 𝑣 or decide 𝑣 . If correct replicas start round 𝑟 with the

same input 𝑣 and enter the next round, the input for round 𝑟 + 1

must be 𝑣 . As the probability that the common coin value equals 𝑣

is 1/2, the probability that the protocol terminates in round 𝑟 + 1

is 1/2. It is straightforward to see that any replica that terminates

decides 𝑣 . 2

Lemma C.5. If all correct replicas propose 𝑣 in round 0, any correct
replica that terminates decides 𝑣 .

Proof. We show that if all correct replicas propose 𝑒𝑠𝑡0 in round

0, correct replicas either terminate in the current round with 𝑒𝑠𝑡0
or enter round 1 with the same 𝑒𝑠𝑡𝑟 . As proven in Lemma C.2 and

Lemma C.4, any correct replica that terminates decides 𝑣 .

In round 𝑟 = 0, all correct replicas broadcast bval𝑟 (𝑣,⊥). Since
all correct replicas have the same input 𝑣 and there are only 𝑓 faulty

replicas, correct replicas will not receive more than 𝑓 +1 bval𝑟 (𝑣,⊥)
or send bval𝑟 (𝑣,⊥). All correct replicas will eventually receive 2𝑓 +1

bval𝑟 (𝑣,⊥) and send aux𝑟 (𝑣, 𝑣). Since no correct replica puts 𝑣 in

𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 , all correct replicas will have only one single value 𝑣 .

If a correct replica terminates in round 0 and 𝑣 = 𝑠𝑟 , it decides 𝑣 . If

𝑣 ≠ 𝑠𝑟 , correct replicas use 𝑣 as the input 𝑒𝑠𝑡𝑟 for round 1. According

to Lemma C.4, any correct replica that terminates decides 𝑣 . 2

This completes of the proof of the theorem. ■

Theorem C.6. (Agreement) If a correct replica decides 𝑣 , then
any correct replica that terminates decides 𝑣 .

Proof. We prove agreement by showing that if 𝑝𝑖 decides 𝑣 in

round 𝑟 , all other correct replicas either decide in the same round or

enter the next roundwith 𝑣 as 𝑒𝑠𝑡𝑟 . Assume, towards a contradiction,

that another correct replica 𝑝 𝑗 enters the next round with 𝑣 .

Lemma C.7. If 𝑝𝑖 terminates in round 𝑟 and decides 𝑣 , any correct
replica 𝑝 𝑗 either 1) terminates in round 𝑟 and decides 𝑣 ; or 2) enters
round 𝑟 + 1 with 𝑣 as 𝑒𝑠𝑡𝑟+1.

Proof. If 𝑝𝑖 decides 𝑣 in round 𝑟 , there are three cases: 1) 𝑝𝑖 receives

at least 2𝑓 + 1 aux𝑟 (𝑣, 𝑣) messages and 𝑣 = 𝑠𝑟 ; 2) 𝑝𝑖 receives both

aux𝑟 (𝑣, 𝑣) and aux𝑟 (⊥, ∗). Also, 𝑝𝑖 receives at least a quorum of

aux𝑟 (∗, 𝑣) messages, 𝑣 = 𝑠𝑟−1, and 𝑣 = 𝑠𝑟 ; For 𝑝 𝑗 , if it enters the

next round with value 𝑒𝑠𝑡𝑟+1 = 𝑣 , it cannot use the common coin

value as input. This is because 𝑣 is the common coin. Therefore, one

the following conditions must apply: A) 𝑝 𝑗 receives at least 2𝑓 + 1

aux𝑟 (𝑣, 𝑣); B) 𝑝 𝑗 receives both aux𝑟 (𝑣, 𝑣) and aux𝑟 (⊥, 𝑣). At least a
quorum of the messages are of the form aux𝑟 (∗, 𝑣); C) 𝑝 𝑗 receives
both aux𝑟 (𝑣, ∗) and aux𝑟 (⊥, ∗) and 𝑣 = 𝑠𝑟−1. We now distinguish

the two cases for 𝑝𝑖 and show that none of the three conditions for

𝑝 𝑗 can be satisfies.

Case 1: 𝑝𝑖 receives at least 2+1 aux𝑟 (𝑣, 𝑣). At least 𝑓 +1 correct repli-

cas have sent aux𝑟 (𝑣, 𝑣). 1) If condition A is true, 𝑝 𝑗 receives 2𝑓 + 1

aux𝑟 (𝑣, 𝑣), at least 𝑓 +1 of which are sent by correct replicas. There-

fore, at least one correct replica has sent both aux𝑟 (𝑣, 𝑣) to 𝑝𝑖 and
aux𝑟 (𝑣, 𝑣) to 𝑝 𝑗 , which is impossible. Condition A cannot be true. 2)

If condition B is true, 𝑝 𝑗 receives a quorum of aux𝑟 (∗, 𝑣) messages,

𝑓 + 1 of which are sent by correct replicas. Therefore, at least one

correct replica has sent aux𝑟 (𝑣, 𝑣) to 𝑝𝑖 and sent aux𝑟 (∗, 𝑣) to 𝑝 𝑗 ,

which is impossible. Condition B cannot be true. 3) If condition C is

true, 𝑝 𝑗 receives only aux𝑟 (𝑣, ∗) and aux𝑟 (⊥, ∗). In other words, at

least one correct replica has sent aux𝑟 (𝑣, 𝑣) to 𝑝𝑖 and aux𝑟 (𝑣, ∗) (or
aux𝑟 (⊥, ∗)) to 𝑝 𝑗 , which is impossible. Condition C cannot be true.

Case 2: 𝑝𝑖 receives both aux𝑟 (𝑣, 𝑣) and aux𝑟 (⊥, ∗). Also, 𝑝𝑖 receives
at least a quorum of aux𝑟 (∗, 𝑣) messages, 𝑣 = 𝑠𝑟−1, and 𝑣 = 𝑠𝑟 . 1) If
condition A is true, 𝑝 𝑗 receives at least 2𝑓 +1 aux𝑟 (𝑣, 𝑣), at least 𝑓 +1

are sent by correct replicas. Also, 𝑝𝑖 receives 2𝑓 + 1 aux𝑟 (𝑣, 𝑣) and
2𝑓 + 1 aux𝑟 (⊥, ∗). Therefore, at least one correct replica must have

sent aux𝑟 (𝑣, 𝑣) to 𝑝 𝑗 and aux𝑟 (𝑣, 𝑣) (or aux𝑟 (⊥, ∗)) to 𝑝𝑖 , which is

impossible. Condition A cannot be true. 2) If condition B is true, 𝑝 𝑗
receives both aux𝑟 (𝑣, 𝑣) and aux𝑟 (⊥, 𝑣), and at least a quorum of the

messages are of the form aux𝑟 (∗, 𝑣). Since 𝑝𝑖 receives a quorum of

aux𝑟 (∗, 𝑣) messages, at least one correct replica has sent aux𝑟 (∗, 𝑣)
to 𝑝𝑖 and aux𝑟 (∗, 𝑣) to 𝑝 𝑗 . Condition B cannot be true. 3) 𝑝 𝑗 only

receives aux𝑟 (⊥, ∗) and aux𝑟 (𝑣, ∗) and 𝑣 = 𝑠𝑟−1. This cannot be true

since 𝑣 = 𝑠𝑟−1. 2

For the two cases, it is clear that if 𝑝 𝑗 decides in round 𝑟 , it outputs

𝑣 . We now show that if 𝑝 𝑗 terminates in round 𝑟 ′ and decides 𝑣 ,

𝑣 = 𝑣 where 𝑟 ′ > 𝑟 . In round 𝑟 ′, one of the following cases must

apply: A) 𝑝 𝑗 receives at least 2𝑓 + 1 aux𝑟 ′ (𝑣, 𝑣); B) 𝑝 𝑗 receives both
aux𝑟 ′ (𝑣, 𝑣) and aux𝑟 ′ (⊥, 𝑣). Also, 𝑣 = 𝑠𝑟 ′−1 and 𝑣 = 𝑠𝑟 ′ . If any of the

two cases is true, at least one correct replica has sent bval𝑟 ′ (𝑣, ∗).
Meanwhile, according to Lemma C.7, any correct replica that enters

round 𝑟 + 1 uses 𝑣 as input. Furthermore, according to Lemma C.2,

if all correct replicas that enter round 𝑟 + 1 either terminates or

uses 𝑒𝑠𝑡𝑟+2 = 𝑣 and enter round 𝑟 + 2. Therefore, there exists some

round 𝑟 ′′ where 𝑟 ≤ 𝑟 ′′ ≤ 𝑟 ′, a correct replica uses 𝑣 as input

and broadcasts bval𝑟 ′′ (𝑣, ∗). Therefore, Lemma C.2 is violated, a

contradiction. ■

Theorem C.8. (Termination) All correct replicas eventually ter-
minate the protocol.

Proof. The proof is divided in two parts: 1) In each round, each

correct replica will eventually proceed to the next round, and 2) a

correct replica terminates the protocol with probability 1/2.

We prove the first part. In our protocol, 𝑒𝑠𝑡𝑟 is always a bi-

nary value, either 0 or 1. A correct replica may send bval𝑟 (𝑣, ∗)
or bval𝑟 (𝑣, ∗). Also, there are at least 2𝑓 + 1 correct replicas, among

which at least 𝑓 + 1 correct replicas propose the same value. There-

fore, if 𝑣 is different from its proposed value, each correct replica

𝑝𝑖 will forward bval𝑟 (𝑣,𝑚𝑎𝑗𝑟 ). Correct replicas will eventually re-

ceive 2𝑓 + 1 bval𝑟 () messages for at least one binary value (e.g.,

𝑣), and send aux𝑟 (𝑣, ∗) or aux𝑟 (⊥, ∗). Similarly, all correct replicas

eventually receive 2𝑓 + 1 aux𝑟 () messages and proceed to the next

round.

We now prove the second part. In particular, we prove in round

𝑟 , if a correct replica 𝑝𝑖 enters round 𝑟 + 1 with 𝑒𝑠𝑡𝑟+1 = 𝑣 , the

protocol will terminate with 1/2 probability. (Hence, the 𝑣 cannot

be manipulated by the adversary such that 𝑣 is always different

from the common coin.)

If 𝑝𝑖 enters the next round with 𝑒𝑠𝑡𝑟+1 = 𝑣 = 𝑠𝑟 , it must satisfy

one of the three conditions: 1) 𝑝𝑖 receives at least 2𝑓 + 1 aux𝑟 (𝑣, 𝑣)
messages; 2) 𝑝𝑖 receives both aux𝑟 (𝑣, 𝑣) and aux𝑟 (⊥, ∗). At least a
quorum of themessages are aux𝑟 (∗, 𝑣); 3) 𝑝𝑖 receives both aux𝑟 (𝑣, 𝑣)
and aux𝑟 (⊥, ∗) and 𝑣 = 𝑠𝑟−1.
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For the first case, at least 𝑓 +1 correct replicas have sent aux𝑟 (𝑣, 𝑣).
According to the Lemma C.1, we know that in each round, correct

replicas send aux𝑟 (𝑣, 𝑣) for at most one value 𝑣 . In other words,

if at least one correct replica sends aux𝑟 (𝑣, 𝑣), no correct replica

sends aux𝑟 (𝑣, 𝑣). Hence, each correct replica receives at least one

aux𝑟 (𝑣, 𝑣). According to Lemma C.1, correct replicas may send

aux𝑟 (𝑣, 𝑣), aux𝑟 (⊥, 𝑣), aux𝑟 (⊥, 𝑣), but will not send aux𝑟 (𝑣, ∗). No
correct replica will set 𝛿𝑟 (𝑣) = 1. The value 𝑣 is determined based

on the𝑚𝑎𝑗𝑠 values by the replicas so it cannot be manipulated by

the adversary. Therefore, with a probability of 1/2, 𝑝𝑖 decides 𝑣 .

Otherwise 𝑝𝑖 enter the next round and use 𝑒𝑠𝑡𝑟+1 = 𝑣 .

For the second case, 𝑝𝑖 decides if 𝑏 = 𝑠𝑟−1 and 𝑏 = 𝑠𝑟 . With a

probability of 1/2, 𝑠𝑟−1 = 𝑠𝑟 .

For the third case, with a probability of 1/2, 𝑠𝑟−1 = 𝑠𝑟 . In this case

𝑝𝑖 will not decide. 𝑝𝑖 uses the value of 𝑠𝑟 as 𝑒𝑠𝑡𝑟+1 with a probability
of 1/2. ■

Theorem C.9. (Integrity) No correct replica decides twice.

Proof. In each round, a replica will only sends aux𝑟 () message

once and accepts only one aux𝑟 () message from each replica. If

a replica 𝑝𝑖 decides 𝑣 in round 𝑟 , it has received 2𝑓 + 1 aux𝑟 (𝑣, ∗)
messages with the same 𝑣 , or received 2𝑓 +1 aux𝑟 (∗, 𝑣). If 𝑝𝑖 decides
twice, it must have received 2𝑓 + 1 aux𝑟 (𝑣, 𝑣), or received 2𝑓 + 1

aux𝑟 (∗, 𝑣). Neither case is possible. Integrity thus follows. ■

D PROOF OF CORRECTNESS FOR PISA
In this section, we prove the correctness of Pisa.

TheoremD.1. (Validity) If all correct replicas propose 𝑣 and never
repropose 𝑣 , then any correct replica that terminates decides 𝑣 .

Proof. If all correct replicas propose 𝑣 and do not repropose

𝑣 , all correct replicas will only have 𝑣 in their 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 . Hence,

replicas do not accept an aux𝑟 (𝑣, 𝑣) message. Each correct replica

will collect 2𝑓 + 1 aux𝑟 (𝑣, 𝑣). If 𝑣 = 1, replicas decide in round

0. Otherwise replicas enter round 1. Starting from round 1, Pisa

follows Pillar. Therefore, according to Lemma C.2 and Lemma C.4,

any correct replica that terminates decides 𝑣 . ■

Theorem D.2. (Unanimous termination) If all correct replicas
propose 𝑣 and never repropose 𝑣 , then all correct replicas eventually
terminate.

Proof. If all correct replicas propose 𝑣 , theywill all send bval𝑟 (𝑣,⊥).
All correct replicas eventually put 𝑣 to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 . Correct repli-

cas will not send or accept any aux𝑟 (𝑣, 𝑣) message and will accept

either aux𝑟 (𝑣, 𝑣) or aux𝑟 (⊥, 𝑣). According to Lemma C.2, all cor-

rect replicas will enter the next round with the same 𝑒𝑠𝑡𝑟+1 value
(including the case where replicas decide). According to the prop-

erty of common coin, we know that correct replicas decide in each

round with probability 1/2. Hence, all correct replicas eventually

terminate. ■

Theorem D.3. (Agreement) If a correct replica decides 𝑣 , then
any correct replica that terminates decides 𝑣 .

Proof. We first show the case where a correct replica 𝑝𝑖 decides

𝑣 in round 𝑟 = 0. First of all, a correct replica 𝑝 𝑗 cannot decide 𝑣 in

round 0. This is because a correct replica decides a value only when

the value equals the common coin, which is 1 in round 0. We now

consider the case where 𝑝𝑖 still decides in round 0 and 𝑝 𝑗 decides

in round 𝑟 > 0. We prove the following lemma:

Lemma D.4. If 𝑝𝑖 decides in round 0, any correct replica either
decides in round 0 or uses 1 as input for round 1.

Proof. If 𝑝𝑖 decides in round 0, it decides 𝑣 = 1 (the common coin

value in round 0 is 1). Assume, towards a contradiction, that a

correct replica 𝑝 𝑗 enters round 1 with 0 as input. In this case, the

function V2 (𝑣𝑎𝑙𝑠𝑟 , 0) ≥ 2𝑓 + 1 must be true. Hence, excluding the

aux𝑟 (⊥, ∗) messages, the number of aux𝑟 (0, 0) messages 𝑝 𝑗 receives

is greater than 2𝑓 +1. Among the replicas that sent 2𝑓 +1 aux𝑟 (𝑣, 𝑣)
and aux𝑟 (𝑣, 𝑣) messages, at least one correct replica must have

sent both aux𝑟 (𝑣, 𝑣) and aux𝑟 (𝑣, 𝑣). This is a contradiction, since a
correct replica broadcasts aux𝑟 () once in each round. 2

Starting from round 𝑟 = 1, Pisa is the same as Pillar. Therefore,

according to Lemma C.2 and Lemma C.4, any correct replica that

terminates decides 𝑣 = 1.

For the case where 𝑝𝑖 decides in round 𝑟 > 0, agreement simply

follows that of Pillar, as Pisa is the same as Pillar starting from

𝑟 > 0. ■

Theorem D.5. (Biased validity) If 𝑓 + 1 correct replicas propose
1, then any correct replica that terminates decides 1.

Proof. In round 0, correct replicas will directly send aux𝑟 (1, 1)
and will not send aux𝑟 (0, 0). Therefore, all correct replicas will
either receive 2𝑓 + 1 aux𝑟 (1, 1) or both aux𝑟 (1, 1) and aux𝑟 (0, 0),
but not 2𝑓 +1 aux𝑟 (0, 0). This is because if a correct replica receives
2𝑓 + 1 aux𝑟 (0, 0), at least 𝑓 + 1 correct replicas must have sent

aux𝑟 (0, 0). Therefore, at least one correct replica must have sent

both aux𝑟 (0, 0) and aux𝑟 (1, 1), which is impossible. If a correct

replica receives 2𝑓 + 1 aux𝑟 (1, 1), it directly decides. Otherwise it

uses the common coin value 1 to enter the next round. Since Pisa is

the same as Pillar starting from round 1, according to the LemmaC.2

and Lemma C.4, all correct replicas that terminate decide 1. ■

Theorem D.6. (Biased termination) Let 𝑄 be the set of correct
replicas. Let 𝑄1 be the set of correct replicas that propose 1 and never
repropose 0. Let 𝑄2 be correct replicas that propose 0 and later re-
propose 1. If 𝑄2 ≠ ∅ and 𝑄 = 𝑄1 ∪ 𝑄2, then each correct replica
eventually terminates.

Proof. The proof consists of two parts: round 𝑟 = 0 and round

𝑟 > 0. We first prove the first case (𝑟 = 0) that a correct replica

either decides in round 0 or moves to round 1. Depending on the

proposed values of replicas, there are three cases: 1) at least 𝑓 + 1

correct replicas propose 1; 2) at least one but fewer than 𝑓 +1 correct

replicas propose 1; 3) all correct replicas propose 0. We show that

each replica can collect 2𝑓 + 1 aux𝑟 () messages.

Case 1: More than 𝑓 + 1 correct replicas propose 1. All correct replicas
will eventually receive 𝑓 + 1 bval𝑟 (1,⊥). According to the proto-

col, all correct replicas will eventually receive 2𝑓 + 1 bval𝑟 (1,⊥),
put 1 in 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 , and accept aux𝑟 (1, 1). Correct replicas may

send aux𝑟 (1, 1) or aux𝑟 (0, 0). If a correct replica sends aux𝑟 (0, 0),
it previously received 2𝑓 + 1 bval𝑟 (0,⊥) messages, among which

at least 𝑓 + 1 replicas are correct. Therefore, all correct replicas
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will eventually put 0 in their 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 and accept aux𝑟 (0, 0). All
correct replicas can then decide or move to round 1.

Case 2: At least one but fewer than 𝑓 + 1 correct replicas propose 1. In
this case |𝑄1 | < 𝑓 +1 and |𝑄2 | ≥ 𝑓 +1. This case implies that at least

𝑓 + 1 correct replicas propose 0. In this case, all correct replicas will

eventually receive 2𝑓 + 1 bval𝑟 (0,⊥) and put 0 to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 . It is,

however, not guaranteed that a correct replica will receive 2𝑓 + 1

bval𝑟 (1,⊥) and put 1 in𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 . Therefore, some correct replica

that only has 0 in 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 will not accept an aux𝑟 (1, 1) message.

The termination is guaranteed by the fact that correct replicas in

𝑄2 repropose 1. In particular, correct replicas will repropose 1,

making correct replicas eventually receive a quorum of bval0 (1,⊥)
messages. Hence, correct replicas will either enter the next round

or eventually collect a quorum of bval0 (1,⊥) messages. In the latter

case, correct replicas will be able to accept both aux𝑟 (0, 1) and
aux𝑟 (1, 1) in round 0. Hence, correct replicas will either terminate

in round 0 or move to the next round.

Case 3: All correct replicas have 0 as their input. In this case |𝑄1 | = 0.

All correct replicas will receive a quorum of bval𝑟 (0,⊥) messages

and add 0 to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 . Furthermore, each replica in 𝑄2 may re-

propose. Therefore, all correct replicas will receive 2𝑓 +1 bval𝑟 (1,⊥)
and put 1 to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 . It is easy to see that all correct replicas

will either decide in round 0 or move to the next round.

For the case where round 𝑟 > 0, since Pisa is the same as Pillar,

agreement follows that of Pillar. This completes the proof of the

theorem. ■

Theorem D.7. (Integrity) No correct replica decides twice.

Proof. In each round, each replica will only send aux𝑟 () mes-

sage once and accept one aux𝑟 () message from each replica. Hence,

only one value will be decided and integrity easily follows. ■

E PROOF OF CORRECTNESS FOR OUR BFT
FRAMEWORK (AND PACE)

We prove the correctness of our BFT framework. The proof imme-

diately implies the correctness of our BFT instantiation (PACE). In

particular, wewill prove the following properties that are equivalent

to the definitions of security for BFT:

• Set agreement: If any correct replica outputs a set𝑉 , then each

correct replica outputs 𝑉 .

• Efficiency (validity): If a correct replica outputs a set 𝑉 , then

𝑉 contains a proposal from at least one correct replica.

• Liveness: If a proposal is submitted to all correct replicas, then

all correct replicas eventually output a set containing some

value.

Note that the above definitions generalize and relax prior defini-

tions for systems on asynchronous common subset (ACS) such as

HoneyBadgerBFT, BEAT, and Dumbo, where they all consider the

following efficiency property:

• Efficiency (validity) for some prior ACS definitions: If a
correct replica outputs a set 𝑉 , then 𝑉 contains proposals from

at least 𝑛 − 2𝑓 correct replicas.

The original idea of ACS in BKR requires replicas to agree on

a common subset but does not levy any restriction on the size of

the set 𝑉 . Our efficiency definition thus echoes that of the original

BKR paper, requiring 𝑉 contains at least one proposal from one

correct replica. This is—not at all—a "drawback." First, asking 𝑉

to contain proposals from 𝑛 − 2𝑓 correct replicas is unnecessary;

our relaxed definitions are equivalent to the standard definitions

for BFT. Second, the efficiency property defined in the previous

work may restrict novel or efficient constructions: a system slowly

delivering more transactions may not be more efficient than a

system delivering fewer transactions but delivering them faster.

Third, one can easily construct a system that satisfies the efficiency

property requiring to output a set containing at least 𝑛−2𝑓 replicas

using a system with our efficiency property.

We begin with the following lemma.

Lemma E.1. If all correct replicas are activated on some proposals
for epoch 𝑒 , then all correct replicas eventually terminate for epoch 𝑒 .

Proof. If all correct replicas are activated on some proposals for

some epoch 𝑒 , they will r-broadcast their proposals. Eventually, all

correct replicas will r-deliver at least 2𝑓 + 1 RBC instances. Hence,

all correct replicas will proposes 0 for all RABA instances that have

not been started. We distinguish all possible cases and show for

each case all RABA instances will terminate.

We first consider case 1, where all correct replicas propose 1

for a RABA. In this case, according to unanimous termination, the

RABA instance eventually terminates.

We now consider case 2, where all correct replicas propose 0.

In this case, we further distinguish two sub-cases: 1) If they never

repropose 1, the RABA instance eventually terminates due to unan-

imous termination. 2) If some replicas repropose 1, then these repli-

cas must have r-delivered the corresponding messages. According

to the agreement property of RBC, all correct replicas will deliver

the messages and repropose 1. The protocol will terminate due to

biased termination.

Finally, we consider case 3, where some correct replicas propose

0 and some other correct replicas propose 1. The case is similar to

Case 2-2. Due to the agreement property of RBC, correct replicas

will eventually repropose 1, and the RABA instance will terminate.

Therefore, the protocol will eventually terminate. 2

We now prove set agreement.

Theorem E.2. (Agreement) If any correct replica outputs a set 𝑉
of proposals from replicas, then each correct replica outputs the same
set 𝑉 .

Proof. We consider an epoch 𝑒 , where a correct replica 𝑝 𝑗 a-

delivers a set 𝑉 . According to our protocol, the set 𝑉 is a set of

proposals from different replicas: the 𝑖-th element, 𝑉 [𝑖], may be

empty or 𝑚𝑖 (a proposal r-broadcast by 𝑝𝑖 ), depending on if the

corresponding RABA instance RABA𝑖 decides 0 or 1, where 𝑖 ∈
[0..𝑛 − 1]. We just need to show that each replica 𝑝𝑘 will output a

set 𝑉 ′ such that 𝑉 ′ = 𝑉 , i.e., 𝑉 [𝑖] = 𝑉 ′[𝑖] for 𝑖 ∈ [0..𝑛 − 1].
If 𝑝 𝑗 outputs a set 𝑉 , then all RABA instances either decide

0 or 1. According to Lemma E.1, we know all RABA instances

must terminate. Due to the agreement property of RABA, these

RABA instances decide the same values for 𝑝𝑘 . Therefore, all RABA

instances for 𝑝𝑘 will terminate and decide the same values as 𝑝 𝑗 .

Furthermore, the agreement of RBC instances guarantees that,𝑉 ′[𝑖]
will be r-delivered and 𝑉 [𝑖] = 𝑉 ′[𝑖] =𝑚𝑖 for all 𝑖 ∈ [0..𝑛 − 1]. ■
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The above theorem immediately implies the usual agreement

definition for BFT. We now prove a theorem implying efficiency

and liveness.

Theorem E.3. For each epoch, a set 𝑉 containing at least 𝑓 + 1

non-empty elements will be output.

Proof. For simplicity, we assume 𝑛 = 3𝑓 + 1. Conditioned on

termination for all RABA instances (shown in Lemma E.1), we

now bound the number of RABA instances that decide 1, which

corresponds to the number of non-empty elements. We mainly use

the biased termination property to prove the theorem for this proof.

According to the biased termination property, a RABA instance

RABA𝑖 will decide 1, if 𝑓 + 1 or more correct replicas propose 1. We

now need to bound the number of RABA instances where less than

𝑓 + 1 correct replicas propose 1.

A crucial observation is that a correct replica will propose 1 for

at least 2𝑓 +1 RABA instances, a fact guaranteed by RBC. All correct

replicas will input 1 for (2𝑓 + 1) (2𝑓 + 1) for all RABA instances.

There are at most (3𝑓 +1) (2𝑓 +1) inputs for correct replicas. Hence,
the total number of the 0 input from all correct replicas for all RABA

instances is at most (3𝑓 + 1) (2𝑓 + 1) − (2𝑓 + 1) (2𝑓 + 1) = 2𝑓 2 + 𝑓 .
Thus, the number of RABA instances that decide 0 is bounded by:

2𝑓 2 + 𝑓
𝑓 + 1

<
2𝑓 2 + 2𝑓

𝑓 + 1

= 2𝑓 .

The number of RABA instances that decide 1 is at least 𝑓 + 1. ■

The above theorem implies that our new paradigm will a-deliver

at least one proposal from a correct replica. The theorem also im-

plies the liveness of our BFT protocol from the client perspective: a

transaction from a correct client will be eventually a-delivered at

some epoch.

F SCALABILITY EVALUATION USING
INDIVIDUAL FIGURES

Scalability in detail. We show individual scalability figures for

different 𝑓 ’s for BEAT-Cobalt, ACE, and PACE in Figure 15.

G CONVERTING CONVENTIONAL ABA TO
RABA

We discuss an approach that converts a non-RABA protocol to

RABA. In particular, we focus on CKS [20], the pseudocode of

which is shown in Figure 16. We use consistent message names for

the presentation with other protocols presented in this paper, while

the original CKS paper uses different notations. We use the term 𝑡𝑠1

to represent the (𝑛, 𝑓 + 1, 𝑓 ) threshold signature scheme, where the

first threshold denotes the combination threshold and the second

threshold is the number of faulty replicas. (The threshold signature

may be written as (𝑛, 𝑓 + 1) threshold signature for simplicity.)

We use 𝑡𝑠1.𝑠ℎ𝑎𝑟𝑒 to represent a threshold signature share gener-

ated by 𝑡𝑠1 scheme and 𝑡𝑠1.𝑠𝑖𝑔 to represent a threshold signature

combined from 𝑓 + 1 threshold signature shares. We use 𝑡𝑠2 to

represent the (𝑛, 𝑛 − 𝑓 , 𝑓 ) threshold signature scheme, where the

first threshold denotes the combination threshold the second one

denotes the number of faulty replicas. We use 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒 to represent

the threshold signature share and 𝑡𝑠2.𝑠𝑖𝑔 to present the threshold

signature combined from 𝑛− 𝑓 shares. For each message, the thresh-

old signature share is generated for a value 𝑣 , the round number 𝑟 ,

and the ABA instance ID 𝑠𝑖𝑑 .

The CKS protocol consists of three steps in round 0 and two steps

in each round starting from round 1. In round 0, every replica broad-

casts a bval𝑟 (𝑒𝑠𝑡0, 𝑡𝑠1.𝑠ℎ𝑎𝑟𝑒) message, where 𝑒𝑠𝑡0 is the proposed

value and share𝑓 +1 is a threshold signature share. Upon receiving

2𝑓 + 1 valid bval𝑟 () messages, a replica uses the majority value

𝑣 , combines the shares to obtain the signature. The replica then

sends a aux𝑟 (𝑣, 𝑡𝑠1.𝑠𝑖𝑔, 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒) message to all replicas, where

𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒 is the threshold signature of a (𝑛, 𝑛 − 𝑓 , 𝑓 ) threshold sig-

nature scheme. The 𝑠𝑖𝑔 is the signature combined from the shares

in bval𝑟 () messages. In round 0, the signature is a 𝑡𝑠1 signature.

In round greater than 0, 𝑠𝑖𝑔 is a 𝑡𝑠2 signature. If a replica receives

𝑛 − 𝑓 aux𝑟 () messages that contain only one valid value, a replica

broadcasts a conf𝑟 (𝑣, 𝑡𝑠2.𝑠𝑖𝑔, 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒) messages where 𝑡𝑠2.𝑠𝑖𝑔 is a

valid threshold signature combined from shares in aux𝑟 () messages,

𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒 is a valid threshold signature share for 𝑣 . Finally, a replica

waits for 𝑛 − 𝑓 valid conf𝑟 () messages. If there is only one value

𝑏 from the messages, the replica delivers 𝑏. Otherwise, the replica

starts the next round. Replicas then generate the common coin

after the conf𝑟 () step. Starting from round 1, replica do not have to

broadcast bval𝑟 () messages. Instead, a replica braodcasts a aux𝑟 ()
messages for a value 𝑏 if there exists a conf𝑟−1 (𝑏) message with a

valid threshold signature.

Cachin et al. proposed an approach that converts CKS to VBA, the

pseudocode of which is shown in Figure 17. It makes a few changes

to make ABA achieve external validity and biased external validity.

First, every proposed value is associated with an external proof,

which needs to be verified before a replica accepts the proposed

value. In other words, a bval𝑟 () message with an invalid 𝜋 will be

discarded. Second, the common coin in round 0 is set to 1.

We present a construction that converts CKS to a RABA protocol,

as shown in Figure 18. We make several changes to make CKS

achieve RABA properties. First, the threshold signature scheme

we use for the bval𝑟 () messages is a (𝑛, 𝑛 − 𝑓 , 𝑓 ) scheme. In other

words, a replica collects𝑛− 𝑓 bval𝑟 () messages with matching value

to proceed to the next step. Second, the common coin of round 1 is

set to 0. Third, upon the repropose(𝑠𝑖𝑑, 1) event triggered, a replica
broadcasts a bval0 (1, 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒) message.

G.1 Proof of Correctness for CKS RABA
We show that our construction in Figure 18 satisfies the RABA

security definitions.

Theorem G.1. (Validity) If all correct replicas propose 𝑣 and
never repropose 𝑣 , then any correct replica that terminates decides 𝑣 .

Proof. Since a correct replica does not repropose a different

value 𝑣 ′, all replicas are able to receive 𝑛 − 𝑓 bval𝑟 (𝑣) and obtain

a valid threshold signature. Each replica only sends aux𝑟 (1) with
a valid signature. Similarly, every replica only sends a conf𝑟 (𝑣)
message and is able to decide 𝑣 . ■

Theorem G.2. (Agreement) If a correct replica decides 𝑣 , then
any correct replica that terminates decides 𝑣 .
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(a) Throughput of ACE, PACE, and BEAT-Cobalt when 𝑓 = 5.
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(b) Throughput of ACE, PACE, and BEAT-Cobalt when 𝑓 = 15.
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(c) Throughput of ACE, PACE, and BEAT-Cobalt when 𝑓 = 20.
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(d) Throughput of ACE, PACE, and BEAT-Cobalt when 𝑓 = 30.

Figure 15: Detailed scalability results as 𝑓 increases.

Proof. We consider that a correct replica 𝑝𝑖 decides 𝑣 in round

𝑟 . Replica 𝑝𝑖 receives 𝑛 − 𝑓 conf𝑟 (𝑣) messages. We show the case

where another correct replica 𝑝 𝑗 decides 𝑣
′
1) in round 𝑟 ; 2) in round

𝑟 ′ > 𝑟 .

First, if 𝑝 𝑗 decides 𝑣
′
in round 𝑟 , it receives 𝑛 − 𝑓 conf𝑟 (𝑣 ′).

Among 𝑛 − 𝑓 replicas that send conf𝑟 (𝑣) and 𝑛 − 𝑓 replicas that

send conf𝑟 (𝑣 ′), at least one sends both conf𝑟 (𝑣) and conf𝑟 (𝑣 ′), a
contradiction.

Second, if 𝑝 𝑗 decides in round 𝑟 ′, it receives 𝑛 − 𝑓 conf𝑟 ′ (𝑣 ′). In
other words, at least 𝑛− 𝑓 replicas receive 𝑛− 𝑓 aux𝑟 ′ (𝑣 ′) messages.

Atmong the messages, at least one includes a conf𝑟 ′−1 (𝑣 ′) with a

valid threshold signature. In other words, at least 𝑛 − 𝑓 replicas

sent conf𝑟 ′−1 (𝑣 ′) in round 𝑟 ′ − 1. Recursively, in round 𝑟 , at least

𝑛− 𝑓 replicas sent conf𝑟 (𝑣 ′) in round 𝑟 . Therefore, a correct replica

sends both conf𝑟 (𝑣) and conf𝑟 (𝑣 ′), a contradiction. ■

Theorem G.3. (Biased validity) If 𝑓 + 1 correct replicas propose
1, then any correct replica that terminates decides 1.

Proof. If 𝑓 +1 correct replicas propose 1, none of correct replicas

is able to collect 𝑛 − 𝑓 bval0 (0). This is because correct replicas do
not repropose 0 if they propose 1. If a replica receives 𝑛− 𝑓 bval0 (0)
messages and assuming there are 𝑓 faulty replicas, at least 𝑛 − 2𝑓

correct replicas have sent bval0 (0). Since 𝑛 ≥ 3𝑓 + 1, 𝑛− 2𝑓 ≥ 𝑓 + 1.

This is a violation that at leat 𝑓 +1 replicas propose 1 since a correct

replica will not repropose 0.

Also, based on the external condition, each replicamay repropose

1. In other words, all correct replicas will eventually receive 𝑛 − 𝑓

bval0 (1)messages. In this case, all replicas will receive𝑛−𝑓 bval0 (1)
and proceed to the next step.

Now assume that a correct replica 𝑝 𝑗 decides 0 in round 0. In

this case, 𝑝 𝑗 receives 𝑛 − 𝑓 conf0 (0) messages, which is impossible

since it requires 𝑛 − 𝑓 bval0 (0). We now only need to show the

correctness by assuming that 𝑝 𝑗 decides in round 𝑟 > 0. In this case,

𝑝 𝑗 receives 𝑛 − 𝑓 conf𝑟−1 (0). In other words, at least 𝑛 − 𝑓 replicas

broadcast aux𝑟−1 (1) and obtain a valid threshold signature from

round 𝑟 − 2. Recursively, in round 0, at least 𝑛 − 𝑓 replicas send
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upon event propose (𝑠𝑖𝑑, 𝑣𝑖 )
𝑟 ← 0

𝑒𝑠𝑡0 ← 𝑣𝑖

start round 0

round r
if 𝑟 = 0

broadcast bval𝑟 (𝑒𝑠𝑡0, 𝑡𝑠1.𝑠ℎ𝑎𝑟𝑒)
upon receiving 2𝑓 + 1 bval𝑟 () with 𝑣𝑎𝑙𝑠

𝑣 ← majority(𝑣𝑎𝑙𝑠), 𝑠𝑖𝑔← 𝑡𝑠1.𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝑠ℎ𝑎𝑟𝑒𝑠)
else
if exists conf𝑟−1 (𝑏)
𝑣 ← 𝑏, 𝑠𝑖𝑔← signature from conf𝑟−1 (𝑏) message

else 𝑣 ← coin𝑟−1

broadcast aux𝑟 (𝑣, 𝑠𝑖𝑔, 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒)
upon receiving 𝑛 − 𝑓 aux𝑟 () with 𝑣𝑎𝑙𝑠

if 𝑣𝑎𝑙𝑠 = {𝑏 }, 𝑣 ← 𝑏, 𝑠𝑖𝑔← 𝑡𝑠2.𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝑠ℎ𝑎𝑟𝑒𝑠)
else 𝑣 ←⊥, 𝑠𝑖𝑔← aux𝑟 () messages

broadcast conf𝑟 (𝑣, 𝑡𝑠2.𝑠𝑖𝑔, 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒)
upon receiving 𝑣𝑎𝑙𝑠 of conf𝑟 () from 𝑛 − 𝑓 replicas

coin𝑟 ← 𝐶𝑜𝑖𝑛 ()
if 𝑣𝑎𝑙𝑠 = {𝑏 }, decide (𝑠𝑖𝑑,𝑏)
else 𝑟 ← 𝑟 + 1

Figure 16: CKS ABA [20]. The code for replica 𝑝𝑖 .

upon event propose (𝑠𝑖𝑑, 𝑣𝑖 , 𝜋 )
𝑟 ← 0

coin0 ← 1

𝑒𝑠𝑡0 ← 𝑣𝑖

start round 0

round r
if 𝑟 = 0

broadcast bval𝑟 (𝑒𝑠𝑡0, 𝑡𝑠1.𝑠ℎ𝑎𝑟𝑒, 𝜋 )
upon receiving bval𝑟 () with invalid 𝜋

dicard the message

upon receiving 2𝑓 + 1 bval𝑟 () with 𝑣𝑎𝑙𝑠

𝑣 ← majority(𝑣𝑎𝑙𝑠), 𝑠𝑖𝑔← 𝑡𝑠1.𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝑠ℎ𝑎𝑟𝑒𝑠)
else
if exists conf𝑟−1 (𝑏)
𝑣 ← 𝑏, 𝑠𝑖𝑔← signature from conf𝑟−1 (𝑏) message

else 𝑣 ← coin𝑟−1

broadcast aux𝑟 (𝑣, 𝑠𝑖𝑔, 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒)
upon receiving 𝑛 − 𝑓 aux𝑟 () with 𝑣𝑎𝑙𝑠

if 𝑣𝑎𝑙𝑠 = {𝑏 }, 𝑣 ← 𝑏, 𝑠𝑖𝑔← 𝑡𝑠2.𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝑠ℎ𝑎𝑟𝑒𝑠)
else 𝑣 ←⊥, 𝑠𝑖𝑔← aux𝑟 () messages

broadcast conf𝑟 (𝑣, 𝑠𝑖𝑔, 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒)
upon receiving 𝑣𝑎𝑙𝑠 of conf𝑟 () from 𝑛 − 𝑓 replicas

coin𝑟 ← 𝐶𝑜𝑖𝑛 ()
if 𝑣𝑎𝑙𝑠 = {𝑏 }, decide (𝑠𝑖𝑑,𝑏)
else 𝑟 ← 𝑟 + 1

Figure 17: The VBA construction based on CKS ABA proto-
col [19].

conf0 (0). It is straightforward to see that in the first step of round

0, at least 𝑛 − 𝑓 replicas sent bval0 (0). As shown previously, this is

also impossible. ■

Theorem G.4. (Biased termination) Let 𝑄 be the set of correct
replicas. Let 𝑄1 be the set of correct replicas that propose 1 and never

upon event propose (𝑠𝑖𝑑, 𝑣𝑖 )
𝑟 ← 0

coin0 ← 1

𝑒𝑠𝑡0 ← 𝑣𝑖

start round 0

upon event repropose (𝑠𝑖𝑑, 1)
broadcast bval0 (1, 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒)

round r
if 𝑟 = 0

broadcast bval𝑟 (𝑒𝑠𝑡0, 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒)
upon receiving 𝑛 − 𝑓 bval𝑟 (𝑏)
𝑣 ← 𝑏, 𝑠𝑖𝑔← 𝑡𝑠2.𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝑠ℎ𝑎𝑟𝑒𝑠)

else
if exists conf𝑟−1 (𝑏)
𝑣 ← 𝑏, 𝑠𝑖𝑔← signature from conf𝑟−1 (𝑏) message

else 𝑣 ← coin
broadcast aux𝑟 (𝑣, 𝑡𝑠2.𝑠𝑖𝑔, 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒)
upon receiving 𝑛 − 𝑓 aux𝑟 () with 𝑣𝑎𝑙𝑠

if 𝑣𝑎𝑙𝑠 = {𝑏 }, 𝑣 ← 𝑏, 𝑠𝑖𝑔← 𝑡𝑠2.𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝑠ℎ𝑎𝑟𝑒𝑠)
else 𝑣 ←⊥, 𝑠𝑖𝑔← aux𝑟 () messages

broadcast conf𝑟 (𝑣, 𝑡𝑠2.𝑠𝑖𝑔, 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒)
upon receiving 𝑣𝑎𝑙𝑠 of conf𝑟 () from 𝑛 − 𝑓 replicas

coin𝑟 ← 𝐶𝑜𝑖𝑛 ()
if 𝑣𝑎𝑙𝑠 = {𝑏 }, decide (𝑠𝑖𝑑,𝑏)
else 𝑟 ← 𝑟 + 1

Figure 18: The RABA construction based on CKS.

repropose 0. Let 𝑄2 be correct replicas that propose 0 and later re-
propose 1. If 𝑄2 ≠ ∅ and 𝑄 = 𝑄1 ∪ 𝑄2, then every correct replica
eventually terminate.

Proof. We distinguish three cases: 1) All replicas propose 1; 2)

All replicas propose 0; 3) At least one correct replica proposes 1.

We show correctness for the three cases.

1) Since correct replicas do not repropose 0, it is straightforward

to see that all replicas will decide 1.

2) All correct replicas may repropose 1. In other words, every

replica may receive 𝑛 − 𝑓 bval0 (0) and 𝑛 − 𝑓 bval0 (0). Each replica,

however, only sends aux𝑟 () message once with one value. In the

next step, a replica makes a decision regardless of the values re-

ceived from aux𝑟 () messages. Similarly, a replica can proceed after

it receives 𝑛 − 𝑓 conf𝑟 () messages regardless of the values. There-

fore, the protocol can proceed to the next step. There are three

sub-cases: A) None of the correct replicas collects 𝑛 − 𝑓 conf𝑟 ()
messages with a matching value; B) At least one but fewer than

𝑓 + 1 correct replicas collect 𝑛 − 𝑓 conf𝑟 () messages with a match-

ing value; C) At least 𝑓 + 1 correct replicas collect 𝑛 − 𝑓 conf𝑟 ()
messages. In case A, all correct replicas use the common coin value

as 𝑣 and each replica sends aux𝑟 (𝑣). It is impossible that another

corect replica sends aux𝑟 (𝑣 ′) with a valid threshold signature since

it requires 𝑛 − 𝑓 valid conf𝑟−1 (𝑣 ′) messages. Therefore, all replicas

will receive 𝑛 − 𝑓 aux𝑟 (𝑣), send conf𝑟 (𝑣), and decide 𝑣 . In case

B), some replicas may send aux𝑟 (𝑣) while other replicas use the
common coin value. The possibility that the common coin value is

the same as the 𝑏 value (if any) is 1/2. In other words, all replicas

will decide with 1/2 probability. Otherwise, replicas may proceed

to the next round. It is then straightforward to see that replicas will
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terminate the protocol. In case C), all correct replicas will receive at

least one valid conf𝑟 (𝑣) in round 𝑟 + 1. This is because each replica

collects 𝑛 − 𝑓 bval𝑟+1 (𝑣) messages. Among the replicas that have

sent bval𝑟+1 (𝑣) messages, at least 𝑛 − 2𝑓 are correct. We also know

that at least 𝑓 + 1 replicas sent conf𝑟 (𝑣). There are in total 𝑛 − 𝑓 + 1

correct replicas that sent bval𝑟+1 (𝑣) and conf𝑟 (𝑣). Therefore, if at
least one corect replica fails to receive a valid conf𝑟 (𝑣) message, at

least one correct replica collects 𝑛 − 𝑓 conf𝑟 (𝑣) messages but does

not send a bval𝑟+1 (𝑣) with a valid signature, a contradiction.

3) If at least one replica proposes 1, all replicas may receive

𝑛− 𝑓 bval0 (0) and/or 𝑛− 𝑓 bval0 (0). It is also possible that a replica
cannot collect𝑛− 𝑓 bval0 (0) or𝑛− 𝑓 bval0 (1) based on the proposed
values. In this case, the external condition guarantees that all correct

replicas will eventually broadcast bval0 (1). In other words, replica

will eventually proceed to the next step. Similar to case 2), all correct

replicas will eventually terminate. ■

G.2 Converting Cobalt ABA to RABA
Similarly, we can convert Cobalt ABA [48] to RABA.Wemake three

modifications. First, upon proposing 1, each replica starts round

0 and broadcasts a bval0 (1). Each replica also immediately adds 1

to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠0, and broadcasts an aux0 (1) message. Second, upon

reproposing 1, regardless of which round a replica is in, each replica

broadcasts bval0 (1). Furthermore, the replica adds 1 to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠0

if it has not done so already and broadcasts an aux0 (1) if it has
not broadcast any aux𝑟 () message in round 0. Finally, the common

coin for round 0 is set to 1. The first trick and the third trick ensure

that no correct replica will ever use 0 as 𝑒𝑠𝑡1 if at least 𝑓 + 1 correct

replicas propose 1. The second trick ensures that biased termination

can be achieved.

H ADDITIONAL RELATEDWORK
Much related work is discussed in the course of the paper. The

section discusses additional related work.

Consensus and atomic broadcast. The BKR paradigm implies

ABA and atomic broadcast are equivalent in asynchronous environ-

ments. Chandra and Toueg [25] demonstrate that multi-valued con-

sensus is equivalent to asynchronous atomic broadcast. They also

mention, informally, multi-valued Byzantine agreement and atomic

broadcast are equivalent in asynchronous settings, a claim formally

proven byCachin, Kursawe, Petzold, and Shoup [19]. Correia, Neves,

and Verissimo (CNV) show that multi-valued consensus (without

using signatures) is also equivalent to atomic broadcast [28].

ABA and consensus as a building block. ABA can be used to

build many core distributed computing abstractions, such as vector

consensus [12], multi-valued Byzantine agreement [19], atomic

broadcast (e.g., [12, 19, 34, 44, 49]), anonymous vector consen-

sus [17], and many others. It crash-failure counterpart, consensus,

is even more widely used in practice, such as terminating reliable

broadcast, dynamic membership, and non-blocking atomic commit

(see [18] for a summary of consensus-based systems and references

therein).

Local-coin ABA. ABA protocols may rely on local coins. These

protocols are information-theoretically secure but terminate in

an expected exponential number of rounds [15]. RITAS [50], for

instance, uses local-coin ABA to build asynchronous atomic broad-

cast using the protocol of Correia, Neves, and Veríssimo [29] that

does not fall into the category of the BKR paradigm or the CKPS

paradigm.

Asynchronous vs. partially synchronous BFT. Partially syn-

chronous BFT systems never violate safety but achieve liveness

when the network becomes synchronous [36]. In contrast, asyn-

chronous BFT does not rely on any timing assumptions. It is shown

that even for partially synchronous BFT protocols focusing on ro-

bustness [5, 27], their performance may drop 78%-99% [7] during

failures or attacks. Moreover, partially synchronous protocols may

achieve zero throughput with an adversarial network scheduler [49].

Asynchronous BFT protocols are intrinsically robust against per-

formance and denial-of-service (DoS) attacks.

BFTwith asynchronous fallback.Bolt-Dumbo [47] andDitto [38]

are two independent and concurrent works developing the idea of

Kursawe and Shoup [42]. They aim to provide good performance

in the normal case and provide progress during asynchrony.

Asynchronous BFT with quantum safety. DAG-Rider [40] is
a recent asynchronous BFT protocol achieving quantum safety

but not quantum liveness. DAG-Rider has 𝑂 (1) running time and

achieves 𝑂 (𝑛2𝑙 + 𝜆𝑛3
log𝑛) communication complexity. A more

recent work of Das, Xiang, and Lin improves DAG-Rider with a

communication of 𝑂 (𝑛2𝑙 + 𝜆𝑛3).
Tusk [32] implements a fast asynchronous BFT protocol, but it

requires additional workers to help the reliable broadcast phase

and thus is outside of the scope of the conventional BFT model we

consider in this paper. The technique, however, seem to work for

all asynchronous BFT protocols known.

Sub-optimal resilience.Assuming sub-optimal resilience,MiB [45]

implements asynchronous BFT protocols with lower latency and

higher throughput based on the BEAT library.

Communication-efficient RBC protocols. Some recent con-

structions have improved the RBC protocols asymptotically or

concretely [3, 33]. These protocols may benefit all practical BFT

protocols implemented in the bandwidth usage.
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