
PACE: Fully Parallelizable BFT from Reproposable Byzantine
Agreement

Haibin Zhang

Beijing Institute of Technology

haibin@bit.edu.cn

Sisi Duan

Tsinghua University

duansisi@mail.tsinghua.edu.cn

ABSTRACT
The classic asynchronous Byzantine fault tolerance (BFT) frame-

work of Ben-Or, Kemler, and Rabin (BKR) and its descendants rely

on reliable broadcast (RBC) and asynchronous binary agreement

(ABA). However, BKR does not allow all ABA instances to run in

parallel, a well-known performance bottleneck. We propose PACE,

a generic framework that removes the bottleneck, allowing fully

parallelizable ABA instances. PACE is built on RBC and repropos-
able ABA (RABA). Different from the conventional ABA, RABA

allows a replica to change its mind and vote twice. We show how

to efficiently build RABA protocols from existing ABA protocols

and a new ABA protocol that we introduce.

We implement six new BFT protocols: three in the BKR frame-

work, and three in the PACE framework. Via a deployment using

91 replicas on Amazon EC2 across five continents, we show that

all PACE instantiations, in both failure-free and failure scenarios,

significantly outperform their BKR counterparts, and prior BFT pro-

tocols such as BEAT and Dumbo, in terms of latency, throughput,

latency vs. throughput, and scalability.

KEYWORDS
asynchronous BFT, binary agreement, blockchain, fault tolerance,

RABA

1 INTRODUCTION
Byzantine fault tolerance (BFT) is widely viewed as the model

for permissioned blockchains. Among BFT protocols, completely

asynchronous BFT protocols [4, 12, 16, 35, 41, 45] have received re-

newed attention because of its intrinsic robustness. Indeed, having

long been viewed as a "theoretical" approach, several recent asyn-

chronous BFT systems—such as HoneyBadgerBFT [40], BEAT [29],

Dumbo [32], and EPIC [36]—have shown their performance be-

comes comparable to their partially synchronous counterparts.

Efficient asynchronous BFT protocols may be roughly divided

into two categories: the BKR (Ben-Or, Kelmer, and Rabin) para-

digm [12] including HoneyBadgerBFT, BEAT, and EPIC, and the

CKPS (Cachin, Kusawe, Petzold, and Shoup) paradigm [16] includ-

ing SINTRA [18] and Dumbo. Both paradigms have their benefits

and drawbacks: the BKR framework is information-theoretically

(IT) secure (if assuming an IT common coin protocol) and achieves

quantum safety (as defined in [33]); it has an𝑂 (log𝑛) running time.

The CKPS framework is only computationally secure and relies on

less well-established cryptographic pairing assumptions; it has an

𝑂 (1) running time but a large hidden constant.

Neglecting the security model, even just considering perfor-

mance, the "common belief" that there is no "one-size-fits-all" BFT

protocol has, thus far, remained true for the case of asynchronous

BFT. For instance, a recent (state-of-the-art) asynchronous BFT,

Dumbo, largely follows but refines CKPS by reducing its commu-

nication complexity, at the price of four more all-to-all commu-

nications and 𝑂 (𝑛3) pairing-based threshold signatures. Dumbo,

however, has 14 steps even in the best-case scenario (where the

ABA instance terminates in one round). The protocols following

the BKR paradigm terminate in 𝑂 (log 𝑛) rounds but only 6 steps

in the best-case scenario. Our experiment shows that BEAT, for

instance, outperforms Dumbo when 𝑛 ≤ 46, but is less efficient

than Dumbo for larger 𝑛’s.

This work introduces a new BFT framework called PACE that re-

moves a well-known performance bottleneck in the BKR paradigm,

and therefore improves upon the BKR framework and applications

along this line of research (e.g., all BKR descendants, asynchronous

distributed key generation [27, 34], interactive consistency [11]).

We show that our PACE instantiations significantly outperform

their BKR counterparts, and existing BFT protocols such as BEAT

and Dumbo, in both failure and failure-free scenarios.

The BKR bottleneck. The BKR paradigm reduces asynchronous

BFT to RBC and ABA. In each epoch, all replicas first run an RBC

phase to reliably broadcast their proposals. Then they run an ABA

phase, where 𝑛 parallel ABA instances are invoked. The 𝑖-th ABA

instance agrees on whether the proposal of replica 𝑝𝑖 has been

delivered in the RBC phase: Upon RBC delivery of a proposal from

𝑝 𝑗 , the replica proposes 1 to the 𝑗-th ABA instance. If a correct

replica 𝑝 𝑗 decides 1 for the 𝑖-th ABA instance, the proposal from

𝑝𝑖 is delivered. Otherwise, the proposal is not included. The BKR

paradigm requires that if a replica has not received some proposals

during the RBC phase, the replica abstains from proposing 0 until

𝑛 − 𝑓 ABA instances terminate with 1. This method ensures that

proposals from at least 𝑛 − 𝑓 replicas are delivered. The BKR para-

digm, however, breaks the parallelism of the "RBC+ABA" structure.

As shown in Figure 1a, the ABA phase has two subphases: replicas

have to wait until at least 𝑛 − 𝑓 ABA instances terminate with 1

and then invoke the remaining ABA instances with 0.

This is a well-known bottleneck for the BKR paradigm repeat-

edly pointed out by prior works [10, 11] and recently emphasized

by HoneyBadgerBFT [40, Section 4.4]. In addition, both Dumbo

and BEAT experimentally validate this bottleneck via performance

breakdown for the building blocks. The two-subphase pattern not

only adds significant latency but causes transaction congestion.

A well-known "naive attempt" that does not work (and was

recently recalled in [40]) would be that each replica waits for the

first𝑛−𝑓 RBCs completed, and then propose 1 for the ABA instances

corresponding to those completed and propose 0 for the others.

However, RBC instances completed for correct replicas may be

different. As ABA ensures the decided value is 1 only if all correct

1

protocols framework

ABA/ ABA/ coin IT secure (using quantum cryptographic

RABA RABA used type IT common coin)? safety? assumption

Dumbo [32] CKPS ABA Cobalt [39] regular pairing

HoneyBadgerBFT [40] BKR ABA MMR [43] regular

√ √
pairing

BEAT-MMR [29] BKR ABA MMR [43] regular

√ √
CDH

BEAT-CrainH (this paper) BKR ABA CrainH [25] high threshold

√ √
DDH

BEAT-CrainL (this paper) BKR ABA CrainL [25, 28] regular

√ √
CDH

BEAT-Pillar (this paper) BKR ABA Pillar
★

regular

√ √
CDH

PACE-CrainH-R (this paper) PACE RABA CrainH-R
★

high threshold

√ √
DDH

PACE-CrainL-R (this paper) PACE RABA CrainL-R
★

regular

√ √
CDH

PACE-Pisa (this paper) PACE RABA Pisa
★

regular

√ √
CDH

Table 1: Comparison among asynchronous BFT protocols. "Coin type" includes regular, low threshold (𝑓 + 1) common coins
and high threshold (𝑛 − 𝑓) common coins. "IT security" means information-theoretic security. HoneyBadgerBFT and BEAT,
strictly speaking, do not attain IT security even if assuming IT secure common coins; they can be made IT secure if following
the technique of EPIC in selecting transactions, so we mark "yes" for them for IT security. Quantum safety is defined in
DAG-Rider [33]; quantum security = quantum safety + quantum liveness. ★New ABA/RABA protocols in this work.

(a) BKR (e.g., HoneyBadgerBFT, BEAT). (b) PACE.

Figure 1: BKR vs. PACE. Assume there are 7 replicas with 2
failures. BKR has two ABA subphases: replicas have to wait
for the slowest ABA in the first subphase to terminate before
invoking the second subphase. PACE uses reproposable ABA
(RABA) to remove the two-subphase bottleneck.

replicas unanimously propose 1, the transactions delivered may be

empty.

PACE explained. In our work, we propose a new framework,

PACE, that makes the above "naive attempt" work and removes the

two-subphase bottleneck. We achieve this by replacing ABA with

reproposable ABA (RABA), a new binary agreement primitive.

Our key observation is that in the naive attempt, if 𝑛 − 𝑓 correct

replicas deliver some proposals in 𝑛 − 𝑓 RBC instances, there must

exist at least 𝑓 + 1 correct replicas that will propose 1 for at least

𝑓 + 1 ABA instances. For these specific ABA instances, we want to

guarantee that all these ABA instances will indeed decide 1. The

property is called biased validity. Meanwhile, we need to make ABA

protocols syntactically reproposable, in the sense that a replica who

previously voted 0 (maybe immaturely) may change its mind to vote

1 (if the replica later delivers the corresponding RBC instance). The

property (called biased termination) ensures that all RABA instances

can terminate.

We offer generic strategies that can convert various efficient ABA

protocols to efficient RABA protocols. Interestingly, the "biased"

features of RABA provide a "fast" path for RABA to decide, further

reducing latency and improving throughput.

1.1 Our Contributions
RABA.We suggest reproposable ABA (RABA), a newABA primitive

allowing replicas to change votes if needed. We formally describe

the properties of RABA. We view RABA as a first-class distributed

computing primitive.

PACE: A new framework for BFT, parallel ABA, interactive
consistency, etc.We design a new framework for asynchronous

BFT that use RBC and RABA in a black box manner. The framework

leads to the first fully parallelizable asynchronous BFT protocol,

allowing all RABA instances to run in a strictly concurrent way.

The improvement can both increase the throughput and reduce

the latency, effectively removing the BKR two-subphase bottleneck.

PACE can also improve interactive consistency [11], the asynchro-

nous common subset (ACS) framework and applications using ACS

(e.g., asynchronous distributed key generation [27, 34]).

ABA and RABA protocols. We provide generic strategies that

transform efficient ABA protocols to RABA protocols. All our RABA

protocols have a fast path for RABA protocols to terminate. In

particular, we demonstrate the transformation for the classic CKS

ABA [17], Cobalt ABA [39], and the two protocols from Crain’s

work—CrainH (using high threshold common coins) and CrainL

(using low threshold common coins) [25], and an ABA protocol

that we introduce in the paper (called Pillar). For CrainL, we use

the restated version with the good-case-coin-free property [28]. For

Pillar, it is a new ABA protocol that has the same steps as CrainH

but uses more efficient low threshold common coins. The resulting

RABA protocols are called CKS-R, Cobalt-R, CrainH-R, CrainL-R,

and Pisa, respectively. These ABA and RABA protocols provide

interesting efficiency trade-offs.

Practical contributions.As shown in Table 1, we implement three

ABA protocols (CraintH, CrainL, Pillar) and three RABA protocols

(CrainH-R, CrainL-R, Pillar). Correspondingly, we implement six

new BFT protocols: three in the BKR framework (BEAT-CrainH,

BEAT-CrainL, BEAT-Pillar), and three in the PACE framework

(PACE-CrainH-R, PACE-CrainL-R, PACE-Pisa). We extensively eval-

uate the performance for these six new protocols and compare them

2

with existing protocols, including BEAT-MMR, BEAT-Cobalt, and

Dumbo. Via an EC2 deployment using 91 replicas from five conti-

nents, we demonstrate that all PACE instantiations, in both failure-

free and failure scenarios, dramatically outperform their BKR coun-

terparts, and prior BFT protocols such as BEAT and Dumbo, in

terms of all metrics (latency, throughput, latency vs. throughput,

and scalability). Let us highlight some evaluation results:

• All PACE instantiations significantly outperform any of the BRK

instantiations. Even the slowest PACE instantiation is far more

efficient than all the other protocols.

• PACE-Pisa and PACE-CrainL-R are consistently more efficient

than PACE-CrainH-R. PACE-Pisa slightly outperforms PACE-

CrainL-R, except that when the system is of medium size, the

two protocols offer interesting trade-offs. So belowwe use PACE-

Pisa for some concrete comparison for simplicity.

• For 𝑓 = 1, PACE-Pisa achieves 1.77x the throughput of BEAT-

Cobalt and 5.1x the throughput of Dumbo. For 𝑓 = 30, PACE-

Pisa achieves 3.6x the throughput of BEAT-Cobalt and 1.66x the

throughput of Dumbo.

• PACE-Pisa offers an impressive latency metric (when there is

no contention) in both LAN and WAN environments. In WANs,

the latency of PACE-Pisa is between 1/5 and 1/2 of that of the

BKR protocols and between 1/3 and 1/2 of that of Dumbo. In

LANs, Dumbo has 9x the latency of PACE-Pisa for 𝑓 = 1.

• All PACE protocols are highly robust against various crash and

Byzantine failure scenarios. Each PACE protocol outpaces its

BKR counterpart in all failure scenarios. Remarkably, among

all failure scenarios, the slowest PACE instantiation remains

more efficient than the fastest BEAT protocol in its failure-free

scenario.

All protocols introduced in the paper rely on well-studied, stan-

dard, and pairing-free cryptographic assumptions (CDH or DDH

for elliptic curves), achieving standard 128-bit security.

2 SYSTEM MODEL AND DEFINITIONS
We consider distributed computing protocols, where 𝑓 out of 𝑛

replicas may fail arbitrarily (Byzantine failures). The protocols we

consider in this work (ABA, BFT, and RBC) assume 𝑓 ≤ ⌊𝑛−1

3
⌋,

which is optimal. We consider completely asynchronous systems

making no timing assumptions on message processing or transmis-

sion delays. A (Byzantine) quorum is a set of ⌈𝑛+𝑓 +1
2
⌉ replicas. For

simplicity, we may assume 𝑛 = 3𝑓 + 1 and a quorum size of 2𝑓 + 1.

In our protocols, we may associate each protocol instance with a

unique session identifier 𝑠𝑖𝑑 , tagging each message in the protocol

with 𝑠𝑖𝑑 ; we may omit these identifiers when no ambiguity arises.

This paper studies BFT protocols. The protocols that we intro-

duce in the paper inherit all features that BKR and its descendants

have: quantum safety and information-theoretic (IT) security (if as-

suming IT common coin). All these protocols rely on the standard

and well-studied Computational Diffie-Hellman (CDH) or Deci-

sional Diffie-Hellman (DDH) assumptions. In contrast, protocols

derived from the CKPS paradigm [16] (e.g., Dumbo) achieve compu-

tational security only and use (stronger) pairing assumptions. Our

implementations tolerate static corruption, where the adversary

needs to choose the set of corrupted replicas before the execution of

the protocol. But our protocols can easily achieve adaptive security,

if using adaptively secure common coin protocols [9, 36].

We use BFT and (Byzantine) atomic broadcast interchangeably.

Syntactically, in BFT, a replica a-delivers (atomically deliver) trans-
actions, each submitted by some client. The client computes a final

response to its submitted transaction from its responses from repli-

cas. The correctness of a BFT protocol is specified as follows:

• Agreement: If any correct replica a-delivers a transaction 𝑡𝑥 ,

then every correct replica a-delivers 𝑡𝑥 .
• Total order: If a correct replica a-delivers a message 𝑡𝑥 before

a-delivering 𝑡𝑥 ′, then no correct replica a-delivers a message 𝑡𝑥 ′

without first a-delivering 𝑡𝑥 .
• Liveness: If a transaction 𝑡𝑥 is submitted to all correct replicas,

then all correct replicas eventually a-deliver 𝑡𝑥 .

Asynchronous (binary) Byzantine agreement (ABA). An ABA

abstraction is specified by propose and decide. Each replica proposes

an initial binary value (vote) for consensus and replicas will decide

on some value. ABA should satisfy the following properties:

• Validity: If all correct replicas propose 𝑣 , then any correct replica
that terminates decides 𝑣 .

• Agreement: If a correct replica decides 𝑣 , then any correct

replica that terminates decides 𝑣 .
• Termination: Every correct replica eventually decides some

value.

• Integrity: No correct replica decides twice.

RBC. We review the definition of Byzantine reliable broadcast

(RBC). A RBC protocol is specified by r-broadcast and r-deliver such
that the following properties hold:

• Validity: If a correct replica 𝑝 r-broadcasts a message𝑚, then 𝑝

eventually r-delivers𝑚.

• Agreement: If some correct replica r-delivers a message𝑚, then

every correct replica eventually r-delivers𝑚.

• Integrity: For any message𝑚, every correct replica r-delivers
𝑚 at most once. Moreover, if a replica r-delivers a message𝑚

with sender 𝑠 , then𝑚 was previously r-broadcast by replica 𝑠 .

The paper uses AVID RBC [19] that achieves𝑂 (𝑛 |𝑚 | +_𝑛2
log𝑛)

communication, where _ is a security parameter. In both BKR and

PACE frameworks, the communication is dominated by 𝑛 RBC

protocols and is 𝑂 (𝐿𝑛2 + _𝑛3
log𝑛) (𝐿 is the input size).

Throughout the paper, we also use best-effort broadcast, or simply

broadcast, where a sender multicasts a message to all replicas.

Common coins and thresholds. The common coin protocol out-

puts a binary value at each correct replica [44]. These protocols

can be divided into protocols with the regular (low) thresholds (i.e.,

𝑓 + 1) and protocols with the high thresholds (i.e., 2𝑓 + 1). Protocols

from both regular coins [39, 42] and high threshold coins [17, 24, 25]

have been proposed.

It is preferred to use regular common coin protocols over high

threshold common coin protocols from both theoretical perspective

and practical perspective. First, without assuming a trusted setup, it

is more expensive to build decentralized key generation protocols

for high threshold common coins than for regular common coins, as

high threshold asynchronous verifiable (complete) secret sharing is

more expensive than the regular one [6, 27]. Second, even assuming

3

the trusted setup model, regular common coin protocols are easier

to construct. For instance, the most efficient common coin protocols

due to Cachin, Kursawe, and Shoup [17] include a regular common

coin protocol using the Computational Diffie-Hellman (CDH) as-

sumption and a high threshold common coin protocol that must

use the (stronger) Decisional Diffie-Hellman (DDH) assumption.

Third, in the trusted setup model, regular common coin protocols

are less efficient than high threshold protocols, because for high

threshold, one would need to wait for more shares and need to

combine more shares to generate the coins.

Steps; rounds. We use the standard definition of (communication)

steps [15], where a step consists of receiving amessage from another

process, executing a local computation, and sending a message to

some process. For instance, server-side PBFT has three steps. ABA

protocols proceed in rounds, where each round has a fixed number

of steps. So the total number of steps for ABA is a product of #rounds

and #steps per round.

3 CANDIDATE ABA PROTOCOLS FOR PACE:
EXISTING PROTOCOLS AND PILLAR

In this section, we first review existing, practical ABA protocols

relying on authenticated channels, focusing on MMR ABA [42]

and its descendants. We then present in Figure 2 Pillar, a new

ABA protocol assuming authenticated channels. We also briefly

review CKS ABA [17] and Crain-Sig20 ABA [24] that use threshold

signatures. All these ABA protocols described in the section are

candidate protocols for our PACE framework and can in fact be

efficiently converted to RABA protocols.

3.1 Existing ABA Protocols
ABA protocols proceeds in rounds, where each round has a fixed

number of steps.

TheABAprotocol byMostefaoui,Moumen, and Raynal (MMR) [42]

(MMR ABA) is the first constant-round ABA that relies on authen-

ticated channels only. In each round, MMR ABA has 2 or 3 steps

(without counting the step for common coin). Asynchronous BFT

protocols, such as HoneyBadgerBFT [40] and BEAT [29], in their

proceeding versions, utilize MMR ABA.

When describing MMRABA and other protocols, we follow prior

notations like, e.g., bval𝑟 (𝑎), where bval𝑟 () is a message pattern

with a round 𝑟 , and 𝑎 is the message transmitted. In MMR ABA,

each round 𝑟 has two phases: a dispersal phase and an agreement

phase. In the dispersal phase, every replica broadcasts its value 𝑒𝑠𝑡𝑟
via a bval𝑟 (𝑒𝑠𝑡𝑟) message. Upon receiving 𝑓 + 1 bval𝑟 (𝑣), a replica
also broadcasts a bval𝑟 (𝑣) if it has not done so. Upon receiving

𝑛 − 𝑓 bval𝑟 (𝑣), a replica adds 𝑣 to a local set 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 . Each

replica broadcasts an aux𝑟 (𝑣) message for the first value added

to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 and then enters the agreement phase. Upon receiv-

ing 𝑛 − 𝑓 aux𝑟 () messages, replicas generate a common coin 𝑠𝑟
by querying the common coin protocol coin𝑟 . If a replica receives
𝑛 − 𝑓 aux𝑟 (𝑏) and 𝑏 = 𝑠𝑟 , the replica decides 𝑏 and sets 𝑒𝑠𝑡𝑟+1 to

𝑏. Otherwise, the replica sets 𝑒𝑠𝑡𝑟+1 to 𝑠𝑟 . Each replica then enters

round 𝑟 + 1. After each replica decides, there are two standard ap-

proaches to terminating the protocol. One approach is that each

replica continues to participate in the protocol until reaching round

𝑟 ′, where 𝑠𝑟 ′ equals the value the replica decides. The other ap-

proach is that each replica broadcasts a message to all replicas and

each replica terminates the protocol upon receiving 𝑛− 𝑓 such mes-

sages. Throughout the paper, we neglect the details of terminating

the protocol. The pseudocode of MMR is presented in Appendix A.

MMR ABA, however, has a liveness issue [1, 43, 47]. In particular,

the protocol assumes perfect random coins completely independent

of the state of all correct replicas at the point when they query

the coin. The property cannot be guaranteed by any cryptographic

common coin protocols. A malicious network scheduler can force

correct replicas to always enter the next round with inconsistent

values (i.e., some replicas set 𝑒𝑠𝑡𝑟+1 to the common coin value 𝑠𝑟
after receiving both aux𝑟 (0) and aux𝑟 (1) and some replicas set

𝑒𝑠𝑡𝑟+1 to 𝑠𝑟 after receiving 𝑛 − 𝑓 aux𝑟 (𝑠𝑟)).
The journal version of MMR [43, 2nd algorithm] fixed the issue

but has 9 to 13 steps for each round. The idea is to repeat the

dispersal-agreement pattern four times such that the value each

replica decides does not have to be compared with the common coin.

The ABA can work for both weak coins and perfect coins. Cobalt

ABA [39] provides an alternative solution, having 3 or 4 steps in

each round. Recent BFT implementations including EPIC [36] and

Dumbo [32] use Cobalt ABA.

Crain [25, 1st algorithm] (denoted as CrainL) optimized theMMR

journal protocol by having 5 to 7 steps in each round. The core idea

is that the dispersal-agreement pattern only has to be repeated twice

instead of four times. As in MMR journal, CrainL work for weak

coins and perfect coins. A recent work pointed out that CrainL can

have a "good-case-coin-free" property which leads to a fast path to

decide values [28]. We use the restated version of CrainL from [28].

In the same work, Crain [25, 2nd algorithm] (denoted as CrainH)

also fixed the issue of MMR ABA assuming authenticated channels

and has 2 or 3 steps in each round. However, CrainH uses a high

threshold perfect common coin protocol which, as we have argued

in Sec. 2, is less efficient, and may rely on a stronger assumption.

For all these ABA protocols, if using perfect coins, the expected

number of rounds for replicas to reach a state such that a decision

can be made is 2. Then replicas continue to execute the protocol

until they decide. For MMR and its descendants (Cobalt, CrainH,

Pillar), as replicas have to compare its value with the common coin

before they decide, another 2 rounds are expected and the total

expected number of rounds to terminate is 4. For CKS, the MMR

journal protocol, and CrainL, as replicas do not have to compare

their values with the coin, replicas are expected to decide in another

one round and the expected number of rounds for these protocols

to terminate is 3.

Table 2 summarizes some representative ABA protocols termi-

nating in an expected constant number of rounds. We divide these

protocols into two categories: ABA assuming authenticated chan-

nels only and ABA requiring the transferability of (threshold) sig-

natures (including CKS ABA and Crain-Sig20 [24]). Jumping ahead,

in Sec. 4 and Appendix G, we show how to convert Pillar, CKS,

CrainH, CrainL, and Cobalt to RABA.

3.2 Pillar

4

signature? steps/round rounds coin type

CKS [17] yes 2 or 3
∗

3 high threshold

MMR [42] (insecure) no 2 or 3 4 regular

MMR [43, 2nd alg] no 9 to 13 3 regular (weak) coin

Cobalt [39] no 3 or 4 4 regular

Crain-Sig20 [24, 28] yes 1 or 2
‡

3 high threshold

CrainL [25, 1st alg] no 5 to 7 3 regular (weak) coin

CrainH [25, 2nd alg] no 2 or 3
†

4 high threshold

Pillar (this work) no 2 or 3 4 regular

Table 2: Comparison of ABA protocols using common coins.
Steps/round denotes number of steps per round (common
coin steps not counted). Rounds denote the expected num-
ber of rounds. The total number of steps is a product of
steps/round and rounds. ∗CKS has 3 steps in round 0. ‡Crain-
Sig20 is a variant of CKS with 2 steps in round 0 and 1 step
in round greater than 0.

01 upon event 𝑝𝑟𝑜𝑝𝑜𝑠𝑒 (𝑠𝑖𝑑, 𝑣𝑖)
02 if 𝑟 = 0, 𝑒𝑠𝑡0 ← 𝑣𝑖 ,𝑚𝑎𝑗0 ← ⊥, start round 0

03 round r
04 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ← ∅,𝑚𝑎𝑗𝑠 ← ∅
05 broadcast bval𝑟 (𝑒𝑠𝑡𝑟 ,𝑚𝑎𝑗𝑟) {1st phase}

06 upon receiving bval𝑟 (𝑣, 𝑐) from 𝑗

07 𝑚𝑎𝑗𝑠 ←𝑚𝑎𝑗𝑠 ∪ {𝑐 }
08 upon receiving 𝑓 + 1 bval𝑟 (𝑏, ∗)
09 if bval𝑟 (𝑏,𝑚𝑎𝑗𝑟) has not been sent

10 broadcast bval𝑟 (𝑏,𝑚𝑎𝑗𝑟)
11 upon receiving 𝑛 − 𝑓 bval𝑟 (𝑏, ∗)
12 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ← 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ∪{𝑏 }
13 if (𝑟 > 0 and ((𝑏 = 𝑠𝑟−1 and V1 (𝑚𝑎𝑗𝑠) = 𝑏) or (𝑏 = 𝑠𝑟−1 and

¯𝑏 ∉𝑚𝑎𝑗𝑠)))

or 𝑟 = 0

14 𝛿𝑟 (𝑏) ← 1

15 if aux𝑟 (𝑏, ∗) or aux𝑟 (¯𝑏, ∗) has not been sent

16 if 𝛿𝑟 (𝑏) = 1, broadcast aux𝑟 (𝑏,𝑏) {2nd phase}

17 else broadcast aux𝑟 (⊥, 𝑏)
18 upon receiving 𝑛 − 𝑓 aux𝑟 (∗, ∗) where the sets of values carried by these

messages are 𝑣𝑎𝑙𝑠𝑟 and 𝑎𝑣𝑎𝑙𝑠𝑟 ; 𝑣𝑎𝑙𝑠𝑟 and 𝑎𝑣𝑎𝑙𝑠𝑟 are both subsets of𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 .

19 𝑠𝑟 ← coin𝑟
20 if V2 (𝑣𝑎𝑙𝑠𝑟 , 𝑏) ≥ ⌈𝑛+𝑓 +1

2
⌉ {a quorum of replicas voted for 𝑏}

21 𝑒𝑠𝑡𝑟+1 ← 𝑏,𝑚𝑎𝑗𝑟+1 ← 𝑏

22 if 𝑏 = 𝑠𝑟 , decide (𝑠𝑖𝑑,𝑏)
23 if 𝑟 > 0 and (V1 (𝑣𝑎𝑙𝑠𝑟) = ⊥ or V2 (𝑣𝑎𝑙𝑠𝑟 , 𝑏) < ⌈𝑛+𝑓 +1

2
⌉)

24 if V2 (𝑎𝑣𝑎𝑙𝑠𝑟 , 𝑏) ≥ ⌈𝑛+𝑓 +1
2
⌉

25 𝑒𝑠𝑡𝑟+1 ← 𝑏,𝑚𝑎𝑗𝑟+1 ← 𝑏

26 if 𝑏 = 𝑠𝑟−1 and 𝑏 = 𝑠𝑟 , decide (𝑠𝑖𝑑,𝑏)
27 else if {0, 1} ∈ 𝑎𝑣𝑎𝑙𝑠𝑟 and 𝑏 = 𝑠𝑟−1

28 𝑒𝑠𝑡𝑟+1 ← 𝑏

29 𝑚𝑎𝑗𝑟+1 ← 𝑏

30 if 𝑒𝑠𝑡𝑟+1 has not been set yet {all other conditions}

31 𝑒𝑠𝑡𝑟+1 ← 𝑠𝑟
32 if 𝑟 = 0,𝑚𝑎𝑗𝑟+1 ← 𝑠𝑟
33 else𝑚𝑎𝑗𝑟+1 ← majority(𝑣𝑎𝑙𝑠𝑟)
34 𝑟 ← 𝑟 + 1, continue to the next round

Figure 2: The Pillar protocol. The code for replica 𝑝𝑖 . Broad-
cast in the code means best-effort broadcast.

Pillar is designed to address the liveness issue of MMR without

introducing more steps or using less efficient high threshold com-

mon coins. As in MMR ABA and its descendants, each round in

Pillar consists of a dispersal phase and an agreement phase. The

core idea of Pillar is that instead of having each replica include

one value in each message, in Pillar, each message consists of two

values. The first value is the "main value" for which each replica

votes. The second value carries auxiliary value. The auxiliary value

guarantees that correct replicas will only vote for the same value in

the agreement phase of each round. This prevents the value voted

by each correct replica from being manipulated by an adversary.

We introduce some notation to better present the protocol.

• For 𝑏 ∈ {0, 1}, ¯𝑏 =⌝𝑏 = 1 − 𝑏.
• ∗ in a message may represent 𝑏, ¯𝑏, or ⊥, where 𝑏 ∈ {0, 1} and
⊥ ∉ {0, 1}. For instance, aux𝑟 (∗, 𝑏) may represent aux𝑟 (𝑏, 𝑏),
aux𝑟 (¯𝑏, 𝑏), or aux𝑟 (⊥, 𝑏). bval𝑟 (𝑏, ∗) may represent bval𝑟 (𝑏,𝑏),
bval𝑟 (𝑏, ¯𝑏), or bval𝑟 (𝑏,⊥). We may simply omit ∗ when there

is no ambiguity; for example, we may write aux𝑟 () to denote

aux𝑟 (∗, ∗).
• Let 𝑣𝑎𝑙𝑠 be a vector (multiset) consisting of 0, 1, and⊥.V1 (𝑣𝑎𝑙𝑠) =

𝑏 if the only value in 𝑣𝑎𝑙𝑠 is 𝑏 for 𝑏 ∈ {0, 1,⊥}.
• V2 (𝑣𝑎𝑙𝑠, 𝑏) = 𝑡 if 𝑣𝑎𝑙𝑠 includes 𝑏 only or both 𝑏 and ⊥, where

𝑏 ∈ {0, 1}, and the number of 𝑏’s in 𝑣𝑎𝑙𝑠 is 𝑡 .

• majority(𝑣𝑎𝑙𝑠) = 𝑏 for 𝑏 ∈ {0, 1}, if 𝑏 is a simple majority

in 𝑣𝑎𝑙𝑠 , i.e., the number of 𝑏’s is no less than ⌈(|𝑣𝑎𝑙𝑠 | + 1)/2⌉.
majority(𝑣𝑎𝑙𝑠) = ⊥ otherwise.

As illustrated in Figure 2, the Pillar protocol has two message

types: bval𝑟 () and aux𝑟 (), corresponding to the dispersal phase and
the agreement phase, respectively.

In each round 𝑟 , a replica 𝑝𝑖 has an input 𝑒𝑠𝑡𝑟 and an auxiliary

input𝑚𝑎𝑗𝑟 . The 𝑒𝑠𝑡𝑟 value is a binary value (i.e., 𝑒𝑠𝑡𝑟 ∈ {0, 1}) and
𝑚𝑎𝑗𝑟 ∈ {0, 1,⊥}. In the first phase (ln 05-17), 𝑝𝑖 first broadcasts

a bval𝑟 (𝑒𝑠𝑡𝑟 ,𝑚𝑎 𝑗𝑟) message. A correct replica does not change its

𝑚𝑎𝑗𝑟 within a round. If 𝑝𝑖 receives more than 𝑓 + 1 bval𝑟 (𝑏, ∗)
messages such that 𝑏 is different from its input, it also broadcasts

bval𝑟 (𝑏,𝑚𝑎𝑗𝑟) (ln 08-10). If a replica receives 2𝑓 + 1 bval𝑟 (𝑏, ∗)
messages with the same 𝑏 value (𝑏 is either 0 or 1), 𝑏 is added to a

set 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 (ln 11-12).

In addition, 𝑝𝑖 checks the𝑚𝑎𝑗𝑟 values (which form a set𝑚𝑎𝑗𝑠)

in the bval𝑟 (𝑏,𝑚𝑎𝑗𝑟) messages. Specifically, 𝛿𝑟 (𝑏) is set as 1 for the

following conditions (ln 13-14). If 𝑟 = 0, 𝛿𝑟 (𝑏) is set as 1 for any

𝑏 ∈ {0, 1}. If 𝑟 > 0, the replica compares 𝑏 with the common coin

value 𝑠𝑟−1 in round 𝑟 −1. If 𝑏 = 𝑠𝑟−1 and 𝑝𝑖 receives only bval𝑟 (𝑏,𝑏)
and bval𝑟 (𝑏,⊥), 𝛿𝑟 (𝑏) is set as 1. If 𝑏 = 𝑠𝑟−1 and 𝑝𝑖 only receives

bval𝑟 (𝑏, 𝑏) (i.e., V1 (𝑚𝑎𝑗𝑠) = 𝑏), 𝛿𝑟 (𝑏) is set as 1. After 𝑝𝑖 receives

𝑛 − 𝑓 bval𝑟 () messages, it sends aux𝑟 (𝑏,𝑏) when 𝛿𝑟 (𝑏) = 1 and

aux𝑟 (⊥, 𝑏) otherwise (ln 15-17). A correct replica only sends one

aux𝑟 () message in each round.

In the second phase (ln 18-34), replica𝑝𝑖 only accepts an aux𝑟 (𝑣1, 𝑣2)
message if both 𝑣1 and 𝑣2 are added to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 (⊥ is considered

as {0, 1}). Furthermore, a replica does not accept an aux𝑟 (𝑣, 𝑣) or
aux𝑟 (∗,⊥) message, since these values are not allowed according

to our specification. Furthermore, if a replica sets 𝛿𝑟 (𝑏) = 1 and

receives aux𝑟 (¯𝑏, ∗), it discards the message. Upon receiving 𝑛 − 𝑓

aux𝑟 () messages, 𝑝𝑖 queries the common coin protocol and obtain

𝑠𝑟 (ln 19). When processing the aux𝑟 () messages, there are three

cases for 𝑝𝑖 :

• Case 1 (ln 20-22). If 𝑝𝑖 receives a quorum of aux𝑟 (𝑏,𝑏) messages,

𝑝𝑖 compares 𝑏 with the common coin 𝑠𝑟 . If 𝑏 = 𝑠𝑟 , 𝑝𝑖 decides 𝑏.

Otherwise 𝑝𝑖 set both 𝑒𝑠𝑡𝑟+1 and𝑚𝑎𝑗𝑟+1 as 𝑏.

• Case 2 (ln 23-26). If 𝑝𝑖 only receives aux𝑟 (𝑏, 𝑏) and aux𝑟 (⊥, 𝑏)
and at least a quorum of the messages are of the form aux𝑟 (∗, 𝑏),
𝑝𝑖 also compares 𝑏 with both 𝑠𝑟−1 and 𝑠𝑟 . If 𝑏 = 𝑠𝑟−1 and 𝑏 = 𝑠𝑟 ,

𝑝𝑖 decides 𝑏. Otherwise, 𝑝𝑖 uses 𝑏 for 𝑒𝑠𝑡𝑟+1 and𝑚𝑎𝑗𝑟+1.
• Case 3 (ln 27-29). If 𝑝𝑖 receives 𝑛 − 𝑓 aux𝑟 (⊥, 𝑏) and aux𝑟 (𝑏,𝑏)

and 𝑏 = 𝑠𝑟−1, 𝑝𝑖 uses 𝑏 for 𝑒𝑠𝑡𝑟+1 and𝑚𝑎𝑗𝑟+1.

5

If none of the cases apply and 𝑒𝑠𝑡𝑟+1 has not been set yet (ln

30-33), 𝑝𝑖 uses the common coin value 𝑒𝑠𝑡𝑟+1 for the next round.

Furthermore, 𝑝𝑖 sets𝑚𝑎𝑗𝑟+1 to 𝑠𝑟 for 𝑟 = 0 and majority(𝑣𝑎𝑙𝑠𝑟) for
𝑟 > 0. Then 𝑝𝑖 enters the next round.

Security analysis. There are two key elements in our design. First,

each message carries a main value and an auxiliary value. In the

bval𝑟 () step, the auxiliary value𝑚𝑎𝑗𝑟 will never change in the same
round, though a replica is allowed to broadcast 𝑒𝑠𝑡𝑟 = 1 and 𝑒𝑠𝑡𝑟 = 0.

Furthermore, we require that a replica sends an aux𝑟 (𝑏, 𝑏) message

if 𝛿𝑟 (𝑏) = 1. In round 0, 𝛿𝑟 (𝑏) = 1 for both 𝑏 = 0 and 𝑏 = 1. But in

round 𝑟 > 0, correct replicas will only have 𝛿𝑟 (𝑏) = 1 for at most

one value (LemmaD.1). This naturally prevents a network scheduler

from making some correct replicas set 𝑒𝑠𝑡𝑟+1 as a value different

from the common coin coin𝑟 . Second, we ensure that if a correct
replica decides in round 𝑟 , all replicas will have the same 𝑒𝑠𝑡𝑟+1 and
eventually decide 𝑒𝑠𝑡𝑟+1. This is achieved by having replicas check

both values in aux𝑟 () messages.

Note that in one case (ln 26, Figure 2), we require that 𝑏 = 𝑠𝑟−1 =

𝑠𝑟 , i.e., two consecutive coins with the same value. However, the

expected number of rounds for Pillar remains the same as prior

works such as MMR, Cobalt, and CrainH. Note in round 𝑟 , 𝑠𝑟−1 is

already a fixed value. In particular, if all correct replicas propose

the same value 𝑏, replicas are already in a state where they will

reach a decision. If correct replicas propose different values, correct

processes that do not converge to the same value at the end of each

round will use the common coin. The expected number of rounds

for replicas to reach a state where they will reach a decision is 2.

After that, as replicas have to compare their value with the common

before deciding the value, another 2 rounds are expected before

replicas decide. In total, the expected number of rounds is 4.

4 REPROPOSABLE ABA (RABA)
4.1 Definition of RABA
We introduce a new distributed computing primitive, reproposable

ABA (RABA). Unlike conventional ABA where replicas can vote

once only, RABA allows replicas to change their votes.

Motivation. At a high level, RABA is designed to make the "naive

attempt" mentioned in the introduction "work." Recall that in the

naive approach, replica simply waits for the first 𝑛 − 𝑓 RBCs to

complete and propose 1 for the ABA instances whose corresponding

RBC have completed, and propose 0 otherwise. This approach,

however, may lead to a situation where no transactions may be

delivered.

To fix the naive attempt, we aim at using RABA to replace ABA.

A core theorem that we can prove is that if 𝑛 − 𝑓 correct replicas

deliver some proposals in 𝑛 − 𝑓 RBC instances, then at least 𝑓 + 1

correct replicas will propose 1 for at least 𝑓 + 1 ABA instances. For

these particular ABA instances, we would like to ensure that they

will indeed decide 1. Thus, we require a property (called biased
validity) that could imply the above fact: if 𝑓 + 1 correct replicas

propose 1, then any correct replica that terminates decides 1. Note
that the property is different from the biased validity property

defined in CKPS, as that definition was defined in the context of

external validity.

Defining biased validity alone would not help achieve liveness.

We need to make a syntactic change to ABA to make it reproposable:
a replica who previously voted 0 (back then the corresponding RBC

did not complete) can have a chance to vote 1 (if now the replica

delivers the corresponding RBC). And we want to ensure RABA

can terminate if all correct replicas either propose 1 or repropose 1.
The property is called biased termination.

The above two properties are two core properties for RABA.

Other properties are either the same as ABA or require some tweaks

due to the syntactic difference between ABA and RABA.

RABA syntax (API). Syntactically, a RABA protocol tagged with a

unique identifier 𝑠𝑖𝑑 is specified by propose(𝑠𝑖𝑑, ·), repropose(𝑠𝑖𝑑, ·),
and decide(𝑠𝑖𝑑, ·), where the input domain is {0, 1}. For our purpose,
RABA is "biased towards 1." (Namely, "1" is the favorable value.)

It is up to the high-level protocol to decide when to trigger the

propose and repropose functions for each correct replica. Below are

the function constraints enforced by correct replicas:

• propose(𝑠𝑖𝑑, ·): Each replica can propose a value 𝑣 at the begin-

ning of the protocol 𝑠𝑖𝑑 . Each replica can propose a value only

once.

• repropose(𝑠𝑖𝑑, ·): A replica that proposed 0 is allowed to change

its mind and repropose 1. A replica that proposed 1, however, is

not allowed to repropose 0. If a replica reproposes 1, it does so

at most once.

• decide(𝑠𝑖𝑑, ·): A replica terminates the protocol identified by 𝑠𝑖𝑑

by generating a decide message.

Definitions of security. RABA (biased toward 1) satisfies the

following properties:

• Validity: If all correct replicas propose 𝑣 and never repropose 𝑣 ,
then any correct replica that terminates decides 𝑣 .

• Unanimous termination: If all correct replicas propose 𝑣 and
never repropose 𝑣 , then all correct replicas eventually terminate.

• Agreement: If a correct replica decides 𝑣 , then any correct

replica that terminates decides 𝑣 .
• Biased validity: If 𝑓 + 1 correct replicas propose 1, then any

correct replica that terminates decides 1.

• Biased termination: Let𝑄 be the set of correct replicas. Let𝑄1

be the set of correct replicas that propose 1 and never repropose

0. Let𝑄2 be correct replicas that propose 0 and later repropose 1.

If𝑄2 ≠ ∅ and𝑄 = 𝑄1 ∪𝑄2, then each correct replica eventually

terminates.

• Integrity: No correct replica decides twice.

RABA has a slightly different validity property modified for our

RABA syntax. It implies validity for two cases: 1) all correct replicas

propose 1 (and, of course, they cannot repropose 0 according to

our syntax) before termination; 2) all correct replicas propose 0 and

never repropose 1 before termination.

Unanimous termination is weaker than the conventional termi-

nation property: it guarantees termination only when all correct

replicas propose the same input. Validity and unanimous termina-

tion can be combined into a single property:

• If all correct replicas propose 𝑣 and never repropose 𝑣 , then any

correct replica decides 𝑣 .

The agreement property of RABA is identical to that of ABA.

6

Biased validity in RABA requires that if 𝑓 + 1 replicas, instead of

all correct replicas, propose 1, then a correct replica that terminates

decides 1.While the property echoes that of VABA [16], RABA is not

in the context of "validated" ABA (VABA). This is precisely our goal,

as VABA requires the usage of expensive (threshold) signatures

which we strive to avoid. Nevertheless, this also means that when

using RABA, we no longer have the powerful "validation" technique

(and we need to be creative when using RABA).

Our biased termination property ensures that the protocol will

eventually terminate as long as all correct replicas either propose 1

(and never repropose 0) or initially propose 0 but change their minds

to repropose 1. 𝑄1 can be an empty set. 𝑄2 cannot be an empty

set because otherwise biased termination is implied by unanimous

termination.

Unanimous termination and biased termination complement

each other. Remarkably, RABA does not have the usual termination

property. (Correspondingly, our RABA protocol may indeed never

terminate.) To use RABA in our favor, one must use a high-level

protocol to control the inputs of RABA, allowing, when necessary,

replicas to change their votes to attain termination eventually. Note

we do not further restrict the APIs of RABA, as we find RABA in

the current form is sufficient for our purpose. Restricting too much

might impede novel usages of RABA.

Allowing a replica to change itsmind and enabling a non-validated

version of biased validity/termination properties are two central

ideas underlying RABA.

One might wonder: why not use two ABA instances instead, one

ABA for the "propose" phase and the other ABA for the "repropose"

phase? One possible anomaly for this idea is that one replica might

decide twice. Indeed, it is possible that while some replica is par-

ticipating in the second ABA, the first ABA has terminated; it is

also possible that some replicas terminate for the first ABA, while

some other replicas terminate for the second ABA. According to

our RABA definition, this is not allowed because the "integrity"—

no correct replica decides twice—is introduced to govern both the

propose operation and the repropose operation in a single RABA

instance explicitly associated with a session identifier 𝑠𝑖𝑑 .

The overall formalization of RABA allows hiding—as much as

we could—subtle protocol implementation details, exposing a clean

API that can be neatly fit into a simple and novel asynchronous

BFT framework—PACE.

4.2 Pisa: Efficient RABA from Pillar
We present a RABA protocol, Pisa, built on top of Pillar. As illus-

trated in Figure 3, wemodify the round 𝑟 = 0 of Pillar, while the code

for round 𝑟 > 0 remains unchanged. In particular, we make the fol-

lowingmajor changes in round 0. First, each replica 𝑝𝑖 that proposes

0 can repropose 1. At ln 03-04, if the 𝑟𝑒𝑝𝑟𝑜𝑝𝑜𝑠𝑒 () event is triggered,
regardless of which round 𝑝𝑖 is in, it broadcasts a bval0 (1,⊥) mes-

sage if it has not done so. Second, if a correct replica 𝑝𝑖 proposes

1, it immediately adds 1 to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 (ln 08-09). If 𝑝𝑖 has not pre-

viously broadcast an aux𝑟 () message, it broadcasts aux𝑟 (1, 1) (ln
10). Third, if 𝑝𝑖 proposes 0 and receives 𝑓 + 1 bval𝑟 (1,⊥) (ln 12-

17), in addition to broadcasting bval𝑟 (1,⊥) (ln 14), it immediately

adds 1 to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 (ln 16). If 𝑝𝑖 has not sent any aux𝑟 () message,

it also broadcasts aux𝑟 (1, 1) (ln 17). Last, ln 24 sets the value of

01 upon event propose (𝑠𝑖𝑑, 𝑣𝑖)
02 if 𝑟 = 0, 𝑒𝑠𝑡0 ← 𝑣𝑖 ,𝑚𝑎𝑗0 ← ⊥
03 upon event repropose (𝑖𝑑, 1)
04 broadcast bval0 (1,⊥) {1st phase}

05 round 0

06 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ← ∅
07 broadcast bval𝑟 (𝑒𝑠𝑡𝑟 ,𝑚𝑎𝑗𝑟)
08 if 𝑒𝑠𝑡𝑟 = 1 {biased toward 1}

09 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ← {1}
10 if aux𝑟 () has not been sent, broadcast aux𝑟 (1, 1)
11 upon receiving bval𝑟 (∗, ∗) from 𝑗

12 if there are 𝑓 + 1 bval𝑟 (𝑏, ∗)
13 if bval𝑟 (𝑏,𝑚𝑎𝑗𝑟) has not been sent

14 broadcast bval𝑟 (𝑏,𝑚𝑎𝑗𝑟)
15 if 𝑏 = 1 {enter the 2nd phase and biased toward 1}

16 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ← 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ∪{𝑏 }
17 if aux𝑟 () has not been sent, broadcast aux𝑟 (1, 1)
18 if there are 2𝑓 + 1 bval𝑟 (𝑏, ∗) {2nd phase}

19 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ← 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ∪{𝑏 }
20 if aux𝑟 () has not been sent, broadcast aux𝑟 (𝑏,𝑏)
21 upon receiving 𝑛 − 𝑓 aux𝑟 (∗, ∗) where the sets of values carried by these

messages are 𝑣𝑎𝑙𝑠𝑟 and 𝑎𝑣𝑎𝑙𝑠𝑟 ; 𝑣𝑎𝑙𝑠𝑟 and 𝑎𝑣𝑎𝑙𝑠𝑟 are both subsets of𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 .

22 if V2 (𝑣𝑎𝑙𝑠𝑟 , 𝑏) ≥ ⌈𝑛+𝑓 +1
2
⌉

23 𝑒𝑠𝑡𝑟+1 ← 𝑏,𝑚𝑎𝑗𝑟+1 ← 𝑏

24 if 𝑏 = 1, decide (𝑠𝑖𝑑,𝑏)
25 else
26 𝑒𝑠𝑡𝑟+1 ← 1,𝑚𝑎𝑗𝑟+1 ← 1

27 𝑟 ← 𝑟 + 1, continue to the next round

Figure 3: The Pisa protocol for round 0 only at 𝑝𝑖 .

common coin to 1 in round 0. Doing so ensures that if a replica

receives 𝑛 − 𝑓 aux𝑟 (1, 1), it will directly terminate the protocol. For

each replica that receives both aux𝑟 (1, 1) and aux𝑟 (0, 0) (ln 26), the

replica enters the next round using 𝑒𝑠𝑡𝑟+1 = 1 and𝑚𝑎𝑗𝑟+1 = 1.

Intuition and analysis. Our motivation for Pisa is that upon

proposing 1, replicas directly broadcast both bval𝑟 (1,⊥) and aux𝑟 (1, 1)
all at once, knowing that all correct replicas will either propose 1 or

repropose 1. In other words, the protocol will eventually terminate

and replicas can decide in only one step in the optimal case.

In round 0, a replica 𝑝𝑖 puts 1 in 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 and directly broad-

casts aux𝑟 (1, 1) if its initial input is 1. This ensures that if more than

𝑓 + 1 correct replicas have 1 as their input in round 0, no correct

replicas can receive 2𝑓 + 1 aux𝑟 (0, 0) and use 0 as input for the

next round. As the common coin is set to 1 in round 0, all correct

replicas will have 1 as the input for the next round, achieving the

biased validity property.

Such an approach does not guarantee the conventional termi-

nation property of ABA. Consider a scenario with four replicas in

Figure 4 (we use aux𝑟 (𝑣) in the figure, as each replica broadcasts

aux𝑟 (𝑣, 𝑣) in round 0). Replica 𝑝0 proposes 1 while 𝑝1 and 𝑝2 pro-

pose 0. The faulty replica 𝑝3 can send bval𝑟 (0,⊥) to 𝑝2 and 𝑝3 and

make them send aux𝑟 (0, 0). While 𝑝0 can receive 𝑛 − 𝑓 bval𝑟 (0,⊥)
messages, put 0 to its 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 , and accept aux𝑟 (0, 0), it has
already sent aux𝑟 (1, 1). Since 𝑝2 and 𝑝3 can not receive enough

bval𝑟 (1,⊥) messages, they will not put 1 to their 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 . If 𝑝3

does not send any aux𝑟 () messages, 𝑝1 and 𝑝2 are unable to move

to the next round or terminate the protocol.

Pisa achieves biased termination if a reproposal is allowed. In

particular, a replica is allowed to repropose 1 if it previously pro-

posed 0. In this particular example, if correct replicas 𝑝1 and 𝑝2

repropose, they will send bval0 (1,⊥). Since 𝑝1 and 𝑝2 are still in

round 0, they are able to collect 𝑛 − 𝑓 bval0 (1,⊥) and put 1 to

𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 . Hence, all replicas will eventually move to the next

7

round. As we use 1 as the common coin for round 0, correct replicas

will eventually decide 1. Note that prior to the reproposal of 𝑝1 and

𝑝2, the faulty replica 𝑝3 may have sent aux𝑟 (0, 0) to 𝑝1 and 𝑝2. In

this case, both 𝑝1 and 𝑝2 receive 3 aux𝑟 (0, 0) messages and use 0

as input for round 1. Therefore, even if 𝑝1 and 𝑝2 repropose later,

replicas already move to a new round such that the bval0 (1,⊥) mes-

sages will not be accepted. That is, replicas might not necessarily

decide 1 if fewer than 𝑓 + 1 correct replicas propose 1.

p0

p1

p2

p3

1

0

0

Send BVAL(1,⊥) and AUX(1) directly

RBCDelivery

BVAL(1,) BVAL(0,) AUX(1) AUX(0)

coin=1add 1 to bin_value

Cannot accept
AUX(1) since
1 is not added
to bin_value

Enter the next round with 1

add 1 to bin_value

coin=1

coin=1
Accept AUX(1)

Figure 4: Example of biased termination of Pisa.

Note that Pisa can terminate with one step (round 0) in the best
case. This is because if all correct replicas propose 1, they directly

add 1 to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠0, and broadcasts bval0 (1,⊥) and aux0 (1, 1) si-
multaneously. As the common coin value is 1 in round 0, all correct

replicas decide in one step.

4.3 Converting ABA to RABA
Our strategy that converts ABA to RABA is generic. In fact, we find

that we can apply the same measures to almost all (if not any) ABA

protocols to RABA. At a high level, we only need to modify the first

round of the protocol in a simple manner. First, the common coin

value in the first round is fixed to 1. Second, upon the 𝑝𝑟𝑜𝑝𝑜𝑠𝑒 (1)
or 𝑟𝑒𝑝𝑟𝑜𝑝𝑜𝑠𝑒 (1) events, each correct replica can directly broadcast

all the required messages (e.g., bval𝑟 (1), aux𝑟 (1)) in the first round.

Doing these ensure biased validity. We emphasize that due to the

diversity of ABA protocols, our generic strategy is "informal." Thus,

one needs to formally prove the resulting RABA protocols are

indeed secure. We show in detail in Appendix G how to convert

other protocols such as CKS [17], Crain’s ABA protocols [25], and

Cobalt [39] to RABA.

5 THE PACE FRAMEWORK AND THE PACE
INSTANTIATIONS

We are now ready to describe PACE, our new asynchronous BFT

framework. PACE uses r-broadcast and r-deliver primitives of RBC,

and propose, repropose and decide primitives of RABA to overcome

the two-subphase bottleneck. Figure 5 describes the pseudocode of

our framework. For each epoch, the framework consists of𝑛 parallel

RBC instances and 𝑛 parallel RABA instances. In the RBC phase,

each replica 𝑝𝑖 r-broadcasts a proposal𝑚𝑖 for RBC𝑖 . If 𝑝𝑖 r-delivers

a proposal from RBC𝑗 , it proposes 1 for RABA𝑗 . Upon delivery of

𝑛 − 𝑓 RBC instances, instead of waiting for 𝑛 − 𝑓 RABA instances

to terminate, 𝑝𝑖 immediately proposes 0 for all RABA instances

that have not been started. If 𝑝𝑖 later delivers a proposal from some

RBC𝑗 , it has proposed 0 for RABA𝑗 , and has not terminated RABA𝑗 ,

it reproposes 1 for RABA𝑗 . Let 𝑆 be the set of indexes that RABA𝑗

01 init
02 𝑒 ← 0 {epoch number}

03 upon selecting𝑚𝑖 from the buffer of 𝑝𝑖
04 r-broadcast ([𝑒, 𝑖],𝑚𝑖) for RBC𝑖
05 upon r-deliver ([𝑒, 𝑗],𝑚 𝑗) for RBC𝑗

06 if RABA𝑖 has not been started

07 propose ([𝑒, 𝑗], 1) for RABA𝑗

08 else
09 repropose ([𝑒, 𝑗], 1) for RABA𝑗

10 upon delivery of 𝑛 − 𝑓 RBC instances

11 for RABA instances that have not been started

12 propose ([𝑒, 𝑗], 0)
13 upon decide ([𝑒, 𝑗], 𝑣) for any value 𝑣 for all RABA instances

14 let 𝑆 be set of indexes for RABA instances that decide 1

15 wait until r-deliver ([𝑒, 𝑗],𝑚 𝑗) for all RABA𝑗 such that 𝑗 ∈ 𝑆
16 a-deliver (∪𝑗∈𝑆 {𝑚 𝑗 }) in some deterministic order

17 𝑒 ← 𝑒 + 1

Figure 5: The PACE asynchronous BFT framework. The code
for replica 𝑝𝑖 .

decides 1. If RABA𝑗 decides 1, the proposal from 𝑝 𝑗 is included in

the final delivered set. After all RABA instances terminate and all

RBC𝑖 (𝑖 ∈ 𝑆) instances are delivered, 𝑝𝑖 a-delivers (∪𝑗 ∈𝑆 {𝑚 𝑗 }).
RABA does not itself attain termination. We use RBC carefully to

"control" the API of RABA and force RABA to meet the unanimous

termination condition or the biased termination condition. To see

this, we distinguish several cases:

• Case 1: All correct replicas propose 1 for some RABA. Accord-
ing to unanimous termination, the RABA instance eventually

terminates with output 1.

• Case 2: All correct replicas propose 0. We further distinguish two

cases:

• Case 2-1: If they never repropose 1, the RABA instance even-

tually terminates due to unanimous termination.

• Case 2-2: If some replicas repropose 1, then these replicas

must have r-delivered the corresponding messages. Due

to the agreement property of RBC, all correct replicas will

deliver the messages and repropose 1. The protocol will

terminate according to biased termination.

• Case 3: Some correct replicas propose 0 and some other correct
replicas propose 1. Similar to Case 2-2, due to agreement of

RBC, correct replicas will eventually repropose 1, and the RABA

instance will terminate.

Thanks to the biased validity property, we can bound the number

of transactions delivered for each epoch, conditioned on protocol

termination. In particular, we prove that in the worst case (with a

network scheduler), transactions from at least 𝑓 + 1 replicas will

be delivered. Indeed, according to the biased termination property,

a RABA instance RABA𝑖 will decide 1, if there are 𝑓 + 1 or more

correct replicas proposing 1. We observe that a correct replica will

propose 1 for at least 2𝑓 + 1 RABA instances (which is ensured by

RBC). All correct replicas will input 1 for (2𝑓 + 1) (2𝑓 + 1) inputs
for all RABA instances. As there are at most (3𝑓 + 1) (2𝑓 + 1) inputs
for correct replicas, the total number of the 0 input from all correct

replicas for all RABA instances is upper bounded by (3𝑓 + 1) (2𝑓 +
1)−(2𝑓 +1) (2𝑓 +1) = 2𝑓 2+ 𝑓 . Hence, the number of RABA instances

that decide 0 is at most
2𝑓 2+𝑓
𝑓 +1 <

2𝑓 2+2𝑓
𝑓 +1 = 2𝑓 . That is, the number

of RABA instances that decide 1 is at least 𝑓 + 1. An example is

shown in Figure 6 below.

8

Figure 6: The number of RABA instances that decide 1 is
at least 𝑓 + 1. In this example, 𝑓 = 2. Entries in each row 𝑖

represent if a replica 𝑝𝑖 input 1 for the corresponding RABA
instances. Each replica proposes 1 for at least 2𝑓 + 1 instances.
(Each column represents a RABA instance and the inputs of
replicas.) Regardless of how the 1’s are placed (manipulated
by a network scheduler), the number of RABA instances such
that at least 𝑓 + 1 correct replicas will propose 1 is at least
𝑓 +1. In this particular example, for RABA #2-#5, at least 𝑓 +1

correct replicas propose 1.

Note that in the worst case, BKR always delivers transactions

from 𝑛 − 𝑓 replicas in an epoch. This is not a benefit compared to

PACE which delivers transactions from 𝑓 + 1 replicas. BKR has to

wait for 𝑛 − 𝑓 transactions to proceed, causing transaction conges-

tion. Also note that for PACE, in the normal case, transactions from

at least ⌈𝑛+𝑓 +1
2
⌉ replicas will be delivered. Jumping ahead, accord-

ing to our experiments, in both failure and failure-free scenarios,

the throughput of PACE is higher that of BKR.

In summary, while our paradigm does not improve the worst-

case running time and communication complexity of BKR, it does

improve the concrete time complexity. More importantly, it avoids

the "two-subphase" bottleneck for BKR. Instead of waiting for at

least 𝑛− 𝑓 ABA instances to terminate, each replica can now trigger

all RABA instances once 𝑛 − 𝑓 RBC instances are delivered. This

improvement, not just triggering the ABA phase earlier, allows

all RABA instances to run in a fully parallel manner, essentially

avoiding transactions congestion.

5.1 PACE vs. BKR: Worst-Case Scenario
We analyze the worst-case scenario of BKR and PACE. We let 𝑡 be

the time when an epoch begins, i.e., when any RBC is started. We

let Δ1 be the max delay an adversary could inject for all correct

replicas to complete any RBC instance. We further let Δ2 be the max

delay an adversary could inject for any ABA protocol instance after

every correct replica proposes some value. For RABA, we let Δ3

be the max delay an adversary could inject on any RABA protocol

after every correct replica proposes or reposposes some value that

satisfies the predicate of biased termination. For simplicity, we let

Δ2 = Δ3, as none of our RABA constructions introduce additional

steps on top of ABA.

Figure 7a illustrates the worst-case scenario for the BKR diagram.

An adversary could delay all the 2𝑓 + 1 RBC instances (such that

the sender is correct for any RBC) as much as possible until time

𝑡 + Δ1. The 𝑓 faulty replicas can also choose not to start their RBC

instances. After the 2𝑓 + 1 RBC instances complete, replicas will

run the ABA protocols and complete them at the time no later than

(a) BKR.

(b) PACE.

Figure 7: PACE vs. BKR. Comparison of the worst-case sce-
nario.

𝑡 +Δ1+Δ2. Since the 𝑓 RBC instances (such that the sender is faulty)

are not even started, replicas will vote for 0 for the corresponding

ABA instances. Thus, the entire epoch terminates at the time no

later than 𝑡 + Δ1 + 2Δ2.

In contrast, Figure 7b illustrates the situation for PACE. Each

correct replica starts the RABA phase after it completes 2𝑓 + 1 RBC

instances. In the worst case, an adversary can simply delay some

RABA instances (e.g., by triggering Case 3 mentioned for instances

such that fewer than 𝑓 + 1 correct replicas propose 1). Every correct

replica eventually reproposes 1 according to the agreement property

of RBC, i.e., no later than time 𝑡 + Δ1, all correct replicas complete

all RBC instances and propose or repropose for all RABA instances.

Thus, the completion time of PACE is no later than 𝑡 + Δ1 + Δ2. To

conclude, in the worst case, PACE still outpaces BKR.

5.2 Efficient Instantiations
We instantiate our new framework using CrainH-R, CrainL-R, and

Pisa as the underlying RABA protocols. The resulting protocols

are called PACE-CrainH-R, PACE-CrainL-R, and PACE-Pisa, respec-

tively.

Note that the correctness of our framework directly implies the

correctness of all these protocols. It may still be helpful to examine

an execution example. Herewe discuss the same example in Figure 4.

The biased termination condition for Pisa is met conditioned on

RBC delivery in our framework. The agreement property of RBC

ensures that if a correct replica r-delivers a request𝑚, all correct

replicas will eventually r-deliver𝑚. Namely, if 𝑝0 proposes 1, both

𝑝1 and 𝑝2 will eventually repropose 1. Thus, PACE-Pisa terminates

due to biased termination.

6 IMPLEMENTATION AND EVALUATION
Implementation.We first implement six ABA protocols—Pillar,

Pisa, CrainH, CrainH-R, CrainL, and CrainL-R. We use threshold

PRF of Cachin, Kursawe, and Shoup [17] for common coins. For

Pillar, Pisa, CrainL and CrainL-R, we use the 𝑓 + 1 threshold. For

CrainH and CrainH-R, we use the 2𝑓 + 1 threshold. We use Pillar,

CrainH, and CrainL in the BEAT library [2] and implement BEAT-

Pillar, BEAT-CrainH, and BEAT-CrainL. We also instantiate the

PACE framework using Pisa, CrainH-R, and CrainL-R, yielding

PACE-Pisa, PACE-CrainH-R, and PACE-CrainL-R. We compare the

six new protocols with BEAT (both BEAT-MMR and BEAT-Cobalt)

9

and Dumbo [3]. Therefore, in total, we evaluate the performance

of nine BFT protocols.

Overview. We deploy the protocols on Amazon EC2 utilizing up

to 91 t2.medium VMs. Each VM has two vCPUs and 4GB memory.

We evaluate both LAN and WAN settings, where the LAN VMs

are launched in the same data center (DC), and the WAN VMs are

evenly distributed in five continents. We evaluate the protocols us-

ing different number of replicas (i.e., network sizes) and batch sizes

(i.e., contention levels). We use the number of the faulty replicas, 𝑓 ,

to denote the network size. All transactions are of size 250 bytes.

The LAN evaluation is limited to the case for 𝑓 = 1, because our

EC2 account in general cannot launch enough VMs in a single DC.

𝑓 = 1 𝑓 = 5 𝑓 = 15 𝑓 = 30

0

10

20

30

40

1.26

2.54 2.73

22.31

1.45

4.82

5.98

38.76

1.28

2.2

6.2

19.06

0.65 0.92

2.68

7.69

1.8 2.32

6.72

16.92

2.37
2.97

5.82

22.36

0.69 0.96

2.64

8.01

1.27 1.28

3.48

11.45

0.9 1.1
2.6

9.32

L
a
t
e
n
c
y
(
S
e
c
)

BEAT-MMR BEAT-Cobalt BEAT-Pillar

PACE-Pisa Dumbo BEAT-CrainH

PACE-CrainH-R BEAT-CrainL PACE-CrainL-R

Figure 8: Latency of the protocols under no contention where
the replicas are located in WANs. (This and subsequent fig-
ures are best viewed in color.)

Latency. We first evaluate the latency of the protocols under no

contention in WANs, where each replica proposes only a batch of

one transaction. We report the latency for 𝑓 = 1, 𝑓 = 5, 𝑓 = 15,

and 𝑓 = 30. As illustrated in Figure 8, the latency of BEAT-Cobalt

is consistently the highest among the protocols, mostly because

Cobalt ABA has one more step in each round. Meanwhile, the

latency of the PACE protocols (PACE-Pisa, PACE-CrainH-R, PACE-

CrainL-R) is much lower than the others, because RABA terminates

faster than ABA, and PACE has only one subphase. In contrast, the

latency of Dumbo is in most of the cases slightly higher than the

BKR protocols. The latency of PACE-Pisa is between 1/3 to 1/2 of

the latency of Dumbo. We also evaluate the latency in the LAN for

𝑓 = 1 (not shown in the figure): the latency of PACE-Pisa is 0.04s

while the latency of Dumbo is 0.36s.

Throughput. In each epoch, each replica proposes 𝐵 transactions.

We simply let 𝐵 be the batch size of transactions. Hence, all replicas

propose in total 𝑛𝐵 transactions for an epoch. We evaluate the

throughput and latency vs. throughput as 𝐵 increases.We report the

throughput of the BFT protocols for 𝑓 = 1 in both LAN (Figure 9a)

and WAN settings (Figure 9b) and report the throughput vs. latency

in Figure 10a.

Protocols in the PACE framework (PACE-Pisa,PACE-CrainH-R,

PACE-CrainL-R) outperform all other protocols. For instance, PACE-

Pisa achieves 40% and 77% higher throughput than BEAT-Cobalt

in the LAN and WAN settings, respectively. PACE-Pisa achieves

5.1x the throughput of Dumbo. This is due to the faster (biased)

termination for RABA and the fully parallel feature of PACE-Pisa.

Furthermore, every PACE protocol outperforms its counterpart

under the BKR framework (BEAT-Pillar, BEAT-CrainH, BEAT-CrainL).

The throughput of PACE-Pisa, PACE-CrainH-R, and PACE-CrainL-

R are 24.5%, 171%, and 15.6% higher than BEAT-Pillar, BEAT-CrainH,

and BEAT-CrainL, respectively.

Among the three PACE protocols, PACE-Pisa achieves the best

performance. PACE-CrainH-R achieves lower performance than

PACE-Pisa, mainly due to the fact that replicas have to collect 2𝑓 +1

threshold PRF shares to generate common coins. PACE-CrainL-R

achieves the lowest performance among the three, because each

round of CrainL consists of more steps.

In blockchain applications, a typical block size is about 2MB,

roughly matching a batch size 𝐵 = 2,000 in our evaluation for 𝑛 = 4

replicas. Looking at this setting, BEAT-Pillar and PACE-Pisa achieve

176% and 287% higher throughput than BEAT-Cobalt for WANs,

respectively.

Scalability.We evaluate the throughput of the protocols by varying

𝑓 from 2 to 30 in WAN. We report the throughput in Figure 9 and

latency vs. throughput in Figure 10.

All the protocols under PACE framework outperform their coun-

terparts under the BKR framework. Even the slowest PACE instan-

tiation is more efficient than all other protocols.

For the three BEAT protocols (BEAT-Pillar, BEAT-CrainH, and

BEAT-CrainL), BEAT-CrainL achieves the highest performance in

most cases (except for 𝑓 = 1). This may be due to the fact that CrainL

has the good-case-coin-free property and has a fewer expected

number of rounds than CrainH and Pisa (3 vs. 4).

Different from the results we obtain for 𝑓 = 1, as 𝑓 grows, the

performance difference among PACE-Pisa, PACE-CrainH-R, and

PACE-CrainL-R become comparatively smaller. This may be due

to the fact all these protocols have a fast and biased path (and it

does not matter if the underlying ABA has a fast path). PACE-Pisa

and PACE-CrainL-R perform better than PACE-CrainH-R. PACE-

Pisa is also more efficient than PACE-CrainL-R, except for the case

when 𝑛 is medium-sized, where the two protocols offer interesting

trade-offs.

For all the protocols, as the network size 𝑓 increases, the through-

put for these protocols first increases and then decreases. This

echoes the results from prior works. When 𝑓 grows, the number

of transactions proposed concurrently grows accordingly. Never-

theless, when 𝑓 further grows, the protocol itself becomes the

bottleneck.

In the largest experiment (𝑛 = 91), the throughput of PACE-Pisa

is around 15,994 tx/sec, around 3.6x the throughput of BEAT-Cobalt

and 1.66x the throughput of Dumbo. (Recall for 𝑓 = 1, PACE-

Pisa achieves 1.77x the throughput of BEAT-Cobalt and 5.1x the

throughput of Dumbo.)

Dumbo has lower throughput than BEAT-Cobalt for 𝑓 ≤ 15

and has roughly the same throughput as BEAT-Pillar for larger

𝑓 ’s. BEAT-CrainH slightly outperforms Dumbo when 𝑓 ≤ 15 and

Dumbo slightly outperforms BEAT-CrainL for 𝑓 = 20 and 𝑓 = 30.

It is worth mentioning that the peak throughput in our scalability

experiments can be higher if using larger batches. Indeed, prior

works such as BEAT, EPIC, and Dumbo evaluated at least 10
4
and

larger batch sizes (in our notation). We comment that evaluating a

batch size larger than 5,000 for a network with a large 𝑓 may be

misleading. In all recent asynchronous BFT evaluations, to report

the best possible throughput, each replica needs to propose disjoint

10

0 1,000 2,000 3,000 4,000 5,000

0

2

4

6

·10
4

Batch Size

T
h
r
o
u
g
h
p
u
t
(
t
x
/
s
e
c
)

BEAT-MMR BEAT-Cobalt

BEAT-Pillar PACE-Pisa

Dumbo

(a) Throughput for 𝑓 = 1 where the replicas are
located in the same DC.

0 1,000 2,000 3,000 4,000 5,000

0

0.5

1

1.5

2

·10
4

Batch Size

T
h
r
o
u
g
h
p
u
t
(
t
x
/
s
e
c
)

BEAT-Pillar PACE-Pisa

BEAT-Cobalt Dumbo

BEAT-CrainH PACE-CrainH-R

BEAT-CrainL PACE-CrainL-R

(b) Throughput for 𝑓 = 1 where the replicas are
from 4 different DCs.

0 1,000 2,000 3,000 4,000 5,000

0

1

2

3

·10
4

Batch Size

T
h
r
o
u
g
h
p
u
t
(
t
x
/
s
e
c
)

BEAT-Pillar PACE-Pisa

BEAT-Cobalt Dumbo

BEAT-CrainH PACE-CrainH-R

BEAT-CrainL PACE-CrainL-R

(c) Throughput for 𝑓 = 5 where the replicas are
from different DCs.

0 1,000 2,000 3,000 4,000 5,000

0

1

2

3

·10
4

Batch Size

T
h
r
o
u
g
h
p
u
t
(
t
x
/
s
e
c
)

BEAT-Pillar PACE-Pisa

BEAT-Cobalt Dumbo

BEAT-CrainH PACE-CrainH-R

BEAT-CrainL PACE-CrainL-R

(d) Throughput for 𝑓 = 15 where the replicas are
from different DCs

0 1,000 2,000 3,000 4,000 5,000

0

0.5

1

1.5

2

2.5

·10
4

Batch Size

T
h
r
o
u
g
h
p
u
t
(
t
x
/
s
e
c
)

BEAT-Pillar PACE-Pisa

BEAT-Cobalt Dumbo

BEAT-CrainH PACE-CrainH-R

BEAT-CrainL PACE-CrainL-R

(e) Throughput for 𝑓 = 20 where the replicas are
from different DCs.

0 1,000 2,000 3,000 4,000 5,000

0

0.5

1

1.5

2

2.5
·10

4

Batch Size

T
h
r
o
u
g
h
p
u
t
(
t
x
/
s
e
c
)

BEAT-Pillar PACE-Pisa

BEAT-Cobalt Dumbo

BEAT-CrainH PACE-CrainH-R

BEAT-CrainL PACE-CrainL-R

(f) Throughput for 𝑓 = 30 where the replicas are
from different DCs.

Figure 9: Throughput of the protocols as 𝑓 increases.

BKR NAIVE (insecure) PACE-Pisa

𝑓 = 1(𝑛 = 4) 3.00 3.00 3.00

𝑓 = 2(𝑛 = 7) 5.54 5.45 5.66

𝑓 = 5(𝑛 = 16) 11.18 10.81 12.36

𝑓 = 15(𝑛 = 46) 31.24 28.12 33.62

𝑓 = 20(𝑛 = 61) 41.10 38.12 46.37

𝑓 = 30(𝑛 = 91) 61.00 54.75 65.25

Table 3: The number of proposals that are delivered in ABA
protocols for different frameworks. The number 𝑛 is the
total number of replicas and also the maximum number of
proposals that could be delivered.

proposals. For 𝑓 = 30 and 𝐵 = 5,000, if each replica proposes

a batch of around 1.2 MB transactions, all 𝑛 = 91 replicas would

propose over 100 MB transactions in total, where 𝑛− 𝑓 = 61 batches

are expected to include non-overlapping transactions. This would

require each replica to have a huge buffer of pending transactions.

The number of proposals delivered in different BFT frame-
works. We analyze the number of ABA or RABA instances that

decide 1 to compare PACE and BKR frameworks. Just for perfor-

mance comparison, we implement an incorrect framework directly

running all instances in parallel (the "naive attempt"): after deliv-

ering 𝑛 − 𝑓 RBC instances, a replica immediately starts the ABA

instances that have not been started by proposing 0. We call it

NAIVE here, and recall that in failure cases, its throughput can be

0 [11, 40].

We summarize in Table 3 the number of ABA instances deciding

1, corresponding to the number of proposals delivered in failure-

free scenarios for 𝑓 = 1 in theWAN setting.We run the experiments

50 times for each network size and report the average number for

all experiments. For almost all cases, the number of ABA instances

that terminate with 1 in the BKR framework is close to 𝑛 − 𝑓 . In

contrast, the number of ABA instances that terminate with 1 in

NAIVE is visibly lower. This is because replicas do not wait for

𝑛 − 𝑓 ABA instances to terminate with 1 before starting other ABA

instances. Therefore, the number of delivered batches can be much

lower than 𝑛 − 𝑓 . For our new framework, replicas tend to deliver

1 in ABA, and the number of ABA instances that terminate with 1

is shown to be slightly higher than that in BKR. Roughly, while our

framework reduces the ABA phase latency (from two subphases to

one), the efficiency of our framework is also higher.

Performance under failures.We evaluate the performance of the

protocols under failures by fixing 𝑓 = 5 and 𝐵 = 5,000. We evaluate

three failure scenarios: 1) 𝑆1-crash, where we let 𝑓 replicas simply

crash; 2) 𝑆2-zero, where each faulty replica always broadcasts 0

in every step of ABA/RABA; 3) 𝑆3-flip, where each replica replica

11

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·10
4

0

2

4

6

8

Throughput (tx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

BEAT-Pillar PACE-Pisa

BEAT-Cobalt Dumbo

BEAT-CrainH PACE-CrainH-R

BEAT-CrainL PACE-CrainL-R

(a) Latency vs. throughput for 𝑓 = 1.

0 0.5 1 1.5 2

·10
4

0

2

4

6

8

10

12

Throughput (tx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

BEAT-Pillar PACE-Pisa

BEAT-Cobalt Dumbo

BEAT-CrainH PACE-CrainH-R

BEAT-CrainL PACE-CrainL-R

(b) Latency vs. throughput for 𝑓 = 5.

0 0.5 1 1.5 2

·10
4

0

5

10

15

20

Throughput (tx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

BEAT-Pillar PACE-Pisa

BEAT-Cobalt Dumbo

BEAT-CrainH PACE-CrainH-R

BEAT-CrainL PACE-CrainL-R

(c) Latency vs. throughput for 𝑓 = 15.

0 0.5 1 1.5 2

·10
4

0

10

20

30

40

50

Throughput (tx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

BEAT-Pillar PACE-Pisa

BEAT-Cobalt Dumbo

BEAT-CrainH PACE-CrainH-R

BEAT-CrainL PACE-CrainL-R

(d) Latency vs. throughput for 𝑓 = 20.

0 0.5 1 1.5

·10
4

0

50

100

150

Throughput (tx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

BEAT-Pillar PACE-Pisa

BEAT-Cobalt Dumbo

BEAT-CrainH PACE-CrainH-R

BEAT-CrainL PACE-CrainL-R

(e) Latency vs. throughput for 𝑓 = 30.

0 1,000 2,000 3,000 4,000 5,000

0

0.5

1

1.5

2

·10
4

Batch Size

T
h
r
o
u
g
h
p
u
t
(
t
x
/
s
e
c
)

𝑓 = 5 𝑓 = 15

𝑓 = 20 𝑓 = 30

(f) Scalability where 𝑓 varies from 2 to 30. Thick
lines denote the throughput of PACE-Pisa, thin
lines denote that of BEAT-Pillar, and dashed lines
denote that of BEAT-Cobalt.

Figure 10: Scalability results where replicas are from different DCs.

B-Pillar P-Pisa B-Cobalt B-CrainH P-CrainH-R B-CrainL P-CrainL-R

0

10

20

30

13.32

22.56

8.27

9.83

20.85

13.05

21.37

12.59

21.98

8.25

9.76

20.98

13.25

21.95

7.44

14.3

6.07

5.3

12.67
12.22

13.77

8.01

15.58

6.17

5.45

17.75

10.64

15.04

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

𝑆0-ff 𝑆1-crash

𝑆2-zero 𝑆3-flip

Figure 11: Performance of the protocols in failure scenarios
in WANs for 𝑓 = 5 and 𝐵 = 5,000. We use B- and P- to denote
BEAT- and PACE- respectively to save space in this figure.

always broadcasts a flipped value in every step of ABA/RABA. We

compare the results with 𝑆0-ff, the failure-free scenario.

The results are summarized in Figure 11. For all protocols, the

performance under crash failures are similar to that in the failure-

free scenario. When Byzantine failures occur, their performance

degrade. We find that for most protocols under the BKR framework,

the number of ABA instances that decide 1 is slightly larger than

𝑛 − 𝑓 , while the number of ABA instances that decide 1 under the

PACE framework is between 8 to 12 (slightly lower than 𝑛 − 𝑓).

But this does not hurt the performance of PACE protocols: the

performance degradation for PACE protocols, by percentage, is no

larger than that for BEAT protocols. This is because PACE protocols

do not have the two-subphase bottleneck and this is consistent with

our analysis in Sec. 5.1.

We find that for all PACE protocols, the performance under all

failure scenarios is still better than their individual counterparts

in the BKR framework. Even more remarkably, among all failure

scenarios, the slowest PACE instantiation (PACE-CrainH-R with

𝑆2-zero) outpaces the most efficient BEAT instantiation in its failure-

free scenario (BEAT-Pillar with 𝑆0-ff).

7 CONCLUSION
We propose the notion of reproposable ABA (RABA) and use it to

solve a long-standing problem of running ABA concurrently, lead-

ing to a fully parallelizable BFT framework (PACE) outperforming

prior ones. We provide efficient instantiations of RABA and PACE.

We show that all PACE instantiations outperform existing proto-

cols in terms of all metrics in both failure-free and failure scenarios.

All our instantiations rely on the well-established Diffie-Hellman

assumptions and achieve standard 128-bit security.

12

ACKNOWLEDGMENT
We thank Chao Liu, Xiao Sui, Yue Huang, Ren Zhang, Yang Yu,

Liehuang Zhu, and Xiaoyun Wang for their help and comments.

We are indebted to the CCS 2022 reviewers (the blockchain track)

for their insightful and constructive comments that significantly
helped improve the paper.

REFERENCES
[1] 2019. Bug in ABA protocol’s use of Common Coin. https://github.com/amiller/

HoneyBadgerBFT/issues/59. (2019).

[2] 2022. BEAT implementation. https://github.com/fififish/beat. (2022).

[3] 2022. Dumbo implementation. https://github.com/yylluu/dumbo. (2022).

[4] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. 2019. Asymptotically

Optimal Validated Asynchronous Byzantine Agreement. In Proceedings of the
Symposium on Principles of Distributed Computing. ACM, 337–346.

[5] Nicolas Alhaddad, Sisi Duan, Mayank Varia, and Haibin Zhang. 2021. Succinct

Erasure Coding Proof Systems. Cryptology ePrint Archive (2021).
[6] Nicolas Alhaddad, Mayank Varia, and Haibin Zhang. High-Threshold AVSS with

Optimal Communication Complexity. In FC 2021.
[7] Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane. 2011. Prime: Byzantine

replication under attack. IEEE Transactions on Dependable and Secure Computing
8, 4 (2011), 564–577.

[8] P. Aublin, S. B. Mokhtar, and V. Quéma. 2013. RBFT: Redundant Byzantine Fault

Tolerance. In ICDCS. 297–306.
[9] M. Joye B. Libert and M. Yung. 2016. Born and raised distributively: Fully

distributed non-interactive adaptively-secure threshold signatures with short

shares. In Theoretical Computer Science.
[10] Michael Ben-Or. 1985. Fast Asynchronous Byzantine Agreement (Extended

Abstract). In PODC.
[11] Michael Ben-Or and Ran El-Yaniv. 2003. Resilient-Optimal Interactive Consis-

tency in Constant Time. Distrib. Comput. (2003).
[12] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. 1994. Asynchronous secure com-

putations with optimal resilience. In Proceedings of the 13th annual symposium
on Principles of distributed computing. ACM, 183–192.

[13] Gabriel Bracha. 1984. An asynchronous [(n-1)/3]-resilient consensus protocol.

In Proceedings of the third annual ACM symposium on Principles of distributed
computing. ACM, 154–162.

[14] Christian Cachin, Daniel Collins, Tyler Crain, and Vincent Gramoli. 2019. Byzan-

tine Fault Tolerant Vector Consensus with Anonymous Proposals. arXiv preprint
arXiv:1902.10010 (2019).

[15] Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. 2011. Introduction to
Reliable and Secure Distributed Programming (2nd ed.).

[16] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Se-

cure and efficient asynchronous broadcast protocols. In Annual International
Cryptology Conference. Springer, 524–541.

[17] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2005. Random oracles in

Constantinople: Practical asynchronous Byzantine agreement using cryptogra-

phy. Journal of Cryptology 18, 3 (2005), 219–246.

[18] Christian Cachin and Jonathan A. Poritz. 2002. Secure INtrusion-Tolerant Repli-

cation on the Internet. In Proceedings International Conference on Dependable
Systems and Networks. 167–176.

[19] Christian Cachin and Stefano Tessaro. 2005. Asynchronous verifiable information

dispersal. In SRDS. IEEE, 191–201.
[20] Tushar Deepak Chandra and Sam Toueg. 1996. Unreliable Failure Detectors for

Reliable Distributed Systems. J. ACM 43, 2 (1996).

[21] Allen Clement, Edmund L Wong, Lorenzo Alvisi, Michael Dahlin, and Mirco

Marchetti. 2009. Making Byzantine Fault Tolerant Systems Tolerate Byzantine

Faults.. In NSDI, Vol. 9. 153–168.
[22] Miguel Correia, Nuno Ferreira Neves, and Paulo Verissimo. 2004. How to tolerate

half less one Byzantine nodes in practical distributed systems. In SRDS. IEEE,
174–183.

[23] Miguel Correia, Nuno Ferreira Neves, and Paulo Veríssimo. 2006. From Con-

sensus to Atomic Broadcast: Time-Free Byzantine-Resistant Protocols without

Signatures. Comput. J. 49, 1 (2006), 82–96.
[24] Tyler Crain. 2020. A Simple and Efficient Asynchronous Randomized Binary

Byzantine Consensus Algorithm. CoRR abs/2002.04393 (2020). arXiv:2002.04393

https://arxiv.org/abs/2002.04393

[25] Tyler Crain. 2020. Two More Algorithms for Randomized Signature-Free Asyn-

chronous Binary Byzantine Consensus with t<n/3 and O(n
2
) Messages and O(1)

Round Expected Termination. CoRR abs/2002.08765 (2020). arXiv:2002.08765

https://arxiv.org/abs/2002.08765

[26] George Danezis, Eleftherios Kokoris Kogias, Alberto Sonnino, and Alexander

Spiegelman. Narwhal and Tusk: A DAG-based Mempool and Efficient BFT

Consensus (arxiv.org/abs/2105.11827).

[27] Sourav Das, Zhuolun Xiang, and Ling Ren. 2021. Asynchronous data dissemina-

tion and its applications. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security. 2705–2721.

[28] Sourav Das, Tom Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-Kogias,

and Ling Ren. 2021. Practical asynchronous distributed key generation. Cryptol-
ogy ePrint Archive (2021).

[29] Sisi Duan, Michael K Reiter, and Haibin Zhang. 2018. BEAT: Asynchronous BFT

made practical. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2028–2041.

[30] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the

presence of partial synchrony. Journal of the ACM (JACM) 35, 2 (1988), 288–323.
[31] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegel-

man, and Zhuolun Xiang. 2021. Jolteon and Ditto: Network-Adaptive Efficient

Consensus with Asynchronous Fallback. arXiv preprint arXiv:2106.10362 (2021).
[32] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. 2020.

Dumbo: Faster Asynchronous BFT Protocols.. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security.

[33] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman.

2021. All You Need is DAG.. In PODC.
[34] Eleftherios Kokoris Kogias, Dahlia Malkhi, and Alexander Spiegelman. 2020.

Asynchronous Distributed Key Generation for Computationally-Secure Ran-

domness, Consensus, and Threshold Signatures.. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security.

[35] Klaus Kursawe and Victor Shoup. 2005. Optimistic Asynchronous Atomic Broad-

cast. In ICALP. 204–215.
[36] Chao Liu, Sisi Duan, and Haibin Zhang. 2020. EPIC: Efficient Asynchronous BFT

with Adaptive Security. In DSN.
[37] Chao Liu, Sisi Duan, and Haibin Zhang. 2021. MiB: Asynchronous BFT with

More Replicas. (2021). arXiv:2108.04488

[38] Yuan Lu, Zhenliang Lu, and Qiang Tang. 2021. Bolt-Dumbo Transformer: Asyn-

chronous Consensus As Fast As Pipelined BFT. arXiv preprint arXiv:2103.09425
(2021).

[39] Ethan MacBrough. 2018. Cobalt: BFT governance in open networks. arXiv
preprint arXiv:1802.07240 (2018).

[40] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The

honey badger of BFT protocols. In Proceedings of the SIGSAC Conference on
Computer and Communications Security. ACM, 31–42.

[41] Henrique Moniz, Nuno Ferreria Neves, Miguel Correia, and Paulo Verissimo.

2008. RITAS: Services for randomized intrusion tolerance. IEEE transactions on
dependable and secure computing 8, 1 (2008), 122–136.

[42] Achour Mostefaoui, Hamouma Moumen, and Michel Raynal. 2014. Signature-

free asynchronous byzantine consensus with t< n/3 and o (𝑛2
) messages. In

PODC. ACM, 2–9.

[43] Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. 2015. Signature-

Free Asynchronous Binary Byzantine Consensus with t < n/3, O(n2) Messages,

and O(1) Expected Time. J. ACM 62, 4 (2015), 31:1–31:21.

[44] Michael O Rabin. 1983. Randomized byzantine generals. In SFCS. IEEE, 403–409.
[45] HariGovind V. Ramasamy and Christian Cachin. 2005. Parsimonious Asynchro-

nous Byzantine-fault-tolerant Atomic Broadcast. In OPODIS. 88–102.
[46] Chrysoula Stathakopoulou, Tudor David, Matej Pavlovic, and Marko Vukolić.

2019. Mir-bft: High-throughput robust bft for decentralized networks. arXiv
preprint arXiv:1906.05552 (2019).

[47] Pierre Tholoniat and Vincent Gramoli. 2019. Formal verification of blockchain

Byzantine fault tolerance. In FRIDA.

A REVIEW OF MMR AND COBALT ABA
The pseudocode of MMR is given in Figure 12. First, each replica

broadcasts bval𝑟 (𝑒𝑠𝑡𝑟) where 𝑒𝑠𝑡𝑟 is the input of the round (in round
0, 𝑒𝑠𝑡𝑟 is the ABA vote). If a replica receives 𝑓 +1 bval𝑟 (𝑣) and has not
broadcast 𝑣 , it broadcasts bval𝑟 (𝑣). Upon receiving 𝑛 − 𝑓 bval𝑟 (𝑣),
a replica adds 𝑣 to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 . Then each replica sends an aux𝑟 ()
message for the first value added to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 . Upon receiving

𝑛 − 𝑓 aux𝑟 () messages such that the set of values carried by these

message, 𝑣𝑎𝑙𝑠 , is a subset of 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 , the replica compares the

value(s) with the common coin. If there is only one value in 𝑣𝑎𝑙𝑠

messages and the value is the same as the coin, the replica decides it.

Otherwise, the replica enters the next round and uses the common

coin as 𝑒𝑠𝑡𝑟 .

Cobalt ABA [39] has one additional conf𝑟 () step in each round,

also as shown in Figure 12.

13

https://github.com/amiller/HoneyBadgerBFT/issues/59
https://github.com/amiller/HoneyBadgerBFT/issues/59
https://github.com/fififish/beat
https://github.com/yylluu/dumbo
http://arxiv.org/abs/2002.04393
https://arxiv.org/abs/2002.04393
http://arxiv.org/abs/2002.08765
https://arxiv.org/abs/2002.08765
http://arxiv.org/abs/2108.04488

01 upon event propose(𝑣𝑖)
02 if 𝑟 = 0, 𝑒𝑠𝑡0 ← 𝑣𝑖

03 round 𝑟
04 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ← ∅
05 broadcast bval𝑟 (𝑒𝑠𝑡𝑟)
06 upon receiving bval𝑟 (𝑣) from 𝑓 + 1 replicas

07 if bval𝑟 (𝑣) has not been sent, broadcast bval𝑟 (𝑣)
08 upon receiving bval𝑟 (𝑣) from 𝑛 − 𝑓 replicas

09 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ← 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ∪ {𝑣 }
10 wait until 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 ≠ ∅
11 broadcast aux𝑟 (𝑣) where 𝑣 ∈ 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟
12 upon receiving𝑛− 𝑓 aux𝑟 () such that the set of values carried by these messages,

𝑣𝑎𝑙𝑠 , is a subset of 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟

13 broadcast conf𝑟 (𝑣𝑎𝑙𝑠)
14 upon receiving 𝑛 − 𝑓 conf𝑟 () such that the set of values carried by these

messages, 𝑣𝑎𝑙𝑠 , is a subset of 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟

15 𝑠 ← coin𝑟
16 if 𝑣𝑎𝑙𝑠 = {𝑏 }
17 𝑒𝑠𝑡𝑟+1 ← 𝑏

18 if 𝑏 = 𝑠 , decide(𝑏)
19 else 𝑒𝑠𝑡𝑟+1 ← 𝑠

20 𝑟 ← 𝑟 + 1

Figure 12: MMR ABA and Cobalt ABA. Cobalt ABA has the
boxed code, while MMR ABA does not have it.

p0

p1

p2

p3

1

0

1

BVAL(1) BVAL(0)

2f+1 BVAL(1)

2f+1 BVAL(0)
AUX(1)

coin share

AUX(0)
coin share

Combine shares,
learn coin value = 0

bin_values={0,1}

bin_values={0,1}

AUX(1) AUX(0)

2f+1 AUX(1), coin =0, enter next round

enter next round
with coin value

enter next round
with coin value

Figure 13: The liveness issue of MMR. A faulty replica 𝑝3 first
sends bval𝑟 (1) to 𝑝0. Since 𝑝0 receives bval𝑟 (1) from 𝑝2 and
itself, 𝑝0 will send aux𝑟 (1) and its threshold signature shares
for the common coin. 𝑝3 generates a share and combines the
𝑓 + 1 = 2 shares to obtain the common coin value (e.g., 0). 𝑝3

then makes 𝑝2 send aux𝑟 (1) by letting 𝑝2 receive 3 bval𝑟 (1).
Also, 𝑝3 sends aux𝑟 (1) to 𝑝0, making 𝑝0 receive 3 aux𝑟 (1) (a
value different from the common coin) and use 1 as the input
for the next round. For 𝑝1 and 𝑝2, since they have added both 0

and 1 in their𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 and receive both aux𝑟 (0) and aux𝑟 (1),
they will enter the next round with the common coin value
0. In this way, the protocol may never terminate.

B PSEUDOCODE OF THE BKR PROTOCOL
We show the pseudocode of the BKR paradigm in Figure 14 that

uses the r-broadcast and r-deliver primitives of RBC, and propose
and decide primitives of ABA.

BKR proceeds in epochs initialized as 𝑒 = 0. Each epoch 𝑒 in-

cludes a RBC phase, including 𝑛 parallel RBC instances RBC𝑖 for

𝑖 ∈ [0..𝑛 − 1], and an ABA phase, including 𝑛 ABA instances ABA𝑖

for 𝑖 ∈ [0..𝑛−1], where RBC𝑖 is triggered by replica 𝑝𝑖 ∈ [𝑝0 ..𝑝𝑛−1]
to r-broadcast a proposal𝑚𝑖 (a batch of transactions) selected from

its buffer, and ABA𝑖 is triggered by correct replicas to decide if𝑚𝑖

has been r-delivered. The ABA phase is not fully parallel, requiring

that if a replica has not received some proposal from 𝑝 𝑗 during the

RBC phase, the replica must abstain from proposing 0 for ABA𝑗 un-

til 𝑛 − 𝑓 ABA instances decide 1. To isolate the primitive instances,

we tag each message in the instances with 𝑒 .

01 init
02 𝑒 ← 0

03 upon selecting𝑚𝑖 from the buffer of 𝑝𝑖
04 r-broadcast ([𝑒, 𝑖],𝑚𝑖) for RBC𝑖
05 upon r-deliver ([𝑒, 𝑗],𝑚 𝑗) for RBC𝑗

06 if ABA𝑗 has not been started

07 propose ([𝑒, 𝑗], 1) for ABA𝑗

08 wait until termination of any 𝑛 − 𝑓 ABA instances

09 for all ABA𝑗 instances that have not been started

10 propose ([𝑒, 𝑗], 0)
11 upon decide ([𝑒, 𝑗], 𝑣) for any value 𝑣 for all ABA instances

12 let 𝑆 be set of indexes for ABA instances that decide 1

13 wait until r-deliver ([𝑒, 𝑗],𝑚 𝑗) for all ABA𝑗 such that 𝑗 ∈ 𝑆
14 a-deliver (∪𝑗∈𝑆 {𝑚 𝑗 }) in some deterministic order

15 𝑒 ← 𝑒 + 1

Figure 14: The BKR paradigm. The code for replica 𝑝𝑖 for an
epoch 𝑒.

C REVIEWING THE CKPS PARADIGM AND
ITS DERIVATIVES

The CKPS paradigm reduces asynchronous BFT to (multi-valued)

validated asynchronous Byzantine agreement (VABA) [16]. CKPS

shows that VABA can be built using (verifiable) consistent broadcast

(CBC) and ABA.

SINTRA [18]. SINTRA includes an atomic broadcast implemen-

tation of the CKPS paper. It uses Shoup’s RSA threshold signature

scheme and chooses to implement a simpler atomic broadcast pro-

tocol in CKPS that does not terminate in an expected constant

number of rounds. Being the first CKPS instantiation, SINTRA is

not optimized for high throughput.

Dumbo [32]. Dumbo includes two asynchronous BFT protocols—

Dumbo1 and Dumbo2. Dumbo2 performs consistently better than

Dumbo1, so we focus on Dumbo2 only (see Figure 15). Dumbo is

motivated by the fact that the VABA construction in CKPS requires

a large bandwidth. Instead of directly applying the bulk data to

VABA, Dumbo introduces an additional provable RBC (PRBC) phase

such that only the PRBC phase carries bulk data, and the VABA

phase takes as input data fingerprints only. Hence, Dumbo has four

more steps due to the PRBC phase, including three expensive 𝑛

Figure 15: Dumbo. PRBC denotes provable reliable broadcast,
a four-step protocol. CBC stands for consistent broadcast
and has three steps [16]. Dumbo (built on top of CKPS) has
one PRBC phase (4 steps), two CBC phases (2× 3 steps), one
permutation step ("P"), and three sequential distribution (1
step) and ABA (3 for Cobalt ABA) instances. As each Cobalt
ABA instance takes on average 3× 4 or 4× 4 steps, Dumbo has
on average 50 or 62 steps.

14

to 𝑛 communication and an additional 𝑂 (𝑛3) pairing operations,

incurring higher latency than CKPS. Our experiment shows BEAT-

Pillar outpaces Dumbo until 𝑛 = 61. Even when 𝑛 is between 62 and

91, Dumbo has marginally higher throughput than BEAT-Pillar.

D PROOF OF CORRECTNESS FOR PILLAR
In this section, we prove the correctness of Pillar.

Lemma D.1. In round 𝑟 > 0, if a correct replica 𝑝𝑖 sets 𝛿𝑟 (𝑣) = 1

and another correct replica sets 𝛿𝑟 (𝑣) = 1, 𝑣 = 𝑣 .

Proof. In round 𝑟 > 0, correct replicasmay send bval𝑟 (∗, 𝑣), bval𝑟 (∗, 𝑣),
or bval𝑟 (∗,⊥) and do not change the𝑚𝑎𝑗𝑟 value in the same round.

There are two cases: 𝑣 = 𝑠𝑟−1 and 𝑣 = 𝑠𝑟−1. We first show the

case for 𝑣 = 𝑠𝑟−1. Assume, towards a contradiction, there exists

a replica 𝑝𝑖 that receives 2𝑓 + 1 bval𝑟 (𝑣, 𝑣) and bval𝑟 (𝑣,⊥). In our

protocol, if 𝑝𝑖 receives 2𝑓 + 1 bval𝑟 (𝑣, 𝑣) and bval𝑟 (𝑣,⊥) and sets

𝛿𝑟 (𝑣) = 1, at least 𝑓 + 1 correct replicas have sent bval𝑟 (𝑣, 𝑣) or
bval𝑟 (𝑣,⊥), but will never send bval𝑟 (𝑣, 𝑣) or bval𝑟 (𝑣, 𝑣). On the

other hand, if 𝑝 𝑗 sets 𝛿𝑟 (𝑣) = 1, it has received 2𝑓 + 1 bval𝑟 (𝑣, 𝑣),
at least 𝑓 + 1 of which are sent by correct replicas. Therefore, at

least one correct replica has sent both bval𝑟 (𝑣, 𝑣) (or bval𝑟 (𝑣,⊥))
and bval𝑟 (𝑣, 𝑣), which is a contradiction. The case for 𝑣 = 𝑠𝑟−1 can

be proved similarly. If 𝑝𝑖 sets 𝛿𝑟 (𝑣) = 1, it receives 2𝑓 +1 bval𝑟 (𝑣, 𝑣).
If 𝑝 𝑗 sets 𝛿𝑟 (𝑣) = 1, it receives 2𝑓 + 1 bval𝑟 (𝑣, 𝑣) or bval𝑟 (𝑣,⊥). In
other words, at least one correct replica has sent both bval𝑟 (∗, 𝑣)
and bval𝑟 (∗, 𝑣) (or bval𝑟 (∗,⊥)), which is impossible. 2

Lemma D.2. In round 𝑟 > 0, if all correct replicas have the same
input 𝑣 , any correct replica either enters round 𝑟 + 1 with 𝑣 , or decides
𝑣 in round 𝑟 .

Proof. In round 𝑟 > 0, correct replicasmay send bval𝑟 (𝑣, 𝑣), bval𝑟 (𝑣, 𝑣),
or bval𝑟 (𝑣,⊥). Hence, correct replicas will not receive more than

𝑓 + 1 bval𝑟 (𝑣, ∗) and no correct replica will put 𝑣 in its 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 .

Therefore, all correct replicas will send aux𝑟 (𝑣, 𝑣) or aux𝑟 (⊥, 𝑣)
and will not accept aux𝑟 (𝑣, ∗) or aux𝑟 (∗, 𝑣). Each correct replica

therefore eventually receives either 2𝑓 + 1 aux𝑟 (𝑣, ∗) such that

V2 (𝑣𝑎𝑙𝑠𝑟 , 𝑣) ≥ 2𝑓 + 1 or 2𝑓 + 1 aux𝑟 (∗, 𝑣) such that V2 (𝑎𝑣𝑎𝑙𝑠𝑟 , 𝑣) ≥
2𝑓 + 1.

If a replica 𝑝𝑖 receives 2𝑓 + 1 aux𝑟 (𝑣, 𝑣), it either decides 𝑣 (for
the case 𝑣 = 𝑠𝑟), or enters the next round with 𝑣 as 𝑒𝑠𝑡𝑟+1 (for the
case 𝑣 ≠ 𝑠𝑟). If 𝑝𝑖 receives both aux𝑟 (𝑣, 𝑣) and aux𝑟 (⊥, 𝑣) (or only
aux𝑟 (⊥, 𝑣)), V2 (𝑎𝑣𝑎𝑙𝑠𝑟 , 𝑣) ≥ 2𝑓 + 1 is satisfied. In this case, 𝑝𝑖 will

either decide 𝑣 (for the case 𝑣 = 𝑠𝑟 = 𝑠𝑟−1), or enter the next round

with 𝑣 as 𝑒𝑠𝑡𝑟+1 (for the case 𝑣 ≠ 𝑠𝑟 or 𝑣 ≠ 𝑠𝑟−1). 2

Theorem D.3. (Validity) If all correct replicas propose 𝑣 , then
any correct replica that terminates decides 𝑣 .

Proof. The proof follows from the following two lemmas.

Lemma D.4. In round 𝑟 > 0, if all correct replicas have the same
input 𝑣 , any correct replica that terminates decide 𝑣 .

Proof. Lemma D.2 shows that correct replicas will either enter round

𝑟 + 1 with 𝑣 or decide 𝑣 . If correct replicas start round 𝑟 with the

same input 𝑣 and enter the next round, the input for round 𝑟 + 1

must be 𝑣 . As the probability that the common coin value equals 𝑣

is 1/2, the probability that the protocol terminates in round 𝑟 + 1

is 1/2. It is straightforward to see that any replica that terminates

decides 𝑣 . 2

Lemma D.5. If all correct replicas propose 𝑣 in round 0, any correct
replica that terminates decides 𝑣 .

Proof. We show that if all correct replicas propose 𝑒𝑠𝑡0 in round

0, correct replicas either terminate in the current round with 𝑒𝑠𝑡0
or enter round 1 with the same 𝑒𝑠𝑡𝑟 . As proven in Lemma D.2 and

Lemma D.4, any correct replica that terminates decides 𝑣 .

In round 𝑟 = 0, all correct replicas broadcast bval𝑟 (𝑣,⊥). Since
all correct replicas have the same input 𝑣 and there are only 𝑓 faulty

replicas, correct replicas will not receive more than 𝑓 +1 bval𝑟 (𝑣,⊥)
or send bval𝑟 (𝑣,⊥). All correct replicas will eventually receive 2𝑓 +1

bval𝑟 (𝑣,⊥) and send aux𝑟 (𝑣, 𝑣). Since no correct replica puts 𝑣 in

𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 , all correct replicas will have only one single value 𝑣 .

If a correct replica terminates in round 0 and 𝑣 = 𝑠𝑟 , it decides 𝑣 . If

𝑣 ≠ 𝑠𝑟 , correct replicas use 𝑣 as the input 𝑒𝑠𝑡𝑟 for round 1. According

to Lemma D.4, any correct replica that terminates decides 𝑣 . 2

This completes of the proof of the theorem. ■

Theorem D.6. (Agreement) If a correct replica decides 𝑣 , then
any correct replica that terminates decides 𝑣 .

Proof. We prove agreement by showing that if 𝑝𝑖 decides 𝑣 in

round 𝑟 , all other correct replicas either decide in the same round or

enter the next roundwith 𝑣 as 𝑒𝑠𝑡𝑟 . Assume, towards a contradiction,

that another correct replica 𝑝 𝑗 enters the next round with 𝑣 .

Lemma D.7. If 𝑝𝑖 terminates in round 𝑟 and decides 𝑣 , any correct
replica 𝑝 𝑗 either 1) terminates in round 𝑟 and decides 𝑣 ; or 2) enters
round 𝑟 + 1 with 𝑣 as 𝑒𝑠𝑡𝑟+1.

Proof. If 𝑝𝑖 decides 𝑣 in round 𝑟 , there are three cases: 1) 𝑝𝑖 receives

at least 2𝑓 + 1 aux𝑟 (𝑣, 𝑣) messages and 𝑣 = 𝑠𝑟 ; 2) 𝑝𝑖 receives both

aux𝑟 (𝑣, 𝑣) and aux𝑟 (⊥, ∗). Also, 𝑝𝑖 receives at least a quorum of

aux𝑟 (∗, 𝑣) messages, 𝑣 = 𝑠𝑟−1, and 𝑣 = 𝑠𝑟 ; For 𝑝 𝑗 , if it enters the

next round with value 𝑒𝑠𝑡𝑟+1 = 𝑣 , it cannot use the common coin

value as input, as 𝑣 is the common coin. Therefore, one the following

conditions must apply: A) 𝑝 𝑗 receives at least 2𝑓 + 1 aux𝑟 (𝑣, 𝑣); B)
𝑝 𝑗 receives both aux𝑟 (𝑣, 𝑣) and aux𝑟 (⊥, 𝑣). At least a quorum of the

messages are of the form aux𝑟 (∗, 𝑣); C) 𝑝 𝑗 receives both aux𝑟 (𝑣, ∗)
and aux𝑟 (⊥, ∗) and 𝑣 = 𝑠𝑟−1. We now distinguish the two cases for

𝑝𝑖 and show that none of the three conditions for 𝑝 𝑗 can be satisfies.

Case 1: 𝑝𝑖 receives at least 2+1 aux𝑟 (𝑣, 𝑣). At least 𝑓 +1 correct repli-

cas have sent aux𝑟 (𝑣, 𝑣). 1) If condition A is true, 𝑝 𝑗 receives 2𝑓 + 1

aux𝑟 (𝑣, 𝑣), at least 𝑓 +1 of which are sent by correct replicas. There-

fore, at least one correct replica has sent both aux𝑟 (𝑣, 𝑣) to 𝑝𝑖 and
aux𝑟 (𝑣, 𝑣) to 𝑝 𝑗 , which is impossible. Condition A cannot be true. 2)

If condition B is true, 𝑝 𝑗 receives a quorum of aux𝑟 (∗, 𝑣) messages,

𝑓 + 1 of which are sent by correct replicas. Therefore, at least one

correct replica has sent aux𝑟 (𝑣, 𝑣) to 𝑝𝑖 and sent aux𝑟 (∗, 𝑣) to 𝑝 𝑗 ,

which is impossible. Condition B cannot be true. 3) If condition C is

true, 𝑝 𝑗 receives only aux𝑟 (𝑣, ∗) and aux𝑟 (⊥, ∗). In other words, at

least one correct replica has sent aux𝑟 (𝑣, 𝑣) to 𝑝𝑖 and aux𝑟 (𝑣, ∗) (or
aux𝑟 (⊥, ∗)) to 𝑝 𝑗 , which is impossible. Condition C cannot be true.

Case 2: 𝑝𝑖 receives both aux𝑟 (𝑣, 𝑣) and aux𝑟 (⊥, ∗). Also, 𝑝𝑖 receives
at least a quorum of aux𝑟 (∗, 𝑣) messages, 𝑣 = 𝑠𝑟−1, and 𝑣 = 𝑠𝑟 . 1) If
condition A is true, 𝑝 𝑗 receives at least 2𝑓 +1 aux𝑟 (𝑣, 𝑣), at least 𝑓 +1

15

are sent by correct replicas. Also, 𝑝𝑖 receives 2𝑓 + 1 aux𝑟 (𝑣, 𝑣) and
2𝑓 + 1 aux𝑟 (⊥, ∗). Therefore, at least one correct replica must have

sent aux𝑟 (𝑣, 𝑣) to 𝑝 𝑗 and aux𝑟 (𝑣, 𝑣) (or aux𝑟 (⊥, ∗)) to 𝑝𝑖 , which is

impossible. Condition A cannot be true. 2) If condition B is true, 𝑝 𝑗
receives both aux𝑟 (𝑣, 𝑣) and aux𝑟 (⊥, 𝑣), and at least a quorum of the

messages are of the form aux𝑟 (∗, 𝑣). Since 𝑝𝑖 receives a quorum of

aux𝑟 (∗, 𝑣) messages, at least one correct replica has sent aux𝑟 (∗, 𝑣)
to 𝑝𝑖 and aux𝑟 (∗, 𝑣) to 𝑝 𝑗 . Condition B cannot be true. 3) 𝑝 𝑗 only

receives aux𝑟 (⊥, ∗) and aux𝑟 (𝑣, ∗) and 𝑣 = 𝑠𝑟−1. This cannot be true

since 𝑣 = 𝑠𝑟−1. 2

For the two cases, it is clear that if 𝑝 𝑗 decides in round 𝑟 , it outputs

𝑣 . We now show that if 𝑝 𝑗 terminates in round 𝑟 ′ and decides 𝑣 ,

𝑣 = 𝑣 where 𝑟 ′ > 𝑟 . In round 𝑟 ′, one of the following cases must

apply: A) 𝑝 𝑗 receives at least 2𝑓 + 1 aux𝑟 ′ (𝑣, 𝑣); B) 𝑝 𝑗 receives both
aux𝑟 ′ (𝑣, 𝑣) and aux𝑟 ′ (⊥, 𝑣). Also, 𝑣 = 𝑠𝑟 ′−1 and 𝑣 = 𝑠𝑟 ′ . If any of the

two cases is true, at least one correct replica has sent bval𝑟 ′ (𝑣, ∗).
Meanwhile, according to Lemma D.7, any correct replica that enters

round 𝑟 +1 uses 𝑣 as input. Furthermore, according to Lemma D.2, if

all correct replicas enter round 𝑟 + 1 and use 𝑣 as input, any correct

replica either decides 𝑣 or uses 𝑒𝑠𝑡𝑟+2 = 𝑣 and enters round 𝑟 + 2.

Therefore, there exists some round 𝑟 ′′ where 𝑟 ≤ 𝑟 ′′ ≤ 𝑟 ′, a correct
replica uses 𝑣 as input and broadcasts bval𝑟 ′′ (𝑣, ∗), i.e., Lemma D.2

is violated, a contradiction. ■

Theorem D.8. (Termination) All correct replicas eventually ter-
minate the protocol.

Proof. The proof is divided in two parts: 1) In each round, each

correct replica will eventually proceed to the next round, and 2) a

correct replica terminates the protocol with probability 1/2.

We prove the first part. In our protocol, 𝑒𝑠𝑡𝑟 is always a bi-

nary value, either 0 or 1. A correct replica may send bval𝑟 (𝑣, ∗)
or bval𝑟 (𝑣, ∗). Also, there are at least 2𝑓 + 1 correct replicas, among

which at least 𝑓 + 1 correct replicas propose the same value. There-

fore, if 𝑣 is different from its proposed value, each correct replica

𝑝𝑖 will forward bval𝑟 (𝑣,𝑚𝑎𝑗𝑟). Correct replicas will eventually re-

ceive 2𝑓 + 1 bval𝑟 () messages for at least one binary value (e.g.,

𝑣), and send aux𝑟 (𝑣, ∗) or aux𝑟 (⊥, ∗). Similarly, all correct replicas

eventually receive 2𝑓 + 1 aux𝑟 () messages and proceed to the next

round.

We now prove the second part. In particular, we prove in round

𝑟 , if a correct replica 𝑝𝑖 enters round 𝑟 + 1 with 𝑒𝑠𝑡𝑟+1 = 𝑣 , the

protocol will terminate with 1/2 probability. (Hence, the 𝑣 cannot

be manipulated by the adversary such that 𝑣 is always different

from the common coin.)

If 𝑝𝑖 enters the next round with 𝑒𝑠𝑡𝑟+1 = 𝑣 = 𝑠𝑟 , it must satisfy

one of the three conditions: 1) 𝑝𝑖 receives at least 2𝑓 + 1 aux𝑟 (𝑣, 𝑣)
messages; 2) 𝑝𝑖 receives both aux𝑟 (𝑣, 𝑣) and aux𝑟 (⊥, ∗). At least a
quorum of themessages are aux𝑟 (∗, 𝑣); 3) 𝑝𝑖 receives both aux𝑟 (𝑣, 𝑣)
and aux𝑟 (⊥, ∗) and 𝑣 = 𝑠𝑟−1.

For the first case, at least 𝑓 +1 correct replicas have sent aux𝑟 (𝑣, 𝑣).
According to the Lemma D.1, we know that in each round, correct

replicas send aux𝑟 (𝑣, 𝑣) for at most one value 𝑣 . In other words,

if at least one correct replica sends aux𝑟 (𝑣, 𝑣), no correct replica

sends aux𝑟 (𝑣, 𝑣). Hence, each correct replica receives at least one

aux𝑟 (𝑣, 𝑣). According to Lemma D.1, correct replicas may send

aux𝑟 (𝑣, 𝑣), aux𝑟 (⊥, 𝑣), aux𝑟 (⊥, 𝑣), but will not send aux𝑟 (𝑣, ∗). No

correct replica will set 𝛿𝑟 (𝑣) = 1. The value 𝑣 is determined based

on the𝑚𝑎𝑗𝑠 values by the replicas so it cannot be manipulated by

the adversary. Therefore, with a probability of 1/2, 𝑝𝑖 decides 𝑣 .

Otherwise 𝑝𝑖 enter the next round and use 𝑒𝑠𝑡𝑟+1 = 𝑣 .

For the second case, 𝑝𝑖 decides if 𝑏 = 𝑠𝑟−1 and 𝑏 = 𝑠𝑟 . With a

probability of 1/2, 𝑠𝑟−1 = 𝑠𝑟 .

For the third case, with a probability of 1/2, 𝑠𝑟−1 = 𝑠𝑟 . In this case

𝑝𝑖 will not decide. 𝑝𝑖 uses the value of 𝑠𝑟 as 𝑒𝑠𝑡𝑟+1 with a probability

of 1/2. ■

Theorem D.9. (Integrity) No correct replica decides twice.

Proof. In each round, a replica will only sends aux𝑟 () message

once and accepts only one aux𝑟 () message from each replica. If

a replica 𝑝𝑖 decides 𝑣 in round 𝑟 , it has received 2𝑓 + 1 aux𝑟 (𝑣, ∗)
messages with the same 𝑣 , or received 2𝑓 +1 aux𝑟 (∗, 𝑣). If 𝑝𝑖 decides
twice, it must have received 2𝑓 + 1 aux𝑟 (𝑣, 𝑣), or received 2𝑓 + 1

aux𝑟 (∗, 𝑣). Neither case is possible. Integrity thus follows. ■

E PROOF OF CORRECTNESS FOR PISA
In this section, we prove the correctness of Pisa.

Theorem E.1. (Validity) If all correct replicas propose 𝑣 and never
repropose 𝑣 , then any correct replica that terminates decides 𝑣 .

Proof. If all correct replicas propose 𝑣 and do not repropose

𝑣 , all correct replicas will only have 𝑣 in their 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 . Hence,

replicas do not accept an aux𝑟 (𝑣, 𝑣) message. Each correct replica

will collect 2𝑓 + 1 aux𝑟 (𝑣, 𝑣). If 𝑣 = 1, replicas decide in round

0. Otherwise replicas enter round 1. Starting from round 1, Pisa

follows Pillar. Therefore, according to Lemma D.2 and Lemma D.4,

any correct replica that terminates decides 𝑣 . ■

Theorem E.2. (Unanimous termination) If all correct replicas
propose 𝑣 and never repropose 𝑣 , then all correct replicas eventually
terminate.

Proof. If all correct replicas propose 𝑣 , theywill all send bval𝑟 (𝑣,⊥).
All correct replicas eventually put 𝑣 to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 . Correct repli-

cas will not send or accept any aux𝑟 (𝑣, 𝑣) message and will accept

either aux𝑟 (𝑣, 𝑣) or aux𝑟 (⊥, 𝑣). According to Lemma D.2, all cor-

rect replicas will enter the next round with the same 𝑒𝑠𝑡𝑟+1 value
(including the case where replicas decide). According to the prop-

erty of common coin, we know that correct replicas decide in each

round with probability 1/2. Hence, all correct replicas eventually

terminate. ■

Theorem E.3. (Agreement) If a correct replica decides 𝑣 , then
any correct replica that terminates decides 𝑣 .

Proof. We first show the case where a correct replica 𝑝𝑖 decides

𝑣 in round 𝑟 = 0. First of all, a correct replica 𝑝 𝑗 cannot decide 𝑣 in

round 0. This is because a correct replica decides a value only when

the value equals the common coin, which is 1 in round 0. We now

consider the case where 𝑝𝑖 still decides in round 0 and 𝑝 𝑗 decides

in round 𝑟 > 0. We prove the following lemma:

Lemma E.4. If 𝑝𝑖 decides in round 0, any correct replica either
decides in round 0 or uses 1 as input for round 1.

16

Proof. If 𝑝𝑖 decides in round 0, it decides 𝑣 = 1 (the common coin

value in round 0 is 1). Assume, towards a contradiction, that a

correct replica 𝑝 𝑗 enters round 1 with 0 as input. In this case, the

function V2 (𝑣𝑎𝑙𝑠𝑟 , 0) ≥ 2𝑓 + 1 must be true. Hence, excluding the

aux𝑟 (⊥, ∗) messages, the number of aux𝑟 (0, 0) messages 𝑝 𝑗 receives

is greater than 2𝑓 +1. Among the replicas that sent 2𝑓 +1 aux𝑟 (𝑣, 𝑣)
and aux𝑟 (𝑣, 𝑣) messages, at least one correct replica must have

sent both aux𝑟 (𝑣, 𝑣) and aux𝑟 (𝑣, 𝑣). This is a contradiction, since a
correct replica broadcasts aux𝑟 () once in each round. 2

Starting from round 𝑟 = 1, Pisa is the same as Pillar. Therefore,

according to Lemma D.2 and Lemma D.4, any correct replica that

terminates decides 𝑣 = 1.

For the case where 𝑝𝑖 decides in round 𝑟 > 0, agreement simply

follows that of Pillar, as Pisa is the same as Pillar starting from

𝑟 > 0. ■

Theorem E.5. (Biased validity) If 𝑓 + 1 correct replicas propose
1, then any correct replica that terminates decides 1.

Proof. In round 0, correct replicas will directly send aux𝑟 (1, 1)
and will not send aux𝑟 (0, 0). Therefore, all correct replicas will
either receive 2𝑓 + 1 aux𝑟 (1, 1) or both aux𝑟 (1, 1) and aux𝑟 (0, 0),
but not 2𝑓 +1 aux𝑟 (0, 0). This is because if a correct replica receives
2𝑓 + 1 aux𝑟 (0, 0), at least 𝑓 + 1 correct replicas must have sent

aux𝑟 (0, 0). Therefore, at least one correct replica must have sent

both aux𝑟 (0, 0) and aux𝑟 (1, 1), which is impossible. If a correct

replica receives 2𝑓 + 1 aux𝑟 (1, 1), it directly decides. Otherwise it

uses the common coin value 1 to enter the next round. Since Pisa is

the same as Pillar starting from round 1, according to the LemmaD.2

and Lemma D.4, all correct replicas that terminate decide 1. ■

Theorem E.6. (Biased termination) Let 𝑄 be the set of correct
replicas. Let 𝑄1 be the set of correct replicas that propose 1 and never
repropose 0. Let 𝑄2 be correct replicas that propose 0 and later re-
propose 1. If 𝑄2 ≠ ∅ and 𝑄 = 𝑄1 ∪ 𝑄2, then each correct replica
eventually terminates.

Proof. The proof consists of two parts: round 𝑟 = 0 and round

𝑟 > 0. We first prove the first case (𝑟 = 0) that a correct replica

either decides in round 0 or moves to round 1. Depending on the

proposed values of replicas, there are three cases: 1) at least 𝑓 + 1

correct replicas propose 1; 2) at least one but fewer than 𝑓 +1 correct

replicas propose 1; 3) all correct replicas propose 0. We show that

each replica can collect 2𝑓 + 1 aux𝑟 () messages.

Case 1: More than 𝑓 + 1 correct replicas propose 1. All correct replicas
will eventually receive 𝑓 + 1 bval𝑟 (1,⊥). According to the proto-

col, all correct replicas will eventually receive 2𝑓 + 1 bval𝑟 (1,⊥),
put 1 in 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 , and accept aux𝑟 (1, 1). Correct replicas may

send aux𝑟 (1, 1) or aux𝑟 (0, 0). If a correct replica sends aux𝑟 (0, 0),
it previously received 2𝑓 + 1 bval𝑟 (0,⊥) messages, among which

at least 𝑓 + 1 replicas are correct. Therefore, all correct replicas

will eventually put 0 in their 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 and accept aux𝑟 (0, 0). All
correct replicas can then decide or move to round 1.

Case 2: At least one but fewer than 𝑓 + 1 correct replicas propose 1. In
this case |𝑄1 | < 𝑓 +1 and |𝑄2 | ≥ 𝑓 +1. This case implies that at least

𝑓 + 1 correct replicas propose 0. In this case, all correct replicas will

eventually receive 2𝑓 + 1 bval𝑟 (0,⊥) and put 0 to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 . It is,

however, not guaranteed that a correct replica will receive 2𝑓 + 1

bval𝑟 (1,⊥) and put 1 in𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 . Therefore, some correct replica

that only has 0 in 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 will not accept an aux𝑟 (1, 1) message.

The termination is guaranteed by the fact that correct replicas in

𝑄2 repropose 1. In particular, correct replicas will repropose 1,

making correct replicas eventually receive a quorum of bval0 (1,⊥)
messages. Hence, correct replicas will either enter the next round

or eventually collect a quorum of bval0 (1,⊥) messages. In the latter

case, correct replicas will be able to accept both aux𝑟 (0, 1) and
aux𝑟 (1, 1) in round 0. Hence, correct replicas will either terminate

in round 0 or move to the next round.

Case 3: All correct replicas have 0 as their input. In this case |𝑄1 | = 0.

All correct replicas will receive a quorum of bval𝑟 (0,⊥) messages

and add 0 to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 . Furthermore, each replica in 𝑄2 may re-

propose. Therefore, all correct replicas will receive 2𝑓 +1 bval𝑟 (1,⊥)
and put 1 to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠𝑟 . It is easy to see that all correct replicas

will either decide in round 0 or move to the next round.

For the case where round 𝑟 > 0, since Pisa is the same as Pillar,

agreement follows that of Pillar. This completes the proof of the

theorem. ■

Theorem E.7. (Integrity) No correct replica decides twice.

Proof. In each round, each replica will only send aux𝑟 () mes-

sage once and accept one aux𝑟 () message from each replica. Hence,

only one value will be decided and integrity easily follows. ■

F PROOF OF CORRECTNESS FOR OUR BFT
FRAMEWORK

We prove the correctness of our BFT framework. The proof immedi-

ately implies the correctness of our BFT instantiations. In particular,

we will prove the following properties that are equivalent to the

definitions of security for BFT:

• Set agreement: If any correct replica outputs a set𝑉 , then each

correct replica outputs 𝑉 .

• Efficiency (validity): If a correct replica outputs a set 𝑉 , then

𝑉 contains a proposal from at least one correct replica.

• Liveness: If a proposal is submitted to all correct replicas, then

all correct replicas eventually output a set containing some

value.

Note that the above definitions generalize and relax prior defini-

tions for systems on asynchronous common subset (ACS) such as

HoneyBadgerBFT, BEAT, and Dumbo, where they all consider the

following efficiency property:

• Efficiency (validity) for some prior ACS definitions: If a
correct replica outputs a set 𝑉 , then 𝑉 contains proposals from

at least 𝑛 − 2𝑓 correct replicas.

The original idea of ACS in BKR requires replicas to agree on

a common subset but does not restrict the size of the set 𝑉 . Our

efficiency definition thus echoes that of the original BKR paper,

requiring 𝑉 contains at least one proposal from one correct replica.

This is—not at all—a "drawback." First, asking𝑉 to contain proposals

from 𝑛 − 2𝑓 correct replicas is unnecessary; our relaxed definitions

are equivalent to the standard definitions for BFT. Second, the ef-

ficiency property defined in the previous work may restrict novel

or efficient constructions: a system slowly delivering more trans-

actions may not be more efficient than a system delivering fewer

17

transactions but delivering them faster. Third, one can easily con-

struct a system that satisfies the efficiency property requiring to

output a set containing at least 𝑛 − 2𝑓 replicas using a system with

our efficiency property.

We begin with the following lemma.

Lemma F.1. If all correct replicas are activated on some proposals
for epoch 𝑒 , then all correct replicas eventually terminate for epoch 𝑒 .

Proof. If all correct replicas are activated on some proposals for

some epoch 𝑒 , they will r-broadcast their proposals. Eventually, all

correct replicas will r-deliver at least 2𝑓 + 1 RBC instances. Hence,

all correct replicas will proposes 0 for all RABA instances that have

not been started. We distinguish all possible cases and show for

each case all RABA instances will terminate.

We first consider case 1, where all correct replicas propose 1

for a RABA. In this case, according to unanimous termination, the

RABA instance eventually terminates.

We now consider case 2, where all correct replicas propose 0.

In this case, we further distinguish two sub-cases: 1) If they never

repropose 1, the RABA instance eventually terminates due to unan-

imous termination. 2) If some replicas repropose 1, then these repli-

cas must have r-delivered the corresponding messages. According

to the agreement property of RBC, all correct replicas will deliver

the messages and repropose 1. The protocol will terminate due to

biased termination.

Finally, we consider case 3, where some correct replicas propose

0 and some other correct replicas propose 1. The case is similar to

Case 2-2. Due to the agreement property of RBC, correct replicas

will eventually repropose 1, and the RABA instance will terminate.

Therefore, the protocol will eventually terminate. 2

We now prove set agreement.

Theorem F.2. (Agreement) If any correct replica outputs a set 𝑉
of proposals from replicas, then each correct replica outputs the same
set 𝑉 .

Proof. We consider an epoch 𝑒 , where a correct replica 𝑝 𝑗 a-

delivers a set 𝑉 . According to our protocol, the set 𝑉 is a set of

proposals from different replicas: the 𝑖-th element, 𝑉 [𝑖], may be

empty or 𝑚𝑖 (a proposal r-broadcast by 𝑝𝑖), depending on if the

corresponding RABA instance RABA𝑖 decides 0 or 1, where 𝑖 ∈
[0..𝑛 − 1]. We just need to show that each replica 𝑝𝑘 will output a

set 𝑉 ′ such that 𝑉 ′ = 𝑉 , i.e., 𝑉 [𝑖] = 𝑉 ′[𝑖] for 𝑖 ∈ [0..𝑛 − 1].
If 𝑝 𝑗 outputs a set 𝑉 , then all RABA instances either decide

0 or 1. According to Lemma F.1, we know all RABA instances

must terminate. Due to the agreement property of RABA, these

RABA instances decide the same values for 𝑝𝑘 . Therefore, all RABA

instances for 𝑝𝑘 will terminate and decide the same values as 𝑝 𝑗 .

Furthermore, the agreement of RBC instances guarantees that,𝑉 ′[𝑖]
will be r-delivered and 𝑉 [𝑖] = 𝑉 ′[𝑖] =𝑚𝑖 for all 𝑖 ∈ [0..𝑛 − 1]. ■

The above theorem immediately implies the usual agreement

definition for BFT. We now prove a theorem implying efficiency

and liveness.

Theorem F.3. For each epoch, a set 𝑉 containing at least 𝑓 + 1

non-empty elements will be output.

Proof. For simplicity, we assume 𝑛 = 3𝑓 + 1. Conditioned on

termination for all RABA instances (shown in Lemma F.1), we

now bound the number of RABA instances that decide 1, which

corresponds to the number of non-empty elements. We mainly use

the biased termination property to prove the theorem for this proof.

According to the biased termination property, a RABA instance

RABA𝑖 will decide 1, if 𝑓 + 1 or more correct replicas propose 1. We

now need to bound the number of RABA instances where less than

𝑓 + 1 correct replicas propose 1.

A crucial observation is that a correct replica will propose 1 for

at least 2𝑓 +1 RABA instances, a fact guaranteed by RBC. All correct

replicas will input 1 for (2𝑓 +1) (2𝑓 +1) inputs for all RABA instances.

There are at most (3𝑓 +1) (2𝑓 +1) inputs for correct replicas. Hence,
the total number of the 0 input from all correct replicas for all RABA

instances is at most (3𝑓 + 1) (2𝑓 + 1) − (2𝑓 + 1) (2𝑓 + 1) = 2𝑓 2 + 𝑓 ,
while in the normal case, transactions from at least ⌈𝑛+𝑓 +1

2
⌉ replicas

will be delivered. Thus, the number of RABA instances that decide

0 is bounded by:

2𝑓 2 + 𝑓
𝑓 + 1

<
2𝑓 2 + 2𝑓

𝑓 + 1

= 2𝑓 .

The number of RABA instances that decide 1 is at least 𝑓 + 1. ■

The above theorem implies that our new paradigm will a-deliver

at least one proposal from a correct replica. The theorem also im-

plies the liveness of our BFT protocol from the client perspective: a

transaction from a correct client will be eventually a-delivered at

some epoch.

G CONVERTING ABA TO RABA
Our strategy that converts ABA to RABA is generic. We now show

how to convert a number of representative ABA protocols to RABA

protocols, including the classic CKS ABA [17], CrainHABA [25, 2nd

algorithm], CrainL ABA [25, 1st algorithm], and Cobalt ABA [39].

As Cobalt, CrainH, and CrainL follow MMR, the proofs are similar

to that for Pisa. Thus, we first focus on CKS [17] and provide a

full proof for it. We then show in detail how to convert CrainH to

RABA and briefly sketch how to do it for other protocols.

G.1 Converting CKS ABA to RABA
The pseudocode of CKS is shown in Figure 16. While the orig-

inal CKS paper uses quite different notations, we use the same

notations as other protocols presented in this paper. CKS uses a

low-threshold (𝑛, 𝑓 + 1) threshold signature scheme (denoted 𝑡𝑠1)

and high-threshold (𝑛, 𝑛 − 𝑓) threshold signature scheme (denoted

𝑡𝑠2).

We use 𝑡𝑠1.𝑠ℎ𝑎𝑟𝑒 to represent a threshold signature share gener-

ated using 𝑡𝑠1 and 𝑡𝑠1.𝑠𝑖𝑔 to represent a threshold signature com-

bined from 𝑓 + 1 threshold signature shares. Similarly, we use

𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒 to represent the threshold signature share for 𝑡𝑠2 and

𝑡𝑠2.𝑠𝑖𝑔 to present the threshold signature combined from 𝑛 − 𝑓

shares. For each message, the threshold signature share is gener-

ated for a value 𝑣 , the round number 𝑟 , and the ABA instance ID

𝑠𝑖𝑑 .

The CKS protocol consists of three steps in round 0 (the first

round) and two steps in each round starting from round 1. In round

0, at ln 07, every replica broadcasts a bval𝑟 (𝑒𝑠𝑡0, 𝑡𝑠1.𝑠ℎ𝑎𝑟𝑒) message,

18

01 upon event propose (𝑠𝑖𝑑, 𝑣𝑖)
02 𝑟 ← 0

03 𝑒𝑠𝑡0 ← 𝑣𝑖

04 start round 0

05 round r
06 if 𝑟 = 0

07 broadcast bval𝑟 (𝑒𝑠𝑡0, 𝑡𝑠1.𝑠ℎ𝑎𝑟𝑒)
08 upon receiving 2𝑓 + 1 bval𝑟 () with 𝑣𝑎𝑙𝑠

09 𝑣 ← majority(𝑣𝑎𝑙𝑠), 𝑠𝑖𝑔← 𝑡𝑠1.𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝑠ℎ𝑎𝑟𝑒𝑠)
10 else
11 if exists conf𝑟−1 (𝑏, 𝑠𝑖𝑔) s.t. 𝑠𝑖𝑔 is a valid threshold signature

12 𝑣 ← 𝑏

13 else 𝑣 ← 𝑠𝑟−1

14 broadcast aux𝑟 (𝑣, 𝑠𝑖𝑔, 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒)
15 upon receiving𝑛− 𝑓 aux𝑟 () messages where 𝑣𝑎𝑙𝑠 is a set of values

carried by these messages

16 if 𝑣𝑎𝑙𝑠 = {𝑏 }, 𝑣 ← 𝑏, 𝑠𝑖𝑔← 𝑡𝑠2.𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝑠ℎ𝑎𝑟𝑒𝑠)
17 else 𝑣 ←⊥, 𝑠𝑖𝑔← aux𝑟 () messages

18 broadcast conf𝑟 (𝑣, 𝑠𝑖𝑔, 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒)
19 upon receiving 𝑛 − 𝑓 conf𝑟 () messages where 𝑣𝑎𝑙𝑠 is a set of

values carried by these messages

20 if 𝑣𝑎𝑙𝑠 = {𝑏 }, decide (𝑠𝑖𝑑,𝑏)
21 𝑠𝑟 ← coin𝑟
22 𝑟 ← 𝑟 + 1

Figure 16: CKS ABA [17]. The code for replica 𝑝𝑖 .

where 𝑒𝑠𝑡0 is the proposed value and 𝑡𝑠1.𝑠ℎ𝑎𝑟𝑒 is a threshold signa-

ture share. At ln 08-09, upon receiving 2𝑓 +1 valid bval𝑟 () messages,

a replica sets a local parameter 𝑣 as the majority value 𝑣 received

from bval𝑟 () messages and combines the threshold shares to 𝑠𝑖𝑔.

At ln 14, the replica then sends an aux𝑟 (𝑣, 𝑠𝑖𝑔, 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒) message

to all replicas, where 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒 is a threshold signature share for

the aux𝑟 () message. Replicas then wait for the aux𝑟 () messages (ln

15). If a replica receives 𝑛 − 𝑓 aux𝑟 () messages that contain only

one valid value (ln 16), a replica combines the signature shares and

obtain 𝑠𝑖𝑔. The replica then broadcasts a conf𝑟 (𝑣, 𝑠𝑖𝑔, 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒)
messages where 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒 is a threshold signature share for the

conf𝑟 () message (ln 18). If aux𝑟 () message contains multiple val-

ues, the replica broadcasts a conf𝑟 (⊥, aux()) message (combined

from ln 17-18), where ⊥ is a special symbol such that ⊥ ∉ {0, 1},
and aux𝑟 () messages serve as justification for ⊥. Finally, a replica
waits for 𝑛− 𝑓 valid conf𝑟 () messages (ln 19). If the replica receives

𝑛 − 𝑓 conf𝑟 (𝑏, ∗, ∗), the replica decides 𝑏 (ln 20). The replica then

queries the common coin (ln 21) and enters the next round (ln 22).

Starting from round 𝑟 = 1, replica do not have to broadcast

bval𝑟 () messages any more. Instead, at ln 11, a replica checks

whether it has received a valid conf𝑟−1 (𝑏) message with a valid

threshold signature 𝑠𝑖𝑔 (for 𝑡𝑠2). If so, the replica sets 𝑣 as𝑏 (ln 11-12).

Otherwise, ln 13 sets 𝑣 as 𝑠𝑟−1, the common coin value generated in

the last round. Then the replica broadcasts an aux𝑟 (𝑣, 𝑠𝑖𝑔, 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒)
message (ln 14). Other steps remain the same as that in round 0.

After each replica decides, it continues to run the protocol for

another round and terminate the protocol at the end of the aux𝑟 ()
step after broadcasting the conf𝑟 () message.

VABA. CKPS [16] proposed an approach that converts CKS to

VABA, the pseudocode of which is shown in Figure 17. Note CKPS

also defines biased validity, but in the context of external validity

upon event propose (𝑠𝑖𝑑, 𝑣𝑖 , 𝜋)
01 𝑟 ← 0

02 coin0 ← 1

03 𝑒𝑠𝑡0 ← 𝑣𝑖

04 start round 0

05 round r
06 if 𝑟 = 0

07 broadcast bval𝑟 (𝑒𝑠𝑡0, 𝑡𝑠1.𝑠ℎ𝑎𝑟𝑒, 𝜋)
08 upon receiving bval𝑟 () with invalid 𝜋

09 discard the message

10 upon receiving 2𝑓 + 1 bval𝑟 () with 𝑣𝑎𝑙𝑠

11 𝑣 ← majority(𝑣𝑎𝑙𝑠), 𝑠𝑖𝑔← 𝑡𝑠1.𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝑠ℎ𝑎𝑟𝑒𝑠)
12 else
13 if exists conf𝑟−1 (𝑏, 𝑠𝑖𝑔) s.t. 𝑠𝑖𝑔 is a valid threshold signature

14 𝑣 ← 𝑏

15 else 𝑣 ← 𝑠𝑟−1

16 broadcast aux𝑟 (𝑣, 𝑠𝑖𝑔, 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒)
17 upon receiving𝑛− 𝑓 aux𝑟 () messages where 𝑣𝑎𝑙𝑠 is a set of values

carried by these messages

18 if 𝑣𝑎𝑙𝑠 = {𝑏 }, 𝑣 ← 𝑏, 𝑠𝑖𝑔← 𝑡𝑠2.𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝑠ℎ𝑎𝑟𝑒𝑠)
19 else 𝑣 ←⊥, 𝑠𝑖𝑔← aux𝑟 () messages

20 broadcast conf𝑟 (𝑣, 𝑠𝑖𝑔, 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒)
21 upon receiving 𝑛 − 𝑓 of conf𝑟 () messages where 𝑣𝑎𝑙𝑠 is a set of

values carried by these messages

22 if 𝑣𝑎𝑙𝑠 = {𝑏 }, decide (𝑠𝑖𝑑,𝑏)
23 if 𝑟 = 0, 𝑠𝑟 ← 1

24 else 𝑠𝑟 ← coin𝑟
25 𝑟 ← 𝑟 + 1

Figure 17: The VABA construction based on CKS ABA proto-
col [16].

such that a predicate 𝑄 (𝑣, 𝜋) has to be verified by every replica

before a vote for 𝑣 can be accepted.

The VABA protocol CKPS proposes makes a few changes to

make ABA achieve external validity and biased validity. First, every

proposed value is associated with an external proof 𝜋 , which needs

to be verified before a replica accepts the proposed value. In the

specific construction, a vote for 1 has to be associated with 𝜋 , a

threshold signature generated externally. For a vote for 0, 𝜋 can

simply be ⊥. Namely, a bval𝑟 () message with an invalid 𝜋 will be

discarded (ln 08-09). Second, the common coin in round 0 is set to

1 (ln 23).

RABA. We present a construction that converts CKS to a RABA

protocol CKS-R, as shown in Figure 18. We make several changes.

First, at ln 06-07, upon the repropose(𝑠𝑖𝑑, 1) event, regardless of
which round a replica is in, it broadcasts a bval0 (1, 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒) mes-

sage where 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒 is a threshold signature share for the bval0 ()
message. Second, the threshold signature scheme we use for the

bval𝑟 () messages is a (𝑛, 𝑛 − 𝑓) scheme (ln 10-12). In other words,

each replica generates a threshold signature share 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒 in the

bval𝑟 () step (ln 10). In ln 11-12, each replica collects 𝑛 − 𝑓 bval𝑟 ()
messages with matching value to proceed to the next step. Third,

the common coin of round 1 is set to 0 (ln 24-25).

Proof of Correctness for CKS-R. We show that our construction

in Figure 18 satisfies the RABA security definitions.

19

01 upon event propose (𝑠𝑖𝑑, 𝑣𝑖)
02 𝑟 ← 0

03 coin0 ← 1

04 𝑒𝑠𝑡0 ← 𝑣𝑖

05 start round 0

06 upon event repropose (𝑠𝑖𝑑, 1)
07 broadcast bval0 (1, 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒)
08 round r
09 if 𝑟 = 0

10 broadcast bval𝑟 (𝑒𝑠𝑡0, 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒)
11 upon receiving 𝑛 − 𝑓 bval𝑟 (𝑏)
12 𝑣 ← 𝑏, 𝑠𝑖𝑔← 𝑡𝑠2.𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝑠ℎ𝑎𝑟𝑒𝑠)
13 else
14 if exists conf𝑟−1 (𝑏, 𝑠𝑖𝑔) s.t. 𝑠𝑖𝑔 is a valid threshold signature

15 𝑣 ← 𝑏

16 else 𝑣 ← 𝑠𝑟−1

17 broadcast aux𝑟 (𝑣, 𝑠𝑖𝑔, 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒)
18 upon receiving𝑛− 𝑓 aux𝑟 () messages where 𝑣𝑎𝑙𝑠 is a set of values

carried by these messages

19 if 𝑣𝑎𝑙𝑠 = {𝑏 }, 𝑣 ← 𝑏, 𝑠𝑖𝑔← 𝑡𝑠2.𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝑠ℎ𝑎𝑟𝑒𝑠)
20 else 𝑣 ←⊥, 𝑠𝑖𝑔← aux𝑟 () messages

21 broadcast conf𝑟 (𝑣, 𝑠𝑖𝑔, 𝑡𝑠2.𝑠ℎ𝑎𝑟𝑒)
22 upon receiving 𝑛 − 𝑓 conf𝑟 () messages where 𝑣𝑎𝑙𝑠 is a set of

values carried by these messages

23 if 𝑣𝑎𝑙𝑠 = {𝑏 }, decide (𝑠𝑖𝑑,𝑏)
24 if 𝑟 = 0, 𝑠𝑟 ← 1

25 else 𝑠𝑟 ← coin𝑟
26 𝑟 ← 𝑟 + 1

Figure 18: CKS-R: The RABA construction based on CKS.

Theorem G.1. (Validity) If all correct replicas propose 𝑣 and
never repropose 𝑣 , then any correct replica that terminates decides 𝑣 .

Proof. Since a correct replica does not repropose a different

value 𝑣 ′, all replicas are able to receive 𝑛 − 𝑓 bval𝑟 (𝑣) and obtain

a valid threshold signature. Each replica only sends aux𝑟 (1) with
a valid signature. Similarly, every replica only sends a conf𝑟 (𝑣)
message and is able to decide 𝑣 . ■

Theorem G.2. (Agreement) If a correct replica decides 𝑣 , then
any correct replica that terminates decides 𝑣 .

Proof. We consider that a correct replica 𝑝𝑖 decides 𝑣 in round

𝑟 . Replica 𝑝𝑖 receives 𝑛 − 𝑓 conf𝑟 (𝑣) messages. We show the case

where another correct replica 𝑝 𝑗 decides 𝑣
′
1) in round 𝑟 ; 2) in round

𝑟 ′ > 𝑟 .

First, if 𝑝 𝑗 decides 𝑣
′
in round 𝑟 , it receives 𝑛 − 𝑓 conf𝑟 (𝑣 ′).

Among 𝑛 − 𝑓 replicas that send conf𝑟 (𝑣) and 𝑛 − 𝑓 replicas that

send conf𝑟 (𝑣 ′), at least one sends both conf𝑟 (𝑣) and conf𝑟 (𝑣 ′), a
contradiction.

Second, if 𝑝 𝑗 decides in round 𝑟 ′, it receives 𝑛 − 𝑓 conf𝑟 ′ (𝑣 ′). In
other words, at least 𝑛− 𝑓 replicas receive 𝑛− 𝑓 aux𝑟 ′ (𝑣 ′) messages.

Among the messages, at least one includes a conf𝑟 ′−1 (𝑣 ′) with a

valid threshold signature. In other words, at least 𝑛 − 𝑓 replicas

sent conf𝑟 ′−1 (𝑣 ′) in round 𝑟 ′ − 1. Recursively, in round 𝑟 , at least

𝑛− 𝑓 replicas sent conf𝑟 (𝑣 ′) in round 𝑟 . Therefore, a correct replica

sends both conf𝑟 (𝑣) and conf𝑟 (𝑣 ′), a contradiction. ■

Theorem G.3. (Biased validity) If 𝑓 + 1 correct replicas propose
1, then any correct replica that terminates decides 1.

Proof. If 𝑓 +1 correct replicas propose 1, none of correct replicas

is able to collect 𝑛 − 𝑓 bval0 (0). This is because correct replicas do
not repropose 0 if they propose 1. If a replica receives 𝑛− 𝑓 bval0 (0)
messages and assuming there are 𝑓 faulty replicas, at least 𝑛 − 2𝑓

correct replicas have sent bval0 (0). Since 𝑛 ≥ 3𝑓 + 1, 𝑛− 2𝑓 ≥ 𝑓 + 1.

This is a violation that at leat 𝑓 +1 replicas propose 1 since a correct

replica will not repropose 0.

Also, each replica may repropose 1. In other words, all correct

replicas will eventually receive 𝑛 − 𝑓 bval0 (1) messages. In this

case, all replicas will receive 𝑛 − 𝑓 bval0 (1) and proceed to the next
step.

Now assume that a correct replica 𝑝 𝑗 decides 0 in round 0. In

this case, 𝑝 𝑗 receives 𝑛 − 𝑓 conf0 (0) messages, which is impossible

since it requires 𝑛 − 𝑓 bval0 (0). We now only need to show the

correctness by assuming that 𝑝 𝑗 decides in round 𝑟 > 0. In this case,

𝑝 𝑗 receives 𝑛 − 𝑓 conf𝑟−1 (0). In other words, at least 𝑛 − 𝑓 replicas

broadcast aux𝑟−1 (1) and obtain a valid threshold signature from

round 𝑟 − 2. Recursively, in round 0, at least 𝑛 − 𝑓 replicas send

conf0 (0). It is straightforward to see that in the first step of round

0, at least 𝑛 − 𝑓 replicas sent bval0 (0). As shown previously, this is

also impossible. ■

Theorem G.4. (Biased termination) Let 𝑄 be the set of correct
replicas. Let 𝑄1 be the set of correct replicas that propose 1 and never
repropose 0. Let 𝑄2 be correct replicas that propose 0 and later re-
propose 1. If 𝑄2 ≠ ∅ and 𝑄 = 𝑄1 ∪ 𝑄2, then every correct replica
eventually terminate.

Proof. We distinguish three cases: 1) All replicas propose 1; 2)

All replicas propose 0; 3) At least one correct replica proposes 1.

We show correctness for the three cases.

1) Since correct replicas do not repropose 0, it is straightforward

to see that all replicas will decide 1.

2) All correct replicas may repropose 1. In other words, every

replica may receive 𝑛 − 𝑓 bval0 (0) and 𝑛 − 𝑓 bval0 (0). Each replica,

however, only sends aux𝑟 () message once with one value. In the

next step, a replica makes a decision regardless of the values re-

ceived from aux𝑟 () messages. Similarly, a replica can proceed after

it receives 𝑛 − 𝑓 conf𝑟 () messages regardless of the values. There-

fore, the protocol can proceed to the next step. There are three

sub-cases:

• A). None of the correct replicas collects 𝑛 − 𝑓 conf𝑟 () messages

with a matching value; B) At least one but fewer than 𝑓 + 1

correct replicas collect 𝑛 − 𝑓 conf𝑟 () messages with a matching

value; C) At least 𝑓 + 1 correct replicas collect 𝑛 − 𝑓 conf𝑟 ()
messages. In case A, all correct replicas use the common coin

value as 𝑣 and each replica sends aux𝑟 (𝑣). It is impossible that

another corect replica sends aux𝑟 (𝑣 ′) with a valid threshold

signature since it requires 𝑛 − 𝑓 valid conf𝑟−1 (𝑣 ′) messages.

Therefore, all replicas will receive 𝑛 − 𝑓 aux𝑟 (𝑣), send conf𝑟 (𝑣),
and decide 𝑣 .

• B). Some replicas may send aux𝑟 (𝑣) while other replicas use
the common coin value. The probability that the common coin

value is the same as the 𝑏 value (if any) is 1/2. In other words,

all replicas will decide with 1/2 probability. Otherwise, replicas

20

01 upon event propose (𝑠𝑖𝑑, 𝑣𝑖)
02 𝑟 ← 0

03 coin0 ← 𝑣𝑖

04 𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑖𝑛 ← 𝑓 𝑎𝑙𝑠𝑒

05 𝑏𝑖𝑛_𝑝𝑡𝑟𝑖 [𝑣𝑖] ← 𝑆_𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 𝐸𝑆𝑇 [1] (𝑣𝑖 , 𝑓 𝑎𝑙𝑠𝑒)
06 start the loop

07 round r
08 𝑟 ← 𝑟 + 1

09 𝑏𝑖𝑛_𝑝𝑡𝑟𝑖 [𝑠𝑟−1]←𝑆_𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 𝐸𝑆𝑇 [𝑟] (𝑠𝑟−1, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑖𝑛)
10 wait until 𝑏𝑖𝑛_𝑝𝑡𝑟𝑖 [0] = 𝑡𝑟𝑢𝑒 or 𝑏𝑖𝑛_𝑝𝑡𝑟𝑖 [1] = 𝑡𝑟𝑢𝑒

11 if 𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑖𝑛, 𝑤 ← 𝑠𝑟−1

12 else if 𝑏𝑖𝑛_𝑝𝑡𝑟𝑖 [0] = 𝑡𝑟𝑢𝑒 , 𝑤 ← 0

13 else if 𝑏𝑖𝑛_𝑝𝑡𝑟𝑖 [1] = 𝑡𝑟𝑢𝑒 , 𝑤 ← 1

14 broadcast aux𝑟 (𝑤)
15 upon receiving 𝑛 − 𝑓 aux𝑟 () with 𝑣𝑎𝑙𝑠 such that for every value

𝑣 ∈ 𝑣𝑎𝑙𝑠 , 𝑏𝑖𝑛_𝑝𝑡𝑟𝑖 [𝑣] = 𝑡𝑟𝑢𝑒

16 𝑠𝑟 ← coin𝑟
17 if 𝑣𝑎𝑙𝑠 = {𝑏 } and 𝑏 = 𝑠𝑟

18 𝑣 ← 𝑏, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑖𝑛 ← 𝑡𝑟𝑢𝑒

19 decide (𝑠𝑖𝑑,𝑏)
20 else 𝑣𝑎𝑙𝑠 = {0, 1}
21 𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑖𝑛 ← 𝑡𝑟𝑢𝑒

22 else
23 𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑖𝑛 ← 𝑓 𝑎𝑙𝑠𝑒

24 operation 𝑆_𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 TAG(𝑣𝑖 , 𝑠ℎ𝑜𝑢𝑙𝑑_𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑖) {utility function}

25 𝑠_𝑣𝑎𝑙𝑢𝑒𝑖 ← 𝑓 𝑎𝑙𝑠𝑒

26 if 𝑠ℎ𝑜𝑢𝑙𝑑_𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑖 = 𝑡𝑟𝑢𝑒 , then broadcast TAG,S_VAL(𝑣𝑖)

27 return 𝑠_𝑣𝑎𝑙𝑢𝑒𝑖

28 upon receiving 𝑓 + 1 TAG,S_VAL(𝑣)

29 broadcast TAG,S_VAL(𝑣)

30 upon receiving 2𝑓 + 1 TAG,S_VAL(𝑣)

31 𝑠_𝑣𝑎𝑙𝑢𝑒𝑖 ← 𝑡𝑟𝑢𝑒

Figure 19: CrainH: Crain’s ABAwith high threshold common
coins ([25, 2nd algorithm]). The code for replica 𝑝𝑖 .

may proceed to the next round. It is then straightforward to see

that replicas will terminate the protocol.

• C). All correct replicas will receive at least one valid conf𝑟 (𝑣) in
round 𝑟 +1. This is because each replica collects 𝑛− 𝑓 bval𝑟+1 (𝑣)
messages. Among the replicas that have sent bval𝑟+1 (𝑣) mes-

sages, at least 𝑛−2𝑓 are correct. We also know that at least 𝑓 +1

replicas sent conf𝑟 (𝑣). There are in total 𝑛 − 𝑓 + 1 correct repli-

cas that sent bval𝑟+1 (𝑣) and conf𝑟 (𝑣). Therefore, if at least one
corect replica fails to receive a valid conf𝑟 (𝑣) message, at least

one correct replica collects 𝑛 − 𝑓 conf𝑟 (𝑣) messages but does

not send a bval𝑟+1 (𝑣) with a valid signature, a contradiction.

3) If at least one replica proposes 1, all replicas may receive

𝑛− 𝑓 bval0 (0) and/or 𝑛− 𝑓 bval0 (0). It is also possible that a replica
cannot collect𝑛− 𝑓 bval0 (0) or𝑛− 𝑓 bval0 (1) based on the proposed
values. In this case, the external condition guarantees that all correct

replicas will eventually broadcast bval0 (1). In other words, replica

will eventually proceed to the next step. Similar to case 2), all correct

replicas will eventually terminate. ■

G.2 Converting Crain’s ABA Protocols to RABA

01 upon event propose (𝑠𝑖𝑑, 𝑣𝑖)
02 𝑟 ← 0

03 coin0 ← 𝑣𝑖

04 𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑖𝑛 ← 𝑓 𝑎𝑙𝑠𝑒

05 𝑏𝑖𝑛_𝑝𝑡𝑟 [𝑣𝑖] ← 𝑆_𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 𝐸𝑆𝑇 [1] (𝑣𝑖 , 𝑓 𝑎𝑙𝑠𝑒)
06 start the loop

07 upon event repropose (𝑠𝑖𝑑, 𝑣𝑖)
08 broadcast 𝐸𝑆𝑇 [1],S_VAL(𝑣𝑖) {reproposal event}

09 round r
10 𝑟 ← 𝑟 + 1

11 𝑏𝑖𝑛_𝑝𝑡𝑟𝑖 [𝑠𝑟−1] ← 𝑆_𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 𝐸𝑆𝑇 [𝑟] (𝑠𝑟−1, ⌝𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑖𝑛)
12 if 𝑟 = 0 and 𝑣𝑖 = 1

13 𝑏𝑖𝑛_𝑝𝑡𝑟𝑖 [1] = 𝑡𝑟𝑢𝑒

14 wait until 𝑏𝑖𝑛_𝑝𝑡𝑟𝑖 [0] = 𝑡𝑟𝑢𝑒 or 𝑏𝑖𝑛_𝑝𝑡𝑟𝑖 [1] = 𝑡𝑟𝑢𝑒

15 if 𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑖𝑛, 𝑤 ← 𝑠𝑟−1

16 else if 𝑏𝑖𝑛_𝑝𝑡𝑟𝑖 [0] = 𝑡𝑟𝑢𝑒 , 𝑤 ← 0

17 else if 𝑏𝑖𝑛_𝑝𝑡𝑟𝑖 [1] = 𝑡𝑟𝑢𝑒 , 𝑤 ← 1

18 if aux𝑟 () has not been sent, broadcast aux𝑟 (𝑤)
19 upon receiving 𝑛 − 𝑓 aux𝑟 () with 𝑣𝑎𝑙𝑠 such that for every value

𝑣 ∈ 𝑣𝑎𝑙𝑠 , 𝑏𝑖𝑛_𝑝𝑡𝑟𝑖 [𝑣] = 𝑡𝑟𝑢𝑒

20 if 𝑟 = 1, 𝑠𝑟 ← 1

21 else 𝑠𝑟 ← coin𝑟
22 if 𝑣𝑎𝑙𝑠 = {𝑏 } and 𝑏 = 𝑠𝑟

23 𝑣 ← 𝑏, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑖𝑛 ← 𝑡𝑟𝑢𝑒

24 decide (𝑠𝑖𝑑,𝑏)
25 else 𝑣𝑎𝑙𝑠 = {0, 1}
26 𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑖𝑛 ← 𝑡𝑟𝑢𝑒

27 else
28 𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑖𝑛 ← 𝑓 𝑎𝑙𝑠𝑒

29 operation 𝑆_𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 TAG(𝑣𝑖 , 𝑠ℎ𝑜𝑢𝑙𝑑_𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑖) {𝑆_𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 }

30 𝑠_𝑣𝑎𝑙𝑢𝑒𝑖 ← 𝑓 𝑎𝑙𝑠𝑒

31 if 𝑠ℎ𝑜𝑢𝑙𝑑_𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑖 = 𝑡𝑟𝑢𝑒 , then broadcast TAG,S_VAL(𝑣𝑖)

32 return 𝑠_𝑣𝑎𝑙𝑢𝑒𝑖

33 upon receiving 𝑓 + 1 TAG,S_VAL(𝑣)

34 broadcast TAG,S_VAL(𝑣)

35 upon receiving 2𝑓 + 1 TAG,S_VAL(𝑣)

36 𝑠_𝑣𝑎𝑙𝑢𝑒𝑖 ← 𝑡𝑟𝑢𝑒

Figure 20: CrainH-R: The RABA construction based on
CrainH. The code for replica 𝑝𝑖 .

Protocols
We show how to convert both CrainL and CrainH [25] to RABA. As

our measures to convert both protocols are similar, in this section,

we focus on CrainH, the one that relies on high threshold common

coins.

CrainH and CrainH-R. As illustrated in Figure 19, each round

of CrainH involves an optional dispersal phase and an agreement

phase. The dispersal phase (ln 09, which calls operations in ln

24-31) is similar to the bval𝑟 () phase in Pillar and Cobalt, where

replicas also disperses a value if it has not previously done so but

receives the value from 𝑓 + 1 replicas (ln 28-29). Upon receiving

𝑛 − 𝑓 messages with the same value 𝑣 , the replica updates its local

parameter 𝑏𝑖𝑛_𝑝𝑡𝑟𝑖 [𝑣] to true (ln 09 and ln 30-31). In this phase,

some correct replicas may disperse their values and some may not,

depending on a boolean flag 𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑖𝑛. The 𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑖𝑛 value

is set to false by default in the first round and updated from the last

round otherwise. In the agreement phase, replicas either broadcasts

21

an aux𝑟 (1) or an aux𝑟 (0) message and only accepts an aux𝑟 (𝑣) if
𝑏𝑖𝑛_𝑝𝑡𝑟𝑖 [𝑣] is true. After receiving 𝑛 − 𝑓 aux𝑟 () messages, replicas

query the common coin protocol coin𝑟 and obtain 𝑠𝑟 (ln 15-16).

There are three cases: 1) If a replica receives 𝑛 − 𝑓 aux𝑟 (𝑏) and
𝑏 = 𝑠𝑟 , it decides 𝑏 and sets 𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑖𝑛 to true (ln 17-19); 2) If a

replicas receives both aux𝑟 (0) and aux𝑟 (1), it sets 𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑖𝑛 to

true (ln 20-21); 3) Otherwise, the replica sets 𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑖𝑛 to false

(ln 22-23). In all the cases, the replica continues to the next round.

In the first two cases, since 𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑖𝑛 is set to true, a replica

will not disperse the values in the dispersal phase of the next round.

In the third case, the replica disperses its value again in the next

round.

Two ideas are crucial for the correctness of CrainH. First, a high

threshold common coin is used instead of a regular common coin,

ensuring that the values chosen by at least 𝑓 + 1 correct replicas

cannot be manipulated by an adversary. Second, the dispersal phase

becomes optional such that a network scheduler cannot make cor-
rect replicas change their votes. The optional dispersal phase also

makes the protocol enjoy a fast path starting from the second round.

We make the following changes to convert CrainH to a RABA

protocol CrainH-R, as shown in Figure 20. Similar to our approach

presented in this paper, we achieve this by revising the first round

(round 1 in CrainH) only. In particular, upon reproposing 1, regard-

less of which round a replica is in, it disperses a 𝐸𝑆𝑇 [1], S_VAL(1)
message (ln 08). This message is called in the 𝑆_𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 func-

tion for the dispersal phase (ln 29-36). Second, upon proposing 1,

a replica immediately sets 𝑏𝑖𝑛_𝑝𝑡𝑟𝑖 [1] to true (ln 12-13). In other

words, the replica will directly broadcast an aux𝑟 (1) message. Fi-

nally, the common coin value of the first round is set to 1 (ln 20).

The first change ensures that, if 𝑓 + 1 correct replicas propose 1,

every correct replica will receive at least one aux𝑟 (1) such that

no correct replica will decide 0. The second change ensures that

all correct replicas can terminate the protocol if the predicate for

biased termination is satisfied. Finally, the third change ensures

that if at least 𝑓 + 1 correct replicas propose 1, no correct replica

will use 0 to enter round 1.

CrainL and CrainL-R.We now sketch CrainL and describe how

to convert it to a RABA protocol called CrainL-R. CrainL has a

𝑆𝐵𝑉 _𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 function which involves a bval𝑟 () phase (dispersal
phase) and an aux𝑟 () phase (agreement phase). In each round, the

𝑆𝐵𝑉 _𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 function is repeated twice. In the first time the

function is called, every replica 𝑝𝑖 inputs one value 𝑒𝑠𝑡𝑖 and obtains

a set 𝑣𝑖𝑒𝑤𝑖 [𝑟𝑖 , 1]. The set may include one value 𝑣 or both 0 and 1.

If 𝑣𝑖𝑒𝑤𝑖 [𝑟𝑖 , 1] includes only one value 𝑣 , 𝑝𝑖 inputs 𝑣 to the second

𝑆𝐵𝑉 _𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 instance. Otherwise, 𝑝𝑖 inputs ⊥. Similarly, at the

end of the second 𝑆𝐵𝑉 _𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 instance, each replica obtains

a set 𝑣𝑖𝑒𝑤𝑖 [𝑟𝑖 , 2]. The set may include one value 𝑣 , both 𝑣 and ⊥,
or only ⊥. In the first case, 𝑝𝑖 decides 𝑣 . In the second case, 𝑒𝑠𝑡𝑖
(for the next round) is set as 𝑣 . In the third case, 𝑒𝑠𝑡𝑖 is set as the

common coin. In CrainL, the common coin protocol is queried right

after the second 𝑆𝐵𝑉 _𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 instance completes. In the revised

version [28] that has the good-case-coin-free property, the common

coin can be queried if 𝑝𝑖 ensures that the first case does not apply.

We can convert CrainL to CrainL-R by making the following

changes. First, upon reproposing 1, regardless of which round a

replica is in, it calls the first 𝑆𝐵𝑉 _𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 instance and inputs 1.

Second, upon proposing 1, each replica can directly sends all the

messages for both 𝑆𝐵𝑉 _𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 instances, and sets 𝑣𝑖𝑒𝑤𝑖 [𝑟𝑖 , 1]
and 𝑣𝑖𝑒𝑤𝑖 [𝑟𝑖 , 2] to 1. Finally, the common coin value it set to 1 for

the first round.

G.3 Converting Cobalt ABA to RABA
We can also convert Cobalt ABA [39] to a RABA protocol. We also

make three changes. First, upon proposing 1, each replica starts

round 0 (the first round) and broadcasts a bval0 (1). Each replica

also immediately adds 1 to 𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠0, and broadcasts an aux0 (1)
message. Second, upon reproposing 1, regardless of which round a

replica is in, each replica broadcasts bval0 (1). The replica adds 1 to

𝑏𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠0 if it has not done so already. Furthermore, the replica

broadcasts an aux0 (1) if it has not broadcast any aux0 () message.

Finally, the common coin for round 0 is set to 1. The first change

and the third one ensure that no correct replica will ever use 0 as

𝑒𝑠𝑡1 if at least 𝑓 + 1 correct replicas propose 1. The second change

ensures that biased termination can be achieved.

H ADDITIONAL RELATEDWORK
Much related work is discussed in the course of the paper. The

section discusses additional related work.

Consensus and atomic broadcast. The BKR paradigm implies

ABA and atomic broadcast are equivalent in asynchronous environ-

ments. Chandra and Toueg [20] demonstrate that multi-valued con-

sensus is equivalent to asynchronous atomic broadcast. They also

mention, informally, multi-valued Byzantine agreement and atomic

broadcast are equivalent in asynchronous settings, a claim for-

mally proven by Cachin, Kursawe, Petzold, and Shoup (CKPS) [16].

Correia, Neves, and Verissimo (CNV) show that multi-valued con-

sensus (without using signatures) is also equivalent to atomic broad-

cast [22].

Parallel ABA. Some works (directly) study how to reduce the time

complexity for 𝑛 parallel ABA instances to a constant expected

number of rounds (in some other contexts). Ben-Or’s solution tol-

erates 𝑓 = 𝑂 (4

√
𝑛) failures only [10]; Ben-Or and El-Yaniv provide a

constant expected time protocol [11]. The protocol, unfortunately,

would yield a prohibitively expensive BFT protocol with 𝑂 (𝑛4)
message and communication complexity.

ABA and consensus as a building block. ABA can be used to

build many core distributed computing abstractions, such as vector

consensus [12], multi-valued Byzantine agreement [16], atomic

broadcast (e.g., [12, 16, 29, 36, 40]), anonymous vector consen-

sus [14], and many others. It crash-failure counterpart, consensus,

is even more widely used in practice, such as terminating reliable

broadcast, dynamic membership, and non-blocking atomic commit

(see [15] for a summary of consensus-based systems and references

therein).

Local-coin ABA. ABA protocols may rely on local coins. These

protocols are information-theoretically secure but terminate in

an expected exponential number of rounds [13]. RITAS [41], for

instance, uses local-coin ABA to build asynchronous atomic broad-

cast using the protocol of Correia, Neves, and Veríssimo [23] that

does not fall into the category of the BKR paradigm or the CKPS

paradigm.

22

Asynchronous vs. partially synchronous BFT. Partially syn-

chronous BFT systems never violate safety but achieve liveness

when the network becomes synchronous [30]. In contrast, asyn-

chronous BFT does not rely on any timing assumptions. It is shown

that even for partially synchronous BFT protocols focusing on ro-

bustness [7, 21], their performance may drop 78%-99% [8] during

failures or attacks. Moreover, partially synchronous protocols may

achieve zero throughput with an adversarial network scheduler [40].

Asynchronous BFT protocols are intrinsically robust against per-

formance and denial-of-service (DoS) attacks.

Asynchronous BFT with quantum safety. DAG-Rider [33] is
a recent asynchronous BFT protocol achieving quantum safety

but not quantum liveness. DAG-Rider has 𝑂 (1) running time and

achieves 𝑂 (𝑛2𝑙 + _𝑛3
log𝑛) communication complexity. A more

recent work of Das, Xiang, and Lin improves DAG-Rider with a

communication of 𝑂 (𝑛2𝑙 + _𝑛3).
Tusk [26] implements a highly efficient asynchronous BFT proto-

col that significantly outperforms existing protocols, but it requires

additional workers to help the reliable broadcast phase and thus is

outside of the scope of the conventional BFT model we consider in

this paper. The underlying technique, however, seem to work for all

asynchronous BFT protocols known, as all such protocols require

transmitting bulk data using reliable communication primitives.

Sub-optimal resilience.Assuming sub-optimal resilience,MiB [37]

implements asynchronous BFT protocols with lower latency and

higher throughput based on the BEAT library.

Mir-BFT. Mir-BFT [46] allows multiple leaders (replicas) to pro-

pose request batches independently, just as in asynchronous BFT

protocols, but it works in partially synchronous environments.

Adaptive security.Whilemany asynchronous BFT protocols achieve

adaptive security, EPIC [36] is the first adaptively secure BFT pro-

tocol implemented. In the adaptive security model, the adversary

can choose to corrupt replicas at any moment during the execution

of the protocol. Prior protocols, such as SINTRA, HoneyBadgerBFT,

BEAT, and Dumbo, achieve static security only, where the adversary

needs to choose the set of corrupted replicas before the execution of

the protocol. EPIC is built on top of BEAT yet with two significant

differences: first, EPIC uses a hybrid transaction selection approach

removing the need for threshold encryption used in BEAT; second,

EPIC leverages a common-coin protocol with adaptive security [9].

However, the adaptively secure common coin protocol relies on

expensive pairing-based cryptography. While achieving reasonable

performance, EPIC is much less efficient in terms of both latency

and throughput than BEAT; the fact, once again, substantiates the

well-established view of favoring regular cryptography (e.g., elliptic

curve) over pairing-based cryptography.

While one can make protocols in the BKR paradigm adaptively

secure as shown in EPIC [36], it is challenging to build practical

BFT protocols with adaptive security from CKPS or Dumbo. In par-

ticular, the CKPS paradigm uses expensive threshold cryptography

extensively, and it would be inefficient to replace these crypto-

graphic operations using much more expensive adaptively secure

cryptography [9].

Communication-efficient RBC protocols. Some recent con-

structions have improved the RBC protocols asymptotically or con-

cretely [5, 27]. These protocols may benefit practical BFT protocols

implemented in the bandwidth usage.

23

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 System Model and Definitions
	3 Candidate ABA Protocols for PACE: Existing Protocols and Pillar
	3.1 Existing ABA Protocols
	3.2 0.1ptPillar

	4 Reproposable ABA (0.1ptRABA)
	4.1 Definition of 0.1ptRABA
	4.2 0.1ptPisa: Efficient 0.1ptRABA from 0.1ptPillar
	4.3 Converting ABA to 0.1ptRABA

	5 The PACE Framework and the PACE Instantiations
	5.1 PACE vs. BKR: Worst-Case Scenario
	5.2 Efficient Instantiations

	6 Implementation and Evaluation
	7 Conclusion
	References
	A Review of MMR and Cobalt ABA
	B Pseudocode of the BKR Protocol
	C Reviewing the CKPS Paradigm and its Derivatives
	D Proof of Correctness for 0.1ptPillar
	E Proof of Correctness for 0.1ptPisa
	F Proof of Correctness for our BFT Framework
	G Converting ABA To 0.1ptRABA
	G.1 Converting CKS ABA to RABA
	G.2 Converting Crain's ABA Protocols to 0.1ptRABA Protocols
	G.3 Converting Cobalt ABA to 0.1ptRABA

	H Additional Related Work

