
WaterBear: Information-Theoretic Asynchronous BFT Made
Practical

Sisi Duan

Tsinghua University

duansisi@mail.tsinghua.edu.cn

Haibin Zhang

Beijing Institute of Technology

haibin@bit.edu.cn

Boxin Zhao

Tsinghua University

zhaoboxin@mail.tsinghua.edu.cn

ABSTRACT
This paper refutes the conventional wisdom that information-theoretic

BFT is impractical. We design and implement WaterBear, the first

practical information-theoretic asynchronous Byzantine fault-tolerant

(BFT) protocol. We also present a more efficient, quantum-secure

asynchronous BFT protocol, WaterBear-QS, which, compared to

WaterBear, additionally uses a collision-resistant hash function.

We show that WaterBear and WaterBear-QS are efficient under

both failure-free and failure scenarios, achieving comparable per-

formance to the state-of-the-art asynchronous BFT protocols. In

particular, our failure case evaluation is thus far the most compre-

hensive evaluation for asynchronous BFT settings.

KEYWORDS
asynchronous BFT, blockchain, information-theoretic BFT, quan-

tum security

1 INTRODUCTION
Byzantine fault-tolerant state machine replication (BFT), a tech-

nique traditionally used to build mission-critical systems, has nowa-

days been the standard model for permissioned blockchains [10,

25, 75] and is used in various ways in hybrid blockchains. It is also

well-known that BFT and Byzantine agreement (BA) are equiva-

lent (possibility- and impossibility-wise), and both are fundamental

building blocks for secure multi-party computation (MPC) achiev-

ing fairness and guaranteed output delivery [15, 16, 31, 57, 61].

This paper designs and implements the first practical information-

theoretic (unconditionally secure) asynchronous BFT protocol, Wa-

terBear BFT (or simply WaterBear), resolving a long-standing open

problem in fault-tolerant distributed computing and cryptography.

We also present a highly efficient BFT protocol without public-key

cryptography, using only authenticated channels and hash func-

tions.

Information-theoretic vs. computational security. Depending
on the capacities of the adversary, any cryptographic or security

protocols can be in one of the following two models:

• Computational security, where the adversary is restricted to

probabilistic polynomial-time (PPT).

• Information-theoretic (IT) security, where the adversary is un-

bounded.

Computationally secure protocols assume the hardness of some

intractability problems (e.g., RSA, Diffie-Hellman). These mathe-

matical problems may, in the future, be proven to computationally

easy, or broken or weakened due to newly developed cryptanaly-

sis techniques or some technological breakthrough (e.g., quantum

computer). In contrast, information-theoretic security provides ev-

erlasting security without relying on any unproven intractability

assumptions: information-theoretic protocols are not only quantum

secure but future-proof. Moreover, it is shown that information-

theoretic protocols are natural candidates for building protocols

secure under concurrent composition [34, 36, 56].

PKC vs. no PKC vs. quantum security. It is a major topic in

fault-tolerant distributed computing to design various Byzantine-

resilient protocols that rely on no public key cryptography (PKC).

For instance, the first known practical partially synchronous BFT

without PKC is PBFT [30]. Many other Byzantine-resilient proto-

cols in various settings (e.g., secure causal atomic broadcast, atomic

register) are known [42, 44, 53]. It is, however, an open problem if

one could design practical PKC-free BFT in completely asynchro-

nous environments. Existing asynchronous BFT protocols indeed

assume various primitives from public-key cryptography (e.g., com-

mon coin, (threshold) signatures).

There are indeed many reasons why one may favor symmetric

cryptography. First, symmetric cryptographic primitives are based

on basic and well-studied primitives (blockciphers and hashes).

Second, PKC is generally many orders of magnitude slower than

symmetric cryptography.

Besides, classic symmetric cryptography is believed to be quantum-

resistant. In contrast, public-key cryptography based on certain

mathematical problems only (e.g., some lattice problems) are quantum-

resistant, but we do not know, yet, how to build the efficient building

blocks (e.g., threshold signatures, threshold common coins) needed

for existing asynchronous BFT protocols based on these mathemat-

ical problems. Up to now, there is no quantum secure asynchronous

BFT implemented.

Note that information-theoretic security implies quantum se-

curity; the reverse does not hold, for one could use non-quantum

technologies to attack systems.

1.1 The Challenges of Building IT
Asynchronous BFT

We divide asynchronous BFT protocols ever implemented into sev-

eral categories: 1) the BKR paradigm of Ben-Or, Kelmer, and Ra-

bin [16], including HoneyBadgerBFT[64], BEAT [45], and EPIC [59],

2) the CKPS paradigm of Cachin, Kusawe, Petzold, and Shoup [21],

including SINTRA [23] and Dumbo [52], 3) the CNV paradigm

of Correia, Neves, and Veríssimo [37], with RITAS as an imple-

mentation [65], 4) the DKSS paradigm of Danezis, Kokoris Kogias,

Sonnino, and Spiegelman [55], implemented in Tusk [40], and 5) the

recent DZ paradigm of Duan and Zhang [46], including PACE [46].

While the frameworks mark significant milestones in developing

practical asynchronous BFT protocols, the instantiations derived

from these frameworks rely critically on various cryptographic tools

and are not information-theoretic or quantum-secure. In fact, it is

1

difficult to modify these instantiations to make them information-

theoretically secure or quantum secure because these constructions

face a common hurdle, and each paradigm additionally has its own

issues for the goal, as argued in the following.

A common hurdle—information-theoretic common coin and
asynchronous Byzantine agreement (ABA).While the BFT pro-

tocols implemented share rather different structures, they all rely

on common coin and/or ABA protocols as a central building block.

Unfortunately, information-theoretic common coin and ABA pro-

tocols with unbounded security are rather inefficient. The classic

local coin based ABA protocols of Ben-Or [14] and Bracha [18, 19]

need an exponential expected running time. While later ABA con-

structions using asynchronous verifiable secret sharing (AVSS) are

much more efficient, these protocols are not yet practical. First,

information-theoretic AVSS is notoriously difficult to build. Even

in the statistical setting (allowing errors), such a primitive is overly

complex. For instance, to build AVSS, the approach of Canetti and

Rabin [28] needs to begin with an information checking protocol

(resembling signatures but working in the information-theoretic

setting), then asynchronous recoverable sharing, then asynchro-

nous weak secret sharing, and finally AVSS. The improved approach

of Patra, Choudhury, and Rangan [69], while being simpler than

that of Canetti and Rabin, remains complex, following the route

of information-checking protocol, then asynchronous weak com-

mitment, and then AVSS. Second, the transformation from AVSS

to ABA in the information-theoretic setting is equally expensive,

requiring running 𝑛2
AVSS instances to generate a single weak

coin that is common for correct replicas with a constant probability

only [28] (where 𝑛 is the total number of replicas). One can then use

the weak common coins to build dedicated ABA protocols [28, 68]

that are less efficient than state-of-the-art ABA protocols from

perfect common coins.

Additional hurdles for each framework. The BKR framework

requires running 𝑛 independent ABA instances for each epoch.

This would add a factor of 𝑛 to the communication and message

complexity of the AVSS approach. Namely, one would use at least𝑛3

expensive AVSS instances for a single epoch. The same argument

applies to the recent DZ framework, as the DZ framework also

requires running 𝑛 instances of reproposable ABA (RABA), which

shares the same message and communication complexity as ABA.

The CKPS paradigm relies on a reduction from BFT to multi-

valued validated Byzantine agreement (MVBA). The definition of

MVBA explicitly considers a computationally bounded adversary.

Indeed, existing MVBA constructions require the transferability

of (threshold) signatures. Hence, the framework does not directly

lead to IT BFT protocols. For the same reason, the AMS MVBA of

Abraham, Malkhi, and Spiegelman [7], NWH MVBA [6], Dumbo-

MVBA [62], and Gao et al.’s MVBA [50] also consider computational

security only and rely heavily on (threshold) signatures (and some

other cryptographic tools).

Besides the common coin hurdle, the implementation for DAG-

Rider, Tusk, extensively uses signatures and hash functions for RBC

(Byzantine reliable broadcast). Theoretically, DAG-Rider could use

Bracha’s RBC for communication, but according to our evaluation,

RBC is the major performance bottleneck for protocols using RBC.

(For one thing, according to our evaluation, the throughput of

using all 100 bytes transactions is about half the throughput for

250 bytes. Also, jumping ahead, even if our IT secure system uses

just 1 parallel RBC, the instantiation using Bracha’s RBC is way

less efficient than the one using bandwidth-efficient RBC [24].)

Considering DAG-Rider may need to run on average 7 parallel RBC

instances sequentially, the approach in the specific model does not

(seem to) lead to efficient instantiations either.

The CNV atomic broadcast protocol terminates using up to 𝑓

non-validated multi-valued Byzantine agreement (MBA) instances.

Even if being instantiated using a constant expected time ABA

protocol, it has 𝑂 (𝑛) expected running time. (In contrast, other

efficient asynchronous BFT protocols implemented have either

𝑂 (1) or 𝑂 (log𝑛) expected running time.) Moreover, in CNV, each

MBA instance relies on a local coin based ABA protocol [19] that

terminates in an expected exponential number of rounds. Due to

the large expected running time and the intrinsic inefficiency of the

local coin based ABA protocol, as shown in RITAS (the instantiation

of the CNV protocol), the CNV protocol does not scale to more than

10 replicas.

1.2 Our Contributions
This paper develops the asynchronous BFT framework of Duan

and Zhang (the DZ paradigm) in the information-theoretic setting.

The DZ paradigm uses Byzantine reliable broadcast (RBC) and re-

proposable ABA (RABA) (a variant of ABA) as building blocks and

removes the two subphase bottleneck of the BKR paradigm, allow-

ing RABA instances to run in a fully parallelizable manner. The

concrete instantiation of the DZ paradigm, called PACE [46], uses

a common coin based RABA protocol built on the CKS threshold

PRF scheme [22], achieving computational security and static se-

curity only. In this work, we choose to work directly on local coin

based ABA protocols and overcome their inherent performance

and scalability limitations.

WaterBear ABA andWaterBear RABA. To our knowledge, up to
now, only two local coin based ABA protocols have been proposed,

namely Ben-Or’s ABA [14] assuming𝑛 > 5𝑓 and Bracha’s ABA [18]

assuming optimal resilience. Bracha’s ABA has been the most effi-

cient local coin based ABA protocol for nearly three decades. We

propose a novel local coin based ABA—WaterBear ABA has 1.8x

speedup in latency compared to Bracha’s ABA. In particular, Water-

Bear ABA has 5 steps per round, while Bracha’s ABA uses 9 steps.

The improvement is significant, as local coin based ABA protocols

may take an expected exponential number of rounds to terminate.

More importantly, WaterBear ABA is carefully designed to be

readily modified to build an efficient RABA protocol, a core building

block in the powerful DZ paradigm. Our RABA protocol, called

WaterBear RABA, is as efficient as WaterBear ABA in terms of

both steps and rounds. While our RABA protocol may not even

terminate by itself, the overall DZ framework guarantees that the

RABA protocol terminates in one round with a high probability!

Indeed, as long as there are just 𝑓 + 1 replicas, instead of 2𝑓 + 1

replicas, propose 1, then a correct replica that terminates for the

instance would decide 1 and the corresponding transactions would

be delivered. Both local coin based WaterBear ABA and WaterBear

RABA are inherently robust as they are unconditionally secure,

2

optimal resilience? IT secure? no pkc? quantum secure? no trusted setup? adaptive? WAN?

SINTRA [23]

√

RITAS [65]

√ √ √ √ √

HoneyBadgerBFT [64]

√ √

BEAT [45]

√ √

Dumbo [52]

√ √

EPIC [59]

√ √ √

MiB [60]

√

Tusk [40]

√ √

PACE [46]

√ √

WaterBear-QS (this paper)

√ √ √ √ √ √

WaterBear (this paper)

√ √ √ √ √ √ √

Table 1: Comparison of efficient asynchronous BFT protocols.

which is in sharp contrast to other such protocols using various

cryptographic primitives.

WaterBear BFT: unbounded security and beyond.WaterBear

develops theDZ paradigm. Besides the critical information-theoretic

RABA protocol, WaterBear has two other major differences com-

pared to the prior DZ instantiation. First, we use an information-

theoretic RBC, the Bracha’s RBC, as the underlying RBC. Second,

to achieve unconditional security and adaptive security, we use the

technique of EPIC [59] to remove the threshold encryption scheme

used in the DZ paradigm. Despite the differences, WaterBear does

inherit the performance benefits of the DZ paradigm.

WaterBear assumes authenticated channels only and has all de-
sirable properties a BFT protocol we could think of, being optimally

resilient, achieving unconditional security and adaptive security,

and relying on no trusted setup. We compare WaterBear with effi-

cient asynchronous BFT protocols implemented in Table 1.

WaterBear-QS: no PKC and quantum security.We also present

an asynchronous BFT protocol—WaterBear-QS, which does not

achieve information-theoretic security but achieves quantum secu-

rity for both safety and liveness properties. Also, WaterBear and

WaterBear-QS the first asynchronous BFT protocols without public-

key cryptography. The only difference between WaterBear and

WaterBear-QS is that WaterBear-QS additionally uses a collision-

resistant hash function.

What motivated us to design WaterBear-QS is a crucial observa-

tion from our evaluation that the performance bottleneck for Wa-

terBear is not the ABA phase but the RBC phase. Our experiments

show that the size of transactions matters the most for the through-

put. For instance, we find the throughput using a 250B transaction

is about half of the throughput for 100B, a somewhat surprising

finding that has not been reported so far. As the ABA phase does

not carry bulk data in both cases, the bottleneck must be the RBC

phase. Hence, WaterBear-QS uses the AVID RBC of Cachin and Tes-

saro that leverages hash function based cross-checksum to reduce

the communication complexity of RBC [24]. As the hash function is

the only cryptographic tool used, WaterBear-QS is quantum secure.

(In contrast, DAG-Rider and PACE only achieve quantum safety

but not quantum liveness, as both of them rely on cryptographic

common coin protocols.)

A new asynchronous BFT platform. Starting from HoneyBad-

gerBFT, existing efficient asynchronous BFT protocols, including

BEAT, Dumbo, and EPIC, use the HoneyBadgerBFT programming

framework using Python. We instead build a new platform using

Golang. Our platform implements WaterBear, WaterBear-QS, and

BEAT (one of the most efficient open-source asynchronous BFT

libraries) [1, 45].

Evaluation in failure-free and failure scenarios. With deploy-

ment in 5 continents, we show that WaterBear and WaterBear-QS

offer comparable performance to one of the state of the art asynchro-

nous BFT protocols BEAT, which achieves much weaker security

(computational security, static security, and trusted dealer needed).

It is believed that asynchronous BFT protocols are more robust

than partially synchronous BFT protocols, for these asynchronous

protocols do not assume any timing assumptions. It is unclear if

these protocols would indeed perform as expected. It is interesting

to understand to what extend failures and attacks would have an im-

pact on these asynchronous systems. This paper aims to tackle the

problem by carefully designing various failure and attack scenarios.

Via extensive experiments, both WaterBear and WaterBear-QS are

shown to be highly robust against these failures and attacks.

2 RELATEDWORK
Asynchronous vs. partially synchronous BFT. Partially syn-

chronous BFT protocols never violate safety, but they achieve live-

ness only when the network becomes synchronous [47]. As shown

in [11], even for partially synchronous BFT protocols focusing on ro-

bustness [9, 33], their performance may reduce 78%-99% in failures

or attacks scenarios. Additionally, partially synchronous protocols

may experience zero throughput with a network scheduler [64].

In contrast, asynchronous BFT protocols do not rely on any tim-

ing assumptions and are intrinsically robust against timing and

performance attacks.

Information-theoretic BFT in partially synchronous environ-
ments.There exist several partially synchronous BFT protocols that

are information-theoretically secure or can be made information-

theoretically secure. In particular, PBFT (the journal version) [30],

PBFT (described in Castro’s PhD thesis) [29], and Cachin’s for-

mulation for PBFT [20] assume authenticated channels but use

cryptographic hash functions. These protocols are quantum resis-

tant but not information-theoretically secure. They can, however,

be modified to achieve information-theoretic security if removing

3

the usage of the hash functions. Recently, Stern and Abraham pro-

posed IT HotStuff, an information-theoretic, partially synchronous

BFT protocol that uses𝑂 (1) persistent storage and𝑂 (𝑛2) messages,

where each message contains a constant number of words [73].

Adaptive vs. static security for BFT.Most asynchronous BFT pro-

tocols implemented, including SINTRA, HoneyBadgerBFT, BEAT,

and Dumbo, defend against static adversary only. These protocols

rely critically on efficient but statically secure threshold cryptog-

raphy. EPIC is an asynchronous BFT that uses adaptively secure

threshold pseudorandom function (PRF) to achieve adaptive secu-

rity but is not as efficient as its statically secure counterparts. RI-

TAS [65] contains an adaptively secure asynchronous BFT (atomic

broadcast) protocol, but as it relies on inefficient local coin based

ABA, it is less efficient than other protocols in WAN or large-size

networks. DAG-Rider [55] achieves adaptive security if using adap-

tively secure common coin protocols.

The situation for asynchronous environments is in sharp contrast

to that of partially synchronous BFT protocols, most of which attain

adaptive security [9, 30, 33, 43, 51, 54, 72].

WaterBear achieves adaptive security and information-theoretic

security and significantly outperforms EPIC that is adaptively se-

cure but not information-theoretically secure.

Quantum safety. A BFT protocol is quantum-secure, if its safety

is quantum resistant (quantum safety) and its liveness is quantum

resistant (quantum liveness) [55]. DAG-Rider [55] achieves quan-

tum safety, even if when being instantiated using a cryptographic

common coin protocol (e.g., [22, 58]). The BKR protocol and their

descendants (e.g., HoneyBadger [64], MiB [60], PACE [46]) achieve

quantum safety if using techniques from EPIC [59]. All the above-

mentioned protocols, however, do not achieve quantum liveness.

Tusk [40], an asynchronous BFT protocol that can be viewed as a

variant of DAG-Rider, extensively uses signatures and hashes and

achieves neither quantum safety nor quantum liveness.

(Information-theoretic) Byzantine agreement.Byzantine agree-
ment (BA) is a central tool for both fault-tolerant distributed com-

puting and cryptography. The condition𝑛 ≥ 3𝑓 +1 is both necessary

and sufficient for both synchronous and asynchronous BA proto-

cols [70]. The celebrated impossibility result of Fischer, Lynch, and

Paterson [49] implies that a randomized ABA protocol must have

non-terminating executions. An ABA protocol may be (1 − 𝜖)-
terminating, where correct replicas terminate the protocol with

an overwhelming probability, or almost-surely terminating, where

correct replicas terminate the protocol with probability one.

For our purpose, we focus on ABA protocols in the information-

theoretic setting with a computationally unbounded adversary. For

almost-surely ABA, Ben-Or’s ABA requires 𝑛 ≥ 5𝑓 + 1 [14], while

Bracha’s ABA [18] achieves optimal resilience. The two protocols

use local coins and require an exponential expected running time.

Feldman and Micali propose a BA protocol having a constant ex-

pected running time in synchronous environments and extend it to

build a polynomial-time ABA protocol requiring 𝑛 ≥ 4𝑓 + 1 [48].

Abraham, Dolev, and Halpern [5] provide the first almost-surely

ABA with polynomial efficiency (concretely, 𝑂 (𝑛2) expected run-

ning time) and optimal resilience. Bangalore, Choudhury, and Pa-

tra [12] improve the expected running time of [5] by a factor of 𝑛.

For (1−𝜖)-terminating ABA, Canetti and Rabin [28] build an ex-

pected constant-round ABA protocol with optimal resilience. Patra,

Choudhury, and Rangan [69] build a more efficient construction in

terms of communication complexity.

Both almost-surely ABA and (1−𝜖)-terminating ABA follow the

classic framework of Feldman and Micali [48] that reduces ABA to

asynchronous verifiable secret sharing (AVSS). The framework uses

AVSS to build common coins. (The original idea of using common

coin for ABA is due to Rabin [71].) Unfortunately, the framework of

using AVSS for common coins is prohibitively expensive, as we have

argued in the introduction. Patra, Choudhury, and Rangan [69] also

propose an approach for sharing multiple secrets simultaneously.

While such an approach is useful to build more efficient multi-

valued BA (MBA), it is unknown if it would yield more efficient

ABA protocols. While, for instance, the CNV asynchronous BFT

framework [37] does use MBA, it may run 𝑂 (𝑛) consecutive MBA

instances (which is inefficient).

VSS, AVSS, ACSS, and VSSR. Besides being a core tool for BA,

verifiable secret sharing (VSS) [32] is also a core building block in

secure multi-party computation (MPC). If an AVSS protocol addi-

tionally ensures that all correct replicas, not just 𝑓 +1 replicas, have

consistent shares, then the AVSS protocol is called asynchronous

complete secret sharing (ACSS, originally called ultimate secret

sharing in BKR [16]). ACSS is a direct building block for MPC

protocols. Recently, Basu et al. provide an efficient approach to

integrating verifiable secret sharing (not necessarily AVSS) with

share recovery in BFT protocols to offer privacy guarantees for

BFT protocols [13]. Their goal is similar to but different from that

of ACSS. The most communication-efficient ACSS protocol with

computational security without assuming trusted setup or PKI is

due to AlHaddad, Varia, and Zhang [8]. Their construction works

both the high threshold of 𝑛 − 𝑓 and the conventional threshold of

𝑓 + 1.

Practical ABA protocols using common coins. Directly assum-

ing the existence of common coins and authenticated channels,

a number of expected constant-round ABA protocols have been

proposed. The ABA protocol by Mostefaoui, Moumen, and Raynal

(MMR) [66] terminates in 2 rounds on average, where each round

has 2 or 3 steps. MMR ABA, however, has a liveness issue reported

in [2, 74]. Namely, a network scheduler can force correct replicas to

enter the next round of consensus with inconsistent values, causing

the protocol not to terminate. While the authors present a protocol

that can address the issue in their journal version [67] (9-13 steps in

each round), Cobalt ABA [63] fixes the problem in a less expensive

way, i.e., by modifying MMR ABA and having one additional step

in each round. Duan and Zhang recently propose Pillar, a new com-

mon coin based ABA protocol that is live and as efficient as MMR

ABA [46]. Crain [38] also proposes an ABA protocol with the same

efficiency but assumes a high-threshold common coin protocol that

is more difficult to build.

HoneyBadgerBFT [64] and BEAT [45] use MMR ABA in their

proceeding versions. EPIC [59] and Dumbo [52] use Cobalt ABA.

Recently, HoneyBadgerBFT and BEAT update their open-source

implementations [1, 3] using Cobalt ABA. PACE uses Pilliar as the

underlying ABA. HoneyBadgerBFT and Dumbo use Boldyreva’s

theshold signature (pairing based) [17] to realize the underlying

4

common coin protocol. BEAT and PACE use the pairing-free thresh-

old PRF scheme of Cachin, Kursawe, and Shoup [22]. EPIC uses an

adaptively secure threshold signature of Libert, Joye, and Yung [58]

for common coins.

These practical ABA protocols can be made IT secure if following

the paradigm of Feldman andMicali [48] and Canetti and Rabin [28]

(using AVSS). As we have argued, such ABA protocols are not

efficient.

The CKS ABA protocol of Cachin, Kursawe, and Shoup [22]

has 3 steps in the first round and 2 steps for the following rounds.

CKS ABA additionally assumes the use of (threshold) signatures,

an assumption that cannot be used in the information-theoretic

setting.

Information-theoretic and universally composable MPC. As
one of the most significant results in the area of cryptography and

distributed computing, Ben-Or, Goldwasser, and Wigderson [15]

and Chaum, Crépeau, and Damgård [31] provide generic feasibil-

ity results for perfect (information-theoretic and error-free) MPC

with adaptive security. Kushilevitz, Lindell, and Rabin establish a

framework for the security of protocols in the information-theoretic

setting under concurrent composition [56]. Cohen, Coretti, Garay,

and Zikas [34] provide a theoretic foundation for BA and MPC with

probabilistic termination in the UC framework [26]. Asynchronous

protocols in the UC framework are not guaranteed to (eventually)

terminate because the UC adversary can delay the computation in-

definitely. In light of this, Coretti, Garay, Hirt, and Zikas generalize

the UC framework to the asynchronous fault-tolerant computing

setting [36].

3 SYSTEM MODEL AND DEFINITIONS
3.1 System and Threat Model
This section describes the system model for our distributed com-

puting protocols, where 𝑓 out of 𝑛 replicas may fail arbitrarily

(Byzantine failures). The protocols we consider have the following

properties:

• Optimal resilience: The protocols in this work assume 𝑓 ≤
⌊𝑛−1

3
⌋, which is optimal. A (Byzantine) quorum is a set of ⌈𝑛+𝑓 +1

2
⌉

replicas. For simplicity, we may assume 𝑛 = 3𝑓 +1 and a quorum

size of 2𝑓 + 1.

• Asynchronous network: We consider completely asynchro-

nous systems making no timing assumptions on message pro-

cessing or transmission delays. In contrast, partially synchro-

nous systems assume that there exist an upper bound on mes-

sage processing and transmission delays but the bound may be

unknown to anyone [47]. The protocols in the paper achieve se-

curity merely under the assumption that messages transmitted

among correct replicas are eventually delivered.

• No dealer/trusted setup: We do not assume the existence of

a trusted dealer or trusted setup. Neither do we assume there

exists an interactive protocol for any public keys, reference

strings, or public parameters.

• Unbounded adversary: Depending on the capacities of the

adversary, a protocol may achieve computational security, where
the adversary is bounded and restricted to probabilistic polynomial-

time (PPT), or achieve information-theoretic (IT) security, where

the adversary is unbounded. We have argued IT security is

preferable compared to computational security, but construct-

ing IT secure protocols is more challenging.

• Adaptive corruptions: Depending on how the adversary de-

cides to corrupt parties, there are two types of corruptions: static

corruptions and adaptive corruptions. In the static corruption

model, the adversary is restricted to choose its set of corrupted

replicas at the start of the protocol and cannot change this set

later on. An adaptive adversary can choose its set of corrupted

replicas at any moment during the execution of the protocol,

based on the information it accumulated thus far (i.e., the mes-

sages observed and the states of previously corrupted replicas).

There is a strong separation result that statically secure proto-

cols are not necessarily adaptively secure [27, 39].

For our protocols, we may associate each protocol instance with

a unique identifier 𝑖𝑑 , tagging each messages in the instance with

𝑖𝑑 . If no ambiguity arises, we may simply omit the identifiers.

3.2 Definitions
BFT.We use BFT and (Byzantine) atomic broadcast interchange-

ably. Syntactically, in BFT, a replica a-delivers (atomically deliver)

transactions, each submitted by some client. The client computes

a final response to its submitted transaction from the responses it

receives from replicas. Correctness of a BFT protocol is specified as

follows:

• Agreement: If any correct replica a-delivers a transaction 𝑡𝑥 ,

then every correct replica a-delivers 𝑡𝑥 .
• Total order: If a correct replica a-delivers a message 𝑡𝑥 before

a-delivering 𝑡𝑥 ′, then no correct replica a-delivers a message 𝑡𝑥 ′

without first a-delivering 𝑡𝑥 .
• Liveness: If a transaction 𝑡𝑥 is submitted to all correct replicas,

then all correct replicas eventually a-deliver 𝑡𝑥 .

Asynchronous (binary) Byzantine agreement (ABA). An ABA

protocol is specified by propose and decide. Each replica proposes

an initial binary value (called vote) for consensus and replicas will

decide on some value. ABA should satisfy the following properties:

• Validity: If all correct replicas propose 𝑣 , then any correct replica
that terminates decides 𝑣 .

• Agreement: If a correct replica decides 𝑣 , then any correct

replica that terminates decides 𝑣 .
• Termination: Every correct replica eventually decides some

value.

• Integrity: No correct replica decides twice.

RABA. Reproposable ABA (RABA) is a new distributed computing

primitive introduced by Duan and Zhang [46]. In contrast to con-

ventional ABA protocols, where replicas can vote once only, RABA

allows replicas to change their votes. Formally, a RABA protocol

tagged with a unique identifier 𝑖𝑑 is specified by propose(𝑖𝑑, ·), re-
propose(𝑖𝑑, ·), and decide(𝑖𝑑, ·), with the input domain being {0, 1}.
For our purpose, RABA is "biased towards 1." Each replica can pro-

pose a vote 𝑣 at the beginning of the protocol. Each replica can

propose a vote only once. A correct replica that proposed 0 is al-

lowed to change its mind and repropose 1. A replica that proposed

1 is not allowed to repropose 0. If a replica reproposes 1, it does so

5

at most once. A replica terminates the protocol identified by 𝑖𝑑 by

generating a decide message.

RABA (biased toward 1) satisfies the following properties:

• Validity: If all correct replicas propose 𝑣 and never repropose 𝑣 ,
then any correct replica that terminates decides 𝑣 .

• Unanimous termination: If all correct replicas propose 𝑣 and
never repropose 𝑣 , then all correct replicas eventually terminate.

• Agreement: If a correct replica decides 𝑣 , then any correct

replica that terminates decides 𝑣 .
• Biased validity: If 𝑓 + 1 correct replicas propose 1, then any

correct replica that terminates decides 1.

• Biased termination: Let𝑄 be the set of correct replicas. Let𝑄1

be the set of correct replicas that propose 1 and never repropose

0. Let𝑄2 be correct replicas that propose 0 and later repropose 1.

If𝑄2 ≠ ∅ and𝑄 = 𝑄1 ∪𝑄2, then each correct replica eventually

terminates.

• Integrity: No correct replica decides twice.

Validity is slightly different from those for ABA. They are mod-

ified to accommodate the RABA syntax. Integrity is defined to

ensure RABA decides once and once only.

Unanimous termination and biased termination are carefully

introduced to help achieve RABA termination in certain scenarios.

External operations would have to force the protocol to meet these

termination conditions.

Biased validity in RABA requires that if 𝑓 +1 replicas, not simply

all correct replicas, propose 1, then a correct replica that terminates

decides 1. The property guarantees the DZ framework to have

sufficient transactions delivered.

RBC. A Byzantine reliable broadcast (RBC) protocol [8, 19, 24, 41]

is specified by r-broadcast and r-deliver such that the following

properties hold:

• Validity: If a correct replica 𝑝 r-broadcasts a message𝑚, then 𝑝

eventually r-delivers𝑚.

• Agreement: If some correct replica r-delivers a message𝑚, then

every correct replica eventually r-delivers𝑚.

• Integrity: For any message𝑚, every correct replica r-delivers
𝑚 at most once. Moreover, if the sender is correct, then𝑚 was

previously r-broadcast by the sender.

Bracha’s broadcast [18] has a bandwidth of O(𝑛2 |𝑚 |) and is

IT secure, and AVID RBC due to Cachin and Tessaro [24] uses

hash functions (with output length _) to reduce the bandwidth to

O(𝑛 |𝑚 | + _𝑛2
log𝑛). Other RBC instantiations, such as the recent

one by Das, Xiang, and Ren [41], leverage hash functions and au-

thenticated channels and can be used as the RBC for BFT with

quantum safety.

4 WATERBEAR ABA FROM LOCAL COINS
We present WaterBear ABA, a new local coin based ABA protocol

deviating markedly from previous ones. Compared to the state-of-

the-art protocol, Bracha’s ABA, that has 9 steps in each round [18],

WaterBear ABA has only 5 steps—almost a 2x speedup. More im-

portantly, WaterBear ABA is carefully designed such that it can be

modified for an efficient RABA protocol.

Figure 1 describes the pseudocode ofWaterBear ABA.WaterBear

initialization
𝑟 ← 0 {round}

func propose(𝑣𝑖𝑛𝑝𝑢𝑡)
𝑖𝑣0 ← 𝑣𝑖𝑛𝑝𝑢𝑡 {set input for round 0}

start round 0

round r
broadcast pre-vote𝑟 (𝑖𝑣𝑟) {� phase 1}

upon receiving pre-vote𝑟 (𝑣) from 𝑓 + 1 replicas

if pre-vote𝑟 (𝑣) has not been sent, broadcast pre-vote𝑟 (𝑣)
upon receiving pre-vote𝑟 (𝑣) from 2𝑓 + 1 replicas

𝑏𝑠𝑒𝑡𝑟 ← 𝑏𝑠𝑒𝑡𝑟 ∪ {𝑣 }
wait until 𝑏𝑠𝑒𝑡𝑟 ≠ ∅ {� phase 2}

if main-vote𝑟 () has not been sent, broadcast main-vote𝑟 (𝑣) where 𝑣 ∈
𝑏𝑠𝑒𝑡𝑟

upon receiving 𝑛 − 𝑓 main-vote𝑟 () such that for each received

main-vote𝑟 (𝑏) , 𝑏 ∈ 𝑏𝑠𝑒𝑡𝑟
if there are 𝑛 − 𝑓 main-vote𝑟 (𝑣)
r-broadcast final-vote𝑟 (𝑣) {� phase 3}

else r-broadcast final-vote𝑟 (∗)
upon r-delivering 𝑛− 𝑓 final-vote𝑟 () such that for each final-vote𝑟 (𝑣) , 𝑣 ∈

𝑏𝑠𝑒𝑡𝑟 ; for each final-vote𝑟 (∗) , {0, 1} ⊆ 𝑏𝑠𝑒𝑡𝑟
if there there are 𝑛 − 𝑓 final-vote𝑟 (𝑣)
decide 𝑣

else if there are 𝑓 + 1 final-vote𝑟 (𝑣)
𝑖𝑣𝑟+1 ← 𝑣

else
𝑐 ← 𝑅𝑎𝑛𝑑𝑜𝑚 () {obtain local coin}

𝑖𝑣𝑟+1 ← 𝑐

𝑟 ← 𝑟 + 1

Figure 1: WaterBear ABA. 𝑣 ∈ {0, 1}.

ABA uses the broadcast primitive of best-effort broadcast and the r-
broadcast and r-deliver primitives of RBC. The protocol proceeds in

rounds, beginningwith round 0. Each round consists of three phases.

In the first phase, a replica 𝑝𝑖 broadcasts pre-vote𝑟 (𝑖𝑣𝑟), where
𝑖𝑣𝑟 ∈ {0, 1} is the input value of 𝑝𝑖 for round 𝑟 . If 𝑝𝑖 receives 𝑓 + 1

pre-vote𝑟 (𝑣) for some 𝑣 ∈ {0, 1} and has not previously broadcast

pre-vote𝑟 (𝑣), it also broadcasts pre-vote𝑟 (𝑣). If 𝑝𝑖 receives 2𝑓 + 1

pre-vote𝑟 (𝑣), it adds 𝑣 to its 𝑏𝑠𝑒𝑡𝑟 , a set consisting only 0 and/or 1.

Let 𝑣 be the first value added to 𝑏𝑠𝑒𝑡𝑟 for 𝑝𝑖 . 𝑝𝑖 enters the second

phase by broadcasting a main-vote𝑟 (𝑣) message.

A correct replica 𝑝𝑖 accepts amain-vote𝑟 (𝑣)message only if 𝑣 has

already been added locally to𝑏𝑠𝑒𝑡𝑟 . If 𝑝𝑖 receives𝑛− 𝑓 main-vote𝑟 ()
message from different replicas, it enters the third phase. In the

third phase, if 𝑝𝑖 has received 𝑛 − 𝑓 main-vote𝑟 (𝑣), 𝑝𝑖 r-broadcasts
a final-vote𝑟 (𝑣) message. Otherwise, 𝑝𝑖 r-broadcasts final-vote𝑟 (∗),
where ∗ is a distinguished symbol denoting that ∗ ∉ {0, 1}.

We say a final-vote𝑟 () message is valid for 𝑝𝑖 if one of the fol-

lowing conditions hold:

• For a final-vote𝑟 (𝑣) message with 𝑣 ∈ {0, 1}, 𝑣 has been added

to 𝑏𝑠𝑒𝑡𝑟 for 𝑝𝑖 .

• For final-vote𝑟 (∗), 𝑏𝑠𝑒𝑡𝑟 for 𝑝𝑖 contains both 0 and 1.

Upon r-delivering 𝑛 − 𝑓 valid final-vote𝑟 () messages, we distin-

guish three cases:

• If 𝑝𝑖 r-delivers 𝑛 − 𝑓 valid final-vote𝑟 (𝑣) for the same 𝑣 ∈ {0, 1},
𝑝𝑖 decides 𝑣 and uses 𝑣 as 𝑖𝑣𝑟+1 to enter the next round. Each

correct replica that decides in round 𝑟 continues for one more

6

round (up to the final-vote𝑟 () step), a step needed for all such

ABA protocols.

• If 𝑝𝑖 r-delivers only 𝑓 +1 valid final-vote𝑟 (𝑣) for some 𝑣 ∈ {0, 1},
𝑝𝑖 uses 𝑣 as input to enter the next round.

• Otherwise, a replica generates a local random coin and uses it

as input for the next round.

Analysis. Our motivation for designing a new ABA from local

coins is to reduce the cost of running multiple RBCs in Bracha’s

ABA. We recall Bracha’s ABA in Appendix A. Bracha’s ABA has

three phases. In each phase, every replica disperses its value via a

RBC instance. In total, there are 𝑛 parallel RBC instances in each

of the three phases. We reduce the number of RBC instances by

2/3, motivated by the design of signature-free common coin based

ABA protocols [38, 46, 63, 66, 67]. In the first two phases, we let

replicas send their values by simply best-effort broadcasting them

to all replicas. The first phase ensures that all correct replicas can

acknowledge the same set of values. The second phase ensures

that no two correct replicas will vote for opposite values in the

third phase, though one correct replica may vote for 𝑏 ∈ {0, 1} and
one may vote for ∗ (denoting a vote that is neither 0 nor 1). In the

third phase, we still rely on RBC, ensuring that all correct replicas

eventually receive consistent values, even in the presence Byzantine

replicas. In this way, the number of 𝑛 parallel RBC instances is 1

instead of 3, and the number of steps is reduced from 9 to 5.

Equally important, WaterBear ABA can be readily modified to

be a RABA protocol, as shown in the following section.

5 THEWATERBEAR RABA PROTOCOL
We present a WaterBear RABA protocol based on WaterBear ABA.

The RABA primitive, as shown in DZ [46], may make the protocol

terminate faster than conventional ABA. In the context of asynchro-

nous BFT, the DZ framework with RABA significantly outperforms

the conventional BKR diagram. We aim to design a RABA protocol

without trusted setup by using local coins.

The pseudocode of WaterBear RABA protocol is shown in Fig-

ure 2. WaterBear RABA is identical to WaterBear ABA, except for

round 0 (the first round). We have made the following changes for

round 0. First, both 𝑝𝑟𝑜𝑝𝑜𝑠𝑒 () and 𝑟𝑒𝑝𝑟𝑜𝑝𝑜𝑠𝑒 () events are allowed.
Upon the 𝑝𝑟𝑜𝑝𝑜𝑠𝑒 (𝑣) event, a replica 𝑝𝑖 executes the 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡-

𝑣𝑜𝑡𝑒 (𝑣) function and starts round 0. Upon the 𝑟𝑒𝑝𝑟𝑜𝑝𝑜𝑠𝑒 (𝑣) func-
tion, 𝑝𝑖 executes 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡-𝑣𝑜𝑡𝑒 (𝑣). Note that upon a 𝑟𝑒𝑝𝑟𝑜𝑝𝑜𝑠𝑒 ()
event, 𝑝𝑖 must have already started the protocol and may even

proceed to a round greater than 0. In this case, regardless of which

round the replica is in, it still executes the 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡-𝑣𝑜𝑡𝑒 (𝑣) event
and broadcasts a pre-vote

0
(𝑣) message. Another interesting fact is

that since we make WaterBear RABA biased toward 1, each cor-

rect replica only calls 𝑟𝑒𝑝𝑟𝑜𝑝𝑜𝑠𝑒 (1) if it previously has called the

𝑝𝑟𝑜𝑝𝑜𝑠𝑒 (0) function.
Second, in the 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡-𝑣𝑜𝑡𝑒 (𝑣) function, a replica broadcasts

a pre-vote
0
(𝑣) message. If 𝑣 = 1, the replica adds 1 to 𝑏𝑠𝑒𝑡0. If

the replica has not previously broadcast main-vote0 (1), it broad-
casts main-vote0 (1). If the replicas has not previously r-broadcast
final-vote0 (1), it r-broadcasts final-vote0 (1). Furthermore, in round

0, if a replica receives 𝑓 + 1 pre-vote
0
(1) and has not broadcast

main-vote0 () or final-vote0 (), it also directly broadcastsmain-vote0 (1)
and r-broadcasts final-vote0 (1).

initialization
𝑟 ← 0 {round}

func 𝑝𝑟𝑜𝑝𝑜𝑠𝑒 (𝑣)
𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 -𝑣𝑜𝑡𝑒 (𝑣)
start round 0

func 𝑟𝑒𝑝𝑟𝑜𝑝𝑜𝑠𝑒 (𝑣)
𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 -𝑣𝑜𝑡𝑒 (𝑣)

func 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 -𝑣𝑜𝑡𝑒 (𝑣) {� phase 1}

if pre-vote
0
(𝑣) has not been sent, broadcast pre-vote

0
(𝑣)

if 𝑣 = 1

𝑏𝑠𝑒𝑡0 ← 𝑏𝑠𝑒𝑡0 ∪ {1}
if main-vote0 () has not been sent, broadcast main-vote0 (1)
if final-vote0 () has not been sent, r-broadcast final-vote0 (1)

round r
if 𝑟 > 0, broadcast pre-vote𝑟 (𝑖𝑣𝑟)
upon receiving pre-vote𝑟 (𝑣) from 𝑓 + 1 replicas

if pre-vote𝑟 (𝑣) has not been sent, broadcast pre-vote𝑟 (𝑣)
if 𝑟 = 0 and 𝑣 = 1

𝑏𝑠𝑒𝑡0 ← 𝑏𝑠𝑒𝑡0 ∪ {1}
if main-vote0 () has not been sent, broadcast main-vote0 (1)
if final-vote0 () has not been sent, r-broadcast final-vote0 (1)

upon receiving pre-vote𝑟 (𝑣) from 2𝑓 + 1 nodes

𝑏𝑠𝑒𝑡𝑟 ← 𝑏𝑠𝑒𝑡𝑟 ∪ {𝑣 }
wait until 𝑏𝑠𝑒𝑡𝑟 ≠ ∅ {� phase 2}

if main-vote𝑟 () has not been sent, broadcast main-vote𝑟 (𝑣) where 𝑣 ∈
𝑏𝑠𝑒𝑡𝑟

upon receiving𝑛− 𝑓 main-vote𝑟 () such that 1) final-vote𝑟 () has not been
sent; 2) for each received main-vote𝑟 (𝑏) , 𝑏 ∈ 𝑏𝑠𝑒𝑡𝑟

if there are 𝑛 − 𝑓 main-vote𝑟 (𝑣)
r-broadcast final-vote𝑟 (𝑣) {� phase 3}

else r-broadcast final-vote𝑟 (∗)
upon r-delivering 𝑛− 𝑓 final-vote𝑟 () such that for each final-vote𝑟 (𝑣) , 𝑣 ∈

𝑏𝑠𝑒𝑡𝑟 ; for each final-vote𝑟 (∗) , {0, 1} ⊆ 𝑏𝑠𝑒𝑡𝑟
if there are 𝑛 − 𝑓 final-vote𝑟 (𝑣)
decide 𝑣

else if there are 𝑓 + 1 final-vote𝑟 (𝑣)
𝑖𝑣𝑟+1 ← 𝑣

else
if 𝑟 = 0, 𝑖𝑣𝑟+1 ← 1

else 𝑖𝑣𝑟+1 ← 𝑅𝑎𝑛𝑑𝑜𝑚 ()
𝑟 ← 𝑟 + 1

Figure 2: WaterBear RABA. 𝑣 ∈ {0, 1}.

Finally, the coin value for round 0 is set to 1. In round 𝑟 ≥ 1,

WaterBear RABA is identical to WaterBear ABA.

Analysis. The proof of WaterBear RABA is shown in Appendix C.

We show that the three changes we made on top of WaterBear

ABA can turn WaterBear ABA into a RABA protocol. The first

change is made for the biased termination property. In particular, it

ensures that if a quorum of correct replicas either directly propose

1 or propose 0 and later on repropose 1, the protocol will termi-

nate. The second and the third changes are made for the biased

validity property. If 𝑓 + 1 correct replicas propose 1, they will di-

rectly add 1 to 𝑏𝑠𝑒𝑡0, broadcast pre-vote0
(1), main-vote0 (1), and

r-broadcast final-vote0 (1). In other words, no correct replica is able

to receive 𝑛 − 𝑓 main-vote0 (0) to r-broadcast final-vote0 (0). Fur-
thermore, no correct replica can receive 𝑛 − 𝑓 final-vote0 (0) or
even 𝑓 + 1 final-vote0 (0). Even in the extreme case that a correct

7

upon selecting𝑚𝑖 for 𝑝𝑖 using the technique of EPIC

r-broadcast ([𝑒, 𝑖],𝑚𝑖) for RBC𝑖

upon r-deliver ([𝑒, 𝑗],𝑚 𝑗) for RBC𝑗

if RABA𝑗 has not been started

propose ([𝑒, 𝑗], 1) for RABA𝑗

else
repropose ([𝑒, 𝑗], 1) for RABA𝑗

upon delivery of 𝑛 − 𝑓 RBC instances

for RABA instances that have not been started

propose ([𝑒, 𝑗], 0)
upon decide ([𝑒, 𝑗], 𝑣) for any value 𝑣 for all RABA instances

let 𝑆 be set of indexes for RABA instances that decide 1

wait until r-deliver ([𝑒, 𝑗],𝑚 𝑗) for all RABA𝑗 such that 𝑗 ∈ 𝑆
a-deliver (∪𝑗∈𝑆 {𝑚 𝑗 }) according to some deterministic order

Figure 3: The WaterBear protocol. The code for replica 𝑝𝑖 in
epoch 𝑒. WaterBear uses Bracha’s broadcast as the underly-
ing the RBC and WaterBear RABA as the underlying RABA.
WaterBear uses the technique of EPIC to select transactions
for each replica.

replica uses the local coin to enter the next round, the coin value is

also 1. Therefore, WaterBear RABA achieves biased validity. Other

properties of WaterBear RABA simply follow fromWaterBear ABA,

as we only modify round 0 of the protocol.

Note a RABA primitive may on average make replica decide

1 faster than conventional ABA. It may also reduce the number

of steps in the optimal case. In particular, if all replicas propose

1, they will add 1 to 𝑏𝑠𝑒𝑡0, and directly broadcast final-vote0 (1),
main-vote0 (1), and r-broadcast final-vote0 (1), all simultaneously.

After replicas r-deliver 𝑛 − 𝑓 final-vote0 (1), they can decide. Hence,

in the optimal case, replicas decide in only three steps using RBC.

6 WATERBEAR ANDWATERBEAR-QS
This section describes our asynchronous BFT protocols—WaterBear

and WaterBear-QS. Both protocols are quantum secure and Water-

Bear is additionally information-theoretically secure.

6.1 The WaterBear Protocol
WaterBear follows the DZ paradigm but uses the trick in EPIC

to avoid he usage of threshold encryption (needed for achieving

adaptive security). In particular, WaterBear uses r-broadcast and
r-deliver primitives of Bracha’s broadcast, and propose, repropose
and decide primitives of WaterBear RABA. Figure 3 depicts the

pseudocode of WaterBear. In terms of transaction selection strategy,

we follow EPIC and ask replicas to select random transactions

in plaintext for most epochs and periodically switch to the FIFO

selection, where replicas maintain a log of transactions according

to the order transactions are received and replicas select the first

group of transactions in the buffer as input. As shown in EPIC,

the approach shares similar performance as the random selection

approach used in HoneyBadgerBFT and BEAT. Following the DZ

paradigm, for each epoch 𝑒 , WaterBear consists of 𝑛 parallel RBC

instances and 𝑛 parallel RABA instances. In the RBC phase, each

replica 𝑝𝑖 r-broadcasts a proposal 𝑚𝑖 for RBC𝑖 . If 𝑝𝑖 r-delivers a
proposal from RBC𝑗 , it proposes 1 for RABA𝑗 . Upon delivery of

𝑛 − 𝑓 RBC instances, instead of waiting for 𝑛 − 𝑓 RABA instances

to terminate, 𝑝𝑖 proposes 0 for all RABA instances that have not

been started. If 𝑝𝑖 later delivers a proposal from some RBC𝑗 , it has

proposed 0 for RABA𝑗 , and has not terminated RABA𝑗 , it reproposes

1 for RABA𝑗 . We let 𝑆 be the set of indexes where RABA𝑗 decides 1.

When all RABA instances terminate and all RBC𝑖 (𝑖 ∈ 𝑆) instances
are delivered, 𝑝𝑖 a-delivers ∪𝑗 ∈𝑆 {𝑚 𝑗 }. The security of WaterBear

directly follows from that of the DZ paradigm.

6.2 The WaterBear-QS Protocol
We now present WaterBear-QS, an asynchronous BFT protocol

that does not achieve information-theoretic security but achieves

quantum security for both safety and liveness properties. Prior

to our work, no such BFT protocol has been implemented. DAG-

Rider and PACE only achieve quantum safety but not quantum

liveness. The difference between WaterBear and WaterBear-QS is

that WaterBear-QS leverages hash function based AVID RBC of

Cachin and Tessaro [24] to reduce the communication complexity of

RBC. Jumping ahead, we show the modification leads to a dramatic

performance improvement compared to WaterBear.

7 IMPLEMENTATION AND EVALUATION
Implementation.We implement WaterBear and WaterBear-QS in

Golang. Both protocols use authenticated channels, and WaterBear-

QS additionally uses a hash function. We use HMAC to realize

the authenticated channel in WaterBear and WaterBear-QS. Note

HMAC is used just for an instantiation of the authenticated channel:

one would need to implement the channel for a practical system.We

use SHA256 for the hash functions. We use gRPC as the underlying

communication library. To implement AVID RBC, we use a Golang

Reed-Solomon code library [4].

Both WaterBear and WaterBear-QS use RBC in both the RBC

and ABA phases. For WaterBear, we use Bracha’s broadcast (which

is information-theoretically secure) for both phases. For WaterBear-

QS, we use AVID RBC of Cachin and Tessaro [24] (using erasure

coding and hash functions) in the RBC phase. In ABA (the third

phase), we directly use Bracha’s broadcast, because in the ABA

phase of WaterBear-QS, there is no bulk data.

For comparison, we choose to implement BEAT-Cobalt in our

Golang library. BEAT [1, 45] was originally implemented in Python

2.7 using MMR ABA [66]. We implement BEAT-Cobalt, replacing

MMR by Cobalt-ABA, as Cobalt ABA addressed the liveness issue

of MMR. There are several reasons we chose BEAT-Cobalt as the

baseline protocol. First, BEAT-Cobalt is the most efficient open-

source asynchronous BFT implementation. Other protocols are

either not open-sourced yet (e.g., Dumbo [52]) or have a model

outside the scope of the conventional BFT setting (e.g., Tusk [40]).

In particular, Tusk utilizes additional worker nodes in addition to

replicas. Our protocols, however, can be adapted with the strategies

proposed by Tusk to achieve better performance, as our protocols,

too, use RBC for message transmission. Second, EPIC is the only

known adaptively secure asynchronous BFT protocol implemented.

The authors of EPIC have shown that BEAT-Cobalt significantly

outperforms EPIC in both LAN and WAN settings. Hence, once

we demonstrate the performance difference among BEAT-Cobalt,

WaterBear, and WaterBear-QS, we can reasonably argue which is

8

𝑓 = 1 𝑓 = 2 𝑓 = 5

0

1

2

3

0.12 0.13

0.78

0.41

0.49

0.88

0.13 0.13

0.75

0.4
0.45

0.87

0.09

0.17

1.06

0.57
0.61

1.28

L
a
t
e
n
c
y
(
S
e
c
)

WaterBear (LAN) WaterBear (WAN)

WaterBear-QS (LAN) WaterBear-QS (WAN)

BEAT-Cobalt (LAN) BEAT-Cobalt (WAN)

(a) Latency for 𝑏 = 1.

𝑓 = 1 𝑓 = 2 𝑓 = 5

0

1

2

3

0.13 0.15

0.93

0.47

0.56

1.05

0.13 0.13

0.78

0.44

0.52

0.92

0.09

0.17

1.23

0.62
0.66

1.46

L
a
t
e
n
c
y
(
S
e
c
)

WaterBear (LAN) WaterBear (WAN)

WaterBear-QS (LAN) WaterBear-QS (WAN)

BEAT-Cobalt (LAN) BEAT-Cobalt (WAN)

(b) Latency for 𝑏 = 100.

𝑓 = 1 𝑓 = 2 𝑓 = 5

0

10

20

30

1.34

3.69

16.74

1.92

4.16

17.39

0.72

1.32

3.62

1.29
1.75

3.77

0.7
1.38

3.84

1.24

1.85

4.59

L
a
t
e
n
c
y
(
S
e
c
)

WaterBear (LAN) WaterBear (WAN)

WaterBear-QS (LAN) WaterBear-QS (WAN)

BEAT-Cobalt (LAN) BEAT-Cobalt (WAN)

(c) Latency for 𝑏 = 15,000.

Figure 4: Latency of the protocols.

the most efficient adaptively secure asynchronous BFT protocol

among EPIC, WaterBear, and WaterBear-QS. Of course, EPIC nei-

ther achieves quantum security nor information-theoretic security,

and EPIC requires trusted setup. Third, jumping ahead, we find

WaterBear-QS and BEAT-Cobalt share similar performance.

Here are some other reasons why we chose not to (and do not

need to) compare with Dumbo and Tusk. Neither protocols achieve

any properties our protocols can achieve: no adaptive security,

relying on PKC, no quantum resistance, and assuming trusted setup.

The WaterBear library involves more than 10,000 LOC for the

protocol implementations and about 1,000 LOC for evaluation.

Overview of evaluation. We evaluate the performance of our

protocols on Amazon EC2 utilizing up to 61 virtual machines (VMs)

from different regions in five continents. We use both t2.medium
and m5.xlarge instances for our evaluation. The t2.medium type

has two virtual CPUs and 4GB memory and the m5.xlarge has four
virtual CPUs and 16GB memory. Unless otherwise mentioned, we

usem5.xlarge instances by default. We deploy our protocols in both

"LAN" and "WAN" settings. In the LAN setting, the replicas are run

in the same region of EC2 (e.g., US Virginia), but these replicas may

be located in different physical datacenters. In the WAN setting,

the replicas are evenly distributed across different continents.

We conduct the experiments under different network sizes and

contention levels (batch size). We use 𝑓 to denote the network size;

in each experiment, we use 3𝑓 +1 replicas in total.We let𝑏 denote the

contention level; in particular, each replica proposes 𝑏 transactions

in each epoch. For each experiment, we vary the batch size 𝑏 from

1 to 25,000. For each experiment, we run 10 epochs and report the

average performance (for both throughput and latency). We use

two different transaction sizes. We evaluate the performance of the

protocols for transactions with 100 bytes by default and evaluate

that using 250 bytes per transaction.

We assess the performance of the protocols under the failure-free

scenario and failure scenarios. While our failure-case evaluation is

not the first such evaluation for asynchronous BFT protocols, the

testbed we built aims to be comprehensive, encompassing realistic

failure and attack scenarios we can envision.

We (roughly) summarize our main results in the following:

• WaterBear-QS is about as efficient as BEAT-Cobalt. The two

protocols, however, offer interesting trade-offs for different 𝑛’s.

• We confirm that the bandwidth of RBC is one of the major bottle-

necks for the BKR framework and DZ framework. WaterBear-

QS and BEAT-Cobalt (using bandwidth-efficient AVID RBC)

are about twice as efficient as WaterBear (using bandwidth-

expensive Bracha’s broadcast). Moreover, for all the three proto-

cols, the throughput with a transaction size of 100 bytes is more

than 2x the throughput with a transaction size of 250 bytes. To

put it differently, WaterBear can be easily made more efficient

if a more efficient information-theoretic RBC exists.

• Both WaterBear-QS and WaterBear are highly robust against

various crash and Byzantine failures, just as BEAT-Cobalt.

7.1 Performance in Failure-Free Cases
Latency.We report the latency of the protocols in both LAN and

WAN settings for 𝑓 = 1, 2, and 5 in Figure 4c. In all these experi-

ments, we let 𝑏 = 15,000.

WaterBear and BEAT-Cobalt share similar performance. When

𝑓 = 1, the latency for both WaterBear-QS and BEAT-Cobalt are

nearly half of that forWaterBear in both LAN andWAN settings. As

𝑓 increases, the difference in latency between WaterBear-QS/BEAT-

Cobalt and WaterBear also increases. When 𝑓 = 5, the latency

of WaterBear is almost four times of that for WaterBear-QS and

BEAT-Cobalt. This is expected, since as 𝑓 increases, the network

bandwidth consumption for WaterBear is significantly higher than

the other protocols.

The latency of WaterBear-QS, compared to BEAT-Cobalt, is gen-

9

𝑓 = 1 𝑓 = 2 𝑓 = 5

0

20

40

60

80

100

19.33

11.09

4.7

34.77

20.6

9.94

38.79

33.16

24.03

65.69

59.41

52.95

36.28

30.66

24.01

67.21

58.46

48.43

P
e
a
k
T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

WaterBear (t2) WaterBear (m5)

WaterBear-QS (t2) WaterBear-QS (m5)

BEAT-Cobalt (t2) BEAT-Cobalt (m5)

(a) Peak throughput of protocols running on different EC2 instances.

𝑓 = 1 𝑓 = 2 𝑓 = 5

0

20

40

60

80

100

14.94

9.73

4.55

34.77

20.6

9.94

28.95

25.19

22.85

65.69

59.41

52.95

28.23

25.2
22.4

67.21

58.46

48.43

P
e
a
k
T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

WaterBear (250) WaterBear (100)

WaterBear-QS (250) WaterBear-QS (100)

BEAT-Cobalt (250) BEAT-Cobalt (100)

(b) Peak throughput for transaction size of 100 bytes and 250 bytes.

Figure 5: Performance of the protocols for 𝑓 = 1, 2, and 5.

erally lower in both LAN andWAN settings except for 𝑓 = 1, where

the latency of WaterBear-QS is slightly higher than BEAT-Cobalt in

both LAN andWAN settings. When 𝑓 = 5 in theWAN environment,

the latency of WaterBear-QS is 17.9% lower than BEAT-Cobalt. The

better performance for WaterBear-QS is mainly because WaterBear-

QS utilizes a biased ABA, causing the protocol to terminate faster.

It is not surprising that all protocols achieve higher latency in

WANs than in LANs. This is certainly expected, but we find the

difference is more visible when 𝑓 is smaller. For instance, the latency

of WaterBear is 43.3% higher for 𝑓 = 1 in WANs compared to that

in LAN but is only 3.9% higher for 𝑓 = 5.

Throughput and scalability.We evaluate the throughput and scal-

ability for WaterBear, WaterBear-QS, and BEAT-Cobalt by varying

the network size 𝑓 from 1 to 20. Unless otherwise specified, all ex-

periments are conducted in the WAN setting running on m5.xlarge
type instances. We also report throughput vs. latency in Figure 6.

First of all, similar to the results for latency, the throughput of

WaterBear is consistently lower than the other two protocols. As

WaterBear and WaterBear-QS differ in RBC only, RBC is the clear

performance bottleneck.

We examine the throughput of all three protocols for 𝑓 = 1. For

𝑓 = 1, as depicted in Figure 6b, the performance of WaterBear-QS

and BEAT-Cobalt in WANs are very close, though the peak through-

put of WaterBear-QS is slightly higher. We also conduct a separate

experiment in the LAN setting and evaluate the throughput, as

shown in Figure 6a. In both experiments, both WaterBear-QS and

BEAT-Cobalt outperform WaterBear. Unlike the results in WANs,

the throughput of BEAT-Cobalt in LANs is marginally higher than

WaterBear-QS: the peak throughput of BEAT-Cobalt is 2.3% higher

than WaterBear-QS. The peak throughput of WaterBear-QS is 65.6

ktx/sec in LANs and 52.8 ktx/sec in WANs.

When 𝑓 increases, the performance trend is slightly different

from the case for 𝑓 = 1. In particular, when 𝑓 = 5 and 𝑓 = 10,

the throughput of WaterBear-QS is consistently higher than BEAT-

Cobalt. When 𝑓 = 20, the peak throughput of the two protocols is

again very close. The latency of WaterBear-QS, however, is consis-

tently higher than BEAT-Cobalt.

Performance on different types of VMs. Different from prior

protocols (HoneyBadgerBFT, BEAT, Dumbo, EPIC) that all evaluate

the performance on t2.medium instances, we evaluate the perfor-

mance of the protocols using both t2.medium (t2 in the figures) and

m5.xlarge (m5 in the figures) instances. In particular, we evaluate

the throughput with 𝑏 = 15,000 for 𝑓 = 1, 𝑓 = 2, and 𝑓 = 5, the re-

sults of which are shown in Figure 5a. For all the protocols, the peak

throughput on m5.xlarge instances is about 2× that on t2.medium.

Performance with different transaction sizes.We also report

the throughput of the protocols by fixing 𝑏 to 15,000 but using

different sizes of transactions (100 bytes and 250 bytes), the results

of which are shown in Figure 5b. For all the three protocols, the per-

formance using transaction size of 100 bytes is consistently higher,

being at least twice as efficient as that with 250 bytes. The finding

highlights the main performance bottleneck for the protocols is

RBC.

7.2 Performance under Failures
To assess the protocol performance under failures and attacks, we

carefully design various experiments as follows. The attack scenar-

ios are by no means exhaustive, but they are the best strategies we

envision could impact the system performance.

• 𝑆0: (failure-free) In this scenario, all replicas are correct. 𝑆0 is

the baseline scenario we use to compare with failure scenarios.

• 𝑆1: (crash) In this scenario, we let 𝑓 replicas crash by not par-

ticipating in the protocols.

• 𝑆2: (Byzantine; keep voting 0) In this scenario, we control all

𝑓 faulty replicas to keep voting for 0 in each step of (R)ABA. For

all the three protocols, doing so would intuitively make fewer

ABA and RABA instances decide 1 and would likely decrease

the throughput of the protocols. We would like to observe the

throughput reduction in this scenario for the protocols com-

pared to the failure-free scenario.

• 𝑆3: (Byzantine; flipping the (R)ABA input) In this scenario,

we let 𝑓 replicas exhibit Byzantine behavior in the (R)ABA phase.

The strategy is to vote for a flipped value in (R)ABA. In other

words, in each (R)ABA step, each Byzantine replica inputs
¯𝑏

when it should have input 𝑏. Doing so could potentially force

each (R)ABA instance to experience more steps to terminate

for all three protocols. For WaterBear and WaterBear-QS, the

strategy would, at first glance, likely be more fruitful. For both

protocols, a RABA instance may terminate in round 0, thanks

to the biased validity property of RABA. The flipping strategy

illustrated above may make them not to decide in round 0 and

10

0 0.5 1 1.5 2 2.5

·10
4

0

20

40

60

80

Batch size

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

WaterBear WaterBear-QS

BEAT-Cobalt

(a) Throughput in the LAN setting when 𝑓 = 1.

0 0.5 1 1.5 2 2.5

·10
4

0

20

40

60

80

Batch size

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

WaterBear WaterBear-QS

BEAT-Cobalt

(b) Throughput in the WAN setting when 𝑓 = 1.

0 1 2 3 4 5

·10
4

0

1

2

3

4

5

Throughput (tx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

WaterBear WaterBear-QS

BEAT-Cobalt

(c) Throughput vs Latency when 𝑓 = 1.

0 1 2 3 4 5

·10
4

0

10

20

30

Throughput (tx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

WaterBear WaterBear-QS

BEAT-Cobalt

(d) Throughput vs Latency when 𝑓 = 5.

0 1 2 3 4

·10
4

0

20

40

60

80

Throughput (tx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

WaterBear WaterBear-QS

BEAT-Cobalt

(e) Throughput vs Latency when 𝑓 = 10.

0 1 2 3 4

·10
4

0

20

40

60

80

100

120

Throughput (tx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

WaterBear WaterBear-QS

BEAT-Cobalt

(f) Throughput vs Latency when 𝑓 = 20.

Figure 6: Throughput vs latency on m5.xlarge instances for 𝑓 = 1 to 𝑓 = 20.

force them to enter the second round of RABA, where the two

protocols start to run our local coin protocol. Jumping ahead,

our experiment actually shows that the flipping strategy 𝑆3

works slightly better than 𝑆2, but in general is not destructive.

Note that we do not attempt to attack the RBC phase for all these

protocols, because RBC is highly robust during failures and attacks

(see, e.g., [35]).

We assess the failure-case performance for 𝑓 = 1 (Figure 7a),

𝑓 = 2 (Figure 7b), and 𝑓 = 5 (Figure 7c).

Performance under crash failures (𝑆1). When 𝑓 = 1, WaterBear

achieves higher throughput under crash failures compared to that

in the failure-free case. For WaterBear-QS and BEAT-Cobalt, the

performance is slightly lower under crash failures than those in

the crash scenarios. The throughput of WaterBear-QS is 3.0% lower

in the crash failure scenario, and BEAT-Cobalt is 8.2% lower in

the crash failure scenario. For all other cases, all three protocols

achieve higher performance under crash failures compared to that

in the failure-free case. For instance, when 𝑓 = 5, the throughput

of WaterBear-QS is 22.6% higher, and the throughput of BEAT-

Cobalt is 16.9% higher in the crash failure scenario. This is mainly

because under crash failures, the network bandwidth consumption

is much lower (about 25% lower) than in the failure-free case. When

𝑓 = 1, as the network bandwidth consumption does not dominate

the overhead, the performance of WaterBear-QS and BEAT-Cobalt

under crash failures is similar to that in failure-free cases. When 𝑓 =

2 and 𝑓 = 5, the performance improvement under crash failures for

WaterBear-QS is higher than that of BEAT-Cobalt. We believe this

is partly becauseWaterBear-QS involves multiple RBC instances (in

both the RBC phase and the ABA phase) and uses more bandwidth

than BEAT-Cobalt.

Performance under Byzantine failures. The performance of all

the protocols is slightly lower under Byzantine failures compared

to the failure-free scenario and crash failure scenario. The perfor-

mance degradation of WaterBear-QS and BEAT-Cobalt may appear

higher than that of WaterBear. This is actually because the perfor-

mance of WaterBear is much lower than the other two protocols.

For WaterBear-QS, the throughput of is 2.4%-19.3% lower under

Byzantine failures compared to failure-free scenario. In compari-

son, the throughput of BEAT-Cobalt is 0.5%-10.3% under Byzantine

failures. The higher performance degradation for WaterBear-QS is

due to the use of local coins, as replicas start to use local coins in

round 𝑟 > 0, the RABA protocol may decide in more rounds.

𝑺2 vs. 𝑺3. The difference between 𝑆2 and 𝑆3 is that faulty replicas

broadcast 0 in 𝑆2 but broadcast the flipped value in 𝑆3. For BEAT-

Cobalt, the performance in 𝑆3 is higher for 𝑓 = 1 and 𝑓 = 5 but

lower for 𝑓 = 2; the difference in all the cases is not significant. In

contrast, for WaterBear-QS, the performance is consistently lower

in 𝑆3 than 𝑆2. This is expected: first, Cobalt ABA uses common coin

and has an expected constant rounds, thereby being less sensitive to

the attack in 𝑆3. Second, asWaterBear ABA uses local coins, making

11

WaterBear WaterBear-QS BEAT-Cobalt

0

20

40

60

19.45

35.73 35.32

25.08

34.64

32.41

18.79

32.47
31.67

19.03

31.4
33.14

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

𝑆0: ff 𝑆1: crash

𝑆2: zero 𝑆3: flip

(a) Throughput under different failure scenarios in WAN for 𝑓 = 1 and 𝑏 =

15,000.

WaterBear WaterBear-QS BEAT-Cobalt

0

20

40

60

80

18.14

44.73

41.39

23.8

59.53

53.25

17.88

43.65

40.1

16.71

39.86
39.05

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

𝑆0: ff 𝑆1: crash

𝑆2: zero 𝑆3: flip

(b) Throughput under different failure scenarios in WAN for 𝑓 = 2 and 𝑏 =

15,000.

WaterBear WaterBear-QS BEAT-Cobalt

0

20

40

60

80

9.68

46.61

36.31

12.64

57.13

42.44

8.74

39.07

34.41

8.9

37.58
36.12

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

𝑆0: ff 𝑆1: crash

𝑆2: zero 𝑆3: flip

(c) Throughput under different failure scenarios in WAN for 𝑓 = 5 and 𝑏 =

15,000.

Figure 7: Performance of the protocols in failure scenarios.

replicas receive flipped values may force replicas to receive both 0

and 1 such that the local coin value will be used; when WaterBear

ABA uses local coins, it ends with more rounds.

8 CONCLUSION
We provide two novel asynchronous BFT protocols—WaterBear

and WaterBear-QS. WaterBear is information-theoretic, assuming

the existence of authenticated channels. WaterBear-QS is quantum

secure and only uses hash functions and authenticated channels.

Via extensive evaluation, we show both WaterBear and WaterBear-

QS are efficient under both failure-free and failure scenarios.

ACKNOWLEDGMENT
We thank Yang Yu and Xiao Sui for helpful comments.

REFERENCES
[1] 2021. BEAT library. https://github.com/fififish/beat. (2021).

[2] 2021. Bug in ABA protocol’s use of Common Coin. https://github.com/amiller/

HoneyBadgerBFT/issues/59. (2021).

[3] 2021. HoneyBadgerBFT library. https://github.com/amiller/HoneyBadgerBFT.

(2021).

[4] 2021. Reed-Solomon library. https://github.com/klauspost/reedsolomon. (2021).

[5] Ittai Abraham, Danny Dolev, and Joseph Y. Halpern. 2008. An Almost-Surely

Terminating Polynomial Protocol for Asynchronous Byzantine Agreement with

Optimal Resilience (PODC).
[6] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern,

and Alin Tomescu. Reaching Consensus for Asynchronous Distributed Key

Generation. In PODC.
[7] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. 2019. Asymptotically

Optimal Validated Asynchronous Byzantine Agreement. In PODC. ACM, 337–

346.

[8] Nicolas Alhaddad, Mayank Varia, and Haibin Zhang. 2021. High-Threshold AVSS

with Optimal Communication Complexity. In FC.
[9] Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane. 2011. Prime: Byzantine

replication under attack. TDSC 8, 4 (2011), 564–577.

[10] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-

nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady

Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh

Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula

Stathakopoulou, Marko Vukolić, Sharon Weed Cocco, and Jason Yellick. 2018.

Hyperledger fabric: A distributed operating system for permissioned blockchains.

EuroSys.
[11] P. Aublin, S. B. Mokhtar, and V. Quéma. 2013. RBFT: Redundant Byzantine Fault

Tolerance. In ICDCS. 297–306.
[12] Laasya Bangalore, Ashish Choudhury, and Arpita Patra. 2020. The Power of

Shunning: Efficient Asynchronous Byzantine Agreement Revisited*. J. ACM
(2020).

[13] Soumya Basu, Alin Tomescu, Ittai Abraham, Dahlia Malkhi, Michael K. Reiter,

and Emin Gün Sirer. 2019. Efficient Verifiable Secret Sharing with Share Recovery

in BFT Protocols. In CCS.
[14] Michael Ben-Or. 1983. Another Advantage of Free Choice: Completely Asyn-

chronous Agreement Protocols (Extended Abstract). In PODC. 27–30.
[15] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness The-

orems for Non-Cryptographic Fault-Tolerant Distributed Computation (STOC).
[16] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. 1994. Asynchronous secure com-

putations with optimal resilience. In PODC. ACM, 183–192.

[17] Alexandra Boldyreva. 2003. Threshold Signatures, Multisignatures and Blind

Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In PKC.
[18] Gabriel Bracha. 1984. An asynchronous [(n-1)/3]-resilient consensus protocol.

In PODC. ACM, 154–162.

[19] Gabriel Bracha. 1987. Asynchronous Byzantine agreement protocols. Information
and Computation 75, 2 (1987), 130–143.

[20] Christian Cachin. 2010. Yet another visit to paxos. =

https://cachin.com/cc/papers/pax.pdf (IBM Research Report RZ 3754).
[21] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Secure

and efficient asynchronous broadcast protocols. In CRYPTO. Springer, 524–541.
[22] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2005. Random oracles in

Constantinople: Practical asynchronous Byzantine agreement using cryptogra-

phy. Journal of Cryptology 18, 3 (2005), 219–246.

[23] Christian Cachin and Jonathan A Poritz. 2002. Secure intrusion-tolerant replica-

tion on the Internet. In DSN. IEEE, 167–176.
[24] Christian Cachin and Stefano Tessaro. 2005. Asynchronous verifiable information

dispersal. In SRDS. IEEE, 191–201.
[25] Christian Cachin and Marko Vukolic. 2017. Blockchain Consensus Protocols in

the Wild. In DISC.
[26] Ran Canetti. 2020. Universally Composable Security. J. ACM (2020).

[27] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. 1996. Adaptively Secure

Multi-party Computation. In STOC.
[28] Ran Canetti and Tal Rabin. 1993. Fast asynchronous Byzantine agreement with

optimal resilience. In STOC, Vol. 93. Citeseer, 42–51.
[29] Miguel Castro. 2001. Practical byzantine fault tolerance (PhD thesis).
[30] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine fault tolerance and

proactive recovery. TOCS 20, 4 (2002), 398–461.

12

https://github.com/fififish/beat
https://github.com/amiller/HoneyBadgerBFT/issues/59
https://github.com/amiller/HoneyBadgerBFT/issues/59
https://github.com/amiller/HoneyBadgerBFT
https://github.com/klauspost/reedsolomon
=

[31] David Chaum, Claude Crépeau, and Ivan Damgard. 1988. Multiparty Uncondi-

tionally Secure Protocols. In STOC.
[32] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. 1985. Veri-

fiable Secret Sharing and Achieving Simultaneity in the Presence of Faults. In

SFCS.
[33] Allen Clement, Edmund L Wong, Lorenzo Alvisi, Michael Dahlin, and Mirco

Marchetti. 2009. Making Byzantine Fault Tolerant Systems Tolerate Byzantine

Faults.. In NSDI, Vol. 9. 153–168.
[34] Ran Cohen, Sandro Coretti, Juan Garay, and Vassilis Zikas. 2019. Probabilistic

Termination and Composability of Cryptographic Protocols. J. Cryptol. (2019),
690–741.

[35] Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Matteo

Monti, Matej Pavlovic, Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi, An-

drei Tonkikh, and Athanasios Xygkis. 2020. Online payments by merely broad-

casting messages. In DSN. IEEE, 26–38.
[36] Sandro Coretti, Juan Garay, Martin Hirt, and Vassilis Zikas. 2016. Constant-

Round Asynchronous Multi-Party Computation Based on One-Way Functions.

In ASIACRYPT.
[37] Miguel Correia, Nuno Ferreira Neves, and Paulo Veríssimo. 2006. From consensus

to atomic broadcast: Time-free Byzantine-resistant protocols without signatures.

Comput. J. 49, 1 (2006), 82–96.
[38] Tyler Crain. 2020. Two More Algorithms for Randomized Signature-Free Asyn-

chronous Binary Byzantine Consensus with t<n/3 and O(n
2
) Messages and O(1)

Round Expected Termination. CoRR abs/2002.08765 (2020). arXiv:2002.08765

https://arxiv.org/abs/2002.08765

[39] Ronald Cramer, Ivan Damgård, Stefan Dziembowski, Martin Hirt, and Tal Rabin.

1999. Efficient Multiparty Computations Secure Against an Adaptive Adversary.

In EUROCRYPT.
[40] George Danezis, Eleftherios Kokoris Kogias, Alberto Sonnino, and Alexander

Spiegelman. Narwhal and Tusk: A DAG-based Mempool and Efficient BFT

Consensus (arxiv.org/abs/2105.11827).
[41] Sourav Das, Zhuolun Xiang, and Ling Ren. 2021. Asynchronous data dissemina-

tion and its applications. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security. 2705–2721.

[42] Dan Dobre, Ghassan O. Karame, Wenting Li, Matthias Majuntke, Neeraj Suri,

and Marko Vukolic. 2019. Proofs of Writing for Robust Storage. IEEE Trans.
Parallel Distributed Syst. 30, 11 (2019), 2547–2566.

[43] Sisi Duan, Hein Meling, Sean Peisert, and Haibin Zhang. 2014. BChain: Byzantine

Replication with High Throughput and Embedded Reconfiguration. In OPODIS.
91–106.

[44] Sisi Duan, Michael K Reiter, and Haibin Zhang. Secure causal atomic broadcast,

revisited. In DSN.
[45] Sisi Duan, Michael K Reiter, and Haibin Zhang. 2018. BEAT: Asynchronous BFT

made practical. In CCS. ACM, 2028–2041.

[46] Sisi Duan and Haibin Zhang. 2022. PACE: Fully Parallelizable BFT from Repro-

posable Byzantine Agreement. In IACR Cryptology ePrint Archive, 2022.
[47] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the

presence of partial synchrony. JACM 35, 2 (1988), 288–323.

[48] Paul Feldman and Silvio Micali. 1988. Optimal Algorithms for Byzantine Agree-

ment. In STOC.
[49] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. 1982. Impossibility of

distributed consensus with one faulty process. Technical Report. Massachusetts

Inst of Tech Cambridge lab for Computer Science.

[50] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.

2021. Efficient Asynchronous Byzantine Agreement without Private Setups.

arXiv preprint arXiv:2106.07831 (2021).
[51] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. 2015.

The next 700 bft protocols. ACM Transactions on Computer Systems 32, 4 (2015),
12:1–12:45.

[52] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. 2020.

Dumbo: Faster Asynchronous BFT Protocols.. In CCS.
[53] James Hendricks, Gregory R. Ganger, and Michael K. Reiter. 2007. Low-overhead

byzantine fault-tolerant storage. In SOSP.
[54] James Hendricks, Shafeeq Sinnamohideen, Gregory R Ganger, and Michael K

Reiter. 2010. Zzyzx: Scalable fault tolerance through Byzantine locking. In DSN.
IEEE, 363–372.

[55] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman.

2021. All You Need is DAG.. In PODC.
[56] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. 2006. Information-Theoretically

Secure Protocols and Security under Composition (STOC).
[57] Leslie Lamport, Robert Shostak, andMarshall Pease. 1982. The Byzantine generals

problem. ACM Transactions on Programming Languages and Systems (TOPLAS)
4, 3 (1982), 382–401.

[58] Benoît Libert, Marc Joye, and Moti Yung. 2016. Born and raised distributively:

Fully distributed non-interactive adaptively-secure threshold signatures with

short shares. Theoretical Computer Science 645 (2016), 1–24.

[59] Chao Liu, Sisi Duan, and Haibin Zhang. 2020. EPIC: Efficient asynchronous BFT

with adaptive security. In DSN.
[60] Chao Liu, Sisi Duan, and Haibin Zhang. 2021. MiB: Asynchronous BFT with

More Replicas. (2021). arXiv:2108.04488

[61] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket

Kate, and Andrew Miller. 2019. HoneyBadgerMPC and AsynchroMix: Practical

Asynchronous MPC and Its Application to Anonymous Communication. In CCS.
[62] Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. 2020. Dumbo-mvba:

Optimal multi-valued validated asynchronous byzantine agreement, revisited.

In Proceedings of the 39th Symposium on Principles of Distributed Computing.
129–138.

[63] Ethan MacBrough. 2018. Cobalt: BFT governance in open networks. arXiv
preprint arXiv:1802.07240 (2018).

[64] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The

honey badger of BFT protocols. In CCS. ACM, 31–42.

[65] Henrique Moniz, Nuno Ferreria Neves, Miguel Correia, and Paulo Verissimo.

2008. RITAS: Services for randomized intrusion tolerance. TDSC 8, 1 (2008),

122–136.

[66] Achour Mostefaoui, Hamouma Moumen, and Michel Raynal. 2014. Signature-

free asynchronous Byzantine consensus with 𝑡 ≤ 𝑛/3 and𝑂 (𝑛2) messages. In

PODC. ACM, 2–9.

[67] Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. 2015. Signature-

Free Asynchronous Binary Byzantine Consensus with t < n/3, O(n2) Messages,

and O(1) Expected Time. J. ACM 62, 4 (2015), 31:1–31:21.

[68] Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. 2015. Signature-

free asynchronous binary Byzantine consensus with t< n/3, O (n2) messages,

and O (1) expected time. Journal of the ACM (JACM) 62, 4 (2015), 1–21.
[69] A. Patra, A. Choudhury, and C.P. Rangan. 2014. Asynchronous Byzantine agree-

ment with optimal resilience. Distrib. Comput. 27 (2014), 111–146.
[70] M. Pease, R. Shostak, and L. Lamport. 1980. Reaching Agreement in the Presence

of Faults. JACM 27, 2 (April 1980), 228–234.

[71] Michael O Rabin. 1983. Randomized byzantine generals. In SFCS. IEEE, 403–409.
[72] João Sousa, Eduardo Alchieri, and Alysson Bessani. 2014. State machine replica-

tion for the masses with BFT-SMaRt. In DSN. 355–362.
[73] Gilad Stern and Ittai Abraham. 2018. Information Theoretic HotStuff. In OPODIS.
[74] Pierre Tholoniat and Vincent Gramoli. 2019. Formal verification of blockchain

Byzantine fault tolerance. In FRIDA.
[75] Marko Vukolić. 2015. The quest for scalable blockchain fabric: Proof-of-work vs.

BFT replication. In International workshop on open problems in network security.
Springer, 112–125.

A BRACHA’S ABA
We describe Bracha’s ABA [18]. The pseudocode is shown in Fig-

ure 8. Bracha’s ABA has three phases. In each phase, each replica

broadcasts its value via a RBC instance, i.e., there are 𝑛 parallel RBC

instances in each of the three phases. Every replica maintains a

set 𝑣𝑠𝑒𝑡 containing valid values. In each phase, every replica only

accept messages that carry valid values. The valid values 𝑣𝑠𝑒𝑡 must

be congruent with the values each replica receives from the previ-

ous step/round. In the first phase of the round 0, both 0 and 1 are

considered valid. In other phases, a value is added to 𝑣𝑠𝑒𝑡 only if

the replica receives the value from a sufficiently large fraction of

replicas.

In the first phase, every replica 𝑝𝑖 r-broadcasts pre-vote𝑟 (𝑖𝑣𝑟). In
round 0, the 𝑖𝑣0 is set to the value a replica proposes. For round

𝑟 > 0, 𝑖𝑣𝑟 is set at the end of the third phase in round 𝑟 − 1. When

𝑝𝑖 r-delivers 𝑛 − 𝑓 pre-vote𝑟 () messages, there are two cases. If

𝑝𝑖 r-delivers 𝑛 − 𝑓 pre-vote𝑟 (𝑣), it delivers 𝑣 and sets 𝑣𝑠𝑒𝑡 to {𝑣}.
Replica 𝑝𝑖 still participates in the protocol for one more round but

skips the step of deciding again. Otherwise, 𝑝𝑖 selects the majority

value 𝑣 it receives from the pre-vote𝑟 () messages and uses the

value for the next phase. At the end of the first phase, every replica

r-broadcasts a main-vote𝑟 (𝑣) message. In the second phase, every

replica 𝑝𝑖 waits for 𝑛− 𝑓 validmain-vote𝑟 () messages. If 𝑝𝑖 receives

at least 𝑛/2 main-vote𝑟 (𝑣), it sets 𝑣𝑠𝑒𝑡 to {𝑣}. Otherwise, it sets 𝑣
to ⊥ and 𝑣𝑠𝑒𝑡 to {0, 1} (i.e., it accepts both 0 and 1 in the next

phase). At the end of the second phase, r-broadcasts final-vote𝑟 (𝑣)
13

http://arxiv.org/abs/2002.08765
https://arxiv.org/abs/2002.08765
http://arxiv.org/abs/2108.04488

Initialization
𝑟 ← 0 {round}

func 𝑝𝑟𝑜𝑝𝑜𝑠𝑒 (𝑣)
𝑖𝑣0 ← 𝑣

𝑣𝑠𝑒𝑡 ← {0, 1} {valid binary values that will be accepted}

start round 0

round r
r-broadcast pre-vote𝑟 (𝑖𝑣𝑟) {first phase}

upon receiving r-delivering 𝑛 − 𝑓 pre-vote𝑟 () such that 𝑣𝑎𝑙𝑠 is the set of

values carried in the messages; for each 𝑣 ∈ 𝑣𝑎𝑙𝑠, 𝑣 ∈ 𝑣𝑠𝑒𝑡
if 𝑣𝑎𝑙𝑠 = {𝑣 }
deliver 𝑣, 𝑣𝑠𝑒𝑡 ← {𝑣 }

else, 𝑣 =𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 (𝑣𝑎𝑙𝑠)
r-broadcast main-vote𝑟 (𝑣) {start the second phase}

upon receiving r-delivering 𝑛 − 𝑓 main-vote𝑟 () such that 𝑣𝑎𝑙𝑠 is the set

of values carried in the messages; for each 𝑣 ∈ 𝑣𝑎𝑙𝑠, 𝑣 ∈ 𝑣𝑠𝑒𝑡
if there are at least 𝑛/2 𝑣 in 𝑣𝑎𝑙𝑠 , 𝑣𝑠𝑒𝑡 ← {𝑣 }
else
𝑣 =⊥, 𝑣𝑠𝑒𝑡 ← {0, 1}

r-broadcast final-vote𝑟 (𝑣) {start the third phase}

upon receiving r-delivering 𝑛 − 𝑓 final-vote𝑟 () such that 𝑣𝑎𝑙𝑠 is the set

of values carried in the messages; for each 𝑣 ∈ 𝑣𝑎𝑙𝑠, 𝑣 ∈ 𝑣𝑠𝑒𝑡
if there are at least 2𝑓 + 1 𝑣 in 𝑣𝑎𝑙𝑠

deliver 𝑣, 𝑖𝑣𝑟+1 ← 𝑣, 𝑣𝑠𝑒𝑡 ← {𝑣 }
else if there are 𝑓 + 1 𝑣

𝑖𝑣𝑟+1 = 𝑣, 𝑣𝑠𝑒𝑡 ← {0, 1}
else
𝑐 ← 𝑅𝑎𝑛𝑑𝑜𝑚 () {obtain a local coin}

𝑖𝑣𝑟+1 = 𝑐 , 𝑣𝑠𝑒𝑡 ← {0, 1}
𝑟 ← 𝑟 + 1

Figure 8: The Bracha’s ABA protocol [18].

and enters the third phase. In the third phase, every replica waits

for 𝑛 − 𝑓 final-vote𝑟 () messages with valid values. If 𝑝𝑖 receives

at least 2𝑓 + 1 final-vote𝑟 (𝑣), it delivers 𝑣 and sets 𝑖𝑣𝑟+1 to 𝑣 . In

the following rounds, it only accepts 𝑣 . If 𝑝𝑖 receives at least 𝑓 + 1

final-vote𝑟 (𝑣), it sets 𝑖𝑣𝑟+1 to 𝑣 and will accept both 0 and 1 in the

following round. Otherwise, 𝑝𝑖 uses the local coin value as 𝑖𝑣𝑟+1
and accepts both 0 and 1 in the following round.

B PROOF OF WATERBEAR ABA
We show that WaterBear ABA achieves validity, agreement, termi-

nation, and integrity. For 𝑣 ∈ {0, 1}, let 𝑣 be 1 − 𝑣 .

Lemma B.1. If all correct replicas propose 𝑖𝑣𝑟 = 𝑣 in round 𝑟 , then
any correct replica that enters round 𝑟 + 1 sets 𝑖𝑣𝑟+1 = 𝑣 .

Proof. If all correct replicas propose 𝑖𝑣𝑟 = 𝑣 in round 𝑟 , ev-

ery correct replica broadcasts pre-vote𝑟 (𝑣). No correct replica will

forward pre-vote𝑟 (𝑣), as there does not exist more than 𝑓 + 1

pre-vote𝑟 (𝑣) messages. Hence, no correct replica will add 𝑣 to 𝑏𝑠𝑒𝑡𝑟 .

Furthermore, all correct replicas will eventually sendmain-vote𝑟 (𝑣)
and r-broadcast final-vote𝑟 (𝑣). No correct replica accept final-vote𝑟 (𝑣)
or final-vote𝑟 (∗) since they only have 𝑣 in their 𝑏𝑠𝑒𝑡𝑟 . Hence, any

correct replica that enters round 𝑟 + 1 sets 𝑖𝑣𝑟+1 = 𝑣 . ■

Note that the lemma above holds for the case where a correct

replica decides 𝑣 in round 𝑟 .

Lemma B.2. If all correct replicas propose 𝑖𝑣𝑟 = 𝑣 in round 𝑟 , then
for any 𝑟 ′ > 𝑟 , any correct replica that enters round 𝑟 ′ sets 𝑖𝑣𝑟 ′ = 𝑣 .

Proof. The proof is by induction on the round number. The

base case holds for 𝑟 according to Lemma B.1. For the induction

step, we show that the lemma holds for round 𝑟 ′+1. In other words,

if all correct replicas propose 𝑖𝑣𝑟 ′ = 𝑣 in round 𝑟 ′, then in round

𝑟 ′ + 1, any correct replica sets 𝑖𝑣𝑟 ′+1 = 𝑣 .

In round 𝑟 ′, as no correct replica sends pre-vote𝑟 ′ (𝑣). No correct
replica can receive 𝑓 + 1 pre-vote𝑟 ′ (𝑣) messages. In other words, no

correct replica will forward pre-vote𝑟 ′ (𝑣). Meanwhile, no correct

replica will accept final-vote𝑟 ′ (𝑣) or final-vote𝑟 ′ (∗) since correct
replicas only have 𝑣 in their 𝑏𝑠𝑒𝑡𝑟 ′ . Furtheremore, every correct

replica will braodcast final-vote𝑟 ′ (𝑣). Therefore, it is straightfor-
ward to see that any correct replica that enters round 𝑟 ′ + 1 sets

𝑖𝑣𝑟 ′+1 = 𝑣 . ■

Theorem B.3 (Validity). If all correct replicas propose 𝑣 , then
any correct replica that terminates decides 𝑣 .

Proof. We assume that a correct replica 𝑝𝑖 terminates and de-

cides 𝑣 and prove the correctness by contradiction.

If 𝑝𝑖 terminates and decides 𝑣 in round 0, it will enter round 1with

𝑖𝑣1 = 𝑣 . This is a contradiction with Lemma B.1. If 𝑝𝑖 terminates and

decides 𝑣 in round 𝑟 > 0, it r-delivers 𝑛 − 𝑓 final-vote𝑟 (𝑣). Similarly,

it has put 𝑣 in its 𝑏𝑠𝑒𝑡𝑟 . Therefore, at least one correct replicas has

set 𝑖𝑣𝑟 = 𝑣 and broadcast pre-vote𝑟 (𝑣). This is a contradiction with

Lemma B.2 since any correct replica that enters round 𝑟 sets 𝑖𝑣𝑟 = 𝑣 .

This completes the proof of the theorem. ■

Lemma B.4. If a correct replica 𝑝𝑖 decides 𝑣 in round 𝑟 , any correct
replica that enters round 𝑟 + 1 sets 𝑖𝑣𝑟+1 = 𝑣 .

Proof. If 𝑝𝑖 decides 𝑣 in round 𝑟 , it r-delivers 𝑛− 𝑓 final-vote𝑟 (𝑣).
In otherwords, at least 𝑓 +1 correct replicas r-broadcast final-vote𝑟 (𝑣).
We assume that a correct replica 𝑝𝑘 enters round 𝑟 + 1 using value

𝑖𝑣𝑟+1 = 𝑣 and prove the lemma by contradiction. If 𝑝𝑘 sets 𝑖𝑣𝑟+1
to 𝑣 , there are three conditions: A) 𝑝𝑘 r-delivers at least 𝑛 − 𝑓

final-vote𝑟 (𝑣); B) 𝑝𝑘 r-delivers 𝑓 + 1 final-vote𝑟 (𝑣); C) none of the
conditions holds. In other words, 𝑝𝑘 has received fewer than 𝑓 + 1

final-vote𝑟 (𝑣) and fewer than 𝑓 + 1 final-vote𝑟 (𝑣). We now show

that none of the three conditions is possible.

Condition A): Replica 𝑝𝑘 r-delivers 𝑛 − 𝑓 final-vote𝑟 (𝑣). We al-

ready know that at least 𝑛 − 𝑓 replicas r-broadcast final-vote𝑟 (𝑣).
Therefore, at least one correct replica r-broadcast both final-vote𝑟 (𝑣)
and final-vote𝑟 (𝑣), a contradiction.

Condition B): Replica 𝑝𝑘 r-delivers 𝑓 +1 final-vote𝑟 (𝑣).We already

know that 𝑝𝑖 r-delivers 𝑛 − 𝑓 final-vote𝑟 (𝑣). Therefore, at least one
replica (correct or Byzantine) r-broadcast both final-vote𝑟 (𝑣) and
final-vote𝑟 (𝑣) such that 𝑝𝑘 r-delivers final-vote𝑟 (𝑣) and 𝑝𝑖 r-delivers
final-vote𝑟 (𝑣). This is a violation of the agreement property or RBC.

Condition C): Replica 𝑝𝑘 r-delivers 𝑛 − 𝑓 final-vote𝑟 () messages

(let the set of replicas be 𝑆1). Among the messages from 𝑆1, fewer

than 𝑓 +1 are final-vote𝑟 (𝑣) and fewer than 𝑓 +1 are final-vote𝑟 (𝑣).
Other messages can only be final-vote𝑟 (∗). We already know that

𝑝𝑖 r-delivers 𝑛− 𝑓 final-vote𝑟 (𝑣) (let the set of replicas be 𝑆2). 𝑆1 and

𝑆2 have at least𝑛−2𝑓 ≥ 𝑓 +1 replicas in common. Therefore, at least

one replica r-broadcasts a value such that 𝑝𝑖 r-delivers final-vote𝑟 (𝑣)
14

and 𝑝𝑘 has r-delivers final-vote𝑟 (∗) (or final-vote𝑟 (𝑣)), a violation
of agreement property of RBC. ■

Theorem B.5 (Agreement). If a correct replica decides 𝑣 , then
any correct replica that terminates decides 𝑣 .

Proof. Weassume that a correct replica 𝑝𝑖 decides 𝑣 and another

correct replica 𝑝 𝑗 decides 𝑣 and prove the theorem by contradiction.

There are two cases: 1) 𝑝𝑖 and 𝑝 𝑗 decide in the same round 𝑟 ; 2) 𝑝𝑖
and 𝑝 𝑗 decide in different rounds.

We first prove case 1). If replica 𝑝𝑖 decides 𝑣 in round 𝑟 , it r-
delivers 𝑛 − 𝑓 final-vote𝑟 (𝑣). If 𝑝 𝑗 decides 𝑣 , it r-delivers 𝑛 − 𝑓

final-vote𝑟 (𝑣). The two sets of 𝑛 − 𝑓 replicas have at least 𝑓 + 1

replicas in common. Among the 𝑓 +1 replicas, at least one is correct.

Therefore, at least one correct replica must have r-broadcast both
final-vote𝑟 (𝑣) and final-vote𝑟 (𝑣), a contradiction.

We now prove case 2) by assuming that 𝑝𝑖 decides value 𝑣 in

round 𝑟 and 𝑝 𝑗 decides 𝑣 in round 𝑟 ′ where 𝑟 ′ > 𝑟 .

According to Lemma B.4, any correct replica enters round 𝑟 + 1

sets 𝑖𝑣𝑟+1 to 𝑣 . Furthermore, according to Lemma B.2, for any round

𝑟 ′′ ≥ 𝑟 + 1, any correct replica sets enters round 𝑟 ′′ sets 𝑖𝑣𝑟 ′′ to
𝑣 . If replica 𝑝 𝑗 decides value 𝑣 in round 𝑟 ′, at least one correct

replica has set 𝑖𝑣𝑟 ′ = 𝑣 and sent pre-vote𝑟 ′ (𝑣), a contradiction with

Lemma B.2. ■

Lemma B.6. Let 𝑣1 ∈ {0, 1} and 𝑣2 ∈ {0, 1}. If a correct replica
𝑝𝑖 r-delivers 𝑓 + 1 final-vote𝑟 (𝑣1) and enters round 𝑟 + 1, another
correct replica 𝑝 𝑗 r-delivers 𝑓 + 1 final-vote𝑟 (𝑣2) and enters round
𝑟 + 1, 𝑣1 = 𝑣2.

Proof. If 𝑝𝑖 r-delivers 𝑓 + 1 final-vote𝑟 (𝑣1), at least one correct
replica r-broadcasts final-vote𝑟 (𝑣1). According to the protocol, the

correct replica has received 𝑛 − 𝑓 main-vote𝑟 (𝑣1). Therefore, for
any other correct replicas, they either receive 𝑛 − 𝑓 main-vote𝑟 (𝑣1)
and r-broadcast final-vote𝑟 (𝑣1), or receive bothmain-vote𝑟 (𝑣1) and
main-vote𝑟 (𝑣1) and r-broadcast final-vote𝑟 (∗). No correct replica

will r-broadcast final-vote𝑟 (𝑣1). For replica 𝑝 𝑗 , if it r-delivers 𝑓 + 1

final-vote𝑟 (𝑣2), at least one correct replica r-broadcasts final-vote𝑟 (𝑣2).
Therefore, it is straightforward to see that 𝑣1 = 𝑣2. ■

Theorem B.7 (Termination). Every correct replica eventually
decides some value.

Proof. The proof consists of two parts. First, in each round 𝑟 ,

correct replicas will enter the next round. Second, the value 𝑖𝑣𝑟 used

by any correct replica cannot be manipulated by the adversary.

We first show that in round 𝑟 , correct replicas will enter the

next round. In each round, every replica sets 𝑖𝑣𝑟 to either 0 or 1 in

WaterBear ABA. Accordingly, at least 𝑓 +1 correct replicas have the

same 𝑖𝑣𝑟 = 𝑣 . Therefore, all correct replicas will eventually receive

2𝑓 + 1 pre-vote𝑟 (𝑣) for some 𝑣 and send main-vote𝑟 () message.

Correct replicas will have at least 𝑣 in their 𝑏𝑠𝑒𝑡𝑟 and r-broadcast
either final-vote𝑟 (𝑣) for some 𝑣 or final-vote𝑟 (∗). Similarly, any

correct replica will eventually r-deliver 𝑛− 𝑓 final-vote𝑟 () messages

and enter the next round.

We then show that if a correct replica 𝑝𝑖 does not decide in round

𝑟 , the value 𝑖𝑣𝑟+1 = 𝑣 cannot be manipulated by a malicious network

scheduler such that correct replicas always enter the next round

with inconsistent values. If 𝑝𝑖 does not decide in round 𝑟 , there are

two conditions: A) 𝑝𝑖 r-delivers 𝑓 + 1 final-vote𝑟 (𝑣); B) 𝑝𝑖 r-delivers
𝑛 − 𝑓 final-vote𝑟 () messages. In the final-vote𝑟 () messages, fewer

than 𝑓 +1 are final-vote𝑟 (𝑣) and fewer than 𝑓 +1 are final-vote𝑟 (𝑣).
For condition B, a correct replica enters the next round with its

local coin 𝑐 . The 𝑐 value is independent with the value chosen by

any correct replica. We now prove that the value 𝑣 in condition A

cannot be manipulated.

According to Lemma B.6, it is impossible for a correct replica to

receive 𝑓 + 1 final-vote𝑟 (𝑣) and another correct replica to receive

𝑓 + 1 final-vote𝑟 (𝑣). If correct replicas use local coins to enter the

next round, with a probability of
1

2
𝑛−𝑓 , replicas will enter the next

round with the same value. The protocol will terminate in𝑂 (2𝑛−𝑓)
expected rounds. ■

Theorem B.8 (Integrity). No correct replica decides twice.

Proof. According to the protocol, after a correct replica decides

some value, it participates in one more round of the protocol. How-

ever, it terminates the protocol after it r-broadcasts a final-vote𝑟 ()
message. In other word, the replica does not decide again in the

following round. The theorem is then proved. ■

C PROOF OF WATERBEAR RABA
We now show that WaterBear RABA achieves validity, unanimous

termination, agreement, biased validity, biased termination, and

integrity.

Lemma C.1. If all correct replicas propose 𝑣 in round 0 and never
repropose 𝑣 , then any correct replica enters the round 1 sets 𝑖𝑣1 = 𝑣 .

Proof. In round 0, all replicas send pre-vote
0
(𝑣). No correct

replica will receive 𝑓 + 1 pre-vote
0
(𝑣) and send pre-vote

0
(𝑣). Simi-

larly, all correct replicas will send main-vote0 (𝑣) and will never ac-

ceptmain-vote0 (𝑣). All correct replicaswill r-broadcast final-vote0 (𝑣)
and will never accept final-vote0 (𝑣). Therefore, it is straightforward
to see that any correct replica that enters round 1 sets 𝑖𝑣1 = 𝑣 . ■

Theorem C.2 (Validity). If all correct replicas propose 𝑣 and
never repropose 𝑣 , then any correct replica that terminates decides 𝑣 .

Proof. We assume that a correct replica 𝑝𝑖 terminates and de-

cides 𝑣 and prove the correctness by contradiction. If 𝑝𝑖 terminates

and decides 𝑣 in round 0, correctness follows from Lemma C.1. We

now prove the case where 𝑝𝑖 decides in round 𝑟 > 0.

Since WaterBear RABA follows WaterBear ABA starting from

round 1, Lemma B.2 holds for 𝑟 > 0. If 𝑝𝑖 terminates and decides

𝑣 in round 𝑟 > 0, it r-delivers 𝑛 − 𝑓 final-vote𝑟 (𝑣). Additionally, 𝑝𝑖
has added 𝑣 to its 𝑏𝑠𝑒𝑡𝑟 . Therefore, at least one correct replica has

set 𝑖𝑣𝑟 = 𝑣 and broadcast pre-vote𝑟 (𝑣). This is a contradiction with

Lemma B.2 since any correct replica that enters round 𝑟 sets 𝑖𝑣𝑟 = 𝑣 .

This completes the proof of the theorem. ■

Theorem C.3 (Unanimous termination). If all correct replicas
propose 𝑣 and never repropose 𝑣 , then all correct replicas eventually
terminate.

Proof. If all correct replicas propose 𝑣 and never repropose 𝑣 , all

correct replicas only send pre-vote
0
(𝑣). No correct replica will add 𝑣

to 𝑏𝑠𝑒𝑡0. Furthermore, no correct replica will accept main-vote0 (𝑣)
or final-vote0 (𝑣). Eventually all correct replicas will receive 2𝑓 + 1

15

pre-vote
0
(𝑣), add 𝑣 to𝑏𝑠𝑒𝑡0, and broadcastmain-vote0 (𝑣). Similarly,

all correct replicas will eventually receive 𝑛 − 𝑓 main-vote0 (𝑣) and
r-broadcast final-vote0 (𝑣). All correct replicas will r-deliver 𝑛 − 𝑓

final-vote0 (𝑣). In other words, all correct replicas will terminate

and decide 𝑣 . ■

Lemma C.4. If 𝑝𝑖 decides 𝑣 in round 0, any correct replica that
enters round 1 sets 𝑖𝑣1 = 𝑣 .

Proof. If 𝑝𝑖 decides 𝑣 in round 1, it r-delivers 𝑛−𝑓 final-vote0 (𝑣),
among which at least 𝑓 + 1 replicas are correct. We assume that

a correct replica 𝑝𝑘 enters round 1 with 𝑖𝑣1 = 𝑣 and prove the

correctness by contradiction. If 𝑝𝑘 enters round 𝑟 + 1 and sets

𝑖𝑣1 = 𝑣 , there are three conditions: A) 𝑝𝑘 r-delivers at least 𝑛 − 𝑓

final-vote𝑟 (𝑣); B) 𝑝𝑘 r-delivers 𝑓 + 1 final-vote0 (𝑣); C) 𝑝𝑘 has not

received more than 𝑓 + 1 final-vote0 (𝑣) and 𝑝𝑘 has not received

more than 𝑓 +1 final-vote0 (𝑣). We now show that none of the three

conditions is possible.

Condition A): Replica 𝑝𝑖 r-delivers 𝑛 − 𝑓 final-vote0 (𝑣). We al-

ready know that at least 𝑓 +1 corect replicas r-broadcast final-vote0 (𝑣).
Therefore, at least one correct replica r-broadcasts final-vote0 (𝑣)
and final-vote0 (𝑣), a contradiction.

Condition B): Replica 𝑝𝑘 r-delivers 𝑓 +1 final-vote0 (𝑣).We already

know that 𝑝𝑖 r-delivers 𝑛 − 𝑓 final-vote0 (𝑣). Therefore, at least one
replica (correct or Byzantine) r-broadcast both final-vote0 (𝑣) and
final-vote0 (𝑣) such that 𝑝𝑘 r-delivers final-vote0 (𝑣) and 𝑝𝑖 r-delivers
final-vote0 (𝑣). According to the agreement property or RBC, 𝑣 = 𝑣 ,

a contradiction.

Condition C): Replica 𝑝𝑘 r-delivers 𝑛 − 𝑓 final-vote0 () messages

(let the set of replicas be 𝑆1). In the messages, fewer than 𝑓 + 1

are final-vote0 (𝑣) and fewer than 𝑓 + 1 are final-vote0 (𝑣). Other
messages must be final-vote0 (∗). We already know that 𝑝𝑖 r-delivers
𝑛 − 𝑓 final-vote0 (𝑣) (let the set of replicas be 𝑆2). 𝑆1 and 𝑆2 have at

least 𝑛−2𝑓 ≥ 𝑓 +1 replicas in common. In other words, at least one

replica r-broadcasts a final-vote0 () message such that 𝑝𝑖 r-delivers
final-vote0 (𝑣) and 𝑝𝑘 r-delivers final-vote0 (𝑣) (or final-vote0 (∗)), a
violation of the agreement property of RBC. ■

Theorem C.5 (Agreement). If a correct replica decides 𝑣 , then
any correct replica that terminates decides 𝑣 .

Proof. We assume that a correct replica 𝑝𝑖 decides 𝑣 and a

correct replica 𝑝 𝑗 decides 𝑣 and prove the theorem by contradiction.

SinceWaterBear RABA followsWaterBear ABA starting from round

𝑟 > 0, if both 𝑝𝑖 and 𝑝 𝑗 decide in round 𝑟 > 0, correctness follows

from the agreement property of WaterBear ABA. We now show

the correctness in the following cases: 1) both 𝑝𝑖 and 𝑝 𝑗 decide in

round 0; 2) 𝑝𝑖 decides in round 0 and 𝑝 𝑗 decides in round 𝑟 > 0.

Case 1): If 𝑝𝑖 decides 𝑣 , it r-delivers 𝑛− 𝑓 final-vote0 (𝑣). If 𝑝 𝑗 decides
𝑣 , it r-delivers 𝑛− 𝑓 final-vote0 (𝑣). The two quorum of replicas have

at least 𝑛 − 2𝑓 replicas in common, Among the 𝑛 − 2𝑓 replicas, at

least one is correct since 𝑛 − 2𝑓 ≥ 𝑓 + 1. Therefore, at least one

correct replica r-broadcasts both final-vote0 (𝑣) and final-vote0 (𝑣),
a contradiction since each replica only r-broadcasts a final-vote𝑟 ()
message once in each round.

Case 2): If 𝑝 𝑗 decides 𝑣 in round 𝑟 = 1, it has received at least

2𝑓 + 1 pre-vote
1
(𝑣), where at least one correct replica has sent

pre-vote
1
(𝑣), a contradiction with Lemma C.4. Starting from round

1, WaterBear RABA follows WaterBear ABA so that Lemma B.2

holds. If 𝑝 𝑗 decides 𝑣 in round 𝑟 > 1, at least one correct replica

must have sent pre-vote𝑟 (𝑣), a contradiction with Lemma B.2 since

any correct replica sets 𝑖𝑣𝑟 = 𝑣 .

This completes the proof of the theorem. ■

Lemma C.6. If 𝑓 + 1 correct replicas propose 1 in round 0, every
correct replica eventually accepts final-vote0 (1).

Proof. If 𝑓 +1 correct replicas propose 1, theywill directly broad-

cast pre-vote
0
(1), main-vote0 (1), and r-broadcast final-vote0 (1).

Every correct replica will eventually receive 𝑓 + 1 pre-vote
0
(1). For

those correct replicas that have not sent pre-vote
0
(1), they will also

broadcast pre-vote
0
(1). Therefore, every correct replica eventually

adds 1 to 𝑏𝑠𝑒𝑡0 and accepts main-vote0 (1) and final-vote0 (1). ■

Lemma C.7. If 𝑓 + 1 correct replicas propose 1 in round 0, every
replica either directly decides 1 in round 0 or/and enters round 1 with
𝑖𝑣1 = 1.

Proof. If a correct replica 𝑝𝑖 enters round 1, there are three

conditions: A) 𝑝𝑖 r-delivers 𝑛 − 𝑓 final-vote0 (𝑣) with the same 𝑣 ;

B) 𝑝𝑖 r-delivers at least 𝑓 + 1 final-vote0 (𝑣) for some 𝑣 ; C) none of

condition A or B holds. We show that 𝑣 = 1 for all three conditions

and replicas will set 𝑖𝑣1 to 𝑣 = 1.

For condition A, we already know that at least 𝑓 + 1 correct repli-

cas have broadcast final-vote0 (1). Therefore, 𝑝𝑖 must have received

𝑛−𝑓 final-vote0 (1). This is because if 𝑝𝑖 receives𝑛−𝑓 final-vote0 (0),
at least one correct replica r-broadcasts both final-vote0 (1) and
final-vote0 (0). In other words, 𝑝𝑖 decides 1.

For condition B, we assume 𝑝𝑖 r-delivers 𝑓 + 1 final-vote0 (0)
and prove the correctness by contradiction. If 𝑝𝑖 r-delivers 𝑓 + 1

final-vote0 (0), at least one correct replica r-broadcasts final-vote0 (0).
If the correct replica r-broadcasts final-vote0 (0), the replica must

have received 𝑛 − 𝑓 main-vote0 (0). We already know that at least

𝑓 + 1 correct replicas have sent main-vote0 (1). Any correct replica

broadcastsmain-vote0 () message once. In other words, at least one

correct replica has broadcast bothmain-vote0 (0) andmain-vote0 (1),
a contradiction. Therefore, in this condition, 𝑝𝑖 must have r-deliver
𝑓 +1 final-vote0 (1). It is then straightforward to see that any correct
replica uses 𝑖𝑣1 = 1 to enter round 1.

For condition C, any correct replica will use 1 as input for round

1 since the local coin value is set to 1 in round 0. This completes

the proof of the lemma. ■

Theorem C.8 (Biased validity). If 𝑓 + 1 correct replicas propose
1, then any correct replica that terminates decides 1.

Proof. If𝑝𝑖 decides in round 0, correctness follows fromLemmaC.7.

If 𝑝𝑖 decides 0 in round 𝑟 > 0, at least one correct replica has set

𝑖𝑣𝑟 = 0 and broadcast pre-vote𝑟 (0). Since WaterBear RABA follows

WaterBear ABA starting from round 1, Lemma B.2 holds. There-

fore, the claim that at least one correct replica has set 𝑖𝑣𝑟 = 0 is

a contradiction with Lemma B.2. This completes the proof of the

theorem. ■

Theorem C.9 (Biased termination). Let 𝑄 be the set of cor-
rect replicas. Let 𝑄1 be the set of correct replicas that propose 1 and
never repropose 0. Let 𝑄2 be correct replicas that propose 0 and later

16

repropose 1. If 𝑄2 ≠ ∅ and 𝑄 = 𝑄1 ∪ 𝑄2, then each correct replica
eventually terminates.

Proof. The proof consists of two parts. First, every replica cor-

rect eventually enters the next round. Second, if a correct replica

enters the next round with input 𝑣 , 𝑣 cannot be manipulated by the

adversary.

We first prove that every replica eventually enters the next round.

SinceWaterBear RABA followsWaterBear ABA starting from round

1, this part follows from termination of WaterBear ABA. We only

need to prove that every correct replica eventually moves to round

1. For replicas in𝑄1, they broadcast pre-vote0
(1) and add 1 to 𝑏𝑠𝑒𝑡0.

For replicas in𝑄2, they broadcast pre-vote0
(0) upon the 𝑝𝑟𝑜𝑝𝑜𝑠𝑒 (0)

function, broadcast pre-vote
0
(1) upon the 𝑟𝑒𝑝𝑟𝑜𝑝𝑜𝑠𝑒 (1) function,

and eventually add 1 to 𝑏𝑠𝑒𝑡0. There are two cases: 1) the size of𝑄1

is greater than 𝑓 + 1; 2) the size of 𝑄1 is smaller than 𝑓 + 1.

For the first case, at least 𝑓 + 1 replicas in 𝑄1 will directly broad-

cast main-vote0 (1) and r-broadcast final-vote0 (1). For any correct

replica 𝑝𝑖 in𝑄2, it may sendmain-vote0 (1) ormain-vote0 (0). There
are two sub-cases: none of the correct replicas send main-vote0 (0);
at least one correct replica has sent main-vote0 (0). For the first

sub-case, it is straightforward to see that every correct replica even-

tually receives and accepts 𝑛 − 𝑓 main-vote0 (1), as every correct

replica has 1 in its 𝑏𝑠𝑒𝑡0. Similarly, every correct replica will r-
broadcast final-vote0 (1) and accept 𝑛 − 𝑓 final-vote0 (1). For the
second sub-case, if a correct replica 𝑝𝑖 sends main-vote0 (0), it re-
ceives 2𝑓 + 1 pre-vote

0
(0), among which at least 𝑓 + 1 are sent by

correct replicas. Therefore, every correct replica will eventually

receive 𝑓 +1 pre-vote
0
(0) and broadcast pre-vote

0
(0). Every replica

eventually adds 0 to 𝑏𝑠𝑒𝑡0. Since every correct replica has both 1

and 0 in 𝑏𝑠𝑒𝑡0, every correct replica accepts both main-vote0 (0)
and main-vote0 (1). Similarly, every correct replica accepts both

final-vote0 (0) and final-vote0 (1). In other words, every correct

replica eventually moves to the next round.

For the second case, replicas in 𝑄2 will send pre-vote
0
(0) upon

𝑝𝑟𝑜𝑝𝑜𝑠𝑒 (0). They will send pre-vote
0
(1) upon 𝑟𝑒𝑝𝑟𝑜𝑝𝑜𝑠𝑒 (1) and

add 1 to 𝑏𝑠𝑒𝑡0. Since the size of 𝑄2 is greater than 𝑓 + 1 (the size

of 𝑄1 is smaller than 𝑓 + 1 and 𝑄 = 𝑄1 ∪ 𝑄2), every replica will

receive 𝑓 + 1 pre-vote
0
(0), send pre-vote

0
(0), and add 0 to 𝑏𝑠𝑒𝑡0.

Furthermore, every correct replica in 𝑄2 broadcasts pre-vote
0
(1)

upon 𝑟𝑒𝑝𝑟𝑜𝑝𝑜𝑠𝑒 (1). Since the size of 𝑄2 is greater than 𝑓 + 1, it is

straightforward to see that every correct replica eventually adds

1 to 𝑏𝑠𝑒𝑡0. Therefore, every replica will accept main-vote0 (0) and
main-vote0 (1), final-vote0 (0), and final-vote0 (1). In other words,

every correct replica eventually moves to the next round.

We not prove the second part where the value 𝑖𝑣 used by any

correct replica cannot be manipulated by the adversary. Since Wa-

terBear RABA follows WaterBear ABA starting from round 1, cor-

rectness follows from Lemma B.6 and termination of WaterBear

ABA. ■

Theorem C.10 (Integrity). No correct replica decides twice.

Proof. In each round, every replica only sends a main-vote𝑟 ()
message and a final-vote𝑟 () message once. Hence, only one value

will be decided and integrity thus follows. ■

17

	Abstract
	1 Introduction
	1.1 The Challenges of Building IT Asynchronous BFT
	1.2 Our Contributions

	2 Related Work
	3 System Model and Definitions
	3.1 System and Threat Model
	3.2 Definitions

	4 0.1ptWaterBear ABA from Local Coins
	5 The 0.1ptWaterBear RABA Protocol
	6 0.1ptWaterBear and 0.1ptWaterBear-QS
	6.1 The 0.1ptWaterBear Protocol
	6.2 The 0.1ptWaterBear-QS Protocol

	7 Implementation and Evaluation
	7.1 Performance in Failure-Free Cases
	7.2 Performance under Failures

	8 Conclusion
	References
	A Bracha's ABA
	B Proof of 0.1ptWaterBear ABA
	C Proof of 0.1ptWaterBear RABA

