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Abstract—Designing information-theoretically secure and
quantum secure Byzantine fault-tolerant (BFT) protocols in
asynchronous environments has been an elusive goal. Critically,
all practical asynchronous BFT protocols require using common
coins, but we do not have efficient setup-free common coin
protocols that are unconditionally secure or quantum secure.

We design and implement WaterBear, a family of new
asynchronous BFT protocols that are information-theoretically
secure or quantum secure. Via extensive evaluation, we show that
our protocols are efficient under both failure-free and failure
scenarios, achieving comparable performance to the state-of-
the-art asynchronous BFT protocols with much weaker security
guarantees.

To achieve the goal, we have designed much more efficient
asynchronous binary agreement (ABA) protocols from local coins
and their reproposable ABA counterparts. We have also built
more efficient ABA protocols from weak common coins and
perfect common coins. These ABA protocols can be readily used
to improve various high-level Byzantine-resilient primitives, such
as asynchronous distributed key generation and BFT assuming
trusted setup.

I. INTRODUCTION

Byzantine fault-tolerant state machine replication (BFT),
a technique traditionally used to build mission-critical sys-
tems, has nowadays been the standard model for permissioned
blockchains [21], [8], [71] and is used in various ways in hy-
brid blockchains. It is also well-known that BFT and Byzantine
agreement (BA) are equivalent (possibility- and impossibility-
wise), and both are fundamental building blocks for secure
multi-party computation (MPC) achieving fairness and guar-
anteed output delivery [13], [54], [12], [27], [58]. This paper
designs and implements the first practical information-theoretic
(unconditionally secure) and quantum secure asynchronous
BFT protocols, resolving long-standing open problems in fault-
tolerant distributed computing and cryptography. Additionally,
we propose a number of more efficient asynchronous binary
agreement (ABA) protocols, including two ABA protocols
from local coins, an ABA protocol from weak common coins,
and an ABA protocol from common coins. These protocols
can be readily used to improve various high-level protocols.

A. Background

Information-theoretic vs. computational security. Depend-
ing on the capacities of the adversary, any cryptographic or
security protocols can be in one of the two models:
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• Computational security, where the adversary is restricted
to probabilistic polynomial-time (PPT).

• Information-theoretic (IT) security, where the adversary is
unbounded.

Computationally secure protocols assume the hardness of some
intractability problems (e.g., RSA, Diffie-Hellman). These
mathematical problems may, in the future, be proven to be
broken or weakened due to newly developed cryptanalysis
techniques or some technological breakthrough (e.g., quantum
computer). In contrast, IT security provides everlasting security
without relying on any unproven intractability assumptions:
IT protocols are not only quantum secure but future-proof.
Moreover, IT protocols are natural candidates for building
protocols secure under concurrent composition [31], [53], [29].
PKC vs. no PKC vs. quantum security. It is a major
problem in fault-tolerant distributed computing to design var-
ious Byzantine-resilient protocols relying on no public key
cryptography (PKC). For instance, the first practical partially
synchronous BFT without PKC is PBFT [26]. Many other
Byzantine-resilient protocols in various settings (e.g., secure
causal atomic broadcast, atomic register) are known [38], [50],
[40]. It is, however, an open problem if one could design prac-
tical PKC-free BFT in asynchronous environments. Existing
asynchronous BFT protocols assume various primitives from
public-key cryptography (e.g., common coins).

There are many reasons why one may favor symmetric
cryptography. First, symmetric cryptography is based on basic
and well-studied primitives (blockciphers and hashes). Second,
PKC is many orders of magnitude slower than symmetric cryp-
tography. Besides, classic symmetric cryptography is believed
to be quantum-resistant; in contrast, only PKC schemes based
on certain mathematical problems (e.g., lattices) are quantum-
resistant, but we do not know how to efficiently realize some
key building blocks (e.g., common coins) needed for existing
asynchronous BFT from these problems.

Note that IT security implies quantum security; the reverse
does not hold, for one could use non-quantum technologies to
attack systems.

B. Challenges of IT and Quantum Secure Asynchronous BFT

We divide asynchronous BFT protocols ever implemented
into several categories: 1) the BKR framework of Ben-Or,
Kelmer, and Rabin [13], including HoneyBadgerBFT[61],
BEAT [41], and EPIC [56], 2) the CKPS framework of Cachin,
Kusawe, Petzold, and Shoup [17], including SINTRA [19],
Dumbo [49], and Speeding Dumbo [48], 3) the CNV paradigm



IT secure no pkc quantum secure no trusted setup adaptive WAN
SINTRA [19]
RITAS [62]

√ √ √ √

HoneyBadger [61]; BEAT [41]
√

Dumbo [49]; Speeding Dumbo [48]
√

EPIC [56]
√ √

Tusk [35]; Bullshark [46]
√

PACE [72]
√

WaterBear-QS (this work)
√ √ √ √ √

WaterBear (this work)
√ √ √ √ √ √

Table I: Comparison of efficient asynchronous BFT protocols.

of Correia, Neves, and Verı́ssimo [32], with RITAS as an
implementation [62], 4) the DKSS framework of Danezis,
Kokoris Kogias, Sonnino, and Spiegelman [52], implemented
in Tusk [35] and Bullshark [46], and 5) the PACE framework
of Zhang and Duan [72]. While the frameworks mark sig-
nificant milestones in developing practical asynchronous BFT
protocols, the instantiations derived from these frameworks
rely critically on cryptographic common coins or Byzantine
agreement and are neither IT nor quantum secure. In fact, it
is difficult to make them IT or just quantum secure, because
they face a common hurdle—the inefficiency of IT or quantum
secure common coin and asynchronous Byzantine agreement.

In the IT setting, the local coin based ABA protocols of
Ben-Or [11] and Bracha [15] need an exponential expected
time. While later ABA constructions using asynchronous ver-
ifiable secret sharing (AVSS) are much more efficient, these
protocols are not yet practical. First, IT AVSS is notoriously
difficult to build. Even in the statistical setting (allowing
errors), such a primitive is overly complex. For instance, to
build AVSS, the approach of Canetti and Rabin [24] needs
to begin with an information checking protocol (resembling
signatures but working in the IT setting), then asynchronous
recoverable sharing, then asynchronous weak secret sharing,
and finally AVSS. The improved approach of Patra, Choud-
hury, and Rangan [66] remains complex, following the route
of information-checking protocol, then asynchronous weak
commitment, and then AVSS. Second, the transformation from
AVSS to ABA is equally expensive, requiring running n2

AVSS instances to generate a single (weak) coin.
Even if relaxing to quantum security, we currently still

lack efficient instantiations of common coin protocols based
on quantum resistant primitives (e.g., lattices).

C. Our Contributions

A detour to IT and quantum secure BFT. One possible
way of circumventing the inefficiency challenge of IT ABA
is to use local coin based ABA instead. However, directly
using local coin based ABA leads to protocols that terminate
in exponential expected time and fail to scale [62].

This paper takes a detour and develops the PACE asyn-
chronous BFT framework [72] in the IT setting and in
the quantum security setting. PACE uses Byzantine reliable
broadcast (RBC) and reproposable ABA (RABA) as build-
ing blocks and removes the two subphase bottleneck of the
BKR paradigm, allowing RABA instances to run in a fully
parallelizable manner. Syntactically, RABA is different from
ABA in the sense that replicas are allowed to change their
votes. The concrete instantiation of the PACE paradigm uses
a common coin based RABA protocol built on the CKS
threshold PRF scheme [18], achieving computational security

ABA (local coins) messages/round steps/round

Bracha’s ABA [15] n3 9 to 12

Cubic-ABA (this work) n3 5 to 7
Quadratic-ABA (this work) n2 4 or 5

Table II: Local coin based ABA protocols with optimal re-
silience. We consider the messages and steps in each round.
Messages/round and steps/round denote number of messages
and steps among all replicas per round.

and static security only.
PACE ensures that as long as there are just f +1 replicas,

instead of 2f + 1 replicas, propose 1, then a correct replica
that terminates for the instance would decide 1 and the
corresponding transactions would be delivered. The powerful
property implies a fast path for consensus: while PACE was
designed for RABA with expected constant rounds, even with
local coin based RABA, the protocol will on average terminate
in a single RABA round with high probability.

Thus, our strategy is to reduce IT BFT to RABA with
local coins and then to ABA with local coins. As reported in
almost all asynchronous BFT protocols [49], [41], [72], ABA
is the major performance bottleneck. Our first goal is to design
efficient local coin based ABA protocols.
Efficient local coin based ABA. To our knowledge, only two
local coin based ABA protocols have been proposed: Ben-Or’s
ABA [11] assuming n > 5f , and Bracha’s ABA [14] assuming
optimal resilience (the most efficient such protocol for nearly
three decades).

Table II shows two novel local coin based ABA protocols
that we introduce in the paper: Cubic-ABA and Quadratic-
ABA. Cubic-ABA is easy to understand and implement, and
can be viewed as an optimized version of Bracha’s ABA. It
involves n parallel RBC instances in only one phase of the
protocol. Accordingly, Cubic-ABA has 7 steps per round in
the worst case, while Bracha’s ABA uses 12 steps, almost
doubling the number of steps of Cubic-ABA.

Quadratic-ABA adopts a new design, having 4 or 5 steps
per round. The key is to replace n RBC instances (with O(n3)
messages) used in Cubic-ABA and Bracha’s ABA with two-
step all-to-all communication. As a result, Quadratic-ABA is
the first local coin based ABA that achieves O(n2) message
complexity per round.
Tackling a liveness issue for RABA. We have carefully
designed Cubic-RABA and Quadratic-RABA that are as effi-
cient as Cubic-ABA and Quadratic-ABA, respectively. Unlike
prior transformations following a generic approach in [72],
we identify and tackle a subtle liveness problem arising when
transforming Quadratic-ABA to Quadratic-RABA. The issue
we identify demonstrates the subtlety of transforming ABA
to RABA, and once again underlines the importance of a full
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protocol reference implementation RBC RABA authenticated channels

WaterBear WaterBear-C Bracha’s RBC [15] Cubic-RABA (this paper) HMAC∗

WaterBear-Q Bracha’s RBC [15] Quadratic-RABA (this paper) HMAC∗

WaterBear-QS WaterBear-QS-C CT RBC [20] Cubic-RABA (this paper) HMAC
WaterBear-QS-Q CT RBC [20] Quadratic-RABA (this paper) HMAC

Table III: WaterBear-QS and WaterBear instantiations. ∗HMAC is quantum secure but not IT secure; we simply used HMAC
in our reference implementation for WaterBear to demonstrate the overhead of WaterBear itself, because all other protocols
introduced in this paper use HMAC for authentication. As in PACE, both WaterBear-QS and WaterBear have a fast path allowing
the protocol to terminate in O(log n) time. As shown in PACE, the probability of triggering fast paths is high. WaterBear-C and
WaterBear-QS-C have O(n4) messages on average due to the usage of Cubic-RABA, while WaterBear-Q and WaterBear-QS-Q
have O(n3) messages on average due to the usage of Quadratic-RABA—matching those of HoneyBadger, BEAT, and PACE.

proof for fault-tolerant distributed protocols.
WaterBear: unbounded security and beyond. WaterBear
develops a family of protocols utilizing the PACE paradigm.
In particular, we use Cubic-RABA to build WaterBear-C and
Quadratic-RABA to build WaterBear-Q. Besides the critical IT
RABA protocols, WaterBear has two other major differences
compared to the prior PACE instantiation. First, we use an
IT RBC, the Bracha’s RBC, as the underlying RBC. Second,
to achieve unconditional security and adaptive security, we use
the technique of EPIC [56] to remove the threshold encryption
scheme used in the PACE paradigm.

WaterBear assumes authenticated channels only and has
all desirable properties a BFT protocol one could think of,
being optimally resilient, achieving unconditional security and
adaptive security, and not relying on trusted setup.
WaterBear-QS: no PKC and quantum security. We also
present a family of asynchronous BFT protocols—WaterBear-
QS, which does not achieve IT security but achieves quantum
security for both safety and liveness properties. The only differ-
ence between WaterBear and WaterBear-QS is that WaterBear-
QS additionally uses a collision-resistant hash function. Similar
to WaterBear, WaterBear-QS family also consists of two proto-
cols: WaterBear-QS-C and WaterBear-QS-Q, quantum secure
versions of WaterBear-C and WaterBear-Q, respectively.

What motivated us to design WaterBear-QS is a crucial
observation from our evaluation that RBC is another perfor-
mance bottleneck. One of our experiments shows that the size
of transactions matters significantly for the throughput. For
instance, we find the throughput using a 250B transaction is
about half of the throughput for 100B, a somewhat surprising
finding that has not been previously reported. As the ABA
phase does not carry bulk data in both cases, the difference
must be due to the RBC phase. Hence, WaterBear-QS uses
the CT RBC leveraging hash functions to reduce the protocol
communication [20]. As the hash function is the only crypto-
graphic tool used, WaterBear-QS is quantum secure.
A new asynchronous BFT platform and extensive eval-
uation under failures. Starting from HoneyBadgerBFT, ex-
isting efficient asynchronous BFT protocols, including BEAT,
Dumbo, and EPIC, use the HoneyBadgerBFT programming
framework using Python. We instead build a new plat-
form using Golang. Our platform implements WaterBear-C,
WaterBear-Q, WaterBear-QS-C, WaterBear-QS-Q, and BEAT
(one of the most efficient open-source asynchronous BFT
libraries) [41], [1].

With deployment in 5 continents, we show that our pro-
tocols offer comparable performance as the state-of-the-art
asynchronous BFT protocols, while achieving much stronger
security (IT or quantum security, adaptive security, and no

trusted dealer needed). We also design and evaluate various
failure and attack scenarios for the protocols implemented. Via
extensive experiments, all of our protocols are shown to be
highly robust against these failures and attacks.

While our primary goal is to build stronger BFT protocols,
WaterBear-QS-Q does offer consistently and significantly bet-
ter performance than BEAT (which is somewhat surprising).
ABA from weak common coins and perfect common coins.
By extending the technique of Quadratic-ABA, we can obtain
CC-ABA that works for both weak common coins (with a
constant probability all correct replicas obtain the same coin)
and perfect common coins. We describe ABA protocols using
common coins in Table IV and Table V: in both cases, CC-
ABA compares favorably with existing protocols. The results
are important: significant research has focused on how to
improve the concrete steps for ABA. Zhang and Duan recently
showed that the concrete steps of ABA protocols are vital
to the performance of asynchronous BFT: even a single step
improvement in ABA, the resulting BFT protocol could be
easily improved by, say, 2x [72]. CC-ABA with weak common
coins can be used to improve asynchronous distributed key
generation protocol of Abraham et al. [4] and VABA proto-
cols [59], [45], while CC-ABA with perfect common coins can
be used to improve various asynchronous BFT protocols using
ABA such as PACE and Dumbo, and the recent asynchronous
distributed key generation protocol (where the key is a field
element) requiring the good-case-coin-free property [37].

ABA (weak common coins) steps/round rounds
MMR15 [64, 2nd alg] 9 to 13 d+ 1

Crain [33, 1st alg] 5 to 7 d+ 1

CC-ABA (this work) 4 or 5 d+ 1

Table IV: ABA protocols using weak common coins.
Steps/round denotes number of steps per round. Rounds denote
the expected number of rounds. The total number of steps is
a product of steps/round and rounds. By weak common coins,
we mean all correct replicas output 0 with probability 1/d and
output 1 with probability 1/d where d is a constant and d ≥ 2.

Non-goals. We emphasize that our goal is not to build the
most efficient asynchronous BFT; instead, we, for the first time,
demonstrate IT and quantum secure protocols can offer com-
parable performance to practical BFT asynchronous protocols.

II. RELATED WORK

Asynchronous vs. partially synchronous BFT. Partially syn-
chronous BFT protocols never violate safety, but they achieve
liveness only when the network becomes synchronous [42].
As shown in [9], even for partially synchronous BFT protocols
focusing on robustness [7], [28], their performance may reduce
78%-99% in failures or attack scenarios. Additionally, partially
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ABA (common coins) steps/round rounds good-case-coin-free
MMR14 [63]⋆ 2 or 3 4 no

MMR15 [64, 2nd alg] 9 to 13 3 yes
Cobalt [60] 3 or 4 4 no

Crain [33, 1st alg] 5 to 7 3 yes
Crain [33, 2nd alg] 2 or 3† 4 no

Pillar [72] 2 or 3 4 no
CC-ABA (this work) 4 or 5 3 yes

Table V: ABA protocols using perfect common coins. ⋆The
protocol suffers from a liveness issue. †The second algorithm
of Crain relies high threshold common coins and is less
efficient than Pillar. Compared to Pillar, CC-ABA has the
good-case-coin-free property that is vital for the state-of-the-
art asynchronous distributed key generation protocol [37].

synchronous protocols may experience zero throughput with
a network scheduler [61]. Asynchronous BFT protocols, in
contrast, do not rely on any timing assumptions and are
intrinsically robust against various performance attacks.
IT BFT in partially synchronous environments. There exist
several partially synchronous BFT protocols that are IT secure
or can be made IT secure. In particular, PBFT (the journal
version) [26], PBFT (described in Castro’s PhD thesis) [25],
and Cachin’s formulation for PBFT [16] assume authenticated
channels but use cryptographic hash functions. These protocols
are quantum resistant but not IT secure. They can, however,
be modified to achieve IT security if removing the usage of
the hash functions. Recently, Stern and Abraham proposed IT
HotStuff, an IT secure, partially synchronous BFT protocol
that uses O(1) persistent storage and O(n2) messages, where
each message contains a constant number of words [70].
Adaptive vs. static security for BFT. Most asynchronous BFT
protocols implemented, including SINTRA, HoneyBadgerBFT,
BEAT, and Dumbo, defend against static adversary only.
These protocols rely critically on efficient but statically secure
threshold cryptography. EPIC is an asynchronous BFT that
uses adaptively secure threshold pseudorandom function (PRF)
to achieve adaptive security but is not as efficient as its stat-
ically secure counterparts. RITAS [62] contains an adaptively
secure asynchronous BFT (atomic broadcast) protocol, but as
it relies on inefficient local coin based ABA, it is less efficient
than other protocols in WAN or large-size networks. DAG-
Rider [52] achieves adaptive security if using adaptively secure
common coin protocols.

The situation for asynchronous environments is in sharp
contrast to that of partially synchronous BFT protocols, most
of which attain adaptive security [26], [39], [69], [47], [51],
[7], [28]. WaterBear achieves adaptive security and IT security
and significantly outperforms EPIC that is adaptively secure
but not IT secure.
Quantum safety (but no quantum liveness). A BFT protocol
is quantum secure, if its safety is quantum resistant (quantum
safety) and its liveness is quantum resistant (quantum live-
ness) [52]. DAG-Rider [52] achieves quantum safety, even if
when being instantiated using a cryptographic common coin
protocol (e.g., [18], [55]). The BKR protocol and their de-
scendants (e.g., HoneyBadgerBFT [61], MiB [57], PACE [72])
achieve quantum safety if using techniques from EPIC [56].
All the above-mentioned protocols, however, do not achieve
quantum liveness. Tusk [35] and Bullshark [46] are variants
of DAG-Rider; they extensively use signatures and hashes, and
achieve neither quantum safety nor quantum liveness.

(IT) Byzantine agreement. Byzantine agreement (BA) is a
central tool for both fault-tolerant distributed computing and
cryptography. The condition n ≥ 3f + 1 is both necessary
and sufficient for both synchronous and asynchronous BA
protocols [67]. The celebrated impossibility result of Fischer,
Lynch, and Paterson [44] implies that a randomized BA
protocol must have non-terminating executions. A BA protocol
may be (1−ϵ)-terminating, where correct replicas terminate the
protocol with an overwhelming probability, or almost-surely
terminating, where replicas terminate with probability one.

For our purpose, we focus on ABA protocols in the
IT setting with a computationally unbounded adversary. For
almost-surely ABA, Ben-Or’s ABA requires n ≥ 5f +1 [11],
while Bracha’s ABA [14] achieves optimal resilience. The two
protocols use local coins and require an exponential expected
running time. Feldman and Micali propose a BA protocol
having a constant expected running time in synchronous en-
vironments and extend it to build a polynomial-time ABA
protocol requiring n ≥ 4f + 1 [43]. Abraham, Dolev, and
Halpern [3] provide the first almost-surely ABA with poly-
nomial efficiency (concretely, O(n2) expected running time)
and optimal resilience. Bangalore, Choudhury, and Patra [10]
improve the expected running time of [3] by a factor of n.

For (1 − ϵ)-terminating ABA, Canetti and Rabin [24]
build an expected constant-round ABA protocol with optimal
resilience. Patra, Choudhury, and Rangan [66] build a more
efficient construction in terms of communication complexity.

Both almost-surely ABA and (1 − ϵ)-terminating ABA
follow the classic framework of Feldman and Micali [43]
that reduces ABA to asynchronous verifiable secret sharing
(AVSS). The framework uses AVSS to build common coins.
(The original idea of using common coin for ABA is due to
Rabin [68].) Unfortunately, the framework of using AVSS for
common coins is prohibitively expensive, as we have argued
in the introduction. Patra, Choudhury, and Rangan [66] also
propose an approach for sharing multiple secrets simultane-
ously. While such an approach is useful to build more efficient
multi-valued BA (MBA), it is unknown if it would yield
more efficient ABA protocols. While, for instance, the CNV
asynchronous BFT framework [32] does use MBA, it may run
O(n) consecutive MBA instances (which is inefficient).
IT and universally composable MPC. As one of the most
significant results in the area of cryptography and distributed
computing, Ben-Or, Goldwasser, and Wigderson [12] and
Chaum, Crépeau, and Damgård [27] provide generic feasibility
results for perfect (IT and error-free) MPC with adaptive
security. Kushilevitz, Lindell, and Rabin establish a framework
for the security of protocols in the IT setting under concurrent
composition [53]. Cohen, Coretti, Garay, and Zikas [29] pro-
vide a theoretic foundation for BA and MPC with probabilistic
termination in the UC framework [22]. Asynchronous proto-
cols in the UC framework are not guaranteed to (eventually)
terminate because the UC adversary can delay the computation
indefinitely. In light of this, Coretti, Garay, Hirt, and Zikas gen-
eralize the UC framework to the asynchronous fault-tolerant
computing setting [31].

III. SYSTEM MODEL AND DEFINITIONS

A. System and Threat Model

This section describes the system model for distributed
computing protocols, where f out of n replicas may fail
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arbitrarily (Byzantine failures). Unless specified otherwise, the
protocols we consider have the following properties:
• Optimal resilience: The protocols in this work assume f ≤

⌊n−1
3 ⌋, which is optimal. A (Byzantine) quorum is a set

of ⌈n+f+1
2 ⌉ replicas. For simplicity, we may assume n =

3f + 1 and a quorum size of 2f + 1.
• Asynchronous network: We consider completely asyn-

chronous systems making no timing assumptions on mes-
sage processing or transmission delays. In contrast, partially
synchronous systems assume that there exist an upper
bound on message processing and transmission delays but
the bound may be unknown to anyone [42].

• No dealer/trusted setup: We do not assume the existence
of a trusted dealer or trusted setup. Neither do we assume
there exists an interactive protocol for any public keys,
reference strings, or public parameters.

• Unbounded adversary: Depending on the capacities of the
adversary, a protocol may achieve computational security,
where the adversary is bounded and restricted to prob-
abilistic polynomial-time (PPT), or achieve information-
theoretic (IT) security, where the adversary is unbounded.
We have argued IT security is preferable compared to
computational security, but constructing IT secure protocols
is more challenging.

• Adaptive corruptions: Depending on how the adversary
decides to corrupt parties, there are two types of corrup-
tions: static corruptions and adaptive corruptions. In the
static corruption model, the adversary is restricted to choose
its set of corrupted replicas at the start of the protocol and
cannot change this set later on. An adaptive adversary can
choose its set of corrupted replicas at any moment during
the execution of the protocol, based on the information it
accumulated thus far (i.e., the messages observed and the
states of previously corrupted replicas). There is a strong
separation result that statically secure protocols are not
necessarily adaptively secure [23], [34].
All known asynchronous BFT protocols implemented as-

sume trusted setup, achieving computational security and static
security only. None of them achieve quantum security either.

For our protocols, we may associate each protocol instance
with a unique identifier id, tagging each messages in the
instance with id. If no ambiguity arises, we may simply omit
the identifiers.

B. Definitions and Background

BFT. In a BFT protocol, a replica a-delivers (atomically
deliver) transactions, each submitted by some client. The client
computes a final response to its submitted transaction from the
responses it receives from replicas. We consider the following
properties:
• Agreement: If any correct replica a-delivers a transaction

tx, then every correct replica a-delivers tx.
• Total order: If a correct replica a-delivers a transaction tx

before a-delivering tx′, then no correct replica a-delivers a
transaction tx′ without first a-delivering tx.

• Liveness: If a transaction tx is submitted to all correct
replicas, then all correct replicas eventually a-deliver tx.

Asynchronous binary Byzantine agreement (ABA). An
ABA protocol is specified by propose and decide. Each replica
proposes an initial binary value (called vote) for consensus and
replicas will decide on some value. ABA should satisfy the

following properties:
• Validity: If all correct replicas propose v, then any correct

replica that terminates decides v.
• Agreement: If a correct replica decides v, then any correct

replica that terminates decides v.
• Termination: Every correct replica eventually decides

some value.
• Integrity: No correct replica decides twice.

RABA. Reproposable ABA (RABA) is a new distributed
computing primitive introduced in PACE [72]. In contrast to
conventional ABA protocols, where replicas can vote once
only, RABA allows replicas to change their votes. Formally, a
RABA protocol tagged with a unique identifier id is specified
by propose(id, ·), repropose(id, ·), and decide(id, ·), with the
input domain being {0, 1}. For our purpose, RABA is “biased
towards 1.” Each replica can propose a vote v at the beginning
of the protocol. Each replica can propose a vote only once. A
correct replica that proposed 0 is allowed to change its mind
and repropose 1. A replica that proposed 1 is not allowed
to repropose 0. If a replica reproposes 1, it does so at most
once. A replica terminates the protocol identified by id by
generating a decide message. RABA (biased toward 1) satisfies
the following properties:
• Validity: If all correct replicas propose v and never repro-

pose v̄, then any correct replica that terminates decides v.
• Unanimous termination: If all correct replicas propose v

and never repropose v̄, then all correct replicas eventually
terminate.

• Agreement: If a correct replica decides v, then any correct
replica that terminates decides v.

• Biased validity: If f + 1 correct replicas propose 1, then
any correct replica that terminates decides 1.

• Biased termination: Let Q be the set of correct replicas.
Let Q1 be the set of correct replicas that propose 1 and
never repropose 0. Let Q2 be correct replicas that propose
0 and later repropose 1. If Q2 ̸= ∅ and Q = Q1 ∪Q2, then
each correct replica eventually terminates.

• Integrity: No correct replica decides twice.
Validity is slightly different from those for ABA. They

are modified to accommodate the RABA syntax. Integrity is
defined to ensure RABA decides once and once only.

Unanimous termination and biased termination are care-
fully introduced to help achieve RABA termination in certain
scenarios. External operations would have to force the protocol
to meet these termination conditions.

Biased validity in RABA requires that if f+1 replicas, not
simply all correct replicas, propose 1, then a correct replica
that terminates decides 1. The property guarantees the PACE
framework to have sufficient transactions delivered.
RBC. A Byzantine reliable broadcast (RBC) protocol [36], [6],
[15], [20] is specified by r-broadcast and r-deliver such that
the following properties hold:
• Validity: If a correct replica p r-broadcasts a message m,

then p eventually r-delivers m.
• Agreement: If some correct replica r-delivers a message

m, then every correct replica eventually r-delivers m.
• Integrity: For any message m, every correct replica r-

delivers m at most once. Moreover, if the sender is correct,
then m was previously r-broadcast by the sender.
Bracha’s broadcast [14] has a bandwidth of O(n2|m|) and

is IT secure, and CT RBC due to Cachin and Tessaro [20]
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uses hash functions (with output length λ) to reduce the
bandwidth to O(n|m| + λn2 log n). Recent works proposed
various IT RBC and RBC protocols using hash functions
(quantum secure) with lower communication [36], [5].
PACE framework. PACE uses RBC and RABA in a black-
box manner to construct efficient asynchronous BFT. The
framework allows all ABA instances to run in parallel, re-
moving a well-known bottleneck in the original framework of
Ben-Or, Kemler, and Rabin [13]. PACE also provides a fast
path for consensus, allowing the protocol to terminate using a
single RABA round. It is an interesting research problem to
improve RABA (and the underlying ABA) protocols in terms
of message and communication complexity.
Steps, phases, and rounds. In asynchronous environments,
the network delay is unbounded. To measure the latency of
asynchronous protocols, we use the standard notion of asyn-
chronous steps [24], where a protocol runs in x asynchronous
steps if its running time is at most x times the maximum
message delay between honest replicas during the execution.

We also use the notion of phases for ease of description,
where a phase in a protocol consists of a fixed number of
steps. When describing some of our protocols, we may divide
a protocol into several phases, each of which has several steps.

In this paper, the notion of rounds is restricted to ABA
protocols: an ABA protocol proceeds in rounds, where an ABA
round consists of a fixed number of steps. For instance, local
coin ABA protocols terminates in expected exponential rounds,
while ABA assuming common coins (including CC-ABA we
introduce in this paper) terminates in expected constant rounds.
An ABA round may consist of several phases and each phase
consists of several steps.

IV. ABA FROM LOCAL COINS AND COMMON COINS

The state-of-the-art local coin based ABA protocol,
Bracha’s ABA [14], has O(n3) messages and 12 steps in each
round. We design two new ABA protocols from local coins,
Cubic-ABA and Quadratic-ABA, with two goals in mind—
being more efficient than Bracha’s ABA and being compatible
with RABA.

We begin with the simpler one, Cubic-ABA, that achieves
the same message complexity as Bracha’s ABA but has only 7
steps in each round. Cubic-ABA admits an clean and intuitive
proof of correctness. We then present Quadratic-ABA that
reduces the messages from O(n3) to O(n2) and reduces the
number of steps to 5 in each round. The improvement is
significant, allowing WaterBear to attain the same average
message complexity as PACE—O(n3). Both Cubic-ABA and
Quadratic-ABA can be readily modified to be efficient RABA
protocols.

As an important by-product, extending the idea of
Quadratic-ABA and assuming the existence of (weak or per-
fect) common coins, we are able to present ABA protocols that
have an expected constant rounds and outperform the state-
of-the-art ABA protocols, as shown in Table IV and Table V
in Sec. I.

A. Cubic-ABA

Figure 1 describes the pseudocode of Cubic-ABA and Fig-
ure 2 illustrates the workflow. Cubic-ABA uses the broadcast
primitive of best-effort broadcast and the r-broadcast and r-
deliver primitives of RBC. The protocol proceeds in rounds,
beginning with round 0. Each round consists of three phases.

01 initialization
02 r ← 0 {round}
03 func propose(vinput)
04 iv0 ← vinput {set input for round 0}
05 start round 0
06 round r
07 broadcast pre-voter(ivr) {� phase 1}
08 upon receiving pre-voter(v) from f + 1 replicas
09 if pre-voter(v) has not been sent, broadcast pre-voter(v)
10 upon receiving pre-voter(v) from 2f + 1 replicas {� phase
2}
11 bsetr ← bsetr ∪ {v}
12 wait until bsetr ̸= ∅
13 if main-voter() has not been sent
14 broadcast main-voter(v) where v ∈ bsetr
15 upon receiving n−f main-voter() such that for each received
main-voter(b), b ∈ bsetr {� phase 3}
16 if there are n− f main-voter(v)
17 r-broadcast final-voter(v)
18 else r-broadcast final-voter(∗)
19 upon r-delivering n − f final-voter() such that for each
final-voter(v), v ∈ bsetr; for each final-voter(∗), bsetr = {0, 1}
20 if there there are n− f final-voter(v)
21 ivr+1 ← v, decide v
22 else if there are f + 1 final-voter(v)
23 ivr+1 ← v
24 else
25 c← Random() {obtain local coin}
26 ivr+1 ← c
27 r ← r + 1

Figure 1: Cubic-ABA. The code for pi. v ∈ {0, 1}.

RBC0

RBC1

RBC2

RBC3

1

0

1

1

1

pre-vote:
0 or 1

main-vote:
0 or 1

final-vote:
v or  

accept any value accept main-
vote(v) if v is in 

bset

accept final-vote(v) 
if v is in bset

*

Figure 2: The workflow of Cubic-ABA.

In the first phase, a replica pi broadcasts a pre-voter(ivr)
message, where ivr ∈ {0, 1} is the input value of pi for round
r (ln 07). At ln 08-09, if pi receives f+1 pre-voter(v) for some
v ∈ {0, 1} and has not previously broadcast pre-voter(v), it
also broadcasts pre-voter(v).

At ln 10-14, pi enters the second phase. If pi receives 2f+1
pre-voter(v), it adds v to its bsetr, a set consisting only 0 and
1 (ln 10-11). Letting v be the first value added to bsetr for pi,
pi broadcasts a main-voter(v) message (ln 12-14).

In the third phase, a correct replica pi accepts a
main-voter(v) message only if v has already been added
locally to bsetr (ln 15). If pi has received n−f main-voter(v),
pi r-broadcasts a final-voter(v) message (ln 16-17). Other-
wise, pi r-broadcasts final-voter(∗), where ∗ is a distinguished
symbol that is neither 0 nor 1 (ln 18).

A correct pi accepts a final-voter() message, if one of the
following two conditions holds (ln 23):
• For a final-voter(v) message with v ∈ {0, 1}, v has been
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added to bsetr for pi.
• For a final-voter(∗) message, bsetr contains both 0 and 1.

Upon r-delivering n− f valid final-voter() messages, we
distinguish three cases:
• Ln 20-21: If pi r-delivers n−f valid final-voter(v) for the

same v ∈ {0, 1}, pi decides v and uses v as ivr+1 to enter
the next round. Each correct replica that decides in round r
continues for one more round (up to the final-voter() step)
and terminates the protocol.

• Ln 22-23: If pi r-delivers at least f+1 valid final-voter(v)
for some v ∈ {0, 1}, pi uses v as input for the next round.

• Ln 24-26: Otherwise, a replica generates a local random
coin and uses it as input for the next round.

Intuition and discussion. Our motivation for Cubic-ABA is
to reduce the number of parallel RBCs in Bracha’s ABA. We
recall Bracha’s ABA in Appendix A. In each round, Bracha’s
ABA has three phases, where in each phase, replicas run n
parallel RBCs, with 12 steps and O(n3) messages.

In our approach, the first two phases of Cubic-ABA re-
semble those of common coin based ABA protocols [72],
[63], [33], [60], [64], where we ask replicas to broadcast their
values. In particular, the first phase ensures that all correct
replicas eventually acknowledge the same set of values bsetr;
the second phase ensures that no two correct replicas will
vote for opposite values in the third phase, though one correct
replica may vote for b ∈ {0, 1} and one may vote for ∗ (a
distinguished vote). Accordingly, we do not have to rely on
RBC for the first two phases, as our first two phases already
guarantee that correct replicas will not vote for conflicting
values for the third phase.

In the third phase, we need to ensure that if a correct replica
receives n−f votes (i.e., final-voter(v)) for the same v in the
same phase, any correct replica will either decide v or vote for
v in the following round. Note for the case where f+1 correct
replicas vote for v and f correct replicas vote for ∗, we need to
guarantee that if a correct replica receives n−f final-voter(v),
any correct replica will receive at least f + 1 final-voter(v)
and therefore vote for v in the following round. Thus, we rely
on RBC, ensuring that all correct replicas eventually receive
consistent values, even in the presence of Byzantine replicas.

As a result, the number of n parallel RBC instances is 1
instead of 3, and the number of steps is reduced from 12 to 7.

B. Quadratic-ABA

In Quadratic-ABA, we replace the only parallel RBC phase
used in Cubic-ABA using a novel two-step all-to-all broadcast.
The goal is to ensure that at the end of each round, if a correct
replica receives n−f matching votes for a value v, any correct
replica will receive either n− f votes for v or at least f + 1
matching v. This will guarantee that all correct replicas will
vote for v in the following round.

The pseudocode of Quadratic-ABA is shown in Figure 3.
The Quadratic-ABA protocol is round-based, starting from
round 0. In each round, there are four phases—pre-voter(),
voter(), main-voter(), and final-voter(), as shown in Figure 4.
The pre-voter() and voter() phases (ln 07-14) are similar to
the pre-voter() and main-voter() phases in Cubic-ABA. In
the first phase, every replica pi broadcasts a pre-voter(ivr)
message, where ivr is the value pi votes for in round r (ln 07).
After receiving f + 1 pre-voter(v) and pi has not previously
broadcast pre-voter(v), pi also broadcasts pre-voter(v) (ln 08-

01 initialization
02 r ← 0 {round}
03 func propose(vinput)
04 iv0 ← vinput {set input for round 0}
05 start round 0
06 round r
07 broadcast pre-voter(ivr) {� phase 1}
08 upon receiving pre-voter(v) from f + 1 replicas
09 if pre-voter(v) has not been sent, broadcast pre-voter(v)
10 upon receiving pre-voter(v) from 2f + 1 replicas {� phase
2}
11 bsetr ← bsetr ∪ {v}
12 wait until bsetr ̸= ∅
13 if voter() has not been sent
14 broadcast voter(v) where v ∈ bsetr
15 upon receiving n − f voter() such that for each voter(v),
v ∈ bsetr {� phase 3}
16 if there are n− f voter(v)
17 broadcast main-voter(v)
18 else broadcast main-voter(∗)
19 upon receiving n − f main-voter() such that for each
main-voter(v), at least f + 1 voter(v) have been received and
for each main-voter(∗), bsetr = {0, 1} {� phase 4}
20 if there there are n− f main-voter(v)
21 broadcast final-voter(v)
22 else broadcast final-voter(∗)
23 upon receiving n − f final-voter() such that for each
final-voter(v), at least f + 1 main-voter(v) have been received
and for each final-voter(∗), bsetr = {0, 1}
24 if there there are n− f final-voter(v)
25 ivr+1 ← v, decide v
26 else if there are only final-voter(v) and final-voter(∗)
27 ivr+1 ← v
28 else
29 c← Random() {obtain local coin}
30 ivr+1 ← c
31 r ← r + 1

Figure 3: The Quadratic-ABA protocol. The code for pi.

Figure 4: The workflow of Quadratic-ABA.

09). At ln 10-11, upon receiving n− f pre-voter(v), pi adds
v to bsetr. For the first value v added to bsetr, pi broadcasts
a voter(v) message (ln 12-14).

For each voter(v) message, pi accepts it only if v has been
added to bsetr. Upon receiving n− f voter() messages, one
of the following two conditions holds.
• Ln 16-17: If pi receives n − f voter(v) messages, it

broadcasts a main-voter(v) message.
• Ln 18: Otherwise, pi broadcasts a main-voter(∗) message.

Every correct replica pi accepts a main-voter(v) message
only if pi has received f+1 voter(v) messages. Every correct
replica accepts a main-voter(∗) message only if bsetr =
{0, 1}. Upon receiving n − f main-voter() messages, one of
the following two conditions holds.
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• Ln 20-21: If pi receives n− f main-voter(v) messages, it
broadcasts a final-voter(v) message.

• Ln 22: Otherwise, pi broadcasts final-voter(∗) message.
Every correct replica accepts a final-voter(v) message only

if it has received f+1 main-voter(v) messages. Every correct
replica accepts a final-voter(∗) message only if bsetr = {0, 1}.
Upon receiving n − f final-voter() messages, there are three
cases:
• Ln 24-25: If pi receives n− f final-voter(v), it decides v

and also sets ivr+1 as v. It participates in the protocol for
one more round and terminates the protocol.

• Ln 26-27: If pi receives n− f final-voter() messages that
carry only value v and ∗, it uses v for round r + 1.

• Ln 28-30: Otherwise, pi generates a local random coin and
uses it as input for the next round.

Intuition and discussion. The pre-voter() phase and voter()
phase are similar to the pre-voter() phase and the main-voter()
phase in Cubic-ABA. In Quadratic-ABA, we use the
main-voter() phase and the final-voter() phase to replace the
parallel RBC phase of Cubic-ABA. Accordingly, Quadratic-
ABA achieves O(n2) messages and O(n2) communication.

Our goal is to guarantee that if a correct replica re-
ceives n − f final-voter(v), any correct replica will set
ivr+1 as v. First, if a correct replica sends main-voter(v),
no correct replica will send main-voter(v̄) (which we prove
in Lemma 13 in Appendix D). In particular, if a correct
replica sends main-voter(v), it must have received n − f
voter(v). If another correct replica sends main-voter(v̄), at
least n − f replicas have sent voter(v). Therefore, at least
one correct replica has sent both voter(v) and voter(v̄),
contradicting the fact that each correct replica only sends
a single voter() message in each round. Furthermore, if a
correct replica sends final-voter(v), no correct replica will
send final-voter(v̄) or even accept final-voter(v̄) from other
replicas (Lemma 14 and Lemma 19). Briefly speaking, this
is because if a correct replica accepts final-voter(v̄), at least
one correct replica has sent main-voter(v̄). Meanwhile, if
a correct replica accepts final-voter(v), at least one correct
replica has sent main-voter(v), contradicting Lemma 13.
Hence, at the end of each round, if a correct replica receives
only final-voter(v1) and final-voter(∗), another correct replica
receives only final-voter(v2) and final-voter(∗), it holds that
v1 = v2. This result is crucial for agreement and termination.

Furthermore, if a correct replica decides v in round r, it
must have received n − f final-voter(v). Among them, at
least f + 1 correct replicas have sent final-voter(v). With
3f + 1 replicas in total, there are at most 2f final-voter(v̄)
or final-voter(∗). Hence, every correct replica receives at
least one final-voter(v). As no correct replica will ac-
cept final-voter(v̄), every correct replica will only have
final-voter(v) and final-voter(∗). Thus, every correct replica
either decides in round r, or enters round r+1 and sets ivr+1

to v. Doing so ensures agreement.

C. CC-ABA

Both Cubic-ABA and Quadratic-ABA can be transformed
to ABA from weak common coins [24], [65] and perfect
common coins. Here by weak common coins, we mean that
all correct replicas output 0 with probability 1/d and output
1 with probability 1/d where d is a constant and d ≥ 2, and
the probability that correct replicas obtain different values is

(d−2)/d. By perfect common coins, we mean that all correct
replicas always output the same random coin. Note perfect
coins are a special case of weak coins (by setting d = 2).

As Quadratic-ABA is more efficient, we here focus on
Quadratic-ABA. Our main result is that by replacing local
coins of Quadratic-ABA with weak (or perfect) common
coins, we immediately obtain CC-ABA terminating in O(1)
time. CC-ABA reduces the expected number of steps of prior
constructions, as shown in Table IV and Table V. Note that
ABA is the major bottleneck in asynchronous BFT protocols
as reported in [41], [49], [48]. The improvement is significant
and has practical implications, as the recent work of PACE
has shown that even a single step improvement can lead to a
drastic performance improvement (for instance, easily 2x) in
BFT protocols [72]. We prove the correctness of CC-ABA in
Appendix E.

V. RABA FROM LOCAL COINS

As shown in PACE [72], the PACE framework with RABA
significantly outperforms the conventional BKR diagram and
enables a fast path for termination. Our goal here is to use local
coin based ABA to design RABA without trusted setup. We
use Cubic-ABA and Quadratic-ABA to build Cubic-RABA and
Quadratic-RABA, respectively. Here, we focus on Quadratic-
RABA and present Cubic-RABA in Appendix B.

A. The Subtlety of Building Quadratic-RABA

PACE introduced a general approach to converting ABA to
RABA [72]. Following their approach, we present Quadratic-
RABA in Figure 5. Quadratic-RABA is identical to Quadratic-
ABA except the first round (round 0), where we make the
following changes. First, we use a propose() event and a re-
propose() event (ln 03-07). Upon propose(v), a replica pi starts
round 0 and executes the broadcast-vote(v) function. Upon
repropose(1) event, regardless of which round a replica is in,
pi still executes the broadcast-vote(v) function. The propose()
and repropose() events are crucial for biased termination. So
if a quorum of correct replicas either propose 1 or repropose
1, the protocol will eventually terminate.

Second, in the broadcast-vote(v) function, replica pi
broadcasts a pre-vote0(v) message (ln 09). At ln 10-14, if
v = 1, pi immediately adds 1 to bset0, and broadcasts
vote0(1), main-vote0(1), and final-vote0(1).

Third, the coin value in round 0 is set to 1 (ln 38).
The second and the third modifications guarantee both biased
validity property and a fast path of terminating in only one
step. Namely, if f + 1 correct replicas propose 1, no correct
replica will receive 2f +1 final-vote0(0). As we will show in
the proof, every correct replica will either directly decide 1 or
set iv1 as 1, so all correct replicas decide within two rounds.
Furthermore, our protocol has a fast path: if all correct replicas
propose 1, they will directly send vote0(1), main-vote0(1),
final-vote0(1), allowing correct replicas to decide in one step.

The above modifications largely follow the generic trans-
formation. We find that these modifications are sufficient for
a secure Cubic-ABA, just as all known ABA protocols that
can be transformed into their secure RABA counterparts (as
shown in [72]). Surprisingly and unexpectedly, we find that for
Quadratic-ABA, however, there is still a subtle liveness issue
for round 0. We illustrate the issue via an example. Suppose f
correct replicas propose 1 and f + 1 correct replicas propose
0. The f replicas directly broadcast vote0(1), main-vote0(1),
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01 initialization
02 r ← 0 {round}
03 func propose(v)
04 broadcast-vote(v)
05 start round 0
06 func repropose(v)
07 broadcast-vote(v)
08 func broadcast-vote(v)
09 if pre-vote0(v) has not been sent, broadcast pre-vote0(v)
10 if v = 1
11 bset0 ← bset0 ∪ {1}
12 if vote0() has not been sent, broadcast vote0(1)
13 if main-vote0() has not been sent, broadcast main-vote0(1)
14 if final-vote0() has not been sent, broadcast final-vote0(1)
15 round r
16 if r > 0, broadcast pre-voter(ivr)
17 upon receiving pre-voter(v) from f + 1 replicas
18 if pre-voter(v) has not been sent, broadcast pre-voter(v)
19 upon receiving pre-voter(v) from 2f + 1 replicas
20 bsetr ← bsetr ∪ {v}
21 wait until bsetr ̸= ∅
22 if voter() has not been sent
23 broadcast voter(v) where v ∈ bsetr
24 upon receiving n − f voter() such that for each received
voter(b), b ∈ bsetr
25 if there are n− f voter(v)
26 broadcast main-voter(v)
27 else broadcast main-voter(∗)
28 upon receiving n − f main-voter() such that for each
main-voter(v): 1) if r = 0, v ∈ bsetr , 2) if r > 0, at
least f + 1 voter(v) have been received; for each main-voter(∗),
bsetr = {0, 1}
29 if there there are n− f main-voter(v)
30 broadcast final-voter(v)
31 else broadcast final-voter(∗)
32 upon receiving n − f final-voter() such that for each
final-voter(v), 1) if r = 0, v ∈ bsetr , 2) at least f +
1 main-voter(v) have been received; for each final-voter(∗),
bsetr = {0, 1}
33 if there there are n− f final-voter(v)
34 ivr+1 ← v, decide v
35 else if there are only final-voter(v) and final-voter(∗)
36 ivr+1 ← v
37 else
38 if r = 0, c← 1 {coin in the first round is 1}
39 else c← Random() {obtain local coin}
40 ivr+1 ← c
41 r ← r + 1

Figure 5: The Quadratic-RABA protocol. The code for pi.

and final-vote0(1). Even if the f + 1 correct replicas that
proposed 0 may later repropose 1, they may have already sent
vote0(0), main-vote0(0), and final-vote0(0). In this case, no
correct replica will accept final-vote0(1) as they do not receive
f+1main-vote0(1). In summary, the issue is in essence caused
by the fact that each correct replica accepts a main-voter(v)
message only if it has previously received f +1 voter(v), and
each correct replica accepts a final-voter(v) message only if
it has previously received f + 1 main-voter(v).

To resolve the above issue, we introduce another change to
round 0 of the protocol. In particular, we relax the conditions
for round 0: for each main-voter(v) (ln 28) and final-voter(v)
(ln 32), a correct replica accepts it as long as v ∈ bset0. With
this modification, the set of f+1 correct replicas that proposed
0 will repropose 1, so every correct replica will eventually put

01 upon selecting mi for pi using the technique of EPIC
02 r-broadcast([e, i],mi) for RBCi

03 upon r-deliver([e, j],mj) for RBCj

04 if RABAj has not been started
05 propose([e, j], 1) for RABAj

06 else
07 repropose([e, j], 1) for RABAj

08 upon delivery of n− f RBC instances
09 for RABA instances that have not been started
10 propose([e, j], 0)
11 upon decide([e, j], v) for any value v for all RABA instances
12 let S be set of indexes for RABA instances that decide 1
13 wait until r-deliver([e, j],mj) for all RABAj where j ∈ S
14 a-deliver(∪j∈S{mj})

Figure 6: The WaterBear family (WaterBear-C and WaterBear-
Q). The code for replica pi in epoch e. WaterBear uses
Bracha’s broadcast as the underlying the RBC. WaterBear-C
uses Cubic-RABA as the underlying RABA and WaterBear-
Q uses Quadratic-RABA as the underlying RABA. WaterBear
uses the technique of EPIC to select transactions.

1 in pre-vote.(0) Hence, every correct replica will eventually
accept main-vote0(1) and final-vote0(1).

Our result underlines the subtlety of constructing RABA
from ABA and the importance of a full proof for a new
protocol. We prove the correctness of Quadratic-RABA in
Appendix G.

VI. THE WATERBEAR FAMILY

This section describes our asynchronous BFT protocols—
WaterBear (WaterBear-C and WaterBear-Q), and WaterBear-
QS (WaterBear-QS-C, and WaterBear-QS-Q). All the protocols
are quantum secure and WaterBear-C and WaterBear-Q are
additionally information-theoretically secure.

A. The WaterBear Protocols

WaterBear follows the PACE paradigm but uses the trick in
EPIC [56] to avoid the usage of threshold encryption (needed
for achieving adaptive security). In particular, WaterBear uses
r-broadcast and r-deliver primitives of Bracha’s broadcast,
and propose, repropose and decide primitives of WaterBear
RABA. Figure 6 depicts the pseudocode of WaterBear. In
terms of transaction selection strategy, we follow EPIC and
ask replicas to select random transactions in plaintext for most
epochs and periodically switch to the FIFO selection, where
replicas maintain a log of transactions according to the order
transactions are received and replicas select the first group of
transactions in the buffer as input. As shown in EPIC, the
approach shares similar performance as the random selection
approach used in HoneyBadgerBFT and BEAT. Following the
PACE paradigm, for each epoch e, WaterBear consists of n
parallel RBC instances and n parallel RABA instances. In the
RBC phase, each replica pi r-broadcasts a proposal mi for
RBCi. If pi r-delivers a proposal from RBCj , it proposes 1
for RABAj . Upon delivery of n−f RBC instances, instead of
waiting for n−f RABA instances to terminate, pi proposes 0
for all RABA instances that have not been started. If pi later
delivers a proposal from some RBCj , it has proposed 0 for
RABAj , and has not terminated RABAj , it reproposes 1 for
RABAj . We let S be the set of indexes where RABAj decides
1. When all RABA instances terminate and all RBCi (i ∈ S)
instances are delivered, pi a-delivers ∪j∈S{mj}. The security
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Figure 7: Latency of the protocols.

of WaterBear directly follows from that of the PACE paradigm.
As we propose two RABA protocols Cubic-RABA and

Quadratic-RABA. We use Cubic-RABA to build WaterBear-
C and Quadratic-RABA to build WaterBear-Q.

B. The WaterBear-QS Protocols

We now describe WaterBear-QS, also consisting of two
asynchronous BFT protocols. We use Cubic-RABA to build
WaterBear-QS-C and Quadratic-RABA to build WaterBear-
QS-Q. WaterBear-QS does not achieve information-theoretic
security but achieves quantum security for both safety and
liveness properties. Prior to our work, no such BFT protocol
has been implemented. The difference between WaterBear and
WaterBear-QS is that WaterBear-QS leverages CT RBC [20]
to reduce the communication complexity of RBC. Jumping
ahead, we show the modification leads to a dramatic perfor-
mance improvement compared to WaterBear protocols.

VII. IMPLEMENTATION AND EVALUATION

Implementation. We implemented WaterBear-C, WaterBear-
Q, WaterBear-QS-C, and WaterBear-QS-Q in Golang. The
library involves more than 10,000 LOC for the protocol

implementations and about 1,000 LOC for evaluation.
All the protocols use authenticated channels, and

WaterBear-QS additionally uses a hash function. We use
HMAC to realize the authenticated channel. HMAC is quantum
secure but not IT secure; we used HMAC in our reference
implementation for WaterBear to demonstrate the overhead of
WaterBear itself, because all other protocols introduced in this
paper use HMAC for authentication. We use SHA256 as the
hash function. We use gRPC as the underlying communication
library.

All the protocols directly use RBC in their RBC phases.
WaterBear-C and WaterBear-QS-C additionally use RBC in
the ABA phase. For WaterBear-C and WaterBear-Q, we use
Bracha’s broadcast (which is IT secure) in the RBC phase. For
WaterBear-QS-C and WaterBear-QS-Q, we use CT RBC [20]
(using erasure coding and hash functions) in the RBC phase. In
ABA (the third phase) of WaterBear-C and WaterBear-QS-C,
we directly use Bracha’s broadcast, because in the ABA phase,
there is no bulk data (and no need to use erasure coding). To
implement CT RBC, we use a Golang Reed-Solomon code
library [2].

For comparison, we choose to implement BEAT-Cobalt in
our Golang library. BEAT [1], [41] was originally implemented
in Python 2.7 using MMR ABA [63]. We implement BEAT-
Cobalt, replacing MMR with Cobalt-ABA, as Cobalt ABA
addressed the liveness issue of MMR. There are several reasons
we chose BEAT-Cobalt as the baseline protocol. First, BEAT-
Cobalt is one of the most efficient open-source asynchronous
BFT implementations. As shown in PACE [72], BEAT-Cobalt
is more efficient than Dumbo [49] for n ≤ 46. Second, all
WaterBear protocols achieve adaptive security and EPIC is
the only known adaptively secure asynchronous BFT protocol
implemented. EPIC has shown that BEAT-Cobalt significantly
outperforms EPIC in both LAN and WAN settings. Hence,
as long as we demonstrate the performance difference among
BEAT-Cobalt and our protocols, we can reasonably argue
which is the most efficient adaptively secure asynchronous
BFT protocol among EPIC, WaterBear, and WaterBear-QS-
C. Of course, EPIC neither achieves quantum security nor IT
security, and EPIC requires trusted setup.

Here are some other reasons why we choose not to (and
do not need to) compare with Dumbo and Tusk. Neither
protocols achieve any properties our protocols can achieve:
no adaptive security, relying on PKC, no quantum resistance,
and assuming trusted setup. Indeed, our goal is not to claim
the performance benefit of WaterBear protocols, but we aim
at refuting the conventional wisdom that quantum secure and
IT secure asynchronous BFT are not (yet) practical.
Overview of evaluation. We evaluate the performance of our
protocols on Amazon EC2 utilizing up to 61 virtual machines
(VMs) from different regions in five continents. We use both
t2.medium and m5.xlarge instances for our evaluation. The
t2.medium type has two virtual CPUs and 4GB memory and
the m5.xlarge has four virtual CPUs and 16GB memory. Unless
otherwise mentioned, we use m5.xlarge instances by default.
We deploy our protocols in both “LAN” and “WAN” settings.
In the LAN setting, the replicas are run in the same region of
EC2 (e.g., US Virginia), but these replicas may be located in
different physical datacenters. In the WAN setting, the replicas
are evenly distributed across different continents.

We conduct the experiments under different network sizes
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and contention levels (batch size). We use f to denote the
network size; in each experiment, we use 3f + 1 replicas
in total. We let b denote the contention level; in particular,
each replica proposes b transactions in each epoch. For each
experiment, we vary the batch size b from 1 to 25,000. For
each experiment, we report the average performance (for both
throughput and latency). We use two different transaction sizes.
We evaluate the performance of the protocols for transactions
with 100 bytes by default and evaluate that using 250 bytes
per transaction.

We assess the performance of the protocols under failure-
free and failure scenarios. While our failure-case evaluation is
not the first such evaluation for asynchronous BFT protocols,
the testbed we built aims to be comprehensive, encompassing
realistic failure and attack scenarios we can envision.

We (roughly) summarize our main results in the following:
• WaterBear-QS-C and WaterBear-QS-Q are about as effi-

cient as BEAT-Cobalt. The three protocols, however, offer
interesting trade-offs for different n’s. When n ≥ 16,
WaterBear-QS-Q is strictly better than WaterBear-QS-C
and BEAT-Cobalt (higher throughput and lower latency).

• We confirm that the bandwidth of RBC is one of the major
bottlenecks for the BKR framework and PACE framework.
WaterBear-QS-C, WaterBear-QS-Q, and BEAT-Cobalt (us-
ing bandwidth-efficient CT RBC) are about twice as ef-
ficient as WaterBear (using bandwidth-expensive Bracha’s
broadcast). Moreover, for all the protocols we evaluate, the
throughput with a transaction size of 100 bytes is more
than 2x the throughput with a transaction size of 250 bytes.
To put it differently, WaterBear-C and WaterBear-Q can be
easily made more efficient if using a more efficient IT RBC.

• All the four protocols we propose are highly robust against
various crash and Byzantine failures, just as BEAT-Cobalt.

A. Performance in Failure-Free Cases

Latency. We report the latency of the protocols in both
LAN and WAN settings for f = 1, 2, and 5 in Figure 7
for b = 1, 100, and 15,000. For b = 1 and b = 500,
WaterBear-C, WaterBear-Q, WaterBear-QS-C, and WaterBear-
QS-Q achieve lower latency than BEAT-Cobalt in both LAN
and WAN settings. Among the protocols, WaterBear-QS-Q
consistently achieves the lowest latency, mainly due to the
lower communication complexity in the RBC phase and lower
message complexity in the ABA phase.

For b = 15,000, WaterBear-QS-C, WaterBear-QS-Q, and
BEAT-Cobalt share similar performance. When f = 1, the
latency for WaterBear-QS-C, WaterBear-QS-Q, and BEAT-
Cobalt are about half of that for WaterBear-C and WaterBear-Q
in both LAN and WAN settings. As f increases, the difference
in latency among these protocols increases. When f = 5,
the latency of WaterBear-C and WaterBear-Q is around four
times as much as that for WaterBear-QS-C, WaterBear-QS-Q
and BEAT-Cobalt. This is expected, since as f increases, the
network bandwidth consumption for WaterBear is significantly
higher than the other protocols.

WaterBear-QS-Q has consistently lower latency than
WaterBear-QS-C, and WaterBear-QS-C has lower latency than
BEAT-Cobalt in both LAN and WAN settings. When f = 5
and b = 15000 in the WAN environment, the latency of
WaterBear-QS-C and WaterBear-QS-Q are 17.9% and 32.0%
lower than BEAT-Cobalt, respectively. The better performance

for WaterBear-QS is that WaterBear-QS utilizes a biased
ABA, causing the protocol to terminate faster. Furthermore,
WaterBear-QS-Q outperforms WaterBear-QS-C, as Quadratic-
ABA has lower message complexity than Cubic-ABA.

It is not surprising that all protocols achieve higher latency
in WANs than in LANs. We find the difference is more visible
when f is smaller and when b is smaller. For instance, for b =
1, the latency of WaterBear-C is 241.7% higher for f = 1 in
WANs compared to that in LAN but is only 12.8% higher for
f = 5. For b = 15,000, the latency of WaterBear-C is 81.3%
higher for f = 1 in WANs compared to that in LANs but is
only 3.9% higher for f = 5.
Throughput and scalability. We evaluate the throughput and
scalability for WaterBear-C, WaterBear-Q, WaterBear-QS-C,
WaterBear-QS-Q and BEAT-Cobalt by varying the network
size f from 1 to 20. Unless otherwise specified, all experiments
are conducted in the WAN setting running on m5.xlarge type
instances. We also report throughput vs. latency in Figure 8.

First of all, similar to the results for latency, the throughput
of WaterBear-C and WaterBear-Q are consistently lower than
the other protocols. As WaterBear-C (resp. WaterBear-Q) and
WaterBear-QS-C (resp. WaterBear-QS-Q) differ in RBC only,
RBC is clearly one performance bottleneck.

We assess the throughput of all five protocols for f = 1
as depicted in Figure 8b: the performance of WaterBear-QS-
C, WaterBear-QS-Q, and BEAT-Cobalt in WANs are very
close, though the peak throughput of WaterBear-QS-Q is
slightly higher in most experiments. We also conduct a separate
experiment in the LAN setting and evaluate the throughput,
as shown in Figure 8a. Unlike the results in WANs, the
throughput of BEAT-Cobalt in LANs is marginally higher
than WaterBear-QS-C and the throughput of WaterBear-QS-Q
is marginally higher than BEAT-Cobalt: the peak throughput
of BEAT-Cobalt is 2.3% higher than WaterBear-QS-C and
the peak throughput of WaterBear-QS-Q is 3.9% higher than
BEAT-Cobalt. The peak throughput of WaterBear-QS-C is 65.7
ktx/sec in LANs and 37.8 ktx/sec in WANs and the peak
throughput of WaterBear-QS-Q is 69.9 ktx/sec in LANs and
38.4 ktx/sec.

When f increases, the performance trend is slightly differ-
ent from the case for f = 1. In particular, when f = 5 and f =
10, the throughput of WaterBear-QS-C is consistently higher
than BEAT-Cobalt. When f = 20, the peak throughput of the
two protocols is again very close, the latency of WaterBear-
QS-C, however, is consistently higher than BEAT-Cobalt. The
performance of WaterBear-QS-Q is consistently higher than
the other protocols (higher throughput and lower latency).
The peak throughput of WaterBear-QS-Q is 23.0%, 47.4%,
and 27.4% higher than BEAT-Cobalt for f = 5, 10, and 20,
respectively. Meanwhile, the peak throughput of WaterBear-
QS-C is 6.0% and 17.4% higher than BEAT-Cobalt for f = 5
and 10, respectively. When f = 20, the peak throughput of
WaterBear-QS-C is only slightly lower than BEAT-Cobalt. The
evaluation results are mainly due to two factors: 1) the PACE
paradigm employed by WaterBear-QS-Q and WaterBear-QS-
C is more efficient and the BKR framework employed by
BEAT; 2) The Quadratic-ABA protocol used in WaterBear-
QS-Q achieves lower communication complexity than Cubic-
ABA (used in WaterBear-QS-C) and fewer expected number
of steps than Cobalt used in BEAT.
Performance on different types of VMs. Different from prior
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(a) Throughput in the LAN setting when f = 1.
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(b) Throughput in the WAN setting when f = 1.
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(c) Throughput vs Latency when f = 1.
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(d) Throughput vs Latency when f = 5.
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(e) Throughput vs Latency when f = 10.
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Figure 8: Throughput vs latency on m5.xlarge instances for f = 1 to f = 20.
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Figure 9: Performance of the protocols for f = 1, 2, and 5.

protocols (HoneyBadgerBFT, BEAT, Dumbo, EPIC) that all
evaluate the performance on t2.medium instances, we evaluate
the performance of the protocols using both t2.medium (t2 in
the figures) and m5.xlarge (m5 in the figures) instances. In
particular, we evaluate the throughput with b = 15,000 for
f = 1, f = 2, and f = 5, the results of which are shown

in Figure 9a. For all the protocols, the peak throughput on
m5.xlarge instances is about 2× that on t2.medium.
Performance with different transaction sizes. We also report
the throughput of the protocols by fixing b to 15,000 but
using different sizes of transactions (100 bytes and 250 bytes),
the results of which are shown in Figure 9b. For all the five
protocols, the performance using transaction size of 100 bytes
is consistently higher, being at least twice as efficient as that
with 250 bytes. The finding highlights the main bottleneck for
the protocols for large transaction sizes is RBC.

B. Performance under Failures

To assess the protocol performance under failures and
attacks, we carefully design various experiments as follows.
• S0: (failure-free) In this scenario, all replicas are correct.

S0 is the baseline scenario we use to compare with failure
scenarios.

• S1: (crash) In this scenario, we let f replicas crash by not
participating in the protocols.

• S2: (Byzantine; keep voting 0) In this scenario, we control
all f faulty replicas to keep voting for 0 in each step
of (R)ABA. For all the five protocols, doing so would
intuitively make fewer ABA and RABA instances decide 1
and would likely decrease the throughput of the protocols.
We aim to observe the throughput reduction in this scenario
compared to the failure-free scenario.

• S3: (Byzantine; flipping the (R)ABA input) In this
scenario, we let f replicas exhibit Byzantine behavior in
the (R)ABA phase. The strategy is to vote for a flipped
value in (R)ABA. In other words, in each (R)ABA step,
each Byzantine replica inputs b̄ when it should have input
b. Doing so could potentially force each (R)ABA instance to
experience more steps to terminate for all three protocols.
For WaterBear and WaterBear-QS, the strategy would, at
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Figure 10: Performance of the protocols in failure scenarios.

first glance, likely be more fruitful. For both protocols, a
RABA instance may terminate in round 0, thanks to the
biased validity property of RABA. The flipping strategy
illustrated above may make them not to decide in round
0 and force them to enter the second round of RABA,
where the two protocols start to query the local coins.
Jumping ahead, our experiment actually shows that the
flipping strategy S3 works slightly better than S2, but in
general is not destructive.
Note that we do not attempt to attack the RBC phase for all

these protocols, because RBC is highly robust during failures
and attacks (see, e.g., [30]).

We assess the failure-case performance for f = 1 (Fig-
ure 10a), f = 2 (Figure 10b), and f = 5 (Figure 10c).

Performance under crash failures (S1). When f = 1, Wa-
terBear family achieves higher throughput under crash failures
compared to that in the failure-free case. For WaterBear-QS-
C, WaterBear-QS-Q, and BEAT-Cobalt, the performance is
slightly lower under crash failures than those in the failure-
free scenario. The throughput of WaterBear-QS-C, WaterBear-
QS-Q, and BEAT-Cobalt are 3.0% lower, 6.7% lower, and
8.2% lower in the crash failure scenario than in the failure-
free scenario. For all other cases (other f ), all five protocols
achieve higher performance under crash failures compared to
that in the failure-free case. For instance, when f = 5, the
throughput of WaterBear-QS-C is 22.6% higher, the throughput
of WaterBear-QS-Q is 25.0% higher, and the throughput of
BEAT-Cobalt is 16.9% higher in the crash failure scenario.
This is mainly because under crash failures, the network
bandwidth consumption is much lower (about 33% lower) than
in the failure-free case. When f = 1, as the network bandwidth
consumption does not dominate the overhead, the performance
of WaterBear-QS-C, WaterBear-QS-Q, and BEAT-Cobalt un-
der crash failures is similar to that in failure-free cases. When
f = 2 and f = 5, the performance improvement under crash
failures for WaterBear-QS-C is higher than that of WaterBear-
QS-Q and BEAT-Cobalt. We believe this is partly because
WaterBear-QS-C involves multiple RBC instances (in both the
RBC phase and the ABA phase) and uses more bandwidth
than WaterBear-QS-Q and BEAT-Cobalt.
Performance under Byzantine failures. The performance
of all the protocols is slightly lower under Byzantine fail-
ures compared to the failure-free scenario and crash failure
scenario. The performance degradation of WaterBear-QS-C,
WaterBear-QS-Q, and BEAT-Cobalt may appear higher than
that of WaterBear-C and WaterBear-Q. This is actually because
the performance of WaterBear-C and WaterBear-Q is much
lower than the other two protocols. For WaterBear-QS-C, the
throughput is 10.9%-19.4% lower under Byzantine failures
compared to failure-free scenario. For WaterBear-QS-Q, the
throughput is 12.7%-27.9% lower under Byzantine failures.
In comparison, the throughput of BEAT-Cobalt is 0.5%-6.2%
under Byzantine failures. The higher performance degradation
for WaterBear-QS-C and WaterBear-QS-Q is due to the use of
local coins, as replicas start to use local coins in round r > 0,
the RABA protocol may decide in more rounds.
S2 vs. S3. The difference between S2 and S3 is that faulty
replicas broadcast 0 in S2 but broadcast the flipped value in
S3. For BEAT-Cobalt, the performance in S3 is higher for
f = 1 and f = 5 but lower for f = 2; the difference in all the
cases is not significant. In contrast, for WaterBear-QS-C and
WaterBear-QS-Q, the performance is consistently lower in S3

than S2. This is expected: first, Cobalt ABA uses common coin
and has O(1) time complexity, thereby being less sensitive to
the attack in S3. Second, as Cubic-ABA and Quadratic-ABA
use local coins, forcing replicas to receive flipped values may
drive replicas to receive both 0 and 1 such that the local coin
value will be used; when Cubic-ABA and Quadratic-ABA use
local coins, the protocols may have more rounds.

VIII. CONCLUSION

This paper designs and implements a family of asyn-
chronous BFT protocols that are information-theoretically se-
cure or quantum secure. Our protocols are also the first to
defend against adaptive corruptions while assuming no trusted
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dealers in completely asynchronous settings. Our experiments
demonstrate that protocols are efficient in both failure and
failure-free scenarios. In particular, one of our quantum se-
cure protocols, WaterBear-QC-Q, consistently outperforms the
state-of-the-art protocols that have much weaker security guar-
antees. We also contribute in different settings more efficient
ABA and RABA protocols that can be used to improve various
high-level Byzantine-resilient protocols.
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APPENDIX A
BRACHA’S ABA

We present Bracha’s ABA [14]. The pseudocode is shown
in Figure 11. Bracha’s ABA has three phases. In each phase,
each replica broadcasts its value via a RBC instance, i.e., there
are n parallel RBC instances in each of the three phases. As
the underlying RBC has O(n2) messages and 4 steps, Bracha’s
ABA has O(n3) messages and 12 steps in each round.

In Bracha’s ABA, every replica maintains a set vset

01 Initialization
02 r ← 0 {round}
03 func propose(v)
04 iv0 ← v
05 vset← {0, 1} {valid binary values that will be accepted}
06 start round 0
07 round r
08 r-broadcast pre-voter(ivr) {� phase 1}
09 upon r-delivering n − f pre-voter() such that for each
pre-voter(v), v ∈ vset {� phase 2}
10 if there are n− f pre-voter(v)
11 decide v
12 ivr+1 ← v
13 vset← {v}
14 else
15 v ← majority value in the set of pre-voter() messages
16 r-broadcast main-voter(v)
17 upon r-delivering n − f main-voter() such that for each
main-voter(v), v ∈ vset {� phase 3}
18 if there are at least n/2 main-voter(v)
19 vset← {v}
20 else
21 v ← {⊥}
22 vset← {0, 1}
23 r-broadcast final-voter(v)
24 upon r-delivering n − f final-voter() such that for each
final-voter(v), v ∈ vset; for each final-voter(∗), vset = {0, 1}
25 if there are at least 2f + 1 final-voter(v)
26 decide v
27 ivr+1 ← v
28 vset← {v}
29 else if there are f + 1 final-voter(v)
30 ivr+1 ← v
31 vset← {0, 1}
32 else
33 c← Random() {obtain local coin}
34 ivr+1 ← c
35 vset← {0, 1}
32 r ← r + 1

Figure 11: The Bracha’s ABA protocol [14]. The code for pi.

containing valid values. In each phase, every replica only
accepts messages that carry valid values. The valid values vset
must be congruent with the values each replica receives from
the previous phase (or last phase of the previous round). In the
first phase of the round 0, both 0 and 1 are considered valid. In
the second phase and the third phase, a value is added to vset
only if the replica receives the value from enough replicas.

In the first phase, every replica pi r-broadcasts a
pre-voter(ivr) message (ln 08), where ivr is the input value
of pi for round r.

In the second phase, pi waits for n − f pre-voter()
messages such that for each pre-voter(v), v ∈ vset. There
are two cases:
• Ln 10-13: If pi has received n− f pre-voter(v) for some
v ∈ {0, 1}, pi decides v and sets both vset and ivr+1 as
v. Replica pi continues for one more round and terminates
the protocol (up to either ln 10 or ln 25 before pi decides
some value again).

• Ln 14-15: Otherwise, pi sets v as the majority value in the
set of pre-voter() messages it receives. The set vset is not
changed, i.e., vset = {0, 1}.
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In both cases, pi r-broadcasts a main-voter(v) message (ln
16).

In the third phase, every replica pi waits for n − f valid
main-voter() messages (ln 17). There are two cases:
• Ln 18-19: If pi receives at least n/2 main-voter(v), it sets
vset as {v}.

• Ln 20-22: Otherwise, pi sets v as ∗ and vset as {0, 1}.
In both cases, pi r-broadcasts a final-voter(v) message (ln

23). Then every replica waits for n − f valid final-voter()
messages (ln 24). Note that final-voter(∗) is considered valid
only if vset = {0, 1}. There are three cases:
• Ln 25-28: If pi receives at least 2f + 1 final-voter(v), it

decides v and sets ivr+1 as v. Replica pi continues for one
more round (up to either ln 10 or ln 25) and terminates the
protocol.

• Ln 29-31: If pi receives at least f+1 final-voter(v), it sets
ivr+1 as v and vset as {v}.

• Ln 32-35: Otherwise, pi uses the local coin value as ivr+1

and vset as {0, 1}, i.e., pi accepts both 0 and 1 in the first
phase of the following round.

APPENDIX B
CUBIC-RABA

The pseudocode of Cubic-RABA protocol is shown in Fig-
ure 12. Cubic-RABA is identical to Cubic-ABA, except for
round 0 (the first round). We have made the following changes
for round 0. First, both propose() and repropose() events are al-
lowed. Upon the propose(v) event (ln 03), a replica pi executes
the broadcast-vote(v) function and starts round 0. Upon the
repropose(v) function (ln 06), pi executes broadcast-vote(v).
Note that upon a repropose() event, pi must have already
started the protocol and may even proceed to a round greater
than 0. In this case, regardless of which round the replica is
in, it execute the broadcast-vote(v) function and broadcasts
a pre-vote0(v) message.

Second, in the broadcast-vote(v) function (ln 08-13), pi
broadcasts a pre-vote0(v) message. If v = 1, pi adds 1 to
bset0 (ln 11). If pi has not previously broadcast main-vote0(),
it broadcasts main-vote0(1) (ln 12). If pi has not r-broadcast
final-vote0(), it r-broadcasts final-vote0(1) (ln 13). Further-
more, in round 0, if pi receives f + 1 pre-vote0(1) messages
and has not broadcast main-vote0() or final-vote0() (ln 18),
it also broadcasts main-vote0(1) (ln 20-21) and r-broadcasts
final-vote0(1) (ln 22-23).

Finally, the coin value for round 0 is set to 1 (ln 39). In
round r ≥ 1, Cubic-RABA is identical to Cubic-ABA.
Analysis. The proof of Cubic-RABA is shown in Appendix F.
We show that the changes we have made on top of Cubic-
ABA can transform Cubic-ABA into a RABA protocol. The
first change can ensure the biased termination property. In
particular, it guarantees that if a quorum of correct replicas
either directly propose 1 or propose 0 and later on repropose
1, the protocol will terminate. The second and the third
changes ensure the biased validity property. If f + 1 correct
replicas propose 1, they will directly add 1 to bset0, broadcast
pre-vote0(1), main-vote0(1), and r-broadcast final-vote0(1).
Namely, no correct replica can receive n − f main-vote0(0)
or r-broadcast final-vote0(0). Furthermore, no correct replica
can receive n − f final-vote0(0) or f + 1 final-vote0(0).
Furthermore, for the case where a correct replica uses the
local coin to enter the next round, the coin value is also

01 initialization
02 r ← 0 {round}
03 func propose(v)
04 broadcast-vote(v)
05 start round 0
06 func repropose(v)
07 broadcast-vote(v)
08 func broadcast-vote(v)
09 if pre-vote0(v) has not been sent, broadcast pre-vote0(v)
10 if v = 1
11 bset0 ← bset0 ∪ {1}
12 if main-vote0() has not been sent, broadcast main-vote0(1)
13 if final-vote0() has not been sent, r-broadcast final-vote0(1)
14 round r
15 if r > 0, broadcast pre-voter(ivr)
16 upon receiving pre-voter(v) from f + 1 replicas
17 if pre-voter(v) has not been sent, broadcast pre-voter(v)
18 if r = 0 and v = 1
19 bset0 ← bset0 ∪ {1}
20 if main-vote0() has not been sent
21 broadcast main-vote0(1)
22 if final-vote0() has not been sent
23 r-broadcast final-vote0(1)
24 upon receiving pre-voter(v) from 2f + 1 nodes
25 bsetr ← bsetr ∪ {v}
26 wait until bsetr ̸= ∅
27 if main-voter() has not been sent
28 broadcast main-voter(v) where v ∈ bsetr
29 upon receiving n−f main-voter() such that 1) final-voter()
has not been sent; 2) for each received main-voter(b), b ∈
30 if there are n− f main-voter(v)
31 r-broadcast final-voter(v)
32 else r-broadcast final-voter(∗)
33 upon r-delivering n − f final-voter() such that for each
final-voter(v), v ∈ bsetr; for each final-voter(∗), bsetr = {0, 1}
34 if there are n− f final-voter(v)
35 decide v
36 else if there are f + 1 final-voter(v)
37 ivr+1 ← v
38 else
39 if r = 0, ivr+1 ← 1
40 else ivr+1 ← Random()
41 r ← r + 1

Figure 12: Cubic-RABA. The code for pi.

1. Accordingly, Cubic-RABA achieves biased validity. Other
properties of Cubic-RABA simply follow from Cubic-ABA,
as we only modify round 0 of the protocol.

APPENDIX C
PROOF OF CUBIC-ABA

We show that Cubic-ABA achieves validity, agreement,
termination, and integrity.

Lemma 1. If all correct replicas propose ivr = v in round r,
then any correct replica that enters round r+ 1 sets ivr+1 as
v.

Proof: If all correct replicas propose v in round r, every
correct replica broadcasts pre-voter(v). No correct replica
will forward pre-voter(v̄), as there are no more than f + 1
pre-voter(v̄) messages. Hence, no correct replica will add
v̄ to bsetr. Furthermore, all correct replicas will eventually
send main-voter(v) and r-broadcast final-voter(v). No correct
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replica accepts final-voter(v̄) or final-voter(∗), since they only
have v in their bsetr. Hence, any correct replica that enters
round r + 1 sets ivr+1 as v.

Note that the lemma above holds for the case where a
correct replica decides v in round r.

Lemma 2. If all correct replicas propose v in round r, then
for any r′ > r, any correct replica that enters round r′ sets
ivr′ as v.

Proof: The proof is by induction on the round number.
The base case holds for r according to Lemma 1. For the
induction step, we show that the lemma holds for round r′+1.
In other words, if all correct replicas propose ivr′ = v in round
r′, then in round r′ + 1, any correct replica sets ivr′+1 as v.

In round r′, as no correct replica sends pre-voter′(v̄), no
correct replica can receive f + 1 pre-voter′(v̄) messages. In
other words, no correct replica will forward pre-voter′(v̄).
Meanwhile, no correct replica will accept final-voter′(v̄) or
final-voter′(∗) since correct replicas only have v in their
bsetr′ . Furthermore, every correct replica will r-broadcast
final-voter′(v). Therefore, any correct replica that enters round
r′ + 1 sets ivr′+1 as v.

Theorem 3 (Validity). If all correct replicas propose v, then
any correct replica that terminates decides v.

Proof: We assume that a correct replica pi terminates and
decides v̄ and prove the correctness by contradiction.

If pi terminates and decides v̄ in round 0, it will enter round
1 with iv1 = v̄. This is a contradiction with Lemma 1, as if
all correct replicas propose v, any correct replica that enters
round 1 sets iv1 as v. If pi terminates and decides v̄ in round
r > 0, it r-delivers n− f final-voter(v̄). Similarly, it has put
v̄ in its bsetr. Therefore, at least one correct replicas has set
ivr = v̄ and broadcast pre-voter(v̄). This is a contradiction
with Lemma 2 since any correct replica that enters round r
sets ivr as v. This completes the proof of the theorem.

Lemma 4. If a correct replica pi decides v in round r, any
correct replica that enters round r + 1 sets ivr+1 as v.

Proof: If pi decides v in round r, it r-delivers n − f
final-voter(v). In other words, at least f + 1 correct replicas
r-broadcast final-voter(v). We assume that a correct replica
pk enters round r + 1 using value ivr+1 = v̄ and prove the
lemma by contradiction. If pk sets ivr+1 as v̄, there are three
conditions: A) pk r-delivers at least n−f final-voter(v̄); B) pk
r-delivers f+1 final-voter(v̄); C) none of the conditions holds.
In other words, pk has received fewer than f+1 final-voter(v)
and fewer than f + 1 final-voter(v̄). We now show that none
of the three conditions is possible.

Condition A): Replica pk r-delivers n − f final-voter(v̄).
We already know that at least n − f replicas r-broadcast
final-voter(v). Therefore, at least one correct replica r-
broadcast both final-voter(v) and final-voter(v̄), a contradic-
tion.

Condition B): Replica pk r-delivers f + 1 final-voter(v̄).
We already know that pi r-delivers n − f final-voter(v).
Therefore, at least one replica (correct or Byzantine) r-
broadcast both final-voter(v̄) and final-voter(v) such that pk
r-delivers final-voter(v̄) and pi r-delivers final-voter(v). This
is a violation of the agreement property or RBC.

Condition C): Replica pk r-delivers n − f final-voter()
messages (let the set of replicas be S1). Among the messages

from S1, fewer than f + 1 are final-voter(v̄) and fewer
than f + 1 are final-voter(v). Other messages can only be
final-voter(∗). We already know that pi r-delivers n − f
final-voter(v) (let the set of replicas be S2). S1 and S2 have
at least n − 2f ≥ f + 1 replicas in common. Therefore, at
least one replica r-broadcasts both v and ∗ (or v̄) such that pi
r-delivers final-voter(v) and pk has r-delivers final-voter(∗)
(or final-voter(v̄)), a violation of agreement property of RBC.

Theorem 5 (Agreement). If a correct replica decides v, then
any correct replica that terminates decides v.

Proof: We assume that a correct replica pi decides v and
another correct replica pj decides v̄ and prove the theorem by
contradiction. There are two cases: 1) pi and pj decide in the
same round r; 2) pi and pj decide in different rounds.

We first prove case 1). If replica pi decides v in round r,
it r-delivers n− f final-voter(v). If pj decides v̄, it r-delivers
n − f final-voter(v̄). The two sets of n − f replicas have at
least f + 1 replicas in common. Among the f + 1 replicas,
at least one is correct. Therefore, at least one correct replica
must have r-broadcast both final-voter(v) and final-voter(v̄),
a contradiction.

We now prove case 2) by assuming that pi decides value
v in round r and pj decides v̄ in round r′ where r′ > r.

According to Lemma 4, any correct replica enters round
r+1 sets ivr+1 as v. Furthermore, according to Lemma 2, for
any round r′′ ≥ r+1, any correct replica sets enters round r′′

sets ivr′′ as v. If replica pj decides value v̄ in round r′, at least
one correct replica has set ivr′ as v̄ and sent pre-voter′(v̄), a
contradiction with Lemma 2.

Lemma 6. Let v1 ∈ {0, 1} and v2 ∈ {0, 1}. If a correct replica
pi r-delivers f + 1 final-voter(v1) and enters round r + 1,
another correct replica pj r-delivers f +1 final-voter(v2) and
enters round r + 1, then it holds that v1 = v2.

Proof: If pi r-delivers f + 1 final-voter(v1), at least
one correct replica r-broadcasts final-voter(v1). According
to the protocol, the correct replica has received n − f
main-voter(v1). Therefore, for any other correct replicas,
among the n− f main-voter() messages, at least one must be
main-voter(v1). They either receive n−f main-voter(v1) and
r-broadcast final-voter(v1), or receive both main-voter(v1)
and main-voter(v̄1) and r-broadcast final-voter(∗). No correct
replica will r-broadcast final-voter(v̄1). For replica pj , if it
r-delivers f + 1 final-voter(v2), at least one correct replica r-
broadcasts final-voter(v2). Therefore, it must hold that v1 =
v2.

Theorem 7 (Termination). Every correct replica eventually
decides some value.

Proof: The proof consists of two parts. First, in each round
r, correct replicas will enter the next round. Second, the value
ivr used by any correct replica cannot be manipulated by the
adversary.

We first show that in round r, correct replicas will enter the
next round. In each round, every replica sets ivr as either 0 or
1 in Cubic-ABA. Accordingly, at least f + 1 correct replicas
have the same ivr = v. Therefore, all correct replicas will
eventually receive 2f + 1 pre-voter(v) for some v and send
main-voter() message. Correct replicas will have at least v in
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their bsetr and r-broadcast either final-voter(v) for some v
or final-voter(∗). Similarly, any correct replica will eventually
r-deliver n−f final-voter() messages and enter the next round.

We then show that if a correct replica pi does not decide
in round r, the value ivr+1 = v cannot be manipulated by a
malicious network scheduler such that correct replicas always
enter the next round with inconsistent values. If pi does not
decide in round r, there are two conditions: A) pi r-delivers
f + 1 final-voter(v); B) pi r-delivers n − f final-voter()
messages. In the final-voter() messages, fewer than f + 1
are final-voter(v) and fewer than f + 1 are final-voter(v̄).
For condition B, a correct replica enters the next round with
its local coin c. The c value is independent with the value
chosen by any correct replica. We now prove that the value v
in condition A cannot be manipulated.

According to Lemma 6, if a correct replica receives f +
1 final-voter(v1) and another correct replica receives f + 1
final-voter(v2), then it holds that v1 = v2. If correct replicas
use local coins to enter the next round, with a probability of

1
2n−f , replicas will enter the next round with the same value.
The protocol will reach a state where agreement can be reached
in 2n−f expected rounds. After that, it takes another round
for each replica to terminate, i.e., the protocol terminates in
2n−f + 1 expected rounds.

Theorem 8 (Integrity). No correct replica decides twice.

Proof: According to the protocol, after a correct replica
decides some value, it participates in one more round of
the protocol. However, it terminates the protocol after it r-
broadcasts a final-voter() message. Thus, the replica does not
decide again in the following round. This completes the proof
of the theorem.

APPENDIX D
PROOF OF QUADRATIC-ABA

We show that Quadratic-ABA achieves validity, agreement,
termination, and integrity.

Lemma 9. If all correct replicas propose ivr = v in round r,
then any correct replica that enters round r+ 1 sets ivr+1 as
v.

Proof: If all correct replicas propose ivr = v in round
r, every correct replica broadcasts pre-voter(v). No correct
replica will receive more than f + 1 pre-voter(v̄) messages.
Hence, no correct replica will add v̄ to bsetr. Furthermore,
all correct replicas will eventually send voter(v) and receive
n − f voter(v). As no correct replica ever has v̄ in bsetr,
all correct replica will not accept voter(v̄). Therefore, all
correct replicas will send main-voter(v). No correct replica
will accept main-voter(v̄) or main-voter(∗) as v̄ ̸∈ bsetr and
it cannot receive more than f+1 voter(v̄). Accordingly, every
correct replicas will send final-voter(v) and receive n − f
final-voter(v). No correct replica accepts final-voter(v̄) as they
only have v in their bsetr. Hence, any correct replica that
enters round r + 1 sets ivr+1 as v.

Note that the lemma above holds for the case where a
correct replica decides v in round r.

Lemma 10. If all correct replicas propose ivr = v in round
r, then for any r′ > r, any correct replica that enters round
r′ sets ivr′ as v.

Proof: The proof is by induction on the round number.

The base case holds for r according to Lemma 9. For the
induction step, we show that the lemma holds for round r′+1.
In other words, if all correct replicas propose ivr′ = v in round
r′, then in round r′ + 1, any correct replica sets ivr′+1 as v.

In round r′, as no correct replica sends pre-voter′(v̄),
no correct replica can receive f + 1 pre-voter′(v̄) messages.
In other words, no correct replica will put v̄ to bsetr′ .
Therefore, all correct replicas will send voter′(v) and no
correct replicas will receive f + 1 voter′(v̄). Accordingly,
all correct replicas will send main-voter(v) and will not
accept main-voter′(v̄). Any correct replica then only sends
final-voter′(v). Meanwhile, no correct replica will accept
final-voter′(v̄) or final-voter′(∗) since correct replicas only
have v in their bsetr′ and no correct replica can receive f +1
main-voter′(v). Furthermore, every correct replica will receive
n − f final-voter′(v). It is now clear that any correct replica
that enters round r′ + 1 sets ivr′+1 as v.

Lemma 11. If a correct replica pi sends final-voter(v), at
least one correct replica has proposed ivr = v̄ and broadcast
pre-voter(v̄).

Proof: If pi sends final-voter(v), it must have received n−
f main-voter(v̄). Among the replicas that sent main-voter(v̄),
at least f + 1 are correct. The correct replicas must have sent
voter(v̄) and put v̄ to bsetr. Each replica puts v̄ to bsetr only
if it receives n−f pre-voter(v̄). Therefore, at least one correct
replicas has proposed ivr = v̄ and broadcast pre-voter(v̄).

Theorem 12 (Validity). If all correct replicas propose v, then
any correct replica that terminates decides v.

Proof: We assume that a correct replica pi terminates and
decides v̄ and prove the correctness by contradiction.

If pi terminates and decides v̄ in round 0, it will enter
round 1 with iv1 = v̄. This is a contradiction with Lemma 9.
If pi terminates and decides v̄ in round r > 0, it receives n−f
final-voter(v̄). Among the replicas that sent final-voter(v̄), at
least f + 1 are correct. According to Lemma 11, at least
one correct replica has broadcast pre-voter(v̄). This is a
contradiction with Lemma 10 since any correct replica that
enters round r sets ivr as v.

Lemma 13. If a correct replica pi sends main-voter(v), any
correct replica pj only sends main-voter(v) or main-voter(∗).

Proof: If pi sends main-voter(v), it has received n − f
voter(v). We assume that pj sends main-voter(v̄) and prove
the lemma by contradiction. If pj sends main-voter(v̄), it has
received n − f voter(v̄). According to the protocol, every
correct replica only sends voter() message once and each
replica only sends either voter(v) or voter(v̄). Therefore, at
least one correct replica has sent voter(v) to pi and sent
voter(v̄) to pj , a contradiction.

Lemma 14. If a correct replica pi sends final-voter(v), any
correct replica pj only sends final-voter(v) or final-voter(∗).

Proof: If pi sends final-voter(v), it has received n − f
main-voter(v). We assume that pj sends final-voter(v̄) and
prove the lemma by contradiction. If pj sends final-voter(v̄),
it has received n−f main-voter(v̄). According to the protocol,
every correct replica only sends main-voter() message once.
Therefore, at least one correct replica has sent main-voter(v)
to pi and sent main-voter(v̄) to pj , a contradiction.
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Lemma 15. If a correct replica pi decides v in round r, any
correct replica that enters round r + 1 sets ivr+1 as v.

Proof: If pi decides v in round r, it receives n − f
final-voter(v). In other words, at least f + 1 correct replicas
have broadcast final-voter(v). We assume that a correct replica
pk enters round r+1 sets ivr+1 = v̄ and prove the lemma by
contradiction. If pk sets ivr+1 as v̄, there are three conditions:
A) pk receives at least n−f final-voter(v̄); B) pk only receives
final-voter(v̄) and final-voter(∗); C) none of the above holds.
In other words, pk receives only final-voter(∗) or receives both
final-voter(v) and final-voter(v̄). We now show that none of
the three conditions is possible.

Condition A): Replica pk receives n − f final-voter(v̄).
We already know that at least n − f replicas have sent
final-voter(v) as pi receives n − f final-voter(v). Therefore,
at least one correct replica has sent both final-voter(v) and
final-voter(v̄), a contradiction.

Condition B): Replica pk receives n−f final-voter(∗) and
final-voter(v̄) and has not received final-voter(v). We already
know that pi receives n− f final-voter(v). Therefore, at least
one correct replica has sent final-voter(v) to pi and either
final-voter(∗) or final-voter(v̄) to pk, a contradiction.

Condition C): Replica pk receives only final-voter(∗) or
receives both final-voter(v) and final-voter(v̄). We know
that pi receives n − f final-voter(v). Therefore, at least
f + 1 correct replicas have sent final-voter(v). If pk receives
n − f final-voter() messages, at least one of them must be
final-voter(v). In this case, if pk enters round r+1 with ivr+1

as v̄, pk must have received at least one final-voter(v̄), as
if pk only receives final-voter(v) and final-voter(∗), it will
set ivr+1 as v̄. If pk accepts final-voter(v), it has received
f + 1 main-voter(v), among which at least one is sent by
a correct replica. If pk accepts final-voter(v̄), it has received
f + 1 main-voter(v̄), among which at least one is sent by a
correct replica. This is a contradiction with Lemma 13.

Theorem 16 (Agreement). If a correct replica decides v, then
any correct replica that terminates decides v.

Proof: We assume that a correct replica pi decides v and
another correct replica pj decides v̄ and prove the theorem by
contradiction. There are two cases: 1) pi and pj decide in the
same round r; 2) pi and pj decide in different rounds.

We first prove case 1). If replica pi decides v in round r, it
receives n−f final-voter(v). If pj decides v̄, it receives n−f
final-voter(v̄). The two sets of n − f replicas have at least
f + 1 replicas in common. Among the f + 1 replicas, at least
one is correct. Therefore, at least one correct replica must have
sent both final-voter(v) and final-voter(v̄), a contradiction.

We now prove case 2) by assuming that pi decides value
v in round r and pj decides v̄ in round r′ where r′ > r.

According to Lemma 15, if pi decides v, any correct replica
enters round r+ 1 sets ivr+1 as v. Furthermore, according to
Lemma 10, for any round r′′ ≥ r+1, any correct replica that
enters round r′′ sets ivr′′ as v. If replica pj decides value v̄
in round r′, it has received n − f final-voter(v) so at least
f + 1 correct replicas have sent final-voter(v). According to
Lemma 11, at least one correct replica has set ivr′ as v̄ and
sent pre-voter′(v̄), a contradiction with Lemma 10.

Lemma 17. If a correct replica pi sends voter(v) for v ∈
{0, 1}, any correct replica eventually accepts voter(v).

Proof: If pi sends voter(v) message, it has received n−f
pre-voter(v), among which at least f + 1 are sent by correct
replicas. Accordingly to the protocol, any correct replica that
has not sent pre-voter(v) will also send pre-voter(v) upon
receiving f + 1 pre-voter(v). Therefore, every correct replica
eventually sends pre-voter(v), receives n−f pre-voter(v), and
then adds v to bsetr. Hence, every correct replica eventually
accepts voter(v).

Lemma 18. If a correct replica pi broadcasts a main-voter(v)
or a main-voter(∗) message given that v ∈ {0, 1}, any correct
replica accepts the main-voter() message.

Proof: If pi sends a main-voter(v) message, it has re-
ceived and accepted n − f voter(v), among which at least
f+1 are sent by correct replicas. Therefore, any correct replica
eventually receives f + 1 voter(v) and accept voter(v).

If pi sends a main-voter(∗) message, it must have received
and accepted both voter(v) and voter(v̄), or it has received
at least one voter(∗). In any of the cases, pi has put both
0 and 1 to bsetr. If pi puts v to bsetr, it has received
2f + 1 pre-voter(v), among which at least f + 1 are sent by
correct replicas. Then any correct replica eventually receives
f + 1 pre-voter(v) and sends pre-voter(v). Every correct
replica eventually receives n − f pre-voter(v) and adds v
to bsetr. Therefore, every correct replica eventually accepts
main-voter(∗).
Lemma 19. If a correct replica pi broadcasts a final-voter(v)
or a final-voter(∗) message given that v ∈ {0, 1}, any correct
replica accepts the final-voter() message.

Proof: The lemma can be proved similarly as in
Lemma 18.

Lemma 20. Let v1 ∈ {0, 1} and v2 ∈ {0, 1}. If a correct
replica pi receives only n−f final-voter(∗) and final-voter(v1)
messages, another correct replica pj only receives n − f
final-voter(v2) and final-voter(∗) messages, v1 = v2.

Proof: If pi accepts final-voter(v1), it has previously
received f + 1 main-voter(v1), among which at least one is
sent by a correct replica. If pj accepts final-voter(v1), it has
previously received f + 1 main-voter(v2), among which at
least one is sent by a correct replica. According to Lemma 13,
it holds that v1 = v2.

Theorem 21 (Termination). Every correct replica eventually
decides some value.

Proof: The proof consists of two parts. First, in each round
r, correct replicas will enter the next round. Second, the value
ivr used by any correct replica cannot be manipulated by the
adversary.

We first show that in round r, correct replicas will enter the
next round. In each round, every replica sets ivr to either 0
or 1 in Quadratic-ABA. Accordingly, at least f + 1 correct
replicas have the same ivr = v. All correct replicas will
eventually receive 2f + 1 pre-voter(v) for some v and send
a voter() message. Correct replicas will send either voter(0)
or voter(1) and receive at least n− f main-voter() messages.
For any correct replica, if it sends voter(v) for v ∈ {0, 1},
any correct replica will eventually accept voter(v), according
to Lemma 17. All correct replicas will then send either
main-voter(v) for v ∈ {0, 1} or main-voter(∗). According
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to Lemma 18, every correct replica eventually accepts any
main-voter() message sent by a correct replica. Then every
correct replica either sends final-voter(v) or final-voter(∗).
According to Lemma 19, every correct replica accepts any
final-voter() message from a correct replica. Therefore, any
correct replica will eventually receive n − f final-voter()
messages and enter the next round.

We then show that if a correct replica pi does not decide
in round r, the value ivr+1 = v cannot be manipulated by a
malicious network scheduler such that correct replicas always
enter the next round with inconsistent values. If pi does not
decide in round r, there are two conditions: A) pi receives
n − f final-voter(v) and final-voter(∗); B) pi receives both
final-voter(v) and final-voter(v̄) messages, or receives n− f
final-voter(∗). For condition B, a correct replica enters the
next round with its local coin c. The c value is independent
with the value chosen by any correct replica. We now prove
that the value v in condition A cannot be manipulated.

According to Lemma 20, if pi receives n−f final-voter(v1)
and final-voter(∗) and pj receives n − f final-voter(v1) and
final-voter(∗), v1 = v2. In other words, the value v used
by any correct replica cannot be manipulated by the network
scheduler.

If correct replicas use local coins to enter the next round,
with a probability of 1

2n−f , replicas will enter the next round
with the same value. Replicas will reach a state where agree-
ment can be reached in 2n−f expected rounds and execute
the protocol for another round before terminating the protocol.
Therefore, the protocol will terminate in 2n−f + 1 expected
rounds.

Theorem 22 (Integrity). No correct replica decides twice.

Proof: According to the protocol, after a correct replica
decides some value, it participates in one more round of the
protocol. However, it terminates the protocol after it receives
a final-voter() message. Hence, the replica does not decide
again in the following round.

APPENDIX E
PROOF OF CC-ABA

We prove the correctness of CC-ABA that simply replaces
the local coins of Quadratic-ABA with weak common coins (or
perfect common coins). According to the proofs of Quadratic-
ABA, the validity, agreement, and integrity properties do
not depend on the values of the coins. Therefore, validity,
agreement and integrity follow those of Quadratic-ABA. We
now present the following lemma and prove termination.

Lemma 23. If a correct replica receives and accepts both
final-voter(v1) and final-voter(v2) such that v1, v2 ∈ {0, 1},
v1 = v2.

Proof: If a correct replica accepts final-voter(v1), it has
previously received at least f+1 main-voter(v1). If the replica
accepts final-voter(v2), it has previously received at least f+1
main-voter(v2). Therefore, at least one correct replica has
sent main-voter(v1) and at least one correct replica has sent
main-voter(v2). According to Lemma 13, if a correct replicas
sends main-voter(v1), any correct replicas will only send
main-voter(v1) or main-voter(∗). Therefore, we conclude that
v1 = v2.

The proof consists of two parts. First, in each round r,
correct replicas will enter the next round. Second, the value

ivr used by any correct replica cannot be manipulated by the
adversary.

We first show that in round r, correct replicas will enter
the next round. In each round, every replica sets ivr as
either 0 or 1. Accordingly, at least f + 1 correct replicas
have the same ivr = v. All correct replicas will eventually
receive 2f + 1 pre-voter(v) for some v and send voter()
message. Correct replicas will send either voter(0) or voter(1)
and receive at least n − f main-voter() messages. For any
correct replica, if it sends voter(v) such that v ∈ {0, 1},
any correct replica will eventually accept voter(v), according
to Lemma 17. All correct replicas will then send either
main-voter(v) (v ∈ {0, 1}) or main-voter(∗). According
to Lemma 18, every correct replica eventually accepts any
main-voter() message sent by a correct replica. Then every
correct replica either sends final-voter(v) or final-voter(∗).
According to Lemma 19, every correct replica accepts any
final-voter() message from a correct replica. Therefore, any
correct replica will eventually receives n − f final-voter()
messages and enter the next round.

We then show that if a correct replica pi does not decide
in round r, the value ivr+1 = v cannot be manipulated
by a malicious network scheduler such that correct replicas
always enter the next round with inconsistent values. If pi
does not decide in round r, there are two conditions: A) pi
receives n−f final-voter() messages with only final-voter(v)
and final-voter(∗); B) pi receives both final-voter(v) and
final-voter(v̄) messages, or receives n− f final-voter(∗).

If condition A applies to at least two correct replicas,
according to Lemma 20, if pi receives n − f final-voter(v1)
and final-voter(∗) and pj receives n − f final-voter(v1) and
final-voter(∗), v1 = v2. In other words, the value v used by
any correct replica cannot be manipulated by an adversary.

If condition B applies to at least two correct replicas, the
correct replicas enter the next round with the weak common
coin. With a probability of 2/d, all correct replicas will have
the same ivr+1 value. This value cannot be manipulated by an
adversary.

We now show that if condition A applies to a correct replica
pi and condition B applies to a correct replica pj , the values
cannot be manipulated by an adversary. If pj sets ivr+1 as
the weak common coin value, it has either received n − f
final-voter(∗) or both final-voter(v) and final-voter(v̄). Ac-
cording to Lemma 23, the latter case is impossible. Therefore,
pj receives n − f final-voter(∗). Accordingly, at least f + 1
correct replicas have sent final-voter(∗). The correct replicas
have previously sent either main-voter(v) or main-voter(∗)
for some v ∈ {0, 1} according to Lemma 13. No correct
replica will send main-voter(v̄). If condition A applies to pi
and pi sets ivr+1 as v1 (v1 ∈ {0, 1}), pi has received at least
f + 1 main-voter(v1). Since at least one correct replica has
sent main-voter(v1), this value v1 can only be v as we already
know that no correct replica will send main-voter(v̄). In other
words, the value ivr+1 cannot be manipulated by an adversary.

CC-ABA uses weak common coins. If correct replicas
begin the protocol with different input values, replicas will
reach a state where decisions can be made in expected
1−Σ∞

r=1
r
d (1−

1
d )

r−1 = d rounds. After that, it takes another
round for replicas to terminate the protocol, so the expected
number of rounds is d+1. For the special case that uses perfect
common coins, the expected number of rounds is 3.
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APPENDIX F
PROOF OF CUBIC-RABA

We now show that Cubic-RABA achieves validity, unani-
mous termination, agreement, biased validity, biased termina-
tion, and integrity.

Lemma 24. If all correct replicas propose v in round 0 and
never repropose v̄, then any correct replica enters the round
1 sets iv1 as v.

Proof: In round 0, all replicas send pre-vote0(v).
No correct replica will receive f + 1 pre-vote0(v̄) and
send pre-vote0(v̄). Similarly, all correct replicas will send
main-vote0(v) and will never accept main-vote0(v̄). All cor-
rect replicas will r-broadcast final-vote0(v) and will never
accept final-vote0(v̄). Therefore, any correct replica that enters
round 1 sets iv1 as v.

Theorem 25 (Validity). If all correct replicas propose v and
never repropose v̄, then any correct replica that terminates
decides v.

Proof: We assume that a correct replica pi terminates and
decides v̄ and prove the correctness by contradiction. If pi
terminates and decides v̄ in round 0, correctness follows from
Lemma 24. We now prove the case where pi decides in round
r > 0.

Since Cubic-RABA follows Cubic-ABA starting from
round 1, Lemma 2 holds for r > 0. If pi terminates and
decides v̄ in round r > 0, it r-delivers n − f final-voter(v̄).
Additionally, pi has added v̄ to its bsetr. Therefore, at least
one correct replica has set ivr as v̄ and broadcast pre-voter(v̄).
This is a contradiction with Lemma 2 since any correct replica
that enters round r sets ivr as v. This completes the proof of
the theorem.

Theorem 26 (Unanimous termination). If all correct replicas
propose v and never repropose v̄, then all correct replicas
eventually terminate.

Proof: If all correct replicas propose v and never re-
propose v̄, all correct replicas only send pre-vote0(v). No
correct replica will add v̄ to bset0. Furthermore, no correct
replica will accept main-vote0(v̄) or final-vote0(v̄). Eventually
all correct replicas will receive 2f + 1 pre-vote0(v), add v
to bset0, and broadcast main-vote0(v). Similarly, all correct
replicas will eventually receive n − f main-vote0(v) and r-
broadcast final-vote0(v). All correct replicas will r-deliver
n − f final-vote0(v). In other words, all correct replicas will
terminate and decide v.

Lemma 27. If pi decides v in round 0, any correct replica
that enters round 1 sets iv1 as v.

Proof: If pi decides v in round 1, it r-delivers n − f
final-vote0(v), among which at least f+1 replicas are correct.
We assume that a correct replica pk enters round 1 with
iv1 = v̄ and prove the correctness by contradiction. If pk enters
round r + 1 and sets iv1 as v̄, there are three conditions: A)
pk r-delivers at least n − f final-voter(v̄); B) pk r-delivers
f + 1 final-vote0(v̄); C) pk has not received more than f + 1
final-vote0(v) and pk has not received more than f + 1
final-vote0(v̄). We now show that none of the three conditions
is possible.

Condition A): Replica pi r-delivers n − f final-vote0(v̄).

We already know that at least f + 1 corect replicas r-
broadcast final-vote0(v). Therefore, at least one correct replica
r-broadcasts both final-vote0(v) and final-vote0(v̄), a contra-
diction.

Condition B): Replica pk r-delivers f + 1 final-vote0(v̄).
We already know that pi r-delivers n−f final-vote0(v). There-
fore, at least one replica (correct or Byzantine) r-broadcasts
both final-vote0(v̄) and final-vote0(v) such that pk r-delivers
final-vote0(v̄) and pi r-delivers final-vote0(v), a violation of
the agreement property of RBC.

Condition C): Replica pk r-delivers n−f final-vote0() mes-
sages (let the set of replicas be S1). In the messages, fewer than
f+1 are final-vote0(v̄) and fewer than f+1 are final-vote0(v).
Other messages must be final-vote0(∗). We already know that
pi r-delivers n−f final-vote0(v) (let the set of replicas be S2).
S1 and S2 have at least n−2f ≥ f+1 replicas in common. In
other words, at least one replica r-broadcasts a final-vote0()
message such that pi r-delivers final-vote0(v) and pk r-delivers
final-vote0(v̄) (or final-vote0(∗)), a violation of the agreement
property of RBC.

Theorem 28 (Agreement). If a correct replica decides v, then
any correct replica that terminates decides v.

Proof: We assume that a correct replica pi decides v
and a correct replica pj decides v̄ and prove the theorem by
contradiction. Since Cubic-RABA follows Cubic-ABA starting
from round r > 0, if both pi and pj decide in round r > 0,
correctness follows from the agreement property of Cubic-
ABA. We now show the correctness in the following cases:
1) both pi and pj decide in round 0; 2) pi decides in round 0
and pj decides in round r > 0.
Case 1): If pi decides v, it r-delivers n−f final-vote0(v). If pj
decides v̄, it r-delivers n− f final-vote0(v̄). The two quorum
of replicas have at least n − 2f replicas in common. Among
the n − 2f replicas, at least one is correct since n − 2f ≥
f +1. Therefore, at least one correct replica r-broadcasts both
final-vote0(v) and final-vote0(v̄), a contradiction since each
replica only r-broadcasts a final-voter() message once in each
round.
Case 2): If pj decides v̄ in round r = 1, it has received at least
2f+1 pre-vote1(v̄), where at least one correct replica has sent
pre-vote1(v̄), a contradiction with Lemma 27. Starting from
round 1, Cubic-RABA follows Cubic-ABA so that Lemma 2
holds. If pj decides v̄ in round r > 1, at least one correct
replica must have sent pre-voter(v̄), a contradiction with
Lemma 2 since any correct replica sets ivr as v.

This completes the proof of the theorem.

Lemma 29. If f + 1 correct replicas propose 1 in round 0,
every replica either directly decides 1 in round 0 or/and enters
round 1 with iv1 = 1.

Proof: If a correct replica pi enters round 1, there are three
conditions: A) pi r-delivers n−f final-vote0(v) with the same
v; B) pi r-delivers at least f +1 final-vote0(v) for some v; C)
none of condition A or B holds. We show that v = 1 for all
three conditions and replicas will set iv1 as v = 1.

For condition A, we already know that at least f+1 correct
replicas have broadcast final-vote0(1). Therefore, pi must have
received n − f final-vote0(1). This is because if pi receives
n− f final-vote0(0), at least one correct replica r-broadcasts
both final-vote0(1) and final-vote0(0), a contradiction. In other
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words, pi decides 1.
For condition B, we assume pi r-delivers f + 1

final-vote0(0) and prove the correctness by contradiction.
If pi r-delivers f + 1 final-vote0(0), at least one correct
replica r-broadcasts final-vote0(0). If the correct replica r-
broadcasts final-vote0(0), the replica must have received n−f
main-vote0(0). We already know that at least f + 1 correct
replicas have sent main-vote0(1). Any correct replica broad-
casts main-vote0() message once. In other words, at least
one correct replica has broadcast both main-vote0(0) and
main-vote0(1), a contradiction. Therefore, in this condition,
pi must have r-delivered f + 1 final-vote0(1). It is now clear
that any correct replica uses iv1 = 1 to enter round 1.

For condition C, any correct replica will use 1 as iv1 since
the local coin value is set as 1 in round 0. This completes the
proof of the lemma.

Theorem 30 (Biased validity). If f+1 correct replicas propose
1, then any correct replica that terminates decides 1.

Proof: We assume that a correct replica pi decides 0 and
prove the correctness by contradiction. If pi decides in round
0, correctness follows from Lemma 29. If pi decides 0 in round
r > 0, at least one correct replica has set ivr as 0 and broadcast
pre-voter(0). Since Cubic-RABA follows Cubic-ABA starting
from round 1, Lemma 2 holds. Therefore, the claim that at
least one correct replica has set ivr as 0 is a contradiction
with Lemma 2. This completes the proof of the theorem.

Theorem 31 (Biased termination). Let Q be the set of correct
replicas. Let Q1 be the set of correct replicas that propose 1
and never repropose 0. Let Q2 be correct replicas that propose
0 and later repropose 1. If Q2 ̸= ∅ and Q = Q1 ∪ Q2, then
each correct replica eventually terminates.

Proof: The proof consists of two parts. First, every replica
correct eventually enters the next round. Second, if a correct
replica enters the next round with input v, v cannot be
manipulated by the adversary.

We first prove that every replica eventually enters the next
round. Since Cubic-RABA follows Cubic-ABA starting from
round 1, this part follows from termination of Cubic-ABA. We
only need to prove that every correct replica eventually enters
round 1. For replicas in Q1, they broadcast pre-vote0(1) and
add 1 to bset0. For replicas in Q2, they broadcast pre-vote0(0)
upon the propose(0) function, broadcast pre-vote0(1) upon the
repropose(1) function, and eventually add 1 to bset0. There are
two cases: 1) the size of Q1 is greater than f + 1; 2) the size
of Q1 is smaller than f + 1.

For the first case, at least f +1 replicas in Q1 will directly
broadcast main-vote0(1) and r-broadcast final-vote0(1). For
any correct replica pi in Q2, it may send main-vote0(1) or
main-vote0(0). There are two sub-cases: none of the correct
replicas send main-vote0(0); at least one correct replica has
sent main-vote0(0). For the first sub-case, it is clear that
every correct replica eventually receives and accepts n − f
main-vote0(1), as every correct replica has 1 in its bset0.
Similarly, every correct replica will r-broadcast final-vote0(1)
and accept n − f final-vote0(1). For the second sub-case, if
a correct replica pi sends main-vote0(0), it receives 2f + 1
pre-vote0(0), among which at least f + 1 are sent by correct
replicas. Therefore, every correct replica will eventually re-
ceive f + 1 pre-vote0(0) and broadcast pre-vote0(0). Every

replica eventually adds 0 to bset0. Since every correct replica
has both 1 and 0 in bset0, every correct replica accepts both
main-vote0(0) and main-vote0(1). Similarly, every correct
replica accepts both final-vote0(0) and final-vote0(1). In other
words, every correct replica eventually enters the next round.

For the second case, replicas in Q2 will send
pre-vote0(0) upon propose(0). They will send pre-vote0(1)
upon repropose(1) and add 1 to bset0. Since the size of Q2 is
greater than f + 1 (the size of Q1 is smaller than f + 1 and
Q = Q1 ∪Q2), every replica will receive f + 1 pre-vote0(0),
send pre-vote0(0), and add 0 to bset0. Furthermore, every cor-
rect replica in Q2 broadcasts pre-vote0(1) upon repropose(1).
Since the size of Q2 is greater than f + 1, it holds that
every correct replica eventually adds 1 to bset0. Therefore,
every replica will accept main-vote0(0) and main-vote0(1),
final-vote0(0), and final-vote0(1). In other words, every correct
replica eventually enters the next round.

We now prove the second part that the value iv used by
any correct replica cannot be manipulated by the adversary.
Since Cubic-RABA follows Cubic-ABA starting from round 1,
correctness follows from Lemma 6 and termination of Cubic-
ABA.

Theorem 32 (Integrity). No correct replica decides twice.

Proof: In each round, every replica only sends a
main-voter() message and a final-voter() message once.
Hence, only one value will be decided and integrity thus
follows.

APPENDIX G
PROOF OF QUADRATIC-RABA

We now show that Quadratic-RABA achieves validity,
unanimous termination, agreement, biased validity, biased ter-
mination, and integrity.

Lemma 33. If all correct replicas propose v in round 0 and
never repropose v̄, then any correct replica enters the round
1 sets iv1 as v.

Proof: If all correct replicas propose v in round 0, every
correct replica broadcasts pre-vote0(v). No correct replica will
receive more than f + 1 pre-vote0(v̄) messages. Hence, no
correct replica will add v̄ to bset0. Furthermore, all correct
replicas will eventually send vote0(v) and receive n − f
vote0(v). As no correct replica ever has v̄ in bset0, all
correct replica will not accept vote0(v̄). Therefore, all correct
replicas will send main-vote0(v). No correct replica will accept
main-vote0(v̄) or main-vote0(∗) as v̄ ̸∈ bset0 and there are no
more than f +1 vote0(v̄). Accordingly, every correct replicas
will send final-vote0(v) and receive n− f final-vote0(v). No
correct replica accepts final-voter(v̄) as they only have v in
their bsetr and no correct replica can receive more than f +1
final-vote0(v̄). Hence, any correct replica that enters round
r + 1 sets ivr+1 as v.

Theorem 34 (Validity). If all correct replicas propose v and
never repropose v̄, then any correct replica that terminates
decides v.

Proof: We assume that a correct replica pi terminates and
decides v̄ and prove the correctness by contradiction. If pi
terminates and decides v̄ in round 0, correctness follows from
Lemma 33. We now prove the case where pi decides in round
r > 0.
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Since Quadratic-RABA follows Quadratic-ABA starting
from round 1, Lemma 10 holds for r > 0. If pi terminates
and decides v̄ in round r > 0, it receives n−f final-voter(v̄).
Among the replicas that sent final-voter(v̄), at least f + 1
are correct. According to Lemma 11, at least one correct
replica has broadcast pre-voter(v̄). This is a contradiction with
Lemma 10 since any correct replica that enters round r sets
ivr as v. This completes the proof of the theorem.

Theorem 35 (Unanimous termination). If all correct replicas
propose v and never repropose v̄, then all correct replicas
eventually terminate.

Proof: If all correct replicas propose v and never re-
propose v̄, all correct replicas only send pre-vote0(v). No
correct replica will add v̄ to bset0. Furthermore, no correct
replica will accept vote0(v̄), main-vote0(v̄), or final-vote0(v̄).
Eventually all correct replicas will receive n−f pre-vote0(v),
add v to bset0, and broadcast vote0(v). Similarly, all correct
replicas will eventually receive n − f vote0(v) and broad-
cast main-vote0(v). All correct replicas will receive n − f
main-vote0(v) and broadcast final-vote0(v). In other words,
all correct replicas will eventually receive n−f final-vote0(v)
and decide v.

Lemma 36. If pi decides v in round 0, any correct replica
that enters round 1 sets iv1 as v.

Proof: If pi decides v in round 1, it receives n − f
final-vote0(v), among which at least f +1 are sent by correct
replicas. We assume that a correct replica pk enters round 1
with iv1 = v̄ and prove the correctness by contradiction. If pk
enters round r+1 and sets iv1 as v̄, there are three conditions:
A) pk receives at least n−f final-voter(v̄); B) pk receive only
final-vote0(v̄) and final-vote0(∗); C) none of the above applies.
In case C), as pj will use the common coin value 1 as iv1,
the case is impossible. We now show that none of the first two
conditions is possible.

Condition A): Replica pi receives n − f final-vote0(v̄).
We already know that at least f + 1 correct replicas have
sent final-vote0(v). Therefore, at least one correct replica sends
both final-vote0(v) and final-vote0(v̄), a contradiction.

Condition B): Replica pk receives final-vote0(v̄) and
final-vote0(∗). We already know that pi receives n −
f final-vote0(v). Therefore, at least one replica has sent
final-vote0(v) to pi and a final-vote0(v̄) (or final-vote0(∗)
message) to pj , a contradiction.

Theorem 37 (Agreement). If a correct replica decides v, then
any correct replica that terminates decides v.

Proof: We assume that a correct replica pi decides v
and a correct replica pj decides v̄ and prove the theorem by
contradiction. Since Quadratic-RABA follows Quadratic-ABA
starting from round r > 0, if both pi and pj decide in round
r > 0, correctness follows from the agreement property of
Quadratic-ABA. We now show the correctness in the following
cases: 1) both pi and pj decide in round 0; 2) pi decides in
round 0 and pj decides in round r > 0.
Case 1): If pi decides v, it receives n−f final-vote0(v). If pj
decides v̄, it receives n−f final-vote0(v̄). The two quorum of
replicas have at least n− 2f replicas in common. Among the
n− 2f replicas, at least one is correct since n− 2f ≥ f + 1.

Therefore, at least one correct replica sends both final-vote0(v)
and final-vote0(v̄), a contradiction since each replica only
sends a final-voter() message once in each round.
Case 2): If pj decides v̄ in round r = 1, it has received at
least n−f pre-vote1(v̄), where at least one correct replica has
sent pre-vote1(v̄), a contradiction with Lemma 36. Starting
from round 1, Quadratic-RABA follows Quadratic-ABA so
that Lemma 10 holds. If pj decides v̄ in round r > 1, at least
one correct replica must have sent pre-voter(v̄), a contradiction
with Lemma 10 since any correct replica sets ivr as v.

Lemma 38. If f + 1 correct replicas propose 1 in round 0,
every replica either directly decides 1 in round 0 or/and enters
round 1 with iv1 = 1.

Proof: If a correct replica pi enters round 1, there are three
conditions: A) pi receives n− f final-vote0(v) with the same
v; B) pi receives at least a final-vote0(v) message for some v;
C) none of condition A or B holds. We show that v = 1 for
all three conditions and replicas will set iv1 as v = 1.

For condition A, we already know that at least f + 1
correct replicas have broadcast final-vote0(1). If pi receives
n − f final-vote0(0), at least one correct replica has sent
both final-vote0(1) and final-vote0(0), a contradiction. In other
words, in this condition pi decides 1.

For condition B, we pi receives only final-vote0(0) and
final-vote0(∗). We already know that at least f + 1 correct
replicas have sent final-vote0(1). Therefore, at least one correct
replica must have sent both final-vote0(1) and final-vote0(0)
(or final-vote0(∗)), a contradiction.

For condition C, any correct replica will use 1 as input for
round 1 since the local coin value is set as 1 in round 0.

Theorem 39 (Biased validity). If f+1 correct replicas propose
1, then any correct replica that terminates decides 1.

Proof: If pi decides in round 0, correctness follows from
Lemma 38. If pi decides 0 in round r > 0, at least one
correct replica has set ivr as 0 and broadcast pre-voter(0).
Since Quadratic-RABA follows Quadratic-ABA starting from
round 1, Lemma 10 holds. Therefore, the claim that at least
one correct replica has set ivr as 0 is a contradiction with
Lemma 10. This completes the proof of the theorem.

Lemma 40. If f + 1 correct replicas propose 1 in round 0,
every correct replica eventually accepts final-vote0(1).

Proof: If f + 1 correct replicas propose 1, they will
directly broadcast pre-vote0(1), vote0(1), main-vote0(1), and
final-vote0(1). Every correct replica will eventually receive
f + 1 pre-vote0(1). For those correct replicas that have
not sent pre-vote0(1), they will also broadcast pre-vote0(1).
Therefore, every correct replica eventually adds 1 to bset0. As
f+1 correct replicas broadcast vote0(1), every correct replica
eventually accepts main-vote0(1) message. Similarly, as f +1
correct replicas broadcast main-vote0(1), every correct replica
eventually accepts final-vote0(1).

Lemma 41. If a correct replica sends final-voter(0) or
final-voter(∗), every correct replica eventually accepts the
final-voter() message.

Proof: Case 1: If a correct replica sends final-voter(0), it
has received n−f main-voter(0), among which at least f +1
are sent by correct replicas. Furthermore, the correct replica
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has put 0 in its bsetr so it receives n−f pre-voter(0). As f+1
correct replicas have sent pre-voter(0), every correct replica
eventually receives f +1 pre-voter(0) and send pre-voter(0).
Accordingly, every correct replica puts 0 in bsetr. As every
correct replica also eventually receives f + 1 main-voter(0),
every correct replica will accept final-voter(0).

Case 2: If a correct replica sends final-voter(∗), its bsetr is
{0, 1}, i.e., it has received both n− f pre-voter(0) and n− f
pre-voter(1). Following the prior case, every correct replica
eventually has bsetr = {0, 1}, so every correct replica accepts
final-voter(∗).
Theorem 42 (Biased termination). Let Q be the set of correct
replicas. Let Q1 be the set of correct replicas that propose 1
and never repropose 0. Let Q2 be correct replicas that propose
0 and later repropose 1. If Q2 ̸= ∅ and Q = Q1 ∪ Q2, then
each correct replica eventually terminates.

Proof: The proof consists of two parts. First, every replica
correct eventually enters the next round. Second, if a correct
replica enters the next round with input v, v cannot be
manipulated by the adversary.

We first prove that every replica eventually enters the
next round. Since Quadratic-RABA follows Quadratic-ABA
starting from round 1, this part follows from termination of
Cubic-ABA. We only need to prove that every correct replica
eventually moves to round 1. For replicas in Q1, they broadcast
pre-vote0(1) and add 1 to bset0. For replicas in Q2, they
broadcast pre-vote0(0) upon the propose(0) event, broadcast
pre-vote0(1) upon the repropose(1) event, and eventually add
1 to bset0. There are two cases: 1) the size of Q1 is greater
than f + 1; 2) the size of Q1 is smaller than f + 1.

For the first case, at least f + 1 replicas in Q1 will
directly broadcast vote0(1), main-vote0(1), and final-vote0(1).
For any correct replica pi in Q2, it may send vote0(1)
or vote0(0). There are two sub-cases: none of the correct
replicas send vote0(0); at least one correct replica has sent
vote0(0). For the first sub-case, it is straightforward to see
that every correct replica eventually receives and accepts n−f
vote0(1), as every correct replica has 1 in its bset0. Similarly,
every correct replica will send main-vote0(1) and accept
n−f main-vote0(1). Similarly, every correct replica will send
final-vote0(1). According to Lemma 40, every correct replica
eventually accepts final-vote0(1) so correct replicas will enter
the next round. For the second sub-case, if a correct replica pi
sends vote0(0), it receives n − f pre-vote0(0), among which
at least f + 1 are sent by correct replicas. Therefore, every
correct replica will eventually receive f + 1 pre-vote0(0) and
broadcast pre-vote0(0). Every replica eventually adds 0 to
bset0. Since every correct replica has both 1 and 0 in bset0,
every correct replica accepts both vote0(0) and vote0(1).
Similarly, every correct replica accepts both main-vote0(0)
and main-vote0(1). In other words, every correct replica may
send a final-vote0() message with any value, i.e., 1, 0, or
∗. According to Lemma 40, every correct replica eventually
accepts final-vote0(1). According to Lemma 41, any correct
replica accepts the final-vote0() message sent by any correct
replica. Therefore, every correct replica eventually enters the
next round.

For the second case, replicas in Q2 will send
pre-vote0(0) upon propose(0). They will send pre-vote0(1)
upon repropose(1) and add 1 to bset0. Since the size of Q2 is

greater than f + 1 (the size of Q1 is smaller than f + 1 and
Q = Q1 ∪Q2), every replica will receive f + 1 pre-vote0(0),
send pre-vote0(0), and add 0 to bset0. Furthermore, every cor-
rect replica in Q2 broadcasts pre-vote0(1) upon repropose(1).
Since the size of Q2 is greater than f + 1, every correct
replica eventually adds 1 to bset0. According to the protocol,
in round 0, every correct replica accepts main-vote0(v) and
final-vote0(v) if v is added to bset0. Therefore, every replica
will accept both vote0(0) and vote0(1), and main-vote0() and
final-vote0() with any value. Accordingly, every correct replica
eventually enters the next round.

We not prove the second part where the value iv used by
any correct replica cannot be manipulated by the adversary.
Since Quadratic-RABA follows Quadratic-ABA starting from
round 1, correctness follows from Lemma 20 and termination
of Quadratic-ABA.

Theorem 43 (Integrity). No correct replica decides twice.

Proof: In each round, every replica only sends a
final-voter() message once. Hence, only one value will be
decided and integrity thus follows.
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