
WaterBear: Practical Asynchronous BFT Matching Security Guarantees of
Partially Synchronous BFT

Haibin Zhang
bchainzhang@aliyun.com

Beijing Institute of Technology

Sisi Duan∗

duansisi@tsinghua.edu.cn
Tsinghua University, Zhongguancun Laboratory

Boxin Zhao∗

zhaobx@zgclab.edu.cn
Zhongguancun Laboratory

Liehuang Zhu∗

liehuangz@bit.edu.cn
Beijing Institute of Technology

Abstract
Asynchronous Byzantine fault-tolerant (BFT) protocols

assuming no timing assumptions are inherently more robust
than their partially synchronous counterparts, but typically
have much weaker security guarantees.

We design and implement WaterBear, a family of new and
efficient asynchronous BFT protocols matching all security
guarantees of partially synchronous protocols. To achieve the
goal, we have developed the local coin (flipping a coin locally
and independently at each replica) based BFT approach—one
long deemed as being inefficient—and designed more effi-
cient asynchronous binary agreement (ABA) protocols and
their reproposable ABA (RABA) versions from local coins.
Our techniques on ABA and RABA are of independent inter-
ests and also allow us to build more efficient ABA protocols
from common coins (distributively generating the same ran-
dom coins for all replicas), helping improve various other
protocols such as distributed key generation and BFT assum-
ing trusted setup.

We implemented in total five BFT protocols in a new
golang library, including four WaterBear protocols and BEAT.
Via extensive evaluation, we show that our protocols are effi-
cient under both failure-free and failure scenarios, achieving
at least comparable or superior performance to BEAT with
much weaker security guarantees. Specifically, the most effi-
cient WaterBear protocol consistently outperforms BEAT in
terms of all metrics. For instance, when the number of replicas
is 16, the latency of our protocol is about 1/8 of that of BEAT
and the throughput of our protocol is 1.23x that of BEAT.

Our work pushes the boundaries of asynchronous BFT,
showing the strongest security levels that we know of and
high performance can co-exist.

1 Introduction
Byzantine fault-tolerant state machine replication (BFT),

a technique traditionally used to build mission-critical sys-
tems, has nowadays been the standard model for permissioned
blockchains [9, 18, 35, 36, 60, 63, 64] and is used in various
∗Corresponding author

ways in hybrid blockchains. Due to their inherent robustness
against performance and DoS attacks, asynchronous BFT
protocols—relying on no timing assumptions—have been
receiving significant attention [11]. While one line of works
focuses on performance [28, 44, 45, 53], some other works
aim at improving their "security." For instance, BEAT [33],
PACE [66], and FIN [34] eliminated the less-established pair-
ing assumption in these protocols; EPIC and HALE aimed
at providing adaptive security [49, 69]; DAG-Rider strived to
achieve quantum safety (though not quantum liveness) [47];
recent works studied how to avoid trusted setup [4,30,48,67].

Table 1 summarizes the security levels that can be achieved
for asynchronous BFT protocols implemented. The situation
is in sharp contrast to their partially synchronous BFT coun-
terparts (relying on timing assumptions): for example, the
classic PBFT protocol [22]—based on authenticated channels
only—easily achieves all the properties listed in the table. It is
thus our goal to design and implement practical asynchronous
BFT protocols achieving all these properties in Table 1—the
same security guarantees as in partially synchronous BFT.

1.1 Background on Security Guarantees
Authenticated channels only vs. no PKC vs. quantum
security. When designing practical fault-tolerant and cryp-
tographic protocols, it is vital to use weak assumptions to
reduce the attack surface and thus achieve strong guarantees.
Arguably the "minimal" (and most frequently used) assump-
tion is the point-to-point authenticated channel. A slightly
stronger assumption is to use symmetric cryptography only—
no public-key cryptography (PKC). Symmetric cryptography
primitives, such as message authentication codes (MACs) and
hash functions—with appropriately chosen parameters—are
believed to defend against quantum adversaries that may lever-
age quantum mechanical phenomena to solve the problem in-
tractable for conventional computers (see NIST reports [23]).

In the partial synchrony setting, the classic PBFT proto-
col [22] is the first one relying on no PKC—authenticated
channels and hash functions only. (The protocol in Castro’s
PhD thesis [21] and Cachin’s formulation for PBFT [15] as-

1

authenticated
channel only

no pkc quantum secure no trusted setup adaptive security
high WAN
throughput

SINTRA [16]
RITAS [54]

√ √ √ √

HoneyBadger [53]; BEAT [33]
√

Dumbo family [40, 44, 45]
√

EPIC [49]
√ √

Tusk [28]; Bullshark [42]
√

PACE [66]
√

SodsBC [31]
√ √ √

WaterBear-QS (this work)
√ √ √ √ √

WaterBear (this work)
√ √ √ √ √ √

Table 1: Comparison of efficient asynchronous BFT systems.

sume authenticated channels and hash functions too.) They
can be modified to assume authenticated channels only, as
commented in PBFT "It is also possible to modify the al-
gorithm (PBFT) not to use a cryptographic hash function
by replacing the hash of a message by the value of the mes-
sage." Recently, Stern and Abraham proposed a variant of
HotStuff relying on authenticated channels only and achiev-
ing improved message complexity [62]. All these partially
synchronous BFT protocols achieve quantum security.

In contrast, we do not know how to build asynchronous
BFT with quantum security, asynchronous BFT without PKC,
or asynchronous BFT with authenticated channels only.
Adaptive security vs. static security. Depending on how the
adversary decides to corrupt replicas, there are two types of
corruptions: static corruptions and adaptive corruptions. A
static adversary is restricted to choose its set of corrupted
replicas at the start of the protocol. An adaptive adversary
can choose its set of corrupted replicas at any moment dur-
ing the execution of the protocol, based on the information
it has accumulated. There is a strong separation result that
statically secure protocols are not necessarily adaptively se-
cure [19, 27]. Classic partially synchronous protocols such
as PBFT naturally achieve adaptive security, while all asyn-
chronous BFT protocols implemented (except RITAS [54]
and EPIC [49]) achieve static security and even for RITAS
and EPIC, they achieve adaptive security with significant per-
formance penalty.

1.2 Why Matching Security Guarantees of Par-
tially Synchronous BFT Hard?

Unlike partially synchronous BFT protocols, asynchronous
BFT protocols must be randomized to achieve liveness (due
to the celebrated FLP impossibility result [39]). Existing asyn-
chronous BFT protocols rely critically on cryptographic com-
mon coin protocols (a distributed object that generates the
same random coins to all replicas) which are inefficient if no
trusted setup is assumed (see Sec. 2 for detailed discussion).
Even if relaxing to quantum security, we currently lack effi-
cient common coin instantiations from quantum secure primi-
tives (e.g., lattices). Note while SodsBC is a quantum-secure
BFT protocol, it directly relies on trusted setup to generate

the common coins and thus bypasses the core problem of
generating common coins efficiently [31].

Meanwhile, achieving stronger security in asynchronous
BFT typically comes with a higher cost. For instance, adding
adaptive security in [49] makes the original BFT system much
slower. We must guarantee that ensuring these properties
altogether would not incur too much overhead.

1.3 Our Approach
Reducing the problem to local coin RABA then to ABA.
Instead of using common coins, we revisit the local coin based
BFT approach that has been long viewed as being inefficient.
In the local coin based approach, replicas need to indepen-
dently and locally flip coins and existing protocols terminate
in exponential expected rounds and fail to scale [25, 54].

We thus take a detour and develop the PACE BFT frame-
work [66] using authenticated channels only and achieving
quantum security. (Recall existing instantiations in PACE use
trusted setup and threshold cryptography, achieving static se-
curity only.) PACE devises a variant of asynchronous binary
Byzantine agreement (ABA) called reproposable ABA (i.e.,
RABA). Compared to ABA, RABA has additional properties,
allowing all RABA instances to run in parallel and hence im-
proving system throughput. It is also shown that some ABA
protocols can be efficiently converted to RABA protocols.
Crucially, RABA in PACE enables a fast path for consensus.
We observe that while PACE was designed with common
coin based RABA, the protocol, even with local coin based
RABA, can—on average—terminate within a single RABA
round with high probability. As most RABA instances will
terminate in one round, the exponential rounds in local coin
based ABA is no longer a major efficiency obstacle.1 Now the
per-round complexity of RABA protocols becomes critical.
Our strategy is to reduce asynchronous BFT to RABA with
local coins and then to ABA with local coins and then improve
the per-round complexity of them.
Improving the per-round complexity of (R)ABA. As re-
ported in almost all asynchronous BFT systems [33, 45, 66],
ABA is their major performance bottleneck. It is shown that

1Jumping ahead, we experimentally demonstrate through latency-
breakdown and robustness tests to validate the claim.

2

protocol reference implementation RBC RABA building blocks

WaterBear WaterBear-C Bracha’s RBC [14] Cubic-RABA (this paper) MAC and hash
WaterBear-Q Bracha’s RBC [14] Quadratic-RABA (this paper) MAC and hash

WaterBear-QS WaterBear-QS-C CT RBC [17] Cubic-RABA (this paper) MAC
WaterBear-QS-Q CT RBC [17] Quadratic-RABA (this paper) MAC

Table 2: WaterBear-QS and WaterBear instantiations. As in PACE, both WaterBear-QS and WaterBear have a fast path allowing
them to terminate in O(logn) time. As shown in PACE, the probability of triggering fast paths is high. WaterBear-C and
WaterBear-QS-C have O(n4) messages on average due to the usage of Cubic-RABA, while WaterBear-Q and WaterBear-QS-Q
have O(n3) messages on average due to the usage of Quadratic-RABA—matching those of HoneyBadger, BEAT, and PACE.

ABA (local coins) messages/round steps/round

Bracha’s ABA [14] n3 9 to 12

Cubic-ABA (this work) n3 5 to 7
Quadratic-ABA (this work) n2 4 or 5

Table 3: Local coin based ABA protocols with optimal re-
silience. We consider the messages and steps in each round.
Messages/round and steps/round denote number of messages
and steps among all replicas per round.

the concrete steps per round of ABA protocols are vital to
the performance of asynchronous BFT: even a single step
improvement in ABA, the resulting BFT protocol could be
improved by, say, 2x [66].

To our knowledge, only two local coin based ABA pro-
tocols have been proposed: Ben-Or’s ABA [11] assuming
n > 5 f , and Bracha’s ABA [13] with n > 3 f (the most effi-
cient protocol for nearly three decades). Bracha’s ABA, un-
fortunately, has a large number of steps (12 steps) and O(n3)
messages per round [13]. (The situation is in sharp contrast to
ABA assuming common coins which has 3 steps and O(n2)
messages per round.) Our main technical contributions are
indeed efficient local coin based ABA and RABA protocols
with improved message complexity and reduced number of
steps.

1.4 Our Contributions
1.4.1 Technical Contributions

Efficient local coin based ABA. Table 3 shows two novel
local coin based ABA protocols that we introduce in the pa-
per: Cubic-ABA and Quadratic-ABA. Cubic-ABA is easy
to understand and implement, and can be viewed as an op-
timized version of Bracha’s ABA. Cubic-ABA has 7 steps
per round in the worst case, while Bracha’s ABA uses 12
steps, almost doubling the number of steps of Cubic-ABA. In
contrast, Quadratic-ABA adopts a novel design, having 4 or 5
steps per round only and being the first local coin based ABA
with O(n2) messages per round. In particular, Quadratic-ABA
admits a fast (coin-free) allowing the protocol to terminate in
a single step in the optimistic mode.
Tackling a subtle liveness issue for RABA. We go on to
design Cubic-RABA and Quadratic-RABA based on Cubic-
ABA and Quadratic-ABA, respectively. Unlike prior trans-
formations following a generic approach in [66], we iden-
tify and tackle a subtle liveness problem when transforming

Quadratic-ABA to Quadratic-RABA. The issue that we iden-
tify demonstrates the subtlety of transforming ABA to RABA,
and once again underlines the importance of a full proof when
designing Byzantine-resilient protocols.
ABA from weak common coins and perfect common coins.
The techniques we introduce for Quadratic-ABA are of inde-
pendent interests, allowing us to obtain CC-ABA that works
for both weak common coins and perfect common coins. Here
weak common coins mean all correct replicas output 0 and 1,
both with probability 1/d, where d is a constant and d ≥ 2. If
d = 2, weak common coins become perfect common coins.
In both cases, CC-ABA compares favorably with existing
protocols. CC-ABA with weak coins can be used to improve
the distributed key generation protocol [4] and VABA pro-
tocols [41, 51], while CC-ABA with perfect coins can be
used to improve various BFT protocols such as PACE and
Dumbo [45], and the recent distributed key generation proto-
col requiring the good-case-coin-free property [30].

1.4.2 Practical Contributions
The WaterBear family of BFT protocols. Table 2 sum-
marizes the characteristics of WaterBear protocols. We use
Cubic-RABA to build WaterBear-C and Quadratic-RABA to
build WaterBear-Q. WaterBear has all desirable properties a
BFT protocol one could think of, being optimally resilient,
using authenticated channels only, achieving quantum secu-
rity and adaptive security, and not relying on trusted setup—
matching the security guarantees of the classic PBFT proto-
col. We comment that WaterBear does not attain information-
theoretic (IT) security, as we use HMAC that is not IT-secure.

We also build WaterBear-QS using authenticated chan-
nels and hash functions and achieving quantum security
for both safety and liveness properties. Similar to Water-
Bear, WaterBear-QS family also consists of two protocols:
WaterBear-QS-C and WaterBear-QS-Q, quantum secure ver-
sions of WaterBear-C and WaterBear-Q, respectively.
A new BFT platform. Starting from HoneyBadger, exist-
ing asynchronous BFT protocols, including BEAT, Dumbo,
and EPIC, use the HoneyBadger programming framework
using Python 2.7 (end of life and end of support on January
1, 2020). We instead build a new platform using Golang that
is more modular and developer-friendly than existing ones.
Our platform currently supports WaterBear-C, WaterBear-Q,
WaterBear-QS-C, WaterBear-QS-Q, and BEAT (one of the
most efficient open-source asynchronous BFT) [1,33]. Due to

3

its modularity, the library only contains about 11,000 LOC.
Large-scale experiments and robustness evaluation. With
a 61-instance deployment on Amazon EC2, we show our
protocols offer comparable performance as the state-of-the-art
asynchronous BFT protocols, while achieving much stronger
security. We also design and evaluate various failure and
attack scenarios, showing all our protocols are highly robust
during failures and attacks. Specifically, one of our protocols,
WaterBear-QS-Q, consistently outperforms BEAT (with much
weaker security guarantees); for instance, when n = 16, the
latency of WaterBear-QS-Q is about 1/8 that of BEAT and the
throughput of WaterBear-QS-Q is 1.23x that of BEAT. The
peak throughput of WaterBear-QS-Q (as n grows larger) is
about 1.47x that of BEAT.

1.5 Paper Organization
In what follows, we first discuss related work (Sec. 2)

and describe the system model and definitions (Sec. 3).
Then we present Cubic-ABA and Quadratic-ABA from lo-
cal coins (Sec. 4), their RABA counterparts—Cubic-RABA
and Quadratic-RABA (Sec. 5), and WaterBear BFT proto-
cols (Sec. 6). Last, we present our evaluation results (Sec. 7)
before concluding the paper (Sec. 8).

1.6 The Proceeding Version
The paper is the full paper of our proceeding version [68]

appearing at Usenix Security 2023. The full paper contains
many new theoretical and experimental results, including
ABA protocols from perfect common coins and weak com-
mon coins.

2 Related Work
ADKG. A line of recent works studied how to eliminate
trusted setup by using asynchronous distributed key genera-
tion (ADKG) [4, 30, 48, 67]. Even if using ADKG in exist-
ing asynchronous BFT protocols, they would neither achieve
quantum security nor security with no PKC.
Adaptive vs. static security for BFT. Most asynchronous
BFT protocols implemented, including SINTRA, HoneyBad-
gerBFT, BEAT, and Dumbo, defend against static adversary
only. These protocols rely critically on efficient but statically
secure threshold cryptography. EPIC is an asynchronous BFT
that uses adaptively secure threshold pseudorandom function
(PRF) to achieve adaptive security but is not as efficient as its
statically secure counterparts. RITAS [54] contains an adap-
tively secure BFT protocol, but due to inefficient local coin
based ABA, it is less efficient than other protocols in large-
size networks. The situation for asynchronous environments
is in sharp contrast to that of partially synchronous protocols,
most of which attain adaptive security [8,22,24,32,43,46,61].
Quantum safety (but no quantum liveness). A BFT pro-
tocol is quantum secure if its safety is quantum resistant
(quantum safety) and its liveness is quantum resistant (quan-
tum liveness) [47]. DAG-Rider [47] achieves quantum safety.

Moreover, the BKR protocol and their descendants (e.g., Hon-
eyBadger [53], MiB [50], PACE [66]) achieve quantum safety
if using techniques from EPIC [49]. All these protocols, how-
ever, do not achieve quantum liveness. Tusk [28] and Bull-
shark [42] are variants of DAG-Rider; they extensively use
signatures and hashes and achieve neither quantum safety nor
quantum liveness.
Byzantine agreement and common coins. Byzantine agree-
ment (BA) is a central tool for both distributed computing
and cryptography. The condition n≥ 3 f +1 is both necessary
and sufficient for both synchronous and asynchronous BA
protocols [58]. The celebrated impossibility result of Fischer,
Lynch, and Paterson [39] implies that a randomized BA pro-
tocol must have non-terminating executions. ABA protocol
may thus be either (1−ε)-terminating, where correct replicas
terminate the protocol with an overwhelming probability, or
almost-surely terminating, where replicas terminate with prob-
ability 1. For both types, we review ABA protocols assuming
authenticated channels only. Note there is no need to consider
ABA with authenticated channels and hash functions, as the
input to ABA is a binary value and we do not need to use hash
functions to compress the input.

For almost-surely ABA terminating with probability 1, Ben-
Or’s ABA requires n≥ 5 f +1 [11], while Bracha’s ABA [13]
achieves optimal resilience. The two protocols use local coins
and require an exponential expected running time. Feldman
and Micali propose a BA protocol having a constant ex-
pected running time in synchronous environments and ex-
tend it to build a polynomial-time ABA protocol requiring
n ≥ 4 f + 1 [38]. Abraham, Dolev, and Halpern [3] provide
the first almost-surely ABA with polynomial efficiency (con-
cretely, expected O(n2) time) and optimal resilience. Banga-
lore, Choudhury, and Patra [10] improve the expected running
time of [3] by a factor of n.

For (1−ε)-terminating ABA, Canetti and Rabin [20] build
an expected constant-round ABA protocol with optimal re-
silience. Patra, Choudhury, and Rangan [57] build a more
efficient construction in terms of communication complexity.

Both types of ABA protocols follow the classic frame-
work of Feldman and Micali [38] that reduces ABA to asyn-
chronous verifiable secret sharing (AVSS). The framework
uses AVSS to build common coins. (The original idea of
using common coin for ABA is due to Rabin [59].) Unfor-
tunately, the framework of using AVSS for common coins
is prohibitively expensive. For instance, to build AVSS, the
approach of Canetti and Rabin [20] needs to begin with an in-
formation checking protocol, then asynchronous recoverable
sharing, then asynchronous weak secret sharing, and finally
AVSS. The improved approach of Patra, Choudhury, and Ran-
gan [57] remains complex, following the route of information-
checking protocol, then asynchronous weak commitment, and
then AVSS. Moreover, the transformation from AVSS to ABA
is equally expensive, requiring running n2 AVSS instances
to generate a single (weak) coin. Patra, Choudhury, and Ran-

4

gan [57] also propose an approach for sharing multiple secrets
simultaneously. While such an approach is useful for build-
ing more efficient multi-valued BA (MBA), it is unknown
if it would yield more efficient ABA protocols. While, for
instance, the CNV framework [25] does use MBA, it may run
O(n) consecutive MBA instances (which is inefficient).

3 System Model and Definitions
3.1 System and Threat Model

This section describes the system model for distributed
protocols in the paper, where f out of n replicas may fail
arbitrarily (Byzantine failures). We assume point-to-point
authenticated channels between each pair of replicas; some
of our protocols additionally assume hash functions. The
WaterBear BFT protocols (and subprotocols we use or we
invent) have the following properties:

• Optimal resilience: The protocols in this work assume
f ≤ ⌊ n−1

3 ⌋, which is optimal. A (Byzantine) quorum is a
set of ⌈ n+ f+1

2 ⌉ replicas. For simplicity, we may assume
n = 3 f +1 and a quorum size of 2 f +1.
• Asynchronous network: We consider completely asyn-

chronous systems making no timing assumptions on mes-
sage processing or transmission delays. In contrast, par-
tially synchronous systems assume that there exist an up-
per bound on message processing and transmission delays
but the bound may be unknown to anyone [37].

Designing asynchronous systems is challenging, because
in asynchronous environments it is impossible to distin-
guish Byzantine faulty replicas from "slow" replicas. In
particular, one cannot use timers or timeout to assist in the
design of asynchronous systems.
• No dealer/trusted setup: We do not assume the existence

of a trusted dealer or trusted setup. Neither do we assume
there exists an interactive protocol for any public keys,
reference strings, or public parameters.
• Adaptive corruptions: We consider adaptive adversary

that can choose its set of corrupted replicas at any mo-
ment during the execution of the protocol, based on the
information it has accumulated thus far (i.e., the messages
observed and the states of previously corrupted replicas).

We may associate a protocol instance with a unique iden-
tifier id, tagging each message in the instance with id. If no
ambiguity arises, we may omit the identifiers.

3.2 Definitions and Preliminaries
BFT. In a BFT protocol, a replica a-delivers (atomically de-
liver) transactions, each submitted by some client. The client
computes a final response to its submitted transaction from the
responses it receives from replicas. We consider the following
properties:

• Agreement: If any correct replica a-delivers a transaction
tx, then every correct replica a-delivers tx.
• Total order: If a correct replica a-delivers a transaction tx

before a-delivering tx′, then no correct replica a-delivers
a transaction tx′ without first a-delivering tx.
• Liveness: If a transaction tx is submitted to all correct

replicas, then all correct replicas eventually a-deliver tx.
Below, we first introduce ABA and then its variant—RABA.

Then we review the PACE framework using RBC and RABA.
Asynchronous binary Byzantine agreement (ABA). An
ABA protocol is specified by propose and decide. Each replica
proposes an initial binary value (called vote) for consensus
and replicas will decide on some value. ABA should satisfy
the following properties:
• Validity: If all correct replicas propose v, then any correct

replica that terminates decides v.
• Agreement: If a correct replica decides v, then any correct

replica that terminates decides v.
• Termination: Every correct replica eventually decides

some value.
• Integrity: No correct replica decides twice.

RABA. Reproposable ABA (RABA) is a new distributed
computing primitive introduced in PACE [66]. In contrast to
conventional ABA protocols, where replicas can vote once
only, RABA allows replicas to change their votes. Formally, a
RABA protocol tagged with a unique identifier id is specified
by propose(id, ·), repropose(id, ·), and decide(id, ·), with the
input domain being {0,1}. For our purpose, RABA is “biased
towards 1." Each replica can propose a vote v at the beginning
of the protocol. Each replica can propose a vote only once. A
correct replica that proposed 0 is allowed to change its mind
and repropose 1. A replica that proposed 1 is not allowed to
repropose 0. If a replica reproposes 1, it does so at most once.
A replica terminates the protocol identified by id by generat-
ing a decide message. RABA (biased towards 1) satisfies the
following properties:
• Validity: If all correct replicas propose v and never repro-

pose v̄, then any correct replica that terminates decides v.
• Unanimous termination: If all correct replicas propose v

and never repropose v̄, then all correct replicas eventually
terminate.
• Agreement: If a correct replica decides v, then any correct

replica that terminates decides v.
• Biased validity: If f +1 correct replicas propose 1, then

any correct replica that terminates decides 1.
• Biased termination: Let Q be the set of correct replicas.

Let Q1 be the set of correct replicas that propose 1 and
never repropose 0. Let Q2 be correct replicas that propose
0 and later repropose 1. If Q2 ̸= /0 and Q = Q1∪Q2, then
each correct replica eventually terminates.
• Integrity: No correct replica decides twice.

Validity is slightly different from those for ABA. They
are modified to accommodate the RABA syntax. Integrity is
defined to ensure RABA decides once and once only.

Unanimous termination and biased termination are care-
fully introduced to help achieve RABA termination in certain

5

scenarios. External operations would have to force the proto-
col to meet these termination conditions.

Biased validity in RABA requires that if f +1 correct repli-
cas, not simply all correct replicas, propose 1, then a correct
replica that terminates decides 1. The property guarantees the
PACE framework has sufficient transactions delivered.

This paper introduces new RABA protocols from local
coins.
RBC. In a Byzantine reliable broadcast (RBC) protocol [5–
7, 14, 17, 29], a replica p first starts the protocol by executing
r-broadcast with messages m, and all replicas terminate the
protocol by executing r-deliver with message m. We consider
the following properties:

• Validity: If a correct replica p r-broadcasts a message m,
then p eventually r-delivers m.
• Agreement: If some correct replica r-delivers a message

m, then every correct replica eventually r-delivers m.
• Integrity: For any message m, every correct replica r-

delivers m at most once. Moreover, if the sender is correct,
then m was previously r-broadcast by the sender.

This paper uses Bracha’s broadcast [13] that assumes au-
thenticated channels only and has a bandwidth of O(n2|m|),
and uses CT RBC due to Cachin and Tessaro [17] that addi-
tionally uses hash functions (with output length λ) to reduce
the bandwidth to O(n|m|+λn2 logn).
PACE framework. PACE uses RBC and RABA in a black-
box manner to construct efficient asynchronous BFT. The
framework allows all RABA instances to run in parallel, re-
moving a well-known bottleneck in the original framework
of Ben-Or, Kelmer, and Rabin [12]. Concretely, PACE has a
RBC phase and a RABA phase; correct replicas can run the
RABA phase in parallel once n− f RBC instances have com-
pleted. PACE also provides a fast path for consensus, allowing
the protocol to terminate using a single RABA round.
Steps, phases, and rounds. In asynchronous environments,
the network delay is unbounded. To measure the latency of
asynchronous protocols, we use the standard notion of asyn-
chronous steps [20], where a protocol runs in x asynchronous
steps if its running time is at most x times the maximum
message delay between honest replicas during the execution.

We also use the notion of phases for ease of description,
where a phase in a protocol consists of a fixed number of
steps. When describing some of our protocols, we may divide
a protocol into several phases, each of which has several steps.

In this paper, the notion of rounds is restricted to ABA pro-
tocols: an ABA protocol proceeds in rounds, where an ABA
round consists of a fixed number of steps. For instance, local
coin ABA protocols terminate in expected exponential rounds,
while ABA assuming common coins (including CC-ABA
we introduce in this paper) terminates in expected constant
rounds. An ABA round may consist of several phases and
each phase consists of several steps. In asynchronous ABA
systems, replicas proceed in rounds and they might not be

always in the same round, but each correct replica eventually
terminates every round that it has participated in.

4 ABA from Local Coins
Summary of our results. The state-of-the-art local coin based
ABA protocol, Bracha’s ABA [13], has O(n3) messages and
12 steps in each round. We design two new ABA protocols
from local coins, Cubic-ABA and Quadratic-ABA, with two
goals in mind—being more efficient than Bracha’s ABA and
being compatible with RABA.

We begin with the simpler one, Cubic-ABA, that achieves
the same message complexity as Bracha’s ABA but has only 7
steps in each round. Cubic-ABA admits a clean and intuitive
proof of correctness. We go on to suggest Quadratic-ABA
on top of Cubic-ABA. Compared to Cubic-ABA, Quadratic-
ABA reduces the messages from O(n3) to O(n2) and reduces
the number of steps to 5 in each round. The improvement
is significant, allowing WaterBear to attain the same aver-
age message complexity in normal cases as PACE—O(n3).
Equally important, both ABA protocols can be modified for
efficient RABA protocols.

As an important by-product, extending the idea of
Quadratic-ABA and assuming the existence of (weak or per-
fect) common coins, we can present ABA protocols that have
expected constant rounds and outperform the state-of-the-art
protocols, as shown in Appendix G.

4.1 Cubic-ABA
Overview. Our motivation for Cubic-ABA is to reduce the
number of parallel RBCs in Bracha’s ABA from three to two.
In particular, in each round, Bracha’s ABA has three phases,
where in each phase, replicas run n parallel RBCs. In total,
Bracha’s ABA has 12 steps and O(n3) messages per round.
(We recall Bracha’s ABA in Appendix A.) In Cubic-ABA,
we replace the first two RBC phases with one or two steps of
all-to-all broadcast so Cubic-ABA only has 5 to 7 steps.
The protocol. Figure 1 describes the pseudocode of Cubic-
ABA and Figure 2 illustrates the workflow. Cubic-ABA uses
the broadcast primitive (multicasting messages to all replicas)
and the r-broadcast and r-deliver primitives of RBC. The
protocol proceeds in rounds, beginning with round 0. Each
round r consists of three phases. In the first phase, a replica
pi broadcasts a pre-voter(ivr) message, where pre-vote is the
message type, r is the round when the message was sent, and
ivr ∈{0,1} is the input value of pi for round r (ln 07). At ln 08-
09, if pi receives f +1 pre-voter(v) for some v ∈ {0,1} and
has not previously broadcast pre-voter(v), it also broadcasts
pre-voter(v).

At ln 10-14, pi enters the second phase. If pi receives 2 f +1
pre-voter(v), it adds v to its bsetr, a set consisting only 0 and
1 (ln 10-11). Letting v be the first value added to bsetr for pi,
pi broadcasts a main-voter(v) message (ln 12-14).

In the third phase, a correct replica pi accepts a
main-voter(v) message only if v has already been added lo-

6

01 initialization
02 r← 0 {round}
03 func propose(vinput)
04 iv0← vinput {set input for round 0}
05 start round 0
06 round r
07 broadcast pre-voter(ivr) {� phase 1}
08 upon receiving pre-voter(v) from f +1 replicas
09 if pre-voter(v) has not been sent, broadcast pre-voter(v)
10 upon receiving pre-voter(v) from 2 f +1 replicas {� phase 2}
11 bsetr ← bsetr ∪ {v}
12 wait until bsetr ̸= /0

13 if main-voter() has not been sent
14 broadcast main-voter(v) where v ∈ bsetr
15 upon receiving n− f main-voter() such that for each received
main-voter(b), b ∈ bsetr {� phase 3}
16 if there are n− f main-voter(v)
17 r-broadcast final-voter(v)
18 else r-broadcast final-voter(∗)
19 upon r-delivering n − f final-voter() such that for each
final-voter(v), v ∈ bsetr; for each final-voter(∗), bsetr = {0,1}
20 if there are n− f final-voter(v)
21 ivr+1← v, decide v
22 else if there are f +1 final-voter(v)
23 ivr+1← v
24 else
25 ivr+1← Random() {obtain local coin}
26 r← r+1

Figure 1: Cubic-ABA. The code for pi. v ∈ {0,1}.

RBC0

RBC1

RBC2

RBC3

1

0

1

1

1

pre-vote:
0 or 1

main-vote:
0 or 1

final-vote:
v or

accept any value accept main-
vote(v) if v is in

bset

accept final-vote(v)
if v is in bset

*

Figure 2: The workflow of Cubic-ABA.

cally to bsetr (ln 15). If pi has received n− f main-voter(v),
pi r-broadcasts a final-voter(v) message (ln 16-17). Oth-
erwise, pi r-broadcasts final-voter(∗), where ∗ is a distin-
guished symbol that is neither 0 nor 1 (ln 18).

A correct pi accepts a final-voter() message, if one of the
following two conditions holds (ln 23):
• For a final-voter(v) message with v ∈ {0,1}, v has been

added to bsetr for pi.
• For a final-voter(∗) message, bsetr contains both 0 and 1.

Upon r-delivering n− f valid final-voter() messages, we
distinguish three cases:
• Ln 20-21: If pi r-delivers n− f valid final-voter(v) for the

same v ∈ {0,1}, pi decides v and uses v as ivr+1 to enter
the next round. Each correct replica that decides in round r
continues for one more round (up to the final-voter() step)

and terminates the protocol.
• Ln 22-23: If pi r-delivers at least f +1 valid final-voter(v)

for some v ∈ {0,1}, pi uses v as input for the next round.
• Ln 24-25: Otherwise, a replica generates a local random

coin and uses it as input for the next round.
Analysis. In our approach, the first two phases of Cubic-
ABA resemble those of common coin based ABA proto-
cols [26, 52, 55, 56, 66], where we ask replicas to broadcast
their values. In particular, the first phase ensures that all cor-
rect replicas eventually acknowledge the same set of values
bsetr; the second phase ensures that no two correct replicas
will vote for opposite values in the third phase, though one
correct replica may vote for b∈ {0,1} and one may vote for ∗
(a distinguished vote). Accordingly, we do not have to rely on
RBC for the first two phases, as our first two phases already
guarantee that correct replicas will not vote for conflicting
values for the third phase.

In the third phase, we need to ensure that if a correct replica
receives n− f final-voter(v) and decide, any correct replica
will propose v and eventually decide v. Note for the case
where f +1 correct replicas vote for v and f correct replicas
vote for ∗, we need to guarantee that if a correct replica re-
ceives n− f final-voter(v), any correct replica will receive
at least f + 1 final-voter(v) and therefore vote for v in the
following round. Thus, we rely on RBC, ensuring that all
correct replicas eventually receive consistent values, even in
the presence of Byzantine replicas. As we show in the proof,
this is crucial for the agreement property.

Note that our protocol presented is asynchronous and repli-
cas are not always in the same round. If a replica pi is in
round r and receives a message from p j tagged by r′ > r (e.g.,
pre-voter′(v)), pi can simply store the message and will pro-
cess it after pi enters round r′. As shown in the termination
property (Theorem 7), each correct replica will proceed to
the next round before it decides a value and all replicas will
eventually decide in the same round.

As the number of n parallel RBC instances is 1 instead of
3, the number of steps is reduced from 12 to 7.

4.2 Quadratic-ABA
Overview. In Quadratic-ABA, we replace the only parallel
RBC phase used in Cubic-ABA using a novel two-step all-
to-all broadcast. The goal is to ensure that at the end of each
round, if a correct replica receives n− f matching votes for
a value v, any correct replica will receive either n− f votes
for v or at least f +1 matching v. This will guarantee that all
correct replicas will vote for v in the following round. By elim-
inating parallel RBC instances causing O(n3) messages and
O(n3) communication, Quadratic-ABA now achieves O(n2)
messages and O(n2) communication per round.
The protocol. The pseudocode of Quadratic-ABA is
shown in Figure 3. The Quadratic-ABA protocol is
round-based, starting from round 0. In each round, there
are four phases—pre-voter(), voter(), main-voter(), and

7

01 initialization
02 r← 0 {round}
03 func propose(vinput)
04 iv0← vinput {set input for round 0}
05 start round 0
06 round r
07 broadcast pre-voter(ivr) {� phase 1}
08 upon receiving pre-voter(v) from f +1 replicas
09 if pre-voter(v) has not been sent, broadcast pre-voter(v)
10 upon receiving pre-voter(v) from 2 f +1 replicas {� phase 2}
11 bsetr ← bsetr ∪ {v}
12 wait until bsetr ̸= /0

13 if voter() has not been sent
14 broadcast voter(v) where v ∈ bsetr
15 upon receiving n− f voter() such that for each voter(v), v ∈
bsetr {� phase 3}
16 if there are n− f voter(v)
17 broadcast main-voter(v)
18 else broadcast main-voter(∗)
19 upon receiving n − f main-voter() such that for each
main-voter(v), at least f + 1 voter(v) have been received and for
each main-voter(∗), bsetr = {0,1} {� phase 4}
20 if there are n− f main-voter(v)
21 broadcast final-voter(v)
22 else broadcast final-voter(∗)
23 upon receiving n − f final-voter() such that for each
final-voter(v), at least f +1 main-voter(v) have been received and
for each final-voter(∗), bsetr = {0,1}
24 if there are n− f final-voter(v)
25 ivr+1← v, decide v
26 else if there are only final-voter(v) and final-voter(∗)
27 ivr+1← v
28 else
29 ivr+1← Random() {obtain local coin}
30 r← r+1

Figure 3: The Quadratic-ABA protocol. The code for pi.

final-voter(), as shown in Figure 4. The pre-voter() and
voter() phases (ln 07-14) are similar to the pre-voter() and
main-voter() phases in Cubic-ABA. In the first phase, every
replica pi broadcasts a pre-voter(ivr) message, where ivr is
the value pi votes for in round r (ln 07). After receiving f +1
pre-voter(v) and pi has not previously broadcast pre-voter(v),
pi also broadcasts pre-voter(v) (ln 08-09). At ln 10-11, upon
receiving n− f pre-voter(v), pi adds v to bsetr. For the first
value v added to bsetr, pi broadcasts a voter(v) message (ln
12-14).

For each voter(v) message, pi accepts it only if v has been
added to bsetr. Upon receiving n− f voter() messages, one
of the following two conditions holds.

• Ln 16-17: If pi receives n− f voter(v) messages, it broad-
casts a main-voter(v) message.
• Ln 18: Otherwise, pi broadcasts a main-voter(∗) message.

Every correct replica pi accepts a main-voter(v) mes-
sage only if pi has received f + 1 voter(v) messages. Ev-

Figure 4: The workflow of Quadratic-ABA.

ery correct replica accepts a main-voter(∗) message only if
bsetr = {0,1}. Upon receiving n− f main-voter() messages,
one of the following two conditions holds.

• Ln 20-21: If pi receives n− f main-voter(v) messages, it
broadcasts a final-voter(v) message.
• Ln 22: Otherwise, pi broadcasts final-voter(∗) message.

Every correct replica accepts a final-voter(v) message only
if it has received f +1 main-voter(v) messages. Every correct
replica accepts a final-voter(∗) message only if bsetr = {0,1}.
Upon receiving n− f final-voter() messages, there are three
cases:
• Ln 24-25: If pi receives n− f final-voter(v), it decides v

and also sets ivr+1 as v. It participates in the protocol for
one more round and terminates the protocol.
• Ln 26-27: If pi receives n− f final-voter() messages that

carry only value v and ∗, it uses v for round r+1.
• Ln 28-29: Otherwise, pi generates a local random coin

and uses it as input for the next round.
Analysis. Quadratic-ABA guarantees that if a correct replica
receives n− f final-voter(v), any correct replica will set
ivr+1 as v (Lemma 15). First, if a correct replica sends
main-voter(v), no correct replica will send main-voter(v̄)
(Lemma 13). In particular, if a correct replica sends
main-voter(v), it must have received n− f voter(v). If an-
other correct replica sends main-voter(v̄), at least n− f repli-
cas have sent voter(v). Therefore, at least one correct replica
has sent both voter(v) and voter(v̄), contradicting the fact
that each correct replica only sends a single voter() mes-
sage in each round. Furthermore, if a correct replica sends
final-voter(v), no correct replica will send final-voter(v̄) or
even accept final-voter(v̄) from other replicas. This is be-
cause if a correct replica accepts final-voter(v̄), at least one
correct replica has sent main-voter(v̄). Meanwhile, if a cor-
rect replica accepts final-voter(v), at least one correct replica
has sent main-voter(v), contradicting Lemma 13. Hence,
at the end of each round, if a correct replica receives only
final-voter(v1) and final-voter(∗), another correct replica re-
ceives only final-voter(v2) and final-voter(∗), it holds that
v1 = v2. This result is crucial for agreement and termination.

Furthermore, if a correct replica decides v in round r, it
must have received n− f final-voter(v). Among them, at
least f + 1 correct replicas have sent final-voter(v). With
3 f + 1 replicas in total, there are at most 2 f final-voter(v̄)
or final-voter(∗). Hence, every correct replica receives at
least one final-voter(v). As no correct replica will ac-

8

cept final-voter(v̄), every correct replica will only have
final-voter(v) and final-voter(∗). Thus, every correct replica
either decides in round r, or enters round r+1 and sets ivr+1
to v. Doing so ensures agreement.

5 RABA from Local Coins
As shown in PACE [66], the PACE framework with RABA

significantly outperforms the conventional BKR diagram
and enables a fast path for termination. Our goal here is to
use local coin based ABA to design RABA without trusted
setup. We use Cubic-ABA and Quadratic-ABA to build Cubic-
RABA and Quadratic-RABA, respectively. Here, we focus on
Quadratic-RABA and present Cubic-RABA in Appendix B.
Subtlety of building Quadratic-RABA. PACE introduced a
general approach to converting ABA to RABA [66]. Follow-
ing their approach, we present Quadratic-RABA in Figure 5.
Quadratic-RABA is identical to Quadratic-ABA except for the
first round (round 0), where we make the following changes.
First, we use a propose() event and a repropose() event (ln 03-
07). Upon propose(v), a replica pi starts round 0 and executes
the broadcast-vote(v) function. Upon repropose(1) event, re-
gardless of which round a replica is in, pi still executes the
broadcast-vote(v) function. The propose() and repropose()
events are crucial for biased termination. So if a quorum of
correct replicas either propose 1 or repropose 1, the protocol
will eventually terminate.

Second, in the broadcast-vote(v) function, replica pi broad-
casts a pre-vote0(v) message (ln 09). At ln 10-14, if v = 1,
pi immediately adds 1 to bset0, and broadcasts vote0(1),
main-vote0(1), and final-vote0(1).

Third, the coin value in round 0 is set to 1 (ln 38). The sec-
ond and the third modifications guarantee both biased validity
property and a fast path allowing terminating the protocol in
one step only. Namely, if f +1 correct replicas propose 1, no
correct replica will receive 2 f +1 final-vote0(0). As we will
show in the proof, every correct replica will either directly
decide 1 or set iv1 as 1, so all correct replicas decide within
two rounds. Furthermore, our protocol has a fast path: if all
correct replicas propose 1, they will directly send vote0(1),
main-vote0(1), final-vote0(1), allowing correct replicas to de-
cide in one step.

The above modifications largely follow the generic trans-
formation. We find that these modifications are sufficient for a
secure Cubic-ABA, just as all known ABA protocols that can
be transformed into their secure RABA counterparts (shown
in [66]). Unexpectedly, we find for Quadratic-ABA, however,
there is a subtle liveness issue for round 0. Suppose f cor-
rect replicas propose 1 and f + 1 correct replicas propose
0. The f replicas directly broadcast vote0(1), main-vote0(1),
and final-vote0(1). Even if the f +1 correct replicas that pro-
posed 0 may later repropose 1, they may have already sent
vote0(0), main-vote0(0), and final-vote0(0). In this case, no
correct replica will accept final-vote0(1), as they do not re-
ceive f + 1 main-vote0(1). The issue is, in essence, caused

01 initialization
02 r← 0 {round}
03 func propose(v)
04 broadcast-vote(v)
05 start round 0
06 func repropose(v)
07 broadcast-vote(v)
08 func broadcast-vote(v)
09 if pre-vote0(v) has not been sent, broadcast pre-vote0(v)
10 if v = 1
11 bset0 ← bset0 ∪ {1}
12 if vote0() has not been sent, broadcast vote0(1)
13 if main-vote0() has not been sent, broadcast main-vote0(1)
14 if final-vote0() has not been sent, broadcast final-vote0(1)
15 round r
16 if r > 0, broadcast pre-voter(ivr)
17 upon receiving pre-voter(v) from f +1 replicas
18 if pre-voter(v) has not been sent, broadcast pre-voter(v)
19 upon receiving pre-voter(v) from 2 f +1 replicas
20 bsetr ← bsetr ∪ {v}
21 wait until bsetr ̸= /0

22 if voter() has not been sent
23 broadcast voter(v) where v ∈ bsetr
24 upon receiving n− f voter() such that for each received
voter(b), b ∈ bsetr
25 if there are n− f voter(v)
26 broadcast main-voter(v)
27 else broadcast main-voter(∗)
28 upon receiving n − f main-voter() such that for each
main-voter(v): 1) if r = 0, v ∈ bsetr, 2) if r > 0, at least f + 1
voter(v) have been received; for each main-voter(∗), bsetr = {0,1}
29 if there are n− f main-voter(v)
30 broadcast final-voter(v)
31 else broadcast final-voter(∗)
32 upon receiving n − f final-voter() such that for each
final-voter(v), 1) if r = 0, v ∈ bsetr, 2) if r > 0, at least f + 1
main-voter(v) have been received; for each final-voter(∗), bsetr =
{0,1}
33 if there are n− f final-voter(v)
34 ivr+1← v, decide v
35 else if there are only final-voter(v) and final-voter(∗)
36 ivr+1← v
37 else
38 if r = 0, ivr+1← 1 {coin in the first round is 1}
39 else ivr+1← Random() {obtain local coin}
40 r← r+1

Figure 5: The Quadratic-RABA protocol. The code for pi.

by the fact that each correct replica accepts a main-voter(v)
message only if it has previously received f +1 voter(v) mes-
sages, and each correct replica accepts a final-voter(v) mes-
sage only if it has previously received f + 1 main-voter(v)
messages. We visualize the example in Appendix C.

To resolve the above issue, we introduce another change to
round 0 of the protocol. In particular, we relax the conditions
for round 0: for each main-voter(v) (ln 28) and final-voter(v)

9

01 upon selecting mi for pi using the technique of EPIC
02 r-broadcast([e, i],mi) for RBCi
03 upon r-deliver([e, j],m j) for RBC j
04 if RABA j has not been started
05 propose([e, j],1) for RABA j
06 else
07 repropose([e, j],1) for RABA j
08 upon delivery of n− f RBC instances
09 for RABA instances that have not been started
10 propose([e, j],0)
11 upon decide([e, j],v) for any value v for all RABA instances
12 let S be set of indexes for RABA instances that decide 1
13 wait until r-deliver([e, j],m j) for all RABA j where j ∈ S
14 a-deliver(∪ j∈S{m j})

Figure 6: The WaterBear family. The code for replica pi
in epoch e. WaterBear uses the EPIC technique to select
transactions.

(ln 32), a correct replica accepts it as long as v ∈ bset0. With
this modification, the set of f + 1 correct replicas that pro-
posed 0 will repropose 1, so every correct replica will even-
tually add 1 in bset0. Hence, every correct replica will even-
tually accept main-vote0(1) and final-vote0(1). Our result
underlines the subtlety of constructing RABA from ABA and
the importance of a full proof for a new protocol (proof in
Appendix I).

6 The WaterBear Family
This section describes our asynchronous BFT protocols—

WaterBear (WaterBear-C and WaterBear-Q), and WaterBear-
QS (WaterBear-QS-C, and WaterBear-QS-Q). All the proto-
cols are quantum secure, and WaterBear-C and WaterBear-Q
rely on authenticated channels only.

6.1 The WaterBear Protocols
WaterBear follows the PACE paradigm but uses the trick in

EPIC [49] to avoid the usage of threshold encryption (needed
for achieving adaptive security). In particular, WaterBear uses
r-broadcast and r-deliver primitives of Bracha’s broadcast,
and propose, repropose and decide primitives of WaterBear
RABA. Figure 6 depicts the pseudocode of WaterBear. Ear-
lier asynchronous BFT protocols such as HoneyBadger and
BEAT use threshold encryption to allow parallel, random
transaction selection while achieving censorship resilience
(liveness); however, no efficient adaptively secure threshold
encryption was known. EPIC thus proposes a new crypto-free
transaction selection strategy: replicas select random trans-
actions in plaintext for most epochs, and to achieve liveness,
they periodically switch to the first-in, first-out (FIFO) selec-
tion, where replicas maintain a log of transactions according
to the order that transactions are received and select as input
the first transaction group in the buffer. In WaterBear, we use
this trick to avoid threshold encryption.

Following the PACE paradigm, for each epoch e, WaterBear
consists of n parallel RBC instances and n parallel RABA in-

f = 1 f = 2 f = 5
0

0.5

1

1.5

2

0.12 0.13

0.78

0.41
0.49

0.88

0.08 0.08
0.13

0.35 0.36 0.4

0.13 0.13

0.75

0.4
0.45

0.87

0.08 0.08
0.14

0.31 0.34 0.38

0.09
0.17

1.06

0.57 0.61

1.28

L
at

en
cy

(S
ec

)

WaterBear-C (LAN) WaterBear-C (WAN)
WaterBear-Q (LAN) WaterBear-Q (WAN)
WaterBear-QS-C (LAN) WaterBear-QS-C (WAN)
WaterBear-QS-Q (LAN) WaterBear-QS-Q (WAN)
BEAT (LAN) BEAT (WAN)

(a) Latency for b = 1.

f = 1 f = 2 f = 5
0

0.5

1

1.5

2

0.13 0.15

0.93

0.47
0.56

1.05

0.08 0.08

0.28

0.4
0.44

0.61

0.13 0.13

0.78

0.44
0.52

0.92

0.08 0.08
0.14

0.34
0.4 0.42

0.09
0.17

1.23

0.62 0.66

1.46

L
at

en
cy

(S
ec

)

WaterBear-C (LAN) WaterBear-C (WAN)
WaterBear-Q (LAN) WaterBear-Q (WAN)
WaterBear-QS-C (LAN) WaterBear-QS-C (WAN)
WaterBear-QS-Q (LAN) WaterBear-QS-Q (WAN)
BEAT (LAN) BEAT (WAN)

(b) Latency for b = 100.

Figure 7: Latency of the protocols.

stances. In the RBC phase, each replica pi r-broadcasts a
proposal mi for RBCi. If pi r-delivers a proposal from RBC j,
it proposes 1 for RABA j. Upon delivery of n− f RBC in-
stances, instead of waiting for n− f RABA instances to ter-
minate, pi proposes 0 for all RABA instances that have not
been started. If pi later delivers a proposal from some RBC j,
it has proposed 0 for RABA j, and has not terminated RABA j,
it reproposes 1 for RABA j. We let S be the set of indexes
where RABA j decides 1. When all RABA instances termi-
nate and all RBCi (i∈ S) instances are delivered, pi a-delivers
∪ j∈S{m j}. The security of WaterBear directly follows from
that of the PACE paradigm. As we propose two RABA pro-
tocols Cubic-RABA and Quadratic-RABA. We use Cubic-
RABA to build WaterBear-C and Quadratic-RABA to build
WaterBear-Q.

6.2 The WaterBear-QS Protocols
We now describe WaterBear-QS, also consisting of two

asynchronous BFT protocols. We use Cubic-RABA to build
WaterBear-QS-C and Quadratic-RABA to build WaterBear-
QS-Q. The difference between WaterBear and WaterBear-QS
is that WaterBear-QS additionally uses hash functions (used
in CT RBC [17]) to reduce the communication complexity
of RBC. Jumping ahead, we show the modification leads to a
dramatic performance improvement.

7 Implementation and Evaluation
Implementation. We implemented WaterBear-C, WaterBear-
Q, WaterBear-QS-C, and WaterBear-QS-Q in a new Golang
library. For comparison, we choose to implement BEAT2 [33]

10

0 0.5 1 1.5 2 2.5
·104

0

20

40

60

80

Batch size

T
hr

ou
gh

pu
t(

kt
x/

se
c)

WaterBear-C WaterBear-QS-C
WaterBear-Q WaterBear-QS-Q

BEAT

(a) Throughput in the LAN setting
when f = 1.

0 0.5 1 1.5 2 2.5
·104

0

20

40

60

80

Batch size

T
hr

ou
gh

pu
t(

kt
x/

se
c)

WaterBear-C WaterBear-QS-C
WaterBear-Q WaterBear-QS-Q

BEAT

(b) Throughput in the WAN setting
when f = 1.

0 1 2 3 4
·104

0

1

2

3

4

5

Throughput (tx/sec)

L
at

en
cy

(S
ec

)

WaterBear-C WaterBear-QS-C
WaterBear-Q WaterBear-QS-Q

BEAT

(c) Throughput vs. Latency when f =
1.

0 1 2 3 4 5
·104

0

10

20

30

Throughput (tx/sec)

L
at

en
cy

(S
ec

)

WaterBear-C WaterBear-QS-C
WaterBear-Q WaterBear-QS-Q

BEAT

(d) Throughput vs. Latency when f = 5.

0 1 2 3 4 5
·104

0

20

40

60

80

Throughput (tx/sec)

L
at

en
cy

(S
ec

)

WaterBear-C WaterBear-QS-C
WaterBear-Q WaterBear-QS-Q

BEAT

(e) Throughput vs. Latency when f =
10.

0 1 2 3 4 5
·104

0

20

40

60

80

100

120

Throughput (tx/sec)

L
at

en
cy

(S
ec

)
WaterBear-C WaterBear-QS-C
WaterBear-Q WaterBear-QS-Q

BEAT

(f) Throughput vs. Latency when f =
20.

0 0.2 0.4

WaterBear-C

WaterBear-Q

WaterBear-QS-C

WaterBear-QS-Q

Latency breakdown (Sec)

RBC RABA

(g) Latency breakdown for f = 1 and b = 1.

0 0.5 1 1.5

WaterBear-C

WaterBear-Q

WaterBear-QS-C

WaterBear-QS-Q

Latency breakdown (Sec)

RBC RABA

(h) Latency breakdown for f = 1 and b = 5000.

0 10 20 30 40 50

WaterBear-C

WaterBear-Q

WaterBear-QS-C

WaterBear-QS-Q

Latency breakdown (Sec)

RBC RABA

(i) Latency breakdown for f = 20 and b = 1.

0 20 40 60 80 100 120

WaterBear-C

WaterBear-Q

WaterBear-QS-C

WaterBear-QS-Q

Latency breakdown (Sec)

RBC RABA

(j) Latency breakdown for f = 20 and b = 5000.

Figure 8: Throughput vs. latency and latency breakdown on m5.xlarge instances for f = 1 to f = 20.
in our library. We implemented a new version of BEAT, replac-
ing MMR ABA with Cobalt-ABA, as Cobalt ABA addressed
the liveness issue of MMR. Our implementation has been
made publicly available3 and involves more than 11,000 LOC
for the protocol implementations and about 1,000 LOC for
evaluation.

All the protocols use authenticated channels and WaterBear-
QS additionally uses hash functions. We use HMAC to realize
authenticated channels. We use SHA256 as the hash function.
We use gRPC as the communication library.

All our implemented asynchronous protocols use RBC in
their RBC phases, and WaterBear-C and WaterBear-QS-C
additionally use RBC in the ABA phase. For WaterBear-C
and WaterBear-Q, we use Bracha’s broadcast in the RBC
phase. For WaterBear-QS-C and WaterBear-QS-Q, we use
CT RBC [17] (using erasure coding and hash functions) in the
RBC phase. In ABA phases of WaterBear-C and WaterBear-
QS-C, we directly use Bracha’s broadcast because there is no
bulk data (and no need to use erasure coding). To implement
CT RBC, we use a Golang Reed-Solomon code library [2].

2https://github.com/fififish/beat
3https://github.com/fififish/waterbear

There are several reasons we chose BEAT as the baseline
protocol. First, BEAT is one of the most efficient open-source
asynchronous BFT implementations. As shown in PACE [66],
BEAT is more efficient than Dumbo [45] for n≤ 46. Second,
all WaterBear protocols achieve adaptive security, and EPIC is
the only known adaptively secure asynchronous BFT protocol
implemented. It is shown that BEAT significantly outperforms
EPIC in both LAN and WAN settings [49]. Hence, if we show
the performance difference between BEAT and our protocols,
we can argue which is the most efficient adaptively secure
asynchronous BFT protocol among EPIC and WaterBear pro-
tocols. We do not attempt to compare our protocols with other
BFT protocols in Table 1, as those protocols neither achieve
adaptive nor quantum security, relying on PKC and trusted
setup. Indeed, our goal is not to claim WaterBear protocols
are the most efficient asynchronous BFT protocols, but we aim
at refuting the conventional wisdom that asynchronous BFT
protocols cannot match the security guarantees of partially
synchronous protocols while preserving performance.
Overview of evaluation. We evaluate the performance of
our protocols on Amazon EC2 utilizing up to 61 virtual ma-
chines (VMs). We consider both LAN and WAN settings.
In the LAN setting, the replicas are run in the same region

11

WaterBear-C

WaterBear-Q

WaterBear-Q
S-C

WaterBear-Q
S-Q

BEAT-Cobalt
0

20

40

60

19.45
21.23

31.14
33.78

28.42

25.08 25.67

30.19
31.51

26.08

18.79
20.49

28.3
29.68

25.49

19.03 18.18

27.37 27.24 26.67

T
hr

ou
gh

pu
t(

kt
x/

se
c)

S0: ff S1: crash
S2: zero S3: flip

(a) Throughput for f = 1.

WaterBear-C

WaterBear-Q

WaterBear-Q
S-C

WaterBear-Q
S-Q

BEAT-Cobalt
0

20

40

60

18.14 18.02

44.73
46.04

41.39

23.8 23.55

59.53
61.53

53.25

17.88 17.57

43.65 43.83

40.1

16.71 17.27

39.86 40.18 39.05

T
hr

ou
gh

pu
t(

kt
x/

se
c)

S0: ff S1: crash
S2: zero S3: flip

(b) Throughput for f = 2.

WaterBear-C

WaterBear-Q

WaterBear-Q
S-C

WaterBear-Q
S-Q

BEAT-Cobalt
0

20

40

60

80

9.68 10.18

46.61

56.15

36.31

12.64 13.32

57.13

70.19

42.44

8.74 9.31

39.07

43.73

34.41

8.9 9.41

37.58
40.45

36.12

T
hr

ou
gh

pu
t(

kt
x/

se
c)

S0: ff S1: crash
S2: zero S3: flip

(c) Throughput for f = 5.

Figure 9: Performance of the protocols in failure scenarios.

of EC2—US Virginia. In the WAN setting, the replicas are
evenly distributed in four different regions: us-west-2 (Ore-
gon, US), us-east-2 (Ohio, US), ap-southeast-1 (Singapore),
and eu-west-1 (Ireland). The lowest one-way latency (resp.,
the highest latency) is 24.5 ms for Ohio-Oregon (resp., 90 ms
for Ireland-Singapore). We use both t2.medium and m5.xlarge
instances for our evaluation. The t2.medium type has two
virtual CPUs and 4GB memory and the m5.xlarge has four
virtual CPUs and 16GB memory. Unless otherwise mentioned,
we use m5.xlarge instances by default. We conduct the ex-
periments under different network sizes and contention levels
(batch size). We use f to denote the network size; in each
experiment, we use 3 f +1 replicas in total. We let b denote
the contention level. In particular, each replica proposes b
transactions in each epoch. For each experiment, we vary the
batch size b from 1 to 25,000. For each experiment, we run the
tests 10 times and compute the average (for both throughput
and latency). We evaluate the performance of the protocols
with two different transaction sizes—100 bytes by default and
also 250 bytes.

We assess the protocols under failure-free and failure sce-
narios. While our failure-case evaluation is not the first such
evaluation for asynchronous BFT protocols, the testbed we
built aims to be comprehensive, encompassing realistic failure
and attack scenarios we can envision. We roughly summarize
our main results in the following:
• The WaterBear protocols using Quadratic-RABA

(WaterBear-QS-Q and WaterBear-Q) are much more effi-
cient than the protocols using Cubic-RABA (WaterBear-
QS-C and WaterBear-C), as Quadratic-RABA has O(n2)
messages and much fewer steps than Cubic-RABA (with
O(n3) messages). The result justifies the importance of
designing Quadratic-RABA and Quadratic-ABA.
• The quantum secure WaterBear protocols (WaterBear-QS-

C and WaterBear-QS-Q) drastically outperform their coun-
terparts assuming authenticated channels only (WaterBear-
C and WaterBear-Q), as the RBC used for WaterBear-QS-
C and WaterBear-QS-Q is more bandwidth-efficient than
that for WaterBear-C and WaterBear-Q. The finding high-
lights the cost of achieving security with authenticated
channels only from quantum security for our protocols.
• Regarding latency, all WaterBear protocols have lower

latency (under no contention) than BEAT. Regarding
throughput, all our protocols, except WaterBear-QS-Q,
share similar performance as BEAT.
• WaterBear-QS-Q consistently and significantly outpaces

BEAT. For instance, when n = 16, WaterBear-QS-Q has
about 1/8 the latency that of BEAT and 1.23x the through-
put of BEAT. As n grows larger, the peak throughput of
WaterBear-QS-Q is about 1.47x that of BEAT.
• All four protocols we propose are highly robust against

various crash and Byzantine failures, just as BEAT.

7.1 Performance in Failure-Free Cases
Latency. We report the latency of the asynchronous protocols
in both LAN and WAN settings for f = 1,2, and 5 in Figure 7
with for b = 1 and 100. All WaterBear protocols consistently
achieve lower latency than BEAT in both LAN and WAN envi-
ronments, mainly because our protocols have a coin-free fast
path. Among the protocols, WaterBear-QS-Q has consistently
lower latency than all other protocols, as WaterBear-QS-Q
has the lowest communication complexity among the Water-
Bear protocols. As f increases, the latency difference between
WaterBear-QS-Q and other protocols becomes more visible.
For instance, when f = 5 in the WAN setting, BEAT achieves
3.47x latency of that for WaterBear-QS-Q; in the LAN setting,
the latency for BEAT is 8.78x of that for WaterBear-QS-Q.

Let us explain the latency results in more detail. First, take
WaterBear-QS-Q in WANs for an example. In the optimistic
mode (with no failures and synchronous networks), it takes
four steps (3 for RBC and 1 for RABA due to the fast path
in Quadratic-RABA) to terminate. When f = 1, the latency
reported for WaterBear-QS-Q is 310 ms, which is consistent
with the ping latency mentioned above (24.5 ms∼90 ms). In
contrast, WaterBear-QS-C in its optimistic mode has 6 steps,
which justifies its latency of 570 ms.
Throughput and scalability. We report throughput and
throughput vs. latency of all our implemented protocols in
Figure 8 by varying the network size f from 1 to 20.

Our results show that the throughput of WaterBear-C and
WaterBear-Q are consistently lower than the other protocols.
As WaterBear-C (resp. WaterBear-Q) and WaterBear-QS-C
(resp. WaterBear-QS-Q) differ in RBC only, RBC is clearly
one performance bottleneck. The result highlights the over-

12

head of achieving security with authenticated channels only.
We assess the throughput of all the protocols for f = 1

in WAN as depicted in Figure 8b: the peak throughput of
WaterBear-QS-Q is slightly higher in most experiments. We
also conduct a separate experiment in LANs, as shown in
Figure 8a. Unlike the results in WANs, the throughput of
BEAT in LANs is marginally higher than WaterBear-QS-C,
and the throughput of WaterBear-QS-Q is marginally higher
than BEAT: the peak throughput of BEAT is 2.3% higher
than WaterBear-QS-C, and the peak throughput of WaterBear-
QS-Q is 3.9% higher than BEAT. The peak throughput of
WaterBear-QS-C is 65.7 ktx/sec in LANs and 37.8 ktx/sec in
WANs, and the peak throughput of WaterBear-QS-Q is 69.9
ktx/sec in LANs and 38.4 ktx/sec in WANs.

When f increases, in general, WaterBear-QS-Q and
WaterBear-QS-C outpace all the other protocols. The peak
throughput of WaterBear-QS-C is higher than BEAT when
f = 5 and f = 10 but lower when f = 20 only. Meanwhile,
WaterBear-QS-Q is consistently more efficient than all other
asynchronous protocols (higher throughput and lower latency).
For instance, when f = 10, the peak throughput of WaterBear-
QS-Q is 47.4% higher than BEAT. The reason is WaterBear-
QS-Q uses a more communication-efficient RABA protocol.

We report the latency breakdown of the WaterBear proto-
cols for b = 1 and 5000 in Figure 8g-8j. These experiments
justify the design of our most efficient protocol—WaterBear-
QS-Q (with CT RBC that is communication-efficient and
Quadratic-RABA with asymptotically reduced per-round mes-
sage complexity and concretely reduced number of steps).
Indeed, as f increases, RABA dominates the latency and
Quadratic-RABA performs indeed much better than Cubic-
RABA; when b increases, RBC becomes the latency bottle-
neck and CT RBC outperforms Bracha’s RBC significantly.
Additional evaluation results. We show in Appendix D addi-
tional evaluation results, including the performance compari-
son with HotStuff [65], the performance on different types of
VMs, the performance with different transaction sizes, and the
memory and the CPU usage for the protocols implemented.

7.2 Performance under Failures
To assess the protocol performance under failures and at-

tacks, we carefully design various experiments as follows. We
focus on the five asynchronous protocols.

• S0: (failure-free) All replicas are correct. S0 is the baseline
scenario used to compare with failure scenarios.
• S1: (crash) f replicas crash by not participating in the

protocols.
• S2: (Byzantine; keep voting 0) We control all f faulty

replicas to keep voting 0 in each step of (R)ABA. For
all protocols, doing so would intuitively make fewer
(R)ABA instances to decide 1 and would likely decrease
the throughput of the protocols. We aim to observe the
throughput reduction compared to failure-free scenarios.
• S3: (Byzantine; flipping the (R)ABA input) We let f

replicas exhibit Byzantine behavior in the (R)ABA phase.
The strategy is to vote for a flipped value in (R)ABA. In
other words, in each (R)ABA step, each Byzantine replica
inputs b̄ when it should have input b. Doing so could po-
tentially force each (R)ABA instance to experience more
steps to terminate for all five protocols. For WaterBear and
WaterBear-QS, the strategy would, at first glance, likely
be more fruitful. For both protocols, a RABA instance
may terminate in round 0, thanks to the biased validity
property of RABA. The flipping strategy illustrated above
may make them not decide in round 0 and force them to
enter the second round of RABA, where the two protocols
start to query the local coins.

We assess the performance for f = 1 (Figure 9a), f = 2
(Figure 9b), and f = 5 (Figure 9c).
Performance under crash failures (S1). The throughput of
all the five protocols implemented under crash failures is
higher than that in the failure-free case, except for f = 1,
where all protocols share similar performance between the
two scenarios. Our result echoes those of previous works. The
reason is that under crash failures, the network bandwidth
consumption is much lower (about 33% lower) than in the
failure-free case. Note that when f = 1, the network band-
width consumption is not as dominating as in other cases;
hence, the performance difference among the protocols for
f = 1 is less visible.
Performance under Byzantine failures (S2 and S3). The
performance of all the protocols under Byzantine failures is
slightly lower than that in the failure-free scenario and the
crash failure scenario. WaterBear-QS-C and WaterBear-QS-Q
suffer from slightly higher performance degradation under
Byzantine failures compared to BEAT. The higher perfor-
mance degradation is due to the use of local coins. As replicas
start to use local coins in round r > 0, the RABA protocol
may decide in more rounds. In all cases, WaterBear-QS-C
and WaterBear-QS-Q remain more efficient than BEAT.

The difference between S2 and S3 is that faulty replicas
broadcast 0 in S2 but broadcast the flipped value in S3. For
BEAT, the performance in S3 is higher for f = 1 and f = 5
but lower for f = 2; the difference in all the cases is not signif-
icant though. In contrast, for WaterBear-QS-C and WaterBear-
QS-Q, the performance in S3 is consistently lower than S2,
showing that the flipping strategy in S3 works slightly better
than that in S2.

8 Conclusion
This paper designs and implements a family of practical

asynchronous BFT protocols matching the security guaran-
tees of their partially synchronous counterparts. Our exper-
iments demonstrate that our protocols are efficient in both
failure and failure-free scenarios. In particular, one of our pro-
tocols, WaterBear-QC-Q, consistently outperforms the state-
of-the-art asynchronous protocols with much weaker security
guarantees. We also build in different settings more efficient

13

ABA and RABA protocols that can be used to improve var-
ious high-level Byzantine-resilient protocols. Our work, for
the first time, shows that the strongest security models and
high performance can co-exist for asynchronous BFT.

Acknowledgment
This work was supported in part by the National Key

R&D Program of China under 2022YFB2701700 and
2022YFB2701500, the National Natural Science Foundation
of China under 62272043 and 92267203, Beijing Natural Sci-
ence Foundation under M23015, Major Program of Shandong
Provincial Natural Science Foundation for the Fundamental
Research under ZR2022ZD03, and the Piloting Fundamental
Research Program for the Integration of Scientific Research,
Education and Industry of Qilu University of Technology
(Shandong Academy of Sciences) 2022XD001.

References
[1] BEAT library. https://github.com/fififish/

beat, 2021.

[2] Reed-Solomon library. https://github.com/
klauspost/reedsolomon, 2021.

[3] Ittai Abraham, Danny Dolev, and Joseph Y. Halpern. An
almost-surely terminating polynomial protocol for asyn-
chronous byzantine agreement with optimal resilience.
PODC, 2008.

[4] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah
Meiklejohn, Gilad Stern, and Alin Tomescu. Reaching
consensus for asynchronous distributed key generation.
In PODC, 2021.

[5] Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren,
Mayank Varia, Zhuolun Xiang, and Haibin Zhang. Bal-
anced byzantine reliable broadcast with near-optimal
communication and improved computation. In PODC,
pages 399–417, 2022.

[6] Nicolas Alhaddad, Sisi Duan, Mayank Varia, and Haibin
Zhang. Succinct erasure coding proof systems. Cryptol-
ogy ePrint Archive, 2021.

[7] Nicolas Alhaddad, Mayank Varia, and Haibin Zhang.
High-threshold avss with optimal communication com-
plexity. In FC, 2021.

[8] Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane.
Prime: Byzantine replication under attack. TDSC,
8(4):564–577, 2011.

[9] Elli Androulaki, Artem Barger, Vita Bortnikov, Chris-
tian Cachin, Konstantinos Christidis, Angelo De Caro,
David Enyeart, Christopher Ferris, Gennady Laventman,
Yacov Manevich, Srinivasan Muralidharan, Chet Murthy,
Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith,

Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko
Vukolić, Sharon Weed Cocco, and Jason Yellick. Hy-
perledger fabric: A distributed operating system for per-
missioned blockchains. 2018.

[10] Laasya Bangalore, Ashish Choudhury, and Arpita Pa-
tra. The power of shunning: Efficient asynchronous
byzantine agreement revisited. J. ACM, 2020.

[11] Michael Ben-Or. Another advantage of free choice:
Completely asynchronous agreement protocols (ex-
tended abstract). In PODC, pages 27–30, 1983.

[12] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asyn-
chronous secure computations with optimal resilience.
In PODC, pages 183–192. ACM, 1994.

[13] Gabriel Bracha. An asynchronous [(n-1)/3]-resilient
consensus protocol. In PODC, pages 154–162. ACM,
1984.

[14] Gabriel Bracha. Asynchronous byzantine agreement
protocols. Information and Computation, 75(2):130–
143, 1987.

[15] Christian Cachin. Yet another visit to paxos. IBM
Research Report RZ 3754, 2010.

[16] Christian Cachin and Jonathan A Poritz. Secure
intrusion-tolerant replication on the internet. In DSN,
pages 167–176. IEEE, 2002.

[17] Christian Cachin and Stefano Tessaro. Asynchronous
verifiable information dispersal. In SRDS, pages 191–
201. IEEE, 2005.

[18] Christian Cachin and Marko Vukolic. Blockchain con-
sensus protocols in the wild. In DISC, 2017.

[19] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor.
Adaptively secure multi-party computation. In STOC,
1996.

[20] Ran Canetti and Tal Rabin. Fast asynchronous byzantine
agreement with optimal resilience. In STOC, volume 93,
pages 42–51. Citeseer, 1993.

[21] Miguel Castro. Practical byzantine fault tolerance. PhD
thesis, 2001.

[22] Miguel Castro and Barbara Liskov. Practical Byzantine
fault tolerance and proactive recovery. TOCS, 20(4):398–
461, 2002.

[23] Lily Chen, Lily Chen, Stephen Jordan, Yi-Kai Liu,
Dustin Moody, Rene Peralta, Ray A Perlner, and Daniel
Smith-Tone. Report on post-quantum cryptography,
volume 12. US Department of Commerce, National
Institute of Standards and Technology, 2016.

14

https://github.com/fififish/beat
https://github.com/fififish/beat
https://github.com/klauspost/reedsolomon
https://github.com/klauspost/reedsolomon

[24] Allen Clement, Edmund L Wong, Lorenzo Alvisi,
Michael Dahlin, and Mirco Marchetti. Making byzan-
tine fault tolerant systems tolerate byzantine faults. In
NSDI, volume 9, pages 153–168, 2009.

[25] Miguel Correia, Nuno Ferreira Neves, and Paulo Verís-
simo. From consensus to atomic broadcast: Time-free
byzantine-resistant protocols without signatures. Com-
put. J., 49(1):82–96, 2006.

[26] Tyler Crain. Two more algorithms for randomized
signature-free asynchronous binary byzantine consensus
with t<n/3 and o(n2) messages and O(1) round expected
termination. CoRR, abs/2002.08765, 2020.

[27] Ronald Cramer, Ivan Damgård, Stefan Dziembowski,
Martin Hirt, and Tal Rabin. Efficient multiparty compu-
tations secure against an adaptive adversary. In EURO-
CRYPT, 1999.

[28] George Danezis, Lefteris Kokoris-Kogias, Alberto Son-
nino, and Alexander Spiegelman. Narwhal and tusk:
A dag-based mempool and efficient bft consensus. Eu-
roSys ’22.

[29] Sourav Das, Zhuolun Xiang, and Ling Ren. Asyn-
chronous data dissemination and its applications. In
CCS, pages 2705–2721, 2021.

[30] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew
Miller, Lefteris Kokoris-Kogias, and Ling Ren. Prac-
tical asynchronous distributed key generation. IEEE
Symposium on Security and Privacy, 2022.

[31] Shlomi Dolev and Ziyu Wang. Sodsbc: Stream of
distributed secrets for quantum-safe blockchain. In
2020 IEEE International Conference on Blockchain
(Blockchain), pages 247–256. IEEE, 2020.

[32] Sisi Duan, Hein Meling, Sean Peisert, and Haibin Zhang.
BChain: Byzantine replication with high throughput and
embedded reconfiguration. In OPODIS, pages 91–106,
2014.

[33] Sisi Duan, Michael K Reiter, and Haibin Zhang. BEAT:
Asynchronous BFT made practical. In CCS, pages 2028–
2041. ACM, 2018.

[34] Sisi Duan, Xin Wang, and Haibin Zhang. Fin: Practical
signature-free asynchronous common subset in constant
time. ACM CCS, 2023.

[35] Sisi Duan and Haibin Zhang. Foundations of dynamic
bft. In 2022 IEEE Symposium on Security and Privacy
(SP), pages 1317–1334. IEEE, 2022.

[36] Sisi Duan and Haibin Zhang. Recent progress on bft
in the era of blockchains. National Science Review,
9(10):nwac132, 2022.

[37] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Consensus in the presence of partial synchrony. JACM,
35(2):288–323, 1988.

[38] Paul Feldman and Silvio Micali. Optimal algorithms for
byzantine agreement. In STOC, 1988.

[39] Michael J Fischer, Nancy A Lynch, and Michael S Pa-
terson. Impossibility of distributed consensus with one
faulty process. Technical report, Massachusetts Inst of
Tech Cambridge lab for Computer Science, 1982.

[40] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing
Xu, and Zhenfeng Zhang. Dumbo-ng: Fast asyn-
chronous bft consensus with throughput-oblivious la-
tency. arXiv preprint arXiv:2209.00750, 2022.

[41] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing
Xu, and Zhenfeng Zhang. Efficient asynchronous byzan-
tine agreement without private setups. ICDCS, 2022.

[42] Neil Giridharan, Lefteris Kokoris-Kogias, Alberto Son-
nino, and Alexander Spiegelman. Bullshark: Dag bft
protocols made practical. ACM CCS, 2022.

[43] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and
Marko Vukolić. The next 700 bft protocols. ACM
Transactions on Computer Systems, 32(4):12:1–12:45,
2015.

[44] Bingyong Guo, Yuan Lu, Zhenliang Lu, Qiang Tang,
Jing Xu, and Zhenfeng Zhang. Speeding dumbo: Push-
ing asynchronous bft closer to practice. NDSS, 2022.

[45] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu,
and Zhenfeng Zhang. Dumbo: Faster asynchronous bft
protocols. In CCS, 2020.

[46] James Hendricks, Shafeeq Sinnamohideen, Gregory R
Ganger, and Michael K Reiter. Zzyzx: Scalable fault
tolerance through byzantine locking. In DSN, pages
363–372. IEEE, 2010.

[47] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and
Alexander Spiegelman. All you need is dag. In PODC,
2021.

[48] Eleftherios Kokoris Kogias, Dahlia Malkhi, and Alexan-
der Spiegelman. Asynchronous distributed key genera-
tion for computationally-secure randomness, consensus,
and threshold signatures. CCS, 2020.

[49] Chao Liu, Sisi Duan, and Haibin Zhang. Epic: Efficient
asynchronous bft with adaptive security. In DSN, 2020.

[50] Chao Liu, Sisi Duan, and Haibin Zhang. MiB:
Asynchronous BFT with more replicas. CoRR,
abs/2108.04488, 2021.

15

[51] Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang.
Dumbo-mvba: Optimal multi-valued validated asyn-
chronous byzantine agreement, revisited. In PODC,
pages 129–138, 2020.

[52] Ethan MacBrough. Cobalt: Bft governance in open
networks. arXiv preprint arXiv:1802.07240, 2018.

[53] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and
Dawn Song. The honey badger of bft protocols. In CCS,
pages 31–42. ACM, 2016.

[54] Henrique Moniz, Nuno Ferreria Neves, Miguel Correia,
and Paulo Verissimo. Ritas: Services for randomized
intrusion tolerance. TDSC, 8(1):122–136, 2008.

[55] Achour Mostefaoui, Hamouma Moumen, and Michel
Raynal. Signature-free asynchronous Byzantine consen-
sus with t ≤ n/3 and o(n2) messages. In PODC, pages
2–9. ACM, 2014.

[56] Achour Mostéfaoui, Hamouma Moumen, and Michel
Raynal. Signature-free asynchronous binary byzantine
consensus with t < n/3, o(n2) messages, and O(1) ex-
pected time. J. ACM, 62(4):31:1–31:21, 2015.

[57] A. Patra, A. Choudhury, and C.P. Rangan. Asyn-
chronous byzantine agreement with optimal resilience.
Distrib. Comput., 27:111–146, 2014.

[58] M. Pease, R. Shostak, and L. Lamport. Reaching agree-
ment in the presence of faults. JACM, 27(2):228–234,
April 1980.

[59] Michael O Rabin. Randomized byzantine generals. In
SFCS, pages 403–409. IEEE, 1983.

[60] Alan T Sherman, Farid Javani, Haibin Zhang, and
Enis Golaszewski. On the origins and variations of
blockchain technologies. IEEE Security & Privacy,
17(1):72–77, 2019.

[61] João Sousa, Eduardo Alchieri, and Alysson Bessani.
State machine replication for the masses with bft-smart.
In DSN, pages 355–362, 2014.

[62] Gilad Stern and Ittai Abraham. Information theoretic
hotstuff. In OPODIS, 2018.

[63] Marko Vukolić. The quest for scalable blockchain fab-
ric: Proof-of-work vs. bft replication. In International
workshop on open problems in network security, pages
112–125. Springer, 2015.

[64] Xin Wang, Sisi Duan, James Clavin, and Haibin Zhang.
Bft in blockchains: From protocols to use cases. ACM
Computing Surveys (CSUR), 54(10s):1–37, 2022.

[65] Jian Yin, Jean-Philippe Martin, Arun Venkataramani,
Lorenzo Alvisi, and Mike Dahlin. Separating agree-
ment from execution for Byzantine fault tolerant ser-
vices. SOSP, 37(5):253–267, 2003.

[66] Haibin Zhang and Sisi Duan. PACE: fully parallelizable
bft from reproposable byzantine agreement. In CCS
2022.

[67] Haibin Zhang, Sisi Duan, Chao Liu, Boxin Zhao, Xu-
anji Meng, Shengli Liu, Yong Yu, Fangguo Zhang, and
Liehuang Zhu. Practical asynchronous distributed key
generation: Improved efficiency, weaker assumption,
and standard model. DSN, 2023.

[68] Haibin Zhang, Sisi Duan, Boxin Zhao, and Liehuang
Zhu. Waterbear: Practical asynchronous bft matching
security guarantees of partially synchronous bft. Usenix
Security, 2023.

[69] Haibin Zhang, Chao Liu, and Sisi Duan. How to achieve
adaptive security for asynchronous bft? Journal of Par-
allel and Distributed Computing, 169:252–268, 2022.

A Bracha’s ABA
We present Bracha’s ABA [13]. The pseudocode is shown

in Figure 10. Bracha’s ABA has three phases. In each phase,
each replica broadcasts its value via a RBC instance, i.e., there
are n parallel RBC instances in each of the three phases. As
the underlying RBC has O(n2) messages and 4 steps, Bracha’s
ABA has O(n3) messages and 12 steps in each round.

In Bracha’s ABA, every replica maintains a set vset con-
taining valid values. In each phase, every replica only accepts
messages that carry valid values. The valid values vset must
be congruent with the values each replica receives from the
previous phase (or the last phase of the previous round). In
the first phase of round 0, both 0 and 1 are considered valid.
In the second and third phases, a value is added to vset only
if the replica receives the value from enough replicas.

In the first phase, every replica pi r-broadcasts a
pre-voter(ivr) message (ln 08), where ivr is the input value
of pi for round r.

In the second phase, pi waits for n− f pre-voter() mes-
sages such that for each pre-voter(v), v ∈ vset. There are two
cases:
• Ln 10-13: If pi has received n− f pre-voter(v) for some

v ∈ {0,1}, pi decides v and sets both vset and ivr+1 as v.
Replica pi continues for one more round and terminates
the protocol (up to either ln 10 or ln 25 before pi decides
some value again).
• Ln 14-15: Otherwise, pi sets v as the majority value in the

set of pre-voter() messages it receives. The set vset is not
changed, i.e., vset = {0,1}.

In both cases, pi r-broadcasts a main-voter(v) message (ln
16).

16

01 Initialization
02 r← 0 {round}
03 func propose(v)
04 iv0← v
05 vset←{0,1} {valid binary values that will be accepted}
06 start round 0
07 round r
08 r-broadcast pre-voter(ivr) {� phase 1}
09 upon r-delivering n − f pre-voter() such that for each
pre-voter(v), v ∈ vset {� phase 2}
10 if there are n− f pre-voter(v)
11 decide v
12 ivr+1← v
13 vset←{v}
14 else
15 v← majority value in the set of pre-voter() messages
16 r-broadcast main-voter(v)
17 upon r-delivering n− f main-voter() such that for each
main-voter(v), v ∈ vset {� phase 3}
18 if there are at least n/2 main-voter(v)
19 vset←{v}
20 else
21 v←{⊥}
22 vset←{0,1}
23 r-broadcast final-voter(v)
24 upon r-delivering n− f final-voter() such that for each
final-voter(v), v ∈ vset; for each final-voter(∗), vset = {0,1}
25 if there are at least 2 f +1 final-voter(v)
26 decide v
27 ivr+1← v
28 vset←{v}
29 else if there are f +1 final-voter(v)
30 ivr+1← v
31 vset←{0,1}
32 else
33 ivr+1← Random() {obtain local coin}
34 vset←{0,1}
35 r← r+1

Figure 10: The Bracha’s ABA protocol [13]. The code for pi.

In the third phase, every replica pi waits for n− f valid
main-voter() messages (ln 17). There are two cases:
• Ln 18-19: If pi receives at least n/2 main-voter(v), it sets

vset as {v}.
• Ln 20-22: Otherwise, pi sets v as ∗ and vset as {0,1}.

In both cases, pi r-broadcasts a final-voter(v) message (ln
23). Then every replica waits for n− f valid final-voter()
messages (ln 24). Note that final-voter(∗) is considered valid
only if vset = {0,1}. There are three cases:
• Ln 25-28: If pi receives at least 2 f + 1 final-voter(v), it

decides v and sets ivr+1 as v. Replica pi continues for one
more round (up to either ln 10 or ln 25) and terminates the
protocol.
• Ln 29-31: If pi receives at least f +1 final-voter(v), it sets

ivr+1 as v and vset as {v}.

01 initialization
02 r← 0 {round}
03 func propose(v)
04 broadcast-vote(v)
05 start round 0
06 func repropose(v)
07 broadcast-vote(v)
08 func broadcast-vote(v)
09 if pre-vote0(v) has not been sent, broadcast pre-vote0(v)
10 if v = 1
11 bset0 ← bset0 ∪ {1}
12 if main-vote0() has not been sent, broadcast main-vote0(1)
13 if final-vote0() has not been sent, r-broadcast final-vote0(1)
14 round r
15 if r > 0, broadcast pre-voter(ivr)
16 upon receiving pre-voter(v) from f +1 replicas
17 if pre-voter(v) has not been sent, broadcast pre-voter(v)
18 upon receiving pre-voter(v) from 2 f +1 nodes
19 bsetr ← bsetr ∪ {v}
20 wait until bsetr ̸= /0

21 if main-voter() has not been sent
22 broadcast main-voter(v) where v ∈ bsetr
23 upon receiving n− f main-voter() such that 1) final-voter()
has not been sent; 2) for each received main-voter(b), b ∈ bsetr
24 if there are n− f main-voter(v)
25 r-broadcast final-voter(v)
26 else r-broadcast final-voter(∗)
27 upon r-delivering n− f final-voter() such that for each
final-voter(v), v ∈ bsetr; for each final-voter(∗), bsetr = {0,1}
28 if there are n− f final-voter(v)
29 decide v
30 else if there are f +1 final-voter(v)
31 ivr+1← v
32 else
33 if r = 0, ivr+1← 1
34 else ivr+1← Random()
35 r← r+1

Figure 11: Cubic-RABA. The code for pi.

• Ln 32-34: Otherwise, pi uses the local coin value as ivr+1
and vset as {0,1}, i.e., pi accepts both 0 and 1 in the first
phase of the following round.

B Cubic-RABA
The pseudocode of Cubic-RABA protocol is shown in Fig-

ure 11. Cubic-RABA is identical to Cubic-ABA, except for
round 0 (the first round). We have made the following changes
for round 0. First, both propose() and repropose() events are
allowed. Upon the propose(v) event (ln 03), a replica pi exe-
cutes the broadcast-vote(v) function and starts round 0. Upon
the repropose(v) function (ln 06), pi executes broadcast-
vote(v). Note that upon a repropose() event, pi must have
already started the protocol and may even proceed to a round
greater than 0. In this case, regardless of which round the
replica is in, it executes the broadcast-vote(v) function and

17

broadcasts a pre-vote0(v) message.
Second, in the broadcast-vote(v) function (ln 08-13), pi

broadcasts a pre-vote0(v) message. If v = 1, pi adds 1 to
bset0 (ln 11). If pi has not previously broadcast main-vote0(),
it broadcasts main-vote0(1) (ln 12). If pi has not r-broadcast
final-vote0(), it r-broadcasts final-vote0(1) (ln 13).

Finally, the coin value for round 0 is set to 1 (ln 33). In
round r ≥ 1, Cubic-RABA is identical to Cubic-ABA.
Analysis. The proof of Cubic-RABA is shown in Appendix H.
We show that the changes we have made on top of Cubic-
ABA can transform Cubic-ABA into a RABA protocol. The
first change can ensure the biased termination property. In
particular, it guarantees that if a quorum of correct replicas
either directly propose 1 or propose 0 and later on repropose
1, the protocol will terminate. The second and third changes
ensure the biased validity property. If f + 1 correct repli-
cas propose 1, they will directly add 1 to bset0, broadcast
pre-vote0(1), main-vote0(1), and r-broadcast final-vote0(1).
Namely, no correct replica can receive n− f main-vote0(0)
or r-broadcast final-vote0(0). Furthermore, no correct replica
can receive n− f final-vote0(0) or f +1 final-vote0(0). Fur-
thermore, for the case where a correct replica uses the local
coin to enter the next round, the coin value is also 1. Accord-
ingly, Cubic-RABA achieves biased validity. Other properties
of Cubic-RABA follow from Cubic-ABA, as we only modify
round 0 of the protocol.

C Liveness Challenge of Building Quadratic-
RABA

Figure 12: Subtle challenge when converting Quadratic-ABA
to Quadratic-RABA. Votes for 1 are marked in dashed lines.

We illustrate an example in Figure 12 to show the sub-
tle liveness challenge when converting Quadratic-ABA to
Quadratic-RABA. We illustrate a scenario to show that, if we
only apply the three modifications mentioned in Sec. 5, the
protocol may not terminate. In this example, we have four
replicas—p1 to p4, and p4 simply crashes. In round 0, the
input of p1 is 1, so it broadcasts the pre-vote0(1), vote0(1),
main-vote0(1), and final-vote0(1) messages simultaneously.
Meanwhile, p2 and p3 propose 0, so they send pre-vote0(0) to
all replicas. After p1 receives f +1 pre-vote0(0), it will also
send a pre-vote0(0) message to all replicas. However, it will
not send vote0(0),main-vote0(0), or final-vote0(0) messages,
as it only sends any of these messages once. As p2 and p3

Region Ohio Oregon Singapore Ireland
Ohio - 24.5 55 39

Oregon 24.5 - 81 59
Singapore 55 81 - 90

Ireland 39 59 90 -

Table 4: One-way latency (ms) between any two regions
on Amazon EC2. The regions we use to evaluate the pro-
tocols are Ohio (us-east-2), Oregon (us-west-2), Singapore
(ap-southeast-1), and Ireland (eu-west-1).

receive n− f pre-vote0(0) messages, they will send vote0(0),
main-vote0(0), and final-vote0(0). Hence, every replica re-
ceives two final-vote0(0) messages and one final-vote0(1).
For p2 or p3 to proceed to round 1, it needs to accept n− f
final-vote0() messages. According to our Quadratic-ABA
specification, each replica accepts a final-vote0(v) message
only if it has received f + 1 main-vote0(v) and bsetr =
{0,1}. Clearly, p2 and p3 accept final-vote0(0) but will
not accept final-vote0(1), because they fail to receive f + 1
main-vote0(1) messages (they might have bsetr = {0,1} if at
least one of them reproposes). Therefore, the protocol may
not terminate in this case.

D Setup Detail and Additional Evaluation Re-
sults

D.1 Detailed Evaluation Setup
We show in Table 4 one-way latency between any two

regions on Amazon EC2. As shown in the table, the lowest
one-way latency (resp., the highest latency) is 24.5 ms for
Ohio-Oregon (resp., 90 ms for Ireland-Singapore).

Let us explain why our latency result makes sense in such
a setting. WaterBear-QC-Q, for example, has a RBC phase
and a RABA phase. The RBC phase has 3 steps; the RABA
phase in the optimistic mode just takes 1 step, as Quadratic
RABA has a (coin-free) fast path that allows terminating in 1
step only. Namely, in the optimistic mode, WaterBear-QC-Q
has 4 steps (i.e., about 4x average one-way latency).

The latency we reported for Water-QC-Q is 310 ms when
f = 1 and n = 4, reasonably matching the one-way latency
in Table 4: in practice, a replica delivers a transaction once re-
ceiving (fastest) 2 f +1 replicas instead of all 3 f +1 replicas.

Consider another example for WaterBear-QS-C. WaterBear-
QS-C in its optimistic mode has 6 steps. The number of steps
for WaterBear-QS-C justifies its latency of 570 ms for f = 1
and n = 4.

D.2 Additional Evaluation Results
We provide additional evaluation results, including the per-

formance comparison with HotStuff [65], the performance
on different types of VMs, the performance with different
transaction sizes, and the memory and the CPU usage for the
asynchronous BFT protocols implemented.

18

0 0.5 1 1.5 2 2.5
·104

0

20

40

60

80

Batch size

T
hr

ou
gh

pu
t(

kt
x/

se
c)

WaterBear-C WaterBear-QS-C
WaterBear-Q WaterBear-QS-Q

BEAT HotStuff

(a) Throughput in the LAN setting when
f = 1.

0 0.5 1 1.5 2 2.5
·104

0

20

40

60

80

Batch size

T
hr

ou
gh

pu
t(

kt
x/

se
c)

WaterBear-C WaterBear-QS-C
WaterBear-Q WaterBear-QS-Q

BEAT HotStuff

(b) Throughput in the WAN setting when
f = 1.

0 1 2 3 4
·104

0

1

2

3

4

5

Throughput (tx/sec)

L
at

en
cy

(S
ec

)

WaterBear-C WaterBear-QS-C
WaterBear-Q WaterBear-QS-Q

BEAT HotStuff

(c) Throughput vs. Latency when f = 1.

0 1 2 3 4 5
·104

0

10

20

30

Throughput (tx/sec)

L
at

en
cy

(S
ec

)

WaterBear-C WaterBear-QS-C
WaterBear-Q WaterBear-QS-Q

BEAT HotStuff

(d) Throughput vs. Latency when f = 5.

0 1 2 3 4 5
·104

0

20

40

60

80

Throughput (tx/sec)

L
at

en
cy

(S
ec

)

WaterBear-C WaterBear-QS-C
WaterBear-Q WaterBear-QS-Q

BEAT HotStuff

(e) Throughput vs. Latency when f = 10.

0 1 2 3 4 5
·104

0

20

40

60

80

100

120

Throughput (tx/sec)

L
at

en
cy

(S
ec

)

WaterBear-C WaterBear-QS-C
WaterBear-Q WaterBear-QS-Q

BEAT HotStuff

(f) Throughput vs. Latency when f = 20.

Figure 13: Throughput vs. latency on m5.xlarge instances for f = 1 to f = 20.

Performance compared with HotStuff. We compare the
performance among WaterBear protocols and HotStuff [65],
the state-of-the-art partially synchronous BFT. Different from
the asynchronous BFT protocols we study in this work that
are leaderless, HotStuff is a leader-based protocol. With the
same batch size b, only the leader in HotStuff proposes b
transactions, while in contrast, each replica in asynchronous
BFT protocols can propose b transactions.

We first demonstrate the throughput result and the through-
put vs. latency result in Figure 13. Our results show that
our quantum secure asynchronous protocols (WaterBear-QS-
C and WaterBear-QS-Q) consistently outperform HotStuff,
achieving higher throughput. For instance, when f = 20,
WaterBear-QS-Q achieves 1.65x throughput of HotStuff. The
reason is that WaterBear-QS-Q is leaderless and all replicas
can propose transactions.

Meanwhile, compared to the asynchronous protocols, Hot-
Stuff achieves much lower latency. For instance, when f = 20
and b = 100, HotStuff has 1/10 latency of WaterBear-QS-Q.
The latency result is expected, because the message complex-
ity of HotStuff is O(n), in contrast to O(n3) in WaterBear
protocols, and also because HotStuff is deterministic and has
a fixed number of steps.
Performance on different types of VMs. Different from
prior protocols (HoneyBadger, BEAT, Dumbo, EPIC) that all
evaluate the performance on t2.medium instances, we evaluate
the performance of the protocols using both t2.medium (t2 in
the figures) and m5.xlarge (m5 in the figures) instances. In

particular, we evaluate the throughput with b= 15,000 for f =
1, f = 2, and f = 5. The results are shown in Figure 14a. For
all the protocols, the peak throughput on m5.xlarge instances
is about 2× that on t2.medium.
Performance with different transaction sizes. We also re-
port the throughput of the protocols by fixing b to 15,000 but
using different sizes of transactions (100 bytes and 250 bytes),
the results of which are shown in Figure 14b. For all five pro-
tocols, the performance using transaction size of 100 bytes
is consistently higher, being at least twice as efficient as that
with 250 bytes. The finding highlights the main bottleneck
for the protocols for large transaction sizes is RBC.
Memory and CPU usage. We present in Figure 15 mem-
ory and CPU usage for n = 16 and varying batch sizes. The
results are obtained by using the top Linux monitoring tool.
For the memory usage, all protocols consume higher memory
when b increases. This is expected, since replicas need to pro-
cess more transactions as the batch size grows. Meanwhile,
WaterBear-C and WaterBear-Q consistently consume slightly
higher memory than the other protocols, because the RBC for
both protocols require more bandwidth. For the CPU usage,
WaterBear-QS-C and WaterBear-QS-Q have lower CPU us-
age than other protocols, as these two protocols are PKC-free
and use symmetric cryptography only.

E Proof of Cubic-ABA
We show that Cubic-ABA achieves validity, agreement,

termination, and integrity.

19

f = 1 f = 2 f = 5
0

50

100

19.33

11.09
4.7

34.77

20.6

9.94

19.71

11.31
4.91

35.55

21.39

10.23

38.79
33.16

24.03

65.09
59.41

52.95

40.64

33.28

24.18

69.87

60.2

53.39

36.28
30.66

24.01

67.21

58.46

48.43

Pe
ak

T
hr

ou
gh

pu
t(

kt
x/

se
c)

WaterBear-C (t2) WaterBear-C (m5)
WaterBear-Q (t2) WaterBear-Q (m5)
WaterBear-QS-C (t2) WaterBear-QS-Q (m5)
WaterBear-QS-C (t2) WaterBear-QS-Q (m5)
BEAT (t2) BEAT (m5)

(a) Peak throughput of protocols running on different EC2 instances.

f = 1 f = 2 f = 5
0

50

100

14.94
9.73

4.55

34.77

20.6

9.94
15.27

9.85
4.6

35.55

21.39

10.23

29.15
25.87 23.82

65.09
59.41

52.95

30.93
25.99 23.98

69.87

60.2

53.39

28.23
25.2

22.4

67.21

58.46

48.43

Pe
ak

T
hr

ou
gh

pu
t(

kt
x/

se
c)

WaterBear-C (250) WaterBear-C (100)
WaterBear-Q (250) WaterBear-Q (100)
WaterBear-QS-C (250) WaterBear-QS-C (100)
WaterBear-QS-Q (250) WaterBear-QS-Q (100)
BEAT (250) BEAT (100)

(b) Peak throughput for transaction size of 100 bytes and 250 bytes.

Figure 14: Performance of the protocols for f = 1,2, and 5.

Lemma 1. If all correct replicas propose ivr = v in round r,
then any correct replica that enters round r+1 sets ivr+1 as
v.

Proof. If all correct replicas propose v in round r, every
correct replica broadcasts pre-voter(v). No correct replica
will forward pre-voter(v̄), as there are no more than f + 1
pre-voter(v̄) messages. Hence, no correct replica will add
v̄ to bsetr. Furthermore, all correct replicas will eventually
send main-voter(v) and r-broadcast final-voter(v). No cor-
rect replica accepts final-voter(v̄) or final-voter(∗), since they
only have v in their bsetr. Hence, any correct replica that en-
ters round r+1 sets ivr+1 as v. ■

Note that the lemma above holds for the case where a
correct replica decides v in round r.

Lemma 2. If all correct replicas propose v in round r, then
for any r′ > r, any correct replica that enters round r′ sets
ivr′ as v.

Proof. The proof is by induction on the round number. The
base case holds for r according to Lemma 1. For the induction
step, we show that the lemma holds for round r′+1. In other
words, if all correct replicas propose ivr′ = v in round r′, then
in round r′+1, any correct replica sets ivr′+1 as v.

In round r′, as no correct replica sends pre-voter′(v̄), no
correct replica can receive f +1 pre-voter′(v̄) messages. In

b = 3000 b = 5000 b = 10000 b = 15000
0

10

20

30

40

5.3
7

17.9

22.3

5.9

8.7

13.2

21.8

4.2
5.6

9.1

12.2

3.1
4.7

8.4

12.1

3.4

6.1

8.6

12.9

m
em

or
y

us
ag

e(
%

)

WaterBear-C WaterBear-Q
WaterBear-QS-C WaterBear-QS-Q
BEAT

(a) Memory.

b = 3000 b = 5000 b = 10000 b = 15000
0

200

400

600

359.8

398 398.2 398.8

336.4

397.4 398.6 398.8

191.6

227

307.8

347

108

152

274
297

234.2

277.6

339

383

cp
u

us
ag

e(
%

)

WaterBear-C WaterBear-Q
WaterBear-QS-C WaterBear-QS-Q
BEAT

(b) CPU.

Figure 15: Memory and CPU usage.

other words, no correct replica will forward pre-voter′(v̄).
Meanwhile, no correct replica will accept final-voter′(v̄) or
final-voter′(∗) since correct replicas only have v in their
bsetr′ . Furthermore, every correct replica will r-broadcast
final-voter′(v). Therefore, any correct replica that enters
round r′+1 sets ivr′+1 as v. ■

Theorem 3 (Validity). If all correct replicas propose v, then
any correct replica that terminates decides v.

Proof. We assume that a correct replica pi terminates and
decides v̄ and prove the correctness by contradiction.

If pi terminates and decides v̄ in round 0, it will enter round
1 with iv1 = v̄. This is a contradiction with Lemma 1, as if
all correct replicas propose v, any correct replica that enters
round 1 sets iv1 as v. If pi terminates and decides v̄ in round
r > 0, it r-delivers n− f final-voter(v̄). Similarly, it has put
v̄ in its bsetr. Therefore, at least one correct replicas has set
ivr = v̄ and broadcast pre-voter(v̄). This is a contradiction
with Lemma 2 since any correct replica that enters round r
sets ivr as v. This completes the proof of the theorem. ■

Lemma 4. If a correct replica pi decides v in round r, any
correct replica that enters round r+1 sets ivr+1 as v.

Proof. If pi decides v in round r, it r-delivers n − f
final-voter(v). In other words, at least f +1 correct replicas r-
broadcast final-voter(v). We assume that a correct replica pk
enters round r+1 using value ivr+1 = v̄ and prove the lemma
by contradiction. If pk sets ivr+1 as v̄, there are three condi-
tions: A) pk r-delivers at least n− f final-voter(v̄); B) pk r-

20

delivers f +1 final-voter(v̄); C) none of the conditions holds.
In other words, pk has received fewer than f +1 final-voter(v)
and fewer than f +1 final-voter(v̄). We now show that none
of the three conditions is possible.

Condition A): Replica pk r-delivers n− f final-voter(v̄).
We already know that at least n− f replicas r-broadcast
final-voter(v). Therefore, at least one correct replica r-
broadcasts both final-voter(v) and final-voter(v̄), a contra-
diction.

Condition B): Replica pk r-delivers f + 1 final-voter(v̄).
We already know that pi r-delivers n− f final-voter(v). There-
fore, at least one replica (correct or Byzantine) r-broadcast
both final-voter(v̄) and final-voter(v) such that pk r-delivers
final-voter(v̄) and pi r-delivers final-voter(v). This is a viola-
tion of the agreement property or RBC.

Condition C): Replica pk r-delivers n− f final-voter() mes-
sages (let the set of replicas be S1). Among the messages from
S1, fewer than f +1 are final-voter(v̄) and fewer than f +1 are
final-voter(v). Other messages can only be final-voter(∗). We
already know that pi r-delivers n− f final-voter(v) (let the set
of replicas be S2). S1 and S2 have at least n−2 f ≥ f +1 repli-
cas in common. Therefore, at least one replica r-broadcasts
both v and ∗ (or v̄) such that pi r-delivers final-voter(v) and
pk has r-delivers final-voter(∗) (or final-voter(v̄)), a violation
of agreement property of RBC. ■

Theorem 5 (Agreement). If a correct replica decides v, then
any correct replica that terminates decides v.

Proof. We assume that a correct replica pi decides v and
another correct replica p j decides v̄ and prove the theorem by
contradiction. There are two cases: 1) pi and p j decide in the
same round r; 2) pi and p j decide in different rounds.

We first prove case 1). If replica pi decides v in round r,
it r-delivers n− f final-voter(v). If p j decides v̄, it r-delivers
n− f final-voter(v̄). The two sets of n− f replicas have at
least f + 1 replicas in common. Among the f + 1 replicas,
at least one is correct. Therefore, at least one correct replica
must have r-broadcast both final-voter(v) and final-voter(v̄),
a contradiction.

We now prove case 2) by assuming that pi decides value v
in round r and p j decides v̄ in round r′ where r′ > r.

According to Lemma 4, any correct replica enters round
r+1 sets ivr+1 as v. Furthermore, according to Lemma 2, for
any round r′′ ≥ r+1, any correct replica sets enters round r′′

sets ivr′′ as v. If replica p j decides value v̄ in round r′, at least
one correct replica has set ivr′ as v̄ and sent pre-voter′(v̄), a
contradiction with Lemma 2. ■

Lemma 6. Let v1 ∈ {0,1} and v2 ∈ {0,1}. If a correct replica
pi r-delivers f + 1 final-voter(v1) and enters round r + 1,
another correct replica p j r-delivers f + 1 final-voter(v2)
and enters round r+1, then it holds that v1 = v2.

Proof. If pi r-delivers f + 1 final-voter(v1), at least one
correct replica r-broadcasts final-voter(v1). According

to the protocol, the correct replica has received n − f
main-voter(v1). Therefore, for any other correct replicas,
among the n− f main-voter() messages, at least one must be
main-voter(v1). They either receive n− f main-voter(v1) and
r-broadcast final-voter(v1), or receive both main-voter(v1)
and main-voter(v̄1) and r-broadcast final-voter(∗). No cor-
rect replica will r-broadcast final-voter(v̄1). For replica p j, if
it r-delivers f +1 final-voter(v2), at least one correct replica
r-broadcasts final-voter(v2). Therefore, it must hold that
v1 = v2. ■

Theorem 7. (Termination). Every correct replica eventually
decides some value.

Proof. The proof consists of two parts. First, in each round r,
correct replicas will enter the next round. Second, the value
ivr used by any correct replica cannot be manipulated by the
adversary.

We first show that in round r, correct replicas will enter the
next round. In each round, every replica sets ivr as either 0 or
1 in Cubic-ABA. Accordingly, at least f +1 correct replicas
have the same ivr = v. Therefore, all correct replicas will
eventually receive 2 f + 1 pre-voter(v) for some v and send
main-voter() message. Correct replicas will have at least v in
their bsetr and r-broadcast either final-voter(v) for some v or
final-voter(∗). Similarly, any correct replica will eventually r-
deliver n− f final-voter() messages and enter the next round.

We then show that if a correct replica pi does not decide
in round r, the value ivr+1 = v cannot be manipulated by a
malicious network scheduler such that correct replicas always
enter the next round with inconsistent values. If pi does not
decide in round r, there are two conditions: A) pi r-delivers
f +1 final-voter(v); B) pi r-delivers n− f final-voter() mes-
sages. In the final-voter() messages, fewer than f + 1 are
final-voter(v) and fewer than f + 1 are final-voter(v̄). For
condition B, a correct replica enters the next round with its
local coin. The value of the local coin is independent with the
value chosen by any correct replica. We now prove that the
value v in condition A cannot be manipulated.

According to Lemma 6, if a correct replica receives f +1
final-voter(v1) and another correct replica receives f + 1
final-voter(v2), then it holds that v1 = v2. If correct repli-
cas use local coins to enter the next round, with a probabil-
ity of 1

2n− f , replicas will enter the next round with the same
value. The protocol will reach a state where agreement can
be reached in 2n− f expected rounds. After that, it takes an-
other round for each replica to terminate, i.e., the protocol
terminates in 2n− f +1 expected rounds. ■

Theorem 8 (Integrity). No correct replica decides twice.

Proof. According to the protocol, after a correct replica de-
cides some value, it participates in one more round of the pro-
tocol. However, it terminates the protocol after it r-broadcasts
a final-voter() message. Thus, the replica does not decide

21

again in the following round. This completes the proof of the
theorem. ■

F Proof of Quadratic-ABA
We show that Quadratic-ABA achieves validity, agreement,

termination, and integrity.

Lemma 9. If all correct replicas propose ivr = v in round r,
then any correct replica that enters round r+1 sets ivr+1 as
v.

Proof. If all correct replicas propose ivr = v in round r, every
correct replica broadcasts pre-voter(v). No correct replica
will receive more than f +1 pre-voter(v̄) messages. Hence,
no correct replica will add v̄ to bsetr. Furthermore, all cor-
rect replicas will eventually send voter(v) and receive n− f
voter(v). As no correct replica ever has v̄ in bsetr, all cor-
rect replica will not accept voter(v̄). Therefore, all correct
replicas will send main-voter(v). No correct replica will ac-
cept main-voter(v̄) or main-voter(∗) as v̄ ̸∈ bsetr and it can-
not receive more than f + 1 voter(v̄). Accordingly, every
correct replicas will send final-voter(v) and receive n− f
final-voter(v). No correct replica accepts final-voter(v̄) as
they only have v in their bsetr. Hence, any correct replica that
enters round r+1 sets ivr+1 as v. ■

Note that the lemma above holds for the case where a
correct replica decides v in round r.

Lemma 10. If all correct replicas propose ivr = v in round
r, then for any r′ > r, any correct replica that enters round r′

sets ivr′ as v.

Proof. The proof is by induction on the round number. The
base case holds for r according to Lemma 9. For the induction
step, we show that the lemma holds for round r′+1. In other
words, if all correct replicas propose ivr′ = v in round r′, then
in round r′+1, any correct replica sets ivr′+1 as v.

In round r′, as no correct replica sends pre-voter′(v̄), no cor-
rect replica can receive f +1 pre-voter′(v̄) messages. In other
words, no correct replica will put v̄ to bsetr′ . Therefore, all cor-
rect replicas will send voter′(v) and no correct replicas will
receive f +1 voter′(v̄). Accordingly, all correct replicas will
send main-voter(v) and will not accept main-voter′(v̄). Any
correct replica then only sends final-voter′(v). Meanwhile,
no correct replica will accept final-voter′(v̄) or final-voter′(∗)
since correct replicas only have v in their bsetr′ and no cor-
rect replica can receive f + 1 main-voter′(v). Furthermore,
every correct replica will receive n− f final-voter′(v). It is
now clear that any correct replica that enters round r′+1 sets
ivr′+1 as v. ■

Lemma 11. If a correct replica pi sends final-voter(v), at
least one correct replica has proposed ivr = v̄ and broadcast
pre-voter(v̄).

Proof. If pi sends final-voter(v), it must have received n− f
main-voter(v̄). Among the replicas that sent main-voter(v̄),
at least f +1 are correct. The correct replicas must have sent
voter(v̄) and put v̄ to bsetr. Each replica puts v̄ to bsetr only if
it receives n− f pre-voter(v̄). Therefore, at least one correct
replicas has proposed ivr = v̄ and broadcast pre-voter(v̄). ■

Theorem 12 (Validity). If all correct replicas propose v, then
any correct replica that terminates decides v.

Proof. We assume that a correct replica pi terminates and
decides v̄ and prove the correctness by contradiction.

If pi terminates and decides v̄ in round 0, it will enter round
1 with iv1 = v̄. This is a contradiction with Lemma 9. If pi
terminates and decides v̄ in round r > 0, it receives n− f
final-voter(v̄). Among the replicas that sent final-voter(v̄), at
least f +1 are correct. According to Lemma 11, at least one
correct replica has broadcast pre-voter(v̄). This is a contra-
diction with Lemma 10 since any correct replica that enters
round r sets ivr as v. ■

Lemma 13. If a correct replica pi sends main-voter(v),
any correct replica p j only sends main-voter(v) or
main-voter(∗).

Proof. If pi sends main-voter(v), it has received n − f
voter(v). We assume that p j sends main-voter(v̄) and prove
the lemma by contradiction. If p j sends main-voter(v̄), it has
received n− f voter(v̄). According to the protocol, every cor-
rect replica only sends voter() message once and each replica
only sends either voter(v) or voter(v̄). Therefore, at least one
correct replica has sent voter(v) to pi and sent voter(v̄) to p j,
a contradiction. ■

Lemma 14. If a correct replica pi sends final-voter(v), any
correct replica p j only sends final-voter(v) or final-voter(∗).

Proof. If pi sends final-voter(v), it has received n − f
main-voter(v). We assume that p j sends final-voter(v̄) and
prove the lemma by contradiction. If p j sends final-voter(v̄),
it has received n− f main-voter(v̄). According to the protocol,
every correct replica only sends main-voter() message once.
Therefore, at least one correct replica has sent main-voter(v)
to pi and sent main-voter(v̄) to p j, a contradiction. ■

Lemma 15. If a correct replica pi decides v in round r, any
correct replica that enters round r+1 sets ivr+1 as v.

Proof. If pi decides v in round r, it receives n − f
final-voter(v). In other words, at least f + 1 correct repli-
cas have broadcast final-voter(v). We assume that a correct
replica pk enters round r + 1 sets ivr+1 = v̄ and prove the
lemma by contradiction. If pk sets ivr+1 as v̄, there are three
conditions: A) pk receives at least n− f final-voter(v̄); B) pk
only receives final-voter(v̄) and final-voter(∗); C) none of the
above holds. In other words, pk receives only final-voter(∗)

22

or receives both final-voter(v) and final-voter(v̄). We now
show that none of the three conditions is possible.

Condition A): Replica pk receives n− f final-voter(v̄).
We already know that at least n − f replicas have sent
final-voter(v) as pi receives n− f final-voter(v). Therefore,
at least one correct replica has sent both final-voter(v) and
final-voter(v̄), a contradiction.

Condition B): Replica pk receives n− f final-voter(∗) and
final-voter(v̄) and has not received final-voter(v). We already
know that pi receives n− f final-voter(v). Therefore, at least
one correct replica has sent final-voter(v) to pi and either
final-voter(∗) or final-voter(v̄) to pk, a contradiction.

Condition C): Replica pk receives only final-voter(∗) or
receives both final-voter(v) and final-voter(v̄). We know
that pi receives n − f final-voter(v). Therefore, at least
f +1 correct replicas have sent final-voter(v). If pk receives
n− f final-voter() messages, at least one of them must be
final-voter(v). In this case, if pk enters round r+1 with ivr+1
as v̄, pk must have received at least one final-voter(v̄), as if
pk only receives final-voter(v) and final-voter(∗), it will set
ivr+1 as v̄. If pk accepts final-voter(v), it has received f +1
main-voter(v), among which at least one is sent by a cor-
rect replica. If pk accepts final-voter(v̄), it has received f +1
main-voter(v̄), among which at least one is sent by a correct
replica. This is a contradiction with Lemma 13. ■

Theorem 16 (Agreement). If a correct replica decides v, then
any correct replica that terminates decides v.

Proof. We assume that a correct replica pi decides v and
another correct replica p j decides v̄ and prove the theorem by
contradiction. There are two cases: 1) pi and p j decide in the
same round r; 2) pi and p j decide in different rounds.

We first prove case 1). If replica pi decides v in round r, it
receives n− f final-voter(v). If p j decides v̄, it receives n− f
final-voter(v̄). The two sets of n− f replicas have at least
f +1 replicas in common. Among the f +1 replicas, at least
one is correct. Therefore, at least one correct replica must have
sent both final-voter(v) and final-voter(v̄), a contradiction.

We now prove case 2) by assuming that pi decides value v
in round r and p j decides v̄ in round r′ where r′ > r.

According to Lemma 15, if pi decides v, any correct replica
enters round r + 1 sets ivr+1 as v. Furthermore, according
to Lemma 10, for any round r′′ ≥ r+1, any correct replica
that enters round r′′ sets ivr′′ as v. If replica p j decides value
v̄ in round r′, it has received n− f final-voter(v) so at least
f +1 correct replicas have sent final-voter(v). According to
Lemma 11, at least one correct replica has set ivr′ as v̄ and
sent pre-voter′(v̄), a contradiction with Lemma 10. ■

Lemma 17. If a correct replica pi sends voter(v) for v ∈
{0,1}, any correct replica eventually accepts voter(v).

Proof. If pi sends voter(v) message, it has received n− f
pre-voter(v), among which at least f +1 are sent by correct
replicas. Accordingly to the protocol, any correct replica that

has not sent pre-voter(v) will also send pre-voter(v) upon
receiving f +1 pre-voter(v). Therefore, every correct replica
eventually sends pre-voter(v), receives n− f pre-voter(v),
and then adds v to bsetr. Hence, every correct replica eventu-
ally accepts voter(v). ■

Lemma 18. If a correct replica pi broadcasts a
main-voter(v) or a main-voter(∗) message given that v ∈
{0,1}, any correct replica accepts the main-voter() message
from pi.

Proof. If pi sends a main-voter(v) message, it has received
and accepted n− f voter(v), among which at least f +1 are
sent by correct replicas. Accordingly to Lemma 17, every
correct replica eventually accepts voter(v). After each correct
replica receives f +1 voter(v), it accepts main-voter(v).

If pi sends a main-voter(∗) message, it must have received
and accepted both voter(v) and voter(v̄), or it has received
at least one voter(∗). In any of the cases, pi has put both 0
and 1 to bsetr. If pi puts v to bsetr, it has received 2 f + 1
pre-voter(v), among which at least f + 1 are sent by cor-
rect replicas. Then any correct replica eventually receives
f + 1 pre-voter(v) and sends pre-voter(v). Every correct
replica eventually receives n− f pre-voter(v) and adds v
to bsetr. Therefore, every correct replica eventually accepts
main-voter(∗). ■

Lemma 19. If a correct replica pi broadcasts a final-voter(v)
or a final-voter(∗) message given that v ∈ {0,1}, any correct
replica accepts the final-voter() message.

Proof. The lemma can be proved similarly as in Lemma 18.
■

Lemma 20. Let v1 ∈ {0,1} and v2 ∈ {0,1}. If a cor-
rect replica pi receives only n − f final-voter(∗) and
final-voter(v1) messages, another correct replica p j only
receives n− f final-voter(v2) and final-voter(∗) messages,
v1 = v2.

Proof. If pi accepts final-voter(v1), it has previously received
f +1 main-voter(v1), among which at least one is sent by a
correct replica. If p j accepts final-voter(v1), it has previously
received f +1 main-voter(v2), among which at least one is
sent by a correct replica. According to Lemma 13, it holds
that v1 = v2. ■

Theorem 21 (Termination). Every correct replica eventually
decides some value.

Proof. The proof consists of two parts. First, in each round r,
correct replicas will enter the next round. Second, the value
ivr used by any correct replica cannot be manipulated by the
adversary.

We first show that in round r, correct replicas will enter
the next round. In each round, every replica sets ivr to either
0 or 1 in Quadratic-ABA. Accordingly, at least f + 1 cor-

23

rect replicas have the same ivr = v. All correct replicas will
eventually receive 2 f + 1 pre-voter(v) for some v and send
a voter() message. Correct replicas will send either voter(0)
or voter(1) and receive at least n− f main-voter() messages.
For any correct replica, if it sends voter(v) for v ∈ {0,1},
any correct replica will eventually accept voter(v), accord-
ing to Lemma 17. All correct replicas will then send either
main-voter(v) for v ∈ {0,1} or main-voter(∗). According
to Lemma 18, every correct replica eventually accepts any
main-voter() message sent by a correct replica. Then every
correct replica either sends final-voter(v) or final-voter(∗).
According to Lemma 19, every correct replica accepts any
final-voter() message from a correct replica. Therefore, any
correct replica will eventually receive n− f final-voter() mes-
sages and enter the next round.

We then show that if a correct replica pi does not decide
in round r, the value ivr+1 = v cannot be manipulated by a
malicious network scheduler such that correct replicas always
enter the next round with inconsistent values. If pi does not
decide in round r, there are two conditions: A) pi receives
n− f final-voter(v) and final-voter(∗); B) pi receives both
final-voter(v) and final-voter(v̄) messages, or receives n− f
final-voter(∗). For condition B, a correct replica enters the
next round with its local coin. The value of the local coin
is independent with the value chosen by any correct replica.
We now prove that the value v in condition A cannot be
manipulated.

According to Lemma 20, if pi receives n− f final-voter(v1)
and final-voter(∗) and p j receives n− f final-voter(v1) and
final-voter(∗), v1 = v2. In other words, the value v used by
any correct replica cannot be manipulated by the network
scheduler.

If correct replicas use local coins to enter the next round,
with a probability of 1

2n− f , replicas will enter the next round
with the same value. Replicas will reach a state where agree-
ment can be reached in 2n− f expected rounds and execute the
protocol for another round before terminating the protocol.
Therefore, the protocol will terminate in 2n− f +1 expected
rounds. ■

Theorem 22 (Integrity). No correct replica decides twice.

Proof. According to the protocol, after a correct replica de-
cides some value, it participates in one more round of the
protocol. However, it terminates the protocol after it receives
a final-voter() message. Hence, the replica does not decide
again in the following round. ■

G CC-ABA
Both Cubic-ABA and Quadratic-ABA can be transformed

to ABA from weak common coins [20, 56] and perfect com-
mon coins. Here by weak common coins, we mean that all
correct replicas output 0 with probability 1/d and output 1
with probability 1/d where d is a constant and d ≥ 2, and
the probability that correct replicas obtain different values is

(d−2)/d. By perfect common coins, we mean that all correct
replicas always output the same random coin. Note perfect
coins are a special case of weak coins (by setting d = 2).

As Quadratic-ABA is more efficient, we here focus on
Quadratic-ABA. Our main result is that by replacing local
coins of Quadratic-ABA with weak (or perfect) common
coins, we immediately obtain CC-ABA terminating in O(1)
time. As shown in Figure 16, we only need to replace one line
of code in Figure 3 to obtain CC-ABA.

replace ln 29 in Figure 3 using the following line
29 ivr+1← coinr
{coinr can be either a weak coin or a perfect common coin}

Figure 16: The CC-ABA protocol from weak coin or common
coin.

CC-ABA reduces the expected number of steps of prior
constructions, as shown in Table 5 and Table 6. Note that
ABA is the major bottleneck in asynchronous BFT protocols
as reported in [33, 44, 45]. The improvement is significant
and has practical implications, as the recent work of PACE
has shown that even a single step improvement can lead to a
drastic performance improvement (for instance, easily 2x) in
BFT protocols [66].

ABA (weak common coins) steps/round rounds

MMR15 [56, 2nd alg] 9 to 13 d +1
Crain [26, 1st alg] 5 to 7 d +1

CC-ABA (this work) 4 or 5 d +1

Table 5: ABA protocols using weak common coins. Rounds
denote the expected number of rounds. The total number of
steps is a product of steps/round and rounds.

ABA (common coins) steps/round rounds good-case-coin-free

MMR15 [56, 2nd alg] 9 to 13 3 yes
Cobalt [52] 3 or 4 4 no

Crain [26, 1st alg] 5 to 7 3 yes
Crain [26, 2nd alg] 2 or 3† 4 no

Pillar [66] 2 or 3 4 no

CC-ABA (this work) 4 or 5 3 yes

Table 6: ABA protocols using perfect common coins. †The
second algorithm of Crain relies high threshold common coins
and is less efficient than Pillar. Compared to Pillar, CC-ABA
has the good-case-coin-free property that is vital for the asyn-
chronous distributed key generation protocol [30].

G.1 Proof of CC-ABA
We prove the correctness of CC-ABA that simply replaces

the local coins of Quadratic-ABA with weak common coins or
perfect common coins. We comment that our proof presented
in the subsection applies to both cases.

24

Theorem 23. CC-ABA achieves validity, agreement, and in-
tegrity.

Proof. The three properties follow that of Quadratic-ABA.
■

Lemma 24. If a correct replica receives and accepts both
final-voter(v1) and final-voter(v2) such that v1,v2 ∈ {0,1},
v1 = v2.

Proof. If a correct replica accepts final-voter(v1), it has previ-
ously received at least f +1 main-voter(v1). If the replica ac-
cepts final-voter(v2), it has previously received at least f +1
main-voter(v2). Therefore, at least one correct replica has
sent main-voter(v1) and at least one correct replica has sent
main-voter(v2). According to Lemma 13, if a correct repli-
cas sends main-voter(v1), any correct replicas will only send
main-voter(v1) or main-voter(∗). Therefore, we conclude
that v1 = v2. ■

Theorem 25 (Termination). Every correct replica eventually
decides some value.

Proof. The proof consists of two parts. First, in each round r,
correct replicas will enter the next round. Second, the value
ivr used by any correct replica cannot be manipulated by the
adversary.

We first show that in round r, correct replicas will enter
the next round. In each round, every replica sets ivr as either
0 or 1. Thus, at least f + 1 correct replicas have the same
ivr = v. All correct replicas will eventually receive 2 f + 1
pre-voter(v) for some v and send voter() message. Correct
replicas will send either voter(0) or voter(1) and receive at
least n− f main-voter() messages. For any correct replica, ac-
cording to Lemma 17, if it sends voter(v) such that v∈ {0,1},
any correct replica will eventually accept voter(v). All cor-
rect replicas will then send either main-voter(v) (v ∈ {0,1})
or main-voter(∗). According to Lemma 18, every correct
replica eventually accepts any main-voter() message sent
by a correct replica. Then every correct replica either sends
final-voter(v) or final-voter(∗). Due to Lemma 19, every cor-
rect replica accepts any final-voter() message from a correct
replica. Therefore, any correct replica will eventually receives
n− f final-voter() messages and enter the next round.

We then show that if a correct replica pi does not decide
in round r, the value ivr+1 = v cannot be manipulated by
a malicious network scheduler such that correct replicas al-
ways enter the next round with inconsistent values. If pi does
not decide in round r, there are two conditions: A) pi re-
ceives n− f final-voter() messages with only final-voter(v)
and final-voter(∗); B) pi receives both final-voter(v) and
final-voter(v̄) messages, or receives n− f final-voter(∗).

If condition A applies to at least two correct replicas, then
according to Lemma 20, if pi receives n− f final-voter(v1)
and final-voter(∗) and p j receives n− f final-voter(v1) and

final-voter(∗), v1 = v2. In other words, the value v used by
any correct replica cannot be manipulated by an adversary.

If condition B applies to at least two correct replicas, the
correct replicas enter the next round with the weak common
coin. With a probability of 2/d, all correct replicas will have
the same ivr+1 value. This value cannot be manipulated by an
adversary.

We now show that if condition A applies to a correct replica
pi and condition B applies to a correct replica p j, the values
cannot be manipulated by an adversary. If p j sets ivr+1 as
the weak common coin value, it has either received n− f
final-voter(∗) or both final-voter(v) and final-voter(v̄). Ac-
cording to Lemma 24, the latter case is impossible. There-
fore, p j receives n− f final-voter(∗). Hence, at least f + 1
correct replicas have sent final-voter(∗). From Lemma 13,
the correct replicas have previously sent either main-voter(v)
or main-voter(∗) for some v ∈ {0,1}. No correct replica
will send main-voter(v̄). If condition A applies to pi and
pi sets ivr+1 as v1 (v1 ∈ {0,1}), pi has received at least
f + 1 main-voter(v1). Since at least one correct replica
has sent main-voter(v1) and no correct replica will send
main-voter(v̄), this value v1 can only be v. Namely, the value
ivr+1 cannot be manipulated by an adversary.

CC-ABA uses weak or perfect common coins. If correct
replicas begin the protocol with different input values, replicas
will reach a state where decisions can be made in expected
1−Σ∞

r=1
r
d (1−

1
d)

r−1 = d rounds. After that, it takes another
round for replicas to terminate the protocol. Thus, the ex-
pected number of rounds for CC-ABA using weak common
coins is d +1. For the special case that uses perfect common
coins, the expected number of rounds is 3. ■

H Proof of Cubic-RABA
We now show that Cubic-RABA achieves validity, unani-

mous termination, agreement, biased validity, biased termina-
tion, and integrity.

Lemma 26. If all correct replicas propose v in round 0 and
never repropose v̄, then any correct replica enters the round 1
sets iv1 as v.

Proof. In round 0, all replicas send pre-vote0(v). No correct
replica will receive f +1 pre-vote0(v̄) and send pre-vote0(v̄).
Similarly, all correct replicas will send main-vote0(v) and
will never accept main-vote0(v̄). All correct replicas will r-
broadcast final-vote0(v) and will never accept final-vote0(v̄).
Therefore, any correct replica that enters round 1 sets iv1 as
v. ■

Theorem 27 (Validity). If all correct replicas propose v and
never repropose v̄, then any correct replica that terminates
decides v.

Proof. We assume that a correct replica pi terminates and
decides v̄ and prove the correctness by contradiction. If pi

25

terminates and decides v̄ in round 0, correctness follows from
Lemma 26. We now prove the case where pi decides in round
r > 0.

Since Cubic-RABA follows Cubic-ABA starting from
round 1, Lemma 2 holds for r > 0. If pi terminates and decides
v̄ in round r > 0, it r-delivers n− f final-voter(v̄). Addition-
ally, pi has added v̄ to its bsetr. Therefore, at least one correct
replica has set ivr as v̄ and broadcast pre-voter(v̄). This is a
contradiction with Lemma 2 since any correct replica that
enters round r sets ivr as v. This completes the proof of the
theorem. ■

Theorem 28 (Unanimous termination). If all correct replicas
propose v and never repropose v̄, then all correct replicas
eventually terminate.

Proof. If all correct replicas propose v and never repropose
v̄, all correct replicas only send pre-vote0(v). No correct
replica will add v̄ to bset0. Furthermore, no correct replica
will accept main-vote0(v̄) or final-vote0(v̄). Eventually all
correct replicas will receive 2 f + 1 pre-vote0(v), add v to
bset0, and broadcast main-vote0(v). Similarly, all correct
replicas will eventually receive n− f main-vote0(v) and r-
broadcast final-vote0(v). All correct replicas will r-deliver
n− f final-vote0(v). In other words, all correct replicas will
terminate and decide v. ■

Lemma 29. If pi decides v in round 0, any correct replica
that enters round 1 sets iv1 as v.

Proof. If pi decides v in round 1, it r-delivers n − f
final-vote0(v), among which at least f + 1 replicas are cor-
rect. We assume that a correct replica pk enters round 1 with
iv1 = v̄ and prove the correctness by contradiction. If pk
enters round r + 1 and sets iv1 as v̄, there are three condi-
tions: A) pk r-delivers at least n− f final-voter(v̄); B) pk
r-delivers f +1 final-vote0(v̄); C) pk has not received more
than f +1 final-vote0(v) and pk has not received more than
f + 1 final-vote0(v̄). We now show that none of the three
conditions is possible.

Condition A): Replica pi r-delivers n− f final-vote0(v̄).
We already know that at least f +1 corect replicas r-broadcast
final-vote0(v). Therefore, at least one correct replica r-
broadcasts both final-vote0(v) and final-vote0(v̄), a contra-
diction.

Condition B): Replica pk r-delivers f + 1 final-vote0(v̄).
We already know that pi r-delivers n− f final-vote0(v). There-
fore, at least one replica (correct or Byzantine) r-broadcasts
both final-vote0(v̄) and final-vote0(v) such that pk r-delivers
final-vote0(v̄) and pi r-delivers final-vote0(v), a violation of
the agreement property of RBC.

Condition C): Replica pk r-delivers n− f final-vote0()
messages (let the set of replicas be S1). In the messages,
fewer than f +1 are final-vote0(v̄) and fewer than f +1 are
final-vote0(v). Other messages must be final-vote0(∗). We
already know that pi r-delivers n− f final-vote0(v) (let the

set of replicas be S2). S1 and S2 have at least 2n−2 f −n =
n−2 f ≥ f +1 replicas in common. In other words, at least
one replica r-broadcasts a final-vote0() message such that
pi r-delivers final-vote0(v) and pk r-delivers final-vote0(v̄)
(or final-vote0(∗)), a violation of the agreement property of
RBC. ■

Theorem 30 (Agreement). If a correct replica decides v, then
any correct replica that terminates decides v.

Proof. We assume that a correct replica pi decides v and a
correct replica p j decides v̄ and prove the theorem by con-
tradiction. Since Cubic-RABA follows Cubic-ABA starting
from round r > 0, if both pi and p j decide in round r > 0, cor-
rectness follows from the agreement property of Cubic-ABA.
We now show the correctness in the following cases: 1) both
pi and p j decide in round 0; 2) pi decides in round 0 and p j
decides in round r > 0.
Case 1): If pi decides v, it r-delivers n− f final-vote0(v). If p j
decides v̄, it r-delivers n− f final-vote0(v̄). The two quorum
of replicas have at least n−2 f replicas in common. Among
the n− 2 f replicas, at least one is correct since n− 2 f ≥
f + 1. Therefore, at least one correct replica r-broadcasts
both final-vote0(v) and final-vote0(v̄), a contradiction since
each replica only r-broadcasts a final-voter() message once
in each round.
Case 2): If p j decides v̄ in round r = 1, it has received at
least 2 f +1 pre-vote1(v̄), where at least one correct replica
has sent pre-vote1(v̄), a contradiction with Lemma 29. Start-
ing from round 1, Cubic-RABA follows Cubic-ABA so that
Lemma 2 holds. If p j decides v̄ in round r > 1, at least one
correct replica must have sent pre-voter(v̄), a contradiction
with Lemma 2 since any correct replica sets ivr as v.

This completes the proof of the theorem. ■

Lemma 31. If f +1 correct replicas propose 1 in round 0,
every replica either directly decides 1 in round 0 or/and enters
round 1 with iv1 = 1.

Proof. If a correct replica pi enters round 1, there are three
conditions: A) pi r-delivers n− f final-vote0(v) with the same
v; B) pi r-delivers at least f +1 final-vote0(v) for some v; C)
none of condition A or B holds. We show that v = 1 for all
three conditions and replicas will set iv1 as v = 1.

For condition A, we already know that at least f +1 correct
replicas have broadcast final-vote0(1). Therefore, pi must
have received n− f final-vote0(1). This is because if pi
receives n− f final-vote0(0), at least one correct replica r-
broadcasts both final-vote0(1) and final-vote0(0), a contra-
diction. In other words, pi decides 1.

For condition B, we assume pi r-delivers f + 1
final-vote0(0) and prove the correctness by contradiction.
If pi r-delivers f + 1 final-vote0(0), at least one correct
replica r-broadcasts final-vote0(0). If the correct replica r-
broadcasts final-vote0(0), the replica must have received
n− f main-vote0(0). We already know that at least f + 1

26

correct replicas have sent main-vote0(1). Any correct replica
broadcasts main-vote0() message once. In other words, at
least one correct replica has broadcast both main-vote0(0)
and main-vote0(1), a contradiction. Therefore, in this condi-
tion, pi must have r-delivered f +1 final-vote0(1). It is now
clear that any correct replica uses iv1 = 1 to enter round 1.

For condition C, any correct replica will use 1 as iv1 since
the local coin value is set as 1 in round 0. This completes the
proof of the lemma. ■

Theorem 32 (Biased validity). If f +1 correct replicas pro-
pose 1, then any correct replica that terminates decides 1.

Proof. We assume that a correct replica pi decides 0 and
prove the correctness by contradiction. If pi decides in round
0, correctness follows from Lemma 31. If pi decides 0 in
round r > 0, at least one correct replica has set ivr as 0 and
broadcast pre-voter(0). Since Cubic-RABA follows Cubic-
ABA starting from round 1, Lemma 2 holds. Therefore, the
claim that at least one correct replica has set ivr as 0 is a
contradiction with Lemma 2. This completes the proof of the
theorem. ■

Theorem 33 (Biased termination). Let Q be the set of correct
replicas. Let Q1 be the set of correct replicas that propose 1
and never repropose 0. Let Q2 be correct replicas that propose
0 and later repropose 1. If Q2 ̸= /0 and Q=Q1∪Q2, then each
correct replica eventually terminates.

Proof. The proof consists of two parts. First, every replica
correct eventually enters the next round. Second, if a cor-
rect replica enters the next round with input v, v cannot be
manipulated by the adversary.

We first prove that every replica eventually enters the next
round. Since Cubic-RABA follows Cubic-ABA starting from
round 1, this part follows from termination of Cubic-ABA. We
only need to prove that every correct replica eventually enters
round 1. For replicas in Q1, they broadcast pre-vote0(1) and
add 1 to bset0. For replicas in Q2, they broadcast pre-vote0(0)
upon the propose(0) function, broadcast pre-vote0(1) upon
the repropose(1) function, and eventually add 1 to bset0.
There are two cases: 1) the size of Q1 is greater than f +1; 2)
the size of Q1 is smaller than f +1.

For the first case, at least f +1 replicas in Q1 will directly
broadcast main-vote0(1) and r-broadcast final-vote0(1). For
any correct replica pi in Q2, it may send main-vote0(1) or
main-vote0(0). There are two sub-cases: none of the cor-
rect replicas send main-vote0(0); at least one correct replica
has sent main-vote0(0). For the first sub-case, it is clear that
every correct replica eventually receives and accepts n− f
main-vote0(1), as every correct replica has 1 in its bset0. Sim-
ilarly, every correct replica will r-broadcast final-vote0(1)
and accept n− f final-vote0(1). For the second sub-case, if
a correct replica pi sends main-vote0(0), it receives 2 f + 1
pre-vote0(0), among which at least f + 1 are sent by cor-
rect replicas. Therefore, every correct replica will eventually

receive f + 1 pre-vote0(0) and broadcast pre-vote0(0). Ev-
ery replica eventually adds 0 to bset0. Since every correct
replica has both 1 and 0 in bset0, every correct replica accepts
both main-vote0(0) and main-vote0(1). Similarly, every cor-
rect replica accepts both final-vote0(0) and final-vote0(1). In
other words, every correct replica eventually enters the next
round.

For the second case, replicas in Q2 will send pre-vote0(0)
upon propose(0). They will send pre-vote0(1) upon
repropose(1) and add 1 to bset0. Since the size of Q2 is
greater than f + 1 (the size of Q1 is smaller than f + 1 and
Q = Q1∪Q2), every replica will receive f +1 pre-vote0(0),
send pre-vote0(0), and add 0 to bset0. Furthermore, every cor-
rect replica in Q2 broadcasts pre-vote0(1) upon repropose(1).
Since the size of Q2 is greater than f + 1, it holds that ev-
ery correct replica eventually adds 1 to bset0. Therefore,
every replica will accept main-vote0(0) and main-vote0(1),
final-vote0(0), and final-vote0(1). In other words, every cor-
rect replica eventually enters the next round.

We now prove the second part that the value iv used by any
correct replica cannot be manipulated by the adversary. Since
Cubic-RABA follows Cubic-ABA starting from round 1, cor-
rectness follows from Lemma 6 and termination of Cubic-
ABA. ■

Theorem 34 (Integrity). No correct replica decides twice.

Proof. In each round, every replica only sends a main-voter()
message and a final-voter() message once. Hence, only one
value will be decided and integrity thus follows. ■

I Proof of Quadratic-RABA
We now show that Quadratic-RABA achieves validity,

unanimous termination, agreement, biased validity, biased
termination, and integrity.

Lemma 35. If all correct replicas propose v in round 0 and
never repropose v̄, then any correct replica enters the round 1
sets iv1 as v.

Proof. If all correct replicas propose v in round 0, every
correct replica broadcasts pre-vote0(v). No correct replica
will receive more than f +1 pre-vote0(v̄) messages. Hence,
no correct replica will add v̄ to bset0. Furthermore, all cor-
rect replicas will eventually send vote0(v) and receive n− f
vote0(v). As no correct replica ever has v̄ in bset0, no cor-
rect replica will accept vote0(v̄). Therefore, all correct repli-
cas will send main-vote0(v). No correct replica will accept
main-vote0(v̄) or main-vote0(∗) as v̄ ̸∈ bset0 and no replicas
will never receive more than f + 1 vote0(v̄). Accordingly,
every correct replicas will send final-vote0(v) and receive
n− f final-vote0(v). No correct replica accepts final-voter(v̄)
as they only have v in their bsetr and no correct replica can
receive more than f + 1 final-vote0(v̄). Hence, any correct
replica that enters round r+1 sets ivr+1 as v. ■

27

Theorem 36 (Validity). If all correct replicas propose v and
never repropose v̄, then any correct replica that terminates
decides v.

Proof. We assume that a correct replica pi terminates and
decides v̄ and prove the correctness by contradiction. If pi
terminates and decides v̄ in round 0, correctness follows from
Lemma 35. We now prove the case where pi decides in round
r > 0.

Since Quadratic-RABA follows Quadratic-ABA starting
from round 1, Lemma 10 holds for r > 0. If pi terminates
and decides v̄ in round r > 0, it receives n− f final-voter(v̄).
Among the replicas that sent final-voter(v̄), at least f + 1
are correct. According to Lemma 11, at least one correct
replica has broadcast pre-voter(v̄). This is a contradiction
with Lemma 10 since any correct replica that enters round r
sets ivr as v. This completes the proof of the theorem. ■

Theorem 37 (Unanimous termination). If all correct replicas
propose v and never repropose v̄, then all correct replicas
eventually terminate.

Proof. If all correct replicas propose v and never repropose
v̄, all correct replicas only send pre-vote0(v). No correct
replica will add v̄ to bset0. Furthermore, no correct replica
will accept vote0(v̄), main-vote0(v̄), or final-vote0(v̄). Even-
tually all correct replicas will receive n− f pre-vote0(v),
add v to bset0, and broadcast vote0(v). Similarly, all correct
replicas will eventually receive n− f vote0(v) and broad-
cast main-vote0(v). All correct replicas will receive n− f
main-vote0(v) and broadcast final-vote0(v). In other words,
all correct replicas will eventually receive n− f final-vote0(v)
and decide v. ■

Lemma 38. If pi decides v in round 0, any correct replica
that enters round 1 sets iv1 as v.

Proof. If pi decides v in round 1, it receives n − f
final-vote0(v), among which at least f + 1 are sent by cor-
rect replicas. We assume that a correct replica pk enters round
1 with iv1 = v̄ and prove the correctness by contradiction. If
pk enters round r+ 1 and sets iv1 as v̄, there are three con-
ditions: A) pk receives at least n− f final-voter(v̄); B) pk
receive only final-vote0(v̄) and final-vote0(∗); C) none of the
above applies. In case C), as p j will use the common coin
value 1 as iv1, the case is impossible. We now show that none
of the first two conditions is possible.

Condition A): Replica pi receives n− f final-vote0(v̄). We
already know that at least f + 1 correct replicas have sent
final-vote0(v). Therefore, at least one correct replica sends
both final-vote0(v) and final-vote0(v̄), a contradiction.

Condition B): Replica pk receives final-vote0(v̄) and
final-vote0(∗). We already know that pi receives n − f
final-vote0(v). Therefore, at least one replica has sent
final-vote0(v) to pi and a final-vote0(v̄) (or final-vote0(∗)
message) to p j, a contradiction.

■

Theorem 39 (Agreement). If a correct replica decides v, then
any correct replica that terminates decides v.

Proof. We assume that a correct replica pi decides v and a
correct replica p j decides v̄ and prove the theorem by con-
tradiction. Since Quadratic-RABA follows Quadratic-ABA
starting from round r > 0, if both pi and p j decide in round
r > 0, correctness follows from the agreement property of
Quadratic-ABA. We now show the correctness in the follow-
ing cases: 1) both pi and p j decide in round 0; 2) pi decides
in round 0 and p j decides in round r > 0.
Case 1): If pi decides v, it receives n− f final-vote0(v). If
p j decides v̄, it receives n− f final-vote0(v̄). The two quo-
rum of replicas have at least n− 2 f replicas in common.
Among the n− 2 f replicas, at least one is correct since
n−2 f ≥ f +1. Therefore, at least one correct replica sends
both final-vote0(v) and final-vote0(v̄), a contradiction since
each replica only sends a final-voter() message once in each
round.
Case 2): If p j decides v̄ in round r = 1, it has received at least
n− f pre-vote1(v̄), where at least one correct replica has sent
pre-vote1(v̄), a contradiction with Lemma 38. Starting from
round 1, Quadratic-RABA follows Quadratic-ABA so that
Lemma 10 holds. If p j decides v̄ in round r > 1, at least one
correct replica must have sent pre-voter(v̄), a contradiction
with Lemma 10 since any correct replica sets ivr as v. ■

Lemma 40. If f +1 correct replicas propose 1 in round 0,
every replica either directly decides 1 in round 0 or/and enters
round 1 with iv1 = 1.

Proof. If a correct replica pi enters round 1, there are three
conditions: A) pi receives n− f final-vote0(v) with the same
v; B) pi receives at least a final-vote0(v) message for some v;
C) none of condition A or B holds. We show that v = 1 for all
three conditions and replicas will set iv1 as v = 1.

For condition A, we already know that at least f +1 cor-
rect replicas have broadcast final-vote0(1). If pi receives
n− f final-vote0(0), at least one correct replica has sent both
final-vote0(1) and final-vote0(0), a contradiction. In other
words, in this condition pi decides 1.

For condition B, we pi receives only final-vote0(0) and
final-vote0(∗). We already know that at least f + 1 cor-
rect replicas have sent final-vote0(1). Therefore, at least
one correct replica must have sent both final-vote0(1) and
final-vote0(0) (or final-vote0(∗)), a contradiction.

For condition C, any correct replica will use 1 as input for
round 1 since the local coin value is set as 1 in round 0. ■

Theorem 41 (Biased validity). If f +1 correct replicas pro-
pose 1, then any correct replica that terminates decides 1.

Proof. If pi decides in round 0, correctness follows from
Lemma 40. If pi decides 0 in round r > 0, at least one

28

correct replica has set ivr as 0 and broadcast pre-voter(0).
Since Quadratic-RABA follows Quadratic-ABA starting from
round 1, Lemma 10 holds. Therefore, the claim that at least
one correct replica has set ivr as 0 is a contradiction with
Lemma 10. This completes the proof of the theorem. ■

Lemma 42. If f + 1 correct replicas propose 1 in round 0,
every correct replica eventually accepts final-vote0(1).

Proof. If f + 1 correct replicas propose 1, they will di-
rectly broadcast pre-vote0(1), vote0(1), main-vote0(1), and
final-vote0(1). Every correct replica will eventually receive
f + 1 pre-vote0(1). For those correct replicas that have
not sent pre-vote0(1), they will also broadcast pre-vote0(1).
Therefore, every correct replica eventually adds 1 to bset0.
As f + 1 correct replicas broadcast vote0(1), every correct
replica eventually accepts main-vote0(1) message. Similarly,
as f +1 correct replicas broadcast main-vote0(1), every cor-
rect replica eventually accepts final-vote0(1). ■

Lemma 43. If a correct replica pi sends final-voter(0) or
final-voter(∗), every correct replica eventually accepts the
final-voter() message sent by pi.

Proof. Case 1: If a correct replica pi sends final-voter(0), it
has received n− f main-voter(0), among which at least f +1
are sent by correct replicas. Furthermore, the correct replica
has put 0 in its bsetr so it receives n− f pre-voter(0). As f +1
correct replicas have sent pre-voter(0), every correct replica
eventually receives f +1 pre-voter(0) and send pre-voter(0).
Accordingly, every correct replica puts 0 in bsetr. There are
two cases: r = 0 and r > 0. If r = 0, every correct replica
will accept main-voter(0) and final-voter(0). If r > 0, every
correct replica will accept voter(0) as 0 ∈ bsetr. Additionally,
since f +1 correct replicas have sent main-voter(0), they all
have received n− f voter(0), among which at least f +1 are
sent by correct replicas. As every correct replica receives f +1
voter(0), they will accept main-voter(0). As every correct
replica eventually receive f +1 main-voter(0), every correct
replica will accept final-voter(0).

Case 2: If a correct replica sends final-voter(∗), its bsetr is
{0,1}, i.e., it has received both n− f pre-voter(0) and n− f
pre-voter(1). Following the prior case, every correct replica
eventually has bsetr = {0,1}, so every correct replica accepts
final-voter(∗). ■

Theorem 44 (Biased termination). Let Q be the set of correct
replicas. Let Q1 be the set of correct replicas that propose 1
and never repropose 0. Let Q2 be correct replicas that propose
0 and later repropose 1. If Q2 ̸= /0 and Q=Q1∪Q2, then each
correct replica eventually terminates.

Proof. The proof consists of two parts. First, every replica
correct eventually enters the next round. Second, if a cor-
rect replica enters the next round with input v, v cannot be
manipulated by the adversary.

We first prove that every replica eventually enters the next
round. Since Quadratic-RABA follows Quadratic-ABA start-
ing from round 1, termination for r > 0 follows from termina-
tion of Cubic-ABA. We only need to prove that every correct
replica eventually enters round 1. For replicas in Q1, they
broadcast pre-vote0(1) and add 1 to bset0. For replicas in Q2,
they broadcast pre-vote0(0) upon the propose(0) event, broad-
cast pre-vote0(1) upon the repropose(1) event, and eventually
add 1 to bset0. There are two cases: 1) the size of Q1 is greater
than f +1; 2) the size of Q1 is smaller than f +1.

For the first case, at least f + 1 replicas in Q1 will di-
rectly broadcast vote0(1), main-vote0(1), and final-vote0(1).
For any correct replica pi in Q2, it may send vote0(1) or
vote0(0). There are two sub-cases: none of the correct replicas
send vote0(0); at least one correct replica has sent vote0(0).
For the first sub-case, it is straightforward to see that ev-
ery correct replica eventually receives and accepts n− f
vote0(1), as every correct replica has 1 in its bset0. Simi-
larly, every correct replica will send main-vote0(1) and ac-
cept n− f main-vote0(1). Similarly, every correct replica will
send final-vote0(1). According to Lemma 42, every correct
replica eventually accepts final-vote0(1) so correct replicas
will enter the next round. For the second sub-case, if a cor-
rect replica pi sends vote0(0), it receives n− f pre-vote0(0),
among which at least f + 1 are sent by correct replicas.
Therefore, every correct replica will eventually receive f +1
pre-vote0(0) and broadcast pre-vote0(0). Every replica even-
tually adds 0 to bset0. Since every correct replica has both
1 and 0 in bset0, every correct replica accepts both vote0(0)
and vote0(1). Similarly, every correct replica accepts both
main-vote0(0) and main-vote0(1). In this case, every correct
replica will eventually send a final-vote0() message. Accord-
ing to Lemma 42, every correct replica eventually accepts
final-vote0(1). According to Lemma 43, any correct replica
accepts the final-vote0() message sent by any correct replica.
Therefore, every correct replica eventually enters the next
round.

For the second case, replicas in Q2 will send pre-vote0(0)
upon propose(0). They will send pre-vote0(1) upon
repropose(1) and add 1 to bset0. Since the size of Q2 is
greater than f + 1 (the size of Q1 is smaller than f + 1 and
Q = Q1∪Q2), every replica will receive f +1 pre-vote0(0),
send pre-vote0(0), and add 0 to bset0. Furthermore, every cor-
rect replica in Q2 broadcasts pre-vote0(1) upon repropose(1).
Since the size of Q2 is greater than f + 1, every correct
replica eventually adds 1 to bset0. According to the protocol,
in round 0, every correct replica accepts main-vote0(v) and
final-vote0(v) if v is added to bset0. Therefore, every replica
will accept both vote0(0) and vote0(1), and main-vote0()
and final-vote0() with any value. Accordingly, every correct
replica eventually enters the next round.

We now prove that the value iv used by any correct replica
cannot be manipulated by the adversary. Since Quadratic-
RABA follows Quadratic-ABA starting from round 1, correct-

29

ness follows from Lemma 20 and termination of Quadratic-
ABA. ■

Theorem 45 (Integrity). No correct replica decides twice.

Proof. In each round, every replica only sends a final-voter()
message once. Hence, only one value will be decided and
integrity thus follows. ■

30

	 Introduction
	Background on Security Guarantees
	Why Matching Security Guarantees of Partially Synchronous BFT Hard?
	Our Approach
	Our Contributions
	Technical Contributions
	Practical Contributions

	Paper Organization
	The Proceeding Version

	 Related Work
	 System Model and Definitions
	System and Threat Model
	Definitions and Preliminaries

	 ABA from Local Coins
	0.1ptCubic-ABA
	0.1ptQuadratic-ABA

	 RABA from Local Coins
	 The 0.1ptWaterBear Family
	The 0.1ptWaterBear Protocols
	The 0.1ptWaterBear-QS Protocols

	 Implementation and Evaluation
	Performance in Failure-Free Cases
	Performance under Failures

	 Conclusion
	Bracha's ABA
	0.1ptCubic-RABA
	Liveness Challenge of Building 0.1ptQuadratic-RABA
	Setup Detail and Additional Evaluation Results
	Detailed Evaluation Setup
	Additional Evaluation Results

	Proof of 0.1ptCubic-ABA
	Proof of 0.1ptQuadratic-ABA
	0.1ptCC-ABA
	Proof of 0.1ptCC-ABA

	Proof of 0.1ptCubic-RABA
	Proof of 0.1ptQuadratic-RABA

