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Abstract. The verifier-local revocation mechanism (VLR) is an ideal
function of group signature. As long as the verifier knows the revocation
list, he/she can verify the legitimacy of the signer, prevent the revoked
user from impersonating a legitimate user for signature, ensure the timeli-
ness of signature information and save resources. Group signature is often
required to realize users’ dynamic addition and revocation. Therefore, an
efficient lattice signature scheme with a local revocation mechanism and
alter the number of users has become an important topic. In this paper,
a zero-knowledge proof scheme on the lattice has been proposed. Based
on it, a group signature scheme with VLR has been constructed. This
scheme can effectively join and revocation without generating the key
pair again. The tracking mechanism uses an encryption scheme. As long
as given a correct tracking key, the signer index can be opened quickly.
And this algorithm has short public key, logarithmic signature length,
and efficient implementation of the VLR function.

Keywords: dynamic group signature · lattice · Zero—knowledge proof
· VLR.

1 Introduction

With the development of network, digital signature has become an important
research topic and has been widely used in various places such as anonymous
voting, electronic bidding, etc. In order to realize the anonymity of signature,
it is necessary to ensure that the verifier can only verify the validity of the sig-
nature without any information from the signer. However, When the signature
has problems, the entire signature scheme is required to be traceable. In order
to satisfy the above requirements, Chaum [1] proposed the concept of group sig-
nature in 1991 at first. In the group signature scheme, a user signs the message,
and any verifier can verifie it when the signer’s identity cannot be confirmed.
The group administrator GM has a tracking key which can query the actual
signer in case of problems. Later, group signature schemes based on classical
mathematical difficult problems were proposed and improved [2,3].
With the development of quantum computers, various post-quantum cryptog-
raphy schemes have been proposed [4,5], and lattice cryptography has become
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one of the best. In 2010, Gordon et al. constructed the first group signature
scheme on lattice according to the LWE difficulty problem on lattice [6], which
constructed a zero-knowledge proof, and realized the opened operation using the
distance size. This scheme is a static group signature scheme, which can’t realize
the function of joining and revocation. The length of the public key and signa-
ture has a linear relationship with the number of group members, so it is not
suitable for the case of too many group members. In 2013, a new lattice signature
scheme was proposed[7], which reduced the signature size and made the signa-
ture size logarithmic with the group members. In order to revoke the signature
of misbehaving users, the whole system often needs to be reinitialized. All public
keys and private keys need to be updated such that illegal users can’t know the
private keys of legal users to sign, which is cumbersome and inefficient. In order
to improve work efficiency, a solution that group signature with verifier local
revocation (VLR) was proposed[8] in 2014, . It is an effective solution to realize
the traceability and anonymity of signatures by constructing an underlying pro-
tocol. In September 2015, a zero-knowledge proof scheme based on LWE and SIS
was constructed, which reduced the length of the public key and improved the
signature efficiency, such that the signature length is fixed and independent of
the number of groups members. The zero-knowledge of the scheme construction
has become the basis of many schemes construction [10,11]. In the same year,
San Ling et al. proposed an improved group signature scheme by constructing
an interactive zero-knowledge proof and combining OTS and GVP-IBE [12]. In
recent years, lattice group signature schemes have been proposed and optimized
to meet the different needs of users [13,14].
In this paper, a zero-knowledge proof scheme is proposed, a group signature
scheme with a VLR attribute is constructed on this basis. The scheme uses zero-
knowledge proof to prove the effectiveness of the signature. If the verifier has
the revocation list RL, he/she can check the legitimacy of the signer. The trace-
ability of the scheme is realized by using the encryption scheme, and the scheme
can realize the mechanism of joining and revocation of legal members through
simple operation without frequently updating the key. The public key is short,
and the signature length is the logarithm of group members.

2 Preliminaries

NOTATIONS.For a positive integer n, we let [n] denote the set {1, . . . , n},
Sk denote the set of all permutations of k elements.B3m denotes the set of all
vectors in {−1, 0, 1}3m, which have the number of - 1, 0, and 1 is m, respectively.

B2l is the set of all vectors in {0, 1}2l,which have the number of 0 and 1 is
l, respectively. (x||y) ∈ Rm+k denote the concatenation of vectors x ∈ Rm

and y ∈ Rk. [A|B] ∈ Rn×(m+k) denote the column concatenation of matrices
A ∈ Rn×m and matrices A ∈ Rn×m.I is the identity matrix.
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2.1 Lattice

Definition1: Let b1b2, ..., bm ∈ Rn be m linearly independent vectors, and the
lattice composed of them as the basis is as follows:

Λ (b1b2, ..., bm) =

{
m∑
i=1

aibi|ai ∈ Z

}
(1)

Definition2: For a given matrix A ∈ Zn×m
q , vectors ∈ Zn, define the m-

dimensional lattice as follows:

L
(
AT

)
=

{
y ∈ Zm|y ≡ AT s (modq)

}
(2)

define the orthogonal lattice as:

Λ⊥ (A)= {w ∈ Zm|A · w = 0 mod q} (3)

For any u in the image of , define the coset:

Λ⊥
u (A)= {w ∈ Zm|A · w = u mod q} (4)

2.2 Difficult problems on the lattice

Given positive integersn,m ≥ n, q ≥ 2, the probability distribution χ on interval
[0, q)m and vector s ∈ Zn

q , we define as follows:
LWEm,q,χ (s): For a vector s ∈ Zn

q and a distributionχ. Given e ← χ and

A ∈ Zn×m
q which uniformly at random, obtain the pair

(
A,AT s+ e (modq)

)
.

The problem is finding a vector s ∈ Zn
q by

(
A,AT s+ e (modq)

)
. The output of(

A,AT s+ e (modq)
)
is indistinguishable from the (A, y), where A ∈ Zn×m

q , y ∈
[0, q)m are uniformly random.
SIS n,m,q,β (s): Given a matrix A ∈ Zn×m

q which uniformly at random, the

problem is finding a non-zero vector s ∈ Λ⊥ (A) such that ∥s∥∞ ≤ β and
A · s = 0 mod q.
ISISn,m,q,β (s): Given randomly uniformly selected matrix A ∈ Zn×m

q and vec-

tor y ∈ Zn
q , the problem is finding a non-zero vector s ∈ Λ⊥

u (A)such that
∥s∥∞ ≤ β and A · s = y mod q.

2.3 Sampling function on lattice

For a vector c ∈ Rm, m dimensional continuous Gaussian distribution is defined
as follow:

Ds,c (x) = 1/sm · exp
(
−π

(
∥x− c∥/s

)2
)

(5)

where c is the center of the distribution. The discrete Gaussian distribution on
the lattice is defined as follow:

∀x ∈ ∧ : D∧,s,c (x) =
Ds,c (x)∑
y∈∧Ds,c (y)

(6)
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Lemma1[16]: Let n, q ≥ 2, and m ≥ 8nlogq. Matrix A ∈ Zn×m
q is statisti-

cally close to uniform over Zn×m
q and its trapdoor T ∈ Zm×m is a short ba-

sis for the lattice Λ⊥ (A) such that A · T = 0 (modq), ∥T∥ = O (nlogq) and
∥T∥ ≤ C ·

√
nlogq,C < 40. The pair (A, TA) is generated by a PPT algorithm

TrapGen (1n, 1m, q).
Lemma2: For matrix A ∈ Zn×m

q , its trapdoor TA, real s ≥ C ·
√
n log q·w

(√
log n

)
and any vector u ∈ Zn

q , there exists a PPT algorithm SamplePre (A, TA, u, s)
outputting z← DZm,s (x) that is statistically Az = u (modq).

2.4 Decomposition-Extension technique

Lemma3[12]: Let p = ⌊log β⌋ + 1; β1 = ⌈β/2⌉; β2 = ⌈(β − β1) /2⌉; β3 =
⌈(β − β1 − β2) /2⌉;. . . ; βp = 1. For any vector x ∈ [−β;β]m, there exists vectors
x̃1, x̃2, ..., x̃p ∈ {−1, 0, 1}m such that x =

∑p
j=1 βj x̃j . Letλ

(−1),λ(0), andλ(1) be

number of coordinates -1,0, and 1 in vector x̃j ∈ {−1, 0, 1}m. Let xj = (x̃j ||x̂j) ∈
B3m, where x̃j ∈ {−1, 0, 1}3m is randomly selected that has exactly

(
m− λ(−1)

)
coordinates -1,

(
m− λ(0)

)
coordinates 0 and

(
m− λ(1)

)
coordinates 1, it has the

following properties:
1, For each random permutation of xj belongs to B3m, it implies that xj ∈ B3m

and x̃j ∈ {−1, 0, 1}m, consequently,x ∈ [−β;β]m.
2, Through appending zero-columns, matrixA ∈ Zn×m

q extends to matrix A∗ ∈
Zn×3m
q such that Ax = A∗ ∑p

j=1 βjxj = u mod q. By adding the uniformly ran-

dom selected ”hidden” vector r1, r2, ..., rp ∈ Z3m
q , the equation of

A∗ ∑p
j=1 βj (xj + rj)− u = A∗ ∑p

j=1 βjrj mod q is established.

2.5 Zero-knowledge protocols

S. Goldwasser et al. put forward the concept of zero-knowledge proof in the 1980s.
There are the prover and the verifier, and the prover should prove their informa-
tion without revealing any useful information to the verifier. The whole process
is as follows: first, the prover sends a commitment COM. Next, the verifier ini-
tiates any challenge value Ch. And then, the prover responds RSP according to
the commitment value COM and challenge value Ch. Finally, the verifier verifies
whether the prover has the correct information according to COM, Ch and RSP.
Fiat, Amos, and Adi Shamir [17] proposed to convert interactive into non-
interactive through a hash function. According to the one-way and random char-
acteristics of the hash function, one interaction can be reduced through the hash
operation. Since zero-knowledge proof is a probabilistic proof scheme, in order to
verify the correctness of the protocol, multiple operations are required to make
the error probability close to 0.

3 Underlying interactive protocol

The underlying interaction protocol in this paper uses decomposition extension
technology to convince the verifier that the prover has the information without
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revealing any useful information. We use the decomposition-expansion method,
add ”masking” vectors, and Change sort to realize information hiding. In this
algorithm, the prover’s goal is to convince the verifier in zero-knowledge that:

a) A · x = u mod q, x ∈ Secretβ (d), where A ∈ Zn×(2l+1)m
q , x ∈ Z(2l+1)m

q and
u ∈ Zn

q .

b) V̂ · r + I · f = v mod q, ∥f∥∞ ≤ β, where V̂ ∈ Zm×m
q ,f ∈ Zm

q ,∥f∥∞ ≤ β,r ∈
Zm
q ,I ∈ Zm×m

q and v ∈ Zm
q .

c) Pe +
(
0k1−l|| ⌊q/2⌋ d

)
= c (modq), ∥e∥∞ ≤ b, where P ∈ Zk1×k2

q ,c ∈ Zk1 ,e ∈
Zk2 , and d ∈ {0, 1}l.
ISIS problem (A · x = u mod q) is often used to generate key pairs in signature
algorithms. Matrices A and vector u are used as public keys and vector x that
satisfies ∥x∥∞ ≤ β as private keys. We will introduce in detail how the prover
proves that he/she has a private key x under the zero-knowledge.
Let p = ⌊log β⌋+1; β1 = ⌈β/2⌉; β2 = ⌈(β − β1) /2⌉; β3 = ⌈(β − β1 − β2) /2⌉;. . . ;
βp = 1. For vector x ∈ Z(2l+1)m

q , there exists vectors x̃1, x̃2, ..., x̃p ∈ {−1, 0, 1}(2l+1)m

such that x =
∑p

j=1 βj x̃j . We can extend x̃j ∈ {−1, 0, 1}(2l+1)m
, j ∈ [p] to xj ∈

B(2l+1)3m by technique of Lemma3. Let A∗ =
[
A|0n×(2l+1)2m

]
∈ Zn×(2l+1)3m

q .

We can get Ax = A∗ ∑p
j=1 βjxj = u mod q and A∗ ∑p

j=1 βj

(
xj + r

(j)
x

)
− u =

A∗ ∑p
j=1 βjr

(j)
x mod q, where r

(j)
x ∈ Z(2l+1)3m

q .

As the same reason, for V̂ ·r+I·f = v mod q, we can get V̂ ∗r∗+I∗
(∑p

j=1 βjfj

)
=

V̂ ·r+I ·f = v mod q and V̂ ∗ (r∗ + rr)+I
∗
(∑p

j=1 βj

(
fj + r

(j)
f

))
−v = V̂ ∗rr+

I∗
(∑p

j=1 βjr
(j)
f

)
mod q, where r∗ ∈ B2m, rr ∈ Z2m

q , fj ∈ B3m, r
(j)
f ∈ Z3m

q ,

V̂ ∗ =
[
V̂ |0m×2m

]
∈ Zm×3m

q and I∗ =
[
I|0m×2m

]
∈ Zm×3m

q .

For Pe +
(
0k1−l|| ⌊q/2⌋ d

)
= c mod q, we can getP ∗

(∑p̄
j=1 bjej

)
+Qd∗ = Pe +(

0k1−l|| ⌊q/2⌋ d
)
= c mod q and P ∗

(∑p̄
j=1 bj

(
ej + r

(j)
e

))
+ Q (d∗ + rd) − c =

P ∗
(∑p̄

j=1 bj · r
(j)
e

)
+ Q · rd mod q, where p̄ = ⌊log b⌋ + 1; b1 = ⌈b/2⌉; b2 =

⌈(b− b1)/2⌉; b3 = ⌈(b− b1 − b2)/2⌉;. . . ;bp = 1, P ∗ = [P |0k1×2k2 ] ∈ Zk1×3k2
q ,

Q =

(
0(k1−l)·l 0(k1−l)·l

⌊q/2⌋ Il 0l·l

)
∈ {0, ⌊q/2⌋}k1×2l

, ej ∈ B3k2 , r
(j)
e ∈ Z3k2

q , d∗ ∈ B2l and

rd ∈ Z2l
q .

P represents the prover, and V represents the verifier. The details of the under-
lying protocol are as follows:
1 Commitment

P samples:
(
r
(j)
x

)p

j=1
∈ Z

(2l+1)3m
q ,

(
r
(j)
e

)p̄

j=1
∈ Z3k2

q , rd ∈ Z2l
q , rr ∈ Z2m

q ,(
r
(j)
f

)p

j=1
∈ Z3m

q , τ ∈ S2l, π ∈ S2m, (ψj)
p
j=1 ∈ S(2l+1)3m, (ρj)

p
j=1 ∈ S3m,

(ζj)
p̄
j=1 ∈ S3k2
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Then P sends the commitment CMT = (c1, c2, c3)to V, where

c1 = COM

 τ ;π; (ψj)
p
j=1 ; (ρj)

p
j=1 ; (ζj)

p̄
j=1 ;A

∗
(∑p

j=1 βjr
(j)
x

)
;

P ∗
(∑p̄

j=1 bj · r
(j)
e

)
+Q · rd; I∗

(∑p
j=1 βj · r

(j)
f

)
+ V̂ ∗ · rr

 (7)

c2 = COM

 τ (rd) ;π (rr) ;
(
ψj

(
r
(j)
x

))p

j=1
;(

ρj

(
r
(j)
f

))p

j=1
;
(
ζj

(
r
(j)
e

))p̄

j=1

 (8)

c3 = COM

 τ (d∗ + rd) ;π (r
∗+rr) ;

(
ψj

(
xj + r

(j)
x

))p

j=1
;(

ρj

(
fj + r

(j)
f

))p

j=1
;
(
ζj

(
ej + r

(j)
e

))p̄

j=1

 (9)

2 Challenge
V sends the challenge Ch← {1, 2, 3}to P.
3 Response
P computes the response RSP depending on Ch, and returns it to V.
Case Ch = 1: For each j ∈ [p], let vrd = τ (rd) , td = τ (d∗), vrr = π (rr) , tr =

π (r∗), v
(j)
rx = ψj

(
r
(j)
x

)
, t

(j)
x = ψj (xj) and v(j)

rf
= ρj

(
r
(j)
f

)
, t

(j)
f = ρj (fj); For

eachj ∈ [p̄], let v(j)
re

= ζj

(
r
(j)
e

)
and t

(j)
e = ζj (ej). Then P sends:

RSP =

vrd ; td;
(
v
(j)
rx

)p

j=1
;
(
t
(j)
x

)p

j=1
;
(
v(j)
rf

)p

j=1
;(

t
(j)
f

)p

j=1
;
(
v(j)
re

)p̄

j=1
;
(
tje
)p̄
j=1

 (10)

Case Ch = 2: For each j ∈ [p], let τ ′ = τ, π′ = π, ψ′
j = ψj , ρ

′
j = ρj , w

(j)
x = xj +

r
(j)
x , wr = r∗ + rr and w

(j)
f = fj + r

(j)
f . For each j ∈ [p̄], ζ ′j = ζj , w

(j)
e = ej + r

(j)
e

and wd = d∗ + rd. Then P sends:

RSP =

 τ ′;π′;
(
ψ′

j

)p
j=1

;
(
ρ′j

)p
j=1

;
(
ζ ′j

)p̄
j=1

;(
w

(j)
x

)p

j=1
;wr;

(
w

(j)
f

)p

j=1
;
(
w

(j)
e

)p̄

j=1
;wd

 (11)

CaseCh = 3: For each j ∈ [p], let τ ′′ = τ, π′′ = π, ψ′′
j = ψj , ρ

′′
j = ρj , y

(j)
x = r

(j)
x ,

yd = rd and y
(j)
f = r

(j)
f . For each j ∈ [p̄], ζ ′′j = ζj ,y

(j)
e = r

(j)
e and yr = rr. Then

P sends:

RSP =

 τ ′′;π′′;
(
ψ′′

j

)p
j=1

;
(
ρ′′j

)p
j=1

;
(
ζ ′′j

)p̄
j=1

;(
y
(j)
x

)p

j=1
;
(
y
(j)
f

)p

j=1
;
(
y
(j)
e

)p̄

j=1

 (12)

Verification: V verifies depending on COM , RSP, and Ch, the verification
process as follow:
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Case Ch = 1: Pares RSP as in(10),check that td ∈ B2l, t
(j)
x ∈ B(2l+1)3m, tr ∈

B2m, t
(j)
f ∈ B3m, t

(j)
e ∈ B3k2

and that
c2 = COM

(
vrd ; vrr ;

(
v
(j)
rx

)p

j=1
;
(
v(j)
rf

)p

j=1
;
(
v(j)
re

)p̄

j=1

)

c3 = COM

vrd + td; vrr + tr;
(
v
(j)
rx

)p

j=1
+
(
t
(j)
x

)p

j=1
;(

v(j)
rf

)p

j=1
+

(
t
(j)
f

)p

j=1
;
(
v(j)
re

)p̄

j=1
+
(
tje
)p̄
j=1


.
Case Ch = 2, Parse RSP as in (11), Check that:
c1 = COM

 τ ′;π′;
(
ψ′

j

)p
j=1

;
(
ρ′j

)p
j=1

;
(
ζ ′j

)p̄
j=1

;A∗
(∑p

j=1 βjw
(j)
x

)
− u;

P ∗
(∑p̄

j=1 bj · w
(j)
e

)
+Q · wd − c; I∗

(∑p
j=1 βj · w

(j)
f

)
+ V̂ ∗ · wr − v


c3 = COM

(
τ ′ (wd) ;π

′ (wr) ;
(
ψ′

j

(
w

(j)
x

))p

j=1
;
(
ρ′j

(
w

(j)
f

))p

j=1
;
(
ζj

(
w

(j)
e

))p̄

j=1

)
Case Ch = 3, Parse RSP as in (12), Check that:
c1 = COM

 τ ′′;π′′;
(
ψ′′

j

)p
j=1

;
(
ρ′′j

)p
j=1

;
(
ζ ′′j

)p̄
j=1

;A∗
(∑p

j=1 βjy
(j)
x

)
;

P ∗
(∑p̄

j=1 bj · y
(j)
e

)
+Q · yd; I∗

(∑p
j=1 βj · y

(j)
f

)
+ V̂ ∗ · yr


c2 = COM

(
τ ′′ (yd) ;π

′′ (yr) ;
(
ψ′′

j

(
y
(j)
x

))p

j=1
;
(
ρ′′j

(
y
(j)
f

))p

j=1
;
(
ζ ′′j

(
y
(j)
e

))p̄

j=1

)
In each case, V outputs 1 if and only if all the conditions hold. Otherwise, it
output 0.

4 The VLR Dynamic Group Signature Scheme

Description of the scheme: We specify the parameters of the scheme. Let n be
the security parameter, N be the maximum expected number of group users, q =
w
(
n2 log n

)
, m ≥ 2n log q, σ=w

(√
n log q log n

)
, β= ⌈σ · logm⌉ s.t(4β+1)

2 ≤ q,
p = ⌊log β⌋ + 1, t = w (log n), l = logN , k1 := m + l and k2 := n +m + l. Let
integer b be the norm bound for LWE noises such that q/b = lÕ (n), and let
idi, i ∈ Z as the identity of all users. (For example, ID number.)
Choose hash functions H : {0, 1}∗ → {1, 2, 3}t ,H2 : {0, 1}∗ → Zm

q , and

H3 : {0, 1}∗ → Zm×n
q .

Our group signature scheme is described as follows:
Key Generation:KeyGen

(
1n, 1N

)
The group manager (GM) performs the following steps:
Step1: Run (A0, TA0

) , (E, TE)← TrapGen (m,n, q), where TA0
, TE is the trap-

door of A0 and E, respectively. GM randomly selects matrixA1, A2 ← Zn×m
q

and generates matrix A =
(
A0|A0

1|A1
1|...|A0

l |A1
l

)
∈ Z

n×(2l+1)m
q , where A0

i =
iA1, A

1
i = iA2.

Step2:Sample u← Zn
q . Then compute r = H2 (idi) ∈ Zm

q andB = H3
T (A0, A1, A2, u) ∈



8 Xiuju Huang et al.

Zn×m
q , where idi is the user ID number. The GM issues an index d ∈ {0, 1, 2, ..., N − 1}

to each group user, let d[1]d[2]...d[l] ∈ {0, 1}
l
denote the binary representation of

d, and do the following:

Sample vectors x
d[1]

1 , ..., x
d[l]

l ← Dzm,σ. Compute z =
∑l

i=1A
d[i]

i ·x
d[i]

i mod q. Run

x0 ← SamplePre (TA0
, A0, u− z, σ). Let x

1−d[1]

1 , ..., x
1−d[l]

l be m-dimensional

zero-vectors. Define x(d) =
(
x0||x01||x11||...||x0l ||x1l

)
∈ Z(2l+1)m

q . If
∥∥x(d)∥∥∞ ≤ β

then continue; else, resample until the conditions are met.
Let the group user private key begsk [d] = x(d), and the revocation token be
grt [d] = B · r ∈ Zn

q .
Step3:Output
Group public key: gpk = ((A0, A1, A2) , E, u,B). Tracking key: gsk = TE .
Group private key: gmsk = (gsk [0] , gsk [1] , ..., gsk [N − 1]). Revocation token:
grt = (grt [0] , grt [1] , ..., grt [N − 1]).
Join and revoke group users:
Join:Let RL is the initial revocation list and Strevocais the effective label set of
group members .To prevent illegal user tags from being added to the revocation
list, they forge their identity to re-apply for the group. Users are required to use
their unique identification ID (for example, ID number) as their entry certificate.
The details of joining the group are as follows:
User samples f ← χβ and computes rj = H2 (idj) ∈ Zm

q , V=H3 (A0, A1, A2, B,u) ∈
Zm×n
q and vj=V · (B · rj) + f . Let grt [j] = B · rj . Use the common key in PKI

to sign grt [j], and the signature is sig = Sign (grt [j]). Send grt [j] and the
signature sig to GM.
GM verifies whether grt [j] has been registered. Calculate fi

′ = vj−V (B · ri) (modq)
for all users. Refuse to join if

∥∥fi′∥∥∞ ≤ β or the signature verification is incor-
rect. Otherwise, to join.
GM runs the key generation algorithm to calculate the new user’s private key,
and distributes it to the new members. The user’s revocation token grt [j] is
added to the effective label set Strevoca, updated and announced. The join is
completed.
Revoke:When revoking, the user’s revocation token is added to the revoking
list RL and announced. There is no need to update all keys again.
Signing Algorithm:Sign (gsk [d] ,M)
Group user userj , j ∈ (0, 1, ..., N − 1) uses the secret key gsk [d] = x ∈ Secretβ (d)
to sign a massage M ∈ {0, 1}∗. userj samples a matrix G ∈ Zn×l

q to encrypt
own index d ∈ {0, 1, 2, ..., N − 1}, and signs. The userj performs the following
step:
Step1: Let G ∈ Zn×l

q . Samples ← χn; e1 ← χm, e2 ← χl, then compute the

ciphertext of index d:c1 = ET s+ e1, c2 = GT s+ e2 + ⌊q/2⌋ d ∈ Zm
q × Zl

q.

Step2:Let P =

(
ET

GT Im+l

)
∈ Zk1×k2

q , c =

(
c1
c2

)
∈ Zk1 , e =

 s
e1
e2

 ∈ Zk2 .

According to the ciphertext of d, we have ∥e∥∞ ≤ b and Pe+
(
0k1−l|| ⌊q/2⌋ d

)
=

c mod q, where b is the norm bound for LWE noises such that q/b = lÕ (n).
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Step3:Sample f ← χβ . Compute V=H3 (A0, A1, A2, B,u) ∈ Zm×n
q and V ·

(B · r) + f = v mod q. Let V̂ = V ·B, we have V̂ · r + I · f = v mod q.
Step4:The input ((A, u,B, V, v, P, c) , x, d, r, e) conforms to the underlying in-
teraction protocol described in the second chapter, and the protocol runs t =
w (log n) times so that the soundness error is negligible. The protocol is trans-

formed into non-interactive triples Π=
({
CMT (k)

}t

k=1
, CH,

{
RSP (k)

}t

k=1

)
by

Fiat - Shamir heuristic, where

CH =

({
Ch(k)

}t

k=1

)
= H

(
M,

{
CMT (k)

}t

k=1
, (c1, c2) , G, u, v

)
∈ {1, 2, 3}t

.
Step5:Output the group signature Σ=(M,Π,G, (c1, c2) , u, v)
Verification Algorithm:V erify (pgk,M,Σ,RL)
Step1: Parse the signature Σ as (M,Π,G, (c1, c2) , u, v). If{

Ch(k)
}t

k=1
̸= H

(
M,

{
CMT (k)

}t

k=1
, (c1, c2) , G, u, v

)
, then return 0.
Step2:Generating Pand C according to the signature process, the verifier runs

the underlying protocol, checks the validity of
{
RSP (k)

}t

k=1
according to

{
Ch(k)

}t

k=1

and
{
CMT (k)

}t

k=1
which provided by the signer. If any condition is not estab-

lished, then returns 0.
Step3: For each ui ∈ RL, calculatefi′ = v − V (B · ri) (modq). Verify whether
there exists ui so that ∥f ′∥∞ ≤ β. If it exists, then return 0.
Step4:Return 1.
Open Algorithm: Open (gmsk,M,Σ)
GM uses the tracking private key TA to track the index of the signer as follows:
Step1:Let G = [g1|g2|...|gl]. Sample yi ← SamplePre (TE , E, gi, s) , i ∈ [l]. GM
gets matrix Y = [y1|y2|...|yl] ∈ Zm×l

q such that E · Y = G (modq).

Step2:Calculate d′ =
(
d1

′, ..., dl
′) = c2 − Y T c1 ∈ Zl

q Because e1and e2 are very
small, when the result is close to 0, then let di = 0, when the result is close to
⌊q/2⌋, then let di = 1.

Step3:Return d = (d1, ..., dl) ∈ {0, 1}l,which is the index of the signer.

5 Analysis of the Scheme

5.1 Correctness analysis

Through the analysis of the signature and verification of the algorithm, we can
see that the signature uses non-interactive zero-knowledge proof to ensure the
normal operation of the algorithm without revealing any information, with cor-

rectness and security.
{
Ch(k)

}t

k=1
=H

(
M,

{
CMT (k)

}t

k=1
, (c1, c2)

)
ensures the

integrity and authenticity of the information M . we use RL to detect the legiti-
macy of the signer and realize the V LR function of the algorithm.
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Lemma4[8]: Let β=ploy (n) , q ≥ (4β + 1)
2
,m ≥ 3n. For each random matrix

V ∈ Zm×n
q and non-zero vector s ∈ Zn

q , satisfying Pr
[
∃s ∈ Zn

q : ∥V · s∥∞ ≤ 2β
]
≤

negl (n).
According to the algorithm, Zero-knowledge proof ensures that the signer has the
private key, revocation token, and correct ciphertext of index d = (d1, ..., dl) ∈
{0, 1}l. According to step3 of verification algorithm, we can judge whether the
revocation token is valid.
Proof :For each j, the vector fi

′ can be delivered as
fi

′ = v − V (B · ri) (modq)=V · grt [d] + f − V (B · ri) = V · grt [d] + f − V · ui
= V · (grt [d]− ui) + f

.

According to Lemma4, for an honest signer, grt [d]−ui ̸= 0 ∈ Zn
q and

∥∥fi′∥∥∞ >
β. For an illegal user, the revocation token is in the revocation list, therefore
grt [d]− ui=0,fi

′=f and
∥∥fi′∥∥∞=∥f∥∞ ≤ β.

For open algorithm, take E · Y = G (modq) into c2 − Y T c1 and get

c2 − Y T c1 = GT s+ e2 + ⌊q/2⌋ d−
(
GT

(
ET

)(−1)
) (
ET s+ e1

)
= e2 + ⌊q/2⌋ d−

(
GT

(
ET

)(−1)
)
e1 ∈ Zn

Since e1 and e2are small, the signer’s index d can be successfully decrypted by
judging whether c2 − Y T c1 is close to 0 or q/2.

5.2 Fully Anonymity

Our VLR group signature scheme is fully-anonymous in the random oracle
model. Let A be the adversary of the PPT computing power and prove its
anonymity through a sequence of indistinguishable experimentsG0, G1, G2, G3, G4,
where AdvA (G0) = ε,AdvA (G4) = 0.
Experiment G0: Suppose attacker A has the advantage of ε, the challenge is
successful. And it is allowed to query the private key, revocation token, and signa-
ture. The challenger runsKeyGen

(
1n, 1N

)
to obtain gpk, gsk, grt= {grt [i]}N−1

i=0 , gmsk= {gsk [i]}N−1
i=0 ,

and gives gpk to the A. Set lists L1,L2 and L3 store the results of revocation
token query, private key query, and signature query, respectively. Their initial
state is 0.
a)Revocation token query: Adversary A queries the revocation token of d. The
challenger returns grt [d] and stores the result in L1.
b)Private key query: Adversary A queries the private key of user of index d. The
challenger returns gsk [d] and stores the result in L2.
c)Signature query: Adversary A queries the Signature on any message M by
user of indexd. The challenger returns Σ=(M,Π,G, (c1, c2) , u, v) and stores the
result in L3.
The adversary A begin to challenge. A sends a massageM∗ and indexes d0, d1 ∈
{0, 1}l which are not queried to the challenger. The challenger returns the valid
signature

Σ∗=(M∗, Π∗, G∗, (c1
∗, c2

∗) , u∗, v∗)← Sign (gpk, gsk [db] ,M)
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, where b ∈ {0, 1}. A can still make queries as before except index d0, d1 ∈ {0, 1}l.
A outputs b′ ∈ {0, 1}, if db=db′ challenge succeeds, otherwise, it fails.
Experiment G1: In this experiment, the challenger didn’t generate a valid sig-
nature Σ, but used a valid simulator to simulate. According to the underlying
interaction protocol used in this scheme, the demonstration system is statisti-
cally zero-knowledge. Therefore, G0 and G1 are statistically indistinguishable.
ExperimentG2: In the challenge phase, the returned signature is

Σ∗=(M,Π∗, G∗, (c1
∗, c2

∗) , u∗, v∗)

, where v∗ = V · grt [db] +f (modq) , b ∈ {0, 1},f sample in error distribution
χ. In this experiment, the challenger uniformly random sampled t ← Zn

q and
calculated v∗ = V · t+f (modq). Replace grt [db] with t, and the rest remains
unchanged, so G1 and G2 are statistically indistinguishable.
Experiment G3: In this experiment, the challenger modify the generation of
the ciphertext (c1

∗, c2
∗). Review the signature algorithm in Chapter 4, one has

c1
∗ = (E∗)

T
s+e1, c2

∗ = (G∗)
T
s+e2+⌊q/2⌋ db ∈ Zm

q ×Zl
q, where s, e1, e2, G

∗ are

uniformly random. Let c1
∗ = z1, c2

∗ = z2+⌊q/2⌋ db, where x1 ∈ Zm, x2 ∈ Zl. Ac-

cording to the LWE difficult problem, A has no way to distinguish
(
E∗, (E∗)

T
s+ e1

)
and

(
G∗, (G∗)

T
s+ e2

)
from (E∗, z1) and (G∗, z2), respectively, which implies

that G2 and G3 are computationally indistinguishable.
Experiment G4: The Challenger make a conceptual modification so that the sig-
nature has nothing to do with the identity index. Let c1

∗ = z1
′, c2

∗ = z2
′ ,where

x1
′ ∈ Zm, x2

′ ∈ Zl are uniformly random. It is clear that G3 and G4 are sta-
tistically indistinguishable. Moreover, because this experiment does not rely on
the challenger’s index b, the advantage of adversary A in this experiment is 0.
The above five experiments show that our VLR group signature scheme is fully
anonymous in the random oracle model, and the adversary A does not have any
advantage in this scheme.

5.3 Fully Traceability

In the random oracle model, the VLR group signature scheme is fully traceabil-
ity if the SIS∞

n,(l+1)m,q,2β problem is hard.

Lemma5[a]: If there is a traceability adversary A with success probabilityε and
running time T, then there exists an algorithm F that solves the SIS∞

n,(l+1)m,q,2β

problem with success probability ε′ >
(
1− (7/9)

t
)
· 1/2N and running time

T ′ = 32 ·QH/(ε− 3−t) + poly (n,N), where QH is the number of queries to the
random oracle H : {0, 1}∗ → {1, 2, 3}t.
Suppose that there is an adversary A who breaks the computational binding
property of the commitment scheme COM with a non-negligible probability ε,
so the adversary A can find an effective method to solve the SIS∞

n,(l+1)m,q,2β

problem. Generally, the string commitment schemes COM used by the underly-
ing protocol is computationally bound. We can construct a forger F with PPT
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computing power to solve the SIS∞
n,(l+1)m,q,2β problem with non-negligible prob-

ability.
Given the verification key (A0, A1, A2, u), F runs TrapGen (m,n, q) to obtain
(E, TE). F interacts with the adversary A by sending gpk = (A0, A1, A2, u, E)
and responding to A’s query. The specific response query process is as follows:
Random oracle H queries: Return the uniformly random values in {1, 2, 3}t. As-
suming that A queries H at most QH times, for each k ≤ QH , we use rk denotes
the answer to the k − th query.
Corruption queries:Let corruption set Ua store the results of private key query,
which the initial state is 0. If the adversary A asks the private key of user i, then
F adds i to the Ua and returns the gsk [i].
Signatures queries:If A requires user ito sign the information M , then F returns
Σ=(M,Π ′, G, (c1, c2) , u, v), where Π

′ is simulated by the simulator without a
legal user, and the others are real. According to the zero knowledge of the un-
derlying interaction protocol, the signature Σ is indistinguishable from the legal
group signature.
Finally, A sends a message M∗, revocation set RL∗ and a non-trivial forged
signature Σ∗=(M,Π ′, G, (c1, c2) , u, v), such that V erify (gpk,M∗, RL∗, Σ∗) =
V alid and open fails or outputs the index of non-group members.
Adversary A uses forger F to forge group signature. The method is as follows:

By analyzing, A does not know that H input is
(
M,

{
CMT (k)

}t

k=1
, (c1, c2)

)
,

and at least 3−t probability can completely guess

(Ch1, ..., Cht) = H

(
M,

{
CMT (k)

}t

k=1
, (c1, c2)

)
. Therefore, with probability at least ε−3−t, there exists k∗ ≤ QH such that the

k− th random oracle H queries involves the tuple
(
M,

{
CMT (k)

}t

k=1
, (c1, c2)

)
.

For a fixed k∗, execute A many times. For the query before k∗, the query
result remains unchanged. That is, the challenge value (Ch1, ..., Chk∗−1) re-
mains unchanged. Starting from the k∗ − th query, the new random value is
output. According to lemma 5, with a probability greater than 1/2, the out-

put is obtained after executing A less than 32 ·QH/(ε− 3−t) times: r
(1)
k∗ =(

Ch
(1)
1 , ..., Ch

(1)
t

)
,r

(2)
k∗ =

(
Ch

(2)
1 , ..., Ch

(2)
t

)
, and r

(3)
k∗ =

(
Ch

(3)
1 , ..., Ch

(3)
t

)
.

We can get the probability Pr [∃j ∈ {1, ..., t}] :
{
Ch

(1)
i , Ch

(2)
i , Ch

(3)
i

}
= {1, 2, 3} =

1− (7/9)
t
and the

(
RSP

(1)
i , RSP

(2)
i , RSP

(3)
i

)
under the such index j. According

to the underlying interaction protocol used, using the knowledge extractor, we
can obtain that the vector (y, f ′, r′, e′), which satisfy the following.
1, y =

(
y0||y01 ||y11 ||...||y0l ||y1l

)
, ∥y∥∞ ≤ β and A · y = u mod q.

2, ∥f ′∥∞ ≤ β, V · (B · r) + f ′ = v mod q.
3, ∥e′∥ ≤ b, Pe′ +

(
0k1−l|| ⌊q/2⌋ d′

)
= c mod q.

We can observe that c is ciphertext of d′, and the open algorithm returns to d′,
which satisfies V erify (gpk,M∗, RL∗, Σ∗) = V alid and V erify (gpk,M∗, grt [j∗] , Σ∗) =
lnvalid. It then follows that grt [j∗] /∈ RL and j∗ /∈ Ua, therefore (y, d∗) is an
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effective forgery. By analyzing the forgery signature, we know that if A has
a non-negligible probability of returning valid forged signatures in polynomial
time, F also has this ability.
There is no effective algorithm F to solve the SIS∞

n,(l+1)m,q,2β problem with the

advantage of ε′ >
(
1− (7/9)

t
)
· 1/2N in T ′ = 32 ·QH/(ε− 3−t) + poly (n,N)

times, therefore our algorithm is traceable.

5.4 Efficiency analysis

We select the following four schemes for efficiency analysis compared with this
scheme. Ref [8] is the first group signature scheme with a local revocation func-
tion. This scheme is a static group signature scheme, which is implicit tracking.
Ref [10] uses zero-knowledge proof of the Ref[9] to prove that the size of the
public key and signature is small, and there is no revocation function dynami-
cally. The group signature scheme proposed in Ref [12] uses an explicit tracking
method, making the opening function simple, however, this scheme is a static sig-
nature scheme without a revocation function. Ref [18] uses lattice signature. The
signature is small and does not need a trapdoor, which improves the efficiency,
but has no revocation function.

Table 1. comparison of efficiency of different schemes.

scheme Public key size Signature size Revoke Dynamic

Ref [8] Õ
(
n2 · logN

)
Õ (n · logN) Yes No

Ref [10] Õ (mn log q) Õ (mn log q) No Yes

Ref [12] Õ (mn log N · log q) Õ (tm logN · log q) No No

Ref [18] Õ
(
n · (logN)2

)
Õ (n) No No

This scheme Õ (mn log q) Õ (n · logN) Yes Yes

6 Conclusion

The revocation mechanism is a crucial function in group signature. In this
scheme, we design a dynamic group signature with a revocation mechanism. The
size of the signature is the logarithm of the number of group members, which
realizes a balance between the size of the signature and the function of VLR.
Through the analysis of correctness and security, our scheme realizes almost all
anonymity and traceability and meets the requirements of group signature.
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natures with Logarithmic Signature Size,” Advances in Cryptology - ASIACRYPT
2013, vol. 8270, pp. 41–61, 2013

8. A. Langlois, S. Ling, K. Nguyen, and H. Wang, “Lattice-Based Group Signature
Scheme with Verifier-Local Revocation,” Public-Key Cryptography – PKC 2014,
vol. 8383, pp. 345–361, 2014

9. P. Q. Nguyen, J. Zhang, and Z. Zhang, “Simpler Efficient Group Signatures from
Lattices,” Public-Key Cryptography – PKC 2015, pp. 401–426., 2015

10. Z. C. Li, Y. L. Zhang, Y. X. Zhang and Y. T. Yang, “An Improved Dynamic Group
Signature Scheme Based on Lattice,” Wuhan Univ. (Nat. Sci. Ed. ), vol. 62, no.
02, pp. 135–140, 2016.

11. Q. Ye, N. N. Zhao and Z. Q. Zhao, et.al, “Efficient Fully Dynamic Group Signature
Scheme from Lattice,” Computer Engineering, vol. 47, no. 02, pp. 160-167+175,
2021.

12. S. Ling, K. Nguyen, and H. Wang, “Group Signatures from Lattices: Simpler,
Tighter, Shorter, Ring-Based,” Public-Key Cryptography – PKC 2015, vol. 9020,
pp. 427–449, 2015.

13. M. N. S. Perera, T. Nakamura, M. Hashimoto, H. Yokoyama, and K. Sakurai,
“Almost fully anonymous attribute-based group signatures with verifier-local revo-
cation and member registration from lattice assumptions,” Theoretical Computer
Science, vol. 891, pp. 131–148, Nov. 2021.



Dynamic Group Signature Scheme on Lattice with Verifier-local Revocation 15

14. S. Ling, K. Nguyen, A. Roux-Langlois, and H. Wang, “A lattice-based group sig-
nature scheme with verifier-local revocation,” Theoretical Computer Science, vol.
730, pp. 1–20, Jun. 2018.

15. M. N. S. Perera and T. Koshiba, “Combined interactive protocol for lattice-based
group signature schemes with verifier-local revocation,” lnt.J. Grid and Utility Com-
puting, Vol.11, No.5, pp. 662-673, 2020

16. M. Ajtai, “Generating Hard Instances of the Short Basis Problem,” Automata,
Languages and Programming, vol. 1644, pp. 1–9, 1999.

17. A. Fiat and A. Shamir, “How To Prove Yourself: Practical Solutions to Identifica-
tion and Signature Problems,” Advances in Cryptology — CRYPTO’ 86 , vol. 263,
pp. 186–194, 2006.

18. Q. Y, X. M. Yang, and P. K. Qin, “Novel Against Quantum Attacks Group Signa-
ture Scheme Based on NTRU Lattice,” Computer Engineering and Applications,
vol. 56, no. 02, pp. 89–96, 2020.


