
Bootstrapping for Approximate Homomorphic
Encryption with Negligible Failure-Probability

by Using Sparse-Secret Encapsulation

Jean-Philippe Bossuat13, Juan Ramón Troncoso-Pastoriza13, and Jean-Pierre
Hubaux12

1 Tune Insight SA, Switzerland
first@tuneinsight.com

2 École polytechnique fédérale de Lausanne (EPFL)
first.last@epfl.ch

3 Part of this work was carried out at EPFL

Abstract. Bootstrapping parameters for the approximate homomorphic-
encryption scheme of Cheon et al., CKKS (Asiacrypt 17), are usually
instantiated using sparse secrets to be efficient. However, using sparse
secrets constrains the range of practical parameters within a tight inter-
val, as they must support a large enough depth for the bootstrapping
circuit but also be secure with respect to the sparsity of their secret.
We present a bootstrapping procedure for the CKKS scheme that com-
bines both dense and sparse secrets. Our construction enables the use
of parameters for which the homomorphic capacity is based on a dense
secret, yet with a bootstrapping complexity that remains the one of a
sparse secret and with a large security margin. Moreover, this also en-
ables us to easily parameterize the bootstrapping circuit so that it has
a negligible failure probability that, to the best of our knowledge, has
never been achieved for the CKKS scheme. When using the parameters of
previous works, our bootstrapping procedures enables a faster procedure
with an increased precision and lower failure probability. For example
we are able to bootstrapp a plaintext of C32768 in 20.2 sec, with 32.11
bits of precision, 285 bits of modulus remaining, a failure probability of
2−138.7 and 128 bit security.

Keywords: Fully Homomorphic Encryption · Bootstrapping · Imple-
mentation

1 Introduction

1.1 The CKKS Scheme

The CKKS scheme by Cheon et al. [10] is a leveled ring learning with error
(R-LWE) [23] homomorphic-encryption scheme that enables approximate arith-
metic over vectors of complex numbers. Since its introduction, this scheme has
grown in popularity, as it is currently the most efficient scheme for perform-
ing encrypted floating-point arithmetic. Ciphertexts are pairs of polynomials

2 Bossuat et al.

of RQ = ZQ[X]/(XN + 1), with the main cryptographic parameters being the
polynomial-ring degree N and its modulus Q; and for a given security parameter
λ and fixed N , an upper bound on Q can be derived (a smaller Q leads to a
more secure instance).

A fresh CKKS ciphertext is of the form (c0, c1) = (−as+m+ e, a) ∈ R2
Q for

a a random polynomial, s and e low-norm secret polynomials and m a message
polynomial. The decryption is obtained by evaluating 〈(c0, c1), (1, s)〉 = m + e,
which is equivalent to an evaluation of the ciphertext polynomial at the point s.

Messages are vectors v ∈ Cn, for n a power of two smaller than N . Be-
fore being encrypted, messages are subjected to the transformation RQ ↔ Cn:
m = b∆τ(v)e, for τ a canonical embedding and ∆ a scaling factor. This encoding
preserves the group operations + and × such that additions and multiplications
inR translate to point-wise additions and multiplications in Cn. With this encod-
ing the CKKS scheme is notably able to homomorphically evaluate polynomials
over vectors of complex numbers.

A message ∆m is encrypted at the modulus Q (maximum level) and each
subsequent multiplication consumes a level and reduces the size of the modulus
Q. Indeed, when two ciphertext encrypting the messages ∆τ(v0) and ∆τ(v1) are
multiplied together, the resulting encrypted message is ∆2τ(v0)τ(v1). To avoid
an exponential growth of the scaling factor, the ciphertext is divided by ∆ after
each multiplication, reducing Q by that amount. This operation is called rescal-
ing. Hence, the upper bound on Q fixes the maximum homomorphic capacity
of fresh ciphertexts (the maximum circuit’s depth). Once a ciphertext reaches
its smallest possible modulus q and no further rescaling is possible, it can be
bootstrapped back to a larger modulus, thus enabling the evaluation of arbitrary
depth circuits.

1.2 Bootstrapping

The bootstrapping procedure for the CKKS scheme was first proposed by Cheon
et al. [8] and can be summarized in four steps: (i) ModRaise: raise the ciphertext,
currently at its smallest modulus q, back to its highest modulus Q. (ii) Coeff-
sToSlots: homomorphically evaluate the canonical embedding τ . (iii) EvalMod:
homomorphically evaluate a modular reduction approximated by the scaled sine
function q/(2π) · sin(2πx/q). (iv) SlotsToCoeffs: homomorphically evaluate τ−1.
The procedure outputs a ciphertext at modulus Q′ with Q > Q′ > q, the dif-
ference between Q′ and q being the residual homomorphic capacity after the
bootstrapping. Cheon et al. evaluate τ with a matrix (plaintext) × vector (en-
crypted) multiplication and compute the scaled sine function using the Taylor
series of eix followed by an extraction of the imaginary part to retrieve sin(x).

Extensive works have since improved the efficiency of the original procedure
of Cheon et al. The first improvement was proposed by Chen et al. [4]. In their
work they improved the efficiency of the homomorphic evaluation of τ by mul-
tiple order of magnitude by adopting an FFT-like approach instead of a single
matrix-vector multiplication. They also proposed a more efficient polynomial
approximation by directly approximating sin(x) with a Chebyshev interpolant.

Secure and Negligible Failure Bootstrapping 3

In a concurrent work Cheon et al. [6] proposed a similar technique to improve
the evaluation of τ .

These works were followed by researches aimed at improving the homomor-
phic modular reduction, which is the most difficult step of the bootstrapping
since the CKKS scheme does not support the evaluation of non-polynomial func-
tions. Han and Ki [13] proposed a polynomial interpolation that takes into ac-
count the distribution of the message and instead uses a scaled cosine to enable
the double angle formula, which allowed them to greatly reduce the degree of the
interpolant. Lee et al. [19] proposed a modified multi-interval Remez algorithm
to find the optimal minimax approximation of the scaled sine/cosine functions,
as well as using the inverse sine function to remove the error introduced by the
approximation of the ideal modular function by a trigonometric function. Lee
et al. [20] proposed a polynomial interpolation that minimises the variance of
the interpolant, thus reducing the error introduced by the homomorphic eval-
uation of the polynomial. Jutla and Manohar [15] proposed a novel variant of
the Lagrange interpolation, called modular Lagrange interpolation, that allows
them to directly approximate the modular reduction function, without having
to rely on trigonometric functions. They also proposed in [16] to use a sine series
to approximate the modular reduction and achieved a much higher precision
than the previous works. Lee et al. [21] proposed a polynomial approximation
method for the modular reduction based on the L2-norm minimization. Similarly
to Jutla and Manohar, their technique allows them to avoid using trigonometric
functions and directly approximate the modular reduction.

Bossuat et al.[3] proposed a more efficient algorithm to evaluate general linear
transformations and polynomial evaluation algorithm that preserves the cipher-
text scale and does not introduce rescaling errors, as well as several other smaller
improvements to the bootstrapping procedure. They show that when combined
together, these improvements lead to a bootstrapping procedure an order of
magnitude more efficient than the previous works. Additionally they proposed
the first practical instance of a bootstrapping with a dense secret as well as the
first open source implementation4 of the bootstrapping for the full-RNS variant
of the CKKS scheme [7]. Finally, Yu and Hayato [14] proposed a more efficient
way to evaluate the trace function.

Put together, these works improved the bootstrapping procedure to be or-
ders of magnitude more efficient and precise than the original proposal by Cheon
et al. However, the bootstrapping circuit has fundamentally remained the same
since its first introduction. One of its limitations is its high sensitivity to the
density h of the secret s: the larger h is (the more non-zero elements s has),
the more complicated the EvalMod step is and the more depth the bootstrap-
ping requires. The density h also has an impact on the bootstrapping failure
probability. Indeed, the magnitude of the plaintext coefficient on which the ho-
momorphic modular reduction must be applied is a function of h, and if a single
coefficient falls outside of the approximation interval (a ciphertext typically en-
crypts 214 to 216 values), the bootstrapping procedure fails and returns unusable

4 https://github.com/ldsec/lattigo

4 Bossuat et al.

values. Bossuat et al. [3] observed that commonly used bootstrapping parame-
ters have a high failure probability and it is only recently that works started to
quantify and address this failure probability.

For these reasons, bootstrapping procedures are instantiated with sparse se-
crets (with small h). But recent improvements on attacks targeting sparse secrets
[9, 24, 11] have reduced the upper bound on the modulus Q, consequently, pa-
rameters using sparse keys must regularly be updated. This situation has, for
the moment, lead the standardization initiatives to exclude sparse secrets from
the currently proposed standards [1]. Being able to mitigate this dependency
on sparse secrets would therefore be an important step for the adoption and
practicality of CKKS bootstrapping.

1.3 Our Contributions

In this work, we propose a sparse-secret encapsulation technique for the CKKS
bootstrapping; the technique takes advantage of the security margin provided by
having evaluation keys at a small modulus to improve the CKKS bootstrapping
security and efficiency. Our main contributions can be summarized as follows:

Minimized Security-Dependency on Sparse Secrets. The leveled property
of the CKKS scheme is tightly related to its security, as the security of an R-
LWE sample is notably based on the size of its modulus Q. For a fixed ring
degree N and a security parameter λ, an upper bound for Q is derived and the
public keys are generated using this Q. Although R-LWE samples at modulus
Q have security λ, previous works do not take into account that elements at a
lower level have a proportionally smaller modulus, hence a larger security.

We propose a modification to the bootstrapping circuit that enables the
generation of all evaluation keys using a secret that is independent from the
one on which the complexity of the EvalMod step is based. Instead of the usual
single secret instance, our bootstrapping instance uses an additional ephemeral
secret that determines the complexity of the bootstrapping procedure. As such,
the maximum modulus Q does not depend anymore on the sparse secret that
defines the complexity of the EvalMod and a denser secret can be used to generate
the evaluation keys.

This construction has a two-fold benefit: (i) It enables to more freely choose
bootstrapping parameters, such as ones with a denser secret and larger homo-
morphic capacity, as the security of all evaluation keys at the maximum modulus
is based on a different secret than the one defining the circuit complexity, there-
fore achieving a better security-performance trade-off. (ii) The dependency on
the sparse secret is minimized by limiting it to an evaluation key at the smallest
modulus; we will show that this evaluation key also has a large security margin
against attacks that target sparse (and dense) secrets.

Negligible Failure Probability. By having the EvalMod step rely on a epheme-
ral sparse secret of low h we are able to greatly reduce the complexity of this

Secure and Negligible Failure Bootstrapping 5

step, allowing for a higher precision and a much lower failure probability. In fact,
we can easily make this failure probability smaller than the security parameter
2−λ, which has never been achieved before to the best of our knowledge.

Empirical Experiments and Open Source Implementation. We evaluate
our contribution with empirical experiments and provide an open source imple-
mentation of this work.

The remaining of the article is organized as follow: In Section 2, we in-
troduce the used notation and recall the necessary background for the CKKS
scheme and its bootstrapping; In Section 3, we present our core contributions;
In Section 4, we give a security argument that our modification does not intro-
duce any new security assumption and examine the security of our construction
for concrete parameters; In Section 5, we empirically analyse the impact of our
contribution on the noise and bootstrapping precision. In Section 6, we evalu-
ate our contribution with empirical experiments and discuss the implications of
our modified bootstrapping procedure.

2 Background

In this section, we introduce the notation used in the remaining of this paper,
as well as the necessary technical background relating to our contribution.

2.1 Notation

For a fixed power of two N , let RQ = ZQ[X]/(XN + 1) be the cyclotomic poly-
nomial ring over the integers modulo Q with coefficients in [−bQ/2c, bQ/2c).
Define Y = XN/2n for some power of two n smaller than N (a polynomial in Y
is a polynomial in X with zero at coefficient degree that are not a multiple of
N/2n). We denote single elements (polynomials or numbers) in italics, e.g., a,
and vectors of such elements in bold, e.g., a. We denote a(i) the element at posi-
tion i of the vector a or the degree-i coefficient of the polynomial a. We denote
|| · || the infinity norm, [·]Q, b·c, b·e the reduction modulo Q, rounding to the pre-
vious and to the closest integer, respectively (coefficient-wise for polynomials),
and 〈·, ·〉 the dot product.

We define the following distributions over R: χQ with coefficients uniformly
distributed over ZQ. χh with coefficients uniformly distributed over {−1, 0, 1}
and exactly h non-zero coefficients. χσ with coefficients distributed according
to a discrete Gaussian distribution with standard deviation σ. Unless otherwise
specified, σ is assumed to be 3.19 (Homomorphic Encryption Standard [1]) and
truncated to [−b6σc, b6σc] . ← χ is the act of sampling a polynomial with
coefficients from the given distribution.

For a given s ← χh, the tuple {N,Q, h, σ} parameterizes the R-LWE dis-
tribution that is sampled as (−as + e, a) ∈ R2

Q with a ← χQ and e ← χσ. We

6 Bossuat et al.

say that a parameter set {N,Q, h, σ} with s is λ-secure if the advantage of an
adversary A to distinguish between the distribution (−as+ e, a) ∈ R2

Q and the

uniform distribution U(R2
Q) is bounded by 2−λ :

AdvA = |Pr[A(−as+e,a) = 1]− Pr[AU(R2
Q) = 1]| ≤ 2−λ.

2.2 Approximate Homomorphic Encryption (CKKS)

A CKKS plaintext is a polynomial m(Y) ∈ R[Y]/(Y 2n + 1) (with XN/2n = Y).
We define the following plaintext encoding:

– The coefficient encoding, for which the message m ∈ R2n, is directly encoded
on R[Y]/(Y 2n + 1) as m(Y) = b∆me.

– The slot encoding, for which the message m ∈ Cn is subjected to the canon-
ical embedding τ : Cn → Y 2n which preserves the coefficient-wise complex
arithmetic in R[Y]/(Y 2n + 1). The coefficient encoding is then applied to
encode the result on R[Y]/(Y 2n + 1).

A CKKS ciphertext ctsQ is an R-LWE sample (c0, c1) = (−as+m+e, a) ∈ R2
Q

for m a plaintext polynomial, and the decryption circuit is its evaluation at the
secret-key s: 〈(c0, c1), (1, s)〉 = m + e ∈ R. Message polynomials m(Y) do not
live in RQ but in R, as such their norm must at all time, including during
homomorphic computations, be smaller than Q to avoid a modular reduction.

A CKKS switching key swks→s
′

QP is a vector of R-LWE samples (−a(i)s′ +

w(i)Ps + e(i), a(i)) ∈ R2×β
QP for 1 ≤ i ≤ β, w = (w1, . . . , wβ) an integer basis

decomposition and P a secondary modulus such that P ≈
∑
w(i). Note that

the security of switching keys is based on the modulus QP . Using the public

algorithm KeySwitch, swks→s
′

QP can be used to homomorphically re-encrypt a ci-

phertext cts = (c0, c1) to a ciphertext cts
′

= (c′0, c
′
1) by computing (c′0, c

′
1) =

(c0, 0) + bP−1 · 〈w−1(c1), swks→s
′
〉e. The additional modulus P is used to con-

trol the magnitude of the error (which is 〈w−1(c1), e〉) added during the key-
switching. The public encryption key is a switching key swk0→sQP . In addition to
the access structure management that this procedure provides, it is a fundamen-
tal building block of the CKKS scheme as it is used to ensure the correctness
and compactness of the decryption circuit for several core homomorphic opera-
tions (e.g. ciphertext-ciphertext multiplication and homomorphic plaintext-slots
cyclic-rotations).

2.3 Bootstrapping

The bootstrapping procedure of the CKKS scheme [8] aims at raising the ci-
phertext to a higher modulus to enable further homomorphic evaluation. More
specifically, upon the input of a ciphertext ctsq such that 〈ctsq, (1, s)〉 = m(Y)+e,
for s a secret with h non-zero coefficients, the CKKS bootstrapping outputs a
ciphertext ctsQ′ that decrypts to m′(Y) = m(Y)+e′, where Q > Q′ > q for Q the

Secure and Negligible Failure Bootstrapping 7

maximum modulus for a given λ, Q′ the modulus after the bootstrapping and q
the modulus before the bootstrapping. It is important to note that ||e′|| ≥ ||e||.
This implies that, although this procedure is referred to as bootstrapping, it only
approximates an ideal bootstrapping procedure. The procedure consists of the
following four steps: ModRaise, CoeffsToSlots, EvalMod, and SlotsToCoeffs. We
now briefly explain them, omitting the error terms for clarity.

ModRaise: the ciphertext at modulus q is expressed in the modulus Q� q. This
yields a ciphertext that decrypts to [c0 + sc1]Q = q · I(X) + m(Y) = m′(Y),
where q · I(X) =

[
− [sc1]q + sc1

]
Q

is an integer polynomial and ||I(X)|| ≤ h.

Note that this step does not modify the coefficient of the ciphertext (thus has
no effect on the error), as it only represent them in a different RNS basis.

If 2n 6= N (sparse packing), then Y 6= X and I(X) is not a polynomial in Y .
In other words, we have multiples of q in the coefficients X that are not multiples
of N/2n. In this case, we can map q · I(X) +m(Y) to (N/2n) · (q · Ĩ(Y) +m(Y))
by evaluating a trace-like map [8] that makes coefficients of X whose degree is
not a multiple of N/2n vanish and multiplies the others by N/2n. This map can
be efficiently evaluated with log(N/2n) key-switching [8].

The remaining steps of the bootstrapping remove this unwanted q · Ĩ(Y) poly-
nomial by homomorphically evaluating a modular reduction by q on m′(Y).

CoeffsToSlots: the canonical embedding τ is homomorphically evaluated onm′(Y).
Indeed, m′(Y) can be seen as a fresh message in the coefficient domain. To en-
able the parallel (slot-wise) evaluation, it needs to be encoded in the slot domain.

EvalMod: a polynomial approximation of the modular reduction by q is homo-
morphically evaluated on m′(Y), thus removing the unwanted Ĩ(Y) polynomial.

SlotsToCoeffs: the inverse of the canonical embedding, τ−1, is evaluated on m′(Y)
and a close approximation of original message m(Y) minus the unwanted poly-
nomial is retrieved. After this last step the ciphertext has modulus Q′ > q and
we can evaluate further operations, until it reaches modulus q and a new boot-
strapping is needed.

3 Proposed Technique

Our contribution is based on two observations: (i) The complexity of the EvalMod
step is determined by the secret distribution of the ciphertext during the Mod-
Raise step (we further specify this dependancy in Section 3.1). (ii) The leveled
behavior of the CKKS scheme positively affects its security. In other words, ci-
phertexts entering the ModRaise procedure are at a low level, and a sparser secret
can be used for the same security.

We use theses observations to modify the ModRaise step of the bootstrapping
by encapsulating it between two KeySwitching procedures: the first one is to
switch the low-level ciphertext to a sparser secret s̃ before the ModRaise and

8 Bossuat et al.

second one, after the ModRaise, is to switch the high-level ciphertext back to a
dense secret s.

Here, we detail the original ModRaise procedure and the improvement we
bring to it.

3.1 Original ModRaise and Bootstrapping Failure Probability

The original ModRaise (see Section 2.3) takes a ciphertext ct = (c0, c1) ∈ R2
q that

decrypts to m(Y), a polynomial of 2n coefficients, and outputs a new ciphertext
ct′ = (c′0, c

′
1) ∈ R2

Q that decrypts to a new message of the form q · Ĩ(Y) +m(Y).

The norm of the polynomial Ĩ(Y) is upper-bounded by the Hamming weight h
of the secret, hence the EvalMod step has to evaluate a polynomial approximation
of the modular reduction in the interval [−h, h]. However, this upper bound h can
be quite large; since Ĩ(Y) follows an Irwin-Hall distribution [19], we have that
||Ĩ(Y)|| isO(

√
h) with high probability [8] and, in practice, a smaller probabilistic

bound K < h is used instead. Given that the ciphertext encrypts a message
m(Y) with Y = XN/2n under a secret s ← χh before the ModRaise, the exact
probability f(K,h, n) = Pr[||Ĩ(Y)|| > K] can be computed by adapting the
cumulative probability function of the Irwin-Hall distribution [3]:

1−

 2

(h+ 1)!

bK+0.5(h+1)c∑
i=0

(−1)i
(
h+ 1

i

)
(K + 0.5(h+ 1)− i)h+1

− 1

2n

.

(1)
We refer to f(K,h, n) as the bootstrapping failure probability. For example, if

we upper bound the failure probability to f(K,h, n) ≤ 2−15 for a fixed n = 215

slots and variable h, then limh→∞K ≈ 1.81
√
h [3].

Therefore, the density h of the secret has a two-fold effect on the practicality
of the bootstrapping. On one hand, the sparser the secret, the smaller the range of
parameters that can securely and efficiently evaluate the bootstrapping circuit,
as a smaller h implies a smaller upper-bound on the modulus Q for a fixed
ring degree N and a security parameter λ. On the other hand, the denser the
secret, the more levels are required for the EvalMod step. Indeed, this step is to
homomorphically evaluate a modular reduction on the interval [−K,K] that, as
shown, is proportional to

√
h.

3.2 ModRaise with Sparse-Secret Encapsulation

For a given security parameters λ, we propose to instantiate the base scheme,
as well as its bootstrapping circuit, with a secret s of density h such that the
R-LWE samples, of the keys, under s and at modulus QP are at least λ-secure
and to encapsulate the ModRaise step between two KeySwitch such that the
ciphertext is only temporarily switched to a sparser secret s̃ with density h̃ < h
during the ModRaise, with R-LWE samples under s̃ and at modulus qp � QP
being at least λ-secure. Consequently, the unwanted polynomial q · Ĩ(Y) depends

Secure and Negligible Failure Bootstrapping 9

on the distribution of s̃, but the bootstrapping circuit remains evaluated under
s.

To do this instatiation, we generate two sets of parameters {N,QP, h, σ} and
{N, qp, h̃, σ}, with qp� QP and h̃ < h, which are both at least λ-secure; and we
sample a secret s ← χh, as well as a secret s̃ ← χh̃. Let swks→s̃qp be a switching
key at modulus qp, which can be used to publicly re-encrypt a ciphertext from
the secret s to the secret s̃. And let swks̃→sQP be a switching key at modulus QP ,
which can be used to publicly re-encrypt a ciphertext from s̃ to s.

Given a ciphertext ctsq at modulus q encrypted under s, our proposed al-

gorithm first key-switches ctsq from s to s̃ using swks→s̃qp . Then, it applies the
regular ModRaise algorithm that expresses its coefficients in a larger modulus.
The ciphertext is now expressed in the modulus Q, but with coefficients whose
norm remains unchanged and bounded by bq/2c. Finally, the algorithm key-
switches it back to the key s by using swks̃→sQP . We detail our modified ModRaise
in Algorithm 1.

Algorithm 1: Encapsulated ModRaise

Input: ctsq, swks→s̃
qp , swks̃→s

QP

Output: ctsQ
1 cts̃q ← KeySwitch(ctsq, swks→s̃

qp)

2 cts̃Q ← ModRaise(cts̃q, Q)

3 ctsQ ← KeySwitch(cts̃Q, swks̃→s
QP)

4 return ctsQ

Remark 1. Algorithm 1 is implementation-agnostic therefore compatible with
both the original [10] and the full-RNS variants of the CKKS scheme proposed
by Cheon et al. [7]. If the implementation of the KeySwitch begins with a modulus
basis extension (for example, from Q to QP), Algorithm 1 can be optimized by
merging the ModRaise step in the second KeySwitch (now from q to QP), such
that it essentially becomes two consecutive key-switches.

3.3 Impact on the Evaluation-Key Generation

Our modification to the bootstrapping slightly changes how evaluation keys are
generated, as we now need to generate two sets of evaluation keys instead of one:

1. A set parameterized by {N,QP, h, σ} that uses a key s and comprises the en-
cryption key, all the necessary evaluation keys for the linear transformations
and homomorphic modular reduction, as well as the switching key swks̃→sQP .

2. A set parameterized by {N, qp, h̃, σ}, with qp � QP and h̃ < h, and that
uses uses a secret s̃ and comprises the switching key swks→s̃qp .

10 Bossuat et al.

Although we increase the number of evaluation keys by two, this is only
marginal with respect to the total number of switching keys needed for the
bootstrapping, as it is largely dominated by the number rotations keys needed
for the linear transformations, which is in the order of a hundred for n = 215

slots.

Our construction allows to use a dense secret for s and to instantiate all the
evaluation keys at a larger modulus, which will inevitably increases their size.
We however stress that the increase in size of the key material is an normal
behavior of the scheme as it is directly related to the homomorphic capacity of
a parameter set.

In Section 4, we show that the modification to the ModRaise algorithm and
the addition of the switching keys swks̃→sQP and swks→s̃qp do not introduce new
security assumptions and that our construction is secure.

4 Security Analysis

In this section, we provide a security argument for Algorithm 1 (Section 3.2) that
shows our modification does not change nor introduces new security assumptions
to the CKKS scheme or its original bootstrapping. We then discuss the benefit
on the security of using a small ephemeral secret during the bootstrapping and
estimate security of such ephemeral secrets for concrete parameters.

Note that, regardless of our proposition, users should always be aware of the
security implications of using the CKKS scheme [22] as well as sparse secrets,
and that they should carefully choose how it is parameterized.

4.1 Modified ModRaise Security

We consider an adversary A who has access to the public transcript of Algorithm
1:

– ctsq, an R-LWE sample (−as+m+e, a) ∈ R2
q with m a message, and security

parameterized by the tuple {N, q, h, σ}.

– swks→s̃qp , a switching-key composed of a set of R-LWE samples (−a(i)s̃ +

w(i)ps + e(i), a(i)) ∈ R2×β
qp with a(i) ← Rqp, s̃ ← χh̃, e(i) ← χσ and

w = (w1, . . . , wβ) a decomposition basis. The security of this set of R-LWE
samples is parameterized by the tuple {N, qp, h̃, σ}.

– swks̃→sQP , a switching-key composed of a set of R-LWE samples (−a(i)s +

w(i)P s̃ + e(i), a(i)) ∈ R2×β
QP with a(i) ← RQP , s ← χh, e(i) ← χσ and

w = (w1, . . . , wβ) a decomposition basis. The security of this set of R-LWE
samples is parameterized by the tuple {N,QP, h, σ}.

Secure and Negligible Failure Bootstrapping 11

and wins if it can distinguish (ctsq, swks→s̃qp , swks̃→sQP) from the uniform distribution

U(R2
q , R

2×β
qp , R2×β

QP) with an advantage greater than 2−λ. Therefore, to ensure
that

AdvA = |Pr[A(ctsq,swk
s→s̃
qp ,swks̃→sQP) = 1]− Pr[A(R2

q,R
2×β
qp ,R2×β

QP) = 1]| ≤ 2−λ,

it suffices to select the parameter sets {N, qp, h̃, σ} and {N,QP, h, σ} to be at
least λ-secure ({N, q, h, σ} is naturally at least λ-secure if {N,QP, h, σ} is itself
λ-secure since q � QP). Regarding their joint distribution, the security argu-
ment holds under the assumption of circular security, which is presupposed to
be able to generate evaluation keys. For a parameterization example, we take
two sets of parameters from the work of Cheon et al. [5]: {215, 2881, 214, 3.2} and
{215, 2431, 26, 3.2}; both are λ = 128-bit secure. Note that, in practice, the sec-
ond set of parameters {N, qp, h̃, σ} has a much smaller qp (e.g. 120 bits) than the
431 bits used in this example, because it is instantiated at the smallest possible
modulus. Hence, this parameter set is actually more secure than the one that
uses the dense key (see Table 1).

Table 1. Parameters’ security for the low-level switching key. The modulus of the
switching key is composed of q and an additional modulus p used during the key-

switching. W denotes log(keyspace size), i.e., log
((

N
h̃

)
· 2h̃

)
. * (the asterix) indicates

that the estimator failed to provide a result and instead the security was extrapolated.

logN log qp h̃ W Primal[2] Dual[2] Dec[2] Hybrid-Primal[5] Hybrid-Dual[5]

16 60+61
64 792 368.0 340.4 376.0 260.4 317.8
32 427 222.7 192.5 226.6 168.5* 283.8

15 55+56
64 728 309.2 415.0 315.6 217.7 227.8
32 395 187.9 191.5 319.0 140.9 162.2

4.2 Minimizing the use of Sparse Secret and Higher Security

Previous works on the CKKS bootstrapping assumed predefined single sparse-
secret parameters and were focused on improving its efficiency [8, 4, 6, 13, 14,
19, 20, 16, 15, 21, 5]. The use of a sparse secrets was deemed necessary to make
the bootstrapping sufficiently practical. Although Bossuat et al. [3] showed that
using a single dense secret can also be practical, this comes at the cost of a
reduced efficiency and precision (they need to evaluate a polynomial of several
hundred coefficients).

Our work changes this paradigm by, instead, proposing a higher-level change
that directly removes this constraint. Although simple, our sparse-secret encap-
sulation brings a significant improvement to the security and practicality of the
CKKS bootstrapping. It enables the user to instantiate the bootstrapping eval-
uation keys with a dense secret, which brings more freedom in making choices

12 Bossuat et al.

about the parameters and isolates the security assumption related to the sparse-
secret to a single low-level (small modulus) key. Being at a low level, this key
benefits from a large security margin against the most recent attacks [9, 24] and
will be, in practice, more secure than the evaluation keys generated with the
dense secret. This result is an important step towards a more practical and se-
cure CKKS boostrapping. Table 1 provides parameterization examples and their
security for the low-level switching key that uses a sparse secret.

5 Empirical Noise Analysis

In this section we will quantify the impact of our modification on the noise of the
bootstrapping procedure. Our modification impacts the noise in two dimensions:
it slightly modifies the circuit by adding additional key-switching operations and
it allows the use of denser keys.

The initial noise of the CKKS scheme is well understood and numerous works
have proposed noise analysis [10, 8, 20, 17]. These works, however, keep their
analysis to single operations because when operations are composed the estima-
tion of the noise (either as a bound or an average case) becomes less and less
meaningful since the initial exact noise is unknown.

For this reason, noise analysis, especially for complicated circuits such as the
bootstrapping, remain heuristic and with loose bounds. This is especially true
when other factors than the initial noise have to be taken into account such as
polynomial approximations or plaintext distribution. As such, noise analysis for
circuits are in practice conducted with experiments.

In this section we empirically demonstrate with experiments the following
propositions:

Proposition 1. The modification to the ModRaise step only adds a small addi-
tive noise which has a negligible impact on the bootstrapping precision.

Proposition 2. Then noise terms which are a function of the density h of the
secret quickly dominate the additive noise of the bootstrapping circuit.

5.1 Proposition 1

Our modification to the ModRaise step adds two key-switching operations, one
before and one after. The noise introduced by the key-switching is additive and
can be made close to the error added by a decryption if correctly parameter-
ized [13, 20, 17].

The ModRaise step is followed by the CoeffsToSlots step, which homomor-
phically evaluates the encoding algorithm. This step is carried out by evaluating
a linear transformation [8] on the ciphertext vector and for n slots requires
O(
√
n) plaintext multiplications and O(

√
r logr(n)) rotations [12] (which are

key-switching operations), for a radix r ≤ n.
Hence the two additional key-switching happening during the ModRaise step

should only have a small, up to negligible, impact on the overall additive boot-
strapping error. We verify Proposition 1 with the following empirical experiment:

Secure and Negligible Failure Bootstrapping 13

we compare the error of the reference circuit of Bossuat et al. [3] and the same
circuit where only the ModRaise step differs. We use the exact same parameters
as the one used by Bossuat et al. for all parameter sets, as well as the same secret
key density. For our modified circuit, the ModRaise step switches the secret to a
different one of the same density h.

Table 2 reports the results of the experiment and we observe that there
is no significant difference between the noise of the original bootstrapping of
Bossuat et al. and our modified circuit. The largest differences are coming from
the sets IV and V but remain small (0.09 to 0.25 bits of difference). Both can
be attributed to parameters that lead to a bootstrapping instance that is more
sensitive to the distribution of the initial noise (larger secret density) and/or
the additive noise (smaller plaintext scale). In fact one could reduce or even
avoid this small discrepancy by re-ordering operations during the bootstrapping
process. Indeed, the implementation of Bossuat et al. first applies the ModRaise
step and then scales the ciphertext to the bootstrapping scale (the scale used
during the bootstrapping is not necessarily the same as the default one). They do
it in this order to avoid a potential plaintext overflow (a modular reduction by q
on the plaintext). However if q is large enough it is possible to partially or fully
apply this scaling before the ModRaise step, and as such the additive error of the
key-switching of our modified ModRaise could be further mitigated. However the
goal of this experiment was to evaluate the impact of our modification without
modifying the parameters or other parts of the bootstrapping circuit other than
the ModRaise step.

5.2 Proposition 2

The error of individual homomorphic operations of the CKKS scheme has been
studied and is well understood [10, 8, 20, 17]. Notably, the error of a decrypted
and decoded message in the CKKS scheme is a function of

√
h, h being the num-

ber of non zero elements of the secret key. Although the error related to the secret
distribution can be controlled and minimized for most operations with a careful
parameterization and scale management (such as addition, plaintext multiplica-
tion or key-switching), ciphertext multiplication amplifies the error at a much
greater rate because their error terms are compounded. This is specifically the
case for polynomial evaluation, which involves ciphertext exponentiation when
computing the power basis.

We empirically verify this statement with the following experiment: we com-
pare the precision of the bootstrapping circuit and its different individual parts
for an increasing main secret density h. For the full bootstrapping circuit we
use our modified ModRaise step with an ephemeral secret with h̃ = 32 (λ ≈ 168
for N = 216 and log(qp) = 121, see Table 1 in Section 4). The results of this
experiment are in Figure 1.

We observe that for operations involving a controlled noise augmentation
(CoeffsToSlots and SlotsToCoeffs can be summarized as sums of plaintext mul-
tiplications and key-switching operations) the initial encryption noise (which
includes the encoding error of both the plaintext vector and plaintext matrices)

14 Bossuat et al.

Table 2. Impact of the modified ModRaise on the bootstrapping precision, by com-
parison between the results of Bossuat et al. [3] and the same bootstrapping circuit
but with the modified ModRaise. Our work uses identical parameters to the ones of
Bossuat et al. for all sets and our modified ModRaise switches the secret to a different
secret of same density h. N is the ring degree, logQP the modulus of the switching
keys, h the density of the secret, n the number of plaintext slots, K the probabilistic
upper bound of ||Ĩ(Y)||, dsin(x) the degree of the scaled cosine interpolant (Han and
Ki’s method [13]), r the number of double angle evaluation, darcsin(x) the degree of the
arcsine interpolant (Taylor series) and log ε−1 the negative log of the error, which is
interpreted as the plaintext precision.

Set [3] logN logQP h logn K dsin(x) r darcsin(x)
log ε−1

[3] Ours

I 16 1546 192
15

25 63 2 0
25.70 25.71

14 26.00 26.07

II 16 1547 192
15

25 63 2 7
31.50 31.51

14 31.60 31.68

III 16 1553 192
15

25 63 2 0
19.10 19.09

14 18.90 18.92

IV 16 1792 32768
15

325 255 4 0
16.80 16.65

14 17.30 17.21

V 15 768 192
14

25 63 2 0
15.50 15.15

13 15.40 15.29

is much larger than the noise added by the homomorphic operations and the
decryption process. This results in a constant precision, until the noise terms re-
lated to h become dominants, which happens at around h = 28 for CoeffsToSlots
and h = 214 for SlotsToCoeffs. At this point, the line starts to follow the

√
h

relationship (doubling h induces a loss of precision of 0.5 bits).

As expected the EvalMod step, which is an operation involving ciphertext
exponentiation, has a noise growth that quickly overcomes the initial noise with a
steady

√
h relationship that already starts at h = 24. We observed that increasing

the degree of the interpolant actually reduced the precision instead of increasing
it. Meaning that the expected gain in precision from the additional higher degree
terms of the interpolant was actually overcome by the error resulting from higher
exponentiation to compute the additional terms of the power basis.

The precision of the full circuit follows the one of the EvalMod step with a
stable offset of about 4 bits, confirming that the EvalMod step is the bottleneck
of the bootstrapping circuit precision. This is not surprising since the EvalMod
step is the only non-linear part of the bootstrapping circuit. This offset is the
result of the composition of the different part of the bootstrapping circuit and
compounding of their errors.

In practice the loss of precision caused by a higher secret density can be
compensated by increasing the initial scale ∆ if needed. However when using the
full-RNS variant of the CKKS scheme [7] one cannot simply arbitrarily increase
this scale since the primes used have a size that is limited by machine words,

Secure and Negligible Failure Bootstrapping 15

20 22 24 26 28 210 212 214 216

28

30

32

34

36

38

40

42

h

lo
g
ε−

1

Full Circuit EvalMod CoeffsToSlots SlotsToCoeffs

Fig. 1. Precision of the full bootstrapping circuit and its different individual parts for a
secret s with variable h. The full circuit uses our modified ModRaise with an ephemeral
secret s̃ with h̃ = 32. The parameters are logN = 216 and logn = 215, an initial scale
of 252 and 60 bit moduli (the maximum allowed size) are used for all operations. The
EvalMod parameters are dsin(x) = 28, r = 3 and darcsin(x) = 7. log ε−1 is the negative
log of the error, which is interpreted as the precision.

which are usually of 64 bits. In practice the maximum size of the primes is even
smaller, typically of 61 bits, to enable more efficient implementations. A solution
is to use multiple words per prime or multiple primes per level, but both will
induce an overhead.

5.3 Conclusion

In this section we empirically showed that: (i) our modification to the ModRaise
step has a negligible impact on the bootstrapping precision and that (ii) the
noise term related to the density h of the secret quickly dominates all other terms
when ciphertext multiplication is involved. Our experiments allow to conclude
that our construction by itself only has a negligible impact the bootstrapping
precision and that an increased noise, when using a main secret with a higher
density h comes from the inherent noise of the scheme and not our modification
of the ModRaise step. These results are further confirmed with the experiments
of Section 6.

6 Evaluation

In this section we evaluate the performance of our proposed modification against
the recent work of Bossuat et al. [3], which is currently the state of art in term
of bootstrapping throughput (number of plaintext bits bootstrapped per second).

16 Bossuat et al.

We will show that, when using the same parameters, our construction enables a
more efficient and precise bootstrapping with a much lower failure probability.

We implemented our work using the Lattigo library [18] and the code of
Bossuat et al., which is open source. All benchmarks were conducted on the
same hardware as the one used by Bossuat et al. (Windows 10, i5-6600K CPU
@ 3.50GHz, 32 GB of RAM, single threaded), ensuring meaningful comparisons.
Our code is open source5 and contains all the parameters sets used for the
experiments of this section.

All parameter sets, for all experiments, have a security λ ≈ 128.

6.1 Better Precision, Reduced Failure Probability and Smaller
Interpolant

The EvalMod step of the bootstrapping procedure evaluates a polynomial ap-
proximation of the modular reduction. The bootstrapping failure probability is
given by the function f(K,h, n) (see Equation 1 in Section 3.1), with [−K,K]
the range of the approximation, h the density of the secret at the moment of
the ModUp step and n the number of plaintext slots. Indeed, if a coefficient falls
outside of the bound K, the polynomial approximation fails and therefore the
bootstrapping procedure as well. Hence, the precision of the polynomial approx-
imation evaluated during the EvalMod is a trade off between the degree of the
approximation, which has an impact on the number of levels consumed during
this step, and the range of the approximation, which, for a given approximation
degree, determines both the precision and failure probability of the EvalMod step.
So, for a fixed h, n and approximation degree, the greater K is, the smaller the
failure probability, but the smaller the precision. Therefore if h can be reduced,
K can be reduced and the precision increased (up to the inherent precision of
the interpolant).

Table 3 compares the precision and failure probability of the bootstrapping
from the original work of Bossuat et al. [3] with ours. Complementary informa-
tion about the used interpolant can be found in Table 4.

We observe that, for all sets, the bootstrapping precision is either similar or
improved, showing that we are able to achieve a failure probability that is many
orders of magnitude smaller without compromising the security or precision. The
largest improvement is for Set IV, which is not surprising since Bossuat et al.
had to use a very large interpolant for their EvalMod step.

The configuration of Bossuat et al. lead to a failure probability of 2−31.6 per
plaintext slot (2−15.6 for n = 215 slots). Our failure probability per slot is now
2−50.1 (2−34.11 for n = 215 slots) for K = 12 and 2−154.7 (2−138.7 for n = 215

slots) for K = 16, which is smaller than the security parameter. Note that
when using Han and Ki’s interpolation method, the interpolant has a minimum
degree of dsin(x) = 2(K−1), hence K = 16 is the maximum value to get a depth
log(d+ 1) ≤ 5 interpolant.

5 https://github.com/ldsec/lattigo/tree/btp_eprint

Secure and Negligible Failure Bootstrapping 17

Table 3. Bootstrapping precision and failure probability when reducing the complexity
of the EvalMod step. The original results of of Bossuat et al. [3] are given for reference
and we use the same cryptographic parameters sets for all experiments (which are
identical to the ones of Table 2). n is the number of plaintext slots, h the density of the
main secret, h̃ the density of the ephemeral secret, K the range for the approximation
of the scaled sine function, f(K,h, n) the failure probability function and log ε−1 the
negative log of the error, which is interpreted as the plaintext precision. Details about
the interpolant used for each set can be found in complementary Table 4. The security
of the ephemeral secret is, for h̃ = 32, λ ≈ 168 for the Sets I to IV and λ ≈ 141 for Set
V (see Table 1 in Section 4).

Set [3] logn h
Bossuat et al. [3] This work This work

K f(K,h, n) log ε−1 h̃ K f(K, h̃, n) log ε−1 h̃ K f(K, h̃, n) log ε−1

I
15

192 25
-15.58 25.70

32 12
-34.11 27.32

32 16
-138.70 26.63

14 -16.58 26.00 -35.11 27.39 -139.70 26.89

II
15

192 25
-15.58 31.50

32 12
-34.11 32.36

32 16
-138.70 32.11

14 -16.58 31.60 -35.11 32.17 -139.70 32.04

III
15

192 25
-15.58 19.10

32 12
-34.11 19.14

32 16
-138.70 19.13

14 -16.58 18.95 -35.11 18.92 -139.70 18.90

IV
15

32768 325
-14.90 16.80

32 12
-34.11 23.80

32 16
-138.70 23.12

14 -15.90 17.30 -35.11 24.29 -139.70 23.62

V
14

192 25
-16.58 15.50

32 12
-34.11 15.48

32 16
-139.70 15.45

13 -17.58 15.40 -35.11 15.66 -140.70 15.55

Making abstraction of the Set IV, Bossuat et al. used K = 25, dsin(x) = 63
(the degree of the scaled sine interpolant) and r = 2 (the number of double angle
evaluation), for a total depth of 6 + 2 = 8. By reducing K to 12 and 16, we were
originally able to reduce the interpolant degree to dsin(x) ≈ 40 for an equivalent
bootstrapping precision. In this configuration in turns out that dsin(x) is now
small enough to be able to increase r to 3 and further reduce dsin(x) to a value
equal or smaller to 31. This allows to keep the same depth and precision, but
with a more efficient polynomial evaluation since each double angle evaluation
only needs one multiplication.

In conclusion, Table 3 shows that, when using the parameters of Bossuat
et al., but with our modified ModRaise step and a small ephemeral secret, the
bootstrapping precision and failure probability can be noticeably improved.

6.2 Higher Bootstrapping Throughput

The bootstrapping utility is a metric that allows to evaluate the performance
of a bootstrapping circuit. It is a concept that was first introduced by Chen
et al. [4] as n × Levels/Time, for n the number of plaintext slots, Levels the
number of levels available after the bootstrapping and Time the bootstrapping
complexity represented in CPU time (single threaded). It was then expanded to
the bootstrapping throughput by Bossuat et al. [3], which measures the number of
plaintext bits bootstrapped per second as n× log ε−1 × logQ′/Time, for log ε−1

18 Bossuat et al.

Table 4. Complementary table detailing the interpolants used for the EvalMod step
of the experiments of Table 3. K is the range of the interpolation, dsin(x) the degree
of the scaled cosine interpolant (Han and Ki’s method [13]), r the number of double
angle evaluation and darcsin(x) the degree of the arcsine interpolant (Taylor series).

Set [3]
Bossuat et al. [3] This work This work

K dsin(x) r darcsin(x) K dsin(x) r darcsin(x) K dsin(x) r darcsin(x)
I 25 63 2 0 12 22 3 0 16 28 3 0

II 25 63 2 7 12 24 3 7 16 28 3 7

III 25 63 2 0 12 22 3 0 16 28 3 0

IV 325 255 4 0 12 22 3 0 16 40 2 0

V 25 63 2 0 12 22 3 0 16 30 3 0

the bootstrapping precision and logQ′ the number of modulus bits available after
the bootstrapping. Bossuat et al. use logQ′ instead of the number of remain-
ing levels because this value is more representative of the actual homomorphic
capacity that is left. Indeed optimizing a homomorphic circuit often leads to a
dynamic scale, in which case the notion of level does not make sens anymore
(e.g. one can artificially increase or decrease the number of levels available by
changing the ciphertext scale).

Table 5 reports the bootstrapping throughput of the experiments of Table 3
(along with complementary Table 4). It compares the results of Bossuat et al.
with ours and shows that our modification allows for better timings, even though
two additional key-switching operations are added to the ModUp step.

Table 5. Comparison of the bootstrapping throughput [3] with log(bits/s) = log(n ×
logQ′ × log ε−1/Time), for n the number of plaintext slots, Q′ the residual modulus
after the bootstrapping, log ε−1 the bootstrapping precision and Time the CPU cost
in seconds. We reproduced the experiments of Bossuat et al. and log(Q′) of Set II and
Time of Set V had a typo and are therefor different from the published work.

Set [3] logn
Bossuat et al. [3] This work Ratio

log ε−1 logQ′ Time log bits/s log ε−1 logQ′ Time log bits/s bits/s

I
15 25.7 420 23.0 23.87 26.63 420 19.9 24.13 1.19×
14 26.0 420 16.9 23.33 26.89 420 14.9 23.56 1.17×

II
15 31.5 285 23.4 23.59 32.11 285 20.2 23.82 1.17×
14 31.6 285 16.0 23.13 32.04 285 14.5 23.30 1.12×

III
15 19.1 505 18.1 24.06 19.13 505 15.9 24.24 1.13×
14 18.9 505 13.1 23.50 18.90 505 11.9 23.64 1.10×

IV
15 16.8 410 39.2 22.70 23.12 420 19.9 23.93 2.34×
14 17.3 410 24.9 22.15 23.62 420 14.9 23.37 2.33×

V
14 15.5 110 7.5 21.82 15.45 110 5.9 22.17 1.27×
13 15.4 110 6.0 21.14 15.55 110 4.5 21.57 1.34×

Secure and Negligible Failure Bootstrapping 19

We observe that all parameter sets of our work have a larger bootstrapping
throughput, with the set IV having a throughput that is 2.34× the one of Bossuat
et al. This shows that our proposed change to the ModUp steps allows to get
a better bootstrapping throughput in addition to a negligible failure probability
(note that this failure probability is not taken into account in the bootstrapping
throughput).

6.3 Dense Key Bootstrapping

In the previous sections we evaluated the performance of our modified boot-
strapping against the results of Bossuat et al., for which the parameters use a
sparse secret as the main secret. In this section we evaluate the performances of
our modified bootstrapping with parameters that use a dense secret as the main
secret.

By increase the density of the main secret from 192 to N/2 we are able to
increase logQP to ≈ 1790 for N = 216 and ≈ 881 for N = 215, thus increasing
the remaining homomorphic capacity (logQ′) after the bootstrapping, and still
retain a security of λ ≈ 128 bits.

Table 6. Bootstrapping throughput [3] of various parameter sets with a logQP based
on a dense secret as the main secret, with log(bits/s) = log(n× logQ′× log ε−1/Time),
for n the number of plaintext slots, Q′ the residual modulus after the bootstrapping,
log ε−1 the bootstrapping precision and Time the CPU cost in seconds.

logN logQP (h, h̃) logn log ε−1 logQ′ Time log bits/s

16 1401 + 366 (N/2, 32) 15 23.0 580 25.1 24.05
16 1483 + 305 (N/2, 32) 15 29.8 465 26.3 24.04
16 1488 + 305 (N/2, 32) 15 17.8 745 21.5 24.26

15 762 + 112 (N/2, 32) 14 17.3 166 7.9 22.50

Table 6 reports the result of this experiment and shows that despite the
expected and unavoidable loss of precision of 0.5 · log((N/2)/192) ≈ 3.7 for
N = 216 and ≈ 3.2 for N = 215 due to a secret of a higher density (see Section 5),
we are still able to obtain a similar if not greater bootstrapping throughput than
when using a sparse secret as the main secret. Timings are slightly larger than
the ones reported in Table 5 because all operations are happening at a higher
modulus, thus are more costly. The parameter set for N = 215 shows a significant
larger bootstrapping throughput compared to Set V of both Bossuat et al. and
our work (1.6× and 1.25× respectively). The reason is that this parameter set
could only accommodate for a small homomorphic capacity when using a sparse
secret, and the bootstrapping precision had to be deliberately tuned down to end
up with meaningful remaining homomorphic capacity after the bootstrapping.
Being able to increase the homomorphic capacity allowed to both increase the
remaining homomorphic capacity and to allocate slightly more modulus to the
bootstrapping circuit, this increasing its precision.

20 Bossuat et al.

Although the bootstrapping throughput reported in Table 6 are only slightly
larger than the one of Table 5 (with the exception of the parameter set using
N = 215 for which it is significantly larger), the parameters use in Table 6 would
likely not need to be updated would attacks on sparse secret be improved because
these would not apply to the main secret since it is dense and the low-level sparse
secret benefits from a large security margin.

7 Conclusion

In this work, we have presented a sparse-secret encapsulation technique for the
bootstrapping of the CKKS scheme. We have shown that by temporarily switch-
ing during the ModRaise step the low-level ciphertext to a sparser secret, we can
optimize the efficiency-security trade-off of the bootstrapping circuit, by break-
ing the dependency between the sparse-secret security and the largest modulus.
This enables all high-level evaluation keys to use a denser secret, thus to provide
a greater initial homomorphic capacity and more resilience to attacks targeting
sparse secrets, while still enjoying a low-complexity bootstrapping. Moreover our
technique also enables the parameterization of the EvalMod step in an interval
that is large enough to make its failure probability arbitrarily small, which was,
to the best of our knowledge, never achieved before.

When using the parameters of previous works our experiments show that the
proposed modification allows for a 128-bit secure bootstrapping with negligible
failure probability that also benefits from a greater remaining homomorphic ca-
pacity, greater precision and smaller complexity. Moreover, when using a dense
secret our bootstrapping circuit has greater bootstrapping throughput than pre-
vious state of the art that uses a sparse secret, especially for small parameters.

We believe that these improvements are a major step forward for the security,
stability, efficiency and reliability of the bootstrapping of the CKKS scheme,
which is a necessary building block to enable practical high-depth arithmetic
circuit evaluation under encryption.

8 Acknowledgments

We would like to thank Christian Mouchet for his valuable feedback. This work
was supported in part by the grant #2017-201 of the ETH Domain PHRT Strate-
gic Focal Area.

References

[1] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser,
Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter,
Satya Lokam, Daniele Micciancio, Dustin Moody, Travis Morrison, Amit
Sahai, and Vinod Vaikuntanathan. Homomorphic Encryption Security Stan-
dard. Tech. rep. Toronto, Canada: HomomorphicEncryption.org, Nov. 2018.

Secure and Negligible Failure Bootstrapping 21

[2] Martin R. Albrecht, Rachel Player, and Sam Scott. “On the concrete hard-
ness of Learning with Errors”. In: Journal of Mathematical Cryptology 9
(3 2015), pp. 169–203.

[3] Jean-Philippe Bossuat, Christian Mouchet, Juan Troncoso-Pastoriza, and
Jean-Pierre Hubaux. “Efficient Bootstrapping for Approximate Homomor-
phic Encryption with Non-sparse Keys”. In: Advances in Cryptology – EU-
ROCRYPT 2021. Ed. by Anne Canteaut and François-Xavier Standaert.
Cham: Springer International Publishing, 2021, pp. 587–617. isbn: 978-3-
030-77870-5.

[4] Hao Chen, Ilaria Chillotti, and Yongsoo Song. “Improved bootstrapping for
approximate homomorphic encryption”. In: Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques. Springer.
2019, pp. 34–54.

[5] J. Cheon, Yongha Son, and Donggeon Yhee. “Practical FHE parameters
against lattice attacks”. In: IACR Cryptol. ePrint Arch. 2021 (2021), p. 39.

[6] Jung Hee Cheon, Kyoohyung Han, and Minki Hhan. “Faster Homomorphic
Discrete Fourier Transforms and Improved FHE Bootstrapping”. In: IACR
Cryptol. ePrint Arch. 2018 (2018), p. 1073.

[7] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yong-
soo Song. “A full RNS variant of approximate homomorphic encryption”.
In: International Conference on Selected Areas in Cryptography. Springer.
2018, pp. 347–368.

[8] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yong-
soo Song. “Bootstrapping for approximate homomorphic encryption”. In:
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques. Springer. 2018, pp. 360–384.

[9] Jung Hee Cheon, Minki Hhan, Seungwan Hong, and Yongha Son. “A hy-
brid of dual and meet-in-the-middle attack on sparse and ternary secret
LWE”. In: IEEE Access 7 (2019), pp. 89497–89506.

[10] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. “Homomor-
phic encryption for arithmetic of approximate numbers”. In: International
Conference on the Theory and Application of Cryptology and Information
Security. Springer. 2017, pp. 409–437.

[11] Thomas Espitau, Antoine Joux, and Natalia Kharchenko. “On a Dual/Hybrid
Approach to Small Secret LWE”. In: Progress in Cryptology – INDOCRYPT
2020. Ed. by Karthikeyan Bhargavan, Elisabeth Oswald, and Manoj Prab-
hakaran. Cham: Springer International Publishing, 2020, pp. 440–462. isbn:
978-3-030-65277-7.

[12] Kyoohyung Han, Minki Hhan, and Jung Hee Cheon. “Improved Homo-
morphic Discrete Fourier Transforms and FHE Bootstrapping”. In: IEEE
Access 7 (2019), pp. 57361–57370. doi: 10.1109/ACCESS.2019.2913850.

[13] Kyoohyung Han and Dohyeong Ki. “Better bootstrapping for approximate
homomorphic encryption”. In: Cryptographers’ Track at the RSA Confer-
ence. Springer. 2020, pp. 364–390.

22 Bossuat et al.

[14] Yu Ishimaki and Hayato Yamana. “Faster Homomorphic Trace-Type Func-
tion Evaluation”. In: IEEE Access 9 (2021), pp. 53061–53077. doi: 10.
1109/ACCESS.2021.3071264.

[15] Charanjit S. Jutla and Nathan Manohar. Modular Lagrange Interpolation
of the Mod Function for Bootstrapping of Approximate HE. Cryptology
ePrint Archive, Report 2020/1355. https://eprint.iacr.org/2020/
1355. 2021.

[16] Charanjit S. Jutla and Nathan Manohar. Sine Series Approximation of the
Mod Function for Bootstrapping of Approximate HE. Cryptology ePrint
Archive, Report 2021/572. https://eprint.iacr.org/2021/572. 2021.

[17] Andrey Kim, Antonis Papadimitriou, and Yuriy Polyakov. Approximate
Homomorphic Encryption with Reduced Approximation Error. Cryptology
ePrint Archive, Report 2020/1118. https://ia.cr/2020/1118. 2020.

[18] Lattigo 2.4.0. Online: https://github.com/ldsec/lattigo. EPFL-LDS.
Jan. 2022.

[19] Joon-Woo Lee, Eunsang Lee, Yongwoo Lee, Young-Sik Kim, and Jong-
Seon No. High-Precision Bootstrapping of RNS-CKKS Homomorphic En-
cryption Using Optimal Minimax Polynomial Approximation and Inverse
Sine Function. Cryptology ePrint Archive, Report 2020/552. https://
eprint.iacr.org/2020/552. 2020. Accepted to Eurocrypt 2021.

[20] Yongwoo Lee, Joon-Woo Lee, Young-Sik Kim, HyungChul Kang, and Jong-
Seon No. High-Precision and Low-Complexity Approximate Homomorphic
Encryption by Error Variance Minimization. Cryptology ePrint Archive,
Report 2020/1549. https://eprint.iacr.org/2020/1549. 2020.

[21] Yongwoo Lee, Joon-Woo Lee, Young-Sik Kim, and Jong-Seon No. “Near-
Optimal Polynomial for Modulus Reduction Using L2-Norm for Approxi-
mate Homomorphic Encryption”. In: IEEE Access 8 (2020), pp. 144321–
144330. doi: 10.1109/ACCESS.2020.3014369.

[22] Baiyu Li and Daniele Micciancio. “On the Security of Homomorphic En-
cryption on Approximate Numbers”. In: Springer-Verlag, 2021.

[23] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On Ideal Lattices
and Learning with Errors over Rings”. In: Advances in Cryptology – EU-
ROCRYPT 2010. Ed. by Henri Gilbert. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 1–23. isbn: 978-3-642-13190-5.

[24] Yongha Son and Jung Hee Cheon. “Revisiting the Hybrid attack on sparse
and ternary secret LWE”. In: IACR Cryptol. ePrint Arch. 2019 (2019),
p. 1019.

