
Speeding Dumbo: Pushing Asynchronous BFT
Closer to Practice

Bingyong Guo∗§, Yuan Lu∗§, Zhenliang Lu†§, Qiang Tang†§, Jing Xu∗§ and Zhenfeng Zhang∗§
∗Institute of Software, Chinese Academy of Sciences
†School of Computer Science, The University of Sydney

{bingyong2017,luyuan}@iscas.ac.cn, zhlu9620@uni.sydney.edu.au, qiang.tang@sydney.edu.au,{xujing,zhenfeng}@iscas.ac.cn

Abstract—Asynchronous BFT consensus can implement ro-
bust mission-critical decentralized services in the unstable or even
adversarial wide-area network without relying on any form of
timing assumption. Starting from the work of HoneyBadgerBFT
(CCS 2016), several studies tried to push asynchronous BFT
towards practice. In particular, in a recent work of Dumbo
(CCS 2020), they redesigned the protocol backbone and used one
multi-valued validated Byzantine agreement (MVBA) to replace
n concurrent asynchronous binary agreement (ABA) protocols
and dramatically improved the performance.

Despite those efforts, asynchronous BFT protocols remain to
be slow, and in particular, the latency is still quite large. There
are two reasons contributing to the inferior performance: (1) the
reliable broadcast (RBC) protocols still incur substantial costs;
(2) the MVBA protocols are quite complicated and heavy, and
all existing constructions need dozens of rounds and take the
majority of the overall latency.

We first present a new construction of asynchronous BFT
that replaces RBC instance with a cheaper broadcast component.
It not only reduces the O(n3) message complexity incurred by
n RBCs to O(n2), but also saves up to 67% communications
(in the presence of a fair network scheduler). Moreover, our
technical core is a new MVBA protocol, Speeding MVBA, which
is concretely more efficient than all existing MVBAs. It requires
only 6 rounds in the best case and expected 12 rounds in the worst
case (by contrast, several dozens of rounds in the MVBA from
Cachin et al. [12] and the recent Dumbo-MVBA [32], and around
20 rounds in the MVBA from Abraham et al. [4]). Our new
technique of the construction might be of independent interests.

We implemented Speeding Dumbo and did extensive tests
among up to 150 EC2 t2.medium instances evenly allocated in 15
AWS regions across the globe. The experimental results show that
Speeding Dumbo reduces the latency to about a half of Dumbo’s,
and also doubles the throughput of Dumbo, through all system
scales from 4 nodes to 150 nodes. We also did tests to benchmark
individual components such as the broadcasts and the MVBA
protocols, which may be of interests for future improvements.

I. INTRODUCTION

Following the explosive popularity of blockchain and de-
centralized applications [11, 35], an unprecedented demand is
recently raised to deploy public ledger services for mission-
critical applications over the global Internet among mutually
distrustful participants [15]. As such, Byzantine fault-tolerant
(BFT) protocols, e.g., BFT atomic broadcast, are gathering

§Authors are listed alphabetically, Yuan & Zhenliang led the effort.

renewed attentions, since they are the core techniques for
implementing the decentralized infrastructures.

In need of asynchronous BFT. Conventional BFT protocols
were mainly considered for the benign in-house scenarios
where the nodes are geographically close and well connected
by stable communication links. In particular, many classic
BFT protocols [17] rely on various timing assumptions (e.g.,
synchrony assumption that all messages will be delivered
within a known time bound ∆ or the weaker variant called
partial synchrony). Unfortunately, those network assumption
may not always hold in the wide-area network environment,
which has a dynamic or even adversarial nature, because of
fluctuating bandwidth, unreliable links, substantial delays, and
network attacks. It was actually shown in [33] that PBFT (and
many leader based protocols) cannot make any progress in
an asynchronous network where the adversary can schedule
messages as it likes. This challenges the applicability of those
conventional BFT protocols in the open Internet.

Moreover, in practice, to ensure the synchrony assumptions
to hold with a larger probability, one has to choose a conserva-
tive time parameter ∆ which is usually larger than the actual
network delay. This tactic brings performance degradation to
the (partially) synchronous protocols. For example, Bitcoin
assumes exaggerated parameter to survive in the adversarial
environment [36], resulting in extremely slow block genera-
tion (on average 10 minutes); in many partially synchronous
protocols such as PBFT and HotStuff [45], a malicious leader
could always withhold their outgoing messages up to ∆, thus
violating the desirable responsiveness property that the perfor-
mance should only depend on the actual network delay. Some
recent results [3, 37, 43] considered to make synchronous
protocols to attain fast confirmation in optimistic cases (i.e.,
optimistic responsiveness), but remains to suffer from slower
confirmation in the general cases with failures or corruptions.

In contrast, the fully asynchronous BFT protocols [4, 12,
21, 26, 32, 33] do not suffer from the aforementioned liveness
issue and responsiveness problem, as they do not rely on
any timing assumptions. Also, when actually building the
fault-tolerate systems, asynchronous protocols do not require
engineers to manually tune the time-out mechanism, which is
often frustrating and error-prone.

In search of practical asynchronous BFT protocols. Unfor-
tunately, essentially none of the asynchronous protocols have
been widely deployed due to efficiency concerns. The seminal
FLP “impossibility” [22] states that, no deterministic BFT

protocols exist in asynchronous networks. Since the 1980s,
many attempts [1, 6, 7, 10, 13, 16, 18, 34, 38–40] aimed to
design randomized asynchronous protocols to circumvent the
“impossibility”. However, most of those studies focused on
theoretical feasibility, and unsurprisingly, have prohibitively
high costs. Renewed attentions have emerged recently due
to the need of deploying consensus to support decentralized
applications in the open Internet. People started to wonder
whether asynchronous consensus can ever be practical. We take
a brief tour to dissect the cutting-edge practical asynchronous
BFT protocols.

Increasing throughput via batching. One of the most notable
recent efforts is HoneyBadgerBFT [33], in which the authors
optimized certain classical protocols, and the implementation
demonstrated promising performance (particularly through-
put). It is noted that asynchronous atomic broadcast protocols
built from a carefully optimized asynchronous common subset
(ACS) protocol could reduce asymptotic communication com-
plexity (especially when increasing the batch size), making it
more efficient than the best previous protocol [12] that directly
applied a trivial reduction from ACS to asynchronous multi-
valued validated Byzantine agreement (MVBA) protocol.1
Here, an ACS protocol is a variant of Byzantine agreement
outputting a subset containing n− f input values (where n is
the # of nodes and f is the # of faulty nodes allowed), while
an MVBA protocol is another variant of Byzantine agreement
outputting one input that could come from a malicious node
but satisfy some certain public predicate.

The ACS protocol in HoneyBadgerBFT was constructed
and adapted from the classic protocol of Ben-Or et al. [8].
As shown in Fig. 1, it begins with n parallel reliable broad-
casts (RBCs), each of which lets a node broadcast its input
value to the whole network. Then, all nodes participate in n
(asynchronous) binary agreement (ABA) protocol instances to
determine whether they output each individual’s input value,
namely, pick up at least n − f completed broadcasts as the
final ACS output.

Reliable Broadcast

Reliable Broadcast

Reliable Broadcast

Reliable Broadcast

Agreement Module:
pick n-f completed

broadcasts as output

HoneyBadger: n ABAs
 ⟹ slow log(n)

Dumbo: single MVBA
 ⟹ faster const

Asynchronous Common Subset (ACS)

Fig. 1: The very high-level execution flow of the core ACS protocol in
HoneyBadgerBFT and Dumbo.

Striving for a constant running time. Though showing promis-
ing performance at a small scale, it was noted in a very recent
work [26] that HoneyBadgerBFT does not smoothly scale to
support even a moderate size of nodes. The major bottleneck
observed is that when a large number of randomized ABA
protocols are executed concurrently, it is almost certain there

1Cachin et al. [12] essentially constructed an ACS in a simple manner as
follows: all nodes sign and multicast their input values, so they can solicit
n−f value-signature pairs from different nodes to invoke an MVBA instance
that is with an external validity condition and can return n− f values signed
by distinct nodes as the output set of ACS.

is a very slow instance, the running time of which will depend
on n. Indeed, as shown via experiments [26], the second phase
of running n ABA protocols takes a dominating portion of the
whole execution time in HoneyBadgerBFT, cf. Fig. 2.

77.8%

22.2%

MVBA-CKPS01

RBCs

Dumbo ACS Latency (N=100)
~12 seconds

99.6%0.447%

ABAs

RBCs

HBBFT ACS Latency (N=100)
~559 seconds

Fig. 2: Latency breakdown of HoneyBadgerBFT (HBBFT) and Dumbo (with
nearly zero payload) among 100 WAN nodes distributed in 15 AWS regions
across five continents. Different from the experiments in HBBFT[33], all tests
in this paper include the cost for verifying threshold signatures.

The authors in [26] presented two new ACS protocols
called Dumbo1 and Dumbo2 that can substantially reduce the
of needed ABA instances to k and O(1), respectively, where
k is a small security parameter. In particular, in their Dumbo2
protocol, instead of using n ABAs, they used a single MVBA,
which only invokes 2 or 3 ABA instances on average [12] to
decide the final ACS output.

More importantly, Dumbo2 (called Dumbo later for
brevity) reclaimed the glory of MVBA as the core component
for practical ACS, and it overcame the expensive communica-
tion of using MVBA directly to agree on transactions. To min-
imize MVBA’s communication blow-up, RBCs are augmented
with a succinct proof to broadcast transaction batches, and thus
a proper predicate can be defined to let MVBA be invoked only
on the small RBC proofs instead of large transaction batches
(in analogy to the conventional wisdom of hybrid encryption).
Basically, the proofs can facilitate a predicate that once a subset
of inputs are output by one honest node, every other honest
node will eventually receive them from RBCs to output.

Indeed, the RBC-then-MVBA paradigm proposed in
Dumbo [26] brings about both asymptotic complexity reduc-
tion of running time and an order-of-magnitude improvement
on practical performance, cf. Fig. 2 and [26] for details.

Remaining efficiency obstacles. Despite those recent pro-
gresses, existing asynchronous BFT protocols are still unsat-
isfying, especially regarding their high latency. As shown in
previous experiments [26], when running among 100 global
AWS t2.medium nodes (without failures), HoneyBadgerBFT
incurs a basic latency 2 as large as several minutes on average.
For this reason, it was suggested to deploy asynchronous
atomic broadcast only in the settings that favor throughput over
latency [33]. Though Dumbo is much faster, it still incurs a
high basic latency about a dozen seconds. In contrast, the state-
of-the-art (partially) synchronous protocols (e.g., HotStuff) can
attain a latency even smaller than 1 second in the same benign
setting. This naturally posts the following question:

Can we push the asynchronous consensus further, to have
even larger throughput and much smaller latency, thus it can

be deployed in broader real-world settings?

2The basic latency of ACS is defined as the execution time when the payload
size is about zero. The metric depicts the baseline of how fast the protocol
can be, and the situation may be even worse when payload size gets larger.

2

We first examine the remaining efficiency obstacles:

(1) Costs of RBCs cannot be ignored. The improvements
of Dumbo over HoneyBadgerBFT focus on the “agreement”
phase: since in HoneyBadgerBFT, the costs of RBCs only took
an ignorable portion in the overall basic latency. But in Dumbo,
now the agreement part got simplified, the cost of concurrently
executing n RBCs becomes clearly visible, cf. Fig. 2. The
message complexity of each RBC instance is quadratic, and
therefore n RBCs would incur a cubic message complexity,
which is clearly not optimal, and may lag the protocol.

(2) MVBA is cumbersome. Though Dumbo demonstrated
that when an MVBA is invoked with small-sized inputs, it is
much faster than n parallel ABAs, it remains to be a very heavy
and slow building block (for its power to trivially imply a full-
fledged atomic broadcast [12]). Indeed, from the experimental
data shown in Fig. 2, it is clear to see that MVBA still takes
the majority of the latency of Dumbo ACS. We remark that
this challenge cannot be easily resolved by simply replacing
CKPS01-MVBA 3 [12] used in Dumbo with recent MVBA
constructions, e.g., VABA [4] or Dumbo-MVBA [32]. Those
works focus on theoretical improvements on the asymptotic
complexities, and both protocols are still complicated that
involve multiple dozens of rounds. Since all those MVBA
protocols are already with expected constant running time,
it becomes a clear challenge to open up the big O in the
asymptotic complexity to design a concretely more efficient
MVBA protocol with fewer rounds to further extend the
applicability of asynchronous BFT.

A. Our contributions

We answer the above efficiency question affirmatively,
and present a much faster asynchronous atomic broadcast
called Speeding Dumbo (or sDumbo for short). Following
the remaining efficiency obstacles identified to overcome, we
proceed as follows:

Reducing message complexity asymptotically. As we briefly
elaborated above, the n concurrent invocations of RBC pro-
tocols already incur a substantial portion of the cost in ACS.
Since RBC ensures a strong agreement that if any node outputs
a value, all other honest nodes will output the same value, each
RBC instance now incurs an O(n2) message complexity. It
follows immediately that both HoneyBadgerBFT and Dumbo
at least have an O(n3) message complexity.

We first reduce this cubic message complexity of ACS
by a factor of n by using a weaker (thus cheaper) broadcast
primitive, i.e., the provable broadcast (PB) recently defined by
Abraham et al. [4] instead of RBC. A PB protocol is just a
normal multi-cast with a succinct proof (realizable simply via
a threshold signature), showing which could guarantee that
sufficient honest nodes have received the value.

Previously, we can simply augment each RBC to attain
a proof attesting that at least one honest node has received
some value, so that we can be sure of that every other honest
node will receive the same value. Now PB does not have
this strong agreement property. Therefore, we add a recovery
phase at the end of the sDumbo protocol, thus enabling a

3Remark that [12] gave two MVBA constructions. We let CKPS01 refer to
the MVBA with expected constant number of rounds throughout the paper.

node to fetch whatever PB output that shall be outputted
but was not yet received. The potential communication blow-
up during the recovery phase is carefully handled using the
technique from verifiable information dispersal [14]. As a
result, for sufficiently large inputs, our new ACS framework
also attains a concrete communication saving. If there is a fair
network scheduler (benign cases) that never reorders messages,
it can save up to 67% concrete communications relative to
HoneyBadgerBFT and Dumbo.

Speeding MVBA: a compact MVBA protocol. At the core
of Speeding Dumbo, it is a novel MVBA protocol (called
Speeding MVBA or sMVBA) that is concretely more efficient
(as few rounds as possible) than all existing MVBAs. 4

The challenges of MVBA and current designs. An MVBA is a
multi-valued Byzantine agreement protocol, whose construc-
tions are usually quite complicated. They either use ABA as
a blackbox to be repeated, e.g., the CKPS01-MVBA [12],
or expanding each component in ABA construction, e.g., the
AMS19-MVBA (sometimes also called VABA) [4]. The latter
currently yields the minimum concrete number of rounds. Let
us briefly overview how it works. See also Fig. 3.

…

𝑚!

𝑚"

𝑚#

𝑚$

𝑃𝐵!

𝑃𝐵"

𝑃𝐵#

𝑃𝐵$

… …

𝑃𝐵!

𝑃𝐵"

𝑃𝐵#

𝑃𝐵$

…

𝑃𝐵!

𝑃𝐵"

𝑃𝐵#

𝑃𝐵$

…

𝑃𝐵"

𝑃𝐵#

𝑃𝐵$

𝑃! 𝑃!

𝑃"𝑃"

𝑃#𝑃#

𝑃$ 𝑃$

… …

𝑃!

𝑃"

𝑃#

𝑃$

𝑃𝐵!

…

elect
Leader nomination Leader election View change

Fig. 3: The structure of AMS19 MVBA [4].

To maintain O(n2) message/communication complexity
(and thus linear complexity per node), it adopted a three-
step “key-lock-commit” broadcast mechanism, which can be
realized via 4 consecutive executions of provable broadcast
(PB) protocols. To ensure expected constant running time, one
extra “completeness” proof is generated from the last PB, so
once the honest nodes receive enough completeness proofs to
enter the “leader-election”, it is asserted that sufficient number
of “key-lock-commit” broadcasts have been completed.

Since each PB already has at least 2 rounds, plus several
preparing rounds before leader-election and one round of view
change, the AMS19-MVBA protocol already incurs more than
a dozen rounds even in the optimistic case where there is
no adversary and no repetition of views. In the adversarial
case, the protocol would have about 20 expected rounds (and
CKPS01-MVBA has even more). See Table I.

Intuitively, the commit proof alone (more precisely, any of
the three has the same potential) can ensure at least f+1 honest
nodes to terminate with the same output in the 2/3 good cases
(where the leader election luckily chooses a node completes the
4-staged PB broadcast). While, the other two proofs handle the
“dirty” work in the other 1/3 unlucky situations. For safety, the
lock proof is needed to ensure that if any honest node commits

4There were no experimental results in the original paper of those MVBA
protocols. As a byproduct, we provided the first experimental comparisons of
all those MVBA protocols, which may of independent interests for further
practical optimizations.

3

TABLE I: Expected asynchronous rounds of MVBA protocols (approximated)

Protocol
CKPS01[12] AMS19[4] LLTW20[32] sMVBA

Adv case † 54 19.5 47 12

Best case ‡ 12 13 18 6

†The “Adv Case” means the worst expected asynchronous rounds in the
standard asynchronous model, i.e., with up to 1/3 corrupted nodes and
adversarial network to arbitrarily schedule messages. ‡The “Best Case” means
that all nodes are honest, there is a fair network scheduler that never reorders
messages, and all nodes start to run the protocol simultaneously.

a value in a view, all honest nodes would “lock” themselves
after view-change, so all 4-staged PBs in later views must
carry the same value to convince them to participate; For
liveness, once some honest node “locks” itself after some
view, all honest nodes must have valid keys as part of their
4-staged PBs’ input in all later views, which can “unlock”
this locked node to participate, thus ensuring the protocol to
always proceed despite some probably “locked” nodes.

A new compact protocol with fewer broadcasts. The elegant
AMS19-MVBA protocol uses a quite natural (and seemingly
tight) structure, so further compressing it requires us to break
the box. We first reduce the PB instances to 2 and generates
only two proofs called lock and finish. This immediately causes
safety and liveness issues. It is possible that in one execution,
one honest node A considers a selected node P`’s broadcast
has been finished and thus output the corresponding input value
v`; while at the same time, the proofs have not reached another
honest node B, and thus it will invoke view-change and start
another view. Now we still have to ensure that node B would
eventually output v`, either carrying the related proofs to enter
the next view, or obtaining it from other honest nodes.

To get around the challenge, we first add one round of vote
step after leader election to facilitate the collection of sufficient
lock proofs: even if one does not output in the current iteration,
everyone has to bring the same value to next iteration. But now
we lack the key proof as in the AMS19-MVBA, which could
be used to “unlock” a locked message in the bad cases, we also
add another pre-vote round before entering vote to determine
whether to firmly “lock” the value. The added pre-vote step
ensures that when a (potentially malicious) node wants to stop
the selected value from being locked, it has to demonstrate a
proof that a sufficient number of honest nodes acknowledgment
that they have not received the lock proof corresponding to
the selected value (and thus no honest node has output yet).
This is realized by carefully embedding threshold signatures
so that each node could indeed aggregate a proof on a same
message without requiring one extra round or blowing out
the communication. Moreover, this simpler structure allows
us to further batch messages during the preparation before the
“leader-election” phase.

Another simple but effective observation is that we could
have a “short-cut” for the honest nodes to output right after
the leader election, such that if they see the finish proof
corresponding to the elected leader, they can immediately
output the elected leader’s input value. This further reduces
the number of rounds in good cases.5 See Fig. 5 in Sec. V.

5The “short-cut” could further save rounds in practice, because it allows
the nodes to output immediately after leader election without the need of
completing the remaining pre-vote and vote rounds.

The resulting sMVBA protocol requires only 6 rounds
in the best case (compared to a dozen or more in the
existing MVBAs), and 12 rounds in the fully adversarial
case (compared to multiple dozens of rounds in the existing
MVBA protocols), see Table I. The efficiency improvements
not only reduce the communication rounds, but also save the
computation cost on generating and verifying the proofs.

Implementation and extensive real-world evaluations. We
implemented our protocols, and conducted extensive experi-
ments among up to 150 Amazon EC2 t2.medium instances
throughout 15 AWS regions across 5 continents.

(1) We evaluate the performance improvements brought
by replacing RBCs with cheaper broadcasts alone. Due to
the asymptotic improvement of message complexity, the basic
latency (at nearly zero-payload) is significantly reduced by up
to about 10% when the number of nodes is between 82 and
150. Also, the peak throughput is nearly doubled at all system
scales from 4 nodes to 150 nodes, reflecting the saving of
concrete communications.

(2) we compare sMVBA with the existing MVBAs regard-
ing their latency in the WAN setting. Throughout all system
scales, sMVBA can reduce at least 50% of the running time.

(3) we extensively test sDumbo, i.e., our new ACS frame-
work instantiated by sMVBA, and compare it with the state-
of-the-art asynchronous protocol Dumbo and the cutting-
edge partially synchronous protocol HotStuff. At all system
scales up to 150 nodes, our sDumbo protocol attains a peak
throughput 2X-2.5X as much as Dumbo’s. The latency is
brought down significantly: for moderately large scale (e.g.,
100 nodes), the latency is reduced to a few seconds from a
dozens; for small scale (e.g., 16 nodes or less), the latency
of sDumbo becomes at the same magnitude of HotStuff’s,
while Dumbo has a huge gap to HotStuff. In general, sDumbo
demonstrates multi-fold improvements, and attains broader
applicability with a better latency-throughput trade-off.

B. Other related work

To make asynchronous BFT protocols faster, there exist a
few works [30, 41] including some very recent ones [25, 31]
that consider adding an optimistic “fastlane” to the slow
asynchronous atomic broadcast. The fastlane could simply be
a fast leader-based deterministic protocol. This line of work
is certainly interesting, however in the adversarial settings,
the “fastlane” never succeeds, and the overall performance
would be even worse than running the asymptotic atomic
broadcast itself (since there is an extra asynchronous “fallback”
mechanism). This paper, on the contrary, aims to directly
improve asynchronous BFT atomic broadcast, and can be
used together with these optimistic techniques to provide a
better underlying pessimistic path. In addition, BEAT [21]
cherry-picked concrete implementations for each component
in HoneyBadgerBFT to demonstrate better performance in
different settings. Very recently, Aleph [24] and DAG-rider
[28] proposed to use direct acyclic graph for consensus besides
sequential ACS, which provides a theoretical alternative for
implementing asynchronous atomic broadcast besides sequen-
tially executing ACS. There are also interesting works on
asynchronous distributed key generation [2, 19, 29], which
could be helpful to remove the private setup phase in all recent
asynchronous BFT protocols.

4

II. MODELS AND PROBLEM STATEMENT

We first describe the models and formal definitions.

A. System and threat models

Established identities and trusted setup. There are n des-
ignated nodes, each of which has a unique identity Pi ∈
{Pi}i∈[n], where [n] denotes the integers {1, 2, . . . , n}. We
assume that all involved threshold cryptosystems such as
threshold signatures are properly set up, such that all partic-
ipating nodes can get and only get their own secret keys in
addition to all relevant public keys. Remark that the setup of
threshold cryptosystems can be done through distrusted key
generation (DKG) protocols [2, 19, 27, 29] or a trusted dealer.

Adversary model. We assume that there are up to f Byzantine
fault nodes (3f + 1 ≤ n), and consider these faulty nodes are
fully controlled by a probabilistic polynomial-time bounded
adversary [12, 33], i.e., the adversary can get all faulty
nodes’ internal states and also can let these nodes arbitrarily
misbehave during the protocol execution, and the adversary
can perform some probabilistic computing steps bounded by
polynomials in the number of message bits generated by
honest nodes. In addition, we might consider static corruptions,
namely, the adversary chooses up to f nodes to corrupt before
the execution.6

Asynchronous network. We consider asynchronous message-
passing network made of fully meshed authenticated point-to-
point (p2p) channels. In this network, the message delivery
over the channels are fully determined by the adversary,
namely, the adversary can arbitrarily delay and reorder mes-
sages and fully determines when the receiver can get the
message. Nevertheless, the messages sent between honest
nodes will eventually be delivered to the destinations without
tampering, i.e., adversary cannot drop or modify this message
among honest nodes.

B. Design goals

Asynchronous atomic broadcast. Our goal is to design an
efficient atomic broadcast protocol among n nodes against f
static corruptions in an asynchronous network. In an atomic
broadcast protocol, each node has an implicit input transaction
buffer (a.k.a. backlog) and outputs a sequence of transactions.
Formally, the atomic broadcast satisfies the following proper-
ties with all but negligible probability:

• Agreement. If one honest node outputs a value v, then
every honest node outputs v;

• Total-order. If any two honest nodes output sequences
of value 〈v0, v1, . . . , vj〉 and 〈v′0, v′1, . . . , v′j′〉, respec-
tively, then vi = v′i for i ≤ min(j, j′);

6Our implementations choose statically secure instantiations for efficiencies.
We remark that static corruption is exactly the same adversarial model
considered in the recent practical asynchronous BFT protocols including
HoneyBadgerBFT [33] and Dumbo [26]. Moreover, our protocols can be
adaptively secure if using adaptively secure threshold cryptosystems as com-
ponents. Our techniques of simplifying protocol structure are critical under
both static and adaptive corruptions, and once we have cheaper adaptive secure
threshold cryptosystems, we can easily plug them in the concrete instantiations.

• Liveness. If a value v is input to n− f honest nodes,
then it is output by some honest node reasonably fast,
e.g., in at most polynomial # of asynchronous rounds.

Asynchronous common subset (ACS). The main building
block of atomic broadcast is asynchronous common subset
(ACS), see Appendix A and [33] for the details of the conver-
sion from ACS and threshold encryption to atomic broadcast.
In an ACS protocol, each node has a (different) input, and
their goal is to let each node output a common subset covering
n−f nodes’ inputs [33]. More formally, ACS has the following
properties with all but negligible probability:

• Agreement. If an honest node outputs a set V ,then
every honest node outputs V ;

• Validity. If an honest node outputs a set V , then |V | ≥
n − f and V contains the inputs of at least n − 2f
honest nodes;

• Termination. If n−f honest nodes have an input, then
all honest nodes can produce an output.

Complexity measures. In this paper, we mainly consider the
following three metrics during the protocol:

• Message complexity [12]: the expected total number
of messages that generated by honest nodes;

• Communication complexity [12]: the expected total
number of bits exchanged among honest nodes;

• Round complexity (running time) [16]: the expected
(asynchronous) rounds of communication before the
protocol terminates.

Besides, we always consider n = 3f + 1 throughout the
paper, namely, our BFT protocol is optimally resilient against
n/3 Byzantine corruptions [23], and its scale size n is only
parameterized by the number of nodes that may be corrupted.

III. NOTATIONS AND PRELIMINARIES

Notations. Through the paper, we let |m| be the bit-length of
protocols’ input, λ be the cryptographic security parameter that
captures the size of (threshold) signature and the length of hash
value. H denotes a collision-resistant hash function. We also
consider established threshold signature consisting of a tuple of
algorithms (SignSharet,VerifySharet,Combinet,VerifyThldt),
where the subscript t in notations represents threshold, cf.
Appendix C for the syntax and securities of the primitive. A
protocol message has a syntax of (MsgType, ID, · · ·), where
MsgType defines the message type and ID is the session
identifier representing a specific protocol instance. Moreover,
Π[ID] represents an instance of some protocol Π with a session
identifier ID, and y ← Π[ID](x) means to invoke Π[ID]
on input x and wait for its output y. Sometimes, Π[ID](x)
itself also denotes the protocol output for brevity. Also, 〈x, y〉
denotes a string concatenating two strings x and y.

Multi-valued validated Byzantine agreement (MVBA) [4,
12] is a variant of Byzantine agreement with external validity,
such that the participating nodes can agree on a value satisfying
a global and polynomial-time computable predicate Q known
by all of them (which can be concretely specified due to
the application scenarios). Syntax-wise, each node in the

5

protocol would take a (probably different) value validated by
the predicate Q as input and can decide a common value
satisfying Q as the output.

The protocol (with an explicit predicate Q) shall satisfy the
following properties except with negligible probability:

• Termination. If all honest nodes are activated on an
identifier ID with taking as input some values satis-
fying Q, then each honest node would output a value
for ID;

• External-Validity. If an honest node outputs a value v
for some ID, then v is valid for Q, i.e., Q(v) = 1;

• Agreement. All honest nodes would decide the same
value as output for the same ID.

Leader election (Election) is a protocol among n nodes
that can output an unpredictable index representing a node
in the system. It satisfies the following properties with an
overwhelming probability:

• Termination: If all honest nodes activate the protocol
on an identifier ID, each honest node would output
some index ` ∈ [n] for ID;

• Agreement: All honest nodes would output the same
index ` for the same ID;

• Unpredictability: Before t − f nodes invoke the pro-
tocol on an identifier ID (where f represents the
number of corrupted nodes), no node can successfully
predicate the output for ID except with 1/n probability
(i.e., no better than guessing from [n]).

The (n, t) Election protocol can be instantiated by (n, t)
non-interactive (unique) threshold signature under setup as-
sumptions in the random oracle model [13]. The details of the
classic construction is illustrated in Alg. 7 in Appendix G.

Provable broadcast (PB, adapted from [4]) is a broadcast
protocol among n nodes with a designated node called sender
and a global predicate function ValueValidation for validating
the sender’s input. The sender takes a tuple m := (v, π) as
input, where v is a value and π is a string to validate v
according to ValueValidation. Then, each node would output a
tuple value := (v, π). The sender additionally outputs a tuple
lock := (h, σ), where h is the hash of some value v and σ is
a threshold signature that aggregates 2f + 1 signature shares
for h. In addition, each node can invoke an abandon interface
during the execution to quit from the protocol. 7

Besides the above syntax, a PB protocol with a session
identifier ID satisfies the next properties with all but negligible
probability:

• Validity. If any honest Pi outputs a tuple value :=
(v, π), then ValueValidation(ID, (v, π)) = 1.

• Termination. If the sender Ps is honest and inputs
m := (v, π) satisfying ValueValidation(ID,m) = 1

7Different from [4], here we consider the threshold signature for the hash
value of the message instead of for the message itself, which is a natural
extension in the presence of collision-resistance hash function and later might
save communications when we leverage the provability to construct more
efficient MVBA.

and all honest nodes activate PB[ID] without in-
voking abandon(ID), then all honest nodes would
output value := m; additionally, the sender outputs
a tuple lock := (h, σ), where h = H(v) and
VerifyThld(2f+1)(ID, h, σ) = 1.

• Provability. If the sender can produce lock := (h, σ)
and lock′ := (h′, σ′) s.t. VerifyThld(2f+1)(ID, h, σ) =
1 and VerifyThld(2f+1) (ID, h′, σ′) = 1, then (1)
h = h′ and (2) at least f + 1 honest nodes output
value := (v, π) satisfying that H(v) = h and
ValueValidation(ID, value) = 1.

• Abandon-ability. An honest node does not deliver any
message associated to ID after invoking abandon(ID).

A construction of PB is deferred to Algorithm 6 in Ap-
pendix F, which costs only O(1) rounds, O(n) messages, and
O(|m|n+ λn) bits.

IV. WARM-UP: NEW ACS TO REDUCE MESSAGES AND
COMMUNICATIONS

In this section, we consider how to reduce the cost of the
broadcast phase, and will present a new ACS framework using
cheaper broadcast primitives and MVBA.

Overview of the new ACS framework. It is worth noting that
RBC suffers from O(n2) messages (actually for deterministic
RBC with optimal n/3 tolerance, it is inherent according to
Dolev-Reischuk bound [20] 8), since it guarantees that if any
node outputs a value, then all other nodes will output the same
value. So n parallel RBCs might inherently incur huge cubic
messages, and it becomes necessary to replace them by tighter
broadcast primitives.

As illustrated in Fig. 4, we use a weaker (thus cheaper)
broadcast primitive, i.e., the provable broadcast (PB) from
Abraham et al. [4] to replace RBCs used in ACS. We do so
for two considerations. First, the primitive is very compact in
the sense of having only two rounds of communications, one
is from the sender to all nodes to multicast its input m, the
other round is to let each node to return a threshold signature
share for m. As such, the sender can produce a full signature
as a lock “proof” to attest that the broadcast is completed, in
the sense that at least f + 1 honest nodes have received the
same value m. Second, since the lock proof finally obtained
by the PB sender cannot forged, it allows us to use a simple
multicast to diffuse the proofs. 9 Now, each node can prepare a
vector of n− f unforgeable proofs for n− f completed PBs.
So a single constant-time MVBA can be used to efficiently
pick up a vector of n− f valid PB proofs to finalize the PBs
batched in the final ACS output.

However, an extra challenge appears immediately, since PB
is not as strong as RBC to ensure that all honest nodes will
eventually output upon any honest node outputs in it, causing
a threat that a node might not eventually output in some PBs,
even if the PBs are already selected by MVBA as part of

8Dolev and Reischuk actually demonstrated that the message complexity of
deterministic Byzantine broadcast is O(f2) for adversary controlling up to f
nodes [20]. Their proof can be slightly tuned to prove the O(n2) message
lower-bound of deterministic RBC with n/3 tolerance, cf. Appendix B.

9Remark that multicasting the proof for PB immediately after running PB
essentially gives us a strong variant of consistent broadcast [42].

6

the ACS output. To compensate the weakening of PB, we
necessarily introduce a recovery phase to allow some nodes
to retrieve missing PB outputs. We cautiously minimize the
communication blowing-up during the phase by combining the
idea of verifiable information dispersal from [14]: the sending
nodes can commit the encoded fragments of a requested PB
output to a Merkle tree, so the receiving node can verify that
f + 1 fragments are committed to the same Merkle root (thus
can decode to the correct PB output). For sufficiently large
input, our new ACS framework has a concrete communication
cost at least same to that of Dumbo and HoneyBadgerBFT
in the worst case, and if there is a fair network scheduler
that never reorders messages, it can save up to 67% concrete
communications relative to Dumbo and HoneyBadgerBFT.

𝑊!

𝑊"

𝑊#

𝑊$

𝑃!

𝑃"

𝑃#

𝑃$

…

𝑃𝐵!

𝑃𝐵"

𝑃𝐵#

𝑃𝐵$

…

𝐹𝑖𝑛𝑎𝑙$

𝐹𝑖𝑛𝑎𝑙#

𝑡𝑥!

𝑡𝑥"

𝑡𝑥#

𝑡𝑥$

𝑃!

𝑃"

𝑃#

𝑃$

𝑃!

𝑃"

𝑃#

𝑃$
MVBA

𝑊

𝑊

𝑊

𝑊

RecoveryMVBABroadcast

𝑆

𝑆

𝑆

𝑆

… …… …

Fig. 4: The structure of the new ACS framework.

Constructing the new ACS framework. Now we describe
the our new ACS framework that is centered around MVBA
and PB. The formal description of the protocol is shown in
Algorithm 1. Essentially, the protocol proceeds in three phases
consisting of:

• Broadcast: (line 1-4). Upon every node Pi receives
its input value vi, it activates PB[〈ID, i〉] with using
vi as input, then waits for that PB[〈ID, i〉] outputs the
lock proof, after which it multicasts a Final message
carrying lock.

• MVBA: (line 5-10). Each node Pi can wait for n− f
Final messages carrying n−f valid locks from distinct
nodes, such that it can prepare a vector Wi including
the locks, and takes Wi as the input to participate
into MVBA. Finally, the MVBA will decide a vector
W consisting of n−f valid lock proofs for PBs along
with the corresponding indices of these PBs.

• Recovery: (line 11-36). When a node Pi outputs in
MVBA and gets W , it can check whether it has
received outputs in all PBs associated to the valid lock
proofs carried by W . In case it has outputted in all PBs
solicited by W , it can output the set covering the PBs’
outputs; otherwise, it multicasts a CallHelp message to
request the missing PB outputs from other nodes. At
the same time, each node Pj receiving W from MVBA
listens to incoming CallHelp messages, and makes best
effort to help the CallHelp message sender: for each
PB that is requested by the CallHelp sender and also
outputs to Pj , the node Pj computes erasure codes of
this PB output and a Merkle tree to commit the coded
fragments; then via a Help message, Pj returns these
Merkle tree roots, all jth erasure code fragements
and all jth Merkle branches, to the CallHelp sender.
Finally, the CallHelp sender can receive enough valid
Help messages allowing it to recover all missing PB
outputs and then output in ACS.

Algorithm 1 New ACS framework with identifier ID for Pi

Let {PB[〈ID, j〉]}j∈[n] refer to n instances of provable broadcast protocol, where
Pj is the sender of PB[〈ID, j〉]; the ValueValidation function of PB always return
true for any input; the Q of MVBA be the following predicate:
QID[{(s1, h1, σ1), · · · , (sn, hn, σn)}] ≡ (exist at least n−f distinct i ∈ [n],
such that si 6=⊥ and VerifyThld2f+1(〈〈ID, si〉, hi〉, σi) = 1).

Initialization:Wi = {(s1, h1, σ1), · · · , (sn, hn, σn)}, where (sj , hj , σj)←
(⊥,⊥,⊥) for all 1 ≤ j ≤ n; Mi = {(H1, b1i ,m

1
i), · · · , (Hn, bni ,m

n
i)},

where (Hj , bj
i
,mj

i
) ← (⊥,⊥,⊥) for all 1 ≤ j ≤ n; HS ← ∅; FS = 0;

Ready = false.
. Broadcast

1: upon receiving input value vi do
2: input vi to PB[〈ID, i〉]
3: upon receiving lock := 〈hi, σi〉 from PB[〈ID, i〉] do
4: multicast (Final, ID, hi, σi) . Multicast PB proof

. Wait for n− f PB proofs to run MVBA
5: upon receiving (Final, ID, hj , σj) from Pj for the first time do
6: if VerifyThld(2f+1)(〈〈ID, j〉, hj〉, σj) = 1 then
7: (sj , hj , σj)← (j, hj , σj), where (sj , hj , σj) ∈ Wi

8: FS = FS + 1
9: if FS = n− f then

10: propose Wi for the MVBA[ID]

.Recovery
11: upon the MVBA[ID] return W = {(s̄1, h̄1, σ̄1), · · · , (s̄n, h̄n, σ̄n)} do
12: for 1 ≤ j ≤ n and s̄j 6=⊥ do
13: if value := vj was not yet receive from PB[〈ID, j〉] s.t. h̄j = H(vj) then
14: HS ← HS ∪ j
15: Ready ← true

16: if Ready = true and |HS| > 0 then . Trigger CallHelp
17: multicast (CallHelp, ID, HS)
18: for ` ∈ HS do
19: wait for f + 1 valid Help messages carrying (H`, b`j ,m

`
j) with same H`

20: interpolate the f + 1 leaves {m`
j} to reconstruct v`

21: let S ⊂ [n] be the set of s̄j 6=⊥ for all 1 ≤ j ≤ n
22: output ∪j∈Svj . Output

23: upon receiving (CallHelp, ID, HSk) from node Pk for the first time do
24: wait until Ready = true . Wait for the output of MVBA
25: for any j ∈ HSk do
26: if already receiving value:=vj from PB[〈ID, j〉] and h̄j = H(vj) then
27: {mj

k
}k∈[n] ← (f + 1, n)-erasure coding applied to vj

28: let MT j be a Merkle tree root computed over {mj
k
}k∈[n]

29: let bj
i

is the ith Merkle tree branch
30: (Hj , bj

i
,mj

i
)← (MT j , bj

i
,mj

i
), where (Hj , bj

i
,mj

i
) ∈Mi

31: send (Help, ID,Mi) to Pk

32: for each j ∈ [n] do (Hj , bj
i
,mj

i
)← (⊥,⊥,⊥) . Re-initialize Mi

. .

33: upon receiving (Help, ID,Mj) from node Pj for the first time do
34: parse Mj as {(H1, b1j ,m

1
j), · · · , (Hn, bnj ,m

n
j)}

35: for 1 ≤ k ≤ n and bkj 6= ⊥ do
36: check that bkj is valid for root Hk and leaf mk

j , otherwise discard

Complexities. The complexities of our new ACS framework
can be briefly analyzed in a modular way, by considering the
costs of n parallel PBs, an MVBA instance, and a simple
recovery phase.

As shown in Table II, the message complexity is reduced
to O(n2). This is mainly because n tight PBs replace n RBCs
in Dumbo to realize a cheaper broadcast phase costing only
O(n2) messages, while the extra recovery phase at most incurs
n2 Help messages and n2 CallHelp messages, and the MVBA
instance can be easily instantiated with expected quadratic
messages [4, 12, 32].

The protocol’s running time (a.k.a. asynchronous rounds) is
expected constant, as the single randomized module, MVBA,
can be implemented to be expected constant time [4, 12, 32].

The framework’s communication complexity is asymptoti-
cally O(n2|m|+λn3 log n), where |m| is the bit-length of each
node’s ACS input and λ is the size of security parameter (and

7

TABLE II: Comparison for performance metrics of ACS

Complexity
Protocol Round Communication Message

HBBFT O(logn) O(n2|m|+ λn3 logn) O(n3)

Dumbo1 O(log κ) O(n2|m|+ λn3 logn) O(n3)

Dumbo2 O(1) O(n2|m|+ λn3 logn) O(n3)

This work O(1) O(n2|m|+ λn3 logn) O(n2)

it is easy to see when |m| ≥ λn log n, it is optimal linear com-
munication per ACS input). The n PBs cost |m|n2 +O(λn2)
bits, and all multicasts of PBs’ lock proofs cost O(λn2) bits. If
the MVBA module is instantiated by CKPS01 [12] or AMS19
[4], it would cost O(λn3) bits. Besides, all n2 CallHelp
messages might incur at most O(n3) overall bits, and all
n2 Help messages would cost at most 2|m|n2+O(λn3 log n)
bits. So in the worst case, the overall communication cost
of the new ACS design is 3|m|n2+O(λn3 log n), which is at
least same to that of Dumbo and HoneyBadgerBFT. In case
there is a fair network scheduler that never reorders messages,
no CallHelp and Help messages would be exchanged among
honest nodes, so the overall communication becomes only
|m|n2+O(λn3 log n), which saves up to 67% concrete com-
munications for sufficiently large |m| (e.g., |m| > λn log n).10

Security intuition. The new ACS framework implements all
properties of ACS (cf. Appendix D for deferred proofs). Its
securities can be intuitively understood as follows:

• The termination of the new ACS framework immedi-
ately follows the termination of PB and MVBA, along
with the provability of PB that also ensures an honest
node that multicasts a Help can eventually receive
enough CallHelp to recover its missing PB outputs
to form ACS output.

• The agreement follows the agreement of MVBA and
the provability of PB, because the agreement of
MVBA ensures any two honest nodes to output the
same W including the same unforgeable PB proofs
attesting that more than f + 1 honest nodes do output
the same values in these PBs, so no matter an honest
node directly output in the PBs or recover the PBs’
outputs through the recovery phase, its ACS output
must be same to any other honest node’s.

• The validity is trivial, because the external validity of
MVBA ensures that it output a W that containing n−f
valid PB proofs from distinct PB instances.

V. SPEEDING MVBA:
TOWARD A SPEEDING DUMBO

This section deals with the expensive MVBA module in
ACS. We propose a novel MVBA, called Speeding MVBA
(sMVBA) that are substantially faster than all existing ones.

Overview of sMVBA. At the very high-level, sMVBA is a
concretely more compact MVBA design following the beauti-

10Broadcasts are normally completed after MVBA finishes, because MVBA
is started only after n − f broadcasts are actually completed. Even in the
extreme-case where the recovery phase is always triggered, the price of
recovery is only 2 rounds, while our latency improvements are still more.

ful asynchronous “view-change” methodology from Abraham
et al. in [4], which allows to directly design MVBA with a
tighter structure from a variant of common coin. To make
a shorter critical path, we develop a new two-phase Yes-No
voting technique to ensure an output in a view must be the
only possible output in later views.

As explained in Introduction and illustrated in Fig. 3,
AMS19 [4] relies on key-lock-commit proofs to facilitate
asynchronous “view-change”, and these three proofs need a
4-staged PB protocol to generate.

𝑃! 𝑃!

𝑃"𝑃"

𝑃#𝑃#

𝑃$ 𝑃$

… …

𝑃!

𝑃"

𝑃#

𝑃$

𝑃!

𝑃"

𝑃#

𝑃$

… …

elect
Prevote VoteLeader election

…

𝑃𝐵!

𝑃𝐵"

𝑃𝐵#

𝑃𝐵$

𝑃𝐵!

𝑃𝐵"

𝑃𝐵#

𝑃𝐵$

SPB

𝑚"

𝑚#

𝑚$

𝑚%
…

Fig. 5: sMVBA structure triangle is a short-cut for nodes to output (such that
they might skip the remaining protocol execution after leader election).

As shown in Fig. 5, our sMVBA protocol would invoke
the leader election earlier than AMS19, in order to enjoy faster
terminations in the 2/3 good cases where an already completed
broadcast is elected. Namely, after 2-staged PBs (which gives
a strong provable broadcast or SPB, to be formally defined
below) instead of 4-staged PBs, sMVBA would finish the
broadcasts and start the leader election phase. Nevertheless,
we still need a mechanism to ensure safety and liveness in the
other 1/3 worse case as if [4] uses lock and key proofs. To
this end, we introduce a simple two-phase “Yes”-“No” voting
after leader election. In the 1st “Pre-vote” round, the nodes
vote on a binary variable (e.g., either “Yes” or “No”) according
to whether they output in the leader’s SPB. In the 2nd main
“Vote” round, a node further votes on “Yes/No”, i.e., whether
to output or not, based on whether it collects any “Yes” or
solicit enough “No” during the first vote. Finally, once an
honest node solicits enough “Yes” in the 2nd vote phase, it
decides to output, which also ensures that all honest nodes
must at least receive a valid proof on “Yes” during the 2nd
vote phase, and more importantly, no corrupted node can forge
a proof on “No”.

Thanks to the two-phase Yes-No voting, we do not have to
explicitly “lock” any node as if AMS19, and just specify the
external predicate function of SPB to ensure either input valid
“Yes” proof or valid “No” proof: For valid “Yes”, the predicate
shall also check the proof binds a value (which is the potential
output of earlier views); For valid “No”, we do not worry what
input it binds, because there certainly is no honest node did
output before. As such, if any node outputs in some view, then
in all later views, all honest nodes would use the same value as
their valid SPB input, and no corrupted node can use a value
different from it to pass SPB’s validity checking. In this way,
the two-round “Yes”-“No” voting handles the “dirty” work in
the 1/3 worse case to ensure that the protocol satisfies safety
and liveness all the time.

A. Preparation: lifting PB stronger

One key idea of constructing sMVBA is to enter the leader
election phase soon after the sender delivers a single proof

8

(instead of three) with using two sequential PBs. To be precise,
we expect to compose the two PBs to be a strong PB (SPB)
that can be formalized as follow.

Strong provable broadcast (SPB) protocol is a strength-
ened variant of PB. In SPB, there is a designated sender
and global predicate CheckValue for validating the sender’s
input. The sender would broadcast a value v along with a
validation string π to all nodes. Each node would output a tuple
Lock := (v, σ1), and the sender would additionally output
a tuple Finish := (v, σ2). Both of σ1 and σ2 shall be valid
threshold signatures for H(v). And we also say the SPB has
completed, if the sender did output a valid Finish tuple.

Besides the above syntax, an SPB protocol (that can be
activated on an explicit session identifier ID) shall satisfy the
following properties with all but negligible probability:

• Validity. Same to that of PB.

• Termination. If the sender Ps is honest and inputs
m:=(vs, π) satisfying CheckValue(ID,m) = 1 and
all honest nodes activate SPB[ID] without invok-
ing abandons(ID), then each honest node would
output a valid Lock tuple of vs and σ1 s.t.
VerifyThld(2f+1)(〈〈ID, 1〉,H(vs)〉, σ1) = 1. Addition-
ally, the sender Ps outputs a valid Finish tuple of vs
and σ2 s.t. VerifyThld(2f+1)(〈〈ID, 2〉,H(vs)〉, σ2) =1.

• Provability. If the sender can produce a valid Finish :=
(vs, σ2) output, then (1) for any two valid Finish :=
(vs, σ2) and Finish′ := (v′s, σ

′
2), then vs = v′s; (2) at

least f + 1 honest nodes did output valid Lock with
the same value vs.

• Abandon-ability. Same to that of PB.

Remark. Once an honest node outputs Lock, no honest node
would output a Lock carrying a different value, and valid Finish
attests that at least f + 1 honest nodes did output valid Lock.

Details of SPB protocol. The detailed SPB protocol is shown
in Algorithm 2. Slightly informally, it proceeds as follows:

1) Initialization (line 1-2). All honest nodes activate two
PBs.

2) First PB (line 3-5). The sender Ps passes its input
(vs, π) to the first PB instance and waits for it return
a lock message.

3) Second PB (line 6-9). Upon the first PB returns
lock := (h1, σ1) to Ps, the sender passes (vs, σ1)
to the second PB instance as input, and waits for the
second PB returns lock to output it as Finish. For
every node, once receiving value := (vs, σ1) from
the second PB, output Lock := value.

Security intuition of SPB protocol. The security of the simple
SPB construction in Algorithm 2 is easy to see: Validity and
Abandon-ability follows immediately from those two proper-
ties of PB. For provability, it is naturally an extension of PB’s,
because breaking it directly break PB’s. For termination, it is
also immediate, because of the termination of PB, along with
the fact that the predicate function of both PB instances are
properly specified, so an honest sender can always pass valid
inputs to them.

Algorithm 2 SPB subprotocol with identifier ID, sender Ps, and a input
validation predicate CheckValue

1: activate PB[〈ID, 1〉] with ValueValidation defined in Line 10
2: activate PB[〈ID, 2〉] with ValueValidation defined in Line 11

3: if Pi = Ps then
4: upon receiving input value (vs, π) s.t. CheckValue(ID, vi, π) = 1 do
5: input (vs, π) to PB[〈ID, 1〉] and wait until it outputs lock := (h1, σ1)
6: input (vs, σ1) to PB[〈ID, 2〉] and wait until it outputs lock := (h2, σ2)
7: output Finish := (vs, σ2) . Produce Finish

8: upon PB[〈ID, 2〉] outputs value := (vs, σ1) do
9: output Lock := (vs, σ1) . Produce Lock

procedure ValueValidation(〈ID, j〉, vs,Σ):
10: if j=1 then return CheckValue(ID, vs,Σ)

11: if j=2 then return VerifyThld(2f+1)(〈〈ID, 1〉,H(vs)〉,Σ)

procedure abandons(ID):
12: for j=1,2 do abandon[〈ID, j〉]

Complexities of SPB protocol. Because the SPB sequentially
runs two PBs, its complexities are asymptotically same to
those of PB, that means, its message complexity is O(n) and
its communication complexity is O(|m|n+ λn).

B. Constructing Speeding MVBA

Here we are ready to present the details of sMVBA. Its
basic idea is inspired by the view-change methodology of
AMS19-MVBA [4] but has a more compact structure to run n
parallel SPBs (which are 2-stage PBs instead of 4-stage PBs)
before the leader election. With 2/3 chance, the elected SPB
instance was completed, i.e. the SPB produced a Finish, then
the input value of the SPB will be output in the current view.
In other worse cases, sMVBA leverages a compact two-phase
Yes-No voting paradigm to guarantee: if some honest node
outputs value v in a view R, then in any view R′ > R, the
valid input value to SPBs must be v, any other values will be
rejected by the CheckValue predicates of SPBs.

Construction of sMVBA. The formal description of sMVBA
is shown in Algorithm 3, 4, and 5. Slightly informally, it has
five logic phases proceeding as follows:

1) SPB phase (line 1-4). The n nodes broadcast their
own input values v through n concurrent SPB in-
stances, where each node Pi is the designated sender
of SPB[〈id,R, i〉]. Here id is the identifier of the
sMVBA protocol, and R represents the current view.

2) Election phase (line 5-9). Upon the nodes realize
that enough Finish for the SPB instances (i.e., 2n/3)
have been produced, they can make sure that enough
input values (i.e., 2n/3) have been broadcasted and
“locked” across the network, then the nodes enter the
election phase with multicasting a Done message and
invoking the Election protocol. More precisely, each
node multicasts a Done message together with the
Election protocol’s SHARE message at the same time.
There could be some honest node that did not receive
enough Finish for SPBs but receive at least f + 1
Done messages from distinct nodes, it also enters the
election phase to multicast a Done message together
with the Election’s SHARE message (cf. Alg. 5 line
9-11). Then, the honest nodes wait for 2f + 1 Done-
SHARE messages to abandon all SPB instances and
obtain the common pseudo-random number ` ∈ [n].

9

Here ` represents that the randomly elected leader in
the current view is P`.

3) PreVote phase (line 10-16). Upon the Election re-
turns `, the honest node checks whether a valid Finish
message associated to ` was received: if yes, it then
multicasts a Halt message carrying the valid Finish,
after which it immediately enters a short-cut to output
and exit the protocol; else (i.e., no corresponding
Finish received), it multicasts (PreVote, id,R, `,Yes)
if SPB[〈id,R, `〉] already returns Lock, otherwise,
multicasts (PreVote, id,R, `,No).

4) Vote phase (line 17-21). All honest nodes wait
for 2f + 1 valid PreVote messages, if these
2f + 1 PreVote has a valid (PreVote, id,R, `,Yes),
then multicast (Vote, id,R, `,Yes), else multicast
(Vote, id,R, `,No). Here a valid (Vote, id, R, `,No)
message contains a proof that is a threshold signature
aggregated from 2f + 1 (PreVote, id,R, `,No).

5) Finish phase (line 22-35). The honest nodes wait for
2f + 1 valid Vote messages, then combine them to
generate a Finish proof and multicast it via a Halt
message, and output the corresponding value and
halt; else if receive 2f + 1 valid (Vote, id,R, `,No)
messages, compute σVN and take σVN with the input
value of the current SPB into next view; else, if a
node receives 2f + 1 valid Vote messages including
two types message, i.e. both (Vote, id,R, `,Yes) and
(Vote, id,R, `,No), takes the value v` and proof π =
(Yes,R, σ1) from (Vote, id, R, `,Yes, v`, σ1, ρ2,i) into
the next view as its SPB input.

Security intuition of sMVBA. The protocol described in
Algorithm 3-5 realizes MVBA among n nodes against an
adversary controlling f ≤ bn−1

3 c nodes (cf. Appendix E for
detailed proofs). Its securities can be intuitively understood as:

• Termination: Suppose no honest node outputs yet
before a view R, all honest nodes must have valid
input (may include a proof from an earlier view) to
enter view R and at least n−f SPBs can be completed
in the view. With at least 2/3 probability, Election can
select a completed SPB instance whose corresponding
Finish proof has been generated. In such good case,
every honest node can either receive 2f+1 valid Vote-
Yes messages (otherwise, the adversary can break the
unforgeability of threshold signature to forge a valid
Vote-No message) or receive a valid Halt message
(sent from another node that outputs in the view),
thus can output in the view. Hence, with at least 2/3
probability, all honest nodes terminate in view R.
Besides, if all honest nodes do not output in the current
view, the proofs (aggregated from 2f + 1 Vote-No
or obtained from Vote-Yes) can ensure that they will
carry valid inputs into the next view to repeat the
above procedure.
More importantly, it is possible that only some honest
nodes output in view R. In the case, all nodes would
eventually output as well, because once the first node
outputs, it will multicast a Halt message, which can
convince all other nodes to output and halt in one
more round. Putting these together, all honest nodes
can terminate in expected constant running time.

Algorithm 3 sMVBA protocol with identifier id for node Pi: main process,
cf. Alg. 5 for message handlers (upon receiving one message in Alg 3, some
algorithm in Alg 5 will be invoked by each honest node to generate the
response.) and Alg.4 for SPB predicate

Initialization: let R← 1, π ← {}
for every view R ≥ 1: D-flagR ← 0, Y -flagR ← 0, N -flagR ← 0,
PNR ← {}, YFinR ← {}, NFinR ← {}, FR ← {}, SR ← {}, ReadyR ← 0

1: repeat:
2: initialize SPB[〈id,R, j〉] with the designated sender Pj for each j ∈ [n]
3: wait until receiving input vi s.t. CheckValue(〈id,R, i〉, vi, π) = 1

.Broadcast phase
4: pass (vi, π) into SPB[〈id,R, i〉] as input

. Election phase: wait for n− f FIN messages
5: wait until D-flagR = 1
6: multicast (Done, id,R)

7: wait until receiving 2f + 1 (Done, id,R) from distinct nodes
8: abandons(〈id,R, j〉) for each j ∈ [n]

9: l← Election[〈id,R〉]
. PreVote phase

10: wait until ReadyR = 1
11: if delivers Lock from SPB[〈id,R, `〉] then
12: parse Lock as (v`, σ1)
13: multicast (PreVote, id,R, `,Yes, v`, σ1)
14: else
15: ρpn,i ← SignShare(2f+1)(ski, 〈No, 〈id,R, `〉, null〉)
16: multicast (PreVote, id,R, `,No, null, ρpn,i)

. Vote phase
17: wait until Y -flagR = 1 or N -flagR = 1
18: if Y -flagR = 1 then
19: multicast (Vote, id,R, `,Yes, v`, σ1, ρ2,i)
20: else
21: multicast (Vote, id,R, `,No, null, σPN, ρvn,i)

. Finish phase: wait for 2f + 1 Vote messages
22: wait until |YFinR|+ |NFinR| = 2f + 1
23: if |YFinR| = 2f + 1 then . All Votes are YES
24: σ2 ← Combine(2f+1)(〈〈〈id,R, `〉, 2〉,H(v`)〉,YFinR)
25: Let Finish := (v`, σ2) . Output and halt
26: multicast (Halt, id,R, Finish), output v` and then halt
27: else
28: if |NFinR| = 2f + 1 then . All Votes are NO
29: σVN ← Combine(2f+1)(〈UnLocked, 〈id,R, `〉〉,NFinR)

. |π| ≥ 1, i.e. new π is the current π union with (No,R, σVN)
30: π ← π ∪ (No,R, σVN)
31: vi ← vi, R← R + 1
32: else . Including YES and NO

. |π| = 1, i.e. reset π = {(Yes,R, σ1)}
33: π ← (Yes,R, σ1)
34: vi ← v`, R← R + 1

35: until halt

Remark: in Election (Alg. 7), a node first multicasts a SHARE message, then waits
for 2f+1 SHARE messages to compute a coin. We use Election in a non-blackbox
manner, namely, in line 6, multicast (Done, id,R) and SHARE messages at the same
time. So in line 9, it shall have received 2f + 1 SHARE messages already, and can
just compute l accordingly instead of invoking the Election protocol one more time.

• Agreement: Agreement is slightly more involved. Sup-
pose no honest node already outputs yet before a view
R, and Pi is the first honest node that outputs v in
the view R. In case another honest node Pj outputs
in the same view, the output of Pi and Pj must be
same. This is because the output condition in view
R is to receive a valid FIN message from the selected
leader, or to receive a valid Halt message, or to receive
2f + 1 valid Vote-Yes messages. All three cases need
to verify a valid proof for the selected SPB in the
current view. As such, the provability of SPB would
ensure that if any two nodes would output in the same
view, their output is same to the value broadcasted by
the selected SPB.
Next, we consider the other case that Pj outputs
in a view R′ > R. Conditioned on Pi outputs v
in view R, every honest node (including Pj) must

10

receive at least one valid (Vote, id,R, `,Yes) in the
view R (thus taking v as next view’ input); and more
importantly, it is infeasible for anyone to forge a valid
(No,R, σVN) message, because the adversary cannot
forge the threshold signature σVN as it has at most
2f shares of it. The CheckValue function of SPB is
further specified to ensure: without valid σVN, a node
cannot send v′ 6= v via SPB in later views (otherwise,
the validity of SPB is broken). So the only possible
output of Pj in view R′ > R is same to the output of
Pi in view R.

• External-Validity: it trivially holds because each SPB
broadcast input value needs to satisfy CheckValue.

Algorithm 4 sMVBA protocol with identifier id for node Pi: the external
predicate of SPB, cf. Alg 3 for the main protocol process

function CheckValue(〈id,R, j〉, v, π):

. |π| = 0, i.e. initialized validation string π = {}
1: if R = 1 and |π| = 0 then return Q(v)

// Either received one Vote message that contains Yes or R = 2 and no node outputs
in R = 1, then |π| = 1, i.e. π = {(Yes,R, σ1)} or {(No, 1, σVN)}

2: if |π := (∗,R− 1, ρ)| = 1 then . |π| = 1
3: a← VerifyThld(2f+1)(〈〈〈id,R− 1, Election[〈id,R− 1〉]〉, 1〉,H(v)〉, ρ)
4: b← VerifyThld(2f+1)(〈UnLocked, 〈id, 1, Election[〈id, 1〉]〉〉, ρ) // R = 2
5: return (a ∨ b) ∧ Q(v)

. |π| > 1
6: if R > 2 and |π| > 1 and (No,R− 1, ρ) ∈ π then

// No node ouputs before view R, then π = {(No, 1, ρ), · · · , (No,R− 1, ρ′)}
7: if for 0 < k < R− 1: (No, k, ρk) ∈ π then
8: for k ∈ [1 : R− 1] : (No, k, ρk) ∈ π do
9: b← VerifyThld(2f+1)(〈UnLocked, 〈id, k, Election[〈id, k〉]〉〉, ρk)

10: if b = 0 then return 0
11: return Q(v)

// Some node ouputs in view r, and the SPB[〈id, k, Election[〈id, k〉]〉] did not
complete for view k from r + 1 to R − 1, then π = {(Yes, r, ρr), (No, r +
1, ρr+1), · · · , (No,R− 1, ρR−1)}

12: if ∃ 0 < r < R− 1: (Yes, r, ρr) ∈ π then
13: if for r < k < R− 1: (No, k, ρk) ∈ π then
14: for k ∈ [r + 1 : R− 1] : (No, k, ρk) ∈ π do
15: b← VerifyThld(2f+1)(〈UnLocked, 〈id, k, Election[〈id, k〉]〉〉, ρk)
16: if b = 0 then return 0
17: a← VerifyThld(2f+1)(〈〈〈id, r, Election[〈id, r〉]〉, 1〉,H(v)〉, ρr)
18: return a ∧ Q(v)

19: else return 0

Complexities of sMVBA. Similar to [4], sMVBA costs ex-
pected constant asynchronous rounds and expected O(n2)
messages, where each message is not larger than O(λ) bits
if assuming that the input is O(λ)-bit. We elaborate the dif-
ference between the concrete expected running time (rounds)
of sMVBA and AMS19-MVBA [4] in Table I. Two settings
are considered, namely, the adversarial case capturing 1/3
Byzantine corruptions in the fully asynchronous network, and
the best case capturing all honest nodes and a fair network
scheduler that never reorders messages. No matter the setting,
sMVBA has two PBs less than AMS19 before leader election
(4 rounds in each view), and we also compress the messages
needed to stop PBs (2 rounds in each view). In the adversarial
case, our two-phase voting slightly increases one round in each
view; while in the best case with a fair network scheduler, we
develop a short-cut to output as soon as the leader election
returns, which skips the voting. In sum, sMVBA overall saves
5 rounds in each view under the adversarial setting (which is
then amplified to 7.5 because both protocols need on average
3/2 views to terminate in this worst case), and saves overall 7
rounds in the best case.

Algorithm 5 sMVBA with identifier id for node Pi: the protocol message
handlers, cf. Alg 3 for the main protocol process

1: upon SPB[〈id,R, i〉] delivers Finish do
2: multicast (FIN, id,R, Finish) . Multicast FIN

3: upon receiving (FIN, id,R, Finish) from Pj for the first time do
4: parse Finish as (vj , σ2)
5: if VerifyThld(2f+1)(〈〈〈id,R, j〉, 2〉,H(vj)〉, σ2) = 1 then
6: FR ← FR ∪ (j, Finish)
7: if |FR| = n− f and D-flagR = 0 then . Wait for n− f FIN
8: D-flagR = 1 . Trig start Election phase

9: upon receiving f + 1 (Done, id,R) from distinct nodes do
10: if D-flagR = 0 then
11: D-flagR = 1 . Trig start Election phase

12: upon Election[〈id,R〉] return ` do . Short-cut to output
13: for (k, Finish): (k, Finish) ∈ FR do
14: if k = l then
15: parse Finish as (vk, σ2)
16: multicast (Halt, id,R, Finish), Output vk and then halt
17: ReadyR ← 1

18: upon receiving (Halt, id,R, Finish) do . Amplify speeding, ensure liveness
19: parse Finish as (vk, σ2)
20: if k = Election[〈id,R〉] then
21: if VerifyThld(2f+1)(〈〈〈id,R, k〉, 2〉,H(vk)〉, σ2) = 1 then
22: multicast (Halt, id,R, Finish), Output vk and then halt

23: upon receiving (PreVote, id,R, `,Yes, v`, σ1) from Pj for the first time do
24: if VerifyThld(2f+1)(〈〈〈id,R, `〉, 1〉,H(v`)〉, σ1)=1 and N -flagR=0 then
25: ρ2,i ← SignShare(2f+1)(ski, 〈〈〈id,R, `〉, 2〉,H(v`)〉)
26: Y -flagR ← 1 . Receive one valid (PreVote, id,R, `,Yes)

27: upon receiving (PreVote, id,R, `,No, null, ρpn,j) from Pj for the first time do
28: if VerifyShare(2f+1)(〈No, 〈id,R, `〉, null〉, (j, ρpn,j)) = 1 then
29: PNR ← PNR ∪ (j, ρpn,j)
30: if |PNR| = 2f + 1 and Y -flagR = 0 then
31: σPN ← Combine(2f+1)(〈No, 〈id,R, `〉, null〉,PNR)
32: ρvn,i ← SignShare(2f+1)(ski, 〈UnLocked, 〈id,R, `〉〉)
33: N -flagR ← 1 . Receive 2f + 1 valid (PreVote, id,R, `,No)

34: upon receiving (Vote, id,R, `,Yes, v`, σ1, ρ2,j) from Pj for the first time do
35: if VerifyThld(2f+1)(〈〈〈id,R, `〉, 1〉,H(v`)〉, σ1) = 1 then
36: if VerifyShare(2f+1)(〈〈〈id,R, `〉, 2〉,H(v`)〉, (j, ρ2,j)) =1 then
37: YFinR ← YFinR ∪ (j, ρ2,j) . The set of (Vote, id,R, `,Yes)

38: upon receiving (Vote, id,R, `,No, null, σPN, ρvn,j) from Pj for the first time
do

39: if VerifyThld(2f+1)(〈No, 〈id,R, `〉, null〉, σPN) = 1 then
40: if VerifyShare(2f+1)(〈UnLocked, 〈id,R, `〉〉, (j, ρvn,j)) =1 then
41: NFinR ← NFinR ∪ (j, ρvn,j) . The set of (Vote, id,R, `,No)

C. Speeding Dumbo: put everything together

We can instantiate our new ACS framework in Section IV
by sMVBA to get a super speeding asynchronous common
subset (ACS), i.e., Speeding Dumbo (sDumbo), from which
there are several simple conversions to build fully-fledged
asynchronous atomic broadcast. Through the paper, we adopt a
simple conversion from Miller et al. [33] with using threshold
encryption, cf. Appendix A for details about the reductions
from atomic broadcast to ACS.

VI. IMPLEMENTATION AND EVALUATIONS

We implemented and evaluated sDumbo (and sMVBA) in
the WAN setting. Along the way, we also implemented and
made systematic comparisons with several typical MVBAs
including AMS19 [4] and CKPS01 [12], and the state-of-the-
art asynchronous protocol Dumbo [26]. A typical partially-
synchronous HotStuff [45] is also implemented and deployed
in the same setting as a “reference-point” in our evaluations.

Implementation details. All protocols are written as single-
process Python 3 program, and are forked from the open
source code at https://github.com/initc3/HoneyBadgerBFT-
Python/. The p2p channels among nodes are established using

11

unauthenticated TCP sockets. The concurrent tasks are handled
by gevent library. Boldyreva’s pairing-based threshold signa-
ture [9] and Baek et al.’s hybrid threshold encryption [5] are
adopted for implementing threshold signature and threshold
encryption, respectively, whose setups are conduced by us -
the implementer. Different from [33] that optimistically skip
the verification for threshold signatures, our tests verify all
signatures, which better reflects the actual performance in the
worse cases, e.g., with corruptions. We also implement the
two-chain version of HotStuff (with a stable non-faulty leader)
in about 200 lines Python code for fair comparison. Same to
[45], we use ECDSA to form quorum certificates in HotStuff.

Test environment. The experiments are conducted among EC2
t2.medium instances evenly distributed in 15 AWS regions:
Virginia, Ohio, California, Oregon, Canada, Mumbai, Seoul,
Singapore, Sydney, Tokyo, Frankfurt, London, Ireland, Stock-
holm and San Paulo. 11 Note that t2.medium is not supported
in Stockholm, so we adopted t3.medium, which has a similar
configuration. All tests scale up to 150 instances. A transaction
in our tests is a string of 250 bytes, which approximates the
size of basic Bitcoin transactions with one input and two
outputs. The batch size (also called the system load sometimes)
represents the number of transactions proposed by all nodes
in an one-shot agreement, and will vary from 1 to 3× 106.

Result highlights. Key information from our experiments are:

(1) Our end result, sDumbo, significantly reduces the
latency of Dumbo by about 50% and attains a throughput twice
as Dumbo’s, almost despite system size, cf. Table III;

(2) For some small scales (e.g., 10 or 16 nodes), sDumbo
reduces the latency to the same magnitude of HotStuff’s in
the same WAN environment, though the latency gap between
HotStuff and Dumbo was much larger, cf. Table IV.

TABLE III: Improvements of latency and throughput

Basic Latency (sec) Peak Throughput (tx/s)

Scale Dumbo sDumbo Dumbo sDumbo

n = 4 0.97 0.46 ↓52.6% 14,087 34,958 ↑148%

n = 16 3.1 1.7 ↓45.2% 18,586 39,662 ↑113%

n = 82 17.8 9.2 ↓48.3% 10,584 24,564 ↑132%

n = 121 33.7 21 ↓37.7% 7,163 17,143 ↑139%

TABLE IV: Comparison to HotStuff at small scales (n= 10 or 16)

Latency (sec) @ Throughput = 2500 tps

Scale HotStuff (HS) [45] Dumbo [26] sDumbo

n = 10 0.48 3.9 8 x HS 1.8 3.7 x HS

n = 16 0.41 4.2 10 x HS 2.1 5 x HS

A. Performance of each module

We first evaluate the performance of replacing RBCs by
PBs and the performance of the new sMVBA protocol, re-
spectively, to understand our modular improvements.

PB broadcasts v.s. RBC broadcasts. To evaluate the im-
provement brought by replacing RBCs by PB in our new ACS
framework in Section IV, we use the same CKPS01 MVBA
[12] to implement our new ACS and Dumbo, respectively, and

11We remark that all our tests were with modest and identical configurations
across the globe to fairly compare different protocols. The experiments for
HotStuff in [45] used high-end configurations within one AWS region. Thus,
we show HotStuff results different from it [45].

100 1000 10k 100k 1M
0

10k

20k

30k

40k
x=50000
PB+CKPS01 (n=82)
PB+CKPS01 (n=31)
PB+CKPS01 (n=4)
Dumbo (n=82)
Dumbo (n=31)
Dumbo (n=4)

Throughput: Dumbo vs New ACS (PB+CKPS01)

Batch Size (txs)

Th
ro

ug
hp

ut
 (t

x/
s)

0 50 100 150
0

10

20

30

40

50
PB+CKPS01
Dumbo

Basic Latency: Dumbo vs New ACS (PB+CKPS01)

Number of Nodes

La
te

nc
y

(s
)

Fig. 6: New ACS (PB+CKPS01) v.s. Dumbo (RBC+CKPS01)

evaluate them with varying batch sizes in the WAN setting (for
n = 4, 31 and 82).

Fig. 6 shows the dependency of throughput on batch size.
When the batch size approximates 5×104 (as shown by the red
dotted line), the benefit of using PBs becomes very significant,
and finally nearly doubles the throughput of Dumbo if the
batch size keeps on increasing. Namely, Dumbo (instantiated
by RBC+CKPS01) exhausts bandwidth much more quickly
than our new ACS framework (instantiated by PB+CKPS01).
This reflects our analysis in Section IV that our new ACS
framework is much more communication conserving than
Dumbo in the presence of a fair network scheduler.

Fig. 6 also shows the basic latency (i.e., the latency when
inputting only one transaction) of the protocols using two
different broadcast modes. The performance of new broadcast
mode using PBs is better, and its merit gradually appears when
the system scale gets larger. Because the system load is nearly
zero, the result mainly reflects the improvement brought by
the reduction of message complexity from O(n3) to O(n2).

0 50 100 150
0

5

10

15

20

25
AMS19
CKPS01
sMVBA
sMVBA-ecdsa

Basic Latency of Several MVBA Protocols

Number of Nodes

La
te

nc
y

(s
)

10 100 1000 10k
0

500

1000

1500
AMS19 (n=31)
CKPS01 (n=31)
sMVBA (n=31)
sMVBA-ecdsa (n=31)

Throughput of Several MVBA Protocols

Batch Size (txs)

Th
ro

ug
hp

ut
 (t

x/
s)

Fig. 7: Basic latency & throughput of several MVBA protocols

12

100 1000 10k 100k 1M
0

10k

20k

30k

40k

50k
HotStuff
Dumbo
sDumbo

n=4

Batch Size (txs)

Th
ro

ug
hp

ut
 (t

x/
s)

100 1000 10k 100k 1M
0

10k

20k

30k

40k

50k
HotStuff
Dumbo
sDumbo

n=31

Batch Size (txs)

Th
ro

ug
hp

ut
 (t

x/
s)

100 1000 10k 100k 1M
0

10k

20k

30k

40k

50k
HotStuff
Dumbo
sDumbo

n=82

Batch Size (txs)

Th
ro

ug
hp

ut
 (t

x/
s)

n=4 n=31 n=55 n=82 n=100 n=150
0

10k

20k

30k

40k HotStuff
Dumbo
sDumbo

Peak Throughput

Number of Nodes

Th
ro

ug
hp

ut
 (t

x/
s)

Fig. 8: Throughput of several BFT protocols

sMVBA v.s. State-of-the-art MVBAs. We also evaluated the
performance of sMVBA and two other representative MVBA
protocols, including CKPS01 [12] and AMS19 [4]. Consider-
ing that MVBA is mainly used in ACS to agree on a small
vector of index-certificate pairs in our context, we set its input
to one transaction, thus testing the basic latency. In Fig. 7, the
three solid lines represent AMS19 [4], CKPS01 [12] and our
sMVBA, respectively, from top (i.e., high latency) to bottom
(i.e., low latency). Clearly, sMVBA is much faster, which is
consistent to our analysis about the concrete communication
rounds of these MVBA protocols.

Fig. 7 also plots the throughput of directly running MVBAs
to agree on transactions (for n = 31). Our sMVBA protocol
has the best throughput performance among the tested MVBA
protocols, which reflects the reduced latency of sMVBA from
another perspective. However, the peak throughput of directly
running MVBAs is only about 1k-1.5k tx/s. Such inferior
throughput is expected because of the high communication
complexity of MVBAs (pointed out in HoneyBadgerBFT [33]).
Thus, better reductions to MVBAs such as sDumbo become
needed so that MVBA can be invoked only with small inputs.

Remarkably, if we implement quorum proofs by ECDSA,12

the performance of sMVBA can be further improved. This
is because the computation efficiency of ECDSA is superior
to that of Boldyreva’s threshold signature (e.g., a few mi-
croseconds v.s a few milliseconds with a t2.medium instance).
Therefore, even if ECDSA signatures cannot be aggregated,
using them to implement the quorum proofs still achieves
considerable improvement in latency (for the tested system
scales not larger than 150 nodes). Taking the observation, we
would stick with ECDSA later for the quorum proofs in the
sDumbo implementation, while still using Boldyreva’s thresh-
old signature for implementing common coin and random
leader election.

12We trivially concatenate 2f + 1 ECDSA signatures.

B. Performance of Speeding Dumbo

Putting our new ACS framework and sMVBA together, we
have our Speeding Dumbo (sDumbo). We extensively evaluate
it and compared it with Dumbo and HotStuff.

Throughput at varying scales. We then evaluate the through-
put of sDumbo at different system scales with varying batch
sizes. Along the way, we also compare sDumbo to Dumbo
and HotStuff, and visualize the comparison results in Fig. 8.

As illustrated in the first three subgraphs in Fig. 8,
sDumbo attains multi-fold improvements relative to Dumbo,
disregarding the system scale and batch size. First, sDumbo
directly inherits the advantages of using PBs, which helps it
finally achieve a throughput twice as Dumbo’s in the larger
batch sizes. Moreover, carefully comparing Fig. 8 with Fig.
6, we notice that sDumbo noticeably outperforms Dumbo
after the batch size reaches 10,000 (about 50,000 in Fig. 6),
demonstrating that sMVBA further reduces the cost of the
entire BFT protocol. HotStuff is unsurprisingly faster than both
asynchronous protocols, if the system load is very small. But
with larger batch size, HotStuff soon reaches its throughput
peak, which is much smaller than sDumbo’s or Dumbo’s. This
is in line with our expectation: HotStuff is naturally faster
because it is a simple deterministic protocol, but its peak
throughput is seriously restricted by the leader’s bandwidth.

The peak throughputs of all BFT protocols are compre-
hensively shown in the last subgraph of Fig. 8. Although the
throughput of all protocols decreases with scaling up, sDumbo
always maintains the highest peak throughput among them.

Basic latency. We set the input batch size as 1 transaction
(i.e., nearly zero) to test the basic latency of sDumbo (and
Dumbo) and show the results in Fig. 9. Referring to the
results in Fig. 7, it is easy to see that the improvement is
consistent with the benefits of sMVBA. Though the basic
latency of both Dumbo and sDumbo is increasing with larger
system scales, the improvement made by sDumbo is always
significant. Especially when n < 100, the basic delay of
sDumbo is about only half of that of Dumbo.

13

0 50 100 150
0

10

20

30

40

50
Dumbo
sDumbo

Basic Latency: sDumbo vs Dumbo

Number of Nodes

La
te

nc
y

(s
)

Fig. 9: Basic latency of sDumbo and Dumbo

Throughput-latency trade-off. Fig. 10 shows the throughput-
latency trade-offs in sDumbo, Dumbo, and HotStuff. All
the trends are roughly L-shaped, indicating that all of them
eventually become network-bound. sDumbo not only achieves
higher peak throughput, but also has a latency that is always
smaller than that of Dumbo at the same throughput. Moreover,
the latency gap between sDumbo and HotStuff is greatly
narrowed at some small scales, which was much larger when
comparing Dumbo with HotStuff. This evidence indicates that
our multi-fold improvements greatly expand the applicability
of asynchronous BFT protocol.

100 1000 10k 100k

1

10

100 HotStuff (n=82)
HotStuff (n=31)
HotStuff (n=4)
Dumbo (n=82)
Dumbo (n=31)
Dumbo (n=4)
sDumbo (n=82)
sDumbo (n=31)
sDumbo (n=4)

Latency vs Throughput of BFT Protocols

Throughput (tx/s)

La
te

nc
y

(s
)

Fig. 10: Latency vs Throughput of several BFT protocols

VII. CONCLUSION AND FUTURE WORK

We propose Speeding Dumbo (sDumbo) to continue push-
ing forward the performance of asynchronous BFT consensus
protocols: we first reduce the message complexity to optimal;
together with the recent major progresses [26, 33], we have
an asynchronous consensus protocol that is asymptotically
optimal for all major metrics including round complexity,
communication complexity (when the batch size is moderate)
and message complexity. We then design a compact MVBA
protocol (dubbed sMVBA, that can be of independent interests
and use), s.t. its concrete round complexity is reduced from
multiple dozens to a dozen or fewer. Extensive experiments
in the WAN setting demonstrate that sDumbo doubles the
throughput and halves the latency in comparison to the state-
of-the-art asynchronous BFT consensus Dumbo [26].

Nevertheless, many questions in the area remain to be
explored. For example, like existing performant asynchronous
BFT [26, 33], we also rely on costly threshold encryption to
mitigate the censorship attack targeting on certain transactions.
Can we resolve the threat with minimum cost? It is also
challenging to evaluate the worst-case performance of asyn-
chronous BFT in the adversarial network environment. Can
we create more versatile benchmarks to capture the network

fluctuations and attacks in the global Internet, thus telling the
robustness of existing asynchronous BFT protocols?

ACKNOWLEDGMENT

The authors would like to thank our shepherd Kapil Singh
and the anonymous reviewers for their valuable comments.
Bingyong and Jing were supported in part by the National Key
R&D Program of China (No. 2020YFB1005801), and the Na-
tional Natural Science Foundation of China (No. 62172396).
Yuan is supported in part by the National Natural Science
Foundation of China (No. 62102404).

REFERENCES

[1] I. Abraham, D. Dolev, and J. Y. Halpern, “An almost-surely terminating
polynomial protocol for asynchronous byzantine agreement with optimal
resilience,” in Proceedings of the twenty-seventh ACM symposium on
principles of distributed computing, 2008, pp. 405–414.

[2] I. Abraham, P. Jovanovic, M. Maller, S. Meiklejohn, G. Stern, and
A. Tomescu, “Reaching consensus for asynchronous distributed key
generation,” in Proceedings of the 2021 ACM Symposium on Principles
of Distributed Computing, 2021, p. 363âĂŞ373.

[3] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin, “Sync hotstuff:
Simple and practical synchronous state machine replication,” in 2020
IEEE Symposium on Security and Privacy (SP), 2020, pp. 106–118.

[4] I. Abraham, D. Malkhi, and A. Spiegelman, “Asymptotically optimal
validated asynchronous byzantine agreement,” in Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing, 2019,
pp. 337–346.

[5] J. Baek and Y. Zheng, “Simple and efficient threshold cryptosystem
from the gap diffie-hellman group,” in GLOBECOM’03. IEEE Global
Telecommunications Conference (IEEE Cat. No. 03CH37489), vol. 3.
IEEE, 2003, pp. 1491–1495.

[6] M. Ben-Or, “Another advantage of free choice (extended abstract):
Completely asynchronous agreement protocols,” in Proceedings of the
second annual ACM symposium on Principles of distributed computing.
ACM, 1983, pp. 27–30.

[7] M. Ben-Or and R. El-Yaniv, “Resilient-optimal interactive consistency
in constant time,” Distributed Computing, vol. 16, no. 4, pp. 249–262,
2003.

[8] M. Ben-Or, B. Kelmer, and T. Rabin, “Asynchronous secure computa-
tions with optimal resilience,” in Proceedings of the thirteenth annual
ACM symposium on Principles of distributed computing. ACM, 1994,
pp. 183–192.

[9] A. Boldyreva, “Threshold signatures, multisignatures and blind sig-
natures based on the gap-diffie-hellman-group signature scheme,” in
International Workshop on Public Key Cryptography. Springer, 2003,
pp. 31–46.

[10] G. Bracha, “An asynchronous [(n-1)/3]-resilient consensus protocol,”
in Proceedings of the third annual ACM symposium on Principles of
distributed computing. ACM, 1984, pp. 154–162.

[11] V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” white paper, vol. 3, no. 37, 2014.

[12] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and efficient
asynchronous broadcast protocols,” in Annual International Cryptology
Conference. Springer, 2001, pp. 524–541.

[13] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in constantino-
ple: practical asynchronous byzantine agreement using cryptography,” in
19th Annual ACM Symposium on Principles of Distributed Computing,
2000.

[14] C. Cachin and S. Tessaro, “Asynchronous verifiable information dis-
persal,” in 24th IEEE Symposium on Reliable Distributed Systems
(SRDS’05). IEEE, 2005, pp. 191–201.

[15] C. Cachin and M. Vukolic, “Blockchain consensus protocols in the wild
(keynote talk),” in Proc. DISC 2017.

[16] R. Canetti and T. Rabin, “Fast asynchronous byzantine agreement with
optimal resilience,” in Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing, 1993, pp. 42–51.

[17] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OSDI, vol. 99, 1999, pp. 173–186.

[18] M. Correia, N. F. Neves, and P. Veríssimo, “From consensus to atomic
broadcast: Time-free byzantine-resistant protocols without signatures,”
The Computer Journal, vol. 49, no. 1, pp. 82–96, 2006.

14

[19] S. Das, Z. Xiang, and L. Ren, “Asynchronous data dissemination and its
applications,” in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2020.

[20] D. Dolev and R. Reischuk, “Bounds on information exchange for
byzantine agreement,” Journal of the ACM (JACM), vol. 32, no. 1, pp.
191–204, 1985.

[21] S. Duan, M. K. Reiter, and H. Zhang, “Beat: Asynchronous bft made
practical,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2018, pp. 2028–2041.

[22] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process.” Massachusetts Inst of
Tech Cambridge lab for Computer Science, Tech. Rep., 1982.

[23] G. Bracha, “Asynchronous byzantine agreement protocols,” Information
and Computation, vol. 75, no. 2, pp. 130–143, 1987.

[24] A. Gągol, D. Leśniak, D. Straszak, and M. Świętek, “Aleph: Efficient
atomic broadcast in asynchronous networks with byzantine nodes,” in
Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, 2019, pp. 214–228.

[25] R. Gelashvili, L. Kokoris-Kogias, A. Sonnino, A. Spiegelman, and
Z. Xiang, “Jolteon and ditto: Network-adaptive efficient consensus with
asynchronous fallback,” arXiv preprint arXiv:2106.10362, 2021.

[26] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster
asynchronous bft protocols,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, 2020, pp. 803–
818.

[27] A. Kate, Y. Huang, and I. Goldberg, “Distributed key generation in the
wild,” IACR Cryptol. ePrint Arch., vol. 2012, p. 377, 2012.

[28] I. Keidar, E. Kokoris-Kogias, O. Naor, and A. Spiegelman, “All you need
is dag,” in Proceedings of the 2021 ACM Symposium on Principles of
Distributed Computing, 2021, pp. 165–175.

[29] E. Kokoris Kogias, D. Malkhi, and A. Spiegelman, “Asynchronous
distributed key generation for computationally-secure randomness, con-
sensus, and threshold signatures.” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, 2020,
pp. 1751–1767.

[30] K. Kursawe and V. Shoup, “Optimistic asynchronous atomic broadcast,”
in International Colloquium on Automata, Languages, and Program-
ming. Springer, 2005, pp. 204–215.

[31] Y. Lu, Z. Lu, and Q. Tang, “Bolt-dumbo transformer: Asynchronous
consensus as fast as pipelined bft,” arXiv preprint arXiv:2103.09425,
2021.

[32] Y. Lu, Z. Lu, Q. Tang, and G. Wang, “Dumbo-mvba: Optimal multi-
valued validated asynchronous byzantine agreement, revisited,” in Pro-
ceedings of the 39th Symposium on Principles of Distributed Computing,
2020, pp. 129–138.

[33] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of bft protocols,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 31–42.

[34] A. Mostéfaoui, H. Moumen, and M. Raynal, “Signature-free asyn-
chronous binary byzantine consensus with t< n/3, o (n2) messages, and
o (1) expected time,” Journal of the ACM (JACM), vol. 62, no. 4, p. 31,
2015.

[35] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[36] R. Pass and E. Shi, “Rethinking large-scale consensus,” in 2017 IEEE

30th Computer Security Foundations Symposium (CSF). IEEE, 2017,
pp. 115–129.

[37] Pass, Rafael and Shi, Elaine, “Thunderella: Blockchains with optimistic
instant confirmation,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 2018, pp.
3–33.

[38] A. Patra, A. Choudhary, and C. Pandu Rangan, “Simple and efficient
asynchronous byzantine agreement with optimal resilience,” in Proceed-
ings of the 28th ACM symposium on Principles of distributed computing,
2009, pp. 92–101.

[39] A. Patra and C. P. Rangan, “Communication optimal multi-valued asyn-
chronous byzantine agreement with optimal resilience,” in International
Conference on Information Theoretic Security, 2011, pp. 206–226.

[40] M. O. Rabin, “Randomized byzantine generals,” in 24th Annual Sym-
posium on Foundations of Computer Science (sfcs 1983). IEEE, 1983,
pp. 403–409.

[41] H. V. Ramasamy and C. Cachin, “Parsimonious asynchronous byzantine-
fault-tolerant atomic broadcast,” in International Conference On Princi-
ples Of Distributed Systems. Springer, 2005, pp. 88–102.

[42] M. K. Reiter, “Secure agreement protocols: Reliable and atomic group
multicast in rampart,” in Proceedings of the 2nd ACM Conference on

Computer and Communications Security, 1994, pp. 68–80.
[43] N. Shrestha, I. Abraham, L. Ren, and K. Nayak, “On the optimality of

optimistic responsiveness,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, 2020, pp. 839–
857.

[44] L. Yang, S. J. Park, M. Alizadeh, S. Kannan, and D. Tse, “Dispers-
edledger: High-throughput byzantine consensus on variable bandwidth
networks,” arXiv preprint arXiv:2110.04371, 2021.

[45] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“Hotstuff: Bft consensus in the lens of blockchain,” arXiv preprint
arXiv:1803.05069, 2018.

APPENDIX A
SIMPLE CONVERSIONS FROM ACS TO
ASYNCHRONOUS ATOMIC BROADCAST

Given ACS, there are several simple ways to asynchronous
atomic broadcast. Here we introduce a couple of them:

• The most simple conversion from ACS to atomic
broadcast can be found in the seminal work of Cachin
et al. [12]. That is to sequentially execute ACS in-
stances: in each ACS, a node simply proposes the
transactions in front of its transaction pool (a.k.a.,
transaction backlog or buffer) as ACS input, and then
every node removes the ACS output from its local
transaction pool and repeats the process in the next
ACS instance. In worst case, the nodes might propose
redundant transactions to ACS, such that the ACS
output probably can only cover a small number of
transactions instead of a large batch.

• Observing the redundant communications in Cachin
et al.’s approach, Miller et al. [33] proposed a way
of using ACS for batching consensus at the help
of threshold encryption. The main idea is still to
sequentially execute ACS instances, but it also adds
threshold encryption (resp. threshold decryption) be-
fore (resp. after) the ACS instance. Now, instead of
deterministically proposing the transactions in front
of transaction pool as ACS input, each node now ran-
domly choose 1/n transactions out of B transactions
in front of backlog (where B > n is a batch size
parameter), and uses threshold encryption to encrypt
the chosen transactions, takes the ciphertext as ACS
input, after the ACS output a set of ciphertexts, all
nodes collectively perform threshold decryption to
decrypt the ACS output to form a block to output
in atomic broadcast. This would minimize the chance
that different nodes propose overlapped inputs in ACS,
thus improving the communication efficiency of the
reduction from atomic broadcast to ACS by an

(
n)

order while preserving the critical liveness.

We adopt the latter conversion from Miller et al. to con-
struct asynchronous atomic broadcast throughout the paper,
because of its asymptotically better communication efficiency.
Nevertheless, once some novel reductions from atomic broad-
cast to ACS (or MVBA) can be invented with demonstrated
security and efficiency (e.g., [44]), we can naturally instantiate
them with using our ACS (or MVBA) result.

APPENDIX B
ADAPTING DOLEV-REISCHUK BOUND TO

15

DETERMINISTIC RELIABLE BROADCAST

Recall that the properties of reliable broadcast are agree-
ment, totality and validity. Here agreement means that if any
two honest nodes output, they must output the same value; to-
tality requires that if any honest node outputs, all honest nodes
would output; validity ensures that if the sender is honest,
then all honest nodes would output. The latter two properties
are “eventual” as they are conditioned on that the adversary
eventually delivers all messages sent among honest nodes.
Here at a high level, we explain how to slightly adapt the
proof of Dolev-Reischuk bound [20] and thus prove the O(f2)
message lower-bound of deterministic reliable broadcasts with
respect to any adversary controlling up to f nodes.

First consider the next execution. The adversary controls a
set of f/2 nodes (excluding the sender). Let V denote these
f/2 corrupted nodes and U denote the else honest nodes.
The adversary specifies the corrupted nodes in V to behave
nearly same to be honest, but with only two exceptions: (i)
the corrupted nodes ignore the earliest f/2 messages sent to
them; (ii) they stop sending messages to each other. Since the
sender is not corrupted, for validity and agreement to hold, all
nodes in U must output the value same to the sender’s input.
If only (f/2)2 or less messages are sent to the nodes in V ,
then we can assert that at least one node Px in V receives f/2
or less messages.

Then consider the following slightly different execution.
The adversary makes some minor changes to her strategy, in
particular, it no longer corrupts Px but instead corrupts all
nodes that send messages to Px in the former execution. Note
that these nodes send messages to Px in the former execution
are all in the set U and their number is at most f/2, so the
adversary controls at most f nodes in the current execution.
Now the adversary prevents the newly corrupted nodes in U
from sending messages to Px.

Observe that there exists some node Py in the set U that
is honest in both executions, and Py must receive the same
messages and thus output the same value in the two executions.
For totality and agreement to hold, all honest nodes in the latter
execution, including Px, must output the value same to Py’s
output (because Py outputs). But Px unfortunately receives
no message in the second execution, causing it impossible to
remain agreement anyhow, because the output of other honest
nodes can always be opposite to its. As such, it is impossible
to guarantee all three properties of a deterministic reliable
broadcast protocol against a byzantine adversary controlling up
to f nodes, if the number of sent messages is at most (f/2)2.
I.e., when f is optimal as equal to n/3, any deterministic
reliable broadcast needs O(n2) messages to be secure.

APPENDIX C
NON-INTERACTIVE THRESHOLD SIGNATURE

Non-interactive (n, t) threshold signature (TSIG) is a
tuple consisting of the following algorithms or protocols:

• Key generation: KeyGen(1λ, n, t) → {mpk, PK,
SK}. Given a security parameter λ, the algorithm or
protocol generates a master public key mpk, a vector
of public keys PK := (pk1, · · · , pkn), and a vector
of secret keys SK := (sk1, · · · , skn);

• Signing algorithm: SignSharet(ski,m) → σi. On
input a message m and a secret key share ski, this
deterministic algorithm outputs a signature share σi;

• Share verification: VerifySharet(m, (i, σi)) → 0/1.
Given a message m, a signature share σi, an index
i and the implicit mpk and PK, this deterministic
algorithm outputs 1 if σi is correctly computed by
SignSharet(ski,m), otherwise, it outputs 0;

• Combining algorithm: Combinet(m, {(i, σi)}i∈S) →
σ/⊥. Given a list of pairs {(i, σi)}i∈S , where S ⊂ [n]
and |S| = t, this algorithm outputs either a signature
σ for message m, or ⊥ only if {(i, σi)}i∈S contains
any invalid signature share (i, σi) for m (that cannot
pass share verification);

• Signature verification: VerifyThldt(m,σ) → 0/1.
Given a message m, a signature σ and the implicit
mpk and PK, this algorithms outputs 1 if σ is a valid
signature for m, otherwise, it outputs 0.

The (n, t) threshold signature satisfies the next properties:

• Unforgeability: For any message m, polynomial-time
adversary can forge a signature that can be verified
(by honest nodes), unless t − f honest nodes send
their signature shares for m to the adversary, where
f represents the number of nodes corrupted by the
adversary;

• Robustness: When a message m is provided as the
input to sign, it is infeasible for the adversary to gen-
erate t valid signature shares such that the combining
algorithm cannot aggregate them to form a valid full
signature.

APPENDIX D
DEFERRED PROOFS FOR THE NEW ACS FRAMEWORK

Here down below are the deferred proofs for the securities
of our new ACS framework presented in Algorithm 1.

Proof outline: To prove Termination, we need to ensure that
all honest nodes would not get stuck in any phase of the
protocol, namely, all honest nodes can enter and then exit
MVBA (Lemma 1) and all honest nodes can base on the MVBA
output to recover any broadcasted values that shall be output
but they do not receive (Lemma 3), thus always making the
output. For Agreement, we first prove that all nodes get the
same output after the MVBA (Lemma 2), and then show that
all honest nodes would receive the same broadcasted value
corresponding to each PB, no matter they directly receive the
value from PB or recover the value via the recovery phase
(Lemma 4). For Validity, the external validity of MVBA and
the provability of PB ensure that the final output can solicit at
least n− 2f honest nodes’ input values.

Remark that the following lemmas might be conditioned on
secure MVBA and PB, collision-resistant hash and (f + 1, n)
erasure-coding, and hold with all but negligible probability.13

We might omit these conditions in the lemmas for brevity.

13In a (f + 1, n) erasure-coding scheme, a value can be encoded into n
fragments in a deterministic manner, and it later can be recovered from any
f + 1 fragments. The MVBA and PB protocols used in the paper also rely
on secure non-interactive threshold signature.

16

Lemma 1: All honest nodes would invoke the MVBA
instance, and then get some output W from MVBA.

Proof: There are at least n − f honest nodes, each of
which can eventually complete a PB as the sender and then
multicast the corresponding lock proof. That means, all honest
node can at least receive n− f valid lock proofs multicasted
by these honest nodes, thus invoking the MVBA instance with
valid inputs, otherwise, the termination property of PB would
be violated. After all honest nodes invoke MVBA with valid
inputs, they all will get the output W of MVBA, otherwise,
the termination property of MVBA would be violated.

Lemma 2: All honest nodes would get the same W output
by MVBA s.t. VerifyThld(2f+1)(〈ID, `〉, h`, σ̄`) = 1 for each
(s̄`, h̄`, σ̄`) ∈W .

Proof: The output W of any two nodes is the same be-
cause of the agreement of MVBA. Due to Lemma 1, all nodes
output some W . So all honest nodes would output the same
W , otherwise, either Lemma 1 or the agreement of MVBA
is violated. Moreover, every element in the unique output
W satisfies VerifyThld(2f+1)(〈ID, `〉, h`, σ̄`) = 1, because the
external validity condition of MVBA is specified to reject any
W that does not satisfy this.

Lemma 3: If an honest node does not get the output value
of PB[〈ID, `〉] when MVBA returns W containing (s̄`, h̄`, σ̄`),
the node still can recover the output value v` of PB[〈ID, `〉]
via the recovery phase s.t. H(v`) = h̄`.

Proof: Due to Lemma 2, every (s̄`, h̄`, σ̄`) ∈W satisfies
VerifyThld(2f+1)(〈ID, `〉, h`, σ̄`) = 1. So even if some honest
node does not get the output value of PB[〈ID, `〉], at least
f + 1 honest nodes shall already receive the same v` s.t.
H(v`) = h̄`, otherwise, the provability of PB is violated.
As such, the honest node can at least receive f + 1 valid
(H`, b`j ,m

`
j) carrying the same Merkle root H`, because the

honest nodes holding v` will send them through the Help
messages during the recovery phase. Then, the node can
recover a value v′` corresponding to PB[〈ID, `〉] from these
f + 1 valid (H`, b`j ,m

`
j). Moreover, the Merkle root H` must

be computed by some honest nodes (because at most f nodes
are corrupted), so v′` = v` due to the collision resistance of
Merkle tree and the correctness of erasure code.

Lemma 4: For any (s̄`, h̄`, σ̄`) ∈W output by MVBA, any
two honest nodes can receive the same corresponding value v`
(either directly from PB[〈ID, `〉] or from the recovery phase).

Proof: Lemma 2 states that each (s̄`, h̄`, σ̄`) ∈ W
satisfying VerifyThld(2f+1)(〈ID, `〉, h`, σ̄`) = 1, so at least
f + 1 honest nodes can directly get the corresponding value
v` from the PB[〈ID, `〉] instance. For any other honest nodes
that do not receive v` from PB[〈ID, `〉], Lemma 3 states that
they can recover the same v`. So no matter the honest nodes
receive v` in which manner, v` is unique.

Theorem 1: The ACS protocol presented in Algorithms 1
satisfies Termination, Agreement and Validity, conditioned on
secure MVBA and PB, collision-resistant hash function, and
(f + 1, n) erasure-code.

Proof: Termination is immediate from Lemma 1 and 3.
Because Lemma 1 states that all honest nodes would get
the output of MVBA, and Lemma 3 states that every honest

node can receive the broadcasted values corresponding to all
elements in W , and thus must terminate.

Agreement is immediate from Lemma 2 and 4. Because
Lemma 2 states that all honest nodes get the same W , and
Lemma 4 states that for every element in W , all honest nodes
can get the same value in their final output set.

Validity is immediate from the external validity of MVBA
and the properties of PB. Because the external validity condi-
tion of MVBA is specified to pick a W vector containing at
least (n − f) valid PB lock proofs. Out of the (n − f) lock
proofs in W , at least n− 2f are related to honest PB senders,
so the final output is a superset of at least n−2f honest nodes’
input values.

APPENDIX E
DEFERRED PROOFS FOR SPEEDING MVBA

We now prove that the sMVBA protocol presented in
Algorithms 3, 4 and 5 satisfies the Termination, Agreement and
Validity properties of MVBA. Besides these standard MVBA
properties proposed in [12], we will also prove that sMVBA
satisfies an extra Quality property as a by-product. The Quality
property was recently proposed in [4] and it ensures that the
output is from honest nodes with a constant probability (e.g.
1/2), while MVBA without Quality might face an issue that
the output is always proposed by some corrupted nodes.

Termination proof outline: First, as a basic preparation, we
need to make sure all honest nodes do not get stuck in any
phase of the protocol (Lemma 6). However, not being stuck is
not enough for termination, it could be that all honest nodes
repeat iterating in each view of the protocol but never output,
so we further argue that: (1) If all honest nodes enter a view, all
of them output in the view with a constant probability (Lemma
7, 8 show the protocol terminate in each view with probability
2/3); (2) If no honest node outputs and halts in the current
view R, we will further argue that all honest nodes have a
valid value as input to enter next view to repeat the previous
process (Lemma 6 and Corollary 1); (3) If not all honest nodes
enter the current view R (e.g., some of them already output),
we demonstrate that all honest nodes still can eventually output
(i.e., Case-II of Theorem 2 shows all other honest nodes can
terminate once receiving some valid Halt message).

Put these together, the protocol can make sure terminate
with expected constant views. Below are the detailed proofs.

Lemma 5: If all honest nodes start the sMVBA with exter-
nally valid values in view R, then: if an honest node invokes
Election[〈id,R〉], then at least 2f + 1 SPB[〈id,R, j〉] instances
have completed (i.e., 2f + 1 or more SPB instances have sent
valid Lock proofs to at least f + 1 honest nodes), assuming
the SPB protocol is secure.

Proof: Suppose an honest node Pi invokes Election[〈id,
R〉], i.e., mulitcast a SHARE message, then it means that (1)
Pi receives 2f + 1 valid FIN messages from distinct nodes, or
(2) Pi receives f + 1 Done messages from distinct nodes.

For case 1, since Pi already receives 2f + 1 distinct
valid FIN messages that contain 2f + 1 distinct valid Finish.
Considering the provability of SPB, at least 2f+1 SPB’s Lock
proofs have reached at sufficient f+1 honest nodes, otherwise,
the provability of at least one SPB instance is violated.

17

For case 2, Pi receives f + 1 Done messages, only if at
least one Done message is sent by some honest node Pj (as
the adversary corrupts at most f nodes). This indicates Pj
either has received 2f + 1 distinct valid FIN messages or has
received f + 1 distinct Done messages. If Pj receives 2f + 1
valid FIN, it is reduced to case 1; otherwise, it is another case
2, while we can repeatedly reduce the case, until reducing it
to that the first honest nodes multicasts a valid Done message,
i.e., making it completely reduced to case 1.

Lemma 6: Assuming that the underlying threshold signa-
ture, SPB and Election are all secure, then: if all honest nodes
start the sMVBA with externally valid values in view R, then
no honest nodes will be stuck in any phase of current view R
(in case the short-cut output condition in line 16 Algorithm 5
is not added); besides, if no honest node outputs and halts in
current view R, then all honest nodes will also have externally
valid value at next view R+1.

Proof: Assuming that all honest nodes start the sMVBA
with externally valid values in view R, no honest node has
output and halted before view R, and each of them would
invoke a SPB instance with valid input.

So we consider the following two cases in the current view
R: (1) if no honest node abandons SPB, from the termination
of SPB, at least n−f honest nodes can receive the valid Finish
from their SPB instances and then multicast the Finish to all
honest nodes, hence all honest nodes can enter the election
phase to multicast a Done message and invoke the Election
protocol; (2) if some honest node abandons the SPB instances,
the node must receive 2f+1 valid Done messages from distinct
nodes, which can attest at least f + 1 honest nodes multicast
the Done message, by the code, all honest nodes can receive
at least f + 1 Done messages and enter the election phase to
multicast a Done message and invoke the Election protocol.
As such, all nodes would multicast Done message and invoke
leader election in either case.

Hence, all honest nodes will invoke Election[〈id,R〉]. Due
to the termination of Election, all honest nodes can exit
Election phase and then enter the PreVote and Vote phase.
Then, since the short-cut output condition is turned off, all
honest nodes would multicast a valid PreVote message, and
therefore every honest node can receive at least 2f + 1 valid
PreVote messages: if all received PreVote messages are valid
PreVote-No, the honest node can aggregate them due to the
robustness of threshold signature, and then multicast Vote-No;
else, the honest node simply multicasts Vote-Yes. So every
honest node can receive at least 2f + 1 valid Vote messages,
and again: if all received Vote messages are valid Vote-No,
the honest node can aggregate them due to the robustness
of threshold signature, and take the aggregated signature to
the next view to form a valid input regarding SPB’s external
predicate in the next view; else, it either outputs, or receives
a Vote-Yes message containing a proof that can be taken into
the next view to form a valid SPB input.

It is immediate to have the next corollary from Lemma 6.

Corollary 1: Suppose all honest nodes start the sMVBA
protocol with externally valid values, and no honest node
outputs and halts after the view R, then all honest nodes will
also have externally valid value at view R+1 for any R ≥ 1,

assuming the underlying threshold signature, SPB and Election
are secure.

Lemma 7: Suppose all honest nodes participate in some
view R, at the time when someone learns the view’s leader
` = Election[〈id,R〉], if a valid Finish := (v`, σ2) satisfying
VerifyThld(2f+1)(〈〈〈id,R, `〉, 2〉,H(v`)〉, σ2) = 1 has been
produced, then all honest nodes will output the same value v`
and halt in view R (in case of no short-cut added), assuming the
underlying threshold signature, SPB and Election are secure.

Proof: Since the threshold of Election is 2f+1, if Election
returns `, there must be at least f+1 honest nodes have already
invoked leader election with multicasting a Done message in
the current view R (thus all honest nodes will participate in the
Election), otherwise, the unpredictability of leader election is
violated. At the moment when Election returns `, if someone
can produce a valid Finish := (v`, σ2), it implies that at least
f + 1 honest nodes has already delivered a valid Lock :=
(v`, σ1) message, otherwise, the provability of SPB is violated.

Hence, at least f + 1 honest nodes, who have re-
ceived the valid Lock := (v`, σ1), will multicast valid
(PreVote, id,R, `,Yes, v`, σ1) message. So once any node so-
licits 2f + 1 PreVote messages, there must contain a valid
(PreVote, id,R, `,Yes, v`, σ1) message. Thus, all honest nodes
will multicast the (Vote, id,R, `,Yes) message.

Due to the threshold of σPN is 2f + 1, in order to generate
a valid σPN to form valid (Vote, id,R, `,No), each node
needs to receive 2f + 1 valid (PreVote, id,R, `,No) messages
from distinct nodes. So it is computationally infeasible for
the adversary to generate valid (Vote, id,R, `,No), because
at least f + 1 honest nodes send (PreVote, id,R, `,Yes). So
(Vote, id,R, `,Yes) is the only computable Vote message.

Moreover (when no short-cut is added), all honest nodes
will multicast (Vote, id,R, `,Yes) message, and thus all of
them can receive at least 2f + 1 (Vote, id,R, `,Yes) messages
without receiving any valid (Vote, id,R, `,No). So all honest
nodes will output value v` and halt in view R.

Lemma 8: Lemma 7 also holds if the short-cut (i.e. the
output condition in line 16 Algorithm 5) is added.

Proof: While proving Lemma 7, we see that if someone
can produce a valid Finish := (v`, σ2) associated to the elected
SPB, (Vote, id,R, `,Yes) is the only valid form of Vote in the
current view R. We therefore add a short-cut to enable faster
output in this case. I.e., if any honest node P receives the valid
Finish, it can skip the PreVote and Vote phases, and multicasts
a Halt message carrying the Finish, then immediately outputs
with halt; other honest nodes either output the same value in
the current view R if receiving 2f + 1 (Vote, id,R, `,Yes), or
they at worst cannot get enough (Vote, id,R, `,Yes). In the
latter worse case, recall that P already multicasts the Halt
message carrying Finish, the honest nodes still can receive
Finish and then output the value associated to the selected
SPB in view R according to Finish instead of according to
2f + 1 (Vote, id,R, `,Yes).

Theorem 2: Termination. If all honest nodes take some
values that are externally valid due to Q, then each honest node
would output a value, assuming that the underlying threshold
signature, SPB and Election are secure.

18

Proof: We prove that the theorem is true in the following
two cases, respectively.

Case 1. Suppose no honest node outputs and halts before
view R, since all honest nodes start the sMVBA with externally
valid values, according to Corollary 1, all honest nodes still
have externally valid values in current view R, then from
Lemma 6, no honest nodes will be stuck in any phase of
cueernt view R.

Due to any honest node will not be stuck in any phase of
current view R, so each nodes can invoke the Election[〈id,R〉],
from Lemma 5, at least n− f SPB instances have completed,
suppose Election[〈id,R〉] returns `, then the probability that
SPB[〈id,R, `〉] have completed is p = 2/3, which also means
the SPB[〈id,R, `〉] produces a valid Finish := (v`, σ2), it also
implies that with probability 2/3, all honest nodes will output
value v` and halt in current view R according to Lemma 8.

Now, we prove that the protocol terminates after sequen-
tially running in continuous views. Let the event Ek represents
that the protocol does not terminate when Election[〈id, k〉] has
been invoked, so the probability of the event Ek is less than
(1−p)k. It is clear that limk→∞ Pr[Ek] ≤ limk→∞(1−p)k =
0, so the protocol eventually halts. Moreover, let K be the
random variable that the protocol just terminates when k = K,
so E [K] ≤

∑∞
K=1K(1 − p)K−1p = 1/p = 3/2, indicating

the protocol terminates in expected constant time.

Case 2. Suppose some honest node P outputs and halts
before view R. By line 26 in Algorithm 3 and lines 16 and 22
in Algorithm 5, it must multicast a valid Halt message. Due to
lines 18-22 in Algorithm 5, any honest node can immediately
output, once it receives the valid Halt message sent by P . So
in this case, if some honest nodes get stuck in the next view
R′ > R, the Halt message sent by P still can be eventually
delivered and thus ensure all honest nodes to output.

Agreement proof outline: The agreement needs to ensure that
any two honest nodes Pi and Pj output the same. (1) We first
prove that if some Pi node outputs in view R after receiving
a valid Finish from the elected leader, then Pj must output
the same value in the current view R: our two-phase Yes-No
voting via threshold signature prevents the forgery of any fake
Vote-No message, thus ensuring all nodes to receive sufficient
Vote-Yes messages to output elected leader’s SPB input in the
current view R (Lemma 9). (2) Then, we prove if Pi outputs in
view R because of receiving a valid Halt message (2f+1 valid
(Vote, id,R, `,Yes)), then Pj either outputs the same value in
the current view R or outputs the same value in some later
view R′ > R. This is because Pj must receive an unforgeable
SPB proof to either output in the current view, or use as the
next view’s input, cf. Lemma 10 (resp. Lemma 11).

Lemma 9: Suppose all honest nodes participate in view R
and Election[〈id,R〉] = `, if an honest node Pi has received a
valid (FIN, id,R,Finish) message from the elected leader P`
when it learns `, then all honest nodes output the same value
v` in the current view R.

Proof: Since an honest node Pi has received a valid
(FIN, id,R,Finish) message from the elected leader P` when it
learns the output of Election is ` and the threshold of Election
is 2f + 1, then we can consider the following two cases:

Case 1. The elected node P` has produced the valid Finish
when f + 1 honest nodes invoke leader election;

Case 2. The elected node P` has not produced the valid
Finish when f + 1 honest nodes invoke ` (but it produces the
valid Finish later).

Case 1 follows Lemma 8, because it states that if the valid
Finish is produced when anyone learns `, all honest nodes
would output the same value in the current view.

For case 2, we would discuss by the next two situations:
(2.1) at least f + 1 honest nodes have received Lock proofs
when f + 1 honest nodes learn `; (2.2) less than f + 1 honest
nodes have received Lock proofs when f + 1 honest nodes
learn `. In case (2.1), at least f+1 honest nodes will multicast
(PreVote,Yes), then it can make sure all honest nodes would
multicast (Vote,Yes), so all honest nodes would output the
same value and halt in current R, the analysis of which is
similar to the proving for Lemma 7 and 8 and can be reduced
to the unforgeability of threshold signature. In case (2.2), since
an honest node abandons all SPB instances after it learns `, so
once f+1 honest nodes learn `, then at least f+1 honest nodes
have abandoned all SPB instances. Due to the abandonability
of SPB, at most f honest nodes can receive valid Lock proof
since then, and thus it becomes computationally infeasible for
anyone to produce a valid Finish, otherwise, it breaks the
provability of SPB to forge a Finish while only f honest
parties receive valid Lock. In sum, case (2.2) has a negligible
probability to occur, and case (2.1) ensures that all honest
parties to output the same value in the current view.

Lemma 10: Suppose all honest nodes participate in view
R and Election[〈id,R〉] = `, if an honest node Pi outputs v` in
view R because of receiving 2f + 1 valid (Vote, id,R, `,Yes)
messages from distinct nodes, then any other honest node
either outputs the same value v` in the current view R or takes
value v` into view R′ and v` is the unique valid SPB input in
view R′ for any R′ > R, assuming the underlying threshold
signature, SPB and Election are secure.

Proof: Since Pi receives 2f + 1 valid (Vote, id,R, `,Yes)
messages from distinct nodes, it means that at least f+1 honest
nodes multicast valid (Vote, id,R, `,Yes) message, hence, for
any nodes, it is computationally infeasible to generate a valid
σVN proof which is due to the threshold of σVN is 2f + 1, it
also means any (No,R, σVN) is invalid. Hence, for any other
honest node Pj , it will either (1) output in the same view, or
(2) receive at least one valid (Vote, id,R, `,Yes, v`, σ1, ρ2,j)
message out of n− f received valid Vote messages and thus
use v` and π = {(Yes,R, σ1)} to enter view R + 1, where
VerifyThld(2f+1)(〈〈〈id,R, `〉, 1〉,H(v`)〉, σ1) = 1.

For case 1, suppose some node Pj also outputs in the same
view, it then: (1.1) receives 2f + 1 valid (Vote, id,R, `,Yes)
messages, or (1.2) receives a valid (FIN, id,R,Finish) message,
or (1.3) receives a valid (Halt, id,R,Finish) message. In case
(1.1), Pj would output v`, otherwise there exists an honest
node sends two different (Vote, id,R,Yes) messages to Pi and
Pj . In case (1.2), Lemma 9 makes sure Pj would output
the elected SPB’s input value v`. In case (1.3), the valid
(Halt, id,R,Finish) message contains a valid Finish proof
regarding the elected SPB, and if Pj outputs a value different
to the elected SPB’s input, the provability of SPB is broken.

19

For case 2, suppose some node Pj takes value (vj , π)
to enter view R + 1, where vj 6= v`. From previous
analysis we know: it doesn’t exist any valid (No,R, σVN)
message, hence, (Yes,R, σ′1) ∈ π, it also implies that
|π| = 1. If (vj , π) is a valid value in view R + 1, then
CheckValue(〈id,R + 1, j〉, vj , σ′1) = 1, it also means that
VerifyThld(2f+1)(〈〈〈id,R, `〉, 1〉,H(vj)〉, σ′1) = 1.

Since Election[〈id,R〉] = ` and VerifyThld(2f+1)(〈〈〈id,R,
`〉, 1〉,H(v`)〉, σ1)=1, following provability of SPB, we have
vj = v` and v` is the unique valid value in the view R + 1.

Considering in view R+2, some honest nodes Pi still have
not output, and according to Algorithm 3 and 5, the valid π
only have the next two possible cases:

Case 2.1. π = {(Yes,R, σ1), (No,R + 1, σVNR+1
)}

Case 2.2. π = {(Yes,R + 1, σ′1)}.

For case (2.1), due to (Yes,R, σ1) ∈ π and according to
the Alg. 4 and previous analysis, the value v` is the unique
value which satisfies CheckValue(〈id,R + 2, i〉, v`, π) = 1.

For case (2.2), suppose Election[〈id,R + 1〉] = `′ in view
R + 1. Due to π = {(Yes,R + 1, σ′1)}, it implies that node Pi
received a valid (Vote, id,R+ 1, `′,Yes, v`′ , σ

′
1, ρ
′
2,j) message,

it also means that node P`′ produced a valid Lock message.
Hence, P`′ has a valid input v`′ in view R+1. However, from
previous analysis, we know the v` is the unique valid input
value in view R + 1, hence, v` = v`′ , so, the σ′1 is a proof
corresponding to the value v`.

In sum, the value v` is the unique value in both cases
which satisfies the CheckValue predicate. For any R′ > R+ 2,
a similar analysis can be done and prove v` is the unique valid
value regarding the predicate of SPBs in view R′.

Lemma 11: Suppose all honest nodes participate in view
R and Election[〈id,R〉] = `, if an honest node Pi outputs v`
because of receiving a valid (Halt, id,R,Finish) message s.t.
Finish := (v`, σ2), then all honest nodes either output the same
value v` in current view R, or take value v` into view R′ as
v` is the unique valid SPB input in view R′ for any R′ > R,
assuming the underlying threshold signature, SPB and Election
are secure.

Proof: Since all honest nodes participate in view R and
an honest node Pi receives a valid (Halt, id,R,Finish), then it
means the Finish was produced in the current view R either (1)
by the sender P` or (2) by aggregating 2f + 1 valid Vote-Yes.

For case 1, we can know all honest nodes output the same
value in current view by the same analysis with Lemma 9.

For case 2, at least f+1 honest nodes multicast valid Vote-
Yes messages, so it is computationally infeasible to generate
a valid σVN proof which is due to the threshold of σVN is
2f + 1, it also means any (No,R, σVN) message is invalid.
Then, similar to the proving to Lemma 10, the honest nodes
either output the same value in the current view, or take value
v` into view R′ as v` is the unique valid SPB input in view
R′ for any R′ > R.

Lemma 12: Suppose all honest nodes participate in view
R and Election[〈id,R〉] = `, if some honest nodes output in
the current view R, they output the same value v`, while for

all other honest nodes who have not output in view R, v`
is the unique valid SPB input in view R′ for any R′ > R,
assuming the underlying threshold signature, SPB and Election
are secure.

Proof: Suppose no honest node outputs before view R,
and there exists an honest node Pi that outputs a value v` in
view R due to one of the following three cases: (1) Pi has
received a valid (FIN, id,R,Finish) message from the elected
leader P` when it learns `; (2) the node Pi does not receive any
valid Finish corresponding to SPB[〈id,R, `〉], but it receives
2f+1 valid (Vote, id,R, `,Yes) messages from distinct nodes;
(3) the node Pi receives a valid (Halt, id,R,Finish) message.
Lemma 9 guarantees the lemma to be hold in case 1, Lemma
10 makes sure the lemma to be hold in case 2, and Lemma
11 ensures the lemma to be hold in case 3.

Theorem 3: Agreement. If any two honest nodes output,
their output values would be same, assuming the underlying
threshold signature, SPB and Election are secure.

Proof: Now suppose that an honest node P is the first
node that outputs some value v in some view R. For any other
honest node P ′, if P ′ also outputs in view R, the first part of
Lemma 12 ensures its output to be v; if P ′ outputs in some
view R′ > R, the second part of Lemma 12 ensures that v is
the only possible output of P ′, because any v′ 6= v will be
rejected by SPBs after view R.

Theorem 4: External-Validity. If an honest node outputs
a value v, then v is valid for Q, i.e., Q(v) = 1, assuming the
underlying SPB is secure.

Proof: According to Algorithm 2, when a node inputs v
into SPB, it always satisfies Q(v) = true, otherwise, the value
cannot be output by SPB due to the external validity of SPB.
Therefore, the external-validity trivially holds.

A remark on adaptive security: Our sMVBA (and sDumbo)
can also be adaptively secure, given threshold signature that is
unforgeable against adaptive adversaries, which is similar to
many existing asynchronous BFT protocols [4, 12, 32]. The
leader election primitive can also be secure against adaptive
adversary, as long as it is built from adaptively secure threshold
signature. Similarly, SPB and PB enjoy termination (as long
as the sender has not been corrupted), satisfy provability (if
using adaptively secure threshold signature).

Considering that the adaptive adversary corrupting at most
f nodes, that means there are at least n − f nodes that are
always honest during the protocol execution (called forever-
honest nodes). So in sMVBA, the senders of at least 2f + 1
SPB instances are forever-honest nodes, if they do not abandon
SPB, they all will complete the SPB and send n − f Finish
messages to all so-far honest nodes; else, some forever-honest
node abandons SPB because of receiving n−f FIN messages,
which indicates at least n− 2f ≥ f + 1 forever-honest nodes
multicast FIN messages thus all so-far honest nodes can receive
at least f + 1 FIN messages. In both cases, all so-far honest
nodes enter the leader election phase, then the termination and
agreement of Election protocol guarantee all of them to output
the same index `. Also, these so-far honest nodes will not be
stuck in any PreVote and Vote phase mainly because threshold
signature is still robust and at least n−f forever-honest nodes
will participate. Again, the leader election is still unpredictable

20

(which can be induced by (adaptive) unforgeability of the
threshold signatures), thus helping all so-far honest nodes
terminate in expected constant time. The agreement of sMVBA
can be similarly argued as in Theorem 3. The external-validity
also trivially holds. Similarly, we can lift for sDumbo.

Proving the extra quality property: sMVBA can also satisfy
the Quality property [4, 32] as a by-product. The actual quality
guarantee is subtly different between the adaptive corruption
case and the static corruption case: when the adversary is static
(resp. adaptive), the quality would ensure that the sMVBA
output was proposed by the adversary with at most 1/2 (resp.
2/3) probability. Below are the detailed proofs.

Lemma 13: Quality. If an honest node outputs v, the
probability that v was proposed by the static (resp. adaptive)
adversary is at most 1/2 (resp. 2/3), assuming the underlying
threshold signature, SPB and Election are secure.

Proof: Since the threshold of Election is 2f + 1, the
adversary learns the output of Election, only if at least f + 1
honest nodes invoke Election. This further implies that: when
the adversary learns the elected leader, at least 2f + 1 SPB
instances have been completed, because Lemma 5 states: once
an honest node invokes Election, at least 2f + 1 distinct SPB
instances have completed. Note that if Election[〈id,R〉] returns
` and the sender P` has completed the SPB[〈id,R, `〉] protocol,
the SPB instance also produces a valid Finish, and all honest
nodes can output value v` in view R due to Lemma 8.

Then we discuss quality in the static and adaptive adversary
models, separately. We begin with the static case. Let us
consider the following cases for the output ` of Election:

Case 1: The elected sender P` is corrupted and completes
the SPB protocol. The probability of this case at most is 1/3.

Case 2: The elected sender P` is honest and completes the
SPB protocol. The probability of this case at least is 1/3.

Case 3: The elected sender P` is corrupted and has not
completed SPB yet, then the protocol might be repeated to
enter the next view or might output. The probability of this
case and case 1 is at most 1/3.

Case 4: The elected sender P` is (so-far) honest and has
not completed SPB yet, then the protocol might be repeated
to enter the next view or might output. The probability of this
case and case 3 at most is 1/3.

In case of facing static corruptions, the output can be
controlled by the adversary in case 1 and 3. So the worst-case
quality occurs, if the adversary maximizes the probability of
case 1. Namely, the adversary makes that all corrupted nodes’
SPBs completed and delays the completeness of f honest
nodes’ SPBs when Election is invoked. Hence, the probability
that the output v is proposed by the static adversary would be
at most

∑∞
k=1(1/3)k = 1/2.

Then we analyze the case of adaptive adversaries. Different
from a static adversary that can propose the output in case 1
and 3, an adaptive adversary can also propose the output in
case 4. This is because it can learn the leader election result
before f + 1 honest nodes abandon SPBs, so it can adaptively
corrupt the so-far-honest elected leader in case 4 and control
the elected node to quickly finish SPB. As a result, an adaptive
adversary might propose the output with 2/3 probability.

APPENDIX F
DEFERRED PB CONSTRUCTION

Algorithm 6 presents a simple construction of PB, given
secure non-interactive threshold signature. Assuming that the
input size of PB is O(|m|) bit, the complexities of PB can
be analyzed as: it has two asynchronous rounds, where each
round including O(n) messages and O(1) rounds; in addition,
in the first round, the size of message is O(|m|)-bit; in the
second round, the size of message is O(λ)-bit. So the overall
bits of the O(n) messages in PB are O(|m|n+ λn).

Algorithm 6 The PB protocol with identifier ID (for node Pi, where the
sender is Ps)

Initialization: let Ss = {}

1: if Pi = Ps then
2: upon receiving input value (vs, π) do
3: multicast (Value, ID, vs, π)

4: upon receiving (Echo, ID, ρj) from Pj for the first time do
5: if VerifyShare(2f+1)(〈ID, hs〉, (j, ρj)) =1 then
6: Ss ← Ss ∪ {j, ρj}
7: if |Ss| = 2f + 1 then
8: σs ← Combine2f+1(〈ID, hs〉, Ss)
9: output lock := (hs, σs)

10: upon receiving (Value, ID, vs, π) from sender Ps for the first time do
11: if ValueValidation(ID, vs, π) = true then
12: output value := 〈vs, π〉
13: let hs = H(vs)
14: ρi ← SignShare2f+1(ski, 〈ID, hs〉)
15: send (Echo, ID, ρi) to Ps

procedure abandon(ID):
16: halt PB[ID]

APPENDIX G
DEFERRED Election CONSTRUCTION

Algorithm 7 presents a random leader election protocol
due to Cachin et al. [13] from non-interactive unique threshold
signature in the random oracle model. In the protocol, every
node only has to multicast a threshold signature share via a
SHARE message, and then waits for 2f + 1 such messages
from distinct nodes to compute the elected leader. Note that
we might use the protocol in a non-blackbox manner (and we
present its blackbox properties mainly for easier understanding
of our sMVBA construction). The security of sMVBA actually
is reduced to non-interactive unique threshold signature and
the random oracle (instead of the blackbox properties of the
random leader election protocol).

Algorithm 7 (n, 2f + 1) Leader Election (Election): for node Pi

Setup: Pi obtains its private key share ski and all public keys msk and
PK for a (n, 2f + 1) threshold signature scheme from a trusted dealer
or some distributed key generation protocol.

1: Initialization: Σ← {}
2: upon the protocol is activate on identifier ID do
3: σi ← SignShare(2f+1)(ski, ID)
4: multicast (SHARE, ID, σi)
5: wait until |Σ| = 2f + 1
6: return H(Combine(2f+1)(ID,Σ)) % n+ 1, where H is a random

oracle

7: upon receiving (SHARE, ID, σj) from Pj for the first time do
8: if ShareVerify(2f+1)(ID, (j, σj)) = 1 then
9: Σ← Σ ∪ {(j, σj)}

21

