CRY Scanner: Finding cryptographic libraries misuse

Amit Choudhari
Institut Polytechnique de Paris

Palaiseau, France
amit.choudhari @polytechnique.fr

Abstract—Cryptographic libraries have become an integral
part of every digital device. Studies have shown that these systems
are not only vulnerable due to bugs in cryptographic libraries,
but also due to misuse of these libraries. In this paper, we
focus on vulnerabilities introduced by the application developer.
We performed a survey on the potential misusage of well-
known libraries such as PKCS #11. We introduced a generic
tool CRYScanner, to identify such misuses during and post-
development. It works on the similar philosophy of an intrusion
detection system for an internal network. This tool provides
verification functions needed to check the safety of the code,
such as detecting incorrect call flow and input parameters.

We performed a feature-wise comparison with the existing
state of the art solutions. CRYScanner includes additional fea-
tures, preserving the capabilities of both static and dynamic anal-
ysis tools. We also show the detection of potential vulnerabilities
in the several sample codes found online.

Index Terms—Cryptography libraries, misuse, dynamic anal-
ysis, novel “CRYScanner” tool, CWE-1240.

I. INTRODUCTION

In today’s digital world, security and privacy are growing
concerns for every user. To satiate this need, many user
applications use cryptographic algorithms for authentication,
storing data and communication. Open-source libraries such as
OpenSSL, OpenSSH, SoftHSM (OASIS PKCS #11) provide a
means to use these algorithms. Even though in theory the cryp-
tographic algorithm guarantees confidentiality, integrity and
authentication, the implementation of these algorithms could
have bugs. For instance, the heartbleed bug (CVE-2014-0160)
found in OpenSSL’s implementation of TLS leads to a leakage
of memory contents from the server to the client [3]. Such
issues in the implementation of standards could jeopardize the
whole system. On the other hand, these libraries allow several,
arguably a lot, modes and options which in turn leaves room
for the developer to make mistakes. For instance, PKCS #11
provides options such as CKM_XOR_BASE_AND_DATA [1]
that are vulnerable to related-key attacks. In this paper, we
focus on detecting such vulnerabilities that could be caused
due to a misuse introduced by the developer (as described in
MITRE CWE-1240: “Use of a Cryptographic Primitive with
a Risky Implementation™).

Lazar et al. [10] studied 269 cryptographic vulnerabilities
reported in the CVE database. They found that 88% of these
were due to misuse of cryptographic libraries by individual

Keynote talk at IEEE NICS 2021.

Sylvain Guilley
Secure-IC S.A.S
Paris, France
sylvain.guilley @secure-ic.com

Khaled Karray

Secure-IC S.A.S

Paris, France
khaled.karray @secure-ic.com

applications. In another research by Patnaik et al. [16], an ex-
tensive analysis of 2400 questions on 7 cryptographic libraries
was conducted. It was found that the majority of questions
were around the categories such as missing information, not
knowing what to do, not knowing if it can be done, and issues
across time and space. The underlying reason is insufficient
documentation, lack of examples, API level abstraction. It
suggests that the developer is not well equipped with the
necessary information and struggles with the usage of most
cryptographic libraries. To fill this gap, it seems quite intuitive
to have a tool that assists the developer and maintainer, during
the development and post-development stages.

Researchers have come up with various tools for static
analysis [9] [8] [19], compile-time analysis [22] and dynamic
analysis [17] to detect cryptographic misuse. Static analysis
tools can check the sanity of the program with different
possible combinations of arguments. It allows the tool to verify
the potential paths a program could take during run-time. The
drawback of static analysis is that it has many false positives
[17]. Also, it is prone to miss execution paths that are more
likely to be taken during runtime. The compile-time analysis
tools like Anselm [22] are programming language agnostic. It
checks for acceptable and unacceptable call flows using LLVM
intermediate representation. Dynamic analysis tools such as
CRYLOGGER [17], SMV-hunter [20], iCryptotracer [11] are
platform dependent. It allows testing a system with real-world
inputs in a particular scenario. But, they are tightly coupled
to a programming language and their respective platform.

In this paper, we present “CRYScanner”, an open-source
tool. It runs in two stages, the runtime stage to collect logs
and the offline stage to analyze these logs. The tool in general
is library agnostic. CRYLOGGER verifies the input, output of
cryptographic lib API also verifies the expected call flow. The
tool inherits properties of both static and dynamic analysis
tools. It is further discussed in detail in section IV.

II. CRYPTOGRAPHIC LIBRARY MISUSE

Cryptographic libraries are in a process of constant evolu-
tion for supporting newer cryptographic algorithms, introduc-
ing better abstractions, fixing security bugs. The international
standard ISO/IEC 29128:2011 standard tracks requirements
in this respect. These newer versions of libraries released
frequently gives rise to (1) Backward compatibility, to ensure
no breakage of existing applications; (2) Insufficient docu-
mentation with examples; (3) Same library handling multiple

operations, giving too much control to a developer. In this
section, we shall study misuses in different libraries suffering
from these issues.

A. PKCS #11

Public Key Cryptography Standards (PKCS) were devel-
oped by ’RSA.inc’ to provide compatibility and interoperabil-
ity between devices and implementations. PKCS #11 covers
Cryptographic Token Interface standard for accessing crypto-
graphic stores such as hardware security module (HSM). These
cryptographic stores also called a token, stores objects such as
keys, data, certificates and performs cryptographic operations.
Each object has a set of properties that determine its behaviour.
For example, sensitive keys can never get extracted outside the
token in cleartext.

Research by Clulow studied that the key-management APIs,
when incorrectly used, are prone to attacks causing leakage of
keys [6]. In asymmetric encryption, when an encryption key is
generated it is never exported outside the device in cleartext.
A Key Encryption Key (KEK) is used to wrap the key. Bond
in [5] has pointed to an attack of key conjuring, where a
new untrusted key is injected into the device. For instance,
a random bit sequence passed as an input to C_Unwrap (),
adding a new untrusted, weak key to the token. Using weaker
algorithms and keys are a common issue when the security
module of an application is not updated periodically. Attacks
such as Key binding and Key separation attacks are mostly
due to insufficiently documented examples and poor use of
API. Few attributes of the key objects such as extractable,
operation type, should be immutable. For instance, modifying
a property from unwrapping to decrypt, while creating the
copy of object C_CopyObject (), will allow leakage of the
key in cleartext. Attacks such as reduced keyspace and related
keys are possible due to vulnerable modes and options. For
instance, the option CKM_XOR_BASE_AND_DATA allows
users to derive new keys by XORing with known bytes.
The adversary generates several such related keys and then
performs an exhaustive search on it with known text. If even
one key is found, the original key can be computed by XORing
with the related bytes. In PKCS #11 asymmetric encryption, a
public key is exported in clear and hence is prone to additional
attacks like injecting Trojan public and wrapped key [6].

B. Padding attacks

A padding attack is a side-channel attack where the attacker
has access to an oracle that returns true for a chosen-ciphertext
when the padding is correct. For instance, Vaudney’s attack on
Cipher Block Chaining (CBC) mode symmetric key encryption
using RC5 padding scheme [21]. The attacker retries with a
chosen padded section to correctly identify the length of the
ciphertext. Bleichenbacher’s attack is a similar kind of padding
attack [4]. PKCS is found to be vulnerable to such attacks,
and hence it is necessary to use safer padding techniques like
PKCS #1 OEAP padding.

III. STATE OF THE ART METHODOLOGY TO DETECT
MISUSE

As studied by Paterson et al [15], a gap exists between
the way cryptography is studied in theory, the way standards
are defined, developers implement the software, and users
consume it. For this reason, it is recommended to use the cryp-
tographic algorithms that are approved by a standard authority
such as the National Institute of Standards and Technology
(NIST). These algorithms undergo extensive security analysis
and are periodically reassessed for continued effectiveness.

A. Cryptoanalysis

An attack from a Theoretical cryptographer’s perspective
is very different from a developer. Theoreticians are con-
cerned about the indistinguishability of the ciphertext, true
randomness of the nonce, attacks requiring a huge number
of cleartexts. These attacks are not cared much by a developer
as they seem to exist only on paper and there is no real
demonstration possible. For instance, there are several poten-
tial theoretical attacks reported for AES [7]. However, due to a
lack of pragmatism, it is still considered safe by NIST. As the
majority of security issues are found in the implementation of
cryptographic algorithms the focus has shifted from theoretical
cryptography to implementation of it.

B. Crypto implementation

In this section, we will evaluate the state of art solutions
that try to address the misuses II from both static and dynamic
analysis perspectives.

a) CRYLOGGER: Android applications use Java cryp-
tographic algorithms (JCA) to perform cryptographic opera-
tions like authentication, storing the data, checking integrity.
CRYLOGGER [17] is designed to detect API misuses of JCA
through dynamic analysis. The functionality is split into two
phases Online logger and Offline checker [Figure: 1]. The
Online logger monitors the API calls, the arguments passed
and logs this information into a file. The offline checker scans
the logs file to identify any known violation of crypto rules. It
classifies the cryptographic libraries into 7 classes Message
digest, symmetric encryption. asymmetric encryption, key
derivation/generation, random number generation, key storage,
SSL/TLS and certificates.

The major drawback of CRYLOGGER is the difficulty to
set up and the lack of flexibility of the tool. The online logger
needs a wrapper library over the JCA to print logs. Any update
in the JCA library requires an update to the wrapper as well.
The addition of a new cryptographic library with similar needs
cannot be tested without creating a new wrapper for it. This
adds another overhead of maintenance and versioning. Unlike
static analysis tools, it is not capable of detecting incorrect
usage of API orders.

b) CRYSL and CogniCryptsast: Developers are not al-
ways well equipped with sufficient examples to use cryp-
tographic operations and end up developing weak software.
It is best if the bug is caught at the development stage.
CRYSL [9] is a definition language that enables cryptography

10 application
MessageDigest
111 M = MessageDigest(“SHAL");

™~ API calls triggered
SymmEncryption

— during the execution

20 S = SymmEncryption(“AES");

crypto library

execution log

(Section IV) @ [MessageDigest] alg: SHAL
[SymmEncryption] alg: AES
ONLINE]
OFFLINE

checker

R-01 Don’t use SHA1L P (Section V)

R-02 Don’t use DES -

{@} checking =/
procedures ®
4

@ broken hash function: SHA1

crypto rules
(Section IV)

Fig. 1. CRYLOGGER block diagram (courtesy of [17])

experts to define the correct use of their cryptographic library.
CogniCryptsast [8] is a static analysis tool, that uses CRYSL
rules to guide the developer during the development stage of
the application. It is available as a plugin in eclipse.

Being a static analysis tool, CRYSL inherits the limitation
to analyse runtime values and behaviour of a system. Weak
passwords set during runtime could compromise the systems
completely. The tool fails to find misuse if there are multiple
levels of abstraction before using JCA API. It fails to detect
replay attacks due to hardcoded or reused values. Even though
the idea is generic, the tool implementation in itself is very
tightly coupled to the Android Java platform. Applying this
on other platforms like Linux needs a complete rework.

IV. CONTRIBUTION

As discussed in section II, if cryptographic APIs are not
used diligently, it could compromise the security entirely.
Moreover, it is challenging to find the updated and correct
usage of the APIs. Developers eventually end up referring to
unofficial sources such as StackOverflow and other reposito-
ries. Which in turn result in making similar mistakes across
several applications. Hence, instead of relying on the examples
and documentation completely, we propose a tool that will
allow the cryptographic experts to define strict rules for their
given library. The developers could use this to verify the
runtime behaviour of their applications.

A. CRYScanner Syntax

CRYScanner is designed to read heterogeneous logging
information and parse rules with well-defined syntax. In this
section, we will discuss design decisions and their influence
on the syntax for creating rules.

1) Design decisions:

Runtime logging: While comparing the state of the art
tools we clearly saw a gap in capabilities between static,
dynamic and compile-time analysis III. To devise a tool that
is generic enough as CRYSL and also could analyse run-
time behaviour, we decided to use the GNU debugger (GDB)
debugger to log the information. This makes our tool generic
across different applications and libraries.

Whitelisting: It is well known that there are many ways
for a system to fail, in fact, there are always newer vulnerable
configurations discovered. But, only a few sequences are safe
for a user to use. Hence, we decided to use whitelisting
approach to define the rules for a cryptographic library.

Storage type independent: All the rules are expected to be
written by a cryptographic expert who is aware of the expected
values. In that case, there is no requirement to add a concept of
storage type in the rules file. The parser only has to compare
the values between the log file and the rule file.

API call order and constraints: While studying the poten-
tial misuse across different libraries in section II, we concluded
that the majority of bugs are observed due to APIs invoked
in improper order and incorrect parameters passed to the API.
For instance, the context object not freed in a conditional case
will leak information. To address these concerns, we focused
our tool on API call order and values passed to it.

Generic rule parser: In any software lifecycle, mainte-
nance and upgrade is a sizable ongoing task. Given the fact
that cryptographic libraries undergo periodic version updates,
on top of that, a tool upgrade would be overkill. Hence, we
aimed for a generic tool that requires minimal change across
version upgrades and adding support for the newer library.

2) Rule sections: Each cryptographic library has a rule file
defined for it. The rules are a set of platform-independent
instructions, split in sections, defining the expected behaviour
of a program.

Listing 1
CRYSCANNER SAMPLE RULE FILE FOR AES ENCRYPTION

OBJECTS

EVP_CIPHER_CTX new ()
EVP_CIPHER_CTX_free(c)
EVP_Encryptlnit_ex ()
EVP_EncryptUpdate ()
EVP_EncryptFinal_ex ()

o o0 o

ORDER
(ab)*
(a(cd+e)b)=

CONSTRAINTS
EQ(e:ctx.key_len==32)

FORBIDDEN
c

OBJECTS: The chosen mode of debugging is a dy-
namic analysis and we are aware that the function calls
are the only entry point for an application to request ser-
vice to a library. Hence, APIs defined in the OBJECTS
section are the fundamental blocks around which the rules

c:*¥Init() /\ d:*Update()
\)

()

a*_new()

start ———

b:*_free()

Fig. 2. State machine for the Encryption order defined in Listing 1

are defined. Syntax of an object is {pseudo_name}:
{function_name} ({parameter_name, ...}). These
objects are referenced using the pseudo_names from other
sections. The rule parser creates an object with function_name
as the key for every function defined. As shown in Listing
1, each OBJECT declaration contains signature of a function
name and its variables, of form (m,v), where m € M and v
€ V". This object internally contains a map of variables and
their respective value.

ORDER: Regular expression of pseudo names is used to
define the usage of a particular operation. The syntax for the
order is an aggregation of OBJECTS from M. Pseudo names
are used since it is easier to read and write a regular expression.
For instance, in Listing 1, the EVP_* APIs are always expected
to follow the pattern of *Init(), followed by multiple *Update()
and end with *Final() call. To ensure this order is followed, the
regular expression is defined as (a (cd+e)b) x. The parser
internally converts this regular expression into an equivalent
deterministic finite state machine [Figure: 2]. Let, () be a set
of all states, q0 be the initial state, and F' be a set of final
states. The automaton can thus be defined as (Q, M, 4, q0, F'),
where the state transition matrix is ¢ : M X Q. A violation is
detected if the state machine has not reached its final state by
the end of the program.

CONSTRAINTS: As seen in section II, API’s can be
misused by sending undesired values through arguments.
CONSTRAINTS section is used to keep a check on such mis-
use. Each Constraint is a Boolean function where the argument
is a function that maps the variable V to object O, such that
C := (v = OUV"). The syntax for defining a constraint
is {operation} ({operand}{equation}+optional).
where operation is equality check "EQ ()’, primality check
’PRIME ()’, replay check 'REPLAY ()’, randomness tests
’RAND (). The equality check supports >, <, <=,>=,==
operators, with rvalue being a number, string or set of string.
As we are following the whitelisting approach, only allowed
values need to be mentioned. For instance, if the key size
should be larger than 32 for encryption function, then the
constraint should be defined as EQ (c:key > 32). Gen-
erating prime numbers is a common and important step in
cryptography. Primality check allows the developer to verify
whether the number passed was prime or not. Replay check
can be used to avoid replay attack or any kind of reuse of
keys, salts, an initialization vector (IV) and nonce. Reusing
the same salt for multiple hashing operations is known to be

vulnerable to rainbow table attack [2].

TABLE I
USAGE OF SUPPORTED OPERATIONS IN CONSTRAINTS SECTION

Operation Description

Compares the string
’RSA_PKCS1_PADDING’
argument pad.

Verifies the primality

of argument rsa_p in
function b

Checks for any reuse

of the variable key across
multiple runs.

Runs NIST tests for
random number generators
on argument salt of API b.

EQ(b:pad == RSA_PKCS1_PADDING)

PRIME(b:rsa_p)

REPLAY (b:key)

RAND(b:salt)

FORBIDDEN: Deprecating APIs due to known vulner-
abilities is a common practice over version upgrades. The
library continues to allow the usage of such API to support
backward compatibility. This does not force the user nor does
it notify the maintainer causing non-functional regression.
FORBIDDEN class is the only section to follow the blacklisting
approach. The syntax for declaring forbidden APIs is to list
the corresponding comma separated pseudo names.

A rule is a tuple (M, F, A,C), where M is list of function
declarations in OBJECTS, F' is the list of forbidden functions,
A is the deterministic finite state automaton (Q, M, ¢, q0, F),
and C is the list of constraints.

B. Runtime logger

Dynamic analysis tools need enough run-time trace to
perform analysis. We are looking for a generic solution for
tracing logs and hence we decided to use a debugger with
a python script instead of creating a wrapper library with
additional debugs. GDB one of the most common tool for
debugging has all the capabilities needed for run-time tracings,
such as adding breakpoints on API calls, printing stack trace,
printing arguments of different storage types passed to the
APIL. We developed an easy to use python script, that will
break at all the entry points listed by the expert and keep
printing the necessary information till the end of the program.
The generated log file is then given as an input to the offline
rule checker to identify violations.

C. Implementation

CRYScanner tool execution is split into two stages, (1)
Online logger and (2) Offline rule parser [Figure: 3]. The rule
and log parser uses an open-source parsing library pyparser
[12]. In the first stage, the tool collects the run-time logs of
the program and pre-process them into a structured format. In
the second stage, these pre-processed logs are parsed into a
list of OBJECTS types. The rule file is parsed to create goal-
oriented objects like CONSTRAINTS, ORDER, FORBIDDEN
for verification.

The tool is designed such that class Object is the basic
building block. Individual types of rule operations are split
as per their classes. The class ORDER uses opensource

CRYScanner

Stage 1 [Online] Stage 2 [Offline]

i Takes two input files

Offline a. Rules for Cryptographic library.

Online

Logger
99 parser

Crypto
usage
violations

o Structured
Application Logs X)

L7

Log all inputioutput values at the entry
point APIs of the crypto ib.

Fig. 3. CRYScanner execution flow diagram

libraries such as greenery for processing the regular expression
[18] and finite-state machine-building lib such as transition
[13]. For testing random numbers we used NIST Test Suite
for RNG from library [14]. overall the tool is designed in
a modular style, so it is very easy to extend the capability
of the Rule file. Supporting more constraint checks can be
added easily with the existing tokens framework. For example,
adding different randomness tests. The source code for the
tool along with sample rule files, logs and README file is
available at https://github.com/amitsirius/cryscanner.

D. Evaluation

We evaluate the CRY Scanner tool based on its capability to
detect different types of misuses, precision to detect all known
vulnerabilities, performance based on verification time and the
comparison with state of the art.

1) Types of misuses:

Setup: As discussed in section IV-A2, the violations
are detected using functions such as equality (EQ), re-
play (REPLAY), randomness (RAND), prime (PRIME), order
(ORDER) and forbidden objects (FORBIDDEN). We randomly
identified code snippets from StackOverflow and public git
repositories as a sample set. These snippets were mostly
marked as accepted answers or upvoted. For ease of writing
rules, we picked the code for similar operations like symmetric
and asymmetric encryption techniques.

Result: After running the tool over 10 different code
snippets, the tool could identify 35 violations. As seen in
Figure 4, the most common misuse is replay attack, i.e reuse
of same keys, salts, IV. As most of the examples were related
to encryption techniques, it is understandable to find more hits
on replay. The randomness function tests the bits sequence on
10 different NIST tests such as mono bit, longest run, discrete
Fourier transform. We decided on a threshold of at least 6
tests to pass. Order misuse was observed due to a missing
function for clearing context, which could lead to leakage of
information. The equality checks detected violations such as
smaller keys, weaker padding schemes. The forbidden checks
identified usage of deprecated functions and non recommended
low-level API. The primality check was functionally tested, but
the samples did not contain any potential use-case.

2) Performance:

Rule i b.Pre-processed log file from Online Logger.
i Parse rules and verify it for the pre-processed logs

Forbidden
Order

Prime
Randomness
Replay

Equality

Fig. 4. CRYScanner tool class diagram

TABLE II
PROFILING SUMMARY OF EACH BLOCK WHEN AN ENCRYPTION
DECRYPTION APPLICATION WAS RUN 20 TIMES.

Function E?(ecution
Time (sec)
Run-time logger 174
Parsing Logs 560
Parsing rules 0.23
Constraints check | 11.13
Order check 11.52
Forbidden check 11.2
Total 768.08

Setup: The total execution time for the tool is split into
the log parsing and verification stage. The log parsing stage de-
pends on several relevant cryptographic operations performed.
The verification time required for every application is related
to factors such as relevant objects and their corresponding
function in rules. Each function takes a different time. For
example, primality and equality check is performed on every
instance of the object. Whereas randomness and order tests are
run on all instances combined. While testing the performance
we ran a program with different encryption operations for 20
iterations. It allows us to get more quantifiable numbers on
each section.

Result: Table II shows that the majority of execution
time is spent on parsing the logs and run-time logger. All
other verification requires negligible duration. Even with all
this, a single run of an application using the tool takes
less than 2 minutes on average. There will be a significant
performance improvement (approximately 20%) if the log
parsing is performed in parallel with the run-time logger.

3) Precision: The precision of a tool is determined based
on factors like a true positive, true negative, false positive and
false negative. As the tool is still in the preliminary stage,
black-box testing on applications is not feasible. Hence we
evaluated the possibilities of the tool hitting false positives and
false negatives. Sometimes the API has a default behaviour
when the user passes zero or null as an argument. Such
behaviour is very API specific and at present, the tool is not
capable of identifying such complicated behaviour leading to

TABLE III
FEATURE COMPARISON BETWEEN STATE OF THE ART AND CRY SCANNER.

Capability CogniCrypt | CRYLOGGER | Anselm | CRYScanner
Call flow v v v

Code §tatlc v v
analysis
Run-time values v
Detect replay v
Immune to
abstraction
Immune to
library update
Library agnostic | v/ v
Platform
Independent
Remote analysis

<\
SN IESIENIENEIENEENEN

false positives and false negatives.

4) Comparison to state of art: From Table III, it can be
seen that the tool is designed to inherit the capabilities from
both dynamic and static analysis tools. Call flow verification
is used to detect unexpected divergent call sequences of an
application. This capability is mostly observed in static analy-
sis tools, but CRY Scanner also performs the same verification
building a finite state automaton. Similarly, checking the real-
time values is a quite powerful function for identifying any
violation from inputs and common execution paths. Unlike
other dynamic tools, CRYScanner is aimed to be generic
across different platforms (Linux, Windows) and libraries
(cryptoki, OpenSSL). As it uses a debugger to add breakpoints,
it is not possible to miss any API call and hence it is immune
to any type of abstraction in the code.

V. FUTURE SCOPE

A dynamic analysis tool has inherent challenges such as the
difficulty of setup, limited view of the system, inability to trace
uncommon code paths. These issues cause an increase in false
negatives. We have identified room for improvement of the tool
as per the categories Ease of usability: For a developer, an
analysis tool must need minimum configuration. With the help
of cryptographic experts, create an elaborate rule set for well-
known libraries such as OpenSSL. It reduces the overhead
for developers and the possibility of making mistakes. Adding
gdbserver support will allow remote debugging. Precision
and Robustness: The testing framework should trace all the
common paths and be equally capable to execute unusual
scenarios. To justify the precision and robustness of the tool
it needs to undergo testing with fuzzing and monkey testing
framework. Performance: The majority of time is consumed
while parsing and collecting logs. Running both stages in
parallel will improve the performance. Feature enhancement
and hard problems: Every new feature enhances the reach
of identifying complicated bugs. Adding support for context
information, function overloading, an array of structs, double
pointers will provide richer control in the tool.

VI. CONCLUSION

We presented a generic tool to detect potential vulnerabili-
ties while using cryptographic libraries. We have successfully

tested the tool across different cryptographic operations and
libraries [Section IV-D]. In reality, application developers are
not always cryptographic experts. This tool is designed for
developers to require limited to no knowledge on the details
of the complex algorithm. We have empirically evaluated
CRYScanner from the application developer and maintainer
point of view. The execution time required for the tool to
analyse longer runs is less than 2 minutes [Table II]. This
makes it easier for a maintainer to run across hundreds of
applications with little overhead. Often, it is more tricky
to perform analysis on the live system due to a lack of
tools. CRYScanner fits perfectly in such cases, the developer
could use gdbserver and analyse the running application re-
motely. When compared to any other state of the art solution,
CRYScanner outperforms in feature and flexibility aspects.
We want to approach the cryptographic experts of the crypto
libraries and collect information for building rules. With this,
we encourage application developers to use this tool to secure
applications.

REFERENCES

[1] Safenet protecttoolkit-c mechanisms. SafeNet ProtectToolkit 5.9. URL:
https://thalesdocs.com/gphsm/ptk/5.9/docs/Content/PTK-C_Program/
PTK-C_Mechs/CKM_XOR_BASE_AND_DATA htm.

[2] Salted Password Hashing - Doing it Right. crackstation.net.
https://crackstation.net/hashing-security.htm.

[3] CVE-2014-0160. Available from MITRE, CVE-ID CVE-2014-
0160., 03 2014. URL: https://cve.mitre.org/cgi-bin/cvename.cgi?’name=
CVE-2014-0160.

[4] Romain Bardou, Riccardo Focardi, Yusuke Kawamoto, Lorenzo Simion-
ato, Graham Steel, and Joe-Kai Tsay. efficient padding oracle attacks
on cryptographic hardware. 04 2012.

[5] Mike Bond. Attacks on cryptoprocessor transaction sets. In Cetin K.
Kog, David Naccache, and Christof Paar, editors, Cryptographic Hard-
ware and Embedded Systems — CHES 2001, pages 220-234, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[6] Jolyon Clulow. On the Security of PKCS#11. In Colin D. Walter,
Cetin Kaya Kog, and Christof Paar, editors, Cryptographic Hardware
and Embedded Systems - CHES 2003, 5th International Workshop,
Cologne, Germany, September 8-10, 2003, Proceedings, volume 2779
of Lecture Notes in Computer Science, pages 411-425. Springer, 2003.

[7]1 Herman Isa, Iskandar Bahari, Hasibah Sufian, and Muhammad Zaba.
AES: Current security and efficiency analysis of its alternatives. pages
267-274, 12 2011.

[8] Stefan Kruger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini,
Eric Bodden, Florian Gopfert, Felix Gunther, Christian Weinert, Daniel
Demmler, and Ram Kamath. CogniCrypt: Supporting developers in
using cryptography. pages 931-936, 10 2017.

[9] Stefan Kruger, Johannes Spath, Karim Ali, Eric Bodden, and Mira
Mezini. CrySL: An Extensible Approach to Validating the Correct Usage
of Cryptographic APIs. [EEE Transactions on Software Engineering,
PP:1-1, 10 2019.

[10] David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich. Why
does cryptographic software fail? A case study and open problems.
Proceedings of 5th Asia-Pacific Workshop on Systems, APSYS 2014, 06
2014.

[11] Yong Li, Yuanyuan Zhang, Juanru Li, and Dawu Gu. iCryptoTracer:
Dynamic Analysis on Misuse of Cryptography Functions in iOS Appli-
cations. pages 349-362, 10 2014.

[12] Paul McGuire. Python library for creating PEG parsers. https:/github.
com/pyparsing/pyparsing, 2020.

[13] Alexander Neumann. pytransitions.
transitions, 2020.

[14] Luca Pasqualini. Nistrng, 2020.

[15] Kenneth G. Paterson and Arnold Yau. Cryptography in Theory and
Practice: The Case of Encryption in IPsec. volume 2005, page 416, 01
2005.

URL:

https://github.com/pytransitions/

[16]

(17]

[18]

[19]

[20]

[21]

[22]

Nikhil Patnaik, Joseph Hallett, and Awais Rashid. Usability Smells: An
Analysis of Developers’ Struggle with Crypto Libraries. In Proceedings
of the Fifteenth USENIX Conference on Usable Privacy and Security,
SOUPS’19, page 245-257, USA, 2019. USENIX Association.

Luca Piccolboni, Giuseppe Di Guglielmo, Luca Carloni, and Simha
Sethumadhavan. CRYLOGGER: Detecting Crypto Misuses Dynami-
cally. 07 2020.

“qntm”. FSM/regex conversion library. https://github.com/qntm/
greenery, 2020.

Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian,
Miles Frantz, Murat Kantarcioglu, and Danfeng Yao. CryptoGuard: High
Precision Detection of Cryptographic Vulnerabilities in Massive-sized
Java Projects. pages 2455-2472, 11 2019.

David Sounthiraraj, Justin Sahs, Garrett Greenwood, Zhigiang Lin, and
Latifur Khan. SMV-HUNTER: Large Scale, Automated Detection of
SSL/TLS Man-in-the-Middle Vulnerabilities in Android Apps. 01 2014.
Serge Vaudenay. Security flaws induced by CBC padding - Applications
to SSL, IPSEC, WTLS... volume 2332, 04 2002.

UCLA William Wang. anselm. https://github.com/trailofbits/anselm,
2020.

