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Abstract. In CRYPTO 2019, Gohr made a pioneering attempt, and
successfully applied deep learning to the differential cryptanalysis against
NSA block cipher Speck32/64, achieving higher accuracy than the pure
differential distinguishers. By its very nature, mining effective features
in data plays a crucial role in data-driven deep learning. In this pa-
per, in addition to considering the integrity of the information from the
training data of the ciphertext pair, domain knowledge about the struc-
ture of differential cryptanalysis is also considered into the training pro-
cess of deep learning to improve the performance. Besides, based on the
SAT/SMT solvers, we find other high probability compatible differen-
tial characteristics which effectively improve the performance compared
with previous work. We build neural distinguishers (NDs) and related-
key neural distinguishers (RKNDs) against Simon and Simeck. The ND
and RKND for Simon32/64 reach 11-, 11-round with an accuracy of
59.55% and 97.90%, respectively. For Simon64/128, the ND achieve an
accuracy of 60.32% in 13-round, while it is 95.49% for the RKND. For
Simeck32/64, ND and RKND of 11-, 14-round are obtained, reaching an
accuracy of 63.32% and 87.06%, respectively. And we build 17-round ND
and 21-round RKND for Simeck64/128 with an accuracy of 64.24% and
62.96%, respectively. Currently, these are the longest (related-key) neu-
ral distinguishers with higher accuracy for Simon32/64, Simon64/128,
Simeck32/64 and Simeck64/128.
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1 Introduction

The security analysis of many cryptographic primitives (such as pseudo-random
number generators, hash functions, etc.) is usually attributed to attacks on the
underlying block ciphers. Various cryptanalytic methods have been proposed
over the past few decades, including differential cryptanalysis [6], linear crypt-
analysis [24], integral cryptanalysis [18], zero-correlation linear cryptanalysis [8],
etc. A block cipher must be able to resist all known cryptanalysis to obtain a
strong security statement. In recent years, solver-based automatic tools and ded-
icated heuristic search algorithms have been extensively adopted to improve the
accuracy and efficiency in cryptanalysis of block ciphers, where the cryptanalytic
models are often transformed into Mixed Integer Linear Programming (MILP)
problems [27, 29], SAT/SMT problems [20, 26] or CP problems [11, 25]. Auto-
matic search technology has improved the analysis ability of block ciphers. The
improvement and development of these automatic search technologies provide
an inexhaustible source of thought for the design and analysis of block ciphers.
However, these search technologies do not extract any new features that are not
available manually. Therefore, once optimal distinguishers are obtained, these
automatic tools would exert less influence in improving attacks.

Recently, under the joint driven form of big data and the availability of
computing hardware, deep learning [4, 21] has made remarkable progress and
spread over almost every field of science and technology. Some researchers have
started to explore the feasibility of applying machine learning to the field of
cryptography. In ASIACRYPT 1991, Rivest [28] made preliminary explorations
of the possible connection between cryptography and machine learning, and
some researchers applied machine learning in side channel analysis successfully,
such as [14,23]. However, few researchers focused on the application of machine
learning to black box cryptanalysis, until Gohr published an article on CRYPTO
2019 [12] that accelerated the process of applying deep learning to black box
cryptanalysis.

Deep learning algorithms can analyze data and learn effective patterns for
predicting new samples. Based on this, Gohr trained a deep neural network
using the labeled (labels 0 and 1) ciphertext pairs as training data, where the
data with label 1 comes from the encrypted plaintext pair with fixed input
difference, and the data with label 0 is a random number. The trained neural
network then was used to distinguish between the real ciphertext pairs and
random pairs. When his network is applied to Speck32/64, higher accuracy than
the pure differential distinguisher is achieved. Although the number of rounds
using his network has not yet surpassed the number of rounds achieved by the
most advanced technology, the neural distinguisher under the same number of
rounds uses some information that the pure differential distinguisher has not
tapped, that is, the neural distinguisher contains more information compared
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with the pure differential cryptanalysis. This also raises a key question: If there
is better cryptanalysis to make the neural distinguisher outstrip pure differential
distinguisher in terms of the number of rounds and accuracy?

Contributions. In this paper, our contributions are as follows:

– In this paper, we analyze the information contained in different data formats
to explore the useful and limited factors. The exploration results indicate
that the integrity of the ciphertext pair information and the domain knowl-
edge about the structure of the differential cryptanalysis have an essential
impact on the accuracy of the network. Therefore, we propose the data for-
mat (∆L,∆V,Cl, Cr) combining the information integrity with the domain
knowledge as the input to the network. Experiments (See Section 4) demon-
strate that this data format can greatly improve the accuracy of the neural
distinguishers.

– In addition, we find that plaintext differences have a significant impact on
the performance of the (related-key) neural distinguisher (See Section 5).
Therefore, to effectively improve the accuracy of the neural distinguishers,
we use SAT/SMT automatic tools to search for high probability compatible
differential characteristics.

– We have successfully constructed the related-key neural distinguishers against
Simon32/64, Simon64/128, Simeck32/64 and Simeck64/128 for the first
time. Meanwhile, we build neural distinguishers for Simon32/64, Simon64/128,
Simeck32/64 and Simeck64/128. The results are shown in Table 1, which
shows that we have significantly improved the number of rounds and accu-
racy of the distinguishers.

Organization. We recall Simon-like ciphers, (related-key) differential crypt-
analysis and CNN network in Section 2. In Section 3, we introduce our improved
neural distinguishers, including the motivation, the new data pre-processing ap-
proach, and the network architecture. The improved neural distinguishers are
applied in Simon and Simeck in Section 4. Section 5 compares the performance
with different input difference. Section 6 concludes this paper.

2 Related works

2.1 Notations

Table 2 presents the notations we use throughout the paper.

2.2 A Brief Description of Simon and Simeck Ciphers

Simon. The lightweight family of AND-RX block ciphers Simon was proposed
by the National Security Agency (NSA) in 2013. It adopts the Feistel structure
and the round function consists of bitwise AND (�), bitwise XOR (⊕) and cyclic
left shift γ bit (Sγ) operation composition. The designer provides 10 versions, all
marked as Simon2n/mn, where 2n represents the block size, mn represents the
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Table 1: The comparison of (related-key) neural distinguishers attacks on Si-
mon32/64, Simon64/128, Simeck32/64 and Simeck64/128.

Ciphers
Attack

Model
Round Input difference Accuracy Source

Simon

32/64
DD

91 (0x0,0x80) 82.27% [15]

9 (0x0,0x80) 99.34% 4.1

101 (0x0,0x80) 61.09% [15]

10 (0x0,0x80) 86.08% 4.1

111 (0x0,0x40) 51.73% [1]

11 (0x20,0x88) 59.55% 4.1

R-k DD
10 (0x0,0x4),(0x0,0x0,0x0,0x4) 99.89%

4.1
11 (0x0,0x4),(0x0,0x0,0x0,0x4) 97.90%

Simeck

32/64

PDD 91 (0x0,0x1),(0x0,0x4) 75.84% [10]

DD 9 (0x0,0x40) 100% 4.2

DD
10 (0x0,0x40) 89.70% 4.2

11 (0x0,0x40) 63.32% 4.2

R-k DD
13 (0x0,0x4),(0x0,0x0,0x0,0x4) 100%

4.2
14 (0x0,0x4),(0x0,0x0,0x0,0x4) 87.06%

Simon

64/128

DD

111 (0x0,0x10) 73.79% [15]

11 (0x0,0x4) 99.28% 4.1

121 (0x0,0x10) 69.57% [15]

12 (0x0,0x4) 83.78% 4.1

13 (0x0,0x40) 60.32% 4.1

R-k DD
12 (0x0,0x4),(0x0,0x0,0x0,0x4) 99.98%

4.1
13 (0x0,0x4),(0x0,0x0,0x0,0x4) 95.49%

Simeck

64/128

DD

14 (0x0,0x1) 99.85%

4.2
15 (0x0,0x1) 96.45%

16 (0x0,0x1) 82.28%

17 (0x0,0x1) 64.24%

R-k DD

18 (0x0,0x1),(0x0,0x0,0x0,0x1) 99.80%

4.2
19 (0x0,0x1),(0x0,0x0,0x0,0x1) 95.80%

20 (0x0,0x1),(0x0,0x0,0x0,0x1) 80.71%

21 (0x0,0x1),(0x0,0x0,0x0,0x1) 62.96%

1 We choose the highest accuracy neural distinguishers in these paper.
2 DD: Differential Distinguisher, R-k DD: Related-key Differential Distinguisher,

PDD: Polytopic Differential Distinguisher.
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Table 2: The notations used throughout the paper

Notation Description

x = (xn−1, . . . , x0) Binary vector of n bits; xi is the bit in position i with x0 the
least significant one.

x� y Bitwise AND between x and y.
x⊕ y Bitwise XOR between x and y.
x ‖ y Concatenation of x and y.
x≪ γ, Sγ(x) Circular left shift of x by γ bits.
x≫ γ, S−γ(x) Circular right shift of x by γ bits.
(Pl, Pr, P

′
l , P

′
r) A set of plaintext pairs with left and right branches where P =

Pl ‖ Pr and P ′ = P ′l ‖ P ′r.
(Cl, Cr, C

′
l , C

′
r) A set of ciphertext pairs with left and right branches where

C = Cl ‖ Cr and C′ = C′l ‖ C′r.
∆L Cl ⊕ C′l .
∆V Cr ⊕ C′r.
V0 Cl ⊕ Cr.
V1 C′l ⊕ C′r.

key length, n ∈ {16, 24, 32, 48, 64}, m ∈ {2, 3, 4}. The round function of Simon
algorithm is defined as:

f8,1,2(x) =
(
S8 (x)� S1 (x)

)
⊕ S2(x) .

The round keys are generated using a linear key schedule through the K =
(km−1, km−2, . . . , k0). A more complete description can refer to paper [2].
Simeck. The Simeck family of lightweight block ciphers was designed by Yang
et al. [30], aiming at improving the hardware implementation cost of Simon.
Simeck2n/4n denotes an instance with a 2n-bit block and a 4n-bit key for
n ∈ {16, 24, 32}. The round function of Simeck algorithm is defined as:

f5,0,1(x) =
(
S5 (x)� S0 (x)

)
⊕ S1(x) .

Conversely, Simeck uses the non-linear key schedule which reuses the cipher’s
round function to generate the round keys. A more complete description can be
found in [30].

2.3 (Related-key) Differential Cryptanalysis

Differential cryptanalysis is a chosen-plaintext attack introduced by Biham and
Shamir in [6]. It analyzes the effect of the difference of a plaintext pair on the
difference of succeeding round outputs in an iterated cipher. Because of its gener-
ality, differential cryptanalysis is an extensively exploited tool for cryptanalysis
of encryption algorithms and for defining new attacks. Resistance to differential
cryptanalysis became one of the basic criteria in the evaluation of the security
of block ciphers.

Definition 1 (Difference). [6] Let X and X ′ be two bit strings of length n,
then the difference between X and X ′ is defined as:

∆X = X ⊕X ′.
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Definition 2 (Differential Pair). [6] Let α, β be n-bit vectors, the difference
value of the input pair (X,X ′) of the block cipher is X ⊕X ′ = α, after r-round
of encryption, the difference value of the output pair (Y, Y ′) is Y ⊕ Y ′ = β, and
let a round function f : Fn2 → Fn2 , then (α, β) is called an r-round differential
pair of block cipher, where α is the input difference of round function f , β is
the output difference of f . In particular, when r = 1, (α, β) characterizes the
differential propagation characteristics of the round function f .

For a specific cipher, the differential must be carefully selected to make the
differential attack successful. This makes researchers need to study the internal
process of the algorithm. The basic method is to track a path passed by a high
probability differential at different stages of encryption. This is called differential
characteristics in cryptography and is defined as follows.

Definition 3 (Differential Characteristics). [6] Let X,X ′ be n-bit vectors
and βi be an n-bit constant. When the difference value of the input pair (X,X ′)
satisfies X ⊕ X ′ = β0, the difference value of the intermediate state (Yi, Y

′
i )

satisfies Yi ⊕ Y ′i = βi during the r-th round of encryption, where, 1 ≤ i ≤ r.
Then, Ω = (β1, β2, . . . , βr) can be named an r-round differential characteristic
of an iterative block cipher.

For given differential characteristics, use the following definition to calculate
its probability.

Definition 4. [6] The probability DP (Ω) corresponding to an r-round differ-
ential characteristic Ω = (β1, β2, . . . , βr) of the iterative block cipher refers to
the case where the input X and the round keys are independent and random
distributed, when the differential value of the input pair (X,X ′) is X⊕X ′ = β1,
in the i-round encryption process, the difference value of the intermediate state
(Yi, Y

′
i ) satisfies the probability of Yi ⊕ Y ′i = βi, where 1 ≤ i ≤ r. Under the

above assumption, the probability of the differential characteristic is equal to
the product of the differential propagation probabilities of each round, i.e.:

DP (Ω) =

r∏
i=1

Pr(βi−1 → βi) =

r∏
i=1

{Yi−1|f(Yi−1)⊕ f(Yi−1 ⊕ βi−1) = βi}
2n

. (1)

When the input difference undergoes a linear operation, it will be propa-
gated through the operation with probability 1, and the output difference is
deterministic, such as XOR (⊕) and cyclic shift (≪,≫) in the ARX operation.
When the input difference passes through a non-linear operation, the difference
propagation is often probabilistic.

Related-key differential cryptanalysis was introduced by Biham in [5]. Unlike
the single-key differentials that have differences only in the plaintexts, related-
key differential distinguishers have differences in the master keys as well. It
exploits the output differences given a pair of plaintexts P and P ′ encrypted by
a pair of related keys K and K ′, respectively. Related-keys differential crypt-
analysis is also one of the basic criteria in the evaluation of the security of block
ciphers, which successfully attacked many block ciphers, such as [7, 16,19].
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2.4 Convolutional Neural Network

Convolutional neural network (CNN) is an important paradigm in deep
learning. CNN is usually composed of the convolutional layer, non-linear layer,
pooling layer and fully connected layer.

Convolution Layer. Convolution is the basic operation of CNN, and its
main purpose is to extract features. The core task of CNN is to learn parameters
to extract effective patterns. In the forward propagation, the training data will
go through the convolution kernel with initial parameters to obtain the initial
output. In the back propagation, a loss function will be applied to adjust the
parameters to minimize the gap between the initial output and the target label.
After several iterations, when the loss stabilizes, the training process will be
finished.

Non-linear layer. The main purpose of the non-linear layer is to introduce
non-linear characteristics into the system. The most common non-linear layer
in a CNN network is the ReLU function, defined as f(x) = max(0, x), which
not only accelerates the training speed, but also solves the gradient dispersion
problem when the network is deep.

Fully connected layer. The fully connected layer is generally located in
the back layers of the network for performing the classification task. Usually, the
input of fully connected layer is the flatten feature map generated by convolution
layer.

In addition, some functional layers may be used in CNN. For example, Batch
Normalization (BN) can be applied after convolution layer to reduce the
internal covariate shift, which can effectively prevent the gradient disappearance
problem and speed up network training.

Residual Network (ResNet) is one of the most representative CNNs,
which was proposed by He et al. [13] in 2015. ResNet can train a deeper CNN
model to achieve higher accuracy. The core idea is to establish “shortcuts (skip)
connections” between the front layer and the back layer. It is composed of a
series of residual blocks. A residual block can be expressed as:

xl+1 = xl + F(xl).

It is divided into two parts: the direct mapping part and the residual part. F(xl)
is the residual part, which is generally composed of two or three convolution
operations. Many residual block variants can be designed by rearranging the
activation functions of ReLU and BN. Figure 1 shows the residual block used in
Gohr’s work.

Fig. 1: The residual block used in Gohr’s work.
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3 Improved (Related-key) Neural Distinguishers

3.1 Revisiting Previous Work and Our Motivation

In Gohr’s work, the (Cl, Cr, C
′
l , C
′
r) data format is used as the input of the

network, which can be expressed in matrix form as:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ·

Cl
Cr
C ′l
C ′r

 , let A1 ,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (2)

Then, rank(A1) = 4.
Subsequently, Benamira et al. [3] conject the first convolution layer of Gohr’s

neural network transforms the input (Cl, Cr, C
′
l , C
′
r) into (∆L,∆V, V0, V1) and

a linear combination of those terms. Then, they verify the correctness of their
conjecture through experiments, and keep (∆L,∆V, V0, V1) as inputs for their
pipeline to achieve better performance. It can be written as:

1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1

 ·

Cl
Cr
C ′l
C ′r

 , let A2 ,


1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1

 . (3)

Then, rank(A2) = 3.
In paper [15], Hou et al. use the (∆L,∆V ) data format as the network input

but the reason is not clarified. It can be written as:

[
1 0 1 0
0 1 0 1

]
·


Cl
Cr
C ′l
C ′r

 , let A3 ,

[
1 0 1 0
0 1 0 1

]
. (4)

Then, rank(A3) = 2.
Considering key-recovery attacks, Bao et al. [1] use partial values combined

with partial differences between ciphertext pairs, which are (Cl, C
′
l , ∆V ). It can

be written as: 1 0 0 0
0 0 1 0
0 1 0 1

 ·

Cl
Cr
C ′l
C ′r

 , let A4 ,

1 0 0 0
0 0 1 0
0 1 0 1

 . (5)

Then, rank(A4) = 3.
By observing the ranks of these matrices above, we find that the current

approaches are suffering from the following drawbacks: (i) the existing works
have not paid much attention to the importance of data integrity, which has a
very large impact on the performance; and (ii) the data format does not well
amplify the essential features of differential cryptanalysis.
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To overcome these problems, we propose new data format I to train the neu-
ral distinguishers, considering both the information integrity and the domain
knowledge about the structure of differential cryptanalysis. On the one hand,
to make the data format I include as much as possible information, we design
I = A·((Cl, Cr, Cl′, Cr ′))T, where A is a non-singular matrix. On the other hand,
the data format I contain the ciphertext pair and their difference as the domain
knowledge. Therefore, we consider the following data format: (∆L,∆V,Cl, Cr),
(∆L,∆V, V0, V1, Cl, Cr), (∆L,∆V,Cl, Cr, C

′
l , C
′
r). The respective matrix expres-

sion forms are:

A5 =


1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0

 , A6 =


1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0

 , A7 =


1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (6)

Then, rank(A5) = rank(A6) = rank(A7) = 4.
Under the same conditions, the experiment (see Section 4.3) demonstrates the

accuracy values of (Cl, Cr, ∆L,∆V ), (Cl, Cr, ∆L,∆V, V0, V1) and (Cl, Cr, C
′
l , C
′
r, ∆L,∆V )

input format are close, but higher than (Cl, Cr, C
′
l , C
′
r), (∆L,∆V, V0, V1), (Cl, C

′
l , ∆V )

and (∆L,∆V ). Meanwhile, the longer the data format is, the more complex the
training time and memory requirement are. Thus, the input data format of
(∆L,∆V,Cl, Cr) is more suitable. At the same time, notice that even if the in-
ternal sequence of these data formats is changed, there is almost no effect on the
accuracy.

3.2 A New Data Pre-processing Approach

Chen et al. [9] propose multiple groups of ciphertext pairs that can achieve
higher distinguishing accuracy. Thus, as shown in Figure 2, for differentials dis-
tinguishers, we first use a random key to encrypt the s-groups of plaintext pairs:(

(P 1
l , P

1
r , P

1
l
′
, P 1

r
′
), (P 2

l , P
2
r , P

2
l
′
, P 2

r
′
), . . . , (P sl , P

s
r , P

s
l
′, P sr

′)
)
. (7)

to get the s-groups of ciphertext pairs:(
(C1

l , C
1
r , C

1
l
′
, C1

r
′
), (C2

l , C
2
r , C

2
l
′
, C2

r
′
), . . . , (Csl , C

s
r , C

s
l
′, Csr

′)
)
. (8)

Then, use the s-groups of ciphertext pairs to get the data:

(∆L1, ∆V 1, C1
l , C

1
r ),

(∆L2, ∆V 2, C2
l , C

2
r ),

...
(∆Ls, ∆V s, Csl , C

s
r ).

(9)
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where ∆Li = Cil ⊕Cil
′
, ∆V i = Cir ⊕Cir

′
, and the set

(
∆Li, ∆V i, Cil , C

i
r

)
of row

i is denoted by Ωi.
Finally, we splice Ωi and convert it into a string of binary as a sample, and

each sample will be attached a label Y :

Y
(
Ω1||Ω2 · · · ||Ωs

)
=

{
1, if (P il , P

i
r)⊕ (P il

′
, P ir
′
) = ∆p, 1 ≤ i ≤ s,

0, else.
(10)

where ∆p is a fixed plaintext difference.

Unlike differential distinguisher uses a random key K to encrypt the s-groups
of plaintext pairs, related-key differential distinguisher uses a pair of keys (K,K ′)
with a difference of ∆k to encrypt the s-groups of plaintext pairs.

Fig. 2: A new data format using the multiple s-groups ciphertext pairs and dif-
ference

In our training process, the size of the training dataset is 107, and the vali-
dation dataset is 106. The validation dataset is only used to observe the model
performance trained by training data and it does not participate in the param-
eter learning and selection process, so we directly use the same data from the
validation dataset as the test dataset in our test process. Note that there is an
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independent key used for each sample. Therefore, our training dataset has 107

corresponding random keys, and our test dataset has 106 corresponding random
keys.

3.3 Network Architecture

A deep learning architecture is a multilayer stack of simple modules, most
of which are subject to learning, and many of which compute non-linear in-
put–output mappings. Each module in the stack transforms its input to increase
both the selectivity and the invariance of the representation. With multiple non-
linear layers, say a depth of 5 to 20, a system can implement extremely intricate
functions of its inputs that are simultaneously sensitive to minute details.

To illustrate the effect of data format we proposed on the accuracy of the
neural distinguishers, we use a network similar to Gohr’s [12] work. The network
consists of three main components: input layer, iteration layer and predict layer,
which is shown in Figure 3. The input layer receives training data with fixed
length and uses one Conv1D layer. In the iteration layer, we use 5 residual blocks
where each residual block contains two Conv1D layers. To make the network
learning more stable and alleviate the problem of gradient disappearance, a BN
layer is applied after each Conv1D layer, and then followed by an activation
layer with ReLU function. Finally, in predict layer, to make the data smoothly
transform from the convolutional layer to the fully connected layer, we need to
introduce a flatten layer to perform one-dimensional flattening of the data output
from the convolutional layer. The fully connected layer consists of two hidden
layers where each has 64 neurons and an output unit with only one neuron.

We use Adam optimization algorithm [17], MSE loss function and L2 reg-
ularization parameterized by c = 0.0001. At the same time, we use a natural
exponential decay learning rate.

4 Applications

In this paper, the experiment is conducted by Python 3.6.10 in Ubuntu 18.04 op-
erating system. The models we use are implemented by Tensorflow 2.3.0. Our ex-
periment uses a server with Intel(R) Xeon(R) Gold 6248 CPU *4 with 2.50GHz,
512GB RAM, and NVIDIA Tesla T4 16GB. We fix 64-groups to generate the
dataset (See Section 4.4 for the reason). Each distinguisher is trained for 100 or
150 epochs.

4.1 (Related-key) Neural Distinguishers for Reduced Simon32/64
and Simon64/128

Hou et al. [15] train effective 9-, 10-round NDs against Simon32/64 with the
input difference (0x0000,0x0080), but they fail in 11-round. Bao et al. use the
input difference (0x0000,0x0040) to build 7-, 8-, 9-, 10-, 11-round NDs against
Simon32/64 in paper [1], but the 11-round ND they build achieves an accuracy
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Fig. 3: Network Architecture proposed in this paper.

of 51.73%. We guess that the main reason for the invalidation of 11-round distin-
guisher using the difference (0x0000,0x0080) and (0x0000,0x0040) is that the
optimal probability of these input differences propagating to 11-round is 2−34.
Thus, the ciphertext pairs generated by these input difference are almost irregu-
lar, which leads to the failure of the classification task. Therefore, in our work, we
use the SAT/SMT solvers to search for the compatible differential distinguishers
with a probability of no more than 2−2n (2n is the block size).

Based on the plaintext difference ∆p = (0x0000,0x0080), we build NDs to
against Simon32/64 cover to 9-, 10-round with 99.34% and 86.08% accuracy,
respectively. We obtain NDs against Simon32/64 cover to 11-round achieve an
accuracy 59.55% with the input difference ∆p = (0x0020,0x0088). For Si-
mon64/128, the NDs we train with (0x0,0x4) reach 99.28% and 83.78% accu-
racy for 11-, 12-round, respectively. We enjoy a 60.32% accuracy for the 13-round
ND with the input difference (0x0,0x40). The results are presented in Table 3.
Compared with previous NDs, the number of rounds and the accuracy of our
NDs are greatly improved.

Similarly, based on the plaintext difference ∆p = (0x0000,0x0004) and the
key difference ∆k = (0x0000,0x0000,0x0000,0x0004), we enjoy 99.89% and
97.90% accuracy for 10-, 11-round RKNDs against Simon32/64, respectively.
Based on the plaintext difference ∆p = (0x0,0x4) and the key difference ∆k =
(0x0,0x0,0x0,0x4), we build RKNDs cover to 12-, 13-round with 99.98% and
95.49% accuracy for Simon64/128, respectively. To the best of our knowledge,
this is the first successful application of the RKNDs against the block ciphers.
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Table 3: Comparison of neural distinguishers for Simon32/64 and Simon64/128.

CiphersAttack Data Round Input difference Acc Source

Simon

32/64

DD

SCP 9 (0x0,0x40) 65.32% [1]

MOD 9 (0x0,0x80) 82.27% [15]

MOD-CP 9 (0x0,0x80) 99.34% 4.1

SCP 10 (0x0,0x40) 56.08% [1]

MOD 10 (0x0,0x80) 61.09% [15]

MOD-CP 10 (0x0,0x80) 86.08% 4.1

SCP 11 (0x0,0x40) 51.73% [1]

MOD-CP 11 (0x20,0x88) 59.55% 4.1

R-k DD
MOD-CP 10 (0x0,0x4),(0x0,0x0,0x0,0x4) 99.89% 4.1

MOD-CP 11 (0x0,0x4),(0x0,0x0,0x0,0x4) 97.90% 4.1

Simon

64/128

DD

MOD 11 (0x0,0x10) 73.79% [15]

MOD-CP 11 (0x0,0x4) 99.28% 4.1

MOD 12 (0x0,0x10) 69.57% [15]

MOD-CP 12 (0x0,0x4) 83.78% 4.1

MOD-CP 13 (0x0,0x40) 60.32% 4.1

R-k DD
MOD-CP 12 (0x0,0x4),(0x0,0x0,0x0,0x4) 99.98% 4.1

MOD-CP 13 (0x0,0x4),(0x0,0x0,0x0,0x4) 95.49% 4.1

1 We choose the highest accuracy NDs in these papers.
2 SCP: Single Ciphertext Pair. MOD: Multiple Output Differences. MCP: Mul-

tiple Ciphertext Pairs. MOD-CP: Multiple Output Differences and Ciphertext
Pairs.
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4.2 (Related-key) Neural Distinguishers for Reduced Simeck32/64
and Simeck64/128

For Simeck32/64, based on the plaintext difference ∆p = (0x0000,0x0040),
we get 9-, 10-, 11-round NDs against Simeck32/64 with 100%, 89.70% and
63.32% accuracy, respectively. For Simeck64/128, based on the plaintext differ-
ence ∆p = (0x0,0x1), we obtain NDs against Simeck64/128 cover to 14-, 15-,
16- and 17-round with 99.85%, 96.45%, 82.28% and 64.24% accuracy, respec-
tively. The results are presented in Table 4. Compared with previous work, we
have not only improved the number of rounds, but also the accuracy rate has
been greatly improved. Meanwhile, it is interesting to see that although the pa-
rameters of the round functions of Simon and Simeck are different, the number
of rounds and accuracy of the NDs are close.

Analogously, based on the plaintext difference ∆p = (0x0000,0x0004) and
the key difference ∆k = (0x0000,0x0000,0x0000,0x0004), we build RKNDs
cover to 13-, 14-round with 100% and 87.06% accuracy for Simeck32/64, respec-
tively. For Simeck64/128, based on the plaintext difference ∆p = (0x0,0x1)

and the key difference ∆k = (0x0,0x0,0x0,0x1), we build RKNDs cover to
18-, 19-, 20- and 21-round with 99.80%, 95.80%, 80.71% and 62.96% accuracy
for Simeck64/128, respectively. This seems interesting. Although Simon and
Simeck have similar NDs performance, the gap of RKNDs is obvious. And Si-
mon’s key-expansion algorithm offers the better resistance. This is consistent
with the conclusion Lu et al. get using rotational-XOR cryptanalysis in [22].

4.3 Experiment with Different Data Format

In order to show that our new data format (∆L,∆V,Cl, Cr) is indeed better
than others, based on the experiment of 10-round ND against Simon32/64, we
only change the data format, and other parameters are fixed for comparison
experiments.

The results are presented in Table 5, the accuracy of the NDs with the
data format (Cl, Cr, Cl

′, Cr
′) is no more than 50% for 10-round Simon32/64.

The accuracy of neural distinguishers using data formats of (∆L,∆V, V0, V1),
(∆L,∆V ), (Cl, C

′
l , ∆V ), (∆L,∆V,Cl, Cr), (∆L,∆V, V0, V1, Cl, Cr) and (∆L,∆V,Cl, Cr, C

′
l , C
′
r)

are all over 50%, but the accuracy rate improved by using the latter three is
greater than that of the first three. In addition, the use of (∆L,∆V, V0, V1, Cl, Cr)
and (∆L,∆V,Cl, Cr, C

′
l , C
′
r) has higher memory requirements. Therefore, (∆L,∆V,Cl, Cr)

is a more appropriate choice considering both the accuracy need and memory
and time cost.

4.4 How to Choose Parameter S

Chen et al. [9] explain that why it is better to consider multiple groups cipher-
text pairs: if ciphertext pairs corresponding to plaintext pairs with a specific
plaintext difference obey a non-uniform distribution, there are some derived fea-
tures from multiple ciphertext pairs. Once the network captures these features,
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Table 4: Comparison of neural distinguishers for Simeck32/64 and
Simeck64/128.

CiphersAttack
Data

Format
Input difference RoundAcc Source

Simeck

32/64

PDD SCP (0x0,0x1) 9 1 75.84% [10]

DD MOD-CP (0x0,0x40)

9 100%

4.210 89.70%

11 63.32%

R-k DDMOD-CP (0x0,0x4),(0x0,0x0,0x0,0x4)
13 100%

4.2
14 87.06%

Simeck

64/128

DD MOD-CP (0x0,0x1)

14 99.84%

4.2
15 96.45%

16 82.28%

17 64.24%

R-k DDMOD-CP (0x0,0x1), (0x0,0x0,0x0,0x1)

18 99.80%

4.2
19 95.80%

20 80.71%

21 62.96%

1 We choose the highest accuracy neural distinguisher in paper [10].
2 DD: Differential Distinguisher, R-k DD: Related-key Differential Distin-

guisher, PDD: Polytopic Differential Distinguisher. SCP: Single Ciphertext
Pair. MOD-CP: Multiple Output Differences and Ciphertext Pairs.

Table 5: Experiment with Different Data Format1.

Ciphers Attack Round Data Format Accuracy Source

Simon32/64 DD 10

(Cl, Cr, C
′
l , C

′
r) 50.01% [12]

(∆L,∆V, V0, V1) 61.48% [3]

(∆L,∆V ) 61.09% [15]

(Cl, C
′
l ,∆V ) 61.20% [1]

(∆L,∆V,Cl, Cr) 77.96% This Paper.

(∆L,∆V, V0, V1, Cl, Cr) 76.12% This Paper.

(∆L,∆V,Cl, Cr, C
′
l , C

′
r) 77.13% This Paper.

1 Keeping other experimental conditions the same, these experiments are car-
ried out with different data formats. We use 32-groups multiple ciphertext
pairs and the input difference used is (0x0000,0x0080).
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the neural distinguishers would obtain some performance promotions. But they
don’t specify how many groups are appropriate.

Therefore, in order to explore how to select the parameter s, we design a
comparative experiment that fixed all other parameters but only the parameter
s is variable, where s ∈ {2, 4, 6, 8, 16, 32, 64}.

It can be found that the accuracy is growing when the parameter s (the
number of groups) increases in Figure 4, and the accuracy does not increase after
reaching 99.99%. But it should be noted that with the increase of s, the training
time is also increasing. To make a trade-off between training time and accuracy,
we select 64 as the value of s to build the (related-key) neural distinguishers in
this paper.

(a) Training Accuracy (b) Validation Accuracy

(c) Training Loss (d) Validation Loss

Fig. 4: Training a neural network to distinguish 13-round Simeck32/64
output for the input difference ∆p = (0x0000,0x0004) and ∆k =
(0x0000,0x0000,0x0000,0x0004) from random data. Only the parameter s
is different in these experiments while the other experimental conditions are the
same.

5 Comparing the Performance with Different Input
Difference

In Section 4, we use the SAT/SMT solvers to search for the compatible differ-
ential distinguishers with a probability of no more than 2−2n (2n is the block
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size). We find a 19-round related-key differential distinguisher with probabil-
ity 2−32 for Simon32/64, and the characteristic is shown in Table 7. Then,
based on the plaintext difference ∆p = (0x0000,0x5555) and the key difference
∆k = (0xaaaa,0xaaaa,0x0000,0x5555), we obtain an 8-round RKND with an
accuracy of 91.22%. But for 9-round, the training scheme fails, i.e. the model does
not learn a useful distinguishing function by mining the information contained in
the training data. This is interesting, although the pure distinguisher has reached
19-round, it cannot reach 9-round ND when the input difference of the 19-round
distinguisher is used in the network. Hou et al. [15] think the higher the ham-
ming weight of the input difference, the weaker the non-random feature of the
ciphertext pair. We agree with this view to a certain extent, and as described
in Section 4.1, based on the plaintext difference ∆p = (0x0000,0x0004) and
the key difference ∆k = (0x0000,0x0000,0x0000,0x0004) with low hamming
weight, we enjoy 99.89% and 97.90% accuracy for 10-, 11-round RKNDs against
Simon32/64, respectively. The pure characteristic is also shown in Table 7.

But as shown in Table 6, it can be seen that the input difference (0x0400,0x1000),
(0x0010,0x0040), (0x0000,0x0028) and (0x0000,0x0110) with hamming weight
2 fail for 11-round ND against Simon32/64, but the input difference (0x0020,0x0088),
(0x0200,0x0880), (0x2000,0x8800) and (0x0002,0x8008) with hamming weight
3 obtain 11-round ND with an accuracy of 58%-60% against Simon32/64. There-
fore, it needs to be further explored in the future that how the input differences
influence the performance of the network.

Table 6: Comparing the ND Performance with Different Input Difference for
Simon32/64.

Cipher Round Accuracy Input difference Hamming weight

Simon32/64 11

50%-51%
(0400,1000) (0010,0040)

2
(0000,0028) (0000,0110)

58%-60%
(0020,0088) (0200,0880)

3
(2000,8800) (0002,8008)

50%-51%
(0004,0410) (0080,0022)

3
(1000,0440) (0040,0011)

1 The optimal probability of these input differences propagating to 11-round is
2−32.

6 Conclusion

In this paper, we provide an in-depth analysis of the (related-key) neural differ-
ential distinguishers. We find that the difference between the ciphertext pair and
the integrity of the ciphertext pair information have an essential impact on the
performance to the network. Therefore, we use the data format (∆L,∆V,Cl, Cr)
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Table 7: The 12-, 19-round related-key characteristics for Simon32/64

Simon32/64 Simon32/64
Round key data key data

difference difference difference difference

0 0004 (0000||0004) 5555 (0000||5555)

1 0000 (0000||0000) 0000 (0000||0000)

2 0000 (0000||0000) aaaa (0000||0000)

3 0000 (0000||0000) aaaa (aaaa||0000)

4 0004 (0000||0000) aaaa (0000||aaaa)

5 c000 (0004||0000) 0000 (0000||0000)

6 1400 (c010||0004) 5555 (0000||0000)

7 03c6 (0427||c010) aaaa (5555||0000)

8 0040 (fc04||0427) 5555 (0000||5555)

9 de0c (4800||fc04) 0000 (0000||0000)

10 4004 (0201||4800) aaaa (0000||0000)

11 cfa6 (0000||0201) aaaa (aaaa||0000)

12 (cda7||0000) aaaa (0000||aaaa)

13 0000 (0000||0000)

14 5555 (0000||0000)

15 aaaa (5555||0000)

16 5555 (0000||5555)

17 0000 (0000||0000)

18 aaaa (0000||0000)

19 (aaaa||0000)

Prob. 1 2−32 1 2−32
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as the input of the network. In addition, to improve the accuracy of the neu-
ral distinguishers, we also use the SAT/SMT automatic tools to find differ-
ential characteristics with high differential probabilities. For Simon32/64, Si-
mon64/128, Simeck32/64 and Simeck64/128, we construct the longest neural
network (related-key) differential distinguishers with higher accuracy.

It is undeniable that there are many factors that can affect the performance
of neural distinguishers, such as the data format discussed in this paper, network
structure, methods of model training, and so on. This paper explores its impact
on the performance of neural distinguishers from the perspective of data format.
In the future, we plan to further explore ways that can improve the distinguishing
performance of neural networks from multiple dimensions, such as using some
classic deep learning models, using methods of feature engineering to extract
more essential characteristics of the training data, combining pre-training models
with the domain knowledge and so on.
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