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In CRYPTO 2019, Gohr made a pioneering attempt and successfully applied deep
learning to the differential cryptanalysis against NSA block cipher Speck32/64,
achieving higher accuracy than the pure differential distinguishers. By its very
nature, mining effective features in data plays a crucial role in data-driven
deep learning. In this paper, in addition to considering the integrity of the
information from the training data of the ciphertext pair, domain knowledge
about the structure of differential cryptanalysis is also considered into the training
process of deep learning to improve the performance. Meanwhile, taking the
performance of the differential-neural distinguisher of Simon32/64 as an entry
point, we investigate the impact of input difference on the performance of the
hybrid distinguishers to choose the proper input difference. Eventually, we
improve the accuracy of the neural distinguishers of Simon32/64, Simon64/128,
Simeck32/64, and Simeck64/128. We also obtain related-key differential-based
neural distinguishers on round-reduced versions of Simon32/64, Simon64/128,
Simeck32/64, and Simeck64/128 for the first time.

Keywords: Deep Learning; (Related-key) Differential Distinguisher; SIMON; SIMECK; Input
Difference

INTRODUCTION

improve the accuracy and efficiency in cryptanalysis

The security analysis of many cryptographic primitives
(such as pseudo-random number generators, hash
functions, etc.) is usually attributed to attacks on
the underlying block ciphers. Various cryptanalytic
methods have been proposed over the past few
decades, including differential cryptanalysis [1], linear
cryptanalysis [2], integral cryptanalysis |[3], zero-
correlation linear cryptanalysis [4], etc. A block cipher
must be able to resist all known cryptanalysis to
obtain a strong security statement. In recent years,
solver-based automatic tools and dedicated heuristic
search algorithms have been extensively adopted to

of block ciphers, where the cryptanalytic models are
often transformed into MILP problems [5)6], SAT/SMT
problems |7,,8] or CP problems [9,10]. Automatic search
technology has improved the analysis ability of block
ciphers. The improvement and development of these
automatic search technologies provide an inexhaustible
source of thought for the design and analysis of
block ciphers. However, these search technologies do
not extract any new features that are not available
manually. Therefore, once optimal distinguishers
are obtained, these automatic tools would exert less
influence in improving attacks.

Recently, under the joint driven form of big



data and the availability of computing hardware,
deep learning [11,|12] has made remarkable progress
and spread over almost every field of science
and technology. Some researchers explored the
feasibility of applying machine learning to the field of
cryptography. In ASTACRYPT 1991, Rivest [13] made
preliminary explorations of the possible connection
between cryptography and machine learning, and some
researchers applied machine learning in side channel
analysis successfully, such as [14,[15]. However, few
researchers focused on the application of machine
learning to black box cryptanalysis, until the process of
applying deep learning to black box cryptanalysis was
accelerated by the remarkable work of Gohr [16].

Deep learning algorithms can analyze data and learn
effective patterns for predicting new samples. Based
on this, Gohr trained a deep neural network using the
labeled (labels 0 and 1) ciphertext pairs as training
data, where the data with label 1 comes from the
encrypted plaintext pair with fixed input difference,
and the data with label 0 is a random number. The
trained neural network then is used to distinguish
between the real ciphertext pairs and random pairs.
When his network is applied to SPECK32/64, higher
accuracy than the classical differential (CD) is achieved.
Although the number of rounds using his network has
not yet surpassed the number of rounds achieved by
the most advanced technology, the neural distinguisher
(ND) under the same number of rounds uses some
information that the CD has not tapped.

More importantly, a potent key recovery attack
is created by combining NDs with CDs and highly
selective key search strategies. In essence, the NDs
are too short to be used in key recovery and must be
prepended with CDs to get the hybrid distinguishers
(HDs). Making the resulting HDs usable in a key
recovery attack requires better NDs or prepended
CDs. Researchers have provided solutions from various
angles. Benamira et al. [17] analyzed and explained
the inner workings of Gohr’s neural network and
enhanced the accuracy of the NDs by creating batches
of ciphertext inputs instead of pairs. Bao et al. [1§]
enhanced the CD’s neutral bits and trained better NDs
by investigating different neural networks, enabling key
recovery attacks for the 13-round SPECK32/64 and 16-
round SIMON32/64.

Our contribution:

e In this paper, we present (related-key) differential-
based neural distinguishers on SIMON and SIMECK
block ciphers. To better match our neural
network and increase the accuracy of the neu-
ral distinguisher, we adopt the multiple ci-
phertext pairs (8 ciphertext pairs) to train
the neural network fed with the data of form
(AL AR, Cr, G, O, CL AT pATT2), Fig.

shows a schematic representation of these nota-

tions. Also, we employ the SE-ResNet network
(Fig.|2) due to the success of ResNet on SPECK [16]
and SENet on SIMON |[18], as well as their superior
performance on classification tasks.

e We notice that the choice of the ND or
connecting difference is critical to obtain the
best hybrid distinguishers. Therefore, taking the
performance of the differential-neural distinguisher
of SIMON32/64 as an entry point, we investigate
the impact of input difference of the ND on the
performance of the hybrid distinguishers to choose
the proper input difference. As a result, the input
difference (0,e;) is a good choice to obtain hybrid
distinguishers for StMON-like ciphers.

e Eventually, we build neural distinguishers for
SIMON32/64, SIMON64/128, SIMECK32/64 and
SIMECK64/128. The results are shown in Table
which shows that we improve the accuracy of
the distinguishers. Meanwhile, we successfully
construct the related-key neural distinguishers
against SIMON32/64, SIMON64/128, SIMECK32/64
and SIMECK64/128 for the first time.

In this paper, the experiment is conducted by Python
3.6.10 in Ubuntu 18.04. The models are implemented
by Tensorflow 2.5.0. The experiment uses a server with
Intel(R) Xeon(R) Gold 6248 CPU *4 with 2.50GHz,
512GB RAM, and NVIDIA Tesla T4 16GB. The source
code is available on GithuHl

Organization. Section [2| recalls SiMON-like ciphers,
(related-key) differential cryptanalysis and CNN net-
work.  Section |3| introduces improved (related-key)
differential-based neural distinguishers, including the
batches of ciphertext pairs with new data format, and
the network architecture. Section compares the
performance of the hybrid distinguisher with differ-
ent input difference. Section [5| gives the (related-
key) differential-neural distinguishers for round-reduced
SIMON32/64 and SIMONG4/128. Section [f] provides
the (related-key) differential-neural distinguishers for
round-reduced SIMECK32/64 and SIMECK64/128. Sec-
tion [7] concludes this paper.

2. RELATED WORKS

2.1. Notations

Table |2 presents the notations used in this paper.

2.2. A Brief Description of Simon and Simeck

Ciphers

Simon. The lightweight family of AND-RX block
ciphers SIMON was proposed by the National Security
Agency (NSA) in 2013. It adopts the Feistel structure
and the round function consists of bitwise AND

Thttps://github.com/JIN-smile/
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TABLE 1: The comparison of (related-key) neural distinguishers attacks on SIMON32/64, SIMONG64/128,
SIMECK32/64, and SIMECK64 /128 with 8 ciphertext pairs as a sample. ND: neural distinguisher, RKND: related-key
neural distinguisher. TPR: True Positive Rate, TNR: True Negative Rate. 1: For NDs fed with single ciphertext pairs,
the combine-response distinguisher (CRD) obtained for the case of 8 ciphertext pairs. *: This neural distinguisher
is trained using the staged training method.

Ciphers Attack Round Input difference Accuracy TPR TNR Source
Model
9t (0x0, 0x40) 0.8940 0.8728 0.9152 18]
9 (0x0, 0x40) 0.9176 0.9052 0.9299  Sect.[j
10% (0x0,0x40) 0.6865 0.6817  0.6912 18]
\D 10 (0x0,0x40) 0.6075  0.6662  0.7287  Sect.[y
11%f (0x0, 0x40) 0.5568 0.5419 0.5717 18]
SIMON 11 (0x0,0x40) 0.5609  0.5366  0.5852  Sect.]y
32/64 12 (0x1,0x4) 0.5152 0.4799 0.5505 Sect. [}
12* (0x0,0x40) 0.5142 0.5029 0.5254
10 (0x0,0x40) , (0x0,0x0,0x0, 0x40) 1 1 1
rgnp 11 (0x0,0x40), (0x0,0x0,0x0,0x40)  0.9604 0.9639 0.9569 Sect. ]
12 (0x0,0x40), (0x0,0x0,0x0,0x40) 0.6477 0.6518 0.6435
13 (0x0,0x40), (0x0,0x0,0x0,0x40) 0.5262 0.5437  0.5081
9 (0x0,0x40) 0.9952 0.9989 0.9914
ND 10 (0x0,0x40) 0.7354 07207 07501 g
S 11 (0x0,0x40) 0.5646 0.5356 0.5936
32/64 12 (0x0,0x40) 0.5146 0.4770 0.5522
13 (0x0,0x40), (0x0,0x0,0x0,0x40) 0.9950 0.9990 0.9910
RKND 14 (0x0,0x40) , (0x0,0x0,0x0,0x40) 0.6679 0.6425 0.6933 Sect. @
15 (0x0,0x40), (0x0,0x0,0x0,0x40) 0.5467 0.5173 0.5762
11 (0x0,0x40) 0.9181 0.9045 0.9318
12 (0x0, 0x40) 0.7117 0.6705 0.7530
ND 13 (0x0,0x40) 0.5722 0.5230 0.6215  Sect. [
SIMON 14 (0x0,0x40) 0.5148 0.4697 0.5600
64/128 14* (0x0, 0x40) 0.5185 0.4663 0.5707
12 (0x0,0x40), (0x0,0x0,0x0,0x40) 0.9880 0.9894 0.9865
RKND 13 (0x0,0x40), (0x0,0x0,0x0,0%40) 0.8398 0.8389 0.8408  Scct. [
14 (0x0,0x40), (0x0,0x0,0x0,0x40) 0.5788 0.5894 0.5682
14 (0x0,0x40) 0.9142 0.8914 0.9371
15 (0x0,0x40) 0.7663 0.6981 0.8345
ND 16 (0x0,0x40) 0.6356 0.5245 07467 o g
17 (0x0,0x40) 0.5577 0.4301 0.6853
18 (0x0,0x40) 0.5202 0.3917 0.6486
SIMECK
64/128 18* (0x0, 0x40) 0.5218 0.3927  0.6510
18 (0x0,0x40), (0x0,0x0,0x0,0x40) 0.9066 0.8837  0.9295
19 (0x0,0x40), (0x0,0x0,0x0,0x40) 0.7558 0.6845 0.8270
RKND 20  (0x0,0x40), (0x0,0x0,0x0,0x40) 0.6229 0.5104 0.7354  Sect. [
21 (0x0,0x40), (0x0,0x0,0x0,0x40) 0.5519 0.4248 0.6790

22 (0x0,0x40) , (0x0,0x0,0x0,0x40) 0.5180 0.3906 0.6455




TABLE 2: The notations used throughout the paper

Notation Description

= (Tp_1,...,209) Binary vector of n bits; z; is the bit in position ¢ with zq
the least significant one.

TOyY Bitwise AND between x and y.

Dy Bitwise XOR between z and y.

z |y Concatenation of z and y.

T < 7,87 (z) Circular left shift of 2 by ~ bits.

x> 5,577 (x) Circular right shift of « by + bits.

(P, P, P/,P}) A set of plaintext pairs with left and right branches where
P=PF | P.and P =P/ | P

(€, Cr, CY,CL) A set of ciphertext pairs with left and right branches where

C=C/ | Crand C"=C] || C].

(®), bitwise XOR (@) and cyclic left shift ~ bit
(S7) operation composition. The designer provides
ten versions, all marked as SIMON2n/mn, where 2n
represents the block size, mn represents the key length,
n € {16,24,32,48,64}, m € {2,3,4}. The round
function of SIMON algorithm is defined as:

fs2(z) = (S® (z) © S* (2)) @ S*(2).

The round keys are generated using a linear key
schedule through the K = (kpy—1,kmn—2,...,k0). A
more complete description can refer to paper [19].
Simeck. The SIMECK family of lightweight block
ciphers was designed by Yang et al. [20], aiming at
improving the hardware implementation cost of SIMON.
SIMECK2n/4n denotes an instance with a 2n-bit block
and a 4n-bit key for n € {16,24,32}. The round
function of SIMECK algorithm is defined as:

fs01(z) = (5% (1) © 5% (x)) @ S'().

Conversely, SIMECK uses the non-linear key schedule

which reuses the cipher’s round function to generate the
round keys. A more complete description can be found
in [20].
Simon-like ciphers. Iterated ciphers that wuse
SIMON’s round function and generalize it to accept
arbitrary rotational parameters are known as SIMON-
like ciphers (a,b,c¢). The SiMON-like function is
then fop.c(z) = (5% () ® S*(x)) ® S°(z), which the
rotational parameters (a, b, ¢) are (8,1,2) and (5,0,1) for
all SIMON and SIMECK versions, respectively.

2.3. (Related-key) Differential Cryptanalysis

Differential cryptanalysis is a chosen-plaintext attack
introduced by Biham and Shamir in [1]. It analyzes
the effect of the difference of a plaintext pair on the
difference of succeeding round outputs in an iterated
cipher. Differential cryptanalysis is a widely used
tool for the cryptanalysis of encryption algorithms and
the development of new attacks due to its generality.
Resistance to differential cryptanalysis became one of
the basic criteria in the evaluation of the security of
block ciphers.

DEFINITION 2.1 (Difference). [1] Let X and X’ be
two bit strings of length n, then the difference between
X and X’ is defined as: AX = X & X'.

DEFINITION 2.2 (Differential Pair). [1] Let «, 8 be
n-bit vectors, the difference value of the input pair
(X, X') of the block cipher is X & X’ = «, after r-
round of encryption, the difference value of the output
pair (Y,Y')is Y @Y’ = 8, and let a round function
f:F% — F%, then (a, ) is called an r-round differential
pair of block cipher, where « is the input difference
of round function f, [ is the output difference of
f. In particular, when » = 1, (a, ) characterizes
the differential propagation characteristics of the round
function f.

For a specific cipher, the differential must be carefully
selected to make the differential attack successful. This
makes researchers need to study the internal process
of the algorithm. The basic method is to track
a path passed by a high probability differential at
different stages of encryption. This is called differential
characteristics in cryptography and is defined as follows.

DEFINITION 2.3 (Differential Characteristics). |[1]
Let X, X’ be n-bit vectors and 3; be an n-bit constant.
When the difference value of the input pair (X,X’)
satisfies X ® X’ = [y, the difference value of the
intermediate state (Y;,Y;) satisfies Y; @Y/ = f3; during
the r-th round of encryption, where, 1 < ¢ < 7.
Then, Q = (£, 52,...,0) can be named an r-round
differential characteristic of an iterative block cipher.

For given differential characteristics, use the following
definition to calculate its probability.

DEFINITION 2.4. [1] The probability DP()
corresponding to an r-round differential characteristic
Q = (b1, B2, ..., 8 of the iterative block cipher refers
to the case where the input X and the round keys
are independent and random distributed, when the
differential value of the input pair (X, X’) is X ¢ X' =
B1, in the i-round encryption process, the difference
value of the intermediate state (Y;,Y;) satisfies the
probability of Y; @ Y/ = f;, where 1 < 4 < r. Under
the above assumption, the probability of the differential
characteristic is equal to the product of the differential
propagation probabilities of each round, i.e.:

DP(Q) = HP""(Bi—l — ﬂl)

i1
_ ljl {Yialf(Yio) @ f2(};i71 ® Bic1) = Bi}.

When the input difference undergoes a linear
operation, it will be propagated through the operation
with probability 1, and the output difference is
deterministic, such as XOR (@) and cyclic shift (<
,>>) in the ARX operation. When the input difference
passes through a non-linear operation, the difference
propagation is often probabilistic.

Related-key differential cryptanalysis was introduced
by Biham in [21]. Unlike the single-key differentials



that have differences only in the plaintexts, related-
key differential distinguishers have differences in the
master keys as well. It exploits the output differences
given a pair of plaintexts P and P’ encrypted by a
pair of related keys K and K', respectively. Related-
keys differential cryptanalysis is also one of the basic
criteria in the evaluation of the security of block ciphers,
which has successfully attacked many block ciphers,
such as [22424].

2.4. Convolutional Neural Network

Convolutional neural network (CNN) is an
important paradigm in deep learning. CNN is usually
composed of the convolutional layer, non-linear layer,
pooling layer and fully connected layer. According
to the convolution dimension of the feature map, it
can be divided into one-, two-, and three-dimensional
convolutional neural network (i.e., 1D-CNN, 2D-CNN
and 3D-CNN), where the 1D-CNN applies a convolution
over a fixed (multi-)temporal input signal.

Convolution Layer (CONV). Convolution is the
basic operation of CNN, and its main purpose is to
extract features. The core task of CNN is to learn
parameters to extract effective patterns. In the forward
propagation, the training data will go through the
convolution kernel with initial parameters to obtain the
initial output. In the back propagation, a loss function
will be applied to adjust the parameters to minimize
the gap between the initial output and the target label.
After several iterations, when the loss stabilizes, the
training process will be finished. Note that in this paper
we apply 1D-CNN, then the convolution layer can be
denoted by ConvlD.

Non-linear layer. The main purpose of the non-
linear layer is to introduce non-linear characteristics
into the system. The most common non-linear layer
in a CNN network is the rectified linear unit (ReLU)
function, defined as f(xr) = maz(0,z). Effectively,
it removes negative values from an activation map
by setting them to zero. It increases the nonlinear
properties of the decision function and of the overall
network without affecting the receptive fields of the
convolution layer. Other functions are also used to
increase nonlinearity, such as the sigmoid function.
ReLU is often preferred to other functions because it
trains the neural network several times faster without
a significant penalty to generalization accuracy.

Fully connected layer (FC). The fully connected
layer is generally located in the back layers of the
network for performing the classification task. Usually,
the input of the fully connected layer is the flatten
feature map generated by convolution layer.

In addition, some functional layers may be used in
CNN. For example, Batch Normalization (BN) can
be applied after the convolution layer to reduce the
internal covariate shift, which can effectively prevent
the gradient disappearance problem and speed up

network training.

Residual Network (ResNet) is one of the most
representative CNNs, which was proposed by He et
al. [25] in 2015. ResNet can train a deeper CNN model
to achieve higher accuracy. The core idea is to establish
“shortcuts (skip) connections” between the front layer
and the back layer. It is composed of a series of residual
blocks. A residual block can be expressed as:

Ti+1 = Xy +.F(£L'l)

It is divided into two parts: the direct mapping part
and the residual part. F(x;) is the residual part,
which is generally composed of two or three convolution
operations. The activation functions of ReLU and BN
can be rearranged to create a variety of residual block
variants.

Squeeze-and-Excitation Network (SENet) is a
new network structure proposed by Hu et al. that
won the first place in ILSVRC 2017 classification
competition [26]. The “Squeeze-and-Excitation” (SE)
block adaptively recalibrates channel-wise feature
responses by explicitly modelling interdependencies
between channels. It can be integrated into standard
architectures by insertion after the non-linearity
following each convolution. In this paper, SE block is
used directly with the residual network, i.e., the SE-
ResNet network.

3. IMPROVED (RELATED-KEY)
DIFFERENTIAL-BASED NEURAL DIS-
TINGUISHERS

3.1. Dateset: Multiple Ciphertext Pairs with
New Data Format

Data plays a very important role in deep learning, data
preparation is a fundamental step for deep learning
model development. Some researchers explored the use
of multiple ciphertext pairs to improve the performance
of differential-based neural distinguishers |17} [27)
2§). Some researchers also performed additional
transformations on each pair of ciphertexts before
feeding them into the network. Concretely, in
Gohr’s work, the n-round NDs fed with data of form
(C1,Cy,C[,C)).  Subsequently, Benamira et al. [17]
conjected the first convolution layer of Gohr’s neural
network transforms the input (Cj, C., C}, CL.) into (C;®
C.CieCleC.aCLC &C,C &C]) and a linear
combination of those terms. In [28], Hou et al. designed
the NDs model with multiple output differences as a
sample, i.e., the n-round NDs fed multiple pairs with
data of form (C;®CJ, C,&C’) £ (A}, A%). In [18], Bao
et al. accepted the r-round NDs fed with data of form
(Cr, ClL AT, where A = (0 < 8) @ (0, <
Do (C,x2)aC)d((C. k8o (Clk)a(C «
2) @ () for SIMON ciphers.

In this paper, we employ multiple ci-
phertext  pairs  with new data of form



(A}, A%, C, C, O CL AT pA?) to improve
the performance of neural distinguishers (the reason
for choosing this data format is given in Section [5.3]).
Then, the process of constructing a dataset can be
described.

For the differential-neural distinguisher, first encrypt
the s plaintext pairs ((P,P'), (P, P")?,..., (P, P')?%)
with a random key to get the s ciphertext pairs. Then,
use the s ciphertext pairs to get the data:

(AE7 A;zv C, Cr, 01/7 047 A?&{_l’pA?%_2)l7
(A}, A%, CLCr, O, Cl AT pATT?)2,

(AE, A;% Cl7 C’r‘> Cl/a C;w A%717PA%72)5-

where the set (A7, A%, C1, Cy, Cf, CF, A pAL?)" of
row ¢ is denoted by €Q°.
Finally, splice Q* and convert it into a string of binary

as a sample, and each sample will be attached a label
Y:

v @ - {

where A, is a constant input difference. It examines
how to select the A, in Section El

Unlike differential-neural distinguisher, which uses
a random key K to encrypt the s plaintext pairs,
related-key differential-neural distinguisher uses a pair
of keys (K, K') with a difference of Ay to encrypt the
s plaintext pairs.

We construct the dataset based on the above steps
and set s = 8. In the basic training process, the
size of the training set is 2 x 107, and the test set is
2 x 108. Meanwhile, there is an independent key used
for each sample. Therefore, the training set has 2 x 107
corresponding random keys, and the test set has 2 x 10°
corresponding random keys.

3.2. Network Architecture

A deep learning architecture is a multilayer stack of
simple modules, most of which are subject to learning,
and many of which compute non-linear input-output
mappings. Each module in the stack transforms its
input to increase both the selectivity and the invariance
of the representation. With multiple non-linear layers,
say a depth of 5 to 20, a system can implement
extremely intricate functions of its inputs that are
simultaneously sensitive to minute details.

Given the success of ResNet on SPECK [16] and SENet
on SIMON |[18], as well as their superior performance
on classification tasks, we use the SE-ResNet network.
As shown in Fig. 2] the network consists of three main
components: input layer, iteration layer and predict
layer. The input layer uses one ConvlD layer and two
Dense layers to receive fixed length training data. In
the iteration layer, use 5 SE-ResNet modules where

1, ifPPe(P) =A,1<i<s,

0, else.

each module contains two ConvlD layers and one SE
block. To make the network learning more stable and
alleviate the problem of gradient disappearance, a BN
layer is applied after each ConvlD layer, and then
followed by an activation layer with ReLU function.
Finally, in predict layer, to make the data smoothly
transform from the convolutional layer to the fully
connected layer, we introduce a flatten layer to perform
one-dimensional flattening of the data output from the
convolutional layer. The fully connected layer consists
of two Dense layers where each has 64 neurons and an
output unit with only one neuron.

We set the batch size to 30000, cyclic learning rate
li = o+ 0Umedtdtl) (g o) with o = 0.0001,
B = 0.003, n = 29 for epoch ¢, which is denoted as
cyclic_1r(30,0.003,0.0001). Adam [29] is used as the
optimizer with mean squared error (MSE) loss function
and L2 regularization parameterized by ¢ = 0.00001.
Each dataset is trained with 120 epochs for the basic
training method. The accuracy, TPR, and TNR of the
ND are the average results after 5 repetitions.

4. COMPARING THE PERFORMANCE OF
THE HYBRID DISTINGUISHER WITH
DIFFERENT INPUT DIFFERENCE

In this section, we investigate the effect of input
difference of the NDs on the performance of the hybrid
distinguishers. Essentially, to be used in key-recovery,
the NDs are too short such that they have to be
prepended with classical differentials. Whether the
resulting HDs can be used in a key-recovery attack
depends on whether the input difference of NDs leads
to better accuracy and, at the same time, leads to
prepended CDs with high differential probability.

Therefore, taking the performance of the hybrid
distinguisher of SIMON32/64 as an entry point, we
investigate the issue in two phases. In the first stage,
we study the performance of all input differences with
Hamming weights of 1, 2, and 3 on the 1l-round
ND, and filter the input differences that can obtain a
non-marginal advantage (accuracy above 0.50). Then
study the performance of these filtered input differences
on 12-round ND. In the second stage, we study the
probability of the prepended CDs with these filtered
input differences.

The First Stage

Let HW(A,) denote the Hamming weight of the input
difference, then there are 32 + 496 + 4960 = 5488 input
difference with HW(A,) < 3. Based on Section
traversing these input difference A, with the batch
size 30000 and cyclic_ 1r(30,0.003,0.0001), we construct
11-round ND of SiMON32/64, respectively. There are
128 input differences filtered, of which 48 have an
accuracy between 0.51-0.52 and 80 have an accuracy
between 0.54-0.56. Therefore, we mainly focus on the
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FIGURE 2: Network architecture proposed in this paper.

performance of these 80 input differences. The results
with these 80 input differences are shown in Fig. [3]

It is discovered that 1l-round ND with input
difference A, = (a,b) and input difference A}, = (¢ <
1,b <« i) have similar accuracy, for 0 < ¢ < 16. Thus,
we only list one of these 16 input differences in Table [4]
Specifically, for HW(A,) = 1, using the input difference
(omit the 0z symbol):

(0000,0001), (0000,0002), (0000,0004), (0000,0008),
(0000,0010), (0000,0020), (0000,0040), (0000,0080),
(0000,0100), (0000,0200), (0000,0400), (0000,8000),

(0000,1000), (0000,2000), (0000,4000), (0000,8000),

can construct 1l-round ND of SIMON32/64 with an

accuracy of about 0.561.
For HW(A,) = 2, using the input difference:

(0001,0004), (0002,0008), (0004,0010), (0008,0020),
(0010,0040), (0020,0080), (0040,0100), (0080,0200),
(0100,0400), (0200,0800), (0400,1000), (0800,2000),
(1000,4000), (2000,8000), (4000,0001), (8000,0002),

can build 1l-round ND of SIiMON32/64 with an
accuracy of about 0.560.
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FIGURE 3: The input differences with Hamming weights of 1, 2, and 3 that can obtain a clear non-marginal
advantage (accuracy above 0.52) on the 11-round ND of SIMON32/64 with 8 ciphertext pairs as a sample.

For HW(A,) = 3, there are three sets of (a,b). Using
the input difference:

(0001,0104), (0002,0208), (0004,0410), (0008,0820),
(0010,1040), (0020,2080), (0040,4100), (0080,8200),
(0100,0401), (0200,0802), (0400,1004), (0800,2008),
(1000,4010), (2000,8020), (4000,0041), (8000,0082),

can construct 11-round ND of SIMON32/64 with an
accuracy of about 0.560.
Using the input difference:

(0001,0006), (0002,000¢), (0004,0018), (0008,0030),
(0010,0060), (0020,00¢0), (0040,0180), (0080,0300),
(0100,0600), (0200,0¢00), (0400,1800), (0800,3000),
(1000,6000), (2000,¢000), (4000,8001), (8000,0003),

can obtain 1l-round ND of SiMON32/64 with an
accuracy of about 0.560.
Using the input difference:

(0001,4004), (0002,8008), (0004,0011), (0008,0022),
(0010,0044), (0020,0088), (0040,0110), (0080,0220),
(0100,0440), (0200,0880), (0400,1100), (0800,2200),
(1000,4400), (2000,8800), (4000,1001), (8000,2002),

can get 11-round ND of SIMON32/64 with an accuracy
of about 0.549.

It can be found that the effect of the 16 input
differeces (0x0001 <« 4,0x4004 < ) (0 < i < 16)
is slightly inferior to the other 64 (80 — 16 = 64) input
differeces for 11-round ND.

Then, with the input differences (0x0,0x1),
(0x1,0x4),(0x1,0x104),(0x1,0x6),(0x1,0x4004)
separately, we construct 12-round ND of SiMON32/64
by using the basic training method. The results are
shown in Table It shows the accuracy exceeds 0.50
except for the input difference (0x0,0x1) ((0x0,0x1)
can get an accuracy of 0.5142 by using the staged train-
ing method). Therefore, a total of 64 input differences
can make 12-round ND obtain non-marginal advantage
by using the basic training method. Meanwhile, the

TABLE 3: Experiment with Different Input Difference
of 12-round ND for SIMON32/64 with 8 ciphertext pairs
as a sample.

Cipher Input Difference Acc TPR  TNR

(0x0000,0x0001) 0.5004 0.1149 0.8857
(0x0001,0x0004) 0.5152 0.4799 0.5505
(0x0001,0x0104) 0.5151 0.4901 0.5401
(0x0001,0x0006) 0.5152 0.4852 0.5453
(0x0001,0x4004) 0.5135 0.4331 0.5940

SIMON
32/64

input differential (0x1,0x4) and (0x1,0x6) performed
the best, with an accuracy of 0.5152.

The Second Stage

The NDs are prepended with 3 rounds of CDs in ,
so we use 3 rounds prepended CDs as a benchmark to
test the performance of the input differential filtered in
the first stage. An SMT solver is used to determine
the probability of prepended CDs. We first decide if
a differential characteristic with probability p exists,
then enumerate all differential characteristics with a
probability of p. The results are presented in Table [4]
It can be seen that the probability of the 3 rounds
prepended CDs with the input difference (0x0000 <
i,0x0001 <« 1), 0 < i < 16 (i.e., (0,e;)) are the
highest, followed by 2-bit input differential (0x0001
< 1,0x0004 < i), 0 < i < 16, and the worst are
(0x0001 <« 7,0x4004 «1),0<1 < 16.

As a result, after these two steps of filtering, the
input difference (0,e;) is possibly the best option for
hybrid distinguishers. Meanwhile, the input difference
(0x0001 < i,0x0004 <« i), 0 <17 < 16 is also a good
choice. But we cannot yet give a clearer opinion on how
much 7 is set.



TABLE 4: Comparing the performance of the hybrid distinguisher with different input difference for SIMON32/64.
The NDs is 11-round. The number on the arrow represents the probability of the differential characteristic from the
input difference to the output difference, and the number of characteristics™.

HW(A,) A, ND'’s ND’s ND’s Prepended CDs (3-round)
Acc TPR TNR

-8
(0011,0040) } 278(#20)
(0010,0146) } 279 (#4)
—_—
1-bit (0000,0001)  0.5607  0.5407  0.5807 (0011,0040) | 2-'°(#232) (0000,0001)
—r5

(0011,0040) 271 (#352)
L UASeiaY

-8
(0040,0111) } 278 (#4)
(0140,0511) } 279(#10)
T
2-bit (0001,0004) 0.5602  0.5059  0.6145 (1040,0101) } 2-10(472) (0001,0004)
—_—

—11
(1060,0101) } 211 (#124)

(0040,0111) } 2710 (44)
—
—11
(0140,0110) 2711 (#48)
(0001,0104) 0.5601  0.5024  0.6179 (1040,0101) 2712 (4:80) (0001,0104)
—>

(0200,4201) } 2713 (#620)
—_—

(0040,0111) 2710(#4)
_—
(0140,0511) 27 (#8)
_—
. —12
3-bit (0001,0006) 0.5597  0.4972  0.6221 (1040,0101) }w} (0001,0006)

(1060,0101) } 2713 (206)
—_—

—12
(4044,0101) } 2712(480)

(4064,0101) 2713 (#344)
(0001,4004) 0.5495 0.4433  0.6557 (0001,4004)

(0144,0140) } 2714 (#1072)
—_—

* For example:

278(#20
(0011,0040) } ﬁ (0000,0001) means that when the input differences are

(0011,0040) etc. and the output difference is (0000,0001), there are 20 characteristics with a probability
of 278 for 3-round SIMON32/64. And these input differences in the prepended CDs are the smallest
Hamming weight in these characteristics.



5. (RELATED-KEY) DIFFERENTIAL-
NEURAL  DISTINGUISHERS FOR
ROUND-REDUCED SIMON32/64 AND
SIMONG64,/128

In this section, the NDs are trained using the basic
training method and the staged training method. The
training model is based on Section

5.1. Differential-Neural Distinguishers

Simon32/64

Training using the basic scheme. Using the input
difference (0x0000,0x0040), we build NDs against
SIMON32/64 cover to 9-, 10-, and 11-round with 0.9176,
0.6975, and 0.5609 accuracy, respectively. Using the
input difference (0x0001,0x0004), we build 12-round
ND with 0.5152 accuracy. Table [1| presents the results.

Note that for NDs fed with single ciphertext pairs,
with multiple ciphertext pairs with the same label, one
can directly obtain a combine-response distinguisher
(CRD) using the formula (3) in [16]. Similar to the
NDs fed with multiple ciphertext pairs, the CRDSs’
accuracy improves quickly with increasing the number
of ciphertext pairs. Therefore, we compare the accuracy
of NDs with CRDs under the number of ciphertext pairs
with the same label. Compared with |18], the accuracy
of our NDs are improved.

Training using the Staged Training Method. We
also use several stages of pre-training to train a 12-
round differential-neural distinguisher for SIMON32/64.
In the first stage, the best 10-round distinguisher is
retained to recognize 9-round SIMON32/64 with the
input difference (0x0440,0x0100). The number of
samples for training and for testing are 22° and 223,
respectively. The number of epochs is 30 and the
learning rate is 104

In the second stage, the best network of the first stage
is retained to recognize 12-round SIMON32/64 with the
input difference (0x0000,0x0040). For this stage, 22°
and 2% examples are freshly generated for training and
testing, respectively. The learning rate is 10~* for 30
epochs.

Cyclical learning rates are also used for these training
stages, the first and second stage both use a minimum
learning rate of 0.0001 and a maximum of 0.001. All
cycle lengths in these stages are set to 30 epochs.
Eventually, the resulting ND achieves an accuracy of
0.5142.

Simon64 /128

Training using the basic scheme. Based on the
input difference (0x00000000,0x00000040), the NDs
reach 0.9181, 0.7117, 0.5722, and 0.5148 accuracy for
11-, 12-, 13-, and 14-round, respectively. As shown in
Table [1} the results are summarized.

_1r(30,0.001, 0.0001).

Training using the Staged Training Method. The
best 14-round distinguisher for SIMON64/128 is trained
using the staged training method.

In the first stage, the retained best 12-round
distinguisher is trained and tested with 11-round 22°
and 223 samples of SIMONG64/128 with the input
difference (0x00000440,0x00000100). The number
of epochs is 30 and the learning rate is 10~*. The
learning rate scheduler used in this stage is cyclic_
1r(30,0.001,0.0001).

Then the best network from the first stage is
trained in the second stage. The number of
examples for training and for testing are 22° and
223 using 14-round STMONG64/128 data with the input
difference (0x00000000,0x00000040). This stage is
done in 30 epochs with learning rate of 10~*. The
learning rate scheduler used in this stage is cyclic
Finally, the accuracy of the
resulting ND is 0.5185.

5.2. Related-key Differential-Neural Distin-
guishers

We use the basic training method to train the related-
key differential-neural distinguishers. Based on the
plaintext difference (0x0000,0x0040) and the key
difference (0x0000,0x0000,0x0000,0x0040), we enjoy
1, 0.9604, 0.6477, and 0.5262 accuracy for 10-, 11-
, 12-; and 13-round RKNDs against SIMON32/64,
respectively.

Based on the plaintext difference
(0x00000000,0x00000040) and the key difference
(0x00000000,0x00000000,0x00000000, 0x00000040),
we build RKNDs cover to 12-, 13-, and 14-round with
0.9880, 0.8398, and 0.5788 accuracy for SIMONG4/128,
respectively. To the best of our knowledge, this is
the first successful application of the RKNDs against
SiMON-like ciphers.

5.3. Experiment with Different Data Format

In order to improve the accuracy of the
ND, we introduce a new data format
(A}, A%, C, C, O, CL A pA ) suitable  for
the network architecture in this paper. Here, we ex-
plain the reason for choosing this data format. We
mainly compare the effect of the different data for-
mat on the performance of the network based on
the experiment of 9-, 10-, and 1l-round NDs for
SIMON32/64.

We use the basic method to train the 9-, 10-
, and 1l-round NDs based the input difference
(0x0000,0x0040), batch size 30000, and cyclic_
1r(30,0.003,0.0001).  The results are presented in
Table [l

It shows that the NDs using data formats of
(CrvcévA;‘iil)v (ATLﬂAyz?Cl’CTvClva;vA?{l)v
(A}, AR, CLCr OO A}"{l , pA?{Q) can  achieve



11-round, and the accuracy with data format
(A}, AR, C, C,, O, CL A pAT;?) is greater than
others. This is the primary cause for using this data
format in the paper.

Meanwhile, it is noted that the accuracy dropped
when the pA%_2 component was deleted from the data
format (A7, A%, Cy,Cy, Cl, CL A pALT?), d.e., the
neural network benefits from providing data pA%_2. In
fact, pA;{Q denotes the partial A’IA{Z, and it can be
determined without the round key when the ciphertext
pair is given.

It is important to note that this comparison is
only to show that the data format used in this
paper better matches the current network for better
performance. Different results may occur when the
network is changed.

6. (RELATED-KEY) DIFFERENTIAL-
NEURAL  DISTINGUISHERS FOR
ROUND-REDUCED SIMECK32/64 AND
SIMECK 64,128

SIMECK is a lightweight block cipher family that
combines the good design components of SIMON and
SPECK to make it even more compact and efficient.
In this section, we build NDs and RKNDs for round-
reduced SIMECK32/64 and SIMECK64/128.

6.1. Differential-Neural Distinguishers
Simeck32/64

Training using the basic scheme. Using the input
difference (0x0000,0x0040), we build NDs against
SIMECK32/64 cover to 9-, 10-, and 1l-round with
0.9952, 0.7354, and 0.5646 accuracy, respectively. The
results are presented in Table

Training using the Staged Training Method.
A 12-round differential-neural distinguisher for
SIMECK32/64 is also obtained by utilizing several
stages of pre-training.

The first stage selects the best 10-round distinguisher
to recognize 9-round SIMECK32/64 with the input
difference (0x0140,0x0080). Note that the most
likely difference to appear three rounds after the input
difference (0x0000,0x0040) is (0x0140,0x0080), and
the probability is about 27%.

It freshly generates 22° and samples to train
and test the distinguisher, respectively. This stage
has 30 epochs and a learning rate of 107*.  The
learning rate scheduler used in this stage is cyclic_
1r(30,0.001,0.0001).

The best network obtained from the first stage is
retained to recognize 12-round SIMECK32/64 with the
input difference (0x0000,0x0040). The number of
examples for training and for testing are 22° and 223,
respectively. The number of epochs is 30 and the
learning rate is 10~%. The learning rate scheduler used

223

in this stage is cyclic_1r(30,0.001,0.0001). Lastly, the
ND produced has an accuracy of 0.5146.

Simeck64/128

Training using the basic scheme. Similarly, based
on the input difference (0x00000000,0x00000040),
the NDs reach accuracies of 0.9142, 0.7663, 0.6356,
0.5577, and 0.5202 for 14-, 15-, 16-, 17-, and 18-round,
respectively. The results are shown in Table

Training using the Staged Training Method. We
use the staged training method to obtain the best 18-
round distinguisher for SIMECK64/128.

In the first stage, the retained best 16-round
distinguisher is trained and tested with 15-round 223
and 223 samples of SIMECKG64/128 with the input
difference (0x0000140,0x00000080). The number of
epochs is 30 and the learning rate is 1074,

Then the best network from the first stage is trained
in the second stage. The number of freshly generated
examples for training and for testing are 22° and 223,
using 18-round SIMECKG64/128 data with the input
difference (0x00000000,0x00000040). This stage is
done in 30 epochs with learning rate of 107%.

Cyclical learning rates are used for these training
stages, the first and second stage both use a minimum
learning rate of 0.0001 and a maximum of 0.001. All
cycle lengths in these stages are set to 30 epochs. As a
final result, the ND produced has an accuracy of 0.5218.

6.2. Related-key Differential-Neural Distin-
guishers

For related-key differential-neural distinguishers, based
on the input difference (0x0000,0x0040) and the key
difference (0x0000,0x0000,0x0000,0x0040), it covers
to 13-, 14-, and 15-round with 0.9950, 0.6679 and 0.5467
accuracy for SIMECK32/64, respectively.

For SIMECKG64/128, based on the input difference
(0x00000000,0x00000040) and the key difference
(0x00000000,0x00000000,0x00000000,0x00000040),
it cover to 18-, 19-, 20-, 21-, and 22-round with
0.9066, 0.7558, 0.6229, 0.5519, and 0.5180 accuracy for
SIMECK64/128, respectively. It can be seen the gap
of RKNDs for SIMON and SIMECK is obvious, and SI-
MON'’s key-expansion algorithm offers better resistance.
This is consistent with the conclusion that Lu et al.
get using rotational-XOR cryptanalysis in [30].

7. CONCLUSION

In this paper, we provide an in-depth analysis
of the (related-key) differential-neural distinguishers
for SIMON and SIMECK ciphers. We adopt the
multiple ciphertext pairs with data of the form
(AT, A% Cy, Cy, O, CL AT pA?) fed to the neu-
ral network to improve the accuracy of the neural



TABLE 5: Experiment with different data format of 9-, 10-, and 11-round NDs for SIMON32/64. The best NDs for

9-, 10-, and 11-round are shown shaded.

Cipher Round Data Format Acc TPR TNR Source
(C,C.,Cl,C) 0.7524 0.7304 0.7743 [16]
(A7, ATR) 0.6895 0.6613 0.7176 [28]
9 (C’T,C’;,A}"{l) 0.8908 0.8786 0.9031 [18]
(A}, A%, C, Oy, O, CL AT 0.8945 0.8834 0.9057  This Paper.
(A}, A%, Cy, Cy, O, O A pAT2) 0.9176 0.9052 0.9299  This Paper.
(C,C.,Cl,C) 0.5007 0.7015 0.2989 [16]
SIMON (A7, ATR) ) 0.5605 0.5402 0.5809 [28]
32/64 10 (Cy,Cr A) 0.6856 0.6610 0.7102 [18]
(A}, AL, CLCr OO Aerl) 0.6889 0.6639 0.7139 This Paper.
(A}, A%, Cy, Cy O, O A pAT2) 0.6975 0.6662 0.7287  This Paper.
(C,C.,Cl,C) 0.5006 0.4148 0.5863 [16]
(A7, ATR) 0.5007 0.8110 0.1898 [28]
11 (C’T,C’;,ATR_l) 0.5555 0.5437 0.5673 [18]
(A}, AL, CLCr OO A}’{l) 0.5578 0.5455 0.5700 This Paper.
(AL, AR, CLCr, CL 0 A’;{l,pA?{z) 0.5609 0.5366 0.5852 This Paper.
distinguisher. Meanwhile, we investigate the impact REFERENCES

of input difference on the performance of the hybrid
distinguishers to select the appropriate input differ-
ence. For SIMON32/64, SIMONG64/128, SIMECK32/64
and SIMECK64/128, we construct the (related-key)
differential-neural distinguishers with higher accuracy.
It is undeniable that there are many factors that
can affect the performance of neural distinguishers.
This paper explores its impact on the performance
of neural distinguishers from the perspective of data
format and input difference. In the future, we plan to
further explore ways that can improve the performance
of neural networks from multiple dimensions, such as
using methods of feature engineering to extract more
essential features of the training data and so on.
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