
Formal Analysis of Non-Malleability for
Commitments in EasyCrypt

Denis Firsov1,2[0000−0003−1267−7898], Sven Laur3[0000−0002−9891−3347], and
Ekaterina Zhuchko2,3

1 Guardtime, Tallinn, Estonia
denis.firsov@guardtime.com

2 Tallinn University of Technology, Tallinn, Estonia
ekzhuc@ttu.ee

3 Tartu University, Tartu, Estonia
swen@math.ut.ee

Abstract. In this work, we perform a formal analysis of definitions of
non-malleability for commitment schemes in the EasyCrypt theorem
prover. There are two distinct formulations of non-malleability found
in the literature: the comparison-based definition and the simulation-
based definition. In this paper, we do a formal analysis of both. We
start by formally proving that the comparison-based definition which was
originally introduced by Laur et al. is unsatisfiable. Also, we propose a
novel formulation of simulation-based non-malleability and show that it
is satisfiable in the Random Oracle Model. Moreover, we validate our
definition by proving that it implies hiding and binding of the commitment
scheme. Finally, we relate the novel definition to the existing definitions
of non-malleability.

Keywords: cryptography · commitments · non-malleability · formal
methods · EasyCrypt.

1 Introduction

A commitment scheme is one of the fundamental primitives in cryptography.
Intuitively, we can think of a commitment as a locked box containing a message.
Only the sender who produced the commitment knows the secret opening key
which can unlock the box and reveal the message. The sender can send this box
to a receiver and then at a later stage give him the opening key to unlock it.

The most fundamental security properties of commitments are hiding and
binding. We say that a commitment is hiding if an adversary is unable to see the
message without the opening key (the box which contains the message should
not be transparent). We say that a commitment is binding if, once the sender
committed to a message and sent the commitment to the receiver, the sender
cannot open the commitment to a different message (the box should not have
any secret backdoors or double bottoms). But these properties do not prevent all
of the attacks and most notably the “man-in-the-middle” attacks.



2 D. Firsov et al.

1.1 Motivation: Non-Malleability of Commitments

The non-malleability property aims to protect commitments against man-in-the-
middle attacks. In such an attack, we have Mallory who is an active adversary
between two parties: Alice and Bob. Let’s assume that Alice sends a commitment
c of a message m to Bob. However, all of their communication goes through the
man-in-the-middle adversary Mallory who can modify the commitment or simply
not deliver it. The goal of Mallory is to generate a commitment c′ to another
message m′ which is non-trivially related to the original message m.4

A classical motivating example where non-malleability would be needed is
that of a blind auction. Consider an auction where participants bid for an
item by publishing commitments to their bids. At the end, bidders open their
commitments and the highest bid wins. If the commitment scheme is malleable,
an adversary could participate in the auction by posting for each of the other bids
a commitment to a bid that is only one dollar higher. In this case, the adversary
would have an unfair advantage. Moreover, the adversary has no need to learn
the exact amounts that other bidders have placed. The goal of non-malleability
definitions is to prevent these types of attacks.

It should also be noted that the described scenario suggests that non-
malleability must be a stronger security property than both hiding and binding.
Indeed, if the commitments are not hiding, the bidding adversary can see the
contents and carry out the same type of attack. If the commitments are not
binding, the bidding adversary can commit to one bid and open to another.

There have been several attempts to formally define non-malleability of
commitments. Most notably, Crescenzo et al. presented a simulation-based defi-
nition [3]. The main idea of their definition is to compare the success probability
of an adversary and its simulator. The adversary sees a commitment c of a
message m and must produce a commitment c′ of a message m′ which must be
non-trivially related to m. At the same time, the simulator must also produce a
message similarly related to m, but without seeing any of the derivatives of m (e.g.,
commitment on m). If the difference between success probabilities is negligible
then the commitment scheme is considered simulation-based non-malleable.

Later, Laur et al. introduced a new formulation of non-malleability which is
now known as comparison-based definition [8,10,9,6]. The goal of this definition is
to phrase non-malleability without referring to a simulator. This was motivated by
the fact that definitions formulated in terms of simulators are more complicated
to falsify by presenting a specially programmed adversary.

1.2 Discussion

The field of cryptography has rapidly grown in its complexity and subsequently
faced a crisis in producing correct proofs. The security guarantees for crypto-
graphic protocols usually come in the form of pen-and-paper proofs. Formalizing

4 An example of a non-trivial relation could be that the message m′ is the same as m
except all occurrences of “PAY TO: Alice” are replaced with “PAY TO: Mallory”.



Formal Analysis of Non-Malleability for Commitments in EasyCrypt 3

the intuition behind cryptographic security proofs is not a straightforward task
as there could be hidden assumptions and informal reasoning that can easily be
forgotten by the author and overlooked by the reader. We believe that formal
methods could be used in cryptography to address these problems. For example,
EasyCrypt [2] is a theorem prover which was specifically developed for the pur-
pose of verifying cryptographic protocols. The original intention of this paper was
to analyze the comparison based non-malleability of commitments introduced by
Laur et al. [8]. However, after we started our formal analysis and specified the
definition precisely, we were able to conjecture and then prove that the original
definition of comparison-based non-malleability is unsatisfiable. Next, we decided
to verify satisfiability of simulation-based definitions [4,3,1]. In fact, we were able
to express a novel definition of simulation-based non-malleability and prove that
it is satisfiable and is also stronger than the notions known from the literature.

The paper is structured as follows: in Sec. 2, we formalize comparison-based
non-malleability of Laur et al. [8] and prove that it is unsatisfiable. In Sec. 3,
we introduce a novel simulation-based non-malleability definition and analyze
its properties. More specifically, in Sec. 3.1, we prove that the novel simulation-
based non-malleability implies hiding and binding of the commitment scheme.
In Sec. 3.2, we prove that the novel definition is satisfiable in the Random
Oracle Model. In Sec. 3.3, we relate the novel formulation of simulation-based
non-malleability to the previous ones known from the literature. In Sec. 4, we
conclude and present possible research directions for future work.

Our results are formalized in the EasyCrypt theorem prover and the proof-
scripts can be found in the supplementary material [5].

2 Comparison-Based Non-Malleability

In the standard library of EasyCrypt, commitments are defined as programs
(modules in the EasyCrypt parlance) with a predetermined interface.

Definition 1 (Commitment Scheme). A commitment scheme C is a module
that has efficiently computable procedures with the following functionality:

– gen(): generates public keys (also known as public parameters) of a commit-
ment scheme.

– commit(pk,m): takes a public key pk and a message m as its parameters
and returns the pair of a commitment value c and an opening key d (also
known as a certificate).

– verify(pk,m, c, d): verifies the commitment c on the message m with respect
to the opening key d.

In our formalization, we assume that we are working with commitment schemes
without an internal state. More specifically, the procedure C.gen must be imple-
mentable as an effective distribution of public keys. The procedure C.commit
must be implementable as a pure function with explicit argument for a random
string. The procedure C.verify must be implementable as a pure deterministic



4 D. Firsov et al.

function. However, in Sec. 3.2 we make an exception to this rule when we define
the commitment scheme Ck

n based on the Lazy Random Oracle which efficiently
models a truly random function and as the result relies on internal state.

As the next step, we formalize the comparison-based non-malleability defini-
tion by Laur et al. [8].

Definition 2 (Laur et al.). A commitment scheme C is (comparison-based)
non-malleable iff for any adversary A, the advantage AdvC(C,A) is negligible,
where

AdvC(C,A) := |Pr [r ← GN0(C,A).main() : r = 1]

− Pr [r ← GN1(C,A).main() : r = 1] |.

1: module GN0(C,A)
2: fun main() = {
3: pk ← C.gen()
4: M← A.init(pk)
5: m $←M
6: (c, d)← C.commit(pk,m)
7: (c′, R)← A.commit(c)
8: (d′,m′)← A.decommit(d)
9: v ← C.verify(pk,m′, c′, d′)

10: return v ∧R(m,m′) ∧ c 6= c′

11: }
12: end

1: module GN1(C,A)
2: fun main() = {
3: pk ← C.gen()
4: M← A.init(pk)

5: m $←M; n $←M
6: (c, d)← C.commit(pk,m)
7: (c′, R)← A.commit(c)
8: (d′,m′)← A.decommit(d)
9: v ← C.verify(pk,m′, c′, d′)

10: return v ∧ R(n,m′) ∧ c 6= c′

11: }
12: end

(For simplicity of presentation, in Def. 2 the adversary computes a single commit-
ment c′ while in the original definition of Laur et al. the adversary was allowed to
return n commitments and n+1-place relation R. In our EasyCrypt formalization,
we work with the original definition, but in the paper we show the simplified
version since this detail is irrelevant for the main unsatifiability result.)

Both games are parameterized by a commitment scheme C and an adversary A.
In the game GN0, A is given the public key pk and is asked to compute a message
distributionM. A message m is then sampled fromM and a commitment-opening
pair (c, d) is computed with respect to m. Next, A is given the commitment c and
asked to produce a commitment c′ and a relation R. After that, A is given the
opening d and asked to produce an opening-message pair (c′, d′). The adversary
wins the game if the pair (c′, d′) is valid with respect to m′, the relation R is
satisfied by a pair (m,m′) and A’s commitment c′ is different from c. The only
difference in the game GN1 is that a second message n is sampled from the
message distribution (independently from m). The commitment-opening pair is
still computed with respect to the message m, but the winning condition of GN1

considers whether R(n,m′) holds (line 10).
The adversary’s overall advantage is defined in terms of its ability to distin-

guish between games GN0 and GN1. In other words, A has to win one game
and lose the other in order to increase the advantage. This means that to be



Formal Analysis of Non-Malleability for Commitments in EasyCrypt 5

successful, the adversary has to find the exact relation R which will hold given
the pair (m,m′) and will not hold given the pair (n,m′), or vice versa.

2.1 Unsatisfiability of the Comparison-Based Definition

In this section, we show that Def. 2 is not satisfiable by any realistic commitment
scheme.5 More specifically, we construct a single adversary which can break the
comparison-based non-malleability of any (realistic) commitment scheme with
unacceptably high probability.

Theorem 1. There exists an adversary A such that for any commitment scheme
C the comparison-based non-malleability advantage of A is as follows:

AdvC(C,A) =
1

4
− 1

4
· Pr

[
pk ← C.gen(); (c, d)← C.commit(pk, 0);

(c′, d′)← C.commit(pk, 0) : c = c′

]
.

(Here, it is enough to assume that commitments generated by C are sufficiently
random to make AdvC(C,A) close to 1

4 .)

Proof. The adversary A is defined as follows: in the initialization phase, the
adversary returns a uniform distribution of booleans. During the commit phase,
c′ is fixed to be a commitment on m′ = 0. Moreover, the relation R(m,m′) is also
fixed and will only hold true if m = 0 and m′ = 0. During the “decommit” phase,
A checks if c was indeed a commitment on message m = 0 and if so, returns (0, d′)
as the message-opening pair. If the verification fails, the adversary intentionally
loses the game (denoted by ⊥). In order to calculate the adversary’s advantage,

1: module A(C)
2: var pk, c, d′

3: fun init(pk) := { return {0, 1} } . {0, 1} is a uniform distribution of bits
4: fun commit(c) = {
5: (c′, d′)← C.commit(pk, 0)
6: R← λm0m1.m0 = 0 ∧ m1 = 0
7: return (R, c′)
8: }
9: fun decommit(d) = {

10: if C.verify(pk, 0, c, d) then
11: return (d′, 0)
12: end if
13: return ⊥ . denotes a pair which always fails the verification
14: }
15: end

5 We assume that in realistic schemes commitment values contain a sufficient amount
of randomness.



6 D. Firsov et al.

we inline A into the games GN0 and GN1 and argue as follows:

Pr


pk ← C.gen(); mdistr ← A.init(pk); m $← mdistr;

(c, d)← C.commit(pk,m); (c′, d′)← C.commit(pk, 0);
(d′, 0)← A.decommit(d) :

C.verify(pk, 0, c′, d′),m = 0, c 6= c′



−Pr


pk ← C.gen(); mdistr ← A.init(pk); m $← mdistr; n $← mdistr;

(c, d)← C.commit(pk,m); (c′, d′)← C.commit(pk, 0);
(d′, 0)← A.decommit(d) :

C.verify(pk, 0, c′, d′),m = 0, n = 0, c 6= c′


(1)
= (Pr [GN0(A).main() : m = 0 ]

− Pr [GN0(A).main() : m = 0, c = c′ ])

− (Pr [GN1(A).main() : m = 0, n = 0 ]

− Pr [GN1(A).main() : m = 0, n = 0, c = c′ ])

(2)
=

1

2
− Pr [GN0(A).main() : m = 0, c = c′ ]

− 1

4
+

1

2
· Pr [GN0(A).main() : m = 0, c = c′ ]

(3)
=

1

4
− 1

2
· Pr

 pk ← C.gen(); mdistr ← A.init(pk); m $← {0, 1};
(c, d)← C.commit(pk,m); (c′, d′)← C.commit(pk, 0) :

m = 0, c = c′


(4)
=

1

4
− 1

4
· Pr

[
pk ← C.gen(); (c, d)← C.commit(pk, 0);

(c′, d′)← C.commit(pk, 0) : c = c′

]
.

In step (1), we observe that for any sound scheme the commitment verification
(i.e., C.verify(pk, 0, c′, d′) = 1) is guaranteed to succeed. Also, we rewrite the
winning probability in terms of an event complement to the c 6= c′ condition.
In step (2), we can restate all the probabilities in relation to GN0 by observing
that n is independent from m and making explicit the probability of sampling
n = 0 as a coefficient. In step (3), we compute the probabilities and inline the
game GN0. In step (4), we observe that the remaining probabiltiy expression is
non-zero only when m = 0, so we can simplify the game further.

Observe that for any message m, the following probability can be safely
assumed to be negligible for any realistic commitment scheme:

Pr

[
pk ← C.gen(); (c, d)← C.commit(pk,m);

(c′, d′)← C.commit(pk,m) : c = c′

]
.

The fully formal derivation can be found in the file CNM_unsat.ec of the accom-
panying development.

The reason why the adversary A is able to have a non-negligible advantage
is because it could “intentionally lose” in the decommit phase. Once it receives
the opening d, it can easily verify the content of the given commitment c and if
verification fails, intentionally lose the game. Finally, we find it interesting that



Formal Analysis of Non-Malleability for Commitments in EasyCrypt 7

this analysis shows that the comparison-based definition cannot be instantiated
with any realistic commitment scheme, but could be proved for some paradoxical
schemes: for example, the perfectly hiding and completely non-binding “constant”-
commitment scheme from Sec. 3.3 satisfies Def. 2.

3 Simulation-Based Non-Malleability

In this section, we introduce a novel definition of simulation-based non-malleability
which is inspired by the previously discussed comparison-based definition and
existing simulation-based definitions. The strong sides of the novel formulation is
that it is provably stronger than existing definitions, it implies hiding and biding
of a commitment scheme, and it is satisfiable in the Random Oracle Model.

Definition 3 (Sim-NM). A commitment scheme C is (simulation-based)
non-malleable iff for any adversary A there exists a simulator S so that for
any advice string h the advantage AdvS(C,A, S, h) is negligible, where

AdvS(C,A, S, h) := Pr [r ← SG0(C,A).main(h) : r = 1]

− Pr [r ← SG1(C,A, S).main(h) : r = 1] .

1: module SG0(C,A)
2: fun main(h : advice) = {
3: pk ← C.gen()
4: (M, R)← A.init(pk, h)
5: m $←M
6: (c, d)← C.commit(pk,m)
7: c′ ← A.commit(pk, c)
8: (d′,m′)← A.decommit(d)
9: v ← C.verify(pk,m′, c′, d′)

10: return R(m,m′)
11: ∧ (c, d) 6= (c′, d′) ∧ v
12: }
13: end

1: module SG1(C,A, S)
2: fun main(h : advice) = {
3: pk ← C.gen()
4: (M, R)← A.init(pk, h)
5: m $←M
6:
7:
8: m′ ← S.run(h, pk,M, R)
9:

10: return R(m,m′)
11:
12: }
13: end

The game SG0 is parameterized by a commitment scheme C, an adversary A,
and an advice string h (e.g. it can encode the history of previous runs). In game
SG0, the adversary computes a distribution M and relation R based on the
public key and the advice. Next, we sample a message m from M and compute
the commitment-opening pair (c, d) on the message m using the commitment
scheme C. Next, the adversary must produce a commitment c′ given c as the
parameter. Then, we reveal the opening d to the adversary and it must produce
a message m′ and an opening d′. The adversary wins the game if the relation R
is satisfied by the pair (m,m′), the tuple (c′, d′) is a valid commitment-opening
pair with respect to the message m′, and the adversary’s commitment-opening
pair (c′, d′) is different from (c, d).



8 D. Firsov et al.

The game SG1 is parameterized by a commitment scheme C, an adversary
A, a simulator S, and an advice string h. The game SG1 starts similarly to SG0,
namely, the adversary A generates a distribution M and a relation R based
on the public key and the advice. Next, we sample a message m. Finally, the
simulator receives the advice, the public key, the message distribution, and the
relation as its arguments and must produce a message m′. The simulator wins
the game if the relation R is satisfied by the pair (m,m′).

Note that in SG1 the message m is independent from m′. This aspect makes
this definition simpler to justify. Indeed, simulation-based non-malleability claims
that the adversary A is not getting any non-negligible advantage from observing
a commitment and opening of m as compared to the simulator which is able to
satisfy the same relation R without ever seeing any derivatives of m.

3.1 Hiding and Binding

In this section, we observe that the simulation-based non-malleability introduced
in Def. 3 is strong enough to imply hiding and binding of the commitment
scheme. We think that this fact is a good validation of the novel definition of
non-malleability. Indeed, in Sec. 1.1 we argued that the goal of non-malleability
definitions is to prevent man-in-the-middle attacks which strongly suggests that
non-malleability must be a stronger security property than the basic requirements
of hiding and binding. To the best of our knowledge, Def. 3 is the first formulation
of non-malleability for commitments which implies hiding and binding.

Definition 4 (Binding). We define the binding advantage of an adversary A
with respect to the commitment scheme C as the probability that A computes two
valid openings for the same commitment and two distinct messages:

AdvB(C,A) := Pr


pk ← C.gen(); (c,m1, d1,m2, d2)← A.bind(pk);

v1 ← C.verify(pk, c,m1, d1);
v2 ← C.verify(pk, c,m2, d2) :
v1 = 1, v2 = 1,m1 6= m2

 .
A commitment scheme is binding iff for any efficient adversary the binding
advantage is negligible.

To express the relation between non-malleability and binding, we will need an
extra property which we call the “unpredictability” of the commitment-opening
pair. Intuitively, a commitment scheme is unpredictable if the commitment-
opening pair is sufficiently random. We express this by saying that a commitment
scheme is unpredictable if the adversary cannot guess the canonically generated
commitment-opening pair for a message chosen by the adversary.

Definition 5 (Unpredictability). We define the unpredictability advantage of
an adversary A with respect to the commitment scheme C as the probability that
A guesses the commitment-opening pair for the message of its choice:

AdvU(C,A) := Pr

[
pk ← C.gen(); (m,L)← A.guess(pk);
(c, d)← C.commit(pk,m) : (c, d) ∈ L

]
.



Formal Analysis of Non-Malleability for Commitments in EasyCrypt 9

A commitment scheme is unpredictable iff for any efficient adversary A the
unpredictability advantage is negligible.

Next, we state a lemma which relates simulation-based non-malleability and
binding of a commitment scheme.

Lemma 1 (Sim-NM =⇒ Binding). For any commitment scheme C and any
adversary A there exists a non-malleability adversary A′ and an unpredictability
adversary A′′ so that for any simulator S the binding advantage of A is upper
bounded as follows:

AdvB(C,A) ≤ 2 ·AdvS(C,A′, S, ε) + 6 ·AdvU(C,A′′).

(Here, ε is the empty advice string.)

The EasyCrypt proof can be found in the file NSNM_Pure_Binding.ec of the
accompanying development. Below, we sketch the main idea of the proof. The
adversaries A′ and A′′ are constructed from A. In the initialization phase (A′.init
method), we call A.bind to get the tuple (c,m1, d1,m2, d2) and return the pair
(M, R) as the result, whereM is the uniform distribution of messages m1 and m2,
and R is the equality relation. If A wins the binding game (i.e., (c,m1, d1,m2, d2)
satisfies the binding experiment) then in the A′.commit phase we return the
commitment c; otherwise, we return a canonically generated commitment for m1.
In the A′.decommit(d) phase, if A wins the binding game and d opens m1, we
return d2 (similarly for m2, mutatis mutandis). Then we show that if A wins the
binding game then A′ wins SG0. However, if A fails the binding game then with
probability 1

2 the adversary A′ still wins the game SG0. At the same time, any
simulator S can win the game SG1(C,A′, S, ε) with probability not bigger than
1
2 . The unpredictability term arises from the probability that the game SG0 and
the adversary A′ produce equal commitment-opening pairs.

Next, we address the hiding property. We say that a commitment scheme
is hiding if any efficient adversary cannot distinguish between commitments
generated for messages of its choice.

Definition 6 (Hiding). We define a module HidingExperiment parameterized
by a commitment scheme C, an adversary A, and a boolean b:

1: module HidingExperiment(C,A)
2: fun main(b : bool) = {
3: pk ← C.gen()
4: (m0,m1)← A.choose(pk)
5: (c, d)← C.commit(pk,mb)
6: r ← A.unhide(c)
7: return r
8: }
9: end



10 D. Firsov et al.

In the module definition we refer to the message mb, where b is the parameter
of the main procedure. The hiding advantage of the adversary A with respect to
the scheme C is defined as follows:

AdvH(C,A) := |Pr [r ← HidingExperiment(C,A).main(1) : r = 1]

− Pr [r ← HidingExperiment(C,A).main(0) : r = 1]|.

A commitment scheme is hiding iff for any efficient adversary the hiding advantage
is negligible.

Lemma 2 (Sim-NM =⇒ Hiding). For any commitment scheme C and any
adversary A there exists a non-malleability adversary A′ and an unpredictability
adversary A′′ so that for any simulator S the hiding advantage of A is upper
bounded as follows:

AdvH(C,A) ≤ 2 ·AdvS(C,A′, S, ε) + 2 ·AdvU(C,A′′).

The EasyCrypt proof can be found in the file NSNM_Pure_Hiding.ec of the
accompanying development. The main idea of the proof is as follows. Let us
assume that A is a hiding adversary such that (the converse case is symmetric):

Pr [r ← HidingExperiment(C,A).main(1) : r = 1]

≤ Pr [r ← HidingExperiment(C,A).main(0) : r = 1] .

We construct the adversary A′ as follows: in the initialization phase (A′.init
method), we call A.choose to get the tuple (m1,m2) and return as a result the
pair (M, R), whereM is the uniform distribution of messages m1 and m2, and R
is the equality relation. In the A′.commit phase, we call A.unhide(c) and get the
bit b. If b = 0 then we compute and return a commitment for m1, otherwise for
m2. In the A′.decommit phase, we return the opening computed in the previous
phase. Finally, we show that if A guesses correctly then A′ wins SG0. At the
same time, any simulator S can win the game SG1(C,A′, S) with probability not
bigger than 1

2 . As before, the unpredictability term arises from the probability
that the game SG0 and the adversary A′ produce equal commitment-opening
pairs.

3.2 Construction in the Random Oracle Model

In this section, we define a commitment scheme based on the Lazy Random Oracle
(LRO) and prove that it satisfies simulation-based non-malleability introduced
in Def. 3. This means that we assume the existence of a truly random function and
give oracle-access to this function to all parties involved in the process, including
all the components of the commitment scheme and the adversary. Intuitively, a
random oracle models an ideal hash function.

Given input queries the LRO must produce “random” outputs. However, it
has to be consistent and respond with the same output if it is queried on the
same input more than once. To achieve that, LRO keeps a mapping of input
queries to random values which are sampled and stored upon every fresh query.



Formal Analysis of Non-Malleability for Commitments in EasyCrypt 11

Definition 7 (Lazy Random Oracle). We implement a lazy random oracle
as a module LROn. The module is parameterized by a natural n which determines
the size of the output bitstrings. The module is stateful – it stores the variable
LROn.m which is a (finite) mapping from input queries to bitstrings of length n.
The procedure LROn.init initializes the variable LROn.m with an empty mapping.
The procedure LROn.o(x) checks if the provided argument x is not already in the
domain of LROn.m in which case it updates the mapping by associating the value
x with a randomly sampled bitstring r of length n. Finally, the value associated
with x is returned.

1: module LROn

2: var m : (in t, bits)fmap . in t is a data type of input queries
3: fun init() = { LROn.m← empty }
4: fun o(x : in t) = {
5: r $← {0, 1}n . uniform distribution of all n-bit strings
6: if x /∈D LROn.m then
7: LROn.m.[x]← r
8: end if
9: return LROn.m.[x]

10: }
11: end

In the following, we present a standard implementation of an LRO-based
commitment scheme Ck

n (here, k and n are security parameters: k determines
the size of the opening key, and n is the security parameter of the LRO).

Definition 8 (LRO-Commitment Scheme). The commitment scheme Ck
n is

implemented as follows:

– gen(): initializes the LRO oracle. The scheme Ck
n does not need a public key,

so the gen procedure simply returns the element of a singleton type (denoted
by tt).

– commit(pk,m): samples an opening key d from the uniform distribution of
k-bit strings; computes commitment c as the result of a call to the oracle
LROn.o(m, d); returns (c, d) as the resulting commitment-opening pair.

– verify(pk,m, c, d): verifies the commitment c of the message m with respect
to the opening d by checking that LROn.o(m, d) call returns c.

The commitment scheme Ck
n is sound. More specifically, the commitment-opening

pairs which are generated on messages verify on these messages. However, this
is only true if adversaries do not re-initialize the LRO. In EasyCrypt, we can
specify the set of adversaries who cannot directly write to the variables of the
LROn module or call the procedures LROn.init and Ck

n.gen.

Theorem 2 (Ck
n is Sim-NM). Ck

n is a non-malleable commitment scheme with
respect to Def. 3. More specifically, for any adversary A who is doing at most q



12 D. Firsov et al.

1: module Ck
n

2: fun gen() = { LROn.init(); return tt }
3: fun commit(pk,m) = {
4: d $← {0, 1}k
5: c← LROn.o(m, d)
6: return (c, d)
7: }
8: fun verify(pk,m, c, d) = {
9: return LROn.o(m, d) = c

10: }
11: end

queries to the random oracle LROn there is a simulator S, so that for any advice
string h the adversary’s advantage is as follows:

AdvS(Ck
n, A, S, h) ≤ 2q2

2n
+

q

2n
+

q

2k
.

The EasyCrypt proof of the theorem is in the file NSNM_ROM_Construction.ec of
the accompanying development. Here, we only outline its main idea. By proving
the properties of the LRO we show that for any adversary A the probability of
winning the game SG0 could only be negligibly larger than the probability of
the following event:

1. The adversary A wins the game SG0.
2. At the end of the game, the mapping LROn.m contains no duplicates in its

range (i.e., two different values x and y, so that LROn.m.[x] = LROn.m.[y]).
3. The commitment value c′ returned by the adversary is different from the

value c generated by the game SG0.
4. After the A.commit call (line 7) the variable LROn.m contains a value c′ in

its range.

The described event allows us to construct a simulator S which calls A.commit(r)
with some uniformly sampled n-bit string r. Then we can show that with over-
whelming probability the adversary A is not going to be able to distinguish
between the commit call made by the simulator who provides a parameter r
versus the honestly generated commitment c as in the game SG0. Moreover, the
event (1)–(4) ensures that after the call A.commit(r) with the random r, the
simulator can extract the unique message-opening pair (m′, d′) associated to c′

in the mapping LROn.m. This is important since the simulator S does not know
which message m was sampled in the beginning of the game SG1, and hence
cannot continue the simulation of SG0 game by calling A.decommit(m). Overall,
this strategy ensures that whenever A wins the game SG0, the simulator wins
the game SG1 (modulo negligible error).

3.3 Related Notions

In this section, we review two related definitions of simulation-based non-
malleability which appear in the literature [3,1].



Formal Analysis of Non-Malleability for Commitments in EasyCrypt 13

Definition 9 (Crescenzo et al.). A commitment scheme C is non-malleable
iff for any adversary A there exists a simulator S so that for any relation R and
distribution M the adversary’s non-malleability advantage is negligible, where

AdvCS(C,A, S,R,M) := Pr [r ← SGC0(C,A).main(R,M) : r = 1]

− Pr [r ← SGC1(S).main(R,M) : r = 1] .

1: module SGC0(C,A)
2: fun main(R,M) = {
3: m $←M
4: pk ← C.gen()
5: (c, d)← C.commit(pk,m)
6: c′ ← A.commit(pk, c)
7: (d′,m′)← A.decommit(d)
8: v ← C.verify(pk,m′, c′, d′)
9: return v ∧R(m,m′) ∧ c 6= c′

10: }
11: end

1: module SGC1(S)
2: fun main(R,M) = {
3: m $←M
4:
5:
6:
7:
8: m′ ← S.run(R,M)
9: return R(m,m′)

10: }
11: end

The main difference between Def. 3 and Def. 9 is that in the first definition we let
the adversary to specify the message distribution M and relation R while in the
second definition both are universally quantified parameters. Another important
difference is in the winning condition of the adversary’s game. More specifically,
in SG0, the adversary wins if it generates a commitment-opening pair (c′, d′)
which is different from the canonically generated pair (c, d). On the other hand,
the game SGC0 requires a stronger condition, namely, c 6= c′. Unfortunately,
this makes it possible to prove that the “constant”-commitment scheme is non-
malleable according to Def. 9, where “constant”-commitment scheme is defined
as follows:

1: module ConstComm
2: fun gen() = { return tt }
3: fun commit(pk,m) = { return (tt,m) }
4: fun verify(pk,m, c, d) = { return m = d ∧ c = tt }
5: end

For any message, the commitment is a constant value (denoted by tt). The
opening for a message m is the message m itself. The verification algorithm
checks that the commitment is tt and that the message and its opening are the
same.

It is easy to see that ConstComm is a perfectly hiding and non-binding
commitment scheme. Unfortunately, ConstComm can be shown to be non-
malleable with respect to Def. 9.



14 D. Firsov et al.

Lemma 3. The “constant”-commitment scheme ConstComm is non-malleable
with respect to Def. 9. More specifically, for any adversary A, simulator S,
distribution M, and relation R, the advantage is as follows:

AdvCS(ConstComm,A, S,R,M) ≤ 0.

The lemma is proved by observing that the adversary’s winning condition c 6= c′

is never satisfied, hence, no adversary will win the game SGC0 (see the file
ConstComm.ec).

In [1], Arita presents a similar non-malleability definition which addresses the
problem of the previous definition by adjusting the winning condition.

Definition 10 (Arita). A commitment scheme C is non-malleable iff for any
adversary A there exists a simulator S, so that for any message distribution M
and an antireflexive relation R the following difference is negligible:

AdvAS(C,A, S,R,M) := Pr [r ← SGA0(A,C).main(R,M) : r = 1]

− Pr [r ← SGA1(S).main(R,M) : r = 1] ,where R is antireflexive.

(Recall that R is antireflexive iff ∀a, b : R(a, b) =⇒ a 6= b.)

1: module SGA0(C,A)
2: fun main(R,M) = {
3: m $←M
4: pk ← C.gen()
5: (c, d)← C.commit(pk,m)
6: c′ ← A.commit(pk, c)
7: (d′,m′)← A.decommit(d)
8: v ← C.verify(pk,m′, c′, d′)
9: return v ∧R(m,m′)

10: }
11: end

1: module SGA1(S)
2: fun main(R,M) = {
3: m $←M
4:
5:
6:
7:
8: m′ ← S.run(R,M)
9: return R(m,m′)

10: }
11: end

The main difference of Arita’s definition as compared to the previous one is that
the winning condition c 6= c′ is replaced with the condition of antireflexivity on
the relation R. (This effectively means that the condition c 6= c′ is replaced with
the condition m 6= m′.) This has the effect that the “constant”-commitment
scheme ConstComm can now be proved malleable.

Lemma 4. The “constant”-commitment scheme ConstComm is malleable with
respect to Def. 10. More specifically, let M be the uniform distribution over
booleans and R(m,m′) be the relation satisfied iff m 6= m′. Then there exists an
adversary A so that for any simulator S the adversary’s advantage is as follows:

AdvAS(ConstComm,A, S,R,M) =
1

2
.



Formal Analysis of Non-Malleability for Commitments in EasyCrypt 15

(See the file ConstComm.ec for details.)
Also, we have preliminary results indicating that one can conclude the hiding

and binding properties from Arita’s definition, but the security level drops
proportionally to the size of the message space. This happens because the
distribution M and relation R could not be computed during the execution of a
game, but need to be specified as parameters. This, in turn, makes it impossible
to guarantee that the messages m1 and m2 (returned by A.choose and A.bind
in the binding and hiding games, respectively) satisfy the relation R sufficiently
often.

Finally, it is easy to see that both related definitions of non-malleability are
weaker than the one introduced in Def. 3.

Lemma 5. If a commitment scheme is non-malleable with respect to Def. 3 then
it is also non-malleable with respect to Def. 9 and Def. 10.

The proof only requires simple transformations of the SGC0 and SGA0 adversaries
which add the initialization procedures necessary for SG0 which return the respec-
tive message distribution M and the relation R. (See the file NSNM_Related.ec

for details.)

4 Conclusions

The problem of inadequate definitions in cryptography is not new [7]. The errors
in definitions may take many years to be discovered and the impact of these
errors can range from a minimal nuisance to an actual threat that can be realised
as an attack in the real world.

In the beginning of our investigation, we were surprised to find the definition
of comparison-based non-malleability unsatisfiable. The paper [8] radiates confi-
dence of the authors that their definition is not only satisfiable, but that some
constructions provide unreasonably high level of security. Moreover, the paper is
well-cited. However, according to our best knowledge, we are the first to spot
the mistake. We attribute our discovery of unsatisfiability to the fact that our
investigation was carried out in the formal setting of the EasyCrypt theorem
prover. Although the idea behind the proof is fairly simple, the formal derivation
took considerable effort.

We also argued that it is desirable for a non-malleability definition to imply
hiding and biding properties of commitments. Unfortunately, we were not able
to find any such definition in the literature. We continued by proposing a novel
simulation-based definition and showed that it implies hiding and binding. We
also provided a simple construction in the Random Oracle Model that satisfies the
proposed definition. On top of this, we have demonstrated that our novel definition
is stronger than the previous simulation-based definitions of non-malleability.

Finally, this work stresses the need to provide higher assurance to the crypto-
graphic security proofs. We believe that formal methods provide a solution which
ensures rigor necessary for the mission critical systems.

In the future, we plan to investigate the applications of non-malleability of
commitments to timestamping services.



16 D. Firsov et al.

References

1. S. Arita, A straight-line extractable non-malleable commitment scheme, IEICE
Trans. Fundam. Electron. Commun. Comput. Sci. 90-A (2007), 1384–1394.

2. Gilles Barthe, Benjamin Gregoire, Sylvain Heraud, and Santiago Béguelin,
Computer-aided security proofs for the working cryptographer, vol. 6841, 08 2011,
pp. 71–90.

3. Giovanni Di Crescenzo, Jonathan Katz, Rafail Ostrovsky, and Adam Smith, Efficient
and non-interactive non-malleable commitment, Cryptology ePrint Archive, Report
2001/032, 2001, https://ia.cr/2001/032.

4. Danny Dolev, Cynthia Dwork, and Moni Naor, Nonmalleable cryptography, SIAM
Review 45 (2003), no. 4, 727–784.

5. Denis Firsov and Ekaterina Zhuchko, Formal analysis of non-
malleability for commitments in EasyCrypt, https://github.com/dfirsov/

commitments-non-malleability-ec/tree/v.1.0.0, 2022.
6. Sameh Khalfaoui, Jean Leneutre, Arthur Villard, Jingxuan Ma, and Pascal Urien,

Security analysis of out-of-band device pairing protocols: A survey, Wireless Com-
munications and Mobile Computing 2021 (2021), 1–30.

7. Neal Koblitz and Alfred Menezes, Critical perspectives on provable security: Fifteen
years of ”another look” papers, Advances in Mathematics of Communications 13
(2019), 517–558.

8. Sven Laur and Kaisa Nyberg, Efficient mutual data authentication using manually
authenticated strings, International Conference on Cryptology and Network Security,
Springer, 2006, pp. 90–107.

9. Ming Li and et al., Secure ad-hoc trust initialization and key management in wireless
body area networks, ACM TRANS. SENSOR NETW (2012).

10. Shahab Mirzadeh, Haitham Cruickshank, and Rahim Tafazolli, Secure device pairing:
A survey, IEEE Communications Surveys Tutorials 16 (2014), no. 1, 17–40.

https://ia.cr/2001/032
https://github.com/dfirsov/commitments-non-malleability-ec/tree/v.1.0.0
https://github.com/dfirsov/commitments-non-malleability-ec/tree/v.1.0.0

	Formal Analysis of Non-Malleability for Commitments in EasyCrypt

