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Abstract. We present an information-theoretic transformation from any 2-round OT protocol
with only game-based security in the presence of malicious adversaries into a 4-round (which is
known to be optimal) OT protocol with simulation-based security in the presence of malicious
adversaries.
Our transform is the first satisfying all of the following properties at the same time:
– It is in the plain model, without requiring any setup assumption.
– It only makes black-box usage of the underlying OT protocol.
– It is information-theoretic, as it does not require any further cryptographic assumption

(besides the existence of the underlying OT protocol).
Additionally, our transform yields a cubic improvement in communication complexity over the
best previously known transformation.

1 Introduction

Oblivious Transfer (OT), introduced by Rabin [Rab05], is a core primitive in cryptography. Intuitively,
an OT protocol considers a sender with input a pair of strings (s0, s1) and a receiver with input a
choice bit b. At the end of the protocol, the receiver should learn the string sb (and nothing more),
without the sender obtaining any information about b.
Privacy-only OT. Perhaps, the most basic way to define security of OT is to require that the
receiver’s messages are computationally indistinguishable when b = 0 and when b = 1, while the
sender’s messages computationally hide s1−b. An OT protocol satisfying this property in the pres-
ence of malicious adversaries is sometimes referred to as privacy-only [HL10a]. Privacy-only OT can
be constructed from both generic assumptions such as the existence of trapdoor permutations, addi-
tively homomorphic encryption and public-key encryption with oblivious public key generation (see,
e.g., [BM90,GKM+00]), and concrete assumptions such as Decisional Diffie-Hellman [NP01,AIR01],
Quadratic Residuosity and Decisional Composite Residuosity [HK12], and Learning with Errors [BD18].
In particular, 2-round privacy-only OT protocols against malicious adversaries are known under all
such assumptions in the plain model.
Simulatable OT. Kilian [Kil92] shows that an ideal “OT oracle” is sufficient to securely compute any
cryptographic task. This seminal result has been extended in many different ways [IPS08,IKO+11,BL18,GS18],
thus making OT a central tool in cryptography. Unfortunately, privacy-only OT is not sufficient to
instantiate an ideal OT oracle, which instead requires a flavour of security known as simulatability.
A simulatable OT protocol admits a polynomial-time algorithm, called simulator, that is able to fake
transcripts of the real protocol without knowing the inputs of the honest parties, and by only having
access to the ideal OT oracle.

To make an OT protocol simulatable, intuitively, one needs to augment the protocol with mecha-
nisms that allow a simulator to extract the inputs of the malicious party from the protocol messages,
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as well as to correctly compute the messages from the honest parties without knowing their inputs.
When a setup assumption, such as a Common Reference String (CRS) is available, it is possible to
transform privacy-only OT to simulatable OT by embedding special trapdoors in the CRS: the simula-
tor can use these trapdoors to “decrypt”/“equivocate” the protocol messages of the malicious/honest
party. Indeed, a rich line of work shows that two rounds are sufficient in order to obtain simulatable
OT in the CRS model [Gar04,JS07,PVW08,CKWZ13,DGH+20]. Alternatively, 2-round simulatable
OT can be obtained in the Random Oracle Model (ROM) [BR93,CJS14,BPRS17] where parties have
oracle access to a truly-random hash function.

Round-optimal simulatable OT in the plain model. While two rounds are sufficient to build
simulatable OT in the CRS model and in the ROM, Katz and Ostrovsky [KO04] show that four rounds
are necessary for simulatable OT in the plain model. The need for four rounds comes from the fact
that, without assuming setup, there are no extraction trapdoors that the simulator can use. Hence,
to extract the inputs of the malicious party, the simulator must use rewinding, which requires at least
three rounds of communication.3 In the same paper, Katz and Ostrovsky show that four rounds are
also sufficient, by providing a simulatable OT protocol from certified trapdoor permutations. Their
construction leverages 3-round witness indistinguishable (WI) arguments of knowledge (AoK) and
4-round zero-knowledge (ZK) AoK, to force parties to behave honestly and consistently with the OT
protocol.

It is folklore4 that a similar approach, based on adding general WI/ZK-AoK, could be used to
transform any 2-round privacy-only OT to round-optimal simulatable OT. However, the latter would
entail unrolling the computation of the underlying OT into a Boolean (or arithmetic) circuit, and
using the OT circuit and the transcript as a statement for the WI/ZK proof of consistency; the secret
inputs used to compute the transcript would instead be the witnesses for the proof. The AoK property
of WI/ZK proofs enables a simulator to extract the witness for the proof by rewinding, whereas the
soundness property ensures that the witnesses extracted by the simulator are consistent with the
transcript of the underlying privacy-only OT protocol. While very general, such a non-black-box
approach requires to unroll the circuit of the OT, hence the complexity of the compiler depends on
the circuit complexity of the underlying OT (and not on the security parameter and inputs/outputs
of the protocol).

A central question in cryptography is to understand whether a given task can be performed having
only black-box access5 to other cryptographic primitives. Thus, it is natural to ask whether one can
provide a general black-box compiler from privacy-only OT to (possibly round-optimal) simulatable
OT.

Black-box round-optimal simulatable OT in the plain model. When treating the underlying
OT as a black-box the main challenge is to add an extraction/rewinding mechanism, from which the
simulator can extract values that are consistent with the actual secret inputs played in the OT protocol,
and such that the output of the honest parties is distributed identically in the real and ideal world.6

In fact, Lindell and Pinkas [LP12] show that there are input-dependent attacks that emerge uniquely
in the black-box approach. Haitner, Ishai, Kushilevitz, Lindell, and Petrank [Hai08,HIK+11] showed
that input-extraction and input-consistency are possible to achieve via cut-and-choose techniques, but
unfortunately their compiler requires at least 12 rounds (assuming some steps can be parallelized).

In a different work, Ostrovsky, Richelson and Scafuro [ORS15] provided a 4-round simulatable
OT from black-box use of certified trapdoor permutations. Very recently, Friolo, Masny and Ven-
turi [FMV19] greatly generalized the approach of [ORS15] by exhibiting a compiler that transforms

3 The lower bound of [KO04] works only for black-box simulators. However, note that even assuming a non-
black-box simulator we are not aware of any technique allowing to extract inputs in less than three rounds
(unless one assumes non-falsifiable assumptions, which are not considered plain model).

4 Though we are not aware of any paper formally proving this.
5 Black-box means that the underlying OT is treated as an oracle.
6 Note that this consistency property comes for free when using the underlying OT protocol in a non-black-box
way, since the protocol transcript is part of the statement of the WI/ZK proof.
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Work OT from Black-box Plain Model Optimal Information
theoretic

[KO04] Certified TDPs ✗ ✓ ✓ ✗

[HIK+11] Semi-honest OT ✓ ✓ ✗ ✗

[ORS15] Certified TDPs ✓ ✓ ✓ ✗

[FMV19] Strongly-uniform OT ✓ ✓ ✓ ✗

[CCG+21] TDPs ✓ ✓ ✓ ✗

This work Defensible OT ✓ ✓ ✓ ✓

This work Semi-honest OT ✓ ✗ ✓ ✓

Table 1. Comparing our work to existing compilers to fully simulatable oblivious transfer

any strongly-uniform 2-round OT protocol into a 4-round simulatable OT. Strong uniformity means
that the messages sent by the receiver appear computationally indistinguishable from random to a
malicious sender.7 Importantly, as shown in [FMV19], strongly-uniform OT can be instantiated from
the most common number-theoretic assumptions (e.g., DDH, CDH, LPN, Subset Sum, and LWE).

Yet, the compiler of [FMV19] inherits the complexity and significant overhead of its predecessor.
Indeed, as in [ORS15], it entails two intermediate transformations: one for achieving simulatabil-
ity against malicious receivers, and one for achieving simulatability against malicious senders. Each
transformation is somewhat complex and requires the use of extractable commitments (to extract the
inputs) and black-box commit-and-prove of equality (in particular, a modification of the one built by
Kilian [Kil92]) to enforce input consistency w.r.t. the underlying OT. In particular, the resulting com-
munication complexity of this compiler is quartic in the security parameter (i.e., O(|µR|λ4 + 2|µS |λ)
where µR is the message sent by the receiver and µS is the message sent by the sender in the underlying
2-round OT protocol).

More recently, Choudhuri, Ciampi, Goyal, Jain and Ostrovsky [CCG+21] constructed 4-round
simulatable OT from black-box use of trapdoor permutations. Their construction still relies on the
inefficient transformation from [ORS15] to go from one-sided simulatable to fully simulatable OT.

Hence, the question:

Does there exist an efficient, information-theoretic, black-box transform from privacy-only OT
to round-optimal simulatable OT in the plain model?

1.1 Our Contribution

In this work, we answer the above question in the positive by providing a simple, black-box, information-
theoretic, transformation turning any privacy-only 2-round OT protocol into a round-optimal simu-
latable OT protocol. We elaborate on our contributions in more details below.
An information-theoretic transform. Our transformation does not require any additional crypto-
graphic assumption besides the existence of privacy-only OT. As a result, our approach is much simpler
than previous work and, in fact, yields an improved communication complexity ofO(|µR|λ+|µS |λ+λ2).
In particular, we prove the following theorem:

Theorem 1 (Main Theorem, informal). There is a black-box information-theoretic transforma-
tion from any 2-round privacy-only OT protocol to a 4-round simulatable OT protocol in the plain
model.

Towards assuming semi-honest privacy only. From a theoretical perspective, the holy grail in
this line of research would be to build a round-optimal simulatable OT protocol that makes black-box
usage of any semi-honest privacy-only 2-round OT protocol. While we do not settle this question in
the plain model, we do give a positive answer in the ROM as explained below.

7 Specifically, they require an OT protocol that is strongly-uniform against malicious senders and simulatable
in presence of semi-honest receivers.
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First, we observe that our compiler only requires privacy against defensible receivers [HIK+11],
which is a weaker flavour of privacy than privacy only OT, which is private against malicious receivers.
Defensible here refers to the fact that, while a malicious receiver can cheat in the protocol and learn
both inputs of the sender without being detected, it should be hard to later convince the sender that
it behaved honestly. Second, we prove that any 2-round semi-honest privacy-only OT is necessarily
private against malicious senders.

Putting together the above two observations, we can plug into our transform any 2-round OT
protocol that is both: (i) private against defensible receivers, and (ii) private against semi-honest
senders. Next, we show that in the ROM we can relax the security requirements for the underlying
OT even further to just requiring semi-honest privacy against both the sender and the receiver. More
in details, we exhibit a transformation turning any 2-round semi-honest privacy-only OT into one
satisfying properties (i) and (ii) above. Our transform is round-preserving, and simply requires the
receiver to use randomness derived from the output of the random oracle. The programmability of
the random oracle is used only in the reduction.

As mentioned earlier, it is well known that if the simulator is allowed to both observe and program
the random oracle, it is fairly easy to build a simulatable OT protocol. Yet, since in our transform the
random oracle is used only to lift (game-based) privacy against semi-honest receivers to (game-based)
privacy against defensible receivers, we believe the gap to fill towards a result in the plain model is much
narrower. In other words, future work must only focus on finding a round-preserving transformation
from OT with privacy against semi-honest receivers to OT with privacy against defensible receivers
in the plain model.

1.2 Our Techniques

As mentioned above, in the black-box setting, the main challenge towards obtaining simulatable OT
is to design extraction mechanisms which allow the simulator to extract inputs that are consistent
with the ones played by the parties in the real world. The latter is particularly challenging when only
4 rounds of communication are available.

The compiler of Friolo, Masny and Venturi [FMV19] achieves extractability and input consistency
by adding black-box commit-and-prove proofs of consistency. In particular, they rely on such proofs
for two reasons: (1) to force the receiver to sample one of the messages for the underlying OT protocol
uniformly, and (2) to force the sender to create a valid secret sharing of its inputs (without opening the
way to input-dependent abort attacks against the receiver), while allowing the simulator to successfully
reconstruct both inputs.

In this work, we take a completely different approach. In particular, instead of adding mechanisms
to force good behaviour, we only add publicly-verifiable checkpoints to assess good behavior. Public
verifiability here means that the checkpoints are verifiable by looking only at the protocol transcript
(without requiring access to secret inputs), which avoids attacks based on input-dependent aborts.
As a result, we can enforce both extractability and indistinguishability of the simulation, by simply
having parties justify some of their actions (when challenged). Thanks to this feature, our transform
does not require any additional cryptographic primitives (e.g., commitments), and can be based just
on privacy-only OT and threshold secret sharing.

Overview of our compiler. The sender and the receiver engage in m parallel sessions (µ
(i)
R , µ

(i)
S ) of

the underlying 2-round privacy-only OT protocol, using uniformly random inputs: the receiver uses

random choice bits b(1), . . . , b(m), whereas the sender uses pairs of random keys (κ
(1)
0 , κ

(1)
1 ), . . . , (κ

(m)
0 ,

κ
(m)
1 ). This results in messages µ

(i)
R which are sent from the receiver to the sender in the first round

of the compiled protocol.
In the second round, the sender responds to the messages received from the receiver with its own

messages µ
(i)
S (computed via the underlying 2-round OT protocol), but also selects a random subset

A of tR indices in [m] for cut-and-choose: In the third round, for each i ∈ A, the receiver is asked to

provide the randomness ρ
(i)
R and the input b(i) (we call these a defense) that explain the message µ

(i)
R
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sent in the i-th session. Additionally, the receiver selects a random subset B of tS indices in [m]\A and

forwards B and the defenses (δ
(i)
R )i∈A along with a bit d(i) = b⊕ b(i) for each of the n = m− tR − tS

sessions that were not selected for cut and choose (we call those the alive sessions). The bit d(i) allows
to adjust the bit b(i) in the i-th session to the choice bit b of the receiver.

We note that, since the underlying OT satisfies privacy against malicious senders, the random
bits b(i) used by the receiver are computationally hidden, which implies the adjusting bits d(i) are
computationally close to uniform and hide the receiver’s choice bit b to the eyes of a computationally-
bounded malicious sender. Moreover, observe that at the end of the execution of the underlying 2-round

OT sessions, the receiver might have already noticed that some of the messages µ
(i)
S played by the

sender are “bad”, in the sense that they yield an invalid output (we do not make any assumption
about how the underlying OT protocol deals with bogus inputs). Hence, in such a case, it seems
the receiver should just abort (and righteously so) instead of continuing with the protocol. Doing so,
however, opens the door to attacks based on input-dependent abort. For instance, the sender could

plant a single ⊥ in, say, the j-th session, by playing with the inputs (κ
(j)
0 ,⊥), and thus learning

that b(j) = 0 in case the receiver did not abort. Later, after observing d(j), the sender can compute
b = d(j) ⊕ 0 which is a clear security breach. To prevent this type of attack, in our compiler we never
let parties abort depending on their local view. (In fact, up to this point, in our protocol the parties
eventually abort only after checking the responses to cut-and-choose challenges, which do not involve
secret inputs.)

In the fourth (and last) round, for each i ∈ B, the sender reveals the randomness ρ
(i)
S and the

inputs (κ
(i)
0 , κ

(i)
1 ) that explain the message µ

(i)
S sent in the i-th session. Moreover, it uses the n pairs of

keys (κ
(i)
0 , κ

(i)
1 ) corresponding to each alive session to mask n shares s

(i)
0 and s

(i)
1 of the actual secret

inputs s0 and s1, yielding ciphertexts (γ
(i)
0 , γ

(i)
1 ); here, we make use of the bits d(i) sent by the receiver

to align the shares s
(i)
0 and s

(i)
1 with the keys obtained by the receiver in the i-th session. Namely, the

share s
(i)
0 (resp. s

(i)
1 ) is encrypted using key κ

(i)

d(i) (resp. κ
(i)

1⊕d(i)) to create the ciphertext γ
(i)

d(i) (resp.

γ
(i)

1⊕d(i)).

After checking the defenses from the sender, for each alive session, the receiver decrypts the ci-

phertext γ
(i)

b(i)
using the key κ

(i)

b(i)
previously obtained as output in the i-th session, which yields the

i-th share s
(i)
b of sb and thus allows to reconstruct sb using any subset of t shares (where t is the

minimum number of shares required for reconstruction in the underlying secret sharing scheme).

We will show how to choose the parameters m, tR, tS and t when discussing the simulator below.
Note that the receiver does not check if different subsets of shares lead to different secrets, neither it
aborts if in some of the alive sessions it retrieves a bogus string. The only other aborting case in the
real world would be when the receiver gets less than t “valid keys”, and thus shares, which however we
bound to happen with negligible probability if the number of parallel sessions and the cut-and-choose
parameters are set appropriately.

Simulator for malicious receivers. Let R∗ be a malicious receiver. The simulator Sim starts by

running R∗ and thus receiving the messages (µ
(i)
R )i∈[m] that the receiver sends in the first round.

Hence, it can perfectly simulate the second round ((µ
(i)
S )i∈A,A) of the protocol using pairs of random

keys (κ
(i)
0 , κ

(i)
1 ) for each of the sessions i ∈ [m] \ A (as the honest sender would do).

Next, R∗ replies with ((δ
(i)
R )i∈A, d

(i)
i∈Alive,B) where Alive = [m] \ (A ∪ B) contains all the indices

corresponding to alive sessions. We call the execution up to this point the main thread. Now, after
checking the defenses from the receiver are good, Sim rewinds R∗ and forwards it a freshly sampled

second round ((µ
(i)
S )i∈A′ ,A′). This process is repeated until the cut-and-choose sets A′ allows the

simulator to obtain good defenses for at least 2/3 of the the alive sessions in the main thread. The
Sim aborts whenever there are more than m/9 bad defenses.

A combinatorial analysis shows that setting m = O(λ) and tR = tS = m/3 suffices in order to
ensure that: (i) the simulator runs in expected polynomial time, and (ii) the simulator aborts with
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probability that is negligibly close to the probability that the honest party would have aborted in the
real world.

At this point, Sim can extract a bit b(i) for 2/3 of the alive sessions. This in turn allows to define

b as the value b̂(i) = b(i) ⊕ d(i) that appears at least t/2 times, where t = 2/3|Alive| = 2m/9. Note
that at this point the simulator will have received good defenses for at least 2/3 of the alive sessions,
otherwise the simulator will have aborted. The simulator forwards b to the OT ideal functionality and
completes the simulation with R∗ by using the value sb returned from the functionality, along with a
uniformly random string s′1−b.

The rationale behind the above simulation strategy is that whenever a bit b appears more than
t/2 times the adversary can only learn the value sb or nothing at all. Note that R∗ requires at least t
shares to compute s1−b. Out of the m/3 sessions in Alive, assume R∗ is able to learn both strings for
|Alive| − t = m/9 shares. Now if there exist greater than t/2 = m/9 shares for the bit b, then there
exist at most m/9−1 shares for s1−b. Thus the adversary is only able to learn at most m/9+(m/9−1)
shares of s1−b. This allows the simulator to randomly sample s1−b in the simulation. On the other
hand if the adversary plays honestly it learns sb as in the real-world protocol.
Simulator for malicious senders. The simulator Sim for the case of malicious senders is based
on similar ideas. Let S∗ be a malicious sender. This time, Sim starts by sampling the first round

(µ
(i)
R )i∈[m] exactly as the honest receiver would do, upon which S∗ replies with ((µ

(i)
S )i∈[m]\A,A).

Hence, the simulator generates the third round ((δ
(i)
R )i∈A, (d

(i))i∈Alive,B) as the honest receiver would
do, except that the bits d(i) are picked uniformly at random (as Sim does not know b).

Next, the malicious sender sends the final round ((δ
(i)
S )i∈B, (γ

(i)
0 , γ

(i)
1 )i∈Alive). Now, after checking

the defenses from the sender are good, Sim rewinds S∗ and forwards it a freshly sampled third round

((δ
(i)
R )i∈A, (d

(i))i∈Alive′ ,B′) where Alive′ = [m] \ (A ∪ B′). This process is repeated until the cut-and-

choose sets B′ allows the Sim to obtain defenses δ
(i)
S = ((κ

(i)
0 , κ

(i)
1 ), ρ

(i)
S ) for 2/3 of the alive sessions in

the main thread. An analysis similar to the case of malicious receivers shows that Sim runs in expected
polynomial time and aborts only with negligible probability.

At this point, the simulator can use the keys (κ
(i)
0 , κ

(i)
1 ) for each index corresponding to an alive

session for which S∗ showed a good defense, in order to decrypt both ciphertexts (γ
(i)
0 , γ

(i)
1 ). This

allows Sim to extract both s0 and s1, after re-aligning the index of the shares consistently with the
values d(i) used in the simulation of the main thread. Moreover, the fact that the underlying OT
protocol satisfies privacy against malicious senders ensures that the bits b(i) used by the simulator in
the alive session of the main thread are indistinguishable from random, and thus so are the values d(i)

(as in the simulation).
Defensible privacy and the ROM. It is not hard to see that the proof for the case of malicious
receivers actually only requires the underlying OT protocol to satisfy privacy against defensible (rather
than malicious) receivers. Intuitively, this is because the sender can check the defenses of the receiver
before sending the messages that contain its actual input.8

While many known constructions of 2-round OT satisfy the stronger property of privacy against
malicious receivers, we observe that in the ROM one can obtain privacy against defensible receivers
from any OT protocol with semi-honest privacy. The idea is to simply force the receiver to use good
randomness by hashing a random string along with the choice bit.

1.3 Comparison with Friolo et al. [FMV19]

Besides using a very different approach, which leads to a significantly more efficient compiler, the
main difference between our compiler and the one by Friolo et al. [FMV19] is in terms of starting as-

8 Unfortunately, the opposite is not true as the receiver obtains the defenses from the sender after it has
already sent the bits d(i). This is the reason why we need to assume privacy against malicious (rather than
defensible) senders for the underlying OT protocol. Nevertheless, recall that we also show the latter property
comes for free in the case of 2-round protocols.
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sumptions. Our compiler starts from any 2-round privacy-only OT, whereas [FMV19] starts from any
2-round strongly-uniform OT. While is tempting to consider the latter as a much weaker assumption
than the former and hence the resulting compiler more general, we notice that the two assumptions
are somewhat incomparable. To appreciate the difference, first, consider an edge case where we try to
instantiate the two compilers using any 2-round universally composable OT protocol. Since universal
composability does not necessarily9 imply strong uniformity, the compiler of [FMV19] would not work.
In contrast, our compiler would work as universal composability implies privacy-only.

Also, it is not hard to see that 2-round strongly-uniform OT is not implied by a 2-round semi-honest
OT. Indeed, it is easy to come up with a 2-round semi-honest OT that is not strongly uniform. For
example, consider the classical 2-round OT construction based on PKE with oblivious key generation
instantiated with a contrived PKE where each public key is concatenated with a dummy bit that
always equals zero. This PKE scheme still implies a 2-round semi-honest OT, yet the distribution of
public keys is far from uniform (and thus the OT protocol is not strongly uniform).

We do acknowledge however that building a 2-round strong uniform semi-honest OT protocol
appears to be an easier task than building a 2-round privacy-only OT protocol.

One may wonder whether the compiler of [FMV19] can be simplified if starting with a 2-round
privacy-only OT, instead of a strong-uniform OT. For instance, by removing the burden of the commit-
and-open protocol on the receiver side. We note that the commit-and-open protocol in [FMV19] is
essential to achieve input extraction for both sides, which is required in order to prove simulation-
based security. Hence, even when starting with a privacy-only OT protocol, the compiler of [FMV19]
cannot forgo the use of commit-and-open (or some other mechanism) for the simulator to extract the
inputs.

We refer the reader to Appendix A for a more detailed comparison between the efficiency of our
compiler and the one of [FMV19] in terms of communication complexity. For the sake of concrete-
ness, we also discuss there an explicit instantiation of both compilers in the plain model, based on
the hardness of LWE. In this case, we can instantiate our compiler using the 2-round OT protocol
by Brakerski and Döttling [BD18] (which satisfies privacy against malicious, and hence defensible,
receivers and semi-honest senders, and thus suffices for our compiler in Theorem 1). For the compiler
in [FMV19], instead, we can use the 2-round strongly-uniform OT protocol based on the PKE scheme
by Peikert et al. [PVW08]. As we show, this results in a communication complexity of Õ(λ3) for our
compiler, against Õ(λ6) for the compiler of [FMV19] (where λ is the security parameter).

1.4 Related Work

The compilers in [ORS15,FMV19,CCG+21] yield the only known round-optimal black-box construc-
tions of simulatable OT in the plain model. In this section, we survey other relevant work on black-box
constructions for two-party functionalities. Lindell, Oxman and Pinkas [LOP11], relying on ideas from
Ishai, Prabhakaran and Sahai [IPS08], provide a significantly more efficient black-box compiler from
semi-honest OT to malicious OT, which however takes at least 8 rounds (and thus is not round-
optimal). Pass and Wee [PW09] build commitment and zero-knowledge protocols from black-box
access to one-way functions. Hazay and Venkitasubramaniam [HV18] improve this result by giving
a round-optimal construction. More recently, a rich body of work [Wee10,PW10,GLOV12] culmi-
nated in round-optimal black-box constructions for non-malleable commitments [GPR16,GR19], and
commit-and-prove [Kiy20].

In the CRS model, Choi, Dachman-Soled, Malkin and Wee [CDMW09] show a black-box com-
piler from adaptive semi-honest OT into constant-round adaptive UC-secure two-party computation.
Kiyoshima, Lin and Venkitasubramaniam in [KLV17] provide a unified approach to build black-box
protocols under trusted setup assumptions, improving on a previous approach by Hazay and Venki-
tasubramaniam [HV19]. These works are not round-optimal and are not in the plain model.

9 See, e.g., [DGH+20] for a concrete example of a 2-round universally composable OT protocol that is not
strongly uniform.
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Ideal Functionality FOT:

– Upon receiving message (send, s0, s1, S,R) from S, where s0, s1 ∈ {0, 1}λ, store s0, s1 and answer
send to R and Sim.

– Upon receiving message (receive, b) from R, where b ∈ {0, 1}, send sb to R and receive to S
and Sim, and halt. If no message (send, ·) was previously sent, do nothing.

Fig. 1. Ideal functionality for oblivious transfer

2 Preliminaries

2.1 Notation

We denote with λ ∈ N the security parameter. For n ∈ N, we let [n] = {1, . . . , n}. A negligible function,
denoted negl(λ), is a function that vanishes faster than the reciprocal of any polynomial poly(λ). We
use standard notation for computational/statistical indistinguishability of distribution ensembles.

For an interactive protocol Π between parties A,B holding inputs x, y respectively, we denote
the transcript of a protocol execution as ⟨A(x), B(y)⟩. Additionally, we let ViewB

Π,A(λ, x, y) be the
random variable corresponding to the view of A in a run of Π with input x when interacting with B
with input y. This view consists of A’s input, randomness, and messages received.

2.2 Oblivious Transfer

Oblivious transfer (OT) is a two-party protocol Π in which a sender S has two input strings s0, s1 ∈
{0, 1}λ, and a receiver R has a choice bit b ∈ {0, 1}. An OT protocol is called non-trivial if for any
pair of strings s0, s1 ∈ {0, 1}λ, and for any b ∈ {0, 1}, after participating in the interactive protocol,
S outputs nothing and R learns sb. Below, we recall relevant security notions for OT protocols.

Simulatable OT The standard security definition for OT compares an execution of Π in the real
world, where an attacker can corrupt either the sender S or the receiver R, with an execution in
the ideal world where a trusted-third party knows all inputs and computes the output on behalf of
the players. The corresponding ideal functionality is depicted in Fig. 1. In what follows, we denote by
RealΠ,R∗(z)(λ, s0, s1, b) (resp., RealΠ,S∗(z)(λ, s0, s1, b)) the output of the malicious receiver R∗ (resp.,
sender S∗) during a real execution of the protocol Π (with s0, s1 as inputs of the sender, b as choice
bit of the receiver, and z as auxiliary input for the adversary), and by IdealFOT,SimR∗(z)(λ, s0, s1, b)
(resp., IdealFOT,SimS∗(z)(λ, s0, s1, b)) the output of the malicious receiver R∗ (resp., sender S∗) in an
ideal execution where the parties (with analogous inputs) interact with FOT, and where the simulator
is given black-box access to the adversary.

Definition 1 (Simulatable OT). We say that Π = (S,R) securely computes FOT if the following
holds:

– For every non-uniform PPT malicious receiver R∗, there exists a non-uniform PPT simulator Sim
such that{

RealΠ,R∗(z)(λ, s0, s1, b)
}
λ,s0,s1,b,z

c≈
{
IdealFOT,SimR∗(z)(λ, s0, s1, b)

}
λ,s0,s1,b,z

,

where λ ∈ N, s0, s1 ∈ {0, 1}λ, b ∈ {0, 1}, and z ∈ {0, 1}∗.
– For every non-uniform PPT malicious sender S∗, there exists a non-uniform PPT simulator Sim

such that{
RealΠ,S∗(z)(λ, s0, s1, b)

}
λ,s0,s1,b,z

c≈
{
IdealFOT,SimS∗(z)(λ, s0, s1, b)

}
λ,s0,s1,b,z

,

where λ ∈ N, s0, s1 ∈ {0, 1}λ, b ∈ {0, 1}, and z ∈ {0, 1}∗.
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Privacy-Only OT A weaker guarantee than simulatable security is the so-called privacy property,
which does not require the existence of a simulator. Roughly, privacy for the receiver means that
the choice bit is computationally hidden, whereas privacy for the sender means that the receiver can
obtain at most one input from the sender. Below, we formalize this notion for different adversarial
behaviours and assuming that the input of the players are uniformly random (which will suffice for
our purpose).

Semi-honest privacy. The definition below formalizes privacy in the semi-honest setting (i.e., when
corrupted parties do not deviate from the protocol).

Definition 2 (Semi-honest privacy for random inputs). Let Π = (S,R) be a non-trivial OT
protocol. We say that Π = (S,R) is private for random inputs against semi-honest receivers if the
following holds: {

ViewS
Π,R(λ, s0, s1, b), s1−b

}
λ,b

c≈
{
ViewS

Π,R(λ, s0, s1, b), s
′
}
λ,b

where λ ∈ N, b ∈ {0, 1}, and s0, s1, s
′←$ {0, 1}λ. Similarly, Π is private for random inputs against

semi-honest senders if the following holds:{
ViewR

Π,S(λ, s0, s1, b), b
}
λ,s0,s1

c≈
{
ViewR

Π,S(λ, s0, s1, b), b
′
}
λ,s0,s1

where λ ∈ N, s0, s1 ∈ {0, 1}λ, and b, b′←$ {0, 1}.

Malicious privacy. The definition below (adapted from [HL10b]) formalizes privacy in the malicious
setting (i.e., when corrupted parties can arbitrarily deviate from the protocol).

Definition 3 (Malicious privacy). Let Π = (S,R) be a non-trivial OT protocol.
Π is private for random inputs against malicious senders if for every non-uniform PPT malicious

sender S∗: {
ViewR

Π,S∗(z)(λ, s0, s1, b), b
}
λ,s0,s1,z

≈c

{
ViewR

Π,S∗(z)(λ, s0, s1, b), b
′
}
λ,s0,s1,z

where λ ∈ N, s0, s1 ∈ {0, 1}λ, z ∈ {0, 1}∗, and b, b′←$ {0, 1}.

Defensible privacy. Following Haitner et al. [Hai08,HIK+11], we call defense by R∗ an input b ∈ {0, 1}
and a random tape ρR ∈ {0, 1}∗ provided by the receiver at the end of the protocol. Intuitively, a
defense is good if the honest receiver using this very input and randomness would have sent the exact
same messages as the malicious receiver sent. A similar notion can be considered for the sender, where
defenses are of the form (s0, s1, ρS) with s0, s1 ∈ {0, 1}λ and ρS ∈ {0, 1}∗.

The definition below formalizes the concept of good defense in the special case of 2-round OT
protocols, which we model as follows. Let OTR a PPT algorithm taking as input the choice bit
b ∈ {0, 1} and the random tape ρR ∈ {0, 1}∗ for the receiver, and outputting a message µR ∈ {0, 1}∗
for the sender; similarly, let OTS be a PPT algorithm taking as input the strings s0, s1 ∈ {0, 1}λ and
the random tape ρS ∈ {0, 1}∗ for the sender, as well as a message µR ∈ {0, 1}∗ from the receiver, and
outputting a message µS ∈ {0, 1}∗ for the receiver. Finally, let OTD be a PPT algorithm taking as
input the choice bit b ∈ {0, 1} and the random tape ρR ∈ {0, 1}∗ for the receiver, as well as message
µS from the sender, and outputting a value s in {0, 1}λ.

Definition 4 (Good defense for 2-round OT). Let Π = (OTR,OTS,OTD) be a 2-round OT
protocol. Fix any transcript τ = (µR, µS) ∈ ({0, 1}∗)2 for Π. We say that the pair δR = (b, ρR) (resp.
δS = (s0, s1, ρS)), where b ∈ {0, 1}, constitutes a good defense by the receiver (resp. by the sender) for
τ in Π if it holds that µR = OTR(b; ρR) (resp. µS = OTS(s0, s1, µR; ρS)).
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Loosely speaking, an OT protocol has defensible privacy if the privacy property holds against
malicious adversaries that can provide a good defense.

Definition 5 (Defensible privacy for random inputs). Let Π = (S,R) be a non-trivial OT
protocol. We say that Π is private for random inputs against defensible receivers if for every non-uniform
PPT malicious receiver R∗:{

Γ
(
ViewS

Π,R∗(z)(λ, (s0, s1), b), s1−b

)}
λ,b,z

≈c

{
Γ
(
ViewS

Π,R∗(z)(λ, s0, s1, b), s
′
)}

λ,b,z

where λ ∈ N, b ∈ {0, 1}, z ∈ {0, 1}∗, s0, s1, s′←$ {0, 1}λ, and Γ (v, ∗) is set to (v, ∗) if following the
execution R∗ outputs a good defense (and to ⊥ otherwise). Similarly, Π is private for random inputs
against defensible senders if for every non-uniform PPT malicious sender S∗:{

Γ
(
ViewR

Π,S∗(z)(λ, (s0, s1), b), b
)}

λ,s0,s1,z
≈c

{
Γ
(
ViewR

Π,S∗(z)(λ, s0, s1, b), b
′
)}

λ,s0,s1,z

where λ ∈ N, s0, s1 ∈ {0, 1}λ, z ∈ {0, 1}∗, b, b′←$ {0, 1}, and Γ (v, ∗) is set to (v, ∗) if following the
execution S∗ outputs a good defense (and to ⊥ otherwise).

2.3 Secret Sharing

A threshold secret sharing scheme allows to share an input string s ∈ {0, 1}λ into n shares s1, . . . , sn ∈
{0, 1}λ in such a way that it is possible to efficiently recover s from any subset of at least t shares,
while at the same time an attacker corrupting up to t− 1 share holders obtains no information about
the secret.

Definition 6 (Secret sharing). An (n, t)-secret sharing scheme over {0, 1}λ is defined by a pair
of algorithms (Share,Recon), where Share is a randomized mapping of an input s ∈ {0, 1}λ to shares
s = (s1, s2, . . . , sn) ∈ ({0, 1}λ)n, and Recon is a function mapping a subset I of [n], along with the
corresponding shares sI = (si)i∈I , to a value in {0, 1}λ, such that the following holds:

1. Reconstruction. For all s ∈ {0, 1}λ, and for all sets I ⊆ [n] with |I| ≥ t, the output of Recon(I,
sI) such that (s1, . . . , sn)←$Share(s) is equal to s.

2. Security. For all s ∈ {0, 1}λ, and for all sets I ⊆ [n] with |I| < t, the joint distribution sI =
(si)i∈I of shares received by the subset of parties I, where (s1, . . . , sn)←$Share(s), is independent
of the secret s.

We call a share valid if it is a λ-bit string. For our construction, we will implicitly assume that
running algorithm Recon upon input any sequence of t valid shares (possibly outside the support
of Share) still yields a λ-bit message. Note that, e.g., Shamir’s secret sharing [Sha79] satisfies this
property.

3 Observations on Two-Round OT

Here, we collect a few observations on 2-round OT protocols. First, in Section 3.1, we show that any
2-round OT protocol with privacy against semi-honest senders is already private against malicious
senders. Next, in Section 3.2, we overview existing 2-round OT protocols that satisfy the notion of
privacy against defensible receivers. Furthermore, we show a simple compiler in the ROM that adds
the latter property to any 2-round OT protocol with semi-honest privacy only.
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3.1 Privacy against Malicious Senders

The lemma below states that any 2-round OT protocol with privacy against semi-honest senders is
already private against malicious senders.10 Intuitively, this is the case since in a 2-round OT protocol
the only thing a sender can do is to respond to the first message sent by the receiver, however, this
does not help to learn the choice bit of the receiver. While we prove the lemma for the case of privacy
with random inputs, a similar statement holds for any distribution of the receiver’s choice bit.

Lemma 1. Any 2-round OT protocol that is private (for random inputs) against semi-honest senders
is also private (for random inputs) against malicious senders.

Proof. Recall that the view of the sender consists of the inputs s0, s1, the random tape ρS , and the
message µR from the receiver. By contradiction, assume that there is a PPT distinguisher D∗, a non-
uniform PPT malicious sender S∗, a pair of strings s0, s1 ∈ {0, 1}λ, and an auxiliary input z ∈ {0, 1}∗
such that ∣∣∣Pr [D∗((s0, s1, ρS , µR), b) = 1]− Pr [D∗((s0, s1, ρS , µR), b

′) = 1]
∣∣∣ ≥ 1/poly(λ),

where b, b′←$ {0, 1}, µR←$OTR(b), and ρS is the random tape used by S∗(z).
Consider now the PPT distinguisherD′ that upon receiving ((s0, s1, ρ

′
S , µ

′
R), b

∗), where ρ′S ←$ {0, 1}∗,
µ′
R←$OTR(b), and b∗ ∈ {b, b′}, forwards µ′

R to S∗(s0, s1; ρ
′
S) and then outputs the same asD∗((s0, s1, ρ

′
S , µ

′
R), b

∗).
Notice, that the malicious sender S∗ can ignore the provided inputs and random tape. However, since
the distribution of µ′

R and ρ′S is identical regardless the sender being honest or not, the view of D∗

is perfectly simulated. Thus D′ breaks privacy of Π (for random inputs) against semi-honest senders.
This concludes the proof.

3.2 Privacy against Defensible Receivers

Two-round OT protocols (for random inputs) with privacy against defensible receivers exist under
standard number-theoretic assumptions, including DDH [NP01,AIR01], QR and DCR [HK12], and
LWE [BD18]. In fact, these protocols satisfy the stronger property of privacy against malicious re-
ceivers.

In this section, we present a round-preserving transform turning any 2-round OT protocol with
semi-honest privacy into one with privacy against defensible receivers in the ROM. Intuitively, our
transform ensures that the receiver cannot influence the randomness used to generate the first OT
message. This is achieved by hashing the choice bit b along with a random string ρR chosen by the
receiver.

Lemma 2. If there exists a 2-round OT protocol with privacy (for random inputs) against semi-honest
senders and receivers, then there exists a 2-round OT protocol with privacy (for random inputs) against
defensible receivers and semi-honest senders in the ROM.

Proof. Let Π ′ = (OTR,OTS,OTD) be the initial 2-round OT protocol, and H : {0, 1}∗ → {0, 1}∗ be
a hash function modelled as a random oracle. Consider the derived 2-round OT protocol Π = (S,R)
that proceeds as follows:

1. In the first round, upon input choice bit b ∈ {0, 1}, the receiver R runs µR = OTR(b; ρ′R) where
ρ′R = H(ρR||b) for uniformly random ρR ∈ {0, 1}∗.

2. In the second round, upon input strings s0, s1 ∈ {0, 1}λ and the message µR ∈ {0, 1}∗ from the
receiver, the sender answers with µS = OTS(s0, s1, µR; ρS) for uniformly random ρS ∈ {0, 1}∗.

3. The receiver outputs OTD(b, µS ; ρR).

10 A similar observation appears in [FMV19, p. 12].
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We first note that if Π ′ satisfies privacy against semi-honest senders, so does Π. Intuitively, this
is because the sender’s message does not change in the protocol (the formal proof is straightforward,
and thus omitted). In what follows, we show that Π satisfies privacy against defensible receivers (see
Definition 5), so long as Π ′ satisfies privacy against semi-honest receivers.11 Assume that there exist
a PPT distinguisher D∗, a non-uniform PPT malicious receiver R∗, a pair of strings s0, s1 ∈ {0, 1}λ,
and a bit b ∈ {0, 1}, such that:

Pr
[
D∗

(
Γ
(
ViewS

Π,R∗(z)(λ, s0, s1, b), s1−b

))
= 1

]
− Pr

[
D∗

(
Γ
(
ViewS

Π,R∗(z)(λ, s0, s1, b), s
′
))

= 1
]
≥ 1/poly(λ),

where s′←$ {0, 1}λ. W.l.o.g., we will assume that R∗ never repeats the same RO query twice, and
that whenever R∗ outputs a good defense δR = (b, ρR) then it must12 have queried the RO upon input
ρR||b.

Consider now the following PPT distinguisher D′ attacking privacy of Π ′ against semi-honest
receivers (see Definition 2).

– The distinguisher takes as input the view for the receiver—which can be parsed as (b, ρ′R, µS)
such that µS ←$OTS(s0, s1, µR) for µR = OTR(b; ρ′R)—along with a challenge s∗ ∈ {s1−b, s

′} for
s′←$ {0, 1}λ.

– Let q = poly(λ) be the number of RO queries asked by R∗. At the outset, D picks a random index
i←$ [q]. Hence, it answers RO queries as follows:
• For each query xj such that j ̸= i, it picks a random yj ←$ {0, 1}∗ and returns yj .
• For the query xi, it replies with ρ′R from the receiver’s view.

– Upon receiving a message µR from R∗, the distinguisher replies with µS from the receiver’s view.
– Upon receiving a defense δR = (b, ρR) from R∗, the distinguisher first checks that xi = b||ρR. If

not, it aborts. Else, it further checks that δR is a good defense (i.e., µR = OTR(b;H(b||ρR)) =
OTR(b; ρ′R))). If not, it runs D

∗ upon input the view (b, ρR, µS) and challenge s∗ = ⊥; else, it runs
D∗ upon input (b, ρR, µS) and s∗.

– Output whatever D∗ outputs.

We note that the distinguisher D′ perfectly simulates RO queries. Denote by Guess the event that
D′ guesses correctly the index i corresponding to the query in which R∗ inputs the string ρR||b to the
RO. We have: ∣∣∣Pr [D′((b, ρ′R, µS), s1−b) = 1]− Pr [D′((b, ρ′R, µS), s

′) = 1]
∣∣∣

=
∣∣∣Pr [D∗ (Γ ((b, ρR, µS), s1−b)) = 1 ∧Guess]

− Pr [D∗(Γ ((b, ρR, µS), s
′)) = 1|Guess]

∣∣∣
=

1

q
·
∣∣∣Pr [D∗ (Γ ((b, ρR, µS), s1−b)) = 1 ∧Guess]

− Pr [D∗(Γ ((b, ρR, µS), s
′)) = 1|Guess]

∣∣∣
≥ 1

q
· 1/poly(λ) ≥ 1/poly(λ).

In the above derivation, the first equation follows by the fact that D′ aborts when Guess does not
happen and otherwise it outputs whatever D∗ outputs. The second equation uses the fact that the
random tape ρR is uniformly distributed, and thus the index i is information-theoretically hidden
which implies Pr[Guess] = 1/q. The last equation follows because, conditioning on Guess, the view
of D∗ is perfectly simulated. This finishes the proof.
11 The proof in the case of privacy for random inputs is analogous.
12 If not, we can always consider the malicious receiver that is identical to R∗ but after outputting (b, ρR)

queries ρR||b to the RO. Clearly, such a receiver yields the same distinguishing advantage as R∗ does.
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Protocol Π = (S,R)

Sender’s Input: s0, s1 ∈ {0, 1}λ Receiver’s Input: b ∈ {0, 1}

1. (R → S): For each i ∈ [m], the receiver picks b(i) ←$ {0, 1} and ρ
(i)
R ←$ {0, 1}∗, lets µ

(i)
R =

OTR(b(i); ρ
(i)
R ), and sends (µ

(i)
R )i∈[m] to the sender.

2. (S → R): The sender’s first message is computed as follows.
(a) Sample α1, . . . , αtR ←$ [m] and let A = {α1, . . . , αtR}.
(b) For each i ∈ [m] \ A, pick κ

(i)
0 , κ

(i)
1 ∈ {0, 1}λ and ρ

(i)
S ←$ {0, 1}∗, and let µ

(i)
S =

OTS(κ
(i)
0 , κ

(i)
1 , µ

(i)
R ; ρ

(i)
S ).

Send (µ
(i)
S )i∈[m]\A and A to the receiver.

3. (R→ S): The receiver’s second message is computed as follows.

(a) For each i ∈ A , let δ
(i)
R = (ρ

(i)
R , b(i)).

(b) Sample β1, . . . , βtS ←$ [m] \ A and let B = {β1, . . . , βtS}.
(c) Let Alive = [m] \ (A ∪ B). For each i ∈ Alive, let κ

(i)

b(i)
= OTD(b(i), µ

(i)
S ; ρ

(i)
R ) and define

d(i) = b(i) ⊕ b.
Send (δ

(i)
R )i∈A and (d(i))i∈Alive, along with the set B, to the sender.

4. (S → R): The sender’s last message is computed as follows.

(a) For each i ∈ A, check that δ
(i)
R is good. If not, abort.

(b) For each i ∈ B, let δ(i)S = (κ
(i)
0 , κ

(i)
1 , ρ

(i)
S ).

(c) Let |Alive| = n = m− tR − tS . Run (s
(i)
0 )i∈Alive ←$Share(s0) and (s

(i)
1 )i∈Alive ←$Share(s1) (i.e.,

secret share s0 and s1 and assign one share to each of the alive sessions).

(d) For each i ∈ Alive, let γ
(i)

0⊕d(i)
= κ

(i)

d(i)
⊕s

(i)
0 and γ

(i)

1⊕d(i)
= κ

(i)

1⊕d(i)
⊕s

(i)
1 . (Note that this implies

γ
(i)

b⊕d(i)
= κ

(i)

b⊕d(i)
⊕ s

(i)
b for all b ∈ {0, 1}.)

Send (δ
(i)
S )i∈B and (γ

(i)
0 , γ

(i)
1 )i∈Alive to the receiver.

5. (Receiver’s Output:) The receiver determines the final output as follows. For each i ∈ B, check
that δ

(i)
S is good. If not, abort. Else, for each i ∈ Alive, let s

(i)
b = γ

(i)

b(i)
⊕ κ

(i)

b(i)
, pick any subset I of

(s
(i)
b )i∈Alive containing at least t valid shares, and return sb = Recon((s

(i)
b )i∈I).

Fig. 2. Formal description of our black-box compiler

4 Our Compiler

In this section, we show a black-box compiler for obtaining round-optimal simulatable OT starting
from any 2-round OT satisfying privacy for random inputs against defensible receivers (cf. Definition 5)
and malicious senders (cf. Definition 3). Recall that, by Lemma 1, the latter property follows from
privacy for random inputs against semi-honest senders.

4.1 Protocol Description

Let Π ′ = (OTR,OTS,OTD) be a 2-round OT protocol. We transform Π ′ into a 4-round OT protocol
Π as depicted in Fig. 2; see also Fig. 5 on page 29 for a pictorial representation. Intuitively, the
protocol Π proceeds as follows:

Round 1: The receiver starts m parallel sessions of the underlying OT protocol Π ′. In each session

i ∈ [m], it uses a uniformly random choice bit b(i), which yields a message µ
(i)
R . Hence, it forwards

µ
(1)
R , . . . , µ

(m)
R to the sender.

Round 2: The sender picks random indices α1, . . . , αtR ∈ [m] for cut-and-choose, where tR = m/3.

For the remaining sessions, it picks two random strings (κ
(i)
0 , κ

(i)
1 ) and computes µ

(i)
S as a response

to the message µ
(i)
R using the underlying OT protocol. Looking ahead, these random strings will

serve as masks to hide the input messages in the last round of the protocol. Hence, it forwards the

indices α1, . . . , αtR and the messages µ
(i)
S (for all sessions but the ones selected for cut-and-choose).
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Round 3: For each session that the sender asked to open, the receiver prepares a defense δ
(i)
R =

(b(i), ρ
(i)
R ) which explains the message µ

(i)
R that was sent in the first round. Then, it picks random

indices β1, . . . , βtS ∈ [m]\{α1, . . . , αtR} for cut-and-choose, where tS = m/3; looking ahead, in the
next round the sender will have to provide defenses for those indices, which allows to extract the
inputs of the sender in the simulation proof. Denote by Alive the set of indices corresponding to
sessions which are still alive (i.e., that were not selected for cut-and-choose). Using the underlying

OT protocol, the receiver obtains the mask κ
(i)

b(i)
and forwards to the sender an adjusting bit

d(i) = b(i) ⊕ b for each alive session; intuitively, the bit d(i) tells the sender how to encrypt the
input strings in the last round.

Round 4: The sender first checks that each of the defenses δ
(i)
R are good (and aborts if not). The

privacy property (against defensible receivers) of the underlying OT protocol guarantees that the

receiver does not learn the masks κ
(i)

1−b(i)
corresponding to these sessions. Additionally, the sender

prepares its own defenses δ
(i)
S = (κ

(i)
0 , κ

(i)
1 , ρ

(i)
S ) for each index i ∈ B. Hence, it secret shares the

input strings s0 and s1, obtaining n = m− tR− tS shares (s
(i)
0 )i∈Alive and (s

(i)
1 )i∈Alive, so that each

pair of shares can be associated to a single alive session. Finally, the sender uses the key κ
(i)

0⊕d(i)

(resp. κ
(i)

1⊕d(i)) in order to encrypt the share s
(i)
0 (resp. s

(i)
1 ) in the i-th session, and forwards the

resulting pairs of ciphertexts (γ
(i)
0 , γ

(i)
1 )i∈Alive to the receiver.

Output Computation: Since b(i) = b ⊕ d(i), the receiver can use the keys κ
(i)

b(i)
in order to obtain

all the shares (s
(i)
b )i∈Alive and thus reconstruct sb using any subset of t valid shares13 (and abort

if there are less than t valid shares).

The theorem below states the security of our compiler.

Theorem 2. Let Π ′ = (OTR,OTS,OTD) be a 2-round OT protocol with privacy for random inputs
against defensible receivers and against malicious senders, and let (Share,Recon) be a t-out-of-n secret
sharing scheme. Then, for parameters m, tR, tS , t, n such that m = O(λ), tR = tS = n = m/3 and
t = 2n/3, the protocol Π = (S,R) from Fig. 2 securely realizes FOT.

To prove the theorem, in the subsections below, we consider separately the cases where the receiver
is corrupt and when the sender is corrupt.

4.2 Simulator for Malicious Receivers

The simulator Sim, with oracle access to R∗, is defined in Fig 3. The definition below is useful to
reason about the simulator.

Definition 7. Let Bad ⊂ Alive be the set of indices for which the simulator does not get a defense.

Lemma 3. Conditioned on the fact that Sim did not abort in the main thread, the cardinality of Bad
(Definition 7) is strictly less than m/9 with overwhelming probability.

Proof. Let Bad0 be the event that |Bad| exceeds or equals m/9. We need to prove that Pr[Bad0] ≤
negl(λ). To do that, we will first compute the probability of the event as a function of m and finally
show that this probability is negligible for our choice of m = O(λ). Denote by j ∈ [m] the number of
bad indices in the main thread, so that there are m−j indices for which R∗ sends good defenses. Note
that, for a fixed j, the probability of passing the cut-and-choose without being caught is equal to the
ratio between the number of ways to pick only good defenses divided by the total number of ways to
select tR = m/3 out of m indices, i.e.

(
m−j
m/3

)
/
(

m
m/3

)
. Hence, we can compute the probability of Bad0

by summing up the above probability over the range of all j’s that could make the event happen:

13 Recall that a share is called valid if it is a λ-bit string.
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Main thread:

1. Upon receiving µ
(1)
R , . . . , µ

(m)
R from R∗:

(a) Sample indices α1, . . . , αtR ←$ [m] and let A = {α1, . . . , αtR}.
(b) For each i ∈ [m] \ A, pick κ

(i)
0 , κ

(i)
1 ∈ {0, 1}λ and ρ

(i)
S ←$ {0, 1}∗, and let µ

(i)
S =

OTS(κ
(i)
0 , κ

(i)
1 , µ

(i)
R ; ρ

(i)
S ).

(c) Send µ
(i)
S (for each i ∈ [m] \ A) and A to R∗.

2. Upon receiving ((δ
(i)
R )i∈A, (d(i))i∈Alive,B) from R∗ (where Alive = [m] \ A ∪ B), check that all

defenses δ
(i)
R = (b(i), ρ

(i)
R ) are good. If not, simulate the sender aborting. Else initialize Bits = ∅

and ctr = 0

Rewind thread:

(a) Sample A′ = {α′
1, . . . , α

′
tR} randomly as in Item 1a.

(b) Recompute µ
(i)
S using fresh randomness (for each i ∈ [m] \ A′), send these messages

along with A′ to R∗ and receive ((δ
(i)
R )i∈A′ ,B′, (d(i))i∈Alive′) in response, where Alive′ =

[m] \ (A′ ∪ B′).

(c) For every defense δ
(i)
R = (b(i), ρ

(i)
R ) corresponding to an index i ∈ Alive (from the main

thread) that was not observed in a previous rewind: If the defense is good add the bit
b(i) to the set Bits.

(d) Increment ctr = ctr + 1. If ctr = 2λ, abort.
(e) If |Bits|+m/9 < |Alive| go to Item 2a; else proceed to the next step.

3. Complete the simulation in the main thread as follows.

(a) For each b(i) ∈ Bits, compute b̂(i) = b(i) ⊕ d(i).
(b) Let b be a bit that appears among the b̂(i) more than t/2 times
(c) Forward b to FOT obtaining sb ∈ {0, 1}λ, sample s′1−b ←$ {0, 1}λ and simulate the final message

((δ
(i)
S )i∈B, (γ

(i)
0 , γ

(i)
1 )i∈Alive) as the honest sender would do.

Fig. 3. Simulator against a malicious receiver

– First, whenever j > 2m/3 there are less than m/3 good defenses, and thus a malicious receiver
can never provide good defenses in the second round of the main thread.

– Second, whenever j < m/9 there are less than m/9 indices for which R∗ aborts or sends a bad
defense, and thus |Bad| is strictly less than m/9.

Putting the above observations together, we can write:

Pr [Bad0] =

2m/3∑
j=m/9

(
m−j
m/3

)(
m

m/3

)
=

(
m

m/3

)−1

·
8m/9∑
j=0

(
j

m/3

)
(1)

=

(
8m/9+1
m/3+1

)(
m

m/3

) (2)

=
(8m/9 + 1)! (m/3)! (2m/3)!

m! (m/3 + 1)! (5m/9)!
(3)

=
2m/3 (2m/3− 1) · · · (5m/9 + 1)

m (m− 1) · · · (8m/9 + 2) · (m/3 + 1)
(4)
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=

∏2m/3
j=5m/9+1 j

(m/3 + 1)
∏m

j= 8m
9 +2 j

(5)

=
(8m/9 + 1)

∏2m/3
j=5m/9+1 j

(m/3 + 1)
∏m

j=8m/9+1 j
(6)

=
(8k + 1)

∏6k
j=5k+1 j

(3k + 1)
∏9k

j=8k+1 j
(7)

=
(8k + 1)

∏k
j=1 5k + j

(3k + 1)
∏k

j=1 8k + j
(8)

=
(8k + 1)

(3k + 1)

k∏
j=1

5k + j

8k + j
(9)

In the above derivation, Eq. (1) follows by shifting the indices of the summation and using the fact
that

(
j
k

)
= 0 for any j < k, Eq. (2) follows by the column-sum property of the binomial coefficients

(i.e.,
∑n

j=0

(
j
m

)
=

(
n+1
m+1

)
), Eq. (3), Eq. (4) and Eq. (5) are routine calculations using the definition of

binomial coefficients, Eq. (6) follows by multiplying and dividing for 8m/9 + 1, and Eq. (7), Eq. (8)
and Eq. (9) follow by routine calculations after setting k = m/9.

Now, since for 0 ≤ j ≤ k, it holds that 5k+j
8k+j ≤ 2/3 and (8k+1)

(3k+1) < 8/3, we have obtained Pr[Bad0] ≤
8/3 · (2/3)m/9 which is negligible by our choice of m = O(λ). We can also obtain a tighter probability
by approximating Eq. (9) using Stirling’s formula (i.e. k! ≈

√
2πk(ke )

k). In particular:

(8k + 1)

(3k + 1)

k∏
i=1

5k + i

8k + i
=

(8k + 1)

(3k + 1)

6k!

5k!
· 8k!
9k!

(10)

≈ (8k + 1)

(3k + 1)
·
√

6

5

(6k)
6k

e5k

(5k)
5k

e6k
·
√

8

9

(8k)
8k

e9k

(9k)
9k

e8k
(11)

=
(8k + 1)

(3k + 1)

√
16

15

66k88kk14ke14k

55k99kk14ke14k
(12)

=
(8k + 1)

(3k + 1)

√
16

15

36k224k+6k

55k318k
(13)

≈
√

16

15

230k+3

55k312k+1
=

1

20.07m−1.46
(14)

where Eq. (10) is due to the observation that
∏k

i=1 c·k+i = ck!/((c−1)k)!, for a constant c. Eq. (11) is
from Stirling’s approximation. Eq. (12) and Eq. (13) are by canceling common terms. Finally, Eq. (14)
is by taking the limit of (8k + 1) / (3k + 1) to be 8/3 and using k = m/9.

Lemma 4. The above simulator Sim runs in expected time that is polynomial in m and λ except with
negligible probability.

Proof. Observe that all the steps performed before and after rewinding takes place run in strict
polynomial time. Hence, it suffices to bound the number of rewind attempts. Note that the rewind

iterations occur only when all defenses (δ
(i)
R )i∈A sent by R∗ in the main thread are good. Assume that

this occurs with probability p ∈ (0, 1). Since in each rewind iteration the simulator only changes the
set A′ for cut-and-choose and the randomness of the adversary is fixed at this point, the probability
with which R∗ does not abort and continues the rewinding is also equal to p.

The goal of the simulator is to receive good defenses for all the indices in Alive that are not
contained in Bad. Note that, by Lemma 3, the number of such indices is at least |Alive| −m/9 (except
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with negligible probability). Upon requesting a defense for an index i ∈ Alive for the first time, if the
defense is good the simulator adds the bit b(i) to the set Bits. Otherwise it ignores the defense.

Thus, the number of rewind attempts corresponds to repeatedly sampling tR = m/3 indices in [m]
until the set Alive\Bad is covered. This is a variation of the coupon collector’s problem [Sta90], where
the coupons are collected in groups. The expected number of samples for the naive coupon collector’s
problem[FS14] (where we pick one coupon at a time) is O(m logm), which is also an upper bound on
the number of samples needed for the grouped version of the problem (where we pick multiple coupons
at a time). Since the receiver continues with probability p in each iteration, the expected number of
rewinds is O(m logm)/p.

We can thus bound the expected running time of the simulator as

poly(λ,m) · p · (O(m logm)/p) = poly(λ,m) ·O(m logm) = poly(λ,m),

and this concludes the analysis.

Proof by hybrids. We next prove by a sequence of hybrids that the distribution of the output of R∗

in the real world is computationally close to that in the ideal world with the above defined simulator.
The hybrids are described14 below:

Hybrid Hyb0(λ, s0, s1, b): This is identical to RealΠ,R∗(z)(λ, s0, s1, b).
Hybrid Hyb1(λ, s0, s1, b): Identical to the previous experiment, except that we now perform the

rewinding as done by the simulator before concluding the protocol. More precisely:

1. Upon receiving µ
(1)
R , . . . , µ

(m)
R from R∗ generate (µ

(i)
S )i∈A and A as in the real world.

2. Upon receiving ((δ
(i)
R )i∈A, (d

(i))i∈Alive,B) from R∗, check that all defenses δ
(i)
R are good. If not,

the sender aborts. Else:
(a) Initialize Bits = ∅ and ctr = 0
(b) Rewind the execution back to Item 1a by sampling randomly A′ = {α′

1, . . . , α
′
tR}.

(c) Recompute µ
(i)
S using fresh randomness (for each i ∈ [m] \ A′), send these messages

along with A′ to R∗ and receive ((δ
(i)
R )i∈A′ ,B′, (d(i))i∈Alive′) in response, where Alive′ =

[m] \ (A′ ∪ B′).
(d) For every defense δ

(i)
R = (b(i), ρ

(i)
R ) corresponding to an index i ∈ Alive (from the main

thread) that was not observed in a previous rewind: If the defense is good add the bit b(i)

to the set Bits.
(e) Increment ctr = ctr + 1. If ctr = 2λ, abort.
(f) If |Bits|+m/9 < |Alive| go to Item 2a; else proceed to the next step.

3. Complete the execution of the main thread by generating ((δ
(i)
S )i∈B, (γ

(i)
0 , γ

(i)
1 )i∈Alive) as in the

real world.

Hybrid Hyb2(λ, s0, s1, b): Identical to the previous experiment except for the following difference.

3. When generating the message ((δ
(i)
S )i∈B, (γ

(i)
0 , γ

(i)
1 )i∈Alive) redefine γ

(i)

1−b(i)
= κ̂1−b(i) ⊕ s

(i)

1−b̂(i)

using an independent κ̂1−b(i) ←$ {0, 1}λ (instead of κ
(i)

1−b(i)
) for each bit b(i) ∈ Bits (recall that

b̂(i) = b(i) ⊕ d(i)).

Hybrid Hyb3(λ, s0, s1, b): Identical to the previous experiment except for the following difference.

3. After successfully completing the rewinding proceed as follows:
(a) For each b(i) ∈ Bits, compute b̂(i) = b(i) ⊕ d(i).

(b) Let b be a bit that appears among the b̂(i) more than t/2 times
(c) Forward b to FOT obtaining sb ∈ {0, 1}λ, sample s′1−b←$ {0, 1}λ and simulate the final

message ((δ
(i)
S )i∈B, (γ

(i)
0 , γ

(i)
1 )i∈Alive) as the honest sender would do.

14 Note that the hybrids further depend on the malicious receiver R∗ and on the OT protocol Π, but we omit
those to simplify notation.
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Since the final hybrid is identically distributed to the ideal world with the above defined simulator
Sim, it remains to show that the above hybrids are all computationally indistinguishable.

Lemma 5. {Hyb0(λ, s0, s1, b)}
s
≈ {Hyb1(λ, s0, s1, b)}.

Proof. We consider two events:

– Event Bad1: The event becomes true whenever R∗ sends good defenses in the second round of
the main thread, but the size of Bad exceeds or equals m/9.

– Event Bad2: The event becomes true whenever |Bits| + m/9 < |Alive| after poly(λ,m) rewind
attempts.

Note that both of these events will cause ctr ≥ 2λ causing the simulator to abort in Hyb1. This
leads to Hyb0 and Hyb1 to be distinguishable and thus by a standard argument it suffices to show
that both Bad1 and Bad2 happen with negligible probability.

For Bad1, it follows from Lemma 3, that |Bad| < m/9. Thus Pr[Bad1] ≤ negl(λ).
The event Bad2 is equivalent to saying that after sampling poly(λ,m) times a random subset of

[m] of size m/3, we fail to collect |Alive| −m/9 good defenses. As we showed in Lemma 4, the latter
only happens with negligible probability and thus Pr[Bad2] ≤ negl(λ).

Lemma 6. {Hyb1(λ, s0, s1, b)}
c
≈ {Hyb2(λ, s0, s1, b)}.

Proof. The proof proceeds by a hybrid argument. For an index j ∈ [m], consider the hybrid experiment
Hyb1,j(λ, s0, s1, b) in which, for all values b(i) ∈ Bits corresponding to a session such that i ≤ j, the

ciphertext γ
(i)

1−b(i)
is computed using key κ

(i)

1−b(i)
, whereas for all values b(i) ∈ Bits corresponding to a

session such that i > j, we use κ̂
(i)

1−b(i)
. Clearly, Hyb1,0(λ, s0, s1, b) is equivalent to Hyb2(λ, s0, s1, b)

and Hyb1,m(λ, s0, s1, b) is equivalent to Hyb1(λ, s0, s1, b). Since m = poly(λ), by the hybrid argument
it suffices to prove that each pair of adjacent hybrids are indistinguishable.

Consider the event Good which becomes true when both of the following conditions are met: (i)
the set B chosen by R∗ in the main thread is such that j ̸∈ A∪B (i.e., the j-th session is not selected by
the malicious receiver or the simulator for cut-and-choose); (ii) The bit b(j) observed in the rewinding
corresponding to the j-th session is such that b(j) ∈ Bits. We note that whenever the event Good
does not happen, the two hybrids Hyb1,j−1(λ, s0, s1, b) and Hyb1,j(λ, s0, s1, b) are identical. This

is because the two experiments only differ in the way the ciphertext γ
(j)

1−b(j)
is computed. However,

when j ∈ B ∪ A or b(j) ̸∈ Bits, the j-th session is either: (i) not alive, or (ii) the receiver did not

provide a good defense for this session. The latter implies that either: (i) γ
(j)

1−b(j)
is not part of the

view of the receiver, or (ii) γ
(j)

1−b(j)
is computed exactly in the same way in the two experiments. This

means that for all j ∈ [m], all PPT distinguishers D∗, all non-uniform PPT malicious receivers R∗,
all s0, s1 ∈ {0, 1}λ, all b ∈ {0, 1}, and all z ∈ {0, 1}∗:∣∣∣Pr [D∗(Hyb1,j−1(λ, s0, s1, b)) = 1

]
− Pr

[
D∗(Hyb1,j(λ, s0, s1, b)) = 1

] ∣∣∣
=

∣∣∣Pr [D∗(Hyb1,j−1(λ, s0, s1, b)) = 1 ∧Good
]

− Pr
[
D∗(Hyb1,j(λ, s0, s1, b)) = 1 ∧Good

] ∣∣∣.
By contradiction, assume that there exists an index j ∈ [m], a pair of inputs s0, s1 ∈ {0, 1}λ, a

bit b ∈ {0, 1}, an auxiliary input z ∈ {0, 1}∗, a non-uniform PPT malicious receiver R∗, and a PPT
distinguisher D∗ such that the above distinguishing advantage is at least 1/poly(λ). We construct a
malicious receiver R′ and a distinguisher D′ breaking privacy for random inputs against defensible
receivers of the 2-round OT protocol Π ′. A description of R′ follows. (The distinguisher D′ simply
runs D∗ on the output generated by R′.)
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1. Run R∗, obtaining messages (µ
(i)
R )i∈[m]. Forward µ

(j)
R to the challenger, receiving a message µ∗

S as
a response.

2. Forward toR∗ the messages ((µ
(i)
S )i∈[m]\A,A) that are generated exactly as inHyb1,j−1(λ, s0, s1, b)

with the only exception that µ
(j)
S is replaced by µ∗

S from the challenger. If j ∈ A abort; else proceed
to the next step.

3. Upon receiving ((δ
(i)
R )i∈A, (d

(i))i∈Alive,B) from R∗, if j ∈ B abort. Else, continue the simulation as
in Hyb1,j−1(λ, s0, s1, b) which in particular yields the set of bits Bits for all alive sessions in the
main thread for which R∗ has sent a good defense.

4. If b(j) ̸∈ Bits (i.e., the receiver did not send a good defense for the j-th session), abort. Else,

forward the defense δ
(j)
R = (b(j), ρ

(j)
R ) to the challenger obtaining the challenge κ∗ and complete

the simulation of the main thread as described in Hyb1,j−1(λ, s0, s1, b), except that the key κ∗ is

used to generate the ciphertext γ
(j)

1−b(j)
= κ∗ ⊕ s

(j)

1−b̂(j)
.

5. Output whatever R∗ outputs.

Clearly,R′ is efficient. Moreover, the view ofR∗ in the reduction is identical to that of bothHyb1,j−1(λ, s0, s1, b)
and Hyb1,j(λ, s0, s1, b) up to the resumption of the main thread (at the end of the rewinding phase).
This is because the distribution of µ∗

S is identical to that in a run of Π ′ with the honest sender

responding to message µ
(j)
R using as input two random keys κ

(j)
0 , κ

(j)
1 ∈ {0, 1}λ.

As for the simulation of the final round in the main thread, we can distinguish two cases:

1. In case the j-th session is not alive, the reduction aborts. However, since we are conditioning on
the event Good, this only happens with probability 2/3 (as j ̸∈ B).

2. In case the j-th session is alive, the reduction aborts if b(j) ̸∈ Bits. However, by definition of
Good this does not happen. Else, in case the j-th session is alive and b(j) ∈ Bits, it is easy to see

that depending on κ∗ = κ
(j)

1−b(j)
or κ∗ = κ̂

(j)

1−b(j)
the view of R∗ is either identical to the view in

Hyb1,j−1(λ, s0, s1, b) or to the view in Hyb1,j(λ, s0, s1, b).

This finishes the proof.

Lemma 7. {Hyb2(λ, s0, s1, b)}
c
≈ {Hyb3(λ, s0, s1, b)}.

Proof. Note that the two experiments only differ in the way the message ((δ
(i)
S )i∈B, (γ

(i)
0 , γ

(i)
1 )i∈Alive)

in the final round of the main thread is computed. We can consider the following cases:

1. Both 0 and 1 appear more than t/2 times in among the b̂(i).
2. Bit b appears greater than t/2 times and 1− b appears less than t/2 times among the b̂(i).

We will show that in Case 1, when 0 and 1 appear more than t/2 times, a malicious receiver cannot
reconstruct either string s0 or s1. Thus the simulation is indistinguishable from the real world.

Assume the number of 0s is t/2 + k0 and the number of 1s is t/2 + k1. Let us assume the worst
case, and therefore the adversary learns the both shares for the other sessions. Thus for n − (t/2 +
k0)− (t/2 + k1) sessions the adversary is able to learn both shares of s0 and s1.

Thus the total number of shares for s0 is n−(t/2+k0)−(t/2+k1)+(t/2+k0) which is n− t/2−k1
and the number shares for s1 is n− (t/2 + k0)− (t/2 + k1) + (t/2 + k1) which is n− t/2− k0.

Note that t = 2n/3 and therefore the adversary will have received only 2n/3−k1 shares for s0 and
2n/3− k0 shares for s1. Since t = 2n/3, the adversary does not have enough shares to learn either s0
or s1/

Now consider Case 2 where bit b appears greater than t/2 times and 1 − b appears less than t/2

times among the b̂(i). Let number of shares for b be t/2 + kb and number of shares for 1 − b be
k1−b ∈ [1, t/2].

This implies the number of indices for which the adversary can learn both shares are n−(t/2+kb+
k1−b). Thus the total number of shares of sb received by the adversary is n−(t/2+kb+k1−b)+t/2+kb =
n − k1−b and the number of shares for s1−b the adversary can learn os n − (t/2 + kb + k1−b) + k1−b

which is n− t/2−kb which is 2n/3−kb. Thus the adversary does not have enough shares to recombine
s1−b and since k1−b < n/3, the adversary can receive enough shares of sb to reconstruct correctly.



20 Varun Madathil, Chris Orsini, Alessandra Scafuro, and Daniele Venturi

4.3 Simulator for Malicious Senders

The simulator Sim, with oracle access to S∗, proceeds as follows in Figure 4.

Main thread:

1. For each i ∈ [m], pick b(i) ←$ {0, 1} and ρ
(i)
R ←$ {0, 1}∗, compute µ

(i)
R = OTR(b(i); ρ

(i)
R ) and send

(µ
(i)
R )i∈[m] to S∗.

2. Upon receiving ((µ
(i)
S )i∈[m]\A,A) from S∗:

(a) For each i ∈ A, let δ(i)R = (b(i), ρ
(i)
R ).

(b) Sample β1, . . . , βtS ←$ [m] \ A and let B = {β1, . . . , βtS}.
(c) Let Alive = [m] \ (A∪ B). For each i ∈ Alive, compute κ

(i)

b(i)
= OTD(b(i), µ

(i)
S ; ρ

(i)
R ) and sample

d(i) ←$ {0, 1}.
(d) Send ((δ

(i)
R )i∈A, (d(i))i∈Alive,B) to S∗.

3. Upon receiving ((δ
(i)
S )i∈B, (γ

(i)
0 , γ

(i)
1 )i∈Alive) from S∗, check that all defenses δ

(i)
S = (κ

(i)
0 , κ

(i)
1 , ρ

(i)
S )

are good. If not, simulate the receiver aborting. Else initialize Keys = ∅ and ctr = 0.

Rewind thread:

(a) Sample randomly B′ = {β1, . . . , βtS} as in Item 2b.
(b) Let Alive′ = [m] \ (A ∪ B′). For i ∈ Alive′, sample d(i) ←$ {0, 1} using fresh random-

ness, send these values along with B′ and (δ
(i)
R )i∈A to S∗, and receive ((δ

(i)
S )i∈B),

(γ
(i)
0 , γ

(i)
1 )i∈Alive′) in response.

(c) For every defense δ
(i)
S = (κ

(i)
0 , κ

(i)
1 , ρ

(i)
S ) corresponding to an index i ∈ Alive (from the

main thread) that was not observed in a previous rewind: If the defense is good, adda

the keys (κ
(i)
0 , κ

(i)
1 ) to Keys.

(d) Increment ctr = ctr + 1 and if ctr > 2λ abort.
(e) If |Keys| < |Alive| −m/9 go to Item 3a; else proceed to the next step.

a In case either of the two keys is not a λ-bit string, we assume the defense is bad.

4. For each pair of keys (κ
(i)
0 , κ

(i)
1 ) in Keys, compute s

(i)
0 = γ

(i)

0⊕d(i)
⊕κ(i)

0⊕d(i)
and s

(i)
1 = γ

(i)

1⊕d(i)
⊕κ(i)

1⊕d(i)

using the adjusting bits d(i) sampled in the main thread. Finally, use these shares to reconstruct
s0 and s1, forward (s0, s1) to FOT and output whatever S∗ outputs.

Fig. 4. Simulator for malicious sender

Lemma 8. The above simulator Sim runs in expected time that is polynomial in m and λ.

Proof. Observe that all the steps performed before and after rewinding takes place run in strict
polynomial time. Hence, it suffices to bound the number of rewind attempts. An analysis similar to
that in the proof of Lemma 4 shows that the number of rewind iterations corresponds to repeatedly
sampling tS = m/3 indices in [m] \ A (which has size 2m/3) until the entire set Alive is covered.
Since the receiver does not abort with probability p in each iteration, the expected number of rewind
attempts is O(m logm)/p which implies that the expected running time for the simulator is poly(λ,m).

Proof by hybrids. We next prove by a sequence of hybrids that the distribution of the output of S∗

in the real world is computationally close to that in the ideal world with the above defined simulator.
The hybrids are described below:

Hybrid Hyb0(λ, s0, s1, b): This is identical to RealΠ,S∗(z)(λ, s0, s1, b).
Hybrid Hyb1(λ, s0, s1, b): Identical to the previous experiment, except that we now perform the

rewinding as done by the simulator before concluding the protocol. More precisely:
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1. As in the real world, compute (µ
(i)
R )i∈[m] and forward them to S∗.

2. Upon receiving ((µ
(i)
S )i∈[m]\A,A) from S∗:

(a) For each i ∈ A, let δ(i)R = (b(i), ρ
(i)
R ).

(b) Sample β1, . . . , βtS ←$ [m] \ A and let B = {β1, . . . , βtS}.
(c) Let Alive = [m] \ (A ∪ B). For each i ∈ Alive, compute κ

(i)

b(i)
= OTD(b(i), µ

(i)
S ; ρ

(i)
R ) and

compute d(i) = b(i) ⊕ b.

(d) Send ((δ
(i)
R )i∈A, (d

(i))i∈Alive,B) to S∗.

3. Upon receiving ((δ
(i)
S )i∈B, (γ

(i)
0 , γ

(i)
1 )i∈Alive) from S∗, check that all defenses δ

(i)
S = (κ

(i)
0 , κ

(i)
1 , ρ

(i)
S )

are good. If not, the receiver aborts. Else:
(a) Initialize Keys = ∅ and ctr = 0
(b) Rewind the execution and sample randomly B′ = {β1, . . . , βtS} .
(c) Let Alive′ = [m]\(A∪B′). For i ∈ Alive′, sample d(i)←$ {0, 1} using fresh randomness, send

these messages along with B′ and (δ
(i)
R )i∈A to S∗ and receive ((δ

(i)
S )i∈B), (γ

(i)
0 , γ

(i)
1 )i∈Alive′

in response.

(d) For every defense δ
(i)
R = (κ

(i)
0 , κ

(i)
1 , ρ

(i)
S ) corresponding to an index i ∈ Alive (from the main

thread) that was not observed in a previous rewind: If the defense is good, add the keys

(κ
(i)
0 , κ

(i)
1 ) to Keys.

(e) Increment ctr and if ctr = 2λ, then abort.
(f) If |Keys| < |Alive| −m/9 repeat the above steps using a fresh B′ else proceed to the next

step.
4. Complete the execution of the main thread by computing s

(i)
b = γ

(i)

b(i)
⊕ κ

(i)

b(i)
for i ∈ Alive, and

use these shares to reconstruct and output sb as in the real world.
Hybrid Hyb2(λ, s0, s1, b): Identical to the previous experiment except for the following differences:

2(c). Let Alive = [m] \ (A ∪ B). For each i ∈ Alive, compute κ
(i)

b(i)
= OTD(b(i), µ

(i)
S ; ρ

(i)
R ) and sample

d(i)←$ {0, 1}.
4. Compute s

(i)
b = γ

(i)

b⊕d(i) ⊕ κ
(i)

b⊕d(i) and use these shares in order to reconstruct sb.

Since the final hybrid is identically distributed to the ideal world with the above defined simulator
Sim, it remains to show that the above hybrids are all computationally indistinguishable.

Lemma 9. {Hyb0(λ, s0, s1, b)}
s
≈ {Hyb1(λ, s0, s1, b)}.

Proof. We consider two events:

– Event Bad3: The event becomes true whenever S∗ sends good defenses in the third round of the
main thread, but the size of Bad exceeds m/9 in Item 3d.

– Event Bad4: The event becomes true whenever |Keys| < |Alive| − m/9 after poly(λ,m) rewind
attempts.

Note that the two hybrids are identically distributed conditioning on the above events not happening,
and thus by a standard argument it suffices to show that both Bad3 and Bad4 happen with negligible
probability.

Let us start with event Bad4. Note that this event is equivalent to saying that after sampling
poly(λ,m) times a random subset of [m] \A of size m/3, we fail to cover the set Alive of alive sessions
in the main thread (which is of size m/3). As we showed in Lemma 8, the latter only happens with
negligible probability and thus Pr[Bad4] ≤ negl(λ).

As for event Bad3, we can do an analysis similar to that in the proof of Lemma 5. In particular,
the only difference is that the probability of passing the cut-and-choose with j bad defenses is now(
2m/3−j
m/3

)
/
(
2m/3
m/3

)
. Hence:

Pr[Bad3] =

m/3∑
i=m/9+1

(
2m/3−i
m/3

)(
2m/3
m/3

) =
2k

3k + 1

k∏
i=1

2k + i

5k + i
≈ 1

20.095·m+0.453
.
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By our choice of m = O(λ), this finishes the proof.

Lemma 10. {Hyb1(λ, s0, s1, b)}
c
≈ {Hyb2(λ, s0, s1, b)}.

Proof. We first argue that the computation of s
(i)
b , for each i ∈ Alive, is equivalent in the two hy-

brids. Recall that in Hyb1(λ, s0, s1, b) we have d(i) = b ⊕ b(i), and thus the receiver recovers the

shares by letting s
(i)
b = γ

(i)

b(i)
⊕ κ

(i)

b(i)
= γ

(i)

b⊕d(i) ⊕ κ
(i)

b⊕d(i) . This is equivalent to how s
(i)
b is recovered in

Hyb2(λ, s0, s1, b), which allows to choose the values d(i) randomly and independently of b(i). Recall
that we implicitly assume the secret sharing scheme satisfies the property that reconstruction works
using values that are possibly outside the range of Share (see discussion after Definition 6), which
implies that the above equation is well defined even if S∗ uses bogus keys as input of the underlying
OT protocol.

The rest of the proof proceeds by a hybrid argument. For an index j ∈ [m], consider the hybrid

experiment Hyb1,j(λ, s0, s1, b) in which for all pairs (κ
(i)
0 , κ

(i)
1 ) ∈ Keys corresponding to a session such

that i ≤ j, we set d(i) = b(i)⊕b, whereas for all pairs (κ
(i)
0 , κ

(i)
1 ) ∈ Keys corresponding to a session such

that i > j, we set d(i)←$ {0, 1}. Clearly, Hyb1,0(λ, s0, s1, b) is equivalent to Hyb2(λ, s0, s1, b) and
Hyb1,m(λ, s0, s1, b) is equivalent to Hyb1(λ, s0, s1, b). Since m = poly(λ), by the hybrid argument it
suffices to prove that each pair of adjacent hybrids are indistinguishable.

Consider the event Good which becomes true when the set A chosen by S∗ in the main thread
is such that j ̸∈ A (i.e., the j-th session is not selected by the malicious sender for cut-and-choose).
We note that whenever the event Good does not happen, the two hybrids Hyb1,j−1(λ, s0, s1, b) and
Hyb1,j(λ, s0, s1, b) are identical. This is because the two experiments only differ in the way the bit

d(j) is computed. However, when j ∈ A, the j-th session is not alive and thus d(j) is not part of the
view of the sender. This means that for all j ∈ [m], all PPT distinguishers D∗, all non-uniform PPT
malicious senders S∗, all s0, s1 ∈ {0, 1}λ, all b ∈ {0, 1}, and all z ∈ {0, 1}∗:∣∣∣Pr [D∗(Hyb1,j−1(λ, s0, s1, b)) = 1

]
− Pr

[
D∗(Hyb1,j(λ, s0, s1, b)) = 1

] ∣∣∣
=

∣∣∣Pr [D∗(Hyb1,j−1(λ, s0, s1, b)) = 1 ∧Good
]

− Pr
[
D∗(Hyb1,j(λ, s0, s1, b)) = 1 ∧Good

] ∣∣∣.
By contradiction, assume that there exists an index j ∈ [m], a pair of inputs s0, s1 ∈ {0, 1}λ, a

bit b ∈ {0, 1}, an auxiliary input z ∈ {0, 1}∗, a non-uniform PPT malicious sender S∗, and a PPT
distinguisher D∗ such that the above distinguishing advantage is at least 1/poly(λ). We construct
a malicious sender S′ and a distinguisher D′ breaking privacy for random inputs against malicious
senders of the 2-round OT protocol Π ′. A description of S′ follows. (The distinguisher D′ simply runs
D∗ on the output generated by S′.)

1. Upon receiving a message µ∗
R from the challenger, run S∗ upon input messages (µ

(i)
R )i∈[m] that

are generated exactly as in Hyb1,j−1(λ, s0, s1, b) with the only exception that µ
(j)
R is replaced by

µ∗
R from the challenger.

2. Upon receiving ((µ
(i)
S )i∈[m]\A,A) from S∗, if j ∈ A abort. Else, forward µ

(j)
S to the challenger

obtaining the challenge b∗.

3. Generate the messages ((δ
(i)
R )i∈A, (d

(i))i∈Alive,B) exactly as in Hyb1,j−1(λ, s0, s1, b) with the only

exception that the value d(j) is set to d(j) = b⊕ b∗. If j ∈ B abort; else proceed to the next step.

4. Upon receiving ((δ
(i)
S )i∈B, (γ

(i)
0 , γ

(i)
1 )i∈Alive) from S∗, continue the simulation as inHyb1,j−1(λ, s0, s1, b).

5. Output whatever S∗ outputs.

Clearly, S′ is efficient. Moreover, the view of S∗ in the reduction up to the end of the first round is
identical to that of both Hyb1,j−1(λ, s0, s1, b) and Hyb1,j(λ, s0, s1, b). This is because the distribution
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of µ∗
R is identical to that in a run of Π ′ with the honest receiver using as input a random bit b(j) ∈

{0, 1}.
As for the simulation of the third round in the main thread, we can distinguish two cases:

1. In case the j-th session is not alive, the reduction aborts. However, since we are conditioning on
the event Good, this only happens with probability 2/3 (as j ̸∈ A).

2. In case the j-th session is alive,15 it is easy to see that depending on b∗ = b(j) or b∗ = b′←$ {0, 1}
it holds that either d(j) = b ⊕ b(j) or d(j) is uniformly random, and thus the view of S∗ is either
identical to the view in Hyb1,j−1(λ, s0, s1, b) or to the view in Hyb1,j(λ, s0, s1, b).

This finishes the proof.

5 Conclusions

We have shown a compiler for turning any 2-round privacy-only (i.e., game-based) OT protocol against
malicious adversaries into a round-optimal simulatable OT protocol against malicious adversaries.
Our transform is black-box (in that it only uses the underlying 2-round OT protocol as an oracle),
information-theoretic (in that it does not rely on cryptographic assumptions), and in the plain model
(in that it does not require any form of trusted setup). In fact, our compiler works even assuming the
underlying 2-round OT protocol satisfies privacy against semi-honest senders and defensible receivers.

It remains an open problem to find a similar transform (with the same properties) starting with
any 2-round OT protocol satisfying only privacy against semi-honest (rather than defensible) receivers.
Also, it would be interesting to find simple constructions of 2-round OT protocols in the plain model
that are private against defensible receivers, and that rely on hardness assumptions from which we
do not know how to obtain 2-round OT protocols that are private against malicious receivers (e.g.,
CDH, LPN, and Subset Sum).
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BD18. Zvika Brakerski and Nico Döttling. Two-message statistically sender-private OT from LWE. In
Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of LNCS, pages
370–390. Springer, Heidelberg, November 2018.

BL18. Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round oblivi-
ous transfer via garbled interactive circuits. In Jesper Buus Nielsen and Vincent Rijmen, edi-
tors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 500–532. Springer, Heidelberg,
April / May 2018.

BM90. Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and applications. In Gilles
Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 547–557. Springer, Heidelberg, August
1990.

BPRS17. Megha Byali, Arpita Patra, Divya Ravi, and Pratik Sarkar. Fast and universally-composable
oblivious transfer and commitment scheme with adaptive security. Cryptology ePrint Archive,
Report 2017/1165, 2017. https://eprint.iacr.org/2017/1165.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and
Victoria Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, November 1993.

15 Crucially, in this proof we cannot distinguish the two cases in which the corresponding defense δ
(j)
S is either

good or bad. Intuitively, this is the reason why we need privacy against malicious (rather than defensible)
senders: an attacker not providing a good defense for the j-th session could tell apart d(j) from random.

https://eprint.iacr.org/2017/1165


24 Varun Madathil, Chris Orsini, Alessandra Scafuro, and Daniele Venturi

CCG+21. Arka Rai Choudhuri, Michele Ciampi, Vipul Goyal, Abhishek Jain, and Rafail Ostrovsky. Oblivious
transfer from trapdoor permutations in minimal rounds. In Theory of Cryptography Conference,
pages 518–549. Springer, 2021.

CDMW09. Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Simple, black-box con-
structions of adaptively secure protocols. In Omer Reingold, editor, TCC 2009, volume 5444 of
LNCS, pages 387–402. Springer, Heidelberg, March 2009.

CJS14. Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with a global random
oracle. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014, pages 597–608.
ACM Press, November 2014.

CKWZ13. Seung Geol Choi, Jonathan Katz, Hoeteck Wee, and Hong-Sheng Zhou. Efficient, adaptively
secure, and composable oblivious transfer with a single, global CRS. In Kaoru Kurosawa and
Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 73–88. Springer, Heidelberg,
February / March 2013.
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A Efficiency Considerations

In this section, we compare the efficiency of our protocol and the compiler by Friolo, Masny and
Venturi [FMV19] in terms of communication complexity.

A.1 Communication Complexity of Our Compiler

We start by evaluating the communication complexity of our protocol from Fig. 2, in terms of the
number of repetitions m of the underlying 2-round OT protocol and of the security parameter λ. For
simplicity, we will make the following assumptions: (i) the challenge indices αi, βi used for cut and

choose can be represented as an m-bit string; (ii) the defense δ
(i)
R = (b(i), ρ

(i)
R ) used by the receiver is

of size |δR| = λ+ 1; (iii) the defense δ
(i)
S = (κ

(i)
0 , κ

(i)
1 , ρ

(i)
S ) used by the sender is of size |δS | = 3λ; (iv)

the messages (γ
(i)
0 , γ

(i)
1 ) sent by the sender in the last round are of size |γ(i)

0 | = |γ
(i)
1 | = λ.

Hence, we can evaluate the communication complexity of our protocol as follows (using the range
of parameters suggested in Theorem 2):

1. In the first round, the receiver sends m messages for the underlying 2-round OT protocol, resulting
in a total of m|µR| bits.

2. In the second round, the sender forwards the indices for cut-and-choose as well as the response

messages for the underlying 2-round OT protocol, resulting in a total of m+ 2m|µS |
3 .

3. In the third round, the receiver sends his defenses (consisting of m
3 (λ + 1) bits) along with the

indices for cut and choose and the adjusting bits, resulting in a total of 4m
3 + m

3 λ bits.
4. In the final round, the sender sends his defenses as well as the ciphertexts for each of the alive

sessions, resulting in a total of 2m
3 λ+mλ = 5m

3 λ bits.

Summing up, the total communication complexity (in bits) is:

m|µR|+m+
2m|µS |

3
+

4m

3
+

m

3
λ+

5m

3
λ = m|µR|+

2m|µS |
3

+
7m

3
+ 2mλ.

Finally, combining the above with the expression for m in Lemma 5, the communication complexity

can be simplified to (|µR|+ 2|µS |
3 + 7

3 + 2λ) ·O(λ), which is O(|µR|λ+ |µS |λ+ λ2).

A.2 Comparison with Friolo et al.

Let us start by briefly recalling how the compiler by Friolo, Masny and Venturi [FMV19] works. Their
transform is based upon two main ingredients:

– A commit-and-open (C&O) protocol, introduced implicitly in [ORS15]. Informally, a C&O proto-
col is a 3-round public-coin protocol in which at the end of the first round a malicious prover is
committed to at least one of two messages σ0, σ1. In the last round, the prover opens the commit-
ment by revealing σ0, σ1 without leaking to a malicious verifier which branch (i.e., left or right)
corresponds to the committed message.

– A 2-round strongly-uniform semi-honest OT (SUSH-OT) protocol. Informally, such a protocol
guarantees simulatability against semi-honest receivers and strong uniformity against malicious
senders, where the latter means that the distribution of the receiver’s message is computationally
close to uniform even in case the sender is malicious.

– A cut-and-choose technique (used also in [ORS15]) to compile a 4-round OT protocol with receiver-
sided simulatability (i.e., where simulatability holds only w.r.t. malicious receivers) to a 4-round
OT protocol with full simulatability (i.e., where simulatability holds both w.r.t. malicious senders
and receivers).

We are now ready to describe how the compiler from [FMV19] enforces honest behavior of the
parties in order to get a simulatable OT protocol.
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1. In the first round, the receiver picks a random string σ1−b (where b is the choice bit) and uses the
C&O protocol in order to commit to this string using branch 1− b.

2. In the second round, the sender forwards the random challenge for the C&O protocol along with
two random strings ρ0, ρ1.

3. In the third round, the receiver executes the underlying OT protocol with choice bit fixed to 0,

obtaining a message µ
(b)
R that is used in order to define the message σb = µ

(b)
R − ρb required to

complete the execution of the C&O protocol in the non-committing branch b.
4. In the final round, the sender checks that the opening is correct. If so, it picks random r0, r1

and runs the sender of the underlying 2-round OT protocol twice: one with input strings (s0, r0)

and receiver’s message µ
(0)
R = σ0 + ρ0, and one with input strings (s1, r1) and receiver’s message

µ
(1)
R = σ1 + ρ1.

5. Upon receiving the sender’s messages (µ
(0)
S , µ

(1)
S ), the receiver learns sb by running the receiver of

the underlying 2-round OT protocol upon input µ
(b)
S .

Since the distribution of σ1−b is independent from ρ1−b, by strong uniformity, one can replace the

string ρ1−b + σ1−b with the message µ
(1−b)
R resulting from an honest execution of the underlying 2-

round OT protocol. Moreover, the security guarantee of the C&O protocol against malicious provers
ensures that a malicious receiver must be committed to message σ1−b already at the end of the first
round, so that the receiver’s input can be extracted by rewinding the execution at the beginning of the
second round. Finally, the security guarantee of the C&O protocol against malicious verifiers ensures
that the above protocol satisfies privacy against malicious receivers, which is sufficient to ultimately
get simulatable OT with malicious security by running 2λ parallel executions and cut-and-choose
techniques [ORS15].

Using the concrete C&O protocol by Ostrovsky et al. [ORS15] based on linear error detecting
codes over finite fields of size q = O(λ) and statistically binding commitments (see also [FMV19,
Appendix A.2]), we obtain the following estimates on the communication complexity of the above
protocol (without taking cut-and-choose into account):

1. (R → S) Note that we can set |σ1−b| = |µR|. The commitment to σ1−b is computed by sampling
2 matrices Mb,i←$Z2×q

q for each i = 1, . . . , |µR|. Using q = O(λ), we have that each matrix is
of size O(λ2). Thus, a linear map Ψ : Zq

q → Zq−1
q is applied to specific rows of both matrices

adding O(λ2) bits. Finally, one commits to the two matrices by committing to each coordinate
in the matrix, which yields a total of O(λ3) bits if we assume that each commitment is a λ-bit
string. Hence, the size of the first message is (2O(λ3) + 2O(λ2))|µR| bits which can be simplified
to O(|µR|λ3).

2. (S → R) A challenge for the C& O protocol consists of two random strings of length |µR|.
3. (R → S) Opening the commitments costs O(2|µR|) + O(|µR|λ) bits, which we can simplify to

O(|µR|λ).
4. (S → R) The sender sends two OT messages of the underlying OT protocol, which costs O(|µS |)

bits.

In total we have O(|µR|λ3+|µS |) bits. The cut-and-choose technique involves running 2λ executions of
the above mentioned protocol, thus contributing a total of O(|µR|λ4+|µS |λ) bits to the communication
complexity.

A.3 Concrete Instantiation based on LWE

For the sake of concreteness, we finally instantiate the above protocols under the LWE assumption.
Recall that the LWE problem is parameterized by integers q, λ,m, and by a distribution χ over
Zq, where λ is the security parameter, q is a modulus which is polynomially larger than λ, and
m = Θ(n log q) [Reg06].

Since we have already computed the communication complexity in terms of λ, |µR| and |µS |, we
only need to estimate the size of the messages in the underlying 2-round OT protocols. In particular:
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– To instantiate our compiler, we take the 2-round privacy-only OT protocol by Brakerski and
Döttling [BD18], which requires to set q = Õ(λ3) and m = 3λ log(λ). The protocol also uses
seeded strong average-case extractors with seeds of size d which we assume to be λ bits.

The receiver sends µR =
[
A1||A2

]T
, where A1, A2 ∈ Zn×m

q . Using the parameters from above,

this yields Õ(λ2) bits. The sender replies with a pair of strings (c0, c1), and one can verify that
|c0| = |c1| = Õ(λ) Hence, we have obtained |µR| = Õ(λ2) and |µS | = Õ(λ). Plugging these values
in the analysis of Appendix A.1, we obtain a communication complexity of Õ(λ3).

– As shown in [FMV19], SUSH-OT can be obtained using PKE schemes with special properties as
follows: (1) The receiver sends two public keys (generated in different ways depending on the value
of the choice bit); (2) The sender sends two ciphertexts that encrypt random λ-bit pads κ0, κ1

which are used to hide the actual inputs as in s0 ⊕ κ0 and s1 ⊕ κ1.
Assuming hardness of LWE, we can instantiate the PKE scheme with the one by Peikert et
al. [PVW08]. Here, a public key is of size Õ(λ2), whereas the ciphertexts have size that is O(1)
greater than the message size. Thus, we have obtained |µR| = Õ(λ2) and |µS | = Õ(λ). Plugging
these values in the analysis of Appendix A.2 we obtain a communication complexity of Õ(λ6).
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Sender(s0, s1) Receiver(b)

Round 1

For i ∈ [m] :

b(i) ←$ {0, 1}; ρ(i)R ←$ {0, 1}∗

µ
(i)
R = OTR(b(i); ρ

(i)
R )

(µ
(i)
R )i∈[m]

Round 2

α1, . . . , αtR ←$ [m]

A = (α1, . . . , αtR)

For i ∈ [m] \ A :

κ
(i)
0 , κ

(i)
1 ←$ {0, 1}λ; ρ(i)S ←$ {0, 1}∗

µ
(i)
S = OTS(κ

(i)
0 , κ

(i)
1 , µ

(i)
R ; ρ

(i)
S )

A, (µ(i)
S )i∈[m]\A

Round 3

For i ∈ A : δ
(i)
R = (b(i), ρ

(i)
R )

β1, . . . , βtS ←$ [m] \ A
B = (β1, . . . , βtS )

Alive = [m] \ (A ∪ B)
For i ∈ Alive :

κ
(i)

b(i)
= OTD(b(i), µ

(i)
S ; ρ

(i)
R )

d(i) = b(i) ⊕ b

(δ
(i)
R )i∈A,B, (d(i))i∈Alive

Round 4

Check (δ
(i)
R )i∈A are good

For i ∈ B : δ
(i)
S = (κ

(i)
0 , κ

(i)
1 , ρ

(i)
S )

Alive = [m] \ (A ∪ B)

(s
(i)
0 )i∈Alive ←$Share(s0)

(s
(i)
1 )i∈Alive ←$Share(s1)

For i ∈ Alive :

γ
(i)

d(i)
= κ

(i)

d(i)
⊕ s

(i)
0

γ
(i)

1⊕d(i)
= κ

(i)

1⊕d(i)
⊕ s

(i)
1

(δ
(i)
S )i∈B, (γ

(i)
0 , γ

(i)
1 )i∈Alive

Check (δ
(i)
S )i∈B are good

For i ∈ Alive

s
(i)
b = γ

(i)

b(i)
⊕ κ

(i)

b(i)

I ←$Alive with |I| = t valid shares

sb = Recon((s
(i)
b )i∈I)

Fig. 5. Pictorial representation of our black-box compiler
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