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Abstract. This note explains how to guarantee the membership of a point in the prime
order subgroup of an elliptic curve (over a finite field) satisfying some moderate conditions.
For this purpose, we apply the Tate pairing on the curve, however it is not required to be
pairing-friendly. Whenever the cofactor is small, the given approach is more efficient than
other known ones, because it needs to compute at most two n-th power residue symbols (with
small n) in the basic field. In particular, we deal with two Legendre symbols for the curve
Bandersnatch proposed by the Ethereum Foundation team. Due to recent improvements
of Euclidean type constant-time algorithms for the Legendre symbol computation, the new
subgroup check is almost free for that curve.
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1 Introduction

As is well known, elliptic curves of prime order are actively used in discrete logarithm
cryptography. However twisted Edwards curves [1] (with a cofactor multiple of 4) equally
became very popular, which is characterized by the inclusion of two of them in the draft
NIST SP 800-186 [2]. Recall that twisted Edwards curves are birationally isomorphic to
Montgomery ones (see, e.g., [3, Section 9.12.1]) and vice versa. By the way, the two curves in
question are called Curve25519 [4] and Ed448-Goldilocks [5]. It is also worth noting twisted
Hessian curves [6] whose the cofactor is a multiple of 3. Nevertheless, as far as we know, they
have not been used in real-world cryptography.

To avoid timing attacks complete addition formulas are often utilized, because they are
correctly defined for any pair of rational points on an elliptic curve (defined over a finite
field). Such formulas exist even for curves of prime order in the Weierstrass form, but they
are quite inefficient according to [7], [8]. In turn, the twisted Edwards form enjoys the fastest
complete addition formulas among all known forms of elliptic curves.

To be protected against fault attacks from [9] [10] in any elliptic cryptography protocol,
when receiving a point from a communication channel, it is necessary to make sure that it
belongs to the appropriate elliptic curve. Fortunately, this can be easily done by substituting
the coordinates of the point in the curve equation. However in the presence of a non-trivial
cofactor even more work needs to be done. The seminal article [11] discusses subgroup security
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for the multiplicative group of a finite field, although its arguments are also valid in the elliptic
curve setting.

To thwart the subgroup attack it is often sufficient to just multiply an obtained point by
the cofactor. Nevertheless, in a series of complicated protocols it is required to check whether
a point really belongs to the subgroup of prime order. For example, as it turned out [12],
multiplication by the cofactor in the signature scheme used in the Monero cryptocurrency
and a number of others could lead to double-spending if any of the malicious users noticed
this bug. In addition, multiplication by the cofactor forces protocol developers to complicate
their security proofs even if they take place.

An obvious way to test membership in the prime order subgroup is to multiply a point
by the order of that subgroup. Even if the curve enjoys an effectively computable endomor-
phism, which makes it possible to apply the GLV technique or its variations (see, e.g., [3,
Section 11.3.3]), the mentioned test is still laborious. Another way is to determine whether
the endomorphism of multiplication by the cofactor has a non-empty inverse image in the
rational point group (cf. [3, Exercise 11.6.1]). Lemma 1 provides an elegant answer to this
question by means of the Tate pairing [3, Section 26.3]. Of course, this lemma cannot be
regarded as a new result.

Incidentally, another answer generally requires sequential finding roots of several polyno-
mials over the basic field (see details in [13, Section 3], [14, Section 4]). It is well known that
even a square root is at best expressed via exponentiation in the field. And for highly 2-adic
fields one has to be content with the slower Tonelli–Shanks algorithm (represented, e.g., in
[3, Section 2.9]). The latter situation arises for zk-SNARK friendly curves Jubjub [15] and
Bandersnatch [16].

Among solutions to the subgroup attack problem, those called Decaf [17] and Ristretto
[18] (for the cofactors 4 and 8 respectively) deserve special mention. We should be aware that
their essence extends to other cofactors. The ones 4 and 8 are simply the most important in
practice. In particular, there is the actual draft [19] about Decaf and Ristretto applied to the
curves Ed448-Goldilocks and Curve25519 respectively.

Let us stick to the notation of Section 2. In a nutshell, the mentioned solutions find
coset representatives (canonical in some sense) of the quotient group E(Fq)/E(Fq)[e] ' G.
These representatives are not required to lie in the subgroup G, which is a more natural
system of representatives. The Decaf-style approach undoubtedly provides protection, but it
has a number of disadvantages. First, formally speaking, it does not answer the question of
belonging to G. Second, at least for now, there is no general theory generalizing Decaf. There-
fore determining canonical representatives may not be immediate for an arbitrary cofactor.
Third, in our opinion, even the authentic Decaf (not to mention Ristretto) manipulates quite
cumbersome formulas in comparison with the more laconic Tate pairing.

Finally, the sources [20], [21], [22] contain more information on subgroup membership
checking in the case of pairing-friendly curves (see, e.g., [3, Section 26.6]). The author carefully
analysed that for such curves the test of the given work does not surpass the state-of-the-
art tests in performance. Looking ahead, the reason lies in huge cofactors, which occur for
today’s pairing groups (including G1). With the permission of the reader, details are omitted.
Thus despite the fact that the Tate pairing underlies the new test, it is relevant only for non-
pairing-friendly curves, although this property is not utilized anywhere by us.
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2 New subgroup check

Consider an elliptic curve E : y2 = x3 + a2x
2 + a4x+ a6 (with the point O := (0 : 1 : 0)

at infinity) over a finite field Fq of characteristic p > 2. We know [3, Theorem 9.8.1] that
the rational point group E(Fq) ' Z/n0×Z/n1, where n1 | n0. As is customary in discrete
logarithm cryptography, there is a subgroup G ⊂ E(Fq) of large prime order r such that
r || n0, but r - n1 (and hence n1 | e, but r - e, where e := n0/r). In other words, E(Fq) =
G×E(Fq)[e]. So the order N := #E(Fq) = n0n1 and the cofactor of G equals N/r = en1.
Throughout the text, we assume that e | q − 1, but p - N . For the sake of uniformity, put
e0 := e and e1 := n1. Besides, let E(Fq)[e] = 〈P0〉×〈P1〉, where ord(Pi) = ei.

Recall that for any k | q − 1 the reduced Tate pairing [3, Section 26.3.2], [23, Equality
(12)] can be represented in the form

tk : E(Fq)[k]×E(Fq)/kE(Fq)→ µk tk(P,Q) := fk,P (Q)(q−1)/k, (1)

where µk ⊂ F∗q is the group of all k-th roots of unity, P 6= Q 6= O, and fk,P ∈ Fq(E) is a Miller
function satisfying the conditions

div(fk,P ) = k(P )− k(O),
((x

y

)k
·fk,P

)
(O) = 1.

The functions fk,P are recursively constructed, e.g., in [3, Section 26.3.1] by means of Miller’s
algorithm.

Note that the final exponentiation of the pairing tk is nothing but the k-th power residue
symbol

(
α
q

)
k

:= α(q−1)/k when substituting α := fk,P (Q). It is worth saying that we always
can batch the inversion and symbol computation, since(α0/α1

q

)
k

=
(α0α

k−1
1

q

)
k

given αi ∈ F∗q . As said in [24], at least for k ∈ {2, 3, 4, 5, 7, 8, 11} the symbol can be determined
by efficient Euclidean type algorithms. In particular, for k = 2 we deal with the ordinary
Legendre symbol and there are such algorithms executed in constant time by virtue of the
sources [25], [26]. The important cases k ∈ {3, 4, 8} are the subject of study in [27], [28], [29],
and [30]. Finally, if k is not small, then the exponentiation is seemingly the best way to
compute the power residue symbol.

For compactness of notation, we also define the homomorphisms

hi : E(Fq)→ µei hi(Q) := te(Pi, Q) = tei(Pi, Q).

The last identity is from [3, Exercise 26.3.8]. For our purpose it is unnecessary to know the
values hi(Pi), hence we can benefit from the form (1).

Lemma 1. There are the equalities G = eE(Fq) = ker(h0) ∩ ker(h1). In particular, G =
ker(h0) when e1 = 1.

Proof. Given a point Q ∈ G we see that Q = eR for R := (e−1 mod r)Q. The opposite in-
clusion G ⊃ eE(Fq) is even more trivial. Further, according to [3, Theorem 26.3.3] the Tate
pairing is non-degenerate. Consequently, a point Q ∈ E(Fq) in fact belongs to eE(Fq) if and
only if te(P,Q) = 1 for all P ∈ E(Fq)[e] or, equivalently, h0(Q) = h1(Q) = 1. Finally, it is
readily seen that fe,O = f1,O = 1, so for e1 = 1 the homomorphism h1 is trivial.
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Lemma 1 gives rise to simple Algorithm 1 whose proof-of-concept implementation in
Magma is provided in [31].

Algorithm 1: New subgroup membership test

Data: a point Q ∈ E(Fq)
Result: the answer to the question Q ∈ G?
begin

compute the values β0 := h0(Q) and β1 := h1(Q) as described above;
if β0 = β1 = 1 then

return yes
else

return no
end

end

Let’s take a look at basic examples. For the first two of them we need simple facts from
[32, Exercise 1.3.2].

The case e0 = 2, e1 = 1. Without lost of generality, E : y2 = x(x2 + a2x+ a4), where a22 −
4a4, a4 6∈ (F∗q )2. The curves E are so-called double-odd curves thoroughly studied in
[33], [34]. Clearly, P0 = (0, 0) and f2,P0 = x. Lemma 1 states that a point (x, y) ∈ E(Fq)
lies in G if and only if x ∈ (F∗q )2. We obtain the subgroup membership test invented in
[33, Section 1.2].

The case e0 = e1 = 2. In this one (relevant for Bandersnatch), E : y2 = x(x− α1)(x− α2),
where α1, α2 ∈ F∗q , but α1α2 6∈ (F∗q )2. Putting α0 := 0 in addition, we can pick, e.g.,
Pi = (αi, 0). Therefore f2,Pi

= x− αi. Under the chosen parameters, Lemma 1 is exactly
[32, Theorem 1.4.1], because x− α2 ∈ (F∗q )2 automatically whenever x− αi ∈ (F∗q )2 for
i ∈ {0, 1}. By the way, this result is used in [35, Section 3.2] to speed up compression
of SIDH public keys.

The case e0 = 2m, e1 = 1 for any m ∈ N. The value m = 3 is relevant for Jubjub. As
above, let P0 ∈ E(Fq) be a point of order 2m. For 0 6 j 6 m− 1 we also introduce
points Pj = (xj, yj) := [2j]P0 whose ord(Pj) = 2m−j obviously. Be careful, there is a
discrepancy with our previous notation P1. Classical formulas of the double operation
Pj+1 = [2]Pj on E (see, e.g., [3, Section 9.1]) are given as follows (now 0 6 j 6 m− 2):

λj :=
3x2j + 2a2xj + a4

2yj
, xj+1 = λ2j − 2xj − a2, yj+1 = λj(xj − xj+1)− yj.

Moreover, we have [23, Equalities (1), (2), (14)]:

`j := (y − yj)− λj(x− xj), νj := x− xj, µj :=
`j
νj+1

, µm−1 := x− xm−1,

f2j+1,P0
= f 2

2j ,P0
·µj, and hence f2m,P0 =

m−1∏
j=0

µ2m−j−1

j .
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Curve dlog2(q)e e0 e1 ν2(q − 1)

Curve25519 [4] 255 8 2

Ed448-Goldilocks [5] 448 4 1 1

Jubjub [15]
255

8
32

Bandersnatch [16] 2 2

Table 1: Some popular elliptic curves of non-prime order

Table 1 contains a series of elliptic curves utilized in real-world cryptography as well as
some numerical values of interest to us. Among other things, ν2(k) (for any k ∈ N) is the
natural number such that 2ν2(k) || k. As we see, the first two curves are unfortunately not
appropriate for the new subgroup check. They are added to the table just to be honest with
the reader about non-universality of the current work. Incidentally, the last two curves are
over the same field Fq. Besides, in contrast to the other three curves, Bandersnatch is an
incomplete twisted Edwards curve (see details in [36, Section 2]). Nevertheless, at points of
its subgroup G the addition formulas are always defined. So for the mentioned curve the
subgroup membership problem is even more relevant. In turn, the webpage [37] is dedicated
to the given problem for Jubjub.

Acknowledgements. The author is grateful to Gottfried Gerold for a fruitful discussion
on the importance of subgroup membership testing for the curve Bandersnatch.
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