
Probing Security through Input-Output
Separation and Revisited Quasilinear Masking

Dahmun Goudarzi1, Thomas Prest2, Matthieu Rivain3 and Damien
Vergnaud4,5

1 Independent researcher
dahmun.goudarzi@gmail.com

2 PQShield, Oxford, United Kingdom
thomas.prest@pqshield.com

3 CryptoExperts, Paris, France
matthieu.rivain@cryptoexperts.com

4 Sorbonne Université, CNRS, LIP6, Paris, France
5 Institut Universitaire de France, Paris, France

Abstract. The probing security model is widely used to formally prove the security
of masking schemes. Whenever a masked implementation can be proven secure in
this model with a reasonable leakage rate, it is also provably secure in a realistic
leakage model known as the noisy leakage model. This paper introduces a new
framework for the composition of probing-secure circuits. We introduce the security
notion of input-output separation (IOS) for a refresh gadget. From this notion, one
can easily compose gadgets satisfying the classical probing security notion –which
does not ensure composability on its own– to obtain a region probing secure circuit.
Such a circuit is secure against an adversary placing up to t probes in each gadget
composing the circuit, which ensures a tight reduction to the more realistic noisy
leakage model. After introducing the notion and proving our composition theorem,
we compare our approach to the composition approaches obtained with the (Strong)
Non-Interference (S/NI) notions as well as the Probe-Isolating Non-Interference (PINI)
notion. We further show that any uniform SNI gadget achieves the IOS security
notion, while the converse is not true. We further describe a refresh gadget achieving
the IOS property for any linear sharing with a quasilinear complexity Θ(n log n) and
a O(1/ log n) leakage rate (for an n-size sharing). This refresh gadget is a simplified
version of the quasilinear SNI refresh gadget proposed by Battistello, Coron, Prouff,
and Zeitoun (ePrint 2016). As an application of our composition framework, we
revisit the quasilinear-complexity masking scheme of Goudarzi, Joux and Rivain
(Asiacrypt 2018). We improve this scheme by generalizing it to any base field (whereas
the original proposal only applies to field with nth powers of unity) and by taking
advantage of our composition approach. We further patch a flaw in the original
security proof and extend it from the random probing model to the stronger region
probing model. Finally, we present some application of this extended quasilinear
masking scheme to AES and MiMC and compare the obtained performances.
Keywords: Probing Security · Composition · Quasilinear Masking · IOS Notion

1 Introduction
In cryptography, side-channel attacks are all attacks based on extracting information from
a physical implementation of a cryptosystem. Rather than exploiting some weakness in

mailto:dahmun.goudarzi@gmail.com
mailto:thomas.prest@pqshield.com
mailto:matthieu.rivain@cryptoexperts.com

the underlying cryptographic algorithm, the leakage information is exploited by attackers
to extract the secret key from a specific implementation.

Probing security is a notion put forward by Ishai, Sahai and Wagner in [31] to evaluate
the security of a circuit against a class of physical attacks. Specifically, they consider
t-probing attacks in which the adversary has the ability to place some probes on t wires of a
circuit processing some secrets. The circuit is said to be t-probing secure if no information
leaks from the values of the t probed wires. More formally, one should be able to perfectly
simulate the distribution of the probed wires without any knowledge on the secrets. In
their paper, Ishai et al. propose a scheme, the so-called ISW scheme, to compile a circuit
into a new randomized circuit (i.e. a circuit featuring random generation gates) which
is resistant to t-probing attacks. Their scheme used some additive secret sharing (a.k.a.
Boolean masking) of the processed variables. Specifically, each variable x is split into
n ≥ 2 variables x1, x2, . . . , xn, called the shares, which are uniformly distributed among
n-tuples satisfying x = x1 + x2 + · · ·+ xn (where + is the addition on F2 in the original
scheme).

Using such an additive sharing to protect a cryptographic computation was already
proposed in 1999 as a protection against side-channel attacks [20, 28]. Many masking
schemes describing efficient implementations of ciphers protected at some given (low)
orders were published in the early 2000’s, see e.g. [34, 3, 35]. In this context, the
probing security notion is analogous to the security against so-called higher-order side-
channel attacks. In such an attack, an adversary uses t leakage points from a power
consumption trace (or electromagnetic trace) to extract information on the secret. If
properly implemented, a t-probing secure scheme achieves provable security against this
kind of attacks. The ISW scheme had hence a strong impact on the side-channel research
community and it was used as a building block in many popular masking schemes, see e.g.
[40, 33, 18, 24, 22, 39, 43, 30, 11, 12, 32].

Although an ISW-based masking scheme can achieve some level of resistance against
side-channel attacks, the probing security notion is not fully satisfactory in this context.
In practice a side-channel adversary gets some leakage on the full computation and has no
reason to limit herself to t leakage points. Nevertheless, the side-channel leakage is often
(or can be made) noisy and the noise is known to be amplified by the masking order [20].
This was the motivation behind the formal noisy leakage model introduced by Prouff and
Rivain in [38]. In this model, every variable (or wire) x in the computation leaks a noisy
function f(x). The noisy property is captured by assuming that the bias introduced in the
distribution of x by an observation of f(x) is smaller than some bound δ.

Subsequently, Duc, Dziembowski and Faust showed that the security in the noisy leakage
model could be obtained for a probing-secure scheme through a security reduction [25]. In
a nutshell, the so-called DDF reduction considers an intermediate leakage model called the
random-probing model, which was already considered by Ishai et al. in [31] and formalized
by Ajtai in [2], in which each variable (or wire) is leaked to the adversary with a given
probability p. By applying the Chernoff bound, one gets that a t-probing secure circuit Ĉ
is also p-random probing secure with p = O(t/|Ĉ|) (where |Ĉ| denotes the number of wires
of Ĉ). Duc et al. could then show a transition from the p-random probing security to the
δ-noisy leakage security with δ = O(p/|K|) where |K| is the base field of the computation.
It was recently shown that the impact of the field size can be relaxed by refining the
granularity of the computation [29] or considering alternative definitions of the noisy
leakage model [37].

The DFF reduction and the obtained security in the noisy leakage model is thus mainly
impacted by the leakage rate (or probing rate) which is the ratio between the number of
tolerated probes and the size of the circuit [6]. In order to tolerate a significant leakage
parameter δ = O(t/|Ĉ|), the leakage rate should be as close as possible to 1. In particular,
one should be able to tolerate a number of probes that grows linearly with the circuit.

2

To this aim, the circuit should achieve the stronger notion of region probing security
formalized by Andrychowicz, Dziembowski, and Faust in [6], namely it should be separable
into regions that each tolerate some amount of probes independently of the total size
of the circuit. This notion was already considered in the work of Ishai et al. and their
scheme was shown to be region probing secure. Specifically, it can tolerate up to t < n/2
probes per protected gate, or gadget, for a masking order n. Since the ISW gadgets require
O(n2) operations, the obtained leakage rate is of O(1/n). Such a leakage rate is not fully
satisfactory since it implies that the leakage noise should decrease linearly with the number
of shares. In particular, no security can be obtained for the ISW gadgets in the context of
a constant leakage rate (i.e. on a given target device) and some practical attacks were
exhibited to underline this issue [9].

Fortunately, some schemes are known that achieve constant (or quasi-constant) leakage
rates. Such a scheme was first proposed by Ajtai in [2] which achieves random probing
security with leakage rate O(1). Another scheme, partly based on Ajtai’s work, was
proposed by Andrychowicz, Dziembowski, and Faust in [6] which achieves probing security
with leakage rate O(1/ logn), and random-probing security with leakage rate O(1). More
recently, Ananth, Ishai and Sahai [5] have proposed a conceptually simpler approach to
achieve random-probing security with leakage rate O(1). This approach has been further
improved by Belaïd, Coron, Prouff, Rivain and Taleb in [13]. In terms of complexity, all
these proposals imply a size of the protected circuit of O(|C|n2) or larger, where |C| is
the size of the original circuit. This was recently improved by Goudarzi, Joux and Rivain
who proposed a scheme making use of a Fast Fourier Transform-based (FFT) polynomial
multiplication to obtain the first construction achieving a O(|C|n logn) complexity with a
O(1/ logn) leakage rate. Unfortunately, their security proof has a flaw that we exhibit in
this paper. Moreover, their scheme is restricted to working on base fields including the
nth powers of unity, which notably excludes fields of characteristic 2 that are yet essential
in some cryptographic primitives (such as the AES block cipher).

In [8], Barthe, Belaïd, Dupressoir, Fouque, Grégoire, Strub and Zucchini formalized
the notion of composable gadgets which notably allows to prove region probing security.
More precisely, they introduced the notion of Strong Non-Interference (SNI) which refines
the notion of probing security, by separating between external and internal probes in
the circuits. SNI security allows composing masked gadgets since the notion implies
that gadgets stop the propagation of dependencies. However, compared to classical
probing-secure gadgets, SNI gadgets are usually less efficient than probing-secure ones and
require more randomness. Another approach consists in composing SNI gadgets and NI
gadgets (a relaxation of the SNI notion) in a careful way to achieve security with better
performances (see [14] and references therein). In [19], Cassiers and Standaert introduced
the notion of Probe Isolating Non-Interference (PINI) that allows secure composition and
efficient implementations. It relies on the position of probes in a target implementation.
Thanks to this notion, linear functions are directly composable and do not require to be
refreshed and non-linear operations remain efficient. A circuit achieves PINI-security (and
is consequently probing secure) if all its gadgets are PINI but the notion is not sufficient
to achieve region-probing security.

In this paper, we introduce a new composition framework to construct circuits (or
masked implementations) satisfying the region probing security notion. For this purpose,
we formalize the property of input-output separation (IOS) for a refresh gadget and we show
that it allows to simply construct region probing circuits from (weaker) probing secure
gadgets and in particular more efficient gadgets which are only proven probing-secure but
not SNI, e.g. [29, 11]. We show that this notion can be obtained from uniform SNI or
PINI refresh gadgets but also with a simpler design, namely a variant of the refreshing
algorithm due to Battistello, Coron, Prouff and Zeitoun [10]. It is worth mentioning that
the original refreshing gadget from [10] was proven SNI but for our purposes, we simplify

3

and extend it and show that it achieves our new IOS security notion. The proposed variant
can be used to refresh any kind of linear sharing with a quasilinear complexity Θ(n logn)
and a O(1/ logn) leakage rate (for an n-size sharing).

We then revisit the quasilinear masking scheme of Goudarzi, Joux and Rivain [29]
(which we shall call the GJR scheme hereafter). This scheme is based on a polynomial
sharing of the form a =

∑
i aiω

i, where a is the plain variable and the ai’s are the
corresponding shares, and it uses an FFT-based polynomial multiplication to achieve a
quasilinear complexity. We describe an improved version of the GJR scheme which works
on any base field, including binary fields, and which relies on our composition framework.
We further patch a flaw in the original security proof and extend it from the random
probing model to the stronger region probing model. Specifically, our improved GJR
scheme is secure in the region probing model provided that the underlying FFT algorithm
is probing secure. From this ground, we obtain a probing-secure FFT using the approach
of [29], that is by relying on a large field |F| = Θ(2λ) and taking ω at random. We hence get
a region-probing-secure scheme for large fields. For smaller fields, our result is essentially
a security reduction from the region probing security of the full scheme to the probing
security of the FFT. Finally, we present an application of our extended GJR scheme and
compare it with a more standard scheme based on SNI gadgets for two different ciphers: the
Advanced Encryption Standard (AES) [1] and MiMC [4]: a cipher with efficient arithmetic
representation on a large field. We show that this masking scheme significantly improves
the efficiency of the masked cipher for a masking order n ≥ 64 for MiMC and n ≥ 512 for
the AES. For the AES instantiation, we present a variant of Gao-Mateer additive FFT [27]
with improved efficiency and which may be of independent interest.

2 Background on Probing Secure Circuits
2.1 Notations
In this paper, K shall denote a finite field. Vectors shall be denoted with bold letters, e.g.
x. For any two random variables (or random vectors) X and Y , we shall write X id= Y
whenever X and Y are identically distributed. For some positive integer n ∈ N, we denote
by [n] the set {1, 2, . . . , n}. For any two vectors u,v ∈ Kn, 〈u,v〉 denotes their inner
product. For any finite set I, we denote by |I| the cardinality of I. Let I ⊆ [n] and
v = (v1, . . . , vn) ∈ Kn, we denote by v|I the |I|-tuple (vi)i∈I . We shall denote x ← X
the action of picking x uniformly at random in some set X , and y ← A(x) the action of
defining y as the output of an algorithm A on input x. If A is a probabilistic algorithm,
then y ← A(x) is a random assignment of y on input x and for a uniform random tape.

2.2 Basic Definitions
Arithmetic circuits. Given a finite field K, an arithmetic circuit is a circuit processing
elements of K through simple arithmetic operations. Formally, it is modeled as a directed
acyclic graph whose vertices are gates that belong to the following types:

– input gate (fan-in 0, fan-out 1) which holds an input value of the circuit,
– output gate (fan-in 1, fan-out 0) which receives an output value of the circuit,
– constant gate (fan-in 0, fan-out 1) which outputs a constant value of K,
– addition gate (fan-in 2, fan-out 1) which outputs the sum (on K) of the two input
values,

– subtraction gate (fan-in 2, fan-out 1) which outputs the difference (on K) of the two
input values,

– multiplication gate (fan-in 2, fan-out 1) which outputs the product (on K) of the
two input values,

4

– copy gate (fan-in 1, fan-out 2) which outputs two copies of the input.
The addition, subtraction and multiplication gates are further called operation gates. The
edges of an arithmetic circuit are called the wires. A randomized arithmetic circuit is a
arithmetic circuit augmented with a

– random gate (fan-in 0, fan-out 1) which outputs a fresh uniform random value of K.
Given some assignment of the input gates, all the wires of a circuit can be assigned

subsequently following the input-output behavior of the gates, which finally leads to an
assignment of the output gates. For an arithmetic circuit C with n input gates and m
output gates, we denote y = C(x) ∈ Km the output of C (i.e. the assignment of the
output gates of C) on input x ∈ Kn (i.e. when the input gates are assigned to x). For a
randomized arithmetic circuit C with q random gates, we denote y = Cρ(x) the output
of C on input x and such that each random gate outputs a coordinate of ρ ∈ Kq. The
parameter ρ is then called the random tape of C. Whenever ρ is omitted, y = C(x)
denotes the random vector obtained for a uniform distribution of ρ.

Let C be a randomized arithmetic circuit with n input gates, m output gates, q random
gates, and let consider that the wires of C are labeled from 1 to s (where s is the total
number of wires in C). Then for any set W ⊆ [s] with |W| = t, we shall denote by
CρW(x) ∈ Kt the tuple composed of the assignments of the wires with labels in W on
input x ∈ Kn and random tape ρ ∈ Kq. In particular, each coordinate of CρW(x) is a
deterministic function of x and ρ. Here again, whenever ρ is omitted, CW(x) denotes the
random vector obtained for a uniform distribution of ρ on Kq.

Circuit compilers. We now recall the definition of circuit compilers as formalized in [5]
(but adapted to arithmetic circuits). We shall call a K-string any tuple of elements from
the base field K.
Definition 1 (Circuit Compiler). A circuit compiler is a triplet of algorithms
(Compile,Encode,Decode) defined as follows:
• Compile (circuit compilation) is a deterministic algorithm that takes as input an
arithmetic circuit C and outputs a randomized arithmetic circuit Ĉ.

• Encode (input encoding) is a probabilistic algorithm that takes as input a K-string
x and outputs a K-string x̂.

• Decode (output decoding) is a deterministic algorithm that takes as input a K-string
ŷ and outputs a K-string y.

These three algorithms satisfy the following properties:
• Correctness: For every arithmetic circuit C of input length `, and for every x ∈ K`,
we have

Pr
(
Decode

(
Ĉ(x̂)

)
= C(x)

∣∣ x̂← Encode(x)
)

= 1 ,

where Ĉ = Compile(C).
• Efficiency: For some parameter called the encoding order n ∈ N, the running time

of Compile(C) is poly(n, |C|), the running time of Encode(x) is poly(n, |x|) and the
running time of Decode

(
ŷ
)
is poly(n, |ŷ|), where poly(n, q) = O(nk1qk2) for some

constants k1, k2.

Sharings and gadgets. Let n ∈ N and let v ∈ (K∗)n. A v-linear sharing of x ∈ K is a
vector x ∈ Kn such that 〈v,x〉 = x. The coordinates of a linear sharing x ∈ Kn are called
the shares of x. A random vector x is a uniform v-linear sharing of x if 〈v,x〉 = x and
x|I is uniformly distributed over Kt for any I ⊂ [n] with |I| < n.

Let v-Enc denote a probabilistic algorithm that on input x outputs a uniform v-linear
sharing of x. For instance v-Enc(x) performs the following:

x1 ← K; x2 ← K; · · · xn−1 ← K;
xn ← v−1

n

(
x− 〈v, (x1, . . . , xn−1, 0)〉

)
5

and returns the vector x = (x1, x2, . . . , xn). We further denote v-Dec the deterministic
algorithm that on input of a v-linear sharing of x outputs x. This algorithm simply
computes the inner product v-Dec(x) = 〈v,x〉.

For any operation g : (x, y) ∈ K2 7→ z ∈ K and for any vector v ∈ Kn, a v-gadget of
g is a randomized arithmetic circuit with 2n input gates and n output gates, which, on
input of a v-linear sharing of x and a v-linear sharing of y, outputs a v-linear sharing of
z = g(x, y), for any x, y ∈ K. In particular, G is a v-gadget of g if and only if for every
random tape ρ, v-Dec(Gρ(x,y)) = g(x, y). A v-refresh gadget is a randomized arithmetic
circuit with n input gates and n output gates, which, on input of a v-linear sharing of x
outputs a v-linear sharing of x, for any x ∈ K.

Standard circuit compilers. Consider a family of vectors V = {vn ∈ Kn}n∈N and three
families of gadgets G⊕ = {G⊕n }n∈N, G⊗ = {G⊗n }n∈N and GR = {GR

n}n∈N such that for every
n ∈ N, G⊕n is a vn-gadget for the addition on K, G⊗n is a vn-gadget for the multiplication
on K, and GR

n is a vn-refresh gadget.
The standard circuit compiler for (V,G⊕,G⊗,GR) with encoding order n is the circuit

compiler for which
• Encode applies vn-Enc to each coordinate of the input K-string;
• Decode applies vn-Dec to each coordinate of the input K-string;
• Compile takes an arithmetic circuit C and outputs the randomized arithmetic circuit
Ĉ such that each addition gate is replaced by an addition gadget G⊕n followed by a
refresh gadget GR

n, each multiplication gate is replaced by a multiplication gadget
G⊗n followed by a refresh gadget GR

n, each constant gate outputting α is replaced by
n constant gates with constants (α · v−1

1 , 0, . . . , 0) followed by a refresh gadget GR
n

and each copy gate is replaced by a copy of the input sharing (through n copy gates)
followed by a refresh gadget GR

n per output sharing.
It is not hard to see that such a circuit compiler achieves correctness and efficiency,

provided, for the latter, that the sizes of the gadgets G⊕n , G⊗n and GR
n are polynomial in n.

To ease the presentation, we restrict the notion of standard circuit compiler to three
types of gadgets (addition, multiplication and refresh) but in practice we consider compilers
for which the addition gadget is replaced by a broader class of sharewise gadgets. These
gadgets apply a linear operation (addition, subtraction, multiplication by a constant, or
any F0-linear operation if F is an F0-module) sharewisely to the input linear sharing(s).

2.3 Probing Security
Throughout the paper, the notion of simulator will refer to a polynomial-time probabilistic
algorithm. We will say that a random vector w can be perfectly simulated (possibly given
some input in) if there exists a simulator S that (given in) outputs a vector which is
identically distributed as w (over the internal randomness of the simulator), which shall
be denoted S(in) id= w.

Informally speaking, a randomized arithmetic circuit achieves t-probing security, if
leaking the value of t arbitrary wires (i.e. allowing t probes on the circuit) does not reveal
any information about the input (provided that the latter has been properly encoded).
This is formally define hereafter.

Definition 2 (Probing Security). A randomized arithmetic circuit Ĉ is t-probing secure
w.r.t. an encoding algorithm Encode if for every plain input x and for every setW ⊆

[
|Ĉ|
]
,

with |W| ≤ t, there exists a simulator S
Ĉ,W such that

S
Ĉ,W(⊥) id= ĈW(Encode(x)) .

6

A circuit compiler (Compile,Encode,Decode) is said to achieve t-probing security if for
every arithmetic circuit C, the randomized arithmetic circuit Ĉ = Compile(C) is t-probing
secure w.r.t. Encode. Note that factually, the parameter t is a function of the encoding
order n. For instance, the first probing-secure scheme due to Ishai, Sahai and Wagner
achieves t-probing security with t ≤ (n− 1)/2 and an efficiency |Ĉ| = Θ(n2|C|).

Most probing-secure circuit compilers are based on the composition of gadgets. These
gadgets are themselves probing-secure w.r.t. the underlying encoding scheme but they
must also satisfy composition properties so that the overall compiled circuit is probing
secure. In particular, the notions of (strong) non-interference, or (S)NI and probe isolating
non-interference, or PINI have been proposed and studied in [8, 14, 7, 19]. In this paper,
we introduce another notion called input-output separation (see Section 3) which is aimed
to enable the composition for a stronger notion of probing security, namely the region
probing security. In a nutshell, a circuit is region probing secure if it is composed of several
sub-circuits (e.g. several gadgets) that can each tolerate some constant amount of probes
(irrespective of the total number of sub-circuits). We shall then consider the probing rate
(or leakage rate) of such a circuit as the maximum ratio between the number of tolerable
probes over the size of a sub-circuit. Region probing security is formalized hereafter.

Let us first introduce the notion of circuit partition. For any (randomized) arithmetic
circuit C, we call C ≡ (C1, C2, . . . , Cm) a circuit partition where each Ci is a sub-circuit of
C such that the gates of the Ci’s form a partition of the gates of C. We further denote by
WCi the set of wires with source gate in Ci, so that WC1 , . . . , WCm is a partition of [|C|].

Definition 3 (Region Probing Security). A randomized circuit Ĉ is r-region probing
secure (i.e. with probing rate r) w.r.t. an encoding algorithm Encode if there exists a
circuit partition Ĉ ≡ (C1, C2, . . . , Cm) such that for every plain input x and for every set
W1 ⊆ WC1 , W2 ⊆ WC2 , . . . , Wm ⊆ WCm , with |Wi| ≤ dr|Ci|e, there exists a simulator
S
Ĉ,W such that

S
Ĉ,W(⊥) id= ĈW(Encode(x)) ,

where W =W1 ∪W2 ∪ . . . ∪Wm. A circuit compiler (Compile,Encode,Decode) is r-region
probing secure if for every circuit C the compiled circuit Ĉ = Compile(C) is r-region
probing secure w.r.t. Encode (where r might be a function of the encoding order and the
circuit size).

We shall further say that a circuit Ĉ is (r, ε)-region probing secure (i.e. with probing
rate r and simulation failure ε), if the simulator fails (i.e. returns ⊥) with probability

Pr
(
S
Ĉ,W(⊥) = ⊥

)
≤ m · ε ,

(m being the number of regions) and returns a perfect simulation otherwise:(
S
Ĉ,W(⊥) | S

Ĉ,W(⊥) 6= ⊥
) id= ĈW(Encode(x)) .

The region probing security is a relevant security property for a cryptographic imple-
mentation while considering side-channel attacks. Indeed, security in the so-called noisy
leakage model which captures the physical reality of power and electromagnetic side-channel
leakages can be reduced to region probing security. These notions and reductions are
recalled in Appendix B.

3 Composability from Input-Output Separation
3.1 Input-Output Separation
We introduce hereafter the input-output separation security notion for a refresh gadget.
Such a property has originally been used in the GJR scheme to achieve composition in the

7

random probing model [29]. We formalize this notion hereafter as general composition
property to achieve region probing security. For the sake of simplicity, the definition given
in this section only considers refresh gadgets but it can be generalized to any kind of
gadgets (see Appendix A for a general definition).

We first introduce the notion of uniformity for a gadget which will be a requirement
for our new security notion.

Definition 4 (Uniformity). Let v ∈ (K∗)n. A v-refresh gadget G is uniform, if for every
x ∈ Kn, the output G(x) is a uniform v-linear sharing of 〈v,x〉.

In the following, we shall say that a pair of vector (x,y) ∈ (Kn)2 is admissible for a
gadget G if there exists a random tape ρ such that y = Gρ(x). For an admissible pair
(x,y) and a set W ⊆ [|G|], the wire distribution of G in W induced by (x,y), denoted
GW(x,y), is the random vector GρW(x), i.e. the tuple of wire values for the wire indexes
in W, obtained for a uniform drawing of ρ among the set {ρ ∈ Kq ; GρW(x) = y}.

Definition 5 (IOS). Let v ∈ (K∗)n and let G be a v-refresh gadget with s wires. G
is said t-input-output separative (t-IOS), if it is uniform and if for every admissible pair
(x,y) and every set of wires W ⊆ [s] with |W| ≤ t, there exists a (two-stage) simulator
SG,W =

(
S(1)
G,W ,S

(2)
G,W

)
such that

1. S(1)
G,W(⊥) = (I,J) where I,J ⊆ [n], with |I| ≤ |W| and |J | ≤ |W|;

2. S(2)
G,W(x|I ,y|J) id= GW(x,y).

A v-refresh gadget is simply said to be IOS if it is n-IOS.

The above definition generalizes the notion of input-output linear separability used in
the GJR scheme [29]. Our definition has two differences with the GJR notion:
• the GJR notion requires a deterministic (functional) relation between the probed
wires and the input/output shares whereas we only require the ability of simulating
the probed wires from some input/output shares;

• the GJR notion requires the knowledge of arbitrary linear combinations of the
input/output shares whereas we require the knowledge of some input/output shares.

The first difference makes our definition easier to achieve without impacting the compos-
ability. Indeed, in any probing security context, the ability of achieving a perfect simulation
is sufficient to prove the security. The second difference makes our definition harder to
achieve1 but more useful to different composition contexts (where the probing security
might not rely on linear algebra). Moreover, we describe in Section 4 a refresh gadget
achieving our version of input-output separation.

The intuition behind the IOS notion can be understood as follows. Any probing leakage
from an IOS refresh gadget can be simulated given a subset of its input shares and output
shares. We can therefore reduce the standard region probing security game to a game in
which the refresh gadget does not leak anything but its surrounding gadgets leak more.
The uniformity property then implies that the leakages from two gadgets separated by a
refresh gadget are mutually independent. One can then achieve a perfect simulation of
the full leakage through independent simulations of the separated leakages from the two
gadgets.

This is illustrated on Figure 1. The full probing leakage (w1,wR,w2) can be simulated
from (w1,y|I ,y

′
|J ,w2). Moreover, the refresh uniformity implies that, given x, the

separated leakages (w1,y|I) and (w2,y
′
|J) are mutually independent. Therefore, if one

can simulate (w1,y|I) on the one hand and (w2,y
′
|J) on the other hand, then one can

simulate the full leakage.
1A set of shares being a particular case of a set of linear combinations of shares.

8

Plain world Encoded world

x

g1

y

y

g2

z

⇒

x

G1

y

Refresh

y′

G2

z

w1

wR

w2

x

G1

y

y′

G2

z

(w1,y|I)

(w2,y
′
|J)

Figure 1: Illustration of the IOS property.

3.2 Composition Theorem
We now provide a formal proof of composition based on the IOS property defined above.
Specifically, we show that a standard circuit compiler interleaving operation gadgets and
refresh gadgets is region probing secure provided that its operation gadgets are probing
secure, and its refresh gadgets are IOS.

As introduced in Section 2, we consider hereafter a family of vectors V = {vn ∈ Kn}n∈N
and three families of gadgets G⊕ = {G⊕n }n∈N, G⊗ = {G⊗n }n∈N and GR = {GR

n}n∈N such
that for every n ∈ N, G⊕n is a vn-gadget for the addition on K, G⊗n is a vn-gadget for
the multiplication on K, and GR

n is a vn-refresh gadget. The following theorem gives our
composition result for the standard circuit compiler for (V,G⊕,G⊗,GR).

Theorem 1. If for every n ∈ N,

• G⊕n is t⊕n -probing secure (w.r.t. vn-Enc),

• G⊗n is t⊗n -probing secure (w.r.t. vn-Enc),

• GRn is tRn-IOS,

then the standard circuit compiler for (V,G⊕,G⊗,GR) is rn-region probing secure with

rn = max
t≤tRn

min
(t⊕n − 3t
|G⊕n |

,
t⊗n − 3t
|G⊗n |

,
t

|GR
n|

)
. (1)

Proof. Let n ∈ N and let t ≤ tRn. Let C be an arithmetic circuit composed of m operation
gates, and let Ĉ be the randomized arithmetic circuit obtained by calling the standard
circuit compiler for (V,G⊕,G⊗,GR) on C. We shall denote by G1, G2, . . . , Gm the
operation gadgets of Ĉ and by GR

1 , GR
2 , . . . , GR

m the refresh gadgets of Ĉ where GR
i is

placed in output of Gi for every i. We further denote by WGi and WGR
i
the set of wires

with source gate in Gi and GR
i respectively. Finally, we denote ti the integer such that

ti = t⊕n − 3t if Gi = G⊕n and ti = t⊗n − 3t otherwise (i.e. if Gi = G⊗n) for i ∈ {1, . . . ,m}.

9

Let

W =
m⋃
i=1
Wi ∪

m⋃
i=1
WR
i ⊆ [|Ĉ|]

where Wi ⊆ WGi
, with Wi ≤ ti, and WR

i ⊆ WGR
i
, with WR

i ≤ t for every i ∈ [m]. We will
show that for any input in of C, there exists a simulator S

Ĉ,W such that

S
Ĉ,W(⊥) id= ĈW(Encode(in)) ,

which directly implies the rn-region probing security of the standard circuit compiler with

rn = min
(t⊕n − 3t
|G⊕n |

,
t⊗n − 3t
|G⊗n |

,
t

|GR
n|

)
.

The above shall hold for every t ≤ tRn which yields the maximum in (1).

The simulator S
Ĉ,W is simply obtained by running the simulators inherited from the

probing security of the Gi’s and the IOS property of the GR
i ’s. Specifically:

• The IOS property of the GR
i ’s implies that, for every i ∈ [m], there exists a (two-

stage) simulator SGR
i
,WR

i
=
(
S(1)
GR

i
,WR

i

,S(2)
GR

i
,WR

i

)
such that for every (x,y) ∈ Kn ×Kn

admissible for GR
i :

1. S(1)
GR

i
,WR

i

(⊥) = (I,J) where I,J ⊆ [n], with |I| ≤ |W| and |J | ≤ |W|;

2. S(2)
GR

i
,WR

i

(x|I ,y|J) outputs a perfect simulation of ĈWR
i
(Encode(in)) given that

the pair of input/output sharings of GR
i equals (x,y).

Here x|I corresponds to |I| ≤ t (output) wires of the gadget Gi and y|J corresponds
to |J | ≤ t (input) wires of the gadget Gj subsequent to the refresh GR

i . In particular,
there exist two sets Ii ⊆ WGi

and Ji ⊆ WGj
such that

x|I = ĈIi(Encode(in)) and y|J = ĈJi(Encode(in)) .

• Let φ and ψ be the index-mapping functions such that the two input sharings
of gadget Gi are output sharings of refresh gadgets GR

φ(i) and GR
ψ(i). By defining

Wi :=Wi ∪ Ii ∪ Iφ(i) ∪ Iψ(i), we get

m⋃
i=1
Wi =

m⋃
i=1
Wi ∪

m⋃
i=1
Ii ∪

m⋃
i=1
Ji with Wi ⊆ WGi

and |Wi| ≤ ti + 3t .

• The probing security of the Gi’s implies that, for every i ∈ [m], there exists a
simulator SGi,Wi

such that

SGi,Wi
(⊥) id= ĈWi

(Encode(in)) .

We now have all the ingredients to describe the simulator S
Ĉ,W . It proceeds as follows:

1. S
Ĉ,W first call the simulators S(1)

GR
i
,WR

i

(⊥) to get the sets Ii’s and Ji’s.
2. S

Ĉ,W then calls the simulators SGi,Wi
(⊥) to get tuples

zi = (wi,xi,yφ(i),yψ(i))
id= ĈWi

(Encode(in)) ,

10

where wi, xi, yφ(i), yψ(i) corresponds to the indexes Wi, Ii, Iφ(i) and Iψ(i) respec-
tively. By the uniformity property of the refresh the distributions ĈWGi

(Encode(in)),
given in, are mutually independent which implies

(z1, z2, . . . ,zm) id= Ĉ⋃
i
Wi

(Encode(in)) .

3. S
Ĉ,W finally calls the simulators S(2)

GR
i
,WR

i

on inputs (xi,yi) to get tuples wR
i such

that
wR
i

id= ĈWR
i
(Encode(in)) ,

and outputs (w1,w
R
1 , . . . ,wm,w

R
m) as simulation.

The IOS property finally implies

S
Ĉ,W(⊥) = (w1,w

R
1 , . . . ,wm,w

R
m) id= ĈW(Encode(in)) ,

which concludes the proof.

3.3 Comparison with Non-Interference Security Notions
It is well-known that composition of probing secure gadgets is not always probing secure [23].
Stronger security definitions were previously proposed to analyse the security of large
circuits viewed as the composition of simple gadgets. The first such notion, (strong) non-
interference, or (S)NI, was proposed in [8]. The notion of Probe Isolating Non-Interference
(PINI) was also recently introduced in [19]. In this section, we compare our composition
approach with the ones underlying the (S)NI and PINI notions and then show some
implications between these notions and our IOS notion.

We first recall the (S)NI and PINI definitions while extending them from standard
Boolean sharing to the general case of v-sharings. For a v-refresh gadget, the (S)NI notion
is defined as follows:

Definition 6 (NI and SNI). Let v ∈ (K∗)n and let G be a v-refresh gadget with s wires. G
is said t-Non-Interferent (t-NI) (resp. t- Strong Non-Interferent (t-SNI)), if for every x and
every set of internal wiresW ⊆ [s] with |W| ≤ t1 and every set of output wires O ⊆ [s] with
|O| ≤ t2 and t1 + t2 ≤ t , there exists a (two-stage) simulator SG,W,O =

(
S(1)
G,W,O,S

(2)
G,W,O

)
such that

1. S(1)
G,W,O(⊥) = I where I ⊆ [n], with |I| ≤ t1 + t2 (resp. with |I| ≤ t1);

2. S(2)
G,W,O(x|I) id= GW∪O(x).

A v-refresh gadget is simply said to be NI (resp. SNI) if it is (n−1)-NI (resp. (n−1)-SNI).

If a gadget achieves NI-security, then a probe of an internal wire or an output wire can
be simulated using one probe on each of the input sharings of the gadget. If it achieves the
stronger SNI-security notion then only probes of internal wires are propagated to inputs
(and it thus guarantees independence between the inputs and outputs even with access to
the internal wires).

For a v-refresh gadget, the PINI notion is defined as follows:

Definition 7 (PINI). Let v ∈ (K∗)n and let G be a v-refresh gadget with s wires. G is
said t-Probe Isolating Non-Interferent (t-PINI), if for every x and every set of internal
wires W ⊆ [s] with |W| ≤ t1 and every set of output wires O ⊆ [s] with |O| ≤ t2 and
t1 + t2 ≤ t , there exists a (two-stage) simulator SG,W,O =

(
S(1)
G,W,O,S

(2)
G,W,O

)
such that

11

1. S(1)
G,W,O(⊥) = I where I ⊆ [n], with |I| ≤ t1;

2. S(2)
G,W,O(x|I∪J) id= GW∪O(x);

where J ⊆ [n] is the set of indices of output shares in O. A v-refresh gadget is simply
said to be PINI if it is (n− 1)-PINI.

Comparison of the composition approaches. We discuss hereafter the composition
approaches related to the (S)NI notion, the PINI notion and our new IOS notion.

(S)NI composition approach. The NI and SNI notions were proposed in [8] as composition
notions for probing-secure gadgets. The authors show how to compose t-NI and t-SNI
gadgets to achieve t-probing security, which was further generalized in [14]. Theses results
can actually be extended to region probing security. Let us consider the standard circuit
compiler as defined in Section 2. If the underlying refresh gadget is SNI and the underlying
addition and multiplication gadgets are NI, then it can be checked that the compiled circuit
can tolerate up to t/2 probes per gadget. In other words, from an SNI refresh gadget, one
simply needs NI operation gadgets to obtain a region probing-secure composition.

PINI composition approach. The PINI notion was introduced to allow trivial composition
of probing-secure gadgets [19]. Specifically composing any number of PINI gadgets in any
way results in a circuit achieving PINI security which further implies probing security.
Another advantage of the PINI notion is that it is satisfied by any sharewise gadget (i.e. a
gadget which simply applies an operation sharewisely) without requiring any refreshing
or randomness. Although the PINI notion enables simpler composition, it is limited to
probing security (or PINI security) and cannot be extended to region probing security. To
illustrate this impossibility, let us consider the following simple example. Suppose that
some circuit compiler applies a single-input sharewise gadget G (for instance squaring on
F256) successively many times to an input n-sharing x. After N gadgets each leaking t
probes, all the shares can be recovered whenever N > n/t.

IOS composition approach. Our composition approach consists in interleaving an IOS
refresh gadget between any pair of successive operation gadgets of the compiled circuit (as
in the definition of the standard circuit compiler). Doing so, we can lower the requirement
on the operation gadgets: they simply needs to achieve the weaker notion of probing
security (see Theorem 1 above).

Comparison. We compare the three composition approaches for the standard circuit
compiler as introduced in Section 2. This compiler basically replaces each gate by the
corresponding operation gadget and it interleaves a refresh gadget in each connection
between two operation gadgets. Assuming that the refresh gadget satisfies a given notion
in {SNI,PINI, IOS}, we look at (i) what is the security notion required for the operation
gadgets? (ii) what is the obtained security notion for the composed circuit?

• SNI:

(i) The NI notion is sufficient for the operation gadgets.
(ii) The composition of NI operation gadgets and SNI refresh gadgets implies the

region probing security of the composed circuit.

• PINI:

(i) The PINI notion is sufficient for the operation gadgets.
(ii) The composition of PINI gadgets implies the probing security of the composed

circuit. Let us stress that with PINI operation gadgets, PINI refresh gadgets
are actually useless.

12

• IOS:

(i) The probing security is sufficient for the operation gadgets.

(ii) The composition of probing-secure operation gadgets and IOS refresh gadgets
implies the region probing security of the composed circuit.

Our composition approach, hence achieves the stronger notion of region probing security
from the weaker notion of probing security for operation gadgets based on the IOS security
of the refresh gadget.

Relations between (S)NI, PINI and IOS. Besides the differences in terms of composition
approach, it seems that non-interference notions and IOS are separated notions (i.e.
PI/SNI do not imply IOS and IOS does not imply PI/SNI). First, since the (S)NI and PINI
definitions do not require uniformity of the gadget, these notions do not imply IOS security.
But even while considering uniform gadgets, these notions are different in nature. On the
one hand, the necessity for the IOS simulator to be given output shares y|J prevents IOS
from implying (S)NI or PINI whose simulators only rely on input shares. On the other
hand, the IOS simulation is constrained to match a certain pre-sampled output y which
is not (entirely) revealed to the simulator. Such a constraint seems incompatible with
(S)NI or PINI, hence discarding an implication from these notions to IOS. We stress that
a formal proof of this separation (e.g. by exhibiting example of gadgets satisfying a notion
and not the other) is still an open issue.

4 An Input-Output Separative Refresh Gadget

Battistello, Coron, Prouff and Zeitoun propose in [9] the so-called (template) horizontal
side-channel attacks against the ISW [31] and the Rivain-Prouff [40] secure multiplication
schemes. These attacks exploit the fact that, for those schemes, the leaking information on
each share increases with the number of shares in the presence of a constant leakage rate.
Battistello et al. describe a variant of the ISW multiplication with probing-security that
is heuristically secure against this kind of attacks. In the full version of their paper [10],
they further propose a new refreshing gadget with complexity O(n logn). In this section,
we simplify and extend their gadget for any v-linear sharing and we prove that it achieves
the IOS security notion.

4.1 Refresh Gadget Description

The modified refresh gadget RefreshGadget is described in Algorithm 1. It is defined
recursively: for n = 2, given a v-linear sharing x = (x1, x2) it outputs y = (y1, y2) =
(x1 + r, x2 − r · v1 · v−1

2) such that 〈y,v〉 = 〈x,v〉 and for n ≥ 4 a power of 2, the
RefreshGadget gadget is applied recursively on the two halves of the share (Steps 4-5) and
a post-processing layer is applied to the whole sharing (Steps 6-9). Note that the original
refresh gadget proposed in [9] makes use of an additional and similar pre-processing layer
before the two recursive calls to the RefreshGadget gadget, but this layer is not necessary
to achieve the IOS property. It results that our variant is twice more efficient in terms of
computation and randomness generation.

13

Algorithm 1 RefreshGadget
Require: x = (x1, . . . , xn), v = (v1, . . . , vn),
Ensure: y = (y1, . . . , yn) such that 〈y,v〉 = 〈x,v〉
1: if n = 2 then
2: r

R←− F
3: return (x1 + r, x2 − r · v1 · v−1

2)
4: (s1, . . . , sn/2)← RefreshGadget(a1, . . . , an/2; v1, . . . , vn/2) . Recursive call
5: (sn/2+1, . . . , sn)← RefreshGadget(an/2+1, . . . , an; vn/2+1, . . . , vn) . Recursive call
6: for i = 1, . . . , n/2 do
7: ri

R←− F
8: yi ← si + ri
9: yi+n/2 ← si+n/2 − ri · vi · v−1

i+n/2

Let us denote R(n), A(n) and M(n) the randomness complexity, the number of
additions and the number of scalar multiplications of the RefreshGadget algorithm for
length-n linear sharing. We have R(2) = 1, A(2) = 2 andM(2) = 1 and R(2n) = 2R(n)+n,
A(2n) = 2A(n) + 2n and M(2n) = 2M(n) + n for all n ≥ 2. By induction, we thus have
for any n ≥ 2, a power of 2, we obtain

R(n) = M(n) = n log(n)/2 and A(n) = n log(n) . (2)

4.2 Proof of Input-Output Separation
Theorem 2. The refresh gadget from Algorithm 1 is input-output separative.

Proof. Throughout the proof, we denote by L =
[
n
2
]
and H = [n] \ L.

Uniformity. Let v ∈ (K∗)n. We show that the v-refresh gadget RefreshGadget is uniform,
namely that if for every x ∈ Kn, the output RefreshGadget(x) is a uniform v-linear sharing
of 〈v,x〉. The proof is by induction on n.

For n = 2, given x = (x1, x2) ∈ K2, the gadget outputs y = (y1, y2) defined as
(x1 + r, x2− r · v1 · v−1

2) where r is picked uniformly at random in K and one can see readily
that y is a uniformly distributed v-linear sharing of 〈v,x〉.

For n ≥ 4, given x = (x1, x2, . . . , xn) ∈ Kn, the gadget first computes (s1, . . . , sn/2) and
(sn/2+1, . . . , sn) as outputs of RefreshGadget(x1, . . . , xn/2) and RefreshGadget(xn/2+1, . . . , xn).
By the induction hypothesis, s|L = (s1, . . . , sn/2) and s|H = (sn/2+1, . . . , sn) are uni-
form and independent v|L = (v1, . . . , vn/2)-linear sharing and v|H = (vn/2+1, . . . , vn)-
linear sharing of 〈v|L,x|L〉 and 〈v|H ,x|H〉 (respectively) where x|L = (x1, . . . , xn/2) and
x|H = (xn/2+1, . . . , xn). The gadget RefreshGadget then picks uniformly at random ri in
K for i ∈ L and sets yi = si + ri and yi+n/2 = si+n/2 − ri · vi · v−1

i+n/2 for i ∈ L. Denoting
r′i = si + ri(= yi) for i ∈ L the vector (r′1, . . . , r′n/2) is uniformly distributed in Kn/2

and independent from c and we have yi+n/2 = si+n/2 − (r′i − si) · vi · v−1
i+n/2 for i ∈ L

where s|L and s|H are uniform and independent v|L-linear sharing and v|H -linear sharing
of 〈v|L,x|L〉 and 〈v|H ,x|H〉. The vector d is therefore a uniformly distributed v-linear
sharing of 〈v,x〉.

IOS. We now show the IOS property. In the following we shall denote by w = GW(x,y)
the wire distribution for W induced by (x,y). Without loss of generality, we assume that
if the attacker probes a product of a random value ri by some publicly known constant
(such as the value ri · vi · v−1

i+n/2 which appear in Step 9), then it can be replaced by an
attacker which probes directly the random value ri. We show how to achieve a perfect
simulation of w from x|I and y|J for two sets I and J such that |I| ≤ |W| and |J | ≤ |W|.

14

R1

R2

sx yM

w1

w2 w3

Figure 2: IOS refresh gadget with pobes (w1,w2,w3).

The case |W| ≥ n is straightforward: we let I = J = [n] and we can simulate w (and more
generally all the wires of G) directly from the full sharings (x,y) and by picking a random
tape uniformly for the set {ρ ∈ Kq ; GρW(x) = y}. We therefore consider |W| < n in the
following. The proof also works by induction on n.

For n = 2, we have |W| ≤ 1. The case |W| = 0 is straightforward. For |W| = 1, the
tuple w consists in a single variable among x1, x2, y1, y2, and r, the output of the single
random gate. If the variable is either x1, y1 or r, we let I = J = {1}, otherwise we let
I = J = {2}. The simulation is straightforward for any xi or yi. For r, we simply let
r = y1 − x1.

For n ≥ 2, we denote R1 the gadget corresponding to the first recursive call to
RefreshGadget (Step 4), R2 the gadget corresponding to the second recursive call to
RefreshGadget (Step 5) andM the gadget corresponding to the post-processing layer (Steps
6-9). We denote by W1, W2, and W3, the subset of W corresponding to wire indexes from
R1, R2, and M respectively, so that W =W1 ∪W2 ∪W3. Without loss of generality, all
the outputs of R1 and R2, which are also inputs of M , are included to W1 and W2, but
not to W3. We further denote t1 = |W1|, t2 = |W2|, and t3 = |W3|, so that

t1 + t2 + t3 = |W| < n ,

as well as w1 = GW1(x,y), w2 = GW2(x,y), and w3 = GW3(x,y), so that

(w1,w2,w3) = w .

Let s = (s1, . . . , sn) denote the linear sharing in output of the block (R1 ‖ R2), and
s|L = (s1, . . . , sn

2
) and s|H = (sn

2 +1, . . . , sn) be the respective output of R1 and R2. By
definition of the layer M , we have 〈v|L, s|L〉+ 〈v|H , s|H〉 = 〈v|L,y|L〉+ 〈v|H ,y|H〉. On the
other hand, the gadgets R1 and R2 are uniform, which implies that the tuples s|L and
s|H are uniformly distributed among the tuples of Kn

2 satisfying

〈v|L, s|L〉 = 〈v|L,x|L〉 , (3)
〈v|H , s|H〉 = 〈v|H ,x|H〉) , (4)

〈v|L, s|L〉+ 〈v|H , s|H〉 = 〈v|L,y|L〉+ 〈v|H ,y|H〉 , (5)

By induction R1 and R2 are IOS, which implies that we can perfectly simulate (w1,w2)
from x|I1 , x|I2 , s|J1 , and s|J2 for some sets I1, J1 ⊆ L, I2, J2 ⊆ H, such that |I1|, |J1| ≤ t1,

15

and |I2|, |J2| ≤ t2. Without loss of generality, if t1 ≥ n
2 , we let I1 = J1 = L, and if t2 ≥ n

2 ,
we let I2 = J2 = H.

The set I is simply constructed as I = I1 ∪ I2. We show hereafter how to achieve a
perfect simulation of (s|J1 , s|J2 ,w3) from x|I and y|J for some set J such that |J | ≤ |W|.
As depicted in Figure 3, we will hence get a perfect simulation of (w1,w2,w3) = w from
x|I and y|J which shall complete the proof.

x|I , y|J ⇒ (s|J1 , s|J2︸ ︷︷ ︸, w3)

⇓
x|I ⇒ (w1,w2)

Figure 3: Overview of the simulation process.

We now show how to achieve a perfect simulation of (s|J1 , s|J2 ,w3) from x|I and y|J for
some set J such that |J | ≤ |W|. Let Vi denote the set of variables {si, ri, yi, si+ n

2
, yi+ n

2
}.

All the variables in (s|J1 , s|J2 ,w3) are included in
⋃
i∈L Vi, where

• s|J1 contains some of the (si)i∈L;

• s|J2 contains some of the (si+ n
2

)i∈L;

• w3 contains some of the (ri)i∈L, (yi)i∈L, and (yi+ n
2

)i∈L.

We construct J as follows. For every i ∈ L:

• if two or more variables from Vi appear in (s|J1 , s|J2 ,w3), we include i and i+ n
2 to

J ;

• if one single variable from Vi appears in (s|J1 , s|J2 ,w3),

– if the variable is si, ri, or yi, we include i to J ;
– if the variable is si+ n

2
, or yi+ n

2
, we include i+ n

2 to J ;

• if no variables from Vi appear in (s|J1 , s|J2 ,w3), we do not include i nor i+ n
2 to J .

Clearly the number of indices added to J is at most the number of variables in (s|J1 , s|J2 ,w3),
that is

|J | ≤ |J1|+ |J2|+ t3 ≤ t1 + t2 + t3 = |W| .
We now explain how to simulate (s|J1 , s|J2 ,w3) from x|I and y|J while satisfying the
constraints (3), (4) and (5).

Let us first assume that we have t1 < n
2 and t2 <

n
2 . This implies that not all the

(si)i∈L (resp. the (si+ n
2

)i∈L) have to be simulated, which releases the constraints (3) and
(4). By construction of J , the (yi)i∈L and (yi+ n

2
)i∈L that appear in (s|J1 , s|J2 ,w3) are

also included in y|J and can thus be straightly and perfectly simulated. Then, for every
i ∈ L:

• if {i, i+ n
2 } ⊆ J , we can perfectly simulate si, ri, si+ n

2
from yi and yi+ n

2
as

ri ← K
si ← yi + ri

si+ n
2
← yi+ n

2
− ri · vi · v−1

i+n/2

• if i ∈ J and i+ n
2 /∈ J , we can perfectly simulate si and ri from yi as

ri ← K
si ← yi + ri

16

• if i /∈ J and i+ n
2 ∈ J , we can perfectly simulate si+ n

2
from yi+ n

2
as

ri ← K
si+ n

2
← yi+ n

2
− ri · vi · v−1

i+n/2

This way we have completed a full simulation of all the variables appearing in (s|J1 , s|J2 ,w3)
while satisfying the constraint (5).

Let us now relax the assumption on t1 and t2. Since t1 + t2 < n we have t1 < n
2 or

t2 <
n
2 . Without loss of generality, we assume t2 < n

2 (the case t1 < n
2 would be handled

similarly). Therefore we might have t1 ≥ n
2 implying I1 = J1 = L, L ⊆ I and L ⊆ J .

In that case, we must simulate all the (si)i∈L while satisfying the constraint (3). The
simulation works as above, but we keep one index i∗ ∈ L for which i∗ + n

2 /∈ J for the end
of the simulation (such an index exists otherwise we would have |J | = n > |W|). For this
index i∗, we can perfectly simulate si∗ and ri∗ from x|I1 = x|L, (si)i∈L\{i∗} and yi∗ as

si∗ ← 〈v|L,x|L〉 −
∑

i∈L\{i∗}

si · vi

ri∗ ← yi∗ − si∗

We thus achieve a perfect simulation of (s|J1 , s|J2 ,w3) from x|I and y|J while satisfying
the constraints (3), (4) and (5), which concludes the proof.

5 Revisiting the GJR Masking Scheme
In this section, we revisit the quasilinear-complexity Goudarzi-Joux-Rivain (GJR) masking
scheme [29]. We first describe a variant of this scheme making use of the IOS refresh
gadget described above and which is more general than the original scheme in the sense
that it works on any base field K equipped with an Fast Fourier Transform (FFT) for
multiple-point polynomial evaluation. We then show that the use of our refresh allows to
patch a flaw in the security proof of the original scheme. We shall refer to the improved
GJR scheme as the GJR+ scheme hereafter.

5.1 The GJR+ Scheme
As in the original scheme, the GJR+ scheme is based on so called ω-encodings which are
vω-linear sharings with

vω = (1, ω, . . . , ωn−1) . (6)

For such a vector, a sharing x = (x1, x2, . . . , xn) of a plain value x ∈ K can be seen as
the coefficients of a polynomials Px =

∑n
i=1 xi · αi−1 ∈ K[α] such that Px(ω) = x. The

quasilinear complexity can then be achieved by using efficient FFT-based multiplication for
the multiplication gadget. Note that such encoding is close to but different from Shamir’s
secret sharing [41]. In the latter the shares are defined as evaluations of a polynomial in
fixed points and for which the plain value is the degree-0 coefficient.

We assume the existence of a Fast Fourier Transform (FFT) algorithm that, given any
polynomial P ∈ K[α] of degree < 2n, maps the coefficients of P to the evaluations of P
over 2n points of K, with a complexity of Õ(n) operations. That is:

FFTα : (x1, x2, . . . , x2n) 7→ (u1, u2, . . . , u2n) with uj =
2n∑
i=1

xi · αi−1
j

for every j ∈ [2n], for some α = (α1, α2, . . . , α2n) ∈ K2n. We further assume that this
FFT algorithm can be written as an arithmetic circuit on K solely composed of additions,

17

subtractions and multiplication by constants in K, and that it features an inverse FFT
algorithm with the same properties (in terms of type and number of operations).

The GJR+ scheme is a standard circuit compiler for (V,G⊕,G⊗,GR) (see definition in
Section 2), with V =

{
v

(n)
ω

}
n∈N where v(n)

ω ∈ Kn is the vector defined in (6). As in the
original scheme, we assume in the following that the order n is a power of two. The scheme
could be easily extended to deal with non-power of two at the cost of a small constant
efficiency factor.

We now give the description of the associated v(n)
ω -gadgets. For the sake of clarity we

shall omit the superscript and simply note vω in what follows.

Refresh Gadget. We use the refresh gadget of Section 4 (see Algorithm 1) for vω-sharings
i.e. with encoding vector v assigned to vω. This refresh gadget is applied in output of each
operation gadget (in accordance to the definition of the standard circuit compiler). We
recall that this gadget achieves the uniformity and IOS properties defined in Subsection 3.1.

Addition Gadget. Given two vω-sharings x = (x1, . . . , xn) and y = (y1, . . . , yn), the
addition gadget outputs

x+ y = (x1 + y1, . . . , xn + yn) .

This is done via n addition gates processing each share separately. Hence this addition
gadget achieves (n− 1)-probing security.

Subtraction Gadget. Given two vω-sharings x = (x1, . . . , xn) and y = (y1, . . . , yn), the
subtraction gadget outputs

x− y = (x1 − y1, . . . , xn − yn) .

This is done via n subtraction gates processing each share separately. Hence this subtraction
gadget achieves (n− 1)-probing security.

Multiplication Gadget. Let v′ω ∈ K2n be the vector defined as

v′ω = FFT−1
α (1, ω, ω2, . . . , ω2n−1) .

Let Compress be the K×K2n → Kn mapping defined as

Compress(ω; t1, t2, . . . , t2n) = (t1 + ωn · tn+1, t2 + ωn · tn+2, . . . , tn + ωn · t2n)

Let 0 denotes the n-dimensional all-0 vector and ‖ denote the concatenation operator.
Given two vω-sharings x and y, the multiplication gadget proceeds as

1. r ← FFTα(x ‖ 0)
2. s← FFTα(y ‖ 0)
3. u← r · s
4. u′ ← Refresh(v′ω;u)
5. t← FFT−1

α (u′)
6. z ← Compress(ω; t)

and outputs z. Note that r, s, u, u′, t are (2n)-dimensional vectors. Only the input/output
sharings x, y and z are n-dimensional vectors. The procedure is depicted on Figure 4 for
illustration.

18

FFT FFT

⊗

Refresh

FFT−1

Compress

x y

r s

u

u′

t

z

Figure 4: Multiplication gadget.

Remark. This multiplication gadget is similar to the GJR multiplication gadget but we
introduce a refreshing in Step 4. This refreshing is done using Algorithm 1 (see Section 4)
where the encoding vector v′ω and the input sharing are of size 2n.

Correctness. Let x and y be the values encoded by x and y respectively and let Px ∈ K[α]
and Py ∈ K[α] be the degree-(n− 1) polynomials whose coefficients are the coordinates of
x and y, so that we have Px(ω) = x and Py(ω) = y.

Let us first assume that Step 4 applies an identity mapping, i.e. u′ = u. Then Steps 1–5
perform a classical FFT-based polynomial multiplication. Namely, the coordinates of t
are the coefficients of the polynomial Pt ∈ K[α] such that Pt(α) = Px(α) · Py(α), and in
particular Pt(ω) = x · y. Then Step 6 outputs a vector z such that 〈vω, z〉 = Pt(ω) = x · y,
i.e. a vω-sharing of x · y.

Let v′′ω = (1, ω, ω2, . . . , ω2n−1), then we have

Pt(ω) = 〈v′′ω, t〉 = x · y ⇔ 〈v′ω,FFTα(t)〉 = x · y .

By correctness of the FFT-based polynomial multiplication, we hence have that u =
FFTα(t) is a v′ω-sharing of x · y. Let us now consider the actual multiplication gadget with
refreshing at Step 4. By correctness of the refresh algorithm, u′ is also a v′ω-sharing of x ·y,
and by the above relation we have that 〈v′ω,u′〉 = x · y implies 〈v′′ω,FFT−1

α (u′)〉 = x · y,
which is 〈v′′ω, t〉 = x · y. We hence get the correctness of the multiplication gadget.

Scalar Multiplication Gadget. For the particular case of a multiplication by a constant,
a dedicated scalar multiplication gadget can be used which is much more efficient than a
regular multiplication gadget. Given a vω-sharing x = (x1, . . . , xn) and a constant α ∈ K,
the scalar multiplication gadget outputs

α · x = (α · x1, . . . , α · xn) .

This is done via n multiplication gates processing each share separately. Hence this scalar
multiplication gadget achieves (n− 1)-probing security.

19

Square Gadget. For the particular case of a field K of characteristic 2, a square can
be computed through a dedicated gadget much more efficiently than with a regular
multiplication gadget. Given a vω-sharing x = (x1, . . . , xn) of x, the square gadget outputs

y = (y1, y2, . . . , yn) with yi = x2
i · ωi−1

for every i ∈ [n]. We then have 〈vω,y〉 = 〈vω,y〉2 by linearity of the squaring on a field
of characteristic 2, which implies that y is indeed a vω-sharing of x2. The square gadget
involves 2n multiplication gates processing each share separately. Hence this square gadget
achieves (n− 1)-probing security. More generally, a sharewise gadget can compute any
qk-th power on a field of characteristic q (i.e. compute the k-th Frobenius map).

Note that, extending the standard circuit compiler to include such gadget is straight-
forward but it would make the formalism heavier so we skip this extension from our
presentation.

5.2 Field Extension and FFT Algorithm
In order to instantiate the GJR+ scheme, it is necessary to consider an implementation
of secure multiplication at order n over a finite field K and an element ω such that there
exists an FFT algorithm which allows quasilinear multiplication of polynomials of degree
at most n and coefficients in K and which can be written as an arithmetic circuit on K
solely composed of additions, subtractions and multiplication by constants.

A possible approach (which was used in [29]), is to consider finite fields K = Fq that
contain a (2n)-th root of unity ω (i.e. such that 2n | q − 1). However, most of the time,
we cannot choose the underlying algebraic structure and we have to consider a specific
cryptographic primitive with a given structure and to implement it securely. In order to
extend the original scheme to any finite field Fmp for some prime number p (with m ≥ 1),
we can use the general additive FFT proposed by Cantor in [44, 17]. In this case we can
instantiate it at order n over F`p where ` is the minimum even value greater than m such
that p` ≥ 2n.

In particular, for most symmetric cryptographic schemes, the underlying structure is a
finite field of characteristic 2 and over such a binary field, the approach from [29] does not
apply at all. For this case of utmost practical importance, we can use the Gao-Mateer
additive FFT [27] for secure implementation of multiplications at order n over binary
fields F2m for m ≥ 2. The Gao-Mateer additive FFT is a variant of Cantor additive FFT
that works over finite fields of characteristic 2. Using this transform, if m is even with
2m ≥ 2n, then we can use directly our technique over K = F2m and otherwise we can
simply instantiate it over K = F2` where ` is the smallest even integer for which 2` ≥ 2n
and m | `.

5.3 Security Reduction
This section provides a security reduction for the GJR+ scheme. We show that under the
probing security of the FFT, the scheme achieves region probing security. More formally,
the reduction is based on the following hypothesis on the FFT algorithm.

Hypothesis 1 (FFT Probing Security). The circuits processing

FFTα : (x ‖ 0) 7→ r and FFT−1
α : u′ 7→ t

are tFFT
n -probing secure w.r.t. the vω-encoding and the v′ω-encoding respectively.

We can then state our reduction theorem. A discussion of the practical meaning of
Hypothesis 1 is given after the theorem proof.

20

Theorem 3. Under the FFT Probing Security hypothesis and the tRn-IOS property of the
refresh gadget, the GJR+ compiler is rn-region probing secure with

rn = max
t≤tRn

min
(tFFT

n − 6t
2 · |FFTn|

,
t

|GR
n|

)
(7)

where |FFTn| denotes the (maximum) number of wires in the FFT circuits for 2n input
sharings.

Note that the refresh gadget described in Section 4 satisfies tRn = n − 1 and |GR
n| =

3n logn. Assuming the FFT algorithm is quasilinear and that it can tolerate a linear
number of probes (in the encoding order n) and denoting

|FFTn| = α · n logn
|GR

n| = β · n logn
tFFT
n = γ · n

for some constants α, β and γ (with γ < 1), one can check that the minimum in Equation 16
is reached for

t =
(βγ

2(α+ 3β)

)
· n =⇒ rn =

(γ

2(α+ 3β)

)
· 1

logn . (8)

In particular, we obtain a probing rate rn = Θ(1/ logn).

The proof of Theorem 3 is based on the two following lemmas.

Lemma 1. Under the FFT Probing Security hypothesis the circuit processing

(x,y) 7→ u = FFTα(x ‖ 0)⊗ FFTα(y ‖ 0)

is tFFT
n -probing secure w.r.t. the vω-encoding.

Proof. Let us denote by Ĉ the considered circuit and W the set of probed wires from Ĉ
such that |W| ≤ tFFT

n . We show how to construct the simulator S
Ĉ,W that outputs a perfect

distribution of ĈW(x,y) where x and y are uniform vω-linear sharings. The simulator
S
Ĉ,W first call the simulators SFFT,W1 and SFFT,W2 by constructingW as follows: for every
w ∈ W, w is added to W1 if it corresponds to a wire in the first FFT (i.e. applying to
x) and w is added to W1 if it corresponds to a wire in the second FFT (i.e. applying
to y). Whenever w corresponds to a product ui = ri · si, then the wire corresponding
to ri is added to W1 and the wire corresponding to si is added to W2. By construction,
we have |W1|, |W2| ≤ |W| ≤ tFFT

n which ensures that SFFT,W1 and SFFT,W2 output perfect
simulations of all the wires in W pertaining to the two FFT circuits (by FFT Probing
Security hypothesis). Moreover, by construction, they also output the pairs (ri, si) for
all the wires in W corresponding to a product ui = ri · si which can then be perfectly
simulated as well.

Lemma 2. Under the FFT Probing Security hypothesis the circuit processing

u′ 7→ z = Compress(ω; FFT−1
α (u′))

is (tFFT
n /2)-probing secure w.r.t. the v′ω-encoding.

Proof. The proof follows the same lines as the proof of Lemma 1. Let Ĉ denote the
considered circuit and W the set of probed wires from Ĉ such that |W| ≤ tFFT

n /2. The
simulator S

Ĉ,W essentially relies on the simulator SFFT,W′ where W ′ is constructed as

21

follows: for every w ∈ W, w is added to W ′ if it corresponds to a wire in the FFT.
Otherwise, w correspond to a wire in the computation zi = ti + ωn · tn+i for some i, in
which case we add the wires corresponding to ti and tn+i to W ′. By construction, we have
|W ′| ≤ 2 · |W| ≤ tFFT

n which ensures that SFFT,W′ outputs a perfect simulation of all the
wires in W ′, i.e. of all the wires in W pertaining to the FFT plus the pairs (ti, tni) for
every i such that a wire in the computation zi = ti + ωn · tn+i appears in W. The latter
wires can then also be perfectly simulated from the pairs (ti, tni

), which concludes the
proof.

Proof. (Theorem 3) The proof simply holds from Lemma 1 and Lemma 2 by applying
the composition theorem (Theorem 1). We further note that the term depending on the
addition gadget can be removed from the expression of the probing rate since the latter
satisfies t⊕n = n− 1 and |G⊕n | = 2n which clearly makes it greater than the term depending
on the FFT.

Theorem 3 formally shows that if probing security can be demonstrated for the FFT
algorithm, then we obtain region probing security for the GJR+ scheme. Unfortunately,
it is not clear whether the classical FFT algorithms are probing secure or not. To some
extent, this open issue is related to the choice of ω: some choices lead to probing insecurity2

while it is not clear whether some choices can provide probing security. Nevertheless,
following the approach of [29] it is possible to obtain random probing security by picking
ω randomly on a large enough field K. This is formally stated in Subsection 5.4.

Discussion on Hypothesis 1. We now provide some insights about whether Hypothesis 1
is verified in practice. Given input values K, α and ω, there exists an effectively computable
function that checks whether Hypothesis 1 is verified. Indeed, given a vω-encoding x of
the value x, there exists a circuit C of size Θ(n logn) that takes x as input and computes
FFTα(x‖0). Probing a node i of the circuit reveals 〈ui,x〉, where the value of the vector
ui ∈ Kn depends only of α and i. The adversary can recover x = 〈vω,x〉 if and only if he
can probe a subset S such that vω is in the span of (ui)i∈S . Indeed, according to Lemma
1 of [29] (see Appendix C):(

∃(ai)i∈S ∈ K|S| s.t. vω =
∑
i

aiui

)
⇔

(
x =

∑
i

ai · 〈ui,x〉

)
. (9)

Therefore Hypothesis 1 can be verified by checking, for all
(Θ(n logn)

|S|
)
choices of |S| probes

in the NTT circuit, whether the left part of Equation 9 holds, a subtask that can be
done via Gaussian elimination. When |S| = Θ(n), the number of subsets to check is
superexponential in n but is still tractable via exhaustive search for small values of n.

As an illustration, the circuit C in Figure 5 computes the degree-8 NTT over F257 for
input (x0, x1, x2, x3, 0, 0, 0, 0). Each node i is labelled by a vector ui such that probing i
reveals 〈ui,x〉, with x = (x0, x1, x2, x3). Note that since half the input coefficients are 0,
the circuit description is somewhat simpler than a full NTT. By exhaustive search, we can
see that C is 3-probing secure for ω = 138, whereas it is only 2-probing secure for ω = 209.
Indeed, in the latter case vω = (1, 209, 248, 175), and one can check that:

vω = 51 · (1, 64, 241, 4) + 243 · (0, 0, 1, 0) + 207 · (1, 241, 256, 16). (10)

This illustrates the importance of the choice of ω in Hypothesis 1.
Distinct finite fields may yield distinct values for tNTT

n . Indeed, applying the same
methodology to F97, we found values of ω for which tNTT

4 = 2 and tNTT
8 = 5, where each

time the NTT has degree 2n.
2For instance, taking ω to 0 or to some nth power of unity when the FFT algorithm is the NTT (as

considered in [29]) can be shown to lead to some obvious probing security flaw.

22

(1,0,0,0) (1,0,1,0) (1,1,1,1)

(1,0,0,0) (1,0,-16,0) (1,-64,-16,-4)

(0,0,1,0) (1,0,-1,0) (1,-16,-1,16)

(0,0,1,0) (1,0,16,0) (1,-4,16,-64)

(0,1,0,0) (0,1,0,1) (1,-1,1,-1)

(0,1,0,0) (0,1,0,-16) (1,64,-16,4)

(0,0,0,1) (0,1,0,-1) (1,16,-1,-16)

(0,0,0,1) (0,1,0,16) (1,4,16,64)

Figure 5: Circuit of the degree-8 NTT applied on an order-4 encoding x = (x0, x1, x2, x3)
for the prime field F257. Probing a node i reveals 〈ui,x〉 to an attacker for a given ui.
Each butterfly (a subcircuit of the form ./) computes (c,d)← (a+ λb,a− λb) given an
input (a, b) and a fixed λ.

For prime fields and a power-of-two NTT, we were able in practice to determine tFFT
n

only for n ≤ 8, due to combinatorial explosion. This raises the question of proposing
algorithms more efficient than exhaustive search for compute tFFT

n . Note that tFFT
n + 1

is the minimum weight w for which we can find a vector a with at most w non-zero
coefficients such that a · U = vω, where U = (ui)i ∈ KΘ(n logn)×n. This can be cast
as a specific instance of the information-set decoding (ISD) problem, which is common
in code-based cryptography. However, unlike ISD instances that are usually studied in
code-based cryptanalysis, the matrix U we consider has more lines than columns, is not
random but fixed, and the underlying field may be non-binary. We see the question of
computing tFFT

n more efficiently as an interesting open problem.

5.4 Security Proof for Large Fields
The security proof given hereafter follows the same lines as the original proof from [29]
but it is more general as it applies to any instance of the GJR+ scheme (with any field
and FFT algorithm) and it holds in the stronger region probing model. Moreover, our
security proof corrects a flaw in the original proof which we exhibit hereafter.

Flaw in the original proof. The original GJR scheme is based on a different refresh
gadget for the composition. In a nutshell, their gadget follows the classical approach of
adding a random ω-encoding of 0. The latter is generated based on a fixed ω-encoding
of 0 denoted e in [29], which is randomly generated at the beginning of the computation
and which is considered to be fully leaked to the adversary. When a fresh ω-encoding
of 0 must be generated, one draws a random vector u and multiplies it with e through
the multiplication gadget, which gives a fresh and uniform ω-encoding of 0. Such a
refresh procedure satisfies a slightly weaker version of the IOS property (see Subsection 3.1
for comparison). Specifically, when a sharing x is refreshed into a new sharing x′, the
leakage from the refresh procedure can be simulated by linear combinations of x and
linear combinations of x′. These leaking linear combinations can in turn be perfectly
simulated with overwhelming probability over the random distribution of ω, provided
that ω is defined on a large enough field K (see Lemmas 1 & 2 of [29] which we recall in

23

Appendix C). The flaw in the proof is that it implicitly assumes that the aforementioned
leaking linear combinations have constant coefficients with respect to ω. However, by
definition of the refresh procedure, these coefficients depend on e, the initial ω-encoding of
0, which cannot be considered as constant with respect to ω. This prevents the application
of Lemmas 1 & 2 of [29]. This bug invalidates the composition security proof of the original
GJR scheme although it does not lead to an obvious security flaw: it is not clear whether
the linear combinations coming from the refresh imply an exploitable information leakage
(or equivalently a simulation failure).

New proof. The region-probing security of the GJR+ scheme simply holds from the
IOS property of the refresh gadget and assuming that the underlying FFT algorithm is
somehow linear. This is captured by the following definition.

Definition 8 (Linear FFT Circuit). An FFT circuit is said linear if the circuits processing

FFTα : (x ‖ 0) 7→ r and FFT−1
α : u′ 7→ t

are composed of additions and multiplications by constants (on K).

The above definition implies that the value carried by each wire in the FFT circuit
can be expressed as a linear combination of the coordinates of the input sharing. This
property is necessary to apply the security argument of the original GJR scheme. Note
that this requirement is relatively weak since it is satisfied by classical FFT algorithms
such as the NTT (used in [29]) and the Gao-Mateer additive FFT [27].

Corollary 1. If the FFT circuit is linear and made of |FFTn| = αn logn wires, the GJR+

compiler is (rn, εn)-region probing secure with

rn =
(

1
2α+ 18

)
1

logn , (11)

and
εn = n

|K|
. (12)

Proof. Using Lemmas 1 & 2 of [29] (which are recalled in Appendix C for the sake of
completeness) and thanks to the linearity of the FFT circuit, we have that for any choice
of n− 1 leaking wires from the FFT circuit, the probability that the leaking wires cannot
be perfectly simulated is lower than n/|K|. Besides the linearity of the FFT circuit, the
only requirement for this upper bound to apply is that the choice of the leaking wires is
made independently of ω, which occurs in the region probing model since the placement of
the probes by the adversary is done independently of the random generation of ω. We
can then directly apply Theorem 3 and obtain the probing rate rn from Equation 8 with
γ = n−1

n ≈ 1 and β = 3.

In Appendix B, we further detail the security proof of GJR+ in the random probing
model which holds from its security in the region probing model by applying the Chernoff’s
bound. This further implies the security of GJR+ in the noisy leakage model by the
reduction from [25].

6 Application
In this section, we present an application of our extended GJR scheme and compare it with
a more standard scheme based on SNI gadgets. We investigate the masked computation of
two different ciphers:

24

• The Advanced Encryption Standard (AES) [1]: a very common application scenario
which favors efficient masking schemes on the field F256;

• MiMC [4]: a cipher with efficient arithmetic representation on a large field. MiMC
has been designed with the aim to minimize the number of multiplications (which
makes it particularly amenable to masked computation). We focus on the prime-field
variant of MiMC (the base field is a prime field Fp).

For these two application contexts, we described masked computations based on the
two following masking schemes:

• The GJR+ scheme described in Section 5 of this paper, in two modes of application:

– on a binary field with the Gao-Mateer FFT algorithm (to mask AES),
– on a prime field with NTT algorithm (to mask MiMC).

• An extended ISW scheme, that we shall refer to as ISW+, and which is based on

– the ISW multiplication gadget [31] over the base field K (either F256 for AES
or Fp for MiMC),

– share-wise linear gadgets (for additions, subtractions, F256-squares, multiplica-
tions by constants),

– the BCPZ quasilinear refresh gadget [10].

We first address implementation aspects of the two above masking schemes, then
describes masking of AES and MiMC with these schemes and finally provide comparison
of performances in terms of operation counts and randomness consumption.

Cautionary note: To ease the presentation, we consider that each gadget includes a
refreshing of its output sharing, except the ISW multiplication gadget which achieves the
SNI notion without further refreshing. In a masked computation, a sharing might be input
of several gadgets which would be an issue with respect to region probing security (e.g.
one could accumulate t probes on this sharing per gadget). We therefore impose that such
a sharing is refreshed before each new usage.

6.1 Implementation of GJR+

6.1.1 Multiplication gadget on Fp based on the NTT

It is well-known that polynomials can be multiplied in quasi-linear time in finite fields
using the Number Theoretic Transform (NTT), a Fast Fourier Transform (FFT) which
requires that the coefficient ring contain certain roots of unity. More precisely, it is possible
to multiply two polynomials of degree ≤ N in a finite field Fq in O(N logN) arithmetic
operations in Fq if Fq contains a primitive 2N -th root of unity (which occurs if and only if
2N divides q − 1). The number theoretic transform was introduced by Pollard [36] and we
refer the reader to [42, Section 8.2] for an exhaustive description. As stated in [42, Theorem
8.18], if N is a power of S (N = 2m), the multiplication of two polynomials of degree
< N in a finite field Fq which contains a 2N -th root of unity requires 6N log(N) + 6N
additions in Fq, 3N log(N) + 4N − 2 multiplications by constants in Fq, 2N (bilinear)
multiplications in Fq and 2N divisions by 2N in Fq.

Our multiplication gadget (for an encoding order n) described in Subsection 5.1 over such
a finite field has thus a total complexity of 8n log(n)+11n additions in Fq, 5n log(n)+7n−2
multiplications by constants in Fq and 2n (bilinear) multiplications in Fq. It requires
2n log(n) + 2n random elements from Fq.

25

6.1.2 Multiplication gadget on F2k based on the Gao-Mateer FFT

The classical NTT cannot be applied when the underlying field does not have the desired
roots of unity. We describe the additive FFT algorithm proposed by Gao and Mateer in
2010 [27], which works over fields of characteristic two. The idea of this class of FFTs is to
evaluate polynomials of degree m over a linear (additive) subspace of K[x] rather than a
group and it comes in two flavors: generic algorithms for an arbitrary m, or specialized
ones for m a power of two. The specialized algorithms are faster than the generic ones, but
the condition on m heavily constraints their use. We will use it with a slight generalization
of Cantor bases which we call self-folding bases, and which allow even more aggressive
optimization than what is done in [16, 15, 21] and may be of independent interest.

Let F = F2k be a finite field of characteristic two.We consider the additive FFT of a
polynomial f ∈ F[x], that is we evaluate f over the F2-linear span generated by m elements
β0, . . . , βm ∈ F linearly independent over F2. This span contains N = 2m elements, and is
defined if and only if N ≤ 2k, or equivalently m ≤ k.

Taylor Expansion. An important subroutine of the Gao-Mateer additive FFT is the
Taylor expansion, a slight variant of the usual notion of Taylor series. It consists of writing
any polynomial f ∈ F[x] of degree < N as follows:

f(x) =
N/2−1∑
i=0

hi(x) · (x2 − 1)i, (13)

where each hi is a polynomial of F[x] of degree at most 1. Algorithm 5 (provided in
Appendix D) is an algorithm presented in [27] for computing the Taylor expansion of a
polynomial in the case where m is generic (and not a power of 2), in which it is shown to
require 1

2N logN − 1
2N field additions and no multiplication.

Basis folding. We abusively call basis any subset B = {β0, . . . , βm−1} ⊂ Fm of m
elements of F linearly independent over F2.3 For a basis B of length m and an integer
0 ≤ i < 2m which can be written as i =

∑m−1
j=0 aj2j with aj ∈ {0, 1}, we will note:

B[i] =
m−1∑
j=0

ajβj . (14)

We will say that B[i] is the i-th element of 〈B〉. An important subroutine in [27] consists
of what we call folding a basis, a process we recall in Algorithm 6.

Additive FFT. Gao and Mateer [27] proposed an algorithm for computing the additive
FFT of a polynomial f over the subspace 〈B〉 generated by a basis B. This algorithm is
described in Algorithm 7 (Appendix D), which costs 2N logN − 2N + 1 field additions,
as well as 1

4N(logN)2 + 3
4N logN − N

2 scalar field multiplications. No formal description
of the inverse algorithm is given, but it is observed that an inverse additive FFT can
be obtained by performing the inverse of each operation in the reverse order. Since the
scalar field multiplications and their inversions can be precomputed, the cost of the inverse
additive FFT is the same as for the forward algorithm.

Self-Folding Bases. One could assume that the choice of B is not too important, because
the operations involving B can be precomputed anyway. However, we show in this

3Here our notation differ slightly from [27], where B denotes the linear space spanned by the basis. We
find it more natural for our purposes to denote by B the basis.

26

subsection that carefully choosing B can go a long way in making the additive FFT faster,
simpler to implement and less costly in memory.

In fact, in the case where m is a power of two, by taking βm−1 = 1 for their Cantor
basis, Bernstein et al. [16] showed that one could saved up some of the multiplication
operations (namely the computation that involved the inverse of βm−1) for the top-level
recursion cases. We take this idea further and propose a specific kind of bases such that
βm−1 = 1 at every layer of the recursion. In the following, those kind of bases are called
self-folding bases.

Definition 9 (Self-folding bases). Let F be a finite field of characteristic two and let
m ≥ 1. A self-folding basis B = {β0, . . . , βm−1} ⊂ Fm is a basis which verifies the two
following conditions:

1. βm−1 = 1;

2. for i ∈ {0, . . . ,m− 2}, it holds that β2
i − βi = βi+1.

We have the following properties about self-folding bases:

Proposition 1. Let F be a finite field of characteristic two and let m ≥ 1. The following
properties hold:

1. Let B = {β0, . . . , βm−1} be a self-folding basis and G,D ← Fold(B). We have
G = {β0, β1, . . . , βm−2} and D = {β1, β2, . . . , βm−1}.

2. Let F′ be a subfield of F of cardinality 2k′ . For any m ≤ k′, there exists a self-folding
basis B of m elements such that 〈B〉 is included in F′.

Proof. The first item is immediate from the definition. The second item is proven in the
special case F′ = F and m = k′ in the appendix of [27], and the proof is constructive. From
there, the general case is immediate to obtain by embedding the solutions for F′ in the
larger field F and keeping only the m last elements of B.

From Proposition 1, we can see that B “folds onto itself”: folding B into G,D yields
subsets of B, and this self-folding property transfers to D.

The notion of self-folding basis is close to that of Cantor basis [17, 27]; the only
difference is that the elements are taken in reverse order, and that no condition is imposed
on the basis elements belonging to a subfield F2m (such a subfield does not always exist,
thus self-folding bases are slightly more general objects than Cantor bases). The most
important difference, however, is how they are used. In [27, 16, 15], Cantor bases are used
to speed up the specialized additive FFT algorithm of [27], which only works on a restricted
set of parameters (namely, when m is a power of two). In comparison, our improvements
apply to speed up the generic algorithm of [27], which works for any value of m.

Half-FFT. Our improved (half-)FFT works with a self-folding basis and its iterated
foldings. It is described in Appendix D. Its main advantage is that the step 3 of
Algorithm 7 becomes unnecessary; in total, this saves us N logN scalar multiplications.
Moreover, it divides by two the number of precomputed tables. As another algorithmic
optimization, we make full use of the fact that for polynomial multiplications, half the
inputs of the FFT’s call are zero coefficients which leads to speed up to the computations
by a factor two compared to a regular additive FFT. These optimizations applies in a
similar way to the inverse additive FFT (with the difference here is that we cannot exploit
anymore the fact that half of the polynomial coefficients are zero).

27

Complexity. In this section, we provide the complexity of our new algorithms (the
detailed analysis is provided in Appendix D). Table 1 gives the operation counts for
our variant of the Gao-Mateer additive FFT. For N being a power of 2 (N = 2m), the
multiplication of two polynomials of degree lower than N in a finite field F2k requires
(1/2)N log2(N) + 2N log(N)− 2N additions in F2k , (3/2)N log(N)− 2N multiplications
by constants in F2k and 2N (bilinear) multiplications in F2k . Our multiplication gadget
(for an encoding order n) described in Subsection 5.1 has thus a total complexity of
(1/2)n log2(n) + 4n log(n) + n additions in F2k , (7/2)n log(n) multiplications by constants
in F2k , and 2n (bilinear) multiplications in F2k . It further requires 2n log(n) + 2n random
elements from F2k . Table 2 summarizes the operation counts for the different gadgets for
GJR+.

Table 1: Complexity of our variant of Gao-Mateer additive FFT.

Gao-Mateer FFT [27] HalfFFT InverseFFT

Add 1
4 ·N · (log2(N))2 + 3

4 ·N · log2(N) − 1
2 ·N

1
8 ·N · (log2(N))2 + 5

8 ·N · log2(N) −N 1
4 ·N · (log2(N))2 + 3

4 ·N · log2(N)

Mult 2 ·N · log2(N)− 2N − 1 1
2 ·N · log2(N) − 3

4 ·N
1
2N · log2(N) − 1

2 ·N

Table 2: Operation counts for GJR+.

Mult Add Random
Mult. gadget (Fp) 5n log(n) + 9n− 2 8n log(n) + 11n 2n log(n) + 2n
Mult. gadget (F2m) 7n log(n)/2 + 2n n log2(n)/2 + 4n log(2n) 2n log(n) + 2n
Addition gadget 0 n 0
Refresh gadget n log(n)/2 n log(n) n log(n)/2

6.2 Implementation of ISW+

Table 3 summarizes the operation counts of the different gadgets for ISW+.

Table 3: Operation counts for ISW+.

Mult Add Random
Mult. gadget (ISW) [31] n2 2n(n− 1) n(n− 1)/2
Addition gadget 0 n 0
Refresh gadget (BCPZ) [10] 0 2n log(n)− n n log(n)− n/2

6.3 Masking of AES

We consider the AES cipher as an arithmetic circuit over F256, composed of additions,
multiplications, squares, multiplication by constants, and a special gate computing the
affine part of the AES s-box. Besides the multiplication, all these operations give rise to a
linear gadget in the masked setting, i.e. a gadget which applies the operation share-wisely
and refreshes the output sharing.

28

Algorithm 2 Masked AES
Require: n-sharings x1, . . . , x16 of plaintext bytes x1, . . . , x16 ∈ F256, n-sharings y1, . . . ,

y16 of the round key bytes kj1, . . . , k
j
16 ∈ F256, for 0 ≤ j ≤ r

Ensure: n-sharing of AES(x, k)
1: (x1, . . . ,x16)← (G⊕n (x1,k

0
1), . . . , G⊕n (x16,k

0
16)))

2: for j = 1, . . . , r − 1 do
3: (x1, . . . ,x16)← (GAff

n (MaskedExp(x1)), . . . , GAff
n (MaskedExp(x16)))

4: (x1, . . . ,x16)← ShiftRows(x1, . . . ,x16)
5: (x1, . . . ,x16)← MaskedMixColumns(x1, . . . ,x16)
6: (x1, . . . ,x16)← (G⊕n (x1,k

j
1), . . . , G⊕n (x16,k

j
16)))

7: (x1, . . . ,x16)← (GAff
n (MaskedExp(x1)), . . . , GAff

n (MaskedExp(x16)))
8: (x1, . . . ,x16)← ShiftRows(x1, . . . ,x16)
9: (x1, . . . ,x16)← (G⊕n (x1,k

r
1), . . . , G⊕n (x16,k

r
16)))

10: return (x1, . . . ,x16)

The masked description of AES is described in Algorithm 2. The linear gadget for the
s-box affine transformation is denoted GAff

n . The ShiftRows transformation simply permutes
the byte indexes and is virtually free (in particular it does not involve any computation
on the shares). The MaskedMixColumns transformation simply applies the MixColumns
transformation by using gadgets G⊕n and Gxtimes

n in place of xors and xtimes operations
(i.e. multiplications by the constant 02 on the field F256). We consider the implementation
described in [26] which involves 15 additions and 3 xtimes per column:

acc ← x1 ⊕ x2 ⊕ x3 ⊕ x4
y1 ← xtimes(x1 ⊕ x2)⊕ acc ⊕ x1
y2 ← xtimes(x2 ⊕ x3)⊕ acc ⊕ x2
y3 ← xtimes(x3 ⊕ x4)⊕ acc ⊕ x3
y4 ← y1 ⊕ y2 ⊕ y3 ⊕ acc

A masked implementation of this process thus involves 18 linear gadgets as well as 15
refresh gadgets (for the variables used multiple times). The MaskedExp procedure is further
depicted in Algorithm 3, which is based on the Rivain-Prouff scheme [40]. As explained
above, a sharing in input of several gadgets is refreshed before each new usage.

Algorithm 3 MaskedExp
Require: n-sharing x of x ∈ F256
Ensure: n-sharing of x254

1: z ← G
(·)2

n (x) ; x← GR
n(x)

2: y ← G⊗n (x, z) ; z ← GR
n(z)

3: w ← G
(·)4

n (y) ; y ← GR
n(y)

4: y ← G⊗n (y,w) ; w ← GR
n(w)

5: y ← G
(·)16

n (y)
6: y ← G⊗n (y,w)
7: y ← G⊗n (y, z)
8: return y

The gadget count of the masked AES is given in Table 4. According to Algorithm 3,
the MaskedExp involves 4 multiplication gadgets, 3 linear gadgets and 4 refresh gadgets.
According to the above description, we get a total of 72 linear gadgets and 60 refresh gadgets

29

for the full MaskedMixColumns. One full round is composed of 16 calls to MaskedExp,
one call to MaskedMixColumns, plus 32 linear gadgets (16 gadgets G⊕n and 16 gadgets
GAff
n). A full AES computation is composed of 9 full rounds, 1 partial round (without the

MixColumns) plus one key addition (16 gadgets G⊕n).

Table 4: Gadget counts for masked AES.

Mult. Linear Refresh
MaskedExp 4 3 4
MaskedMixColumns 0 72 60
One round 64 136 124
Full masked AES 640 1304 1180

6.4 Masking of MiMC
Let x be some plaintext and k be some secret key, both belonging to some large field K.
The MiMC cipher is defined as:

MiMC(x, k) = Fk,cr
◦ · · · ◦ Fk,c1(x) + k ,

with Fk,ci(x) = (x+ k + ci)3, with r = dlog(|K|)/ log(3)e.
For our application, we consider the prime field variant of MiMC for which K can

be chosen as any prime field Fp such that gcd(3, p − 1) = 1 (so that x3 is invertible on
Fp). Since we wish to apply the GJR+ scheme based on the NTT (as in the original GJR
scheme), the chosen field must further satisfy p − 1 = α · (2nmax) for some odd integer
α and some integer nmax which is a power of two. In practice nmax is the maximum
masking order which can be achieved by the GJR+ scheme. We hence choose a prime
p = α · 2`+1 + 1 with gcd(α, 3) = 1 and ` = log2 nmax. Specifically, for a given target field
size λ = dlog2 pe, we search for greatest integer ` and smallest integer α such that: (i)
3 - α, (ii) log2 α+ `+ 1 < λ, and (iii) p = α · 2`+1 + 1 is prime. For our application, we
thus instantiate MiMC with such 128-bit and 256-bit prime fields:

• for λ = 128, we get p = 407 · 2119 + 1, giving nmax = 118,

• for λ = 256, we get p = 467 · 2247 + 1, giving nmax = 246.

Algorithm 4 gives a masked description of MiMC based on any standard circuit compiler.
For the sake of clarity, we omit to apply the refresh gadget GR

n to the output of an arithmetic
gadget G⊕n or G⊗n and consider that the refresh is part of these gadget when necessary.
For λ = 128 (resp. λ = 256), the number of rounds is r = 81 (resp. r = 162).

Algorithm 4 Masked MiMC
Require: n-sharing x of plaintext x ∈ Fp, n-sharing k of secret key k ∈ Fp
Ensure: n-sharing of MiMC(x, k)
1: for i = 1, . . . , r do
2: x← G⊕n (x,k, ci)
3: k← GR

n(k)
4: y ← G⊗n (x,x)
5: x← G⊗n (x,y)
6: x← G⊕n (x,k)
7: return x

30

Table 5: Gadget counts for masked MiMC.

Mult. Linear Refresh
One round 2 2 1
Full MiMC (λ = 128) 162 163 81
Full MiMC (λ = 256) 324 325 162

6.5 Performances and Comparison

Table 6 and Table 7 summarize the operation counts for full MiMC (with λ = 128) and
full AES with the two masking schemes ISW+ and with GJR+ implemented over the same
finite field. They show that our approach results in a 62% decrease in the randomness
complexity and a 51% decrease of the number of multiplication for MiMC masked at order
128 and in a 46% (resp. 59%) decrease in the randomness complexity and a 20% (resp.
52%) decrease of the number of multiplication for AES masked at order 64 (resp. 128).

Table 6: Performances comparison for masked MiMC (λ = 128).

n Mul Add. Random

8
Full MiMC with ISW+ 10416.0 45408.0 17544.0
Full MiMC with GJR+ 40512.0 66128.0 20100.0
Efficiency ratio (GJR+/ISW+) 3.89 1.46 1.15

16
Full MiMC with ISW+ 41600.0 153056.0 55856.0
Full MiMC with GJR+ 100796.0 165968.0 51872.0
Efficiency ratio (GJR+/ISW+) 2.43 1.09 0.93

32
Full MiMC with ISW+ 166208.0 513536.0 173984.0
Full MiMC with GJR+ 240812.0 399360.0 127088.0
Efficiency ratio (GJR+/ISW+) 1.45 0.78 0.74

64
Full MiMC with ISW+ 664320.0 1773696.0 555456.0
Full MiMC with GJR+ 559740.0 933568.0 300864.0
Efficiency ratio (GJR+/ISW+) 0.85 0.53 0.55

128
Full MiMC with ISW+ 2656000.0 6367744.0 1857664.0
Full MiMC with GJR+ 1275388.0 2136832.0 695104.0
Efficiency ratio (GJR+/ISW+) 0.49 0.34 0.38

For AES, the masking scheme ISW+ can always be implemented over the F256 finite
field. However, to achieve provable region-probing security without relying on Hypothesis 1,
Corollary 1 imposes that the masking scheme GJR+ is implemented over a larger finite field
such as F2128 (which has less efficient arithmetic). To compare the different complexities
of the schemes GJR+ and ISW+, we can implement F2128 as a degree 16 extension
of F28 = F256, so that: (1) an addition over F2128 takes 16 additions over F256, (2) a
multiplication over F2128 takes 81 multiplications (and a large number of additions) over
F256 using Karatsuba’s algorithm (since a multiplication of two polynomials of degree
at most 16 = 24 over F256 requires 81 = 34 multiplications, see [42, Section 8.1]) and
(3) a random element of F2128 requires 16 random elements of F256. The computational
efficiency of the masking scheme GJR+ for AES compared to ISW+ is then only better
for masking order n ≥ 8192 and its randomness complexity is better for masking order
n ≥ 2048.

31

Table 7: Performances comparison for masked AES.

n Mul Add. Random

8
Full AES with ISW+ 64896 297088 123520
Full AES with GJR+ 157056 257408 110080
Efficiency ratio (GJR+/ISW+) 2.43 0.87 0.9

16
Full AES with ISW+ 211712 926976 372480
Full AES with GJR+ 396032 683776 286720
Efficiency ratio (GJR+/ISW+) 1.88 0.74 0.77

32
Full AES with ISW+ 751104 2847232 1077760
Full AES with GJR+ 955904 1725952 706560
Efficiency ratio (GJR+/ISW+) 1.28 0.61 0.66

64
Full AES with ISW+ 2812928 8991744 3148800
Full AES with GJR+ 2239488 4209664 1679360
Efficiency ratio (GJR+/ISW+) 0.8 0.47 0.54

128
Full AES with ISW+ 10868736 29820928 9594880
Full AES with GJR+ 5134336 10016768 3891200
Efficiency ratio (GJR+/ISW+) 0.48 0.34 0.41

Acknowledgments
This work was partly supported by the French FUI-AAP25 VeriSiCC project and by the
Innovate UK Research Grant 104423 (PQ Cybersecurity). The authors would like to thank
Jean-Sébastien Coron as well as the anonymous reviewers for meaningful comments and
suggestions.

References
[1] Advanced Encryption Standard (AES). National Institute of Standards and Technology

(NIST), FIPS PUB 197, U.S. Department of Commerce, Nov. 2001.

[2] M. Ajtai. Secure computation with information leaking to an adversary. In L. Fortnow
and S. P. Vadhan, editors, 43rd ACM STOC, pages 715–724. ACM Press, June 2011.

[3] M.-L. Akkar and C. Giraud. An implementation of DES and AES, secure against
some attacks. In Çetin Kaya. Koç, D. Naccache, and C. Paar, editors, CHES 2001,
volume 2162 of LNCS, pages 309–318. Springer, Heidelberg, May 2001.

[4] M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. MiMC: Efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In
J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of
LNCS, pages 191–219. Springer, Heidelberg, Dec. 2016.

[5] P. Ananth, Y. Ishai, and A. Sahai. Private circuits: A modular approach. In
H. Shacham and A. Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of
LNCS, pages 427–455. Springer, Heidelberg, Aug. 2018.

[6] M. Andrychowicz, S. Dziembowski, and S. Faust. Circuit compilers with O(1/ log(n))
leakage rate. In M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 586–615. Springer, Heidelberg, May 2016.

[7] G. Barthe, S. Belaïd, F. Dupressoir, P.-A. Fouque, B. Grégoire, F.-X. Standaert, and
P.-Y. Strub. Improved parallel mask refreshing algorithms: Generic solutions with

32

parametrized non-interference & automated optimizations. Cryptology ePrint Archive,
Report 2018/505, 2018. https://eprint.iacr.org/2018/505.

[8] G. Barthe, S. Belaïd, F. Dupressoir, P.-A. Fouque, B. Grégoire, P.-Y. Strub, and
R. Zucchini. Strong non-interference and type-directed higher-order masking. In E. R.
Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi, editors, ACM CCS
2016, pages 116–129. ACM Press, Oct. 2016.

[9] A. Battistello, J.-S. Coron, E. Prouff, and R. Zeitoun. Horizontal side-channel
attacks and countermeasures on the ISW masking scheme. In B. Gierlichs and
A. Y. Poschmann, editors, CHES 2016, volume 9813 of LNCS, pages 23–39. Springer,
Heidelberg, Aug. 2016.

[10] A. Battistello, J.-S. Coron, E. Prouff, and R. Zeitoun. Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. Cryptology ePrint Archive, Report
2016/540, 2016. http://eprint.iacr.org/2016/540.

[11] S. Belaïd, F. Benhamouda, A. Passelègue, E. Prouff, A. Thillard, and D. Vergnaud.
Randomness complexity of private circuits for multiplication. In M. Fischlin and J.-S.
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 616–648.
Springer, Heidelberg, May 2016.

[12] S. Belaïd, F. Benhamouda, A. Passelègue, E. Prouff, A. Thillard, and D. Vergnaud.
Private multiplication over finite fields. In J. Katz and H. Shacham, editors,
CRYPTO 2017, Part III, volume 10403 of LNCS, pages 397–426. Springer, Heidelberg,
Aug. 2017.

[13] S. Belaïd, J.-S. Coron, E. Prouff, M. Rivain, and A. R. Taleb. Random probing security:
Verification, composition, expansion and new constructions. In D. Micciancio and
T. Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 339–368.
Springer, Heidelberg, Aug. 2020.

[14] S. Belaïd, D. Goudarzi, and M. Rivain. Tight private circuits: Achieving probing
security with the least refreshing. In T. Peyrin and S. Galbraith, editors, ASI-
ACRYPT 2018, Part II, volume 11273 of LNCS, pages 343–372. Springer, Heidelberg,
Dec. 2018.

[15] D. J. Bernstein and T. Chou. Faster binary-field multiplication and faster binary-field
MACs. In A. Joux and A. M. Youssef, editors, SAC 2014, volume 8781 of LNCS,
pages 92–111. Springer, Heidelberg, Aug. 2014.

[16] D. J. Bernstein, T. Chou, and P. Schwabe. McBits: Fast constant-time code-based
cryptography. In G. Bertoni and J.-S. Coron, editors, CHES 2013, volume 8086 of
LNCS, pages 250–272. Springer, Heidelberg, Aug. 2013.

[17] D. G. Cantor. On arithmetical algorithms over finite fields. J. Comb. Theory, Ser. A,
50(2):285–300, 1989.

[18] C. Carlet, L. Goubin, E. Prouff, M. Quisquater, and M. Rivain. Higher-order masking
schemes for S-boxes. In A. Canteaut, editor, FSE 2012, volume 7549 of LNCS, pages
366–384. Springer, Heidelberg, Mar. 2012.

[19] G. Cassiers and F. Standaert. Trivially and efficiently composing masked gadgets with
probe isolating non-interference. IEEE Trans. Inf. Forensics Secur., 15:2542–2555,
2020.

33

https://eprint.iacr.org/2018/505
http://eprint.iacr.org/2016/540

[20] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to
counteract power-analysis attacks. In M. J. Wiener, editor, CRYPTO’99, volume
1666 of LNCS, pages 398–412. Springer, Heidelberg, Aug. 1999.

[21] T. Chou. McBits revisited. In W. Fischer and N. Homma, editors, CHES 2017,
volume 10529 of LNCS, pages 213–231. Springer, Heidelberg, Sept. 2017.

[22] J.-S. Coron. Higher order masking of look-up tables. In P. Q. Nguyen and E. Os-
wald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 441–458. Springer,
Heidelberg, May 2014.

[23] J.-S. Coron, E. Prouff, M. Rivain, and T. Roche. Higher-order side channel security
and mask refreshing. In S. Moriai, editor, FSE 2013, volume 8424 of LNCS, pages
410–424. Springer, Heidelberg, Mar. 2014.

[24] J.-S. Coron, A. Roy, and S. Vivek. Fast evaluation of polynomials over binary finite
fields and application to side-channel countermeasures. In L. Batina and M. Robshaw,
editors, CHES 2014, volume 8731 of LNCS, pages 170–187. Springer, Heidelberg, Sept.
2014.

[25] A. Duc, S. Dziembowski, and S. Faust. Unifying leakage models: From probing attacks
to noisy leakage. In P. Q. Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume
8441 of LNCS, pages 423–440. Springer, Heidelberg, May 2014.

[26] G. Fumaroli, A. Martinelli, E. Prouff, and M. Rivain. Affine masking against higher-
order side channel analysis. In A. Biryukov, G. Gong, and D. R. Stinson, editors,
SAC 2010, volume 6544 of LNCS, pages 262–280. Springer, Heidelberg, Aug. 2011.

[27] S. Gao and T. Mateer. Additive fast Fourier transforms over finite fields. IEEE
Transactions on Information Theory, 56(12):6265–6272, Dec 2010.

[28] L. Goubin and J. Patarin. DES and differential power analysis (the “duplication”
method). In Çetin Kaya. Koç and C. Paar, editors, CHES’99, volume 1717 of LNCS,
pages 158–172. Springer, Heidelberg, Aug. 1999.

[29] D. Goudarzi, A. Joux, and M. Rivain. How to securely compute with noisy leakage in
quasilinear complexity. In T. Peyrin and S. Galbraith, editors, ASIACRYPT 2018,
Part II, volume 11273 of LNCS, pages 547–574. Springer, Heidelberg, Dec. 2018.

[30] D. Goudarzi and M. Rivain. How fast can higher-order masking be in software? In
J.-S. Coron and J. B. Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of
LNCS, pages 567–597. Springer, Heidelberg, Apr. / May 2017.

[31] Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against
probing attacks. In D. Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages
463–481. Springer, Heidelberg, Aug. 2003.

[32] A. Journault and F.-X. Standaert. Very high order masking: Efficient implementation
and security evaluation. In W. Fischer and N. Homma, editors, CHES 2017, volume
10529 of LNCS, pages 623–643. Springer, Heidelberg, Sept. 2017.

[33] H. Kim, S. Hong, and J. Lim. A fast and provably secure higher-order masking of
AES S-box. In B. Preneel and T. Takagi, editors, CHES 2011, volume 6917 of LNCS,
pages 95–107. Springer, Heidelberg, Sept. / Oct. 2011.

[34] T. S. Messerges. Securing the AES finalists against power analysis attacks. In
B. Schneier, editor, FSE 2000, volume 1978 of LNCS, pages 150–164. Springer,
Heidelberg, Apr. 2001.

34

[35] E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen. A side-channel analysis
resistant description of the AES S-box. In H. Gilbert and H. Handschuh, editors,
FSE 2005, volume 3557 of LNCS, pages 413–423. Springer, Heidelberg, Feb. 2005.

[36] J. M. Pollard. The fast Fourier transform in a finite field. Mathematics of Computation,
25:365–374, 1971.

[37] T. Prest, D. Goudarzi, A. Martinelli, and A. Passelègue. Unifying leakage models
on a Rényi day. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part I,
volume 11692 of LNCS, pages 683–712. Springer, Heidelberg, Aug. 2019.

[38] E. Prouff and M. Rivain. Masking against side-channel attacks: A formal security
proof. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881
of LNCS, pages 142–159. Springer, Heidelberg, May 2013.

[39] O. Reparaz, B. Bilgin, S. Nikova, B. Gierlichs, and I. Verbauwhede. Consolidating
masking schemes. In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015,
Part I, volume 9215 of LNCS, pages 764–783. Springer, Heidelberg, Aug. 2015.

[40] M. Rivain and E. Prouff. Provably secure higher-order masking of AES. In S. Mangard
and F.-X. Standaert, editors, CHES 2010, volume 6225 of LNCS, pages 413–427.
Springer, Heidelberg, Aug. 2010.

[41] A. Shamir. How to share a secret. Communications of the Association for Computing
Machinery, 22(11):612–613, Nov. 1979.

[42] J. von zur Gathen and J. Gerhard. Modern computer algebra (2. ed.). Cambridge
University Press, 2003.

[43] J. Wang, P. K. Vadnala, J. Großschädl, and Q. Xu. Higher-order masking in practice:
A vector implementation of masked AES for ARM NEON. In K. Nyberg, editor,
CT-RSA 2015, volume 9048 of LNCS, pages 181–198. Springer, Heidelberg, Apr. 2015.

[44] Y. Wang and X. Zhu. A fast algorithm for the Fourier transform over finite fields
and its VLSI implementation. IEEE Journal on Selected Areas in Communications,
6(3):572–577, April 1988.

A General Definitions
We give hereafter the formal security properties of uniformity and input-output separation
for general gadgets for binary operations which generalize the definitions given for the
refresh gadgets in Subsection 3.1.

Definition 10 (Uniformity). Let v ∈ Kn and g be any binary operation g : (x, y) ∈ K2 7→
z ∈ K. A v-gadget G of g is uniform if for every x ∈ Kn and y ∈ Kn, the output G(x,y)
is a uniform v-linear sharing of g(〈v,x〉, 〈v,y〉).

Let g be any binary operation g : (x, y) ∈ K2 7→ z ∈ K and G be a v-gadget for g. In
the following, we shall say that a triple of vector (x,y, z) ∈ (Kn)3 is admissible for G if
there exists a random tape ρ such that z = Gρ(x, z). For an admissible triple (x,y, z) and
a set W ⊆ [|G|], the wire distribution of G in W induced by (x,y), denoted GW(x,y, z),
is the random vector GρW(x,y), i.e. the tuple of wire values for the wire indexes in W,
obtained for a uniform drawing of ρ among the set {ρ ∈ Kq ; GρW(x,y) = z}.

Definition 11 (IOS). Let v ∈ Kn and g be any binary operation g : (x, y) ∈ K2 7→ z ∈ K.
A v-gadget G of g is said t-input-output separative (t-IOS), if it is uniform and if for every
admissible triple (x,y, z) and every set of wires W ⊆ [s] with |W| ≤ t, there exists a
(two-stage) simulator SG,W =

(
S(1)
G,W ,S

(2)
G,W

)
such that

35

1. S(1)
G,W(⊥) = (I1, I2,J) where I1, I2,J ⊆ [n], with |I1|+ |I2| ≤ |W| and |J | ≤ |W|;

2. S(2)
G,W(x|I1 ,y|I2 , z|J) id= GW(x,y, z).

A v-gadget is simply said to be IOS if it is n-IOS.

B Random Probing and Noisy Leakage Security
Ajtai introduced in [2] the so-called random probing model in which an adversary cannot
choose a fixed number of arbitrary wires but instead the leaking wires are chosen indepen-
dently, each with some given probability p. This model is therefore similar to the binary
erasure channel used in coding theory and information theory.

Definition 12 (Random Probing Model). Let ε, p ∈ [0, 1]. A randomized arithmetic
circuit Ĉ is (p, ε)-random probing secure w.r.t. an encoding algorithm Encode if there
exists a simulator S

Ĉ
such that, sampling a set of wires W ⊆

[
|Ĉ|
]
, where each wire from

Ĉ belongs to W independently with probability p, and for every plain input x, we have:

S
Ĉ,W(⊥) id= ĈW(Encode(x)) . (15)

with probability at least 1 − ε over the random sampling of W. A circuit compiler
(Compile,Encode,Decode) is (p, ε)-random probing secure if for every circuit C the compiled
circuit Ĉ = Compile(C) is (p, ε)-random probing secure w.r.t. Encode (where p and ε might
be a function of the encoding order and the circuit size).

Using the classical Chernoff’s inequality, it is easy to prove that security in the region
probing model implies security in the random probing model with appropriate parameters.

Proposition 2. Let r ∈ [0, 1] and Ĉ be a randomized circuit r-region probing secure w.r.t.
an encoding algorithm Encode with a circuit partition Ĉ ≡ (C1, C2, . . . , Cm) where |Ci| ≥ t
for each i ∈ {1, . . . ,m}. The circuit Ĉ is (p, ε)-random probing secure w.r.t. Encode with

p = r

2 and ε ≤ m · exp(−p · t/3).

Proof. More generally, let δ ≥ 1 and let us suppose that p ≤ r/(1 + δ). LetW ⊆
[
|Ĉ|
]
be a

wire set where each wire from Ĉ belongs to W independently with probability p. For each
subcircuit Ci of the circuit partition Ĉ ≡ (C1, C2, . . . , Cm), we denoteWi =W∩Ci for i ∈
{1, . . . ,m}. By Chernoff’s bound, we have Pr[|Wi| ≥ (1+δ)p|Ci|] ≤ exp(−δ2p|Ci|/(δ+2))]
for i ∈ {1, . . . ,m} and therefore

Pr
(
|Wi| ≥ dr|Ci|e

)
≤ exp(−δp · t/3)

for i ∈ {1, . . . ,m}. Using the union bound over the m sets Wi for i ∈ {1, . . . ,m} and
setting δ = 1, we get the claimed bounds.

Noisy Leakage Model. The noisy leakage model was first formalized by Prouff and
Rivain [38]. In this model, the adversary may learn information about every single wire;
however, instead of learning exactly the value x of a wire (as in the probing model), the
adversary learns a randomized function f(x) of x. The generality of the noisy leakage
model allows it to encompass several real-life instances of leakages, making it a very
realistic leakage model. However, due to its somewhat analytical nature, security proofs
are notoriously hard to do in it.

36

Thankfully, is has been shown that the noisy leakage and random probing models are
equivalent: one implication was proven [25] and improved in [37], the other one was proven
in [37]. As a workaround to the complexity of the noisy leakage model, one can therefore
establish security proofs in the random probing model and subsequently transfer them in
the noisy leakage model using the equivalence between the two. Proposition 2 provides an
additional tool to this proof strategy and, combined with results of [25, 37], imply that a
compiler secure in the region probing model is secure in the noisy leakage model.

Security of the GJR+ scheme. We have the following corollary of Theorem 3.

Corollary 2. If the FFT circuit is linear and under the tRn-IOS property of the refresh
gadget, the GJR+ compiler is (pn, εn)-random probing secure with

pn = 1
2 max
t≤tRn

min
((n− 1)− 6t

2 · |FFTn|
,

t

|GR
n|

)
(16)

and
εn = (2N⊕ + 4N⊗) · exp(−n · pn) + 3N⊗ · n

|F|
, (17)

where N⊕ (resp. N⊗) is the number of addition gates (resp. multiplication gates) in the
original circuit.

Proof. Let C be an arithmetic circuit composed of N⊕ addition (or linear) gates and N⊗
multiplication gates and let Ĉ be the corresponding compiled circuit output from the
GJR+ compiler. We consider a split of Ĉ into different regions following the region probing
security reduction of the GJR+ scheme. Specifically, each addition (or sharewise) gadget
and each refresh gadget consists in a single region while each multiplication gadget gives
rise to three different regions: the first block (i.e. the circuit considered in Lemma 1),
the internal refresh, and the second block (i.e. the circuit considered in Lemma 2). We
hence get a total of Nreg = 2N⊕ + 4N⊗ regions in Ĉ (counting the refresh gadgets). In
the random probing model, each wire leaks independently of the other wires with a given
probability, denoted pn here. We show hereafter that with overwhelming probability over
the distribution of the indexes of the leaking wires, the full random probing leakage can
be perfectly simulated. More specifically, we exhibit two failure events F1 and F2 that
may prevent such a perfect simulation. Whenever none of these failure events occur, a
perfect simulation is achieved in the same way as in the region probing security reduction
given above.

The first failure event F1 occurs when the number of leaking wires in at least one region
R exceeds the threshold 2pn|R| where |R| denotes the number of wires in R. Applying the
Chernoff bound, this occurs in a given region with probability lower than

exp
(
− pn · |R|

3

)
≤ exp(−n · pn) , (18)

where the inequality holds since the minimal value of |R| is obtained for the addition
gadget with |R| = 3n. We deduce that the first failure event occurs with probability

Pr(F1) ≤ Nreg · exp(−n · pn) . (19)

Provided that the first failure event does not occur, the random probing simulator
needs to simulate less than 2pn|R| wires per region that is rn|R| wires per region where
rn = 2pn is as defined in Theorem 3 for tFFT

n = (n − 1). This translates to simulating
at most tFFT

n = (n− 1) probes in each FFT circuit through the above security reduction.
Our second failure event F2 occurs whenever the n− 1 leaking wires within a FFT circuit
cannot be perfectly simulated. Using Lemma 2 from [29] (see Appendix C) and thanks to

37

the linearity of the FFT circuit, we have that for any choice of n− 1 leaking wires from
the FFT circuit, the probability that the leaking wires cannot be simulated is lower than
n/|F|. Besides the linearity of the FFT circuit, the only requirement for this upper bound
to apply is that the choice of the leaking wires is made independently of ω, which occurs
in the random probing model since the placement of the probes is randomly draw (with
leakage probability p for each wire) independently of the random generation of ω. We
deduce that the second failure event F2 occurs with probability

Pr(F2) ≤ 3N⊗ · n
|F|

. (20)

Whenever no failure event occur, the leaking wires within each FFT circuit can be
perfectly simulated which –following the above reduction– implies that the overall leaking
wires can be perfectly simulated. It results that the GJR+ scheme is (pn, εn)-random
probing secure with

εn ≤ Pr(F1 ∧ F2) ≤ Pr(F1) + Pr(F2) , (21)

which together with Equation 19 and Equation 20 concludes the proof.

In the above random probing security proof, the tolerated number of probes in an FFT
circuit is tFFT

n = (n− 1) which implies γ ≈ 1 in Equation 8. On the other hand, our refresh
gadget is such that β = 3. Assuming a FFT algorithm satisfying |FFTn| = α · n logn, we
finally get

pn = rn
2 ≈

(1
4α+ 36

)
· 1

logn . (22)

For instance, the NTT algorithm used in the original GJR scheme satisfies α ≈ 6, which
gives pn ≈ 1

60 logn .

C Lemmas from [29]
We recall hereafter the key lemmas from [29] for the security of the GJR scheme. Let
FFTn be a linear FFT circuit on field K taking an ω-encoding as input. Every value v
taken by a wire of FFTncan be expressed as

v =
n−1∑
i=0

αiai (23)

where the αi’s are constant coefficients over K. The lemmas use the following notation

[v] = (α0, α1, . . . , αn−1)T (24)

for the column vector of coefficients of such a wire value. Similarly, we shall denote
[a] = (1, ω, ω2, . . . , ωn−1)T for an ω-encoding (a1, . . . , an) of a variable a since we have
a =

∑n−1
i=0 ω

iai by definition. Moreover, [v0, v1, . . . , v`] shall denote the matrix with column
vectors [v0], [v1], . . . , [v`].

Lemma 3 (Lemma 1 of [29]). Let v1, v2, . . . , v` be the values taken by ` < n wires of FFTn
on input a uniform ω-encoding of a variable a. The distribution of the tuple (v1, v2, . . . , v`)
is statistically independent of a iff

[a] /∈ span([v1, . . . , v`]) , (25)

where span(·) refers to the linear span of the input matrix.

38

Lemma 4 (Lemma 2 of [29]). Let ω be a uniform random element in K∗. And let
v1, v2, . . . , v` be a set of ` < n intermediate variables of FFTn on input an ω-encoding of a
variable a. We have:

Pr
(
[a] ∈ span([v1, . . . , v`])

)
≤ `

|K| − 1 <
n

|K|
, (26)

where the above probability is taken over a uniform random choice of ω.

From these two lemmas, the values taken by any set of ` < n wires of FFTn can be
perfectly simulated without knowledge of a. The simulation simply works by taking a
random a, picking a random ω-encoding of a, and evaluating the wires v1, . . . , v` accordingly
leads to a perfect simulation. According to Lemma 2 of [29] such a simulation fails with
probability lower than n/|K|.

D Complements on Gao-Mateer additive FFT

D.1 Algorithms used in the Gao-Mateer additive FFT

This section presents the detailed algorithms used in the Gao-Mateer additive FFT.

Algorithm 5 TaylorExpansion(f,N)
Require: f ∈ F[x] of degree < N
Ensure: The Taylor expansion {h0, . . . , hN/2−1} of f w.r.t. (x2 − x)
1: if N ≤ 2 then
2: return {f}
3: k ← N/4
4: g0 ←

∑2k
i=0 fi · xi . g0 is the low-order coefficients of f

5: g1 ←
∑2k
i=0 fi+2k · xi . g1 is the high-order coefficients of f

6: for i = 0, . . . , k − 1 do
7: g1(x)← g1(x)⊕ g1,i+k · xi
8: g0(x)← g0(x)⊕ g1,i · xi+k

9: V0 ← TaylorExpansion(g0, N/2) . Recursive call
10: V1 ← TaylorExpansion(g1, N/2) . Recursive call
11: return V0‖V1

Algorithm 6 Fold(B)
Require: A basis B = {β0, . . . , βm−1} ⊂ Fm
Ensure: Two new basis G,D ⊂ Fm−1

1: for i = m− 2, . . . , 0 do
2: γi ← βi/βm−1
3: δi ← γ2

i − γi
4: G← {γ0, . . . , γm−2}
5: D ← {δ0, . . . , δm−2}
6: return G,D

39

Algorithm 7 GaoMateerFFT(f,m,B)
Require: A polynomial f ∈ F[x] of degree < 2m, a basis B = {β0, . . . , βm−1} ⊂ Fm
Ensure: The additive FFT of f over the span 〈B〉
1: if m = 1 then
2: return {f(0), f(β0)}.
3: Compute g(x) = f(βm−1x).
4: Compute the Taylor expansion of g, i.e. g(x) =

∑
i(gi,0 + gi,1x) · (x2 − x)i.

5: Let g0 ←
∑
i gi,0x

i and g1 ←
∑
i gi,1x

i.
6: Let G,D ← Fold(B), and k = 2m−1.
7: {u0, u1, . . . , uN

2 −1} ← GaoMateerFFT(g0,m− 1, D)
8: {v0, v1, . . . , vN

2 −1} ← GaoMateerFFT(g1,m− 1, D)
9: for i = 0, . . . , N2 − 1 do
10: wi ← ui ⊕G[i] · vi
11: wN

2 +i ← wi ⊕ vi
12: return {w0, w1, . . . , wn−1}

D.2 Half-FFT

Our improved (half-)FFT works with a self-folding basis and its iterated foldings. We clarify
the notation: let B = {β0, . . . , βm−1} be a self-folding basis, and Bk = {βm−k, . . . , βm−1}
for k ∈ {1, . . . ,m}. We also denote Gk = {βm−k−1, . . . , βm−2}, so that |Bk| = |Gk| = k,
and (Gk−1, Bk−1) = Fold(Bk).

For our purposes, it is adequate to precompute Gj [i] for 1 ≤ j < m and 0 ≤ i < 2j . In
this section, we describe how various algorithmic tricks can help to improve the additive
FFT of [27] in our setting. First, we observe that from Proposition 1, it holds that for
each Bk, the (k − 1)-th element of Bk is 1, hence the step 3 of Algorithm 7 becomes
unnecessary; in total, this saves us N logN scalar multiplications. Second, we note that
since each Gk is a subset of Gm−1, storing precomputed multiplication tables for the
step 10 does not require to store N

2 + N
4 + · · ·+ 1 = N − 1 precomputed tables anymore,

but rather N
2 − 1 (not having to store the multiplication by zero saves an additional

element). Added to the removal of step 3, this more than divides by two the number of
precomputed tables. As a final algorithmic optimization, we make full use of the fact that
for polynomial multiplications, half the inputs of the FFT’s call are zero coefficients which
leads to speed up to the computations by a factor two compared to a regular additive
FFT. This optimized FFT is described in Algorithm 8.

40

Algorithm 8 HalfFFT(f,B)
Require: f ∈ F[x] of degree < N = 2m−1, a self-folding basis B = {β0, . . . , βm−1} and

its iterated foldings Gm−1, . . . , G1.
Ensure: The evaluation of f over the F2-linear space generated by Bm
1: W ← 0N
2: if m = 2 then . Bottom of the recursion
3: W0 ← f0 . Since ∀j,Gj [0] = 0, it simplifies the computation
4: W1 ← f0 ⊕G1[1] · f1
5: W2 ← f0 ⊕ f1
6: W3 ←W1 ⊕ f1
7: return W
8: T ← TaylorExpansion(f,N/2) . T is a list of N/4 polynomials Ti = Ti,0 ⊕ Ti,1x
9: g0 ←

∑N/4−1
i=0 Ti,0 · xi

10: g1 ←
∑N/4−1
i=0 Ti,1 · xi

11: U ← HalfFFT(g0, {β1, . . . , βm−1}) . Recursive call
12: V ← HalfFFT(g1, {β1, . . . , βm−1}) . Recursive call
13: for i = 0, . . . , N/2 do
14: Wi ← Ui ⊕Gm−1[i] · Vi
15: Wi+N/2 ←Wi ⊕ Vi
16: return W

The optimizations we just described apply in a similar way to the inverse additive
FFT. The only difference here is that we cannot exploit anymore the fact that half of
the polynomial coefficients are zero: indeed, since we use the additive FFT to multiply
two polynomials of degree at most n− 1 = N/2− 1, we expect the degree of the result to
be at most N − 2. Hence, simply applying the inverse of each operations of Algorithm 8
in reverse order would yield an incorrect result. Our optimized inverse additive FFT is
described in Algorithm 9.

Algorithm 9 InverseFFT(W,B)
Require: A self-folding basis B = {β0, . . . , βm−1} and its foldings Gm−1, . . . , G1, the

evaluation W of f over the F2-linear space generated by B
Ensure: A polynomial f ∈ F[x] of degree < N = 2m
1: if m = 2 then . Bottom of the recursion
2: u←W1 ⊕W2
3: v ←W1 ⊕W3
4: f0 ←W0 ⊕ (G1[0] · u)
5: f1 ← (G1[1] · (v))⊕ f0 ⊕W0 ⊕ u
6: f2 ← f1 ⊕ v
7: f3 ← f1 ⊕ f2 ⊕W0 ⊕W2
8: return f0 ⊕ f1 · x⊕ f2 · x2 ⊕ f3 · x3

9: for i = 0, . . . , N/2 do
10: Vi ←Wi ⊕Wi+N/2
11: Ui ←Wi ⊕Gm−1[i] · Vi
12: U ← (Ui)i, V ← (Vi)i
13: g0 ← InverseFFT(U, {β1, . . . , βm−1}) . Recursive call
14: g1 ← InverseFFT(V, {β1, . . . , βm−1}) . Recursive call
15: T ← (g0,i + g1,i · x)0≤i≤N/2
16: f ← inverseTaylorExpansion(T,N)
17: return f

41

D.3 Complexity Analysis
In this section, we provide the complexity of our new algorithms. We do not change the
algorithm for the Taylor expansion, which cost remains the same: N(logN − 1)/2 field
additions and no multiplication.

Let A(N) and M(N) denote the number of field additions and multiplications entailed
by Algorithm 8:

• We note that M(4) = 1 and that M(N) = 2 ·M(N/2) +N/2. From these two facts,
one can show by induction that M(N) = 1

2 ·N · log2(N)− 3
4 ·N .

• Similarly, we have A(4) = 3 and A(N) = 1
4N log N

2 −
1
4N + 2A(N/2) +N . It follows

by induction that A(N) = 1
8 ·N · (log2(N))2 + 5

8 ·N · log2(N)−N .

Using the same techniques, one can show that Algorithm 9 performs 1
4 ·N · (log2(N))2 +

3
4 · log2(N) additions and 1

2 · log2(N)− 1
2 ·N multiplications.

We note that thanks to our use of self-folding bases, we divide by about 4 the number of
multiplications compared to [27]. Similarly, exploiting the degree of the input polynomials
divides the number of additions in Algorithm 7 by two. For all practical purposes, our
algorithms even perform better than the specialized additive FFT described in [27, Section
IV]. This FFT requires slightly more multiplications (1

2N log2(N)) than ours, and the
number of additions (N log2(N) + 1

2N log2(N) log2 log2N), while asymptotically better
than ours, remains larger than the number of additions in Algorithm 9 for any N ≤ 256.
Since the specialized FFT works only for m a power of two, it will only start to outperform
Algorithm 9 for N ≥ 216, corresponding to a masking order n = 32768. It also remains
to be studied whether this algorithm can exploit the degree of the input polynomials to
reduce the number of additions, as done by Algorithm 7. We note that just like in [27], all
the multiplications in our algorithms are field multiplications by a constant, which can be
stored in precomputed tables.

42

	Introduction
	Background on Probing Secure Circuits
	Notations
	Basic Definitions
	Probing Security

	Composability from Input-Output Separation
	Input-Output Separation
	Composition Theorem
	Comparison with Non-Interference Security Notions

	An Input-Output Separative Refresh Gadget
	Refresh Gadget Description
	Proof of Input-Output Separation

	Revisiting the GJR Masking Scheme
	The GJR+ Scheme
	Field Extension and FFT Algorithm
	Security Reduction
	Security Proof for Large Fields

	Application
	Implementation of GJR+
	Implementation of ISW+
	Masking of AES
	Masking of MiMC
	Performances and Comparison

	General Definitions
	Random Probing and Noisy Leakage Security
	Lemmas from AC:GouJouRiv18
	Complements on Gao-Mateer additive FFT
	Algorithms used in the Gao-Mateer additive FFT
	Half-FFT
	Complexity Analysis

