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1 Introduction
The previous chapters discussed breaking practical cryptographic systems by solving the
mathematical problems directly. This chapter outlines techniques for breaking cryptography
by taking advantage of implementation mistakes made in practice, with a focus on those
that exploit the mathematical structure of the most widely used public-key primitives.

In this chapter, we will mostly focus on public-key cryptography as it is used on
the Internet, because as attack researchers we have the greatest visibility into Internet-
connected hosts speaking cryptographic protocols.

While this chapter was being written, prior to the standardisation or wide-scale
deployment of post-quantum cryptography, the set of algorithms used for public-key
cryptography on the Internet was surprisingly limited.

In the context of communications protocols such as the transport layer security (TLS),
secure shell (SSH), and Internet protocol security (IPsec), key exchange is accomplished
by using finite-field Diffie–Hellman (DH), elliptic-curve Diffie–Hellman (ECDH), or Rivest–
Shamir–Adleman (RSA) encryption. Historically, RSA encryption was the most popular
key-exchange method used for TLS, while SSH and IPsec only supported Diffie–Hellman.
It is only in the past few years that ECDH key exchange has begun to be more popular for
all three protocols. The digital signature algorithms most widely used in practice are RSA,
elliptic-curve DSA (ECDSA), and prime field DSA. RSA is by far the most popular digital
signature algorithm in use, and is only just now beginning to be supplanted by ECDSA
for network protocols.

2 RSA
Historically, RSA has been by far the most common public-key encryption method, as well
as the most popular digital signature scheme, and it remains extremely commonly used in
the wild. Ninety percent of the HTTPS certificates seen by the ICSI Certificate Notary
use RSA for digital signatures [ICS20]. Both TLS 1.1 [DR06] (standardised in 2006) and
1.2 [DR08] (standardised in 2008) require TLS-compliant implementations to support RSA
for key-exchange. RSA encryption and signatures are also still widely used for PGP. Both
host and client authentication via RSA digital signatures were recommended in the original
SSH specifications [YL06], and remain in common use today [Mil20]. RSA also remains
ubiquitous for other authentication scenarios, including smart cards and code signing.
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2.1 RSA Key Generation
RSA Key Generation, in Theory Textbook RSA key generation works as follows: first,
one generates two primes p and q of equal size, and verifies that p − 1 and q − 1 are
relatively prime to the desired public exponent e. Then one computes the modulus N = pq
and private exponent d = e−1 mod (p− 1)(q − 1). The public key is then the pair (e,N)
and the private key is the pair (d,N) [RSA78].

Factorisation of the modulus N remains the most straightforward method of attack
against RSA, although this is not known to be equivalent to breaking RSA [BV98, AM09].

RSA Key Generation, in Practice Both textbook RSA and the description of RSA
in many standards leave a number of choices to implementers. In addition, there are
several unusual properties of most RSA implementations that are surprising from a purely
theoretical point of view.

2.2 Prime Generation
The simplest method for an implementation to generate a random prime is to seed a
pseudorandom-number generator (PRNG), read a bit string out of the PRNG of the desired
length of the prime, interpret the bit string as an integer, and then test the integer for
primality by using, typically, a combination of trial division and some number of iterations
of a probabilistic primality test such as Miller–Rabin [Mil76, Rab80]. If the number is
determined to be composite, a new sequence of bits is read from the pseudorandom-number
generator and the primality tests are repeated until a prime is found. Alternatively, an
implementation may start at a pseudorandomly generated integer and increment or sieve
through successive integers within some range until a prime is found. The prime-generation
process varies across implementations in different cryptographic libraries [AMPS18].

2.3 Prime Structure
Many implementations enforce additional structural properties of the primes that they
generate for RSA. Common properties include being ‘safe’ primes, that is, that (p− 1)/2
is also a prime, or that (p− 1) and/or (p+ 1) have known prime factors of some minimum
size. For example, the United States National Institute of Standards and Technology
(NIST) recommends that these ‘auxiliary’ prime factors should be at least 140 bits for the
1024-bit primes used to construct a 2048-bit RSA key [Inf13]. This is intended to protect
against Pollard’s p− 1 and p+ 1 factoring algorithms [Pol74]. For the 1024-bit and larger
key sizes common in practice, random primes are unlikely to have the required structure
to admit an efficient attack via these algorithms, so enforcing a particular form for the
primes used for RSA is less important.

Implementation Fingerprints The different choices that implementations make in gen-
erating primes can result in quite different distributions of properties among the primes
generated by these distinct implementations. Some of these are detectable only from the
prime factorisation, others are evident from the public key.

Mironov [Mir12] observed that OpenSSL (Open Secure Sockets Layer), by default,
generates primes p that have the property that p 6= 1 mod 3, p 6= 1 mod 5, . . . , p 6=
1 mod 17 863; that is, that p− 1 is not divisible by any of the first 2048 primes pi. The
probability that a random 512-bit prime has this property is

∏2048
i=2 (pi−2)/(pi−1) ≈ 7.5%,

so the probability that a random 1024-bit RSA modulus has this property is 0.05625%,
and thus a factored RSA key can be identified as having been generated by OpenSSL or
not with good probability.
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Svenda et al. [SNS+16] documented numerous implementation artifacts that could be
used to identify the implementation used to generate a key or a collection of keys. Many
libraries generated primes with distinctive distributions of prime factors of p− 1 and p+ 1,
either eliminating small primes, enforcing large prime divisors of a given size, or some
combination of the two; some libraries clamped the most significant bits of the primes p
and q to fixed values such as 1111 and 1001, resulting in a predictable distribution of most
significant bits of the public modulus.

The ability to fingerprint implementations does not seem to be an immediate vulnera-
bility for RSA encryption or signatures, although for some applications of RSA, where, for
example, a user might use a public key as a pseudonymous identifier, the loss of privacy
due to implementation fingerprinting may constitute a vulnerability. However, this analysis
later led to the discovery of ROCA (‘Return of Coppersmith’s Attack’), which exploited
the fact that the specific prime-generation process used by Infineon smart cards resulted
in so much structure to the prime that the resulting RSA keys were efficiently factorable
using a variant of Coppersmith’s lattice methods [NSS+17].

2.4 Prime Sizes
RSA moduli are almost universally generated from two equal-sized primes. However,
exceptions occasionally arise. There are a small number of RSA moduli that have been
found to be divisible by very small primes: Lenstra et al. [LHA+12] report finding 171
RSA moduli used for HTTPS and PGP with prime factors less than 224 in 2012, and
Heninger et al. [HDWH12] report finding 12 SSH host keys that were divisible by very
small primes. Many of these may be due to copy–paste or memory errors in an otherwise
well-formed modulus; several of the moduli with small factors were one hex character
different from another valid modulus they observed in use, or contained unlikely sequences
of bytes.

Anecdotally, at least one RSA implementation accidentally generated prime factors
of unequal sizes, because the library had accidentally fixed the size of one prime to 256
bits, and then generated an n-bit RSA modulus by generating a second prime of length
n− 256 [Koc20].

2.5 Short Modulus Lengths
In 1999, 512-bit RSA was first factored [CDL+00] and, by 2015, 512-bit factorisation was
achievable within a few hours using relatively modest computing resources [VCL+16]. The
use of 1024-bit RSA moduli was allowed by NIST recommendations until 2010, deprecated
until 2013, and disallowed after 2013 [BR11]. In 2009, 1024-bit RSA was already believed
to be feasible in principle to a powerful adversary using only general-purpose computing,
although such a calculation was thought to be infeasible for an academic community effort
for the near future, and as of this writing no factorisation of a generic 1024-bit RSA
modulus has been reported yet in the public literature [BKK+09].

However, 512- and 1024-bit RSA keys remained in common use well after these dates
for a number of reasons including hard-coded limits on key sizes and long-term keys that
were difficult to deprecate. Multiple long-term TLS certificate authority root certificates
with 1024-bit RSA keys and multi-decade validity periods remained trusted by major
browsers as late as 2015 [Wil14], and the process of certificate authorities phasing out
end-user certificates with 1024-bit RSA keys was still in process years afterward. DNSSEC
keys are practically limited to 1024-bit or shorter RSA signing keys because many older
router and network middlebox implementations cannot handle User Datagram Protocol
(UDP) packets larger than 1500 bytes [BD11]. Because of these limitations, and the fact
that DNSSEC predates widespread support for ECDSA, which has much shorter keys and
signatures, tens of thousands of 512-bit RSA public keys were still in use for DNSSEC in
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2015 [VCL+16]. A few thousand 512-bit RSA keys were still in use in 2015 for both HTTPS
and mail protocols, and millions of HTTPS and mail servers still supported insecure 512-bit
‘export’-grade RSA cipher suites [DAM+15, APPVP15, VCL+16]. As of 2020, support for
512-bit RSA has dropped to less than 1% of popular HTTPS sites [Qua20].

There are multiple structural causes contributing to the long lifespans of short keys.
The choice of public-key length is typically left to the party generating the key. Since RSA
keys were historically considered to be computationally expensive to generate, RSA key
pairs tend to be infrequently generated and valid for long periods. In order to maintain
interoperability, most implementations have traditionally been permissive in the lengths of
RSA moduli they will accept.

Pathologically short keys are also occasionally found in practice, presumably as a result
of implementers who do not understand the security requirements for factorisation-based
cryptosystems. A 128-bit RSA modulus used for the DKIM protocol used to authenticate
email senders was in use in 2015 [VCL+16]. In 2016, an implantable cardiac device made
by St. Jude Medical was found to be secured using 24-bit RSA [Liv16]. (The US FDA
later issued a recall.)

2.6 Public Exponent Choice
In theory, the public exponent e could have any length, and RSA is not known to be
insecure in general with most possible choices of e, either large or small. In practice,
however, implementations nearly universally use short exponents, and in fact typically
restrict themselves to a handful of extremely common values.

Common Exponents The public exponent e does not contain any secret information,
and does not need to be unique across keys. By far the most commonly used RSA public
exponent is the value 65 537 = 216 + 1, which has the virtue of being relatively small and
has low Hamming weight, so that encryption and signature verification are both fast.

Short Public Exponents Although very small e such as e = 3 are not known to be broken
in general, the existence of several low-exponent RSA attacks such as Coppersmith’s
low-exponent decryption attacks [Cop97] and Bleichenbacher’s low-exponent signature
forgery attacks [Fin06] makes many practitioners nervous about such values. For example,
NIST requires e > 216 [BCR+19], which is believed to be large enough to render even
hypothesised improvements to these attacks infeasible.

There are multiple barriers to using larger RSA public exponents in practice. The
Windows CryptoAPI used in Internet Explorer until as late as Windows 7 encodes RSA
public exponents into a single 32-bit word, and cannot process a public key with a larger
exponent. NIST requires that RSA public exponents be at most 256 bits [BCR+19].

The Case e = 1 Occasionally implementers do choose terrible values for e: in 2013,
the Python SaltStack project fixed a bug that had set e = 1 [tb13], and Lenstra et al.
[LHA+12] found eight PGP RSA keys using exponent e = 1 in 2012. In this case, an
encrypted ‘ciphertext’ would simply be the padded message itself, thus visible to any
attacker, and a ‘signature’ would be the padded hash of the message, trivially forgeable to
any attacker.

2.7 Repeated RSA Moduli
If two parties share the same public RSA modulus N , then both parties know the
corresponding private keys, and thus may decrypt each others’ traffic and forge digital
signatures for each other. Thus, in theory, one would expect RSA public moduli to be
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unique in the wild. In practice, however, it turns out that repeated RSA public keys are
quite common across the Internet.

In 2012, Lenstra et al. [LHA+12] found that 4% of the distinct certificates used for
HTTPS shared an RSA modulus N with another certificate. They also found a very small
number (28 out of 400 000) RSA public keys that were shared among PGP users. Heninger
et al. [HDWH12] performed a similar independent analysis in 2012, and found a rate of
5% of public key sharing in distinct HTTPS certificates. Among 12.8 million distinct hosts
on the Internet who successfully completed a HTTPS TLS handshake in a single scan,
there were 5.9 million distinct certificates, of which 5.6 million contained distinct public
keys. Similarly, for the 10.2 million hosts who successfully completed an SSH handshake,
there were only 6.6 million distinct RSA public host keys. In other words, 60% of HTTPS
IPv4 hosts and 65% of SSH IPv4 hosts shared their RSA public keys with some other host
on the Internet.

There are numerous reasons why keys are shared across distinct certificates, certificates
are shared across seemingly unrelated hosts, and host keys are shared across thousands
of hosts, not all of which are vulnerabilities. Many large hosting providers use the same
backend infrastructure for large ranges of IP addresses or seemingly distinct websites.
However, there are also many common reasons for shared public keys that do constitute
vulnerabilities. Many home routers, firewalls, and ‘Internet of things’ devices come with
pre-configured manufacturer default public and private keys and certificates, which may be
shared across the entire device or product line for that manufacturer. These private keys
are thus accessible to anyone who extracts them from one of these devices. Knowledge of
the private key would allow an attacker to decrypt ciphertexts encrypted to the public
key, or forge signatures that will validate with the public key. Databases of such keys have
been published on the Internet [Hef10].

Random Number Generation Vulnerabilities Different entities may share identical public
moduli because of random-number generation (RNG) vulnerabilities. If two different
entities seed the same PRNG algorithm with the same value, then they will each obtain
the same sequence of output bits from the algorithm. If two entities use the same PRNG
seeds in the course of generating primes for RSA key generation, then they will both obtain
the same resulting primes as output, and thus generate the same public modulus.

In 2008, Luciano Bello discovered that the Debian version of the OpenSSL library
had accidentally removed all sources of entropy for the random-number generator except
for the process ID [YRS+09]. This meant that only 16 384 possible RSA moduli could
be generated for a given CPU architecture (32-bit or 64-bit, and big or little endian).
Reportedly, he discovered the vulnerability after observing the same public keys being
generated in the wild. This bug affected all cryptographic key generation between 2006
and 2008 on affected systems, and vulnerable keys were still being found in the wild years
after the bug was fixed [DWH13].

The analyses of Lenstra et al. [LHA+12] and Heninger et al. [HDWH12] showed
that repeated RSA public keys due to random-number generation vulnerabilities occur
surprisingly often in practice. Heninger et al. [HDWH12] traced many of the vulnerable
keys back to a flaw in the Linux random-number generator that affected many network
devices. First, cryptographic keys for network services like HTTPS and SSH were often
generated the first time a machine boots. Second, the Linux operating system PRNG
enforced delays between seeding intervals in order to prevent attacks where a local attacker
could brute force individual inputs and thus predict future outputs. Third, network devices
lacked the entropy sources such as keyboard timings, mouse movements, or hard-disk
timings that the operating system was using to seed the random-number generator. This
resulted in a vulnerability where small devices may not yet have seeded the PRNG with
any inputs from the environment when the key generation process was run.
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In principle, an attacker with the ability to study a given implementation using such
poor randomness could reverse-engineer the possible seeds used to generate the key pairs,
and thus compute the private key corresponding to a vulnerable public key. This has been
done for vulnerable Debian OpenSSL keys [YRS+09], but we are not aware of attempts to
do this for implementations affected by the Linux boot-time kernel vulnerability.

The presence of a vulnerable public key is also a signal to an attacker that other
non-public values that were generated by the same random-number generator are likely to
be vulnerable to enumeration as well. The collisions between public keys signal that the
random-number generator design or implementation is not incorporating enough entropy
to have forward or backward secrecy. This means that an attacker may be able to use a
public value to verify that they have successfully recovered the state of the random-number
generator, and then wind the state of the random-number generator forward or backward
to recover other sensitive values. This is similar in spirit to attacks on cryptographic
protocols targeting flawed random-number generation designs that exploit nonces, cookies,
or other public values to recover secret values generated later [CNE+14, CMG+16, CGH18,
CKP+20].

The Linux kernel vulnerability was patched in 2012, and in 2014 Linux introduced a
new system call with a safer interface for generating pseudorandom numbers [Edg14].

2.8 RSA Moduli with Common Factors
A more serious version of the repeated-key vulnerability arises if two different parties have
different public RSA moduli N1 and N2 that share exactly one prime factor p in common,
but have distinct second prime factors q1 and q2. In that case, any external attacker can
compute the private keys for each party outright by computing p = gcd(N1, N2).

Lenstra et al. [LHA+12] and Heninger et al. [HDWH12] both independently searched
for the existence of such keys in PGP, HTTPS, and SSH RSA public keys in 2012, and
found that two PGP users ([LHA+12]), 0.2% of HTTPS certificates ([LHA+12]) or 0.5%
of HTTPS hosts ([HDWH12]), and 0.03% of SSH hosts ([HDWH12]) had RSA public keys
that were completely factored by sharing one prime factor with another RSA public key in
their datasets.

This vulnerability was traced in many cases to a variant of the PRNG implementation
problems above [HDWH12]. Most practical PRNG implementations mix new entropy
inputs into their state during the course of normal operation. For example, the OpenSSL
PRNG mixes the current time in seconds into the state of its PRNG after every call to
extract an output to generate a bignum integer. If two different entities begin the RSA
key-generation process using the same initial PRNG seed values, but sometime during key
generation mix in different entropy inputs, the stream of PRNG outputs, and therefore the
values of the primes generated, will diverge from that point onward. If the PRNG states
are identical during the generation of the first prime p but diverge during the generation
of the second prime q, then this results in exactly the GCD vulnerability.

A 2016 followup study by Hastings et al. [HFH16] gives details on the rates of
vulnerable keys over time, broken down by product vendor. They observed no evidence of
end users patching devices to remove vulnerable keys after vendors released vulnerability
disclosures and patches, and found multiple implementations that had newly introduced
GCD vulnerabilities since 2012, most likely the result of using old versions of the Linux
kernel. They were able to fingerprint 95% of the vulnerable HTTPS certificates as having
been generated by OpenSSL using the OpenSSL prime fingerprint discussed previously
in Section 2.3. Thus the popularity of OpenSSL, together with its vulnerable pattern of
behaviour, appears to have contributed to the different vulnerability rates between keys
used for HTTPS and SSH.

Anecdotally, this vulnerability has also arisen in an implementation that periodically
generated new RSA keys in an idle process in the background, but sometimes only one
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new prime was swapped out of memory before the key was exported for use [Koc20].

2.9 RSA Primes with Shared or Predictable Bits
Heninger et al. [HDWH12] and Bernstein et al. [BCC+13] document a further variant of
these shared-key vulnerabilities: they observed RSA keys in the wild whose prime factors
shared most significant bits in common. If enough bits are shared in common, these
RSA keys can be efficiently factored using lattice basis reduction, using techniques from
Coppersmith [Cop97] or Howgrave-Graham [HG01].

For the vulnerable HTTPS and SSH RSA keys of this form documented by Heninger et
al. [HDWH12], these primes may be due to an implementation that uses a PRNG whose
output length is less than the length of the prime factor to be generated, so that multiple
PRNG outputs are concatenated to generate a single prime, and the states of two different
entities’ PRNGs diverged during the generation of this prime. Bernstein et al. [BCC+13]
found such primes generated by smart cards, where the prime factors appeared to be
generated by a faulty physical random-number generator process that would sometimes
generate predictable repeating sequences of bits in the resulting primes.

Heninger et al. [HDWH12] report several SSH public host keys with prime factors that
were all zeros except that the first two bytes and last three bytes were set. This may have
resulted from an implementation that generated primes by setting the most significant bits
of a buffer as many popular implementations do [SNS+16], reading intermediate bits from
a broken random-number generator that returned all zeros, and then incrementing until
a prime was found. Keys of this form would be vulnerable to factoring via brute-force
enumeration as well as variants of lattice attacks exploiting known bits [HG01, BCC+13].

2.10 RSA Encryption and Signing
Encryption and Signing, in Theory In theory, one encrypts a message m by calculating
the ciphertext c = me mod N . The plaintext can be recovered by computing m =
cd mod N . For digital signatures, the signature is s = md mod N and one can verify the
signature by verifying that m = se mod N .

Encryption and Signing, in Practice In practice, RSA encryption and digital signatures
must use a padding scheme to avoid a wide variety of malleability and signature forgery
attacks. The PKCS#1v1.5 padding scheme [Kal98] remains almost universally in use for
both encryption and digital signature padding despite the fact that PKCS#1v1.5 is not CCA
secure and later versions of the PKCS#1 standard [MKJR16] included padding schemes for
RSA encryption and signatures that were designed to be provably secure (OAEP [BR95]
and PSS [Bel98]). Although the publication of practical padding oracle attacks against
PKCS#1v1.5 [Ble98] and the development of the provably secure OAEP padding scheme
both pre-dated the standardisation of TLS 1.0 in 1999, TLS 1.0–1.2 continued to use
PKCS#1v1.5 in order to preserve backwards compatibility, and attempted to mitigate the
threat of padding oracles with protocol-level countermeasures [DA99].

Hybrid Encryption RSA public-key encryption is almost universally used for key en-
capsulation for hybrid encryption in practice, where the public-key encryption operation
is used only to transmit symmetric key material, and the actual encrypted content is
encrypted using a symmetric encryption scheme. One prominent counterexample is the
original Apple iMessage protocol, which encrypted the AES session key as well as the first
101 bytes of the symmetrically encrypted ciphertext in the RSA-OAEP-encrypted message.
Unfortunately, the protocol was insecure against chosen ciphertext attacks because it did
not authenticate the symmetric encryption properly [GGK+16].
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2.11 Key Re-Use across Protocols
Cryptographic best practice dictates that cryptographic keys should be used for a single
purpose, but this principle is not always followed. In TLS versions 1.2 [DR08] and below,
a server typically has one certificate containing its public key, and this key is used both
for digital signatures and encryption. The server generates digital signatures to sign
Diffie–Hellman key-exchange parameters when Diffie–Hellman key exchange is used, and
uses the same RSA key to decrypt secrets when RSA is used as a key exchange mechanism.

RSA keys are also universally re-used by web servers across different versions of
SSL/TLS, and it is quite common for web servers to support many old protocol versions
for backwards compatibility. This led to the DROWN vulnerability [ASS+16] discussed in
Section 2.13, where an attacker could exploit a protocol flaw in SSLv2 to compromise an
otherwise secure RSA key-exchange message from a server using the same key with TLS
1.2.

There are also sporadic cases of keys shared across entirely different protocols: Heninger
et al. [HDWH12] document two RSA public keys that were used for both HTTPS and
SSH in 2012.

2.12 Encryption Padding
In PKCS#1v1.5 [Kal98], data D is padded before encryption as

EB = 00 || 02 || PS || 00 || D

where 00 and 02 represent byte strings, PS is a pseudorandomly generated padding string
that contains no null bytes, and the D is the data to be encrypted, typically a value like
a TLS premaster secret from which symmetric encryption and authentication keys will
be derived. Textbook RSA encryption is applied to the padded value EB. For decryption,
textbook RSA decryption is applied to recover the padded plaintext, and the decrypter
must then check that the padding is valid before stripping off the padding and returning
the unpadded data.

2.13 RSA Encryption Padding Oracle Attacks
If a decryption implementation returns an error when the plaintext padding is incorrect,
then it may be exploitable as an oracle for a chosen ciphertext attack. Bleichenbacher
developed a padding oracle attack in 1998 against the PKCS#1v1.5 encryption padding
scheme as used in SSL [Ble98]. Bleichenbacher’s attack exploits implementations where the
decrypter (usually a server receiving ciphertexts from a client) provides an error message
if decryption fails due to incorrect plaintext padding. The attacker begins with a target
ciphertext c that they wish to decrypt to recover padded message m, and submits mauled
ciphertexts aec mod N to the decryption oracle for carefully chosen values of a. The error
messages from the padding oracle reveal whether the most significant bytes of the mauled
plaintext am are 00 || 02, which allows the attacker to iteratively narrow down possible
values for m. The originally published attack required millions of queries to recover a
plaintext.

Despite the existence of this attack, the designers of TLS 1.0 through 1.2 decided
against using a CCA-secure RSA padding scheme, and instead continued to specify
PKCS#1v1.5 padding for RSA encryption for backwards compatibility reasons. To attempt
to mitigate padding oracle attacks, the TLS standards required that when implementations
encountered RSA padding errors on decryption, they should avoid signaling the error
to the attacker by simply generating a placeholder plaintext and continuing with the
handshake using this value. In this case, the handshake should naturally fail when the
client sends its authentication of the handshake. However, numerous studies have found
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that implementation support for this countermeasure is often incomplete, and many
implementations of this countermeasure result in side channels that lead to practically
exploitable padding oracle attacks in the wild [MSW+14, BSY18].

The 2015 DROWN attack [ASS+16] exploited a confluence of vulnerabilities in RSA
usage in the wild: (1) RSA keys were universally used by servers across different versions of
the TLS protocol including old versions of SSL, (2) the SSLv2 protocol supported weakened
key strengths at the protocol level in order to conform to the US government regulations
on the export of cryptography, (3) many servers never disabled support for SSLv2 for
backwards compatibility reasons and (4) both a protocol flaw in SSLv2 and implementation
flaws in the OpenSSL library could serve as particularly strong padding oracles that could
allow an attacker to decrypt TLS 1.2 ciphertexts or forge digital signatures after tens
of thousands of connections. In 2015, 33% of HTTPS servers were vulnerable to this
attack [ASS+16].

OAEP is also vulnerable to padding oracle attacks if implemented improperly. In 2001,
Manger gave a chosen ciphertext attack against OAEP that can recover plaintext after
as few as 1000 queries if the implementation allows an attacker to distinguish between
integer-byte conversion errors and integrity check errors, a situation that was not ruled
out by PKCS#1v2.0 [Man01].

2.14 Signature Padding
The PKCS#1v1.5 [Kal98] padding for a digital signature on message m is

EB = 00 || 01 || FF ... FF || 00 || ASN.1 || H(m)

where ASN.1 is a sequence of bytes that encodes an OID (object identifier string) that
describes the hash function and signature algorithm, encoded using ASN.1, and H is
a hash function like SHA-256. The textbook RSA signing procedure is applied to the
padded value EB. Some variants of PKCS#1v1.5 signature padding may be secure in some
models [JKM18].

PKCS#1v1.5 also specifies a padding type that uses 00 bytes for padding, but we have
never seen it used.

The IPsec IKE (Internet Key Exchange) RFC [HC98] specifies that RSA signatures
used for IPsec authentication should be encoded as private key decryptions rather than
PKCS#1v1.5 signatures, but the implementations we examined appear to use signature
padding.

Bleichenbacher’s Low-Exponent PKCS#1v1.5 Signature Forgery Bleichenbacher ob-
served in a 2006 Crypto rump session [Fin06] that, for small public exponents, the
PKCS#1v1.5 padding function can be vulnerable to a signature forgery attack against
implementations that do not check the full length of the FF ... FF padding string. Let
us specialize to the case e = 3. Then to generate a forged signature, the attacker simply
needs to find a string

c = 00 || 01 || FF || FF || FF || 00 || ASN.1 || H(m) || G

where c < N , ASN.1 and H are as above, and the vaue G is chosen so that when the value c
is interpreted as the hexadecimal representation of an integer, it is a perfect cube over
the integers. Then the attacker can ‘forge’ a signature s that will validate against these
implementations by returning the value s = c1/3 over the integers. Lazy implementations
that simply begin matching the padding format from the most significant bits of se mod N
without verifying that the length of the padding string FF ... FF is correct for the key
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length will validate this signature as valid. A simple method that will often succeed in
generating a perfect cube is to start with the integer corresponding to

b = 00 || 01 || FF FF FF || 00 || ASN.1 || H(m) || FF ... FF

where the number of trailing bits is chosen so that the the integer corresponding to this
value is less than the modulus N . Then the forged signature is s = bb1/3c, where the cube
root is computed over R and rounded down to the nearest integer. The value c above is s3.

Numerous RSA signature implementations, including OpenSSL, were vulnerable to
this attack in 2006; in 2014 this vulnerability was found in the Mozilla NSS library [DL14].

2.15 Cross-Protocol Attacks
Wagner and Schneier [WS96] found a theoretical protocol vulnerability with the SSL
3.0 specification that could allow an attacker to substitute signed ephemeral RSA and
Diffie–Hellman public keys for each other, because the server’s digital signature on the
keys did not include the key-exchange algorithm. In their attack, a message containing a
Diffie–Hellman prime modulus p and generator g would be interpreted as an RSA modulus
p with exponent g. If the client encrypts the key exchange message m to this public key
by computing c = mg mod p, an attacker can easily recover m by computing c1/g mod p,
since p is prime. Although it was not ruled out by the specification, implementations at
the time apparently did not allow this attack in practice.

A 2015 vulnerability in JSON Web Token libraries allowed attackers to forge authenti-
cation tokens because the libraries did not tie the algorithm type to the verification key,
and used both public and private-key verification algorithms. In the attack, libraries could
be confused into using an RSA public key as an HMAC secret key [McL15].

2.16 Key Theft and Cryptanalysis
When RSA is used as a key-exchange or key-encapsulation mechanism, the same long-term
public RSA key is typically used to encrypt many messages or sessions. In the context of
a protocol like TLS, long-term RSA public keys are validated by using digital signatures
from certificate authorities, and certificate validity periods are typically months to years in
duration. If an adversary is ever able to steal or mount a cryptanalytic attack against the
private key corresponding to one of these long-term RSA public keys, then the adversary
would be able to passively decrypt any sessions or messages that had ever used that public
key for key exchange.

National Security Agency (NSA) slides leaked by Edward Snowden in 2013 mentioned
using known RSA private keys to passively decrypt SSL/TLS network traffic [Sec15] as well
as targeted hacking operations to learn pre-shared key values to enable passive decryption
of VPN connections [VPN10].

Because of the risk of passive decryption attacks, as well as persistent cryptographic
vulnerabilities resulting from PKCS#1v1.5 padding, TLS 1.3 removed RSA key exchange
entirely from the protocol, allowing only elliptic-curve or prime-field Diffie–Hellman key
exchange [Gil16].

There have also been multiple documented instances of attackers compromising certifi-
cate authority digital signing infrastructure to issue fraudulent certificates, including the
Comodo [Com11] and DigiNotar [Adk11] hacks in 2011 that enabled man-in-the-middle at-
tacks against Google in Iran. Browser vendors responded to these compromises by adopting
public-key pinning, which ties the hash of a public key to its associated domains [Moz17],
and certificate transparency [LLK13], in which all valid issued certificates are published in
a tamperproof log to provide defense in depth against the risk of signing key compromise.
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2.17 Countermeasures
The most straightforward countermeasure against the attacks discussed in this section
is to avoid using RSA entirely. For key-exchange or key encapsulation, elliptic-curve
cryptography offers smaller key sizes and more efficient operation. Eliminating RSA can
be difficult for legacy protocols, unfortunately: there is evidence that the adoption of TLS
1.3 has been delayed because of the decision to eliminate RSA key exchange. If RSA must
be used, then Shoup’s RSA-KEM scheme [Sho01] sidesteps padding implementation issues
entirely: one uses RSA to encrypt a random string of the same length as the key, and
derives a symmetric key by applying a key derivation function to this random message.
RSA signatures may still be more efficient to verify than elliptic-curve signatures despite
their increased size; in this case, a padding scheme like RSA-PSS [BR96] was designed to
be provably secure.

3 Diffie–Hellman
Diffie–Hellman key exchange is a required step in many network protocols, including
SSH [YL06], the IPsec IKE handshake [HC98, KHN+14], and TLS 1.3 [Gil16]. It has
also been an optional key-exchange method in SSL/TLS since SSLv3, and a cipher suite
including Diffie–Hellman key exchange was required by the TLS 1.0 specification [DA99].
In this section, we focus on Diffie–Hellman over prime fields, which was historically the
only option, and is still supported by the protocols we list above. In the past five years,
elliptic-curve Diffie–Hellman (ECDH) has replaced RSA key exchange and prime-field
Diffie–Hellman as the most popular key-exchange method; we cover ECDH in Section 4.

3.1 Diffie–Hellman Key Exchange
Diffie–Hellman, in Theory Textbook prime-field Diffie–Hellman key exchange works as
follows [DH76]: first, the two parties agree somehow on a prime p and a generator g of
a multiplicative group modp. To carry out the key exchange, Alice generates a secret
integer exponent a, and sends the value ya = ga mod p to Bob. Bob responds with the
value yb = gb mod p. Alice computes the value ya

b = gab mod p, and Bob computes the
value yb

a = gba mod p = gab mod p, so they have a shared value.
The most straightforward means of attack for an attacker is to compute the discrete

logarithm of one of the key-exchange messages, although this is not known to be equivalent
to computing the Diffie–Hellman shared secret [Mau94].

Diffie–Hellman, in Practice The textbook description of Diffie–Hellman leaves a wide
number of choices to implementers, including the type of group, how groups are agreed on,
and exponent generation. Different standards and recommendations differ on all of these
choices, and implementations differ further from standards.

In the context of protocols, symmetric-key material is typically computed by applying
a key derivation function to the Diffie–Hellman shared secret together with other messages
from the client–server handshake, and digital signatures are used to authenticate the
key exchange against man-in-the-middle attacks. The details of authentication vary
across protocols, resulting in a different set of vulnerabilities for different protocols: in
SSH [YL06] and TLS 1.3 [Res18], the server digitally signs the entire handshake; in TLS
versions 1.2 [DR08] and below, the server digitally signs the Diffie–Hellman key-exchange
values and handshake nonces, and the handshake is authenticated by using the derived
symmetric keys. IPsec offers numerous authentication options negotiated as part of the
cipher suite [HC98, KHN+14].
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ElGamal Encryption ElGamal public-key encryption is not commonly supported among
most of the network protocols we discuss in this chapter, although it was historically a
popular option for PGP. Lenstra et al. [LHA+12] report that 47% of the PGP public
keys in a public repository in 2012 were ElGamal public keys. Because the structure of
ElGamal is very close to Diffie–Hellman, and thus the implementation issues are related,
we include it in this section; we briefly remark on its security in Section 3.8.

Textbook ElGamal encryption works as follows [ElG84]. An ElGamal public key
contains several parameters specifying the group to be used: a group generator g, a
modulus p, and the order q of the subgroup generated by g. Alice’s private key is a secret
exponent a, and the public key is a value ha = ga mod p. To encrypt a message m to
Alice’s public key, Bob chooses a secret exponent b and computes the values hb = gb mod p
and hab = hb

a mod p. The ciphertext is the pair (hb,m · hab mod p). To decrypt, Alice
computes the value hab = ha

b mod p and multiplies the second element of the ciphertext
by h−1

ab to recover m.

3.2 Group Agreement
Before carrying out the key exchange, the two parties must agree on the group parameters
p and g. Different protocols do this differently. In TLS versions 1.2 and earlier [DR08],
the server generates the group parameters and sends them to the client together with the
server’s key exchange message. The server signs this key-exchange message and the random
handshake nonces using its long-term public key to prevent man-in-the-middle attacks.
In TLS version 1.3 [Res18] servers no longer generate their own Diffie–Hellman group
parameters. Instead, the client and server negotiate a group choice from a pre-specified
list of Diffie–Hellman groups. The prime-field groups were custom-generated for TLS
1.3 [Gil16]. The IKE key-exhange for the IPsec protocol [HC98, KHN+14] specifies a
pre-defined list of Diffie–Hellman groups, and the client and server negotiate the choice of
group while negotiating cipher suites. SSH [YL06] includes a few pre-generated groups in
the specification, but also allows ‘negotiated’ groups [FPS06], in which the client specifies
their desired prime length, and the server responds with one of a custom list of server-chosen
group parameters of the desired size.

These differences in how groups are specified and agreed upon mean that the impact
of the Diffie–Hellman vulnerabilities discussed below can look very different for these
three network protocols, and the threat model is different for clients and servers even
though textbook Diffie–Hellman appears to be equally contributory from both parties.
The standardised groups chosen for TLS 1.3, IKE, and SSH were generated to avoid some
of the vulnerabilities discussed below. There is no vetting process, and no feasible way for
clients to evaluate the quality of custom server-generated Diffie–Hellman parameters for
SSH or TLS v1.2 and below. The distribution of groups used for these different protocols
also looks very different: for servers supporting TLS v1.2 and earlier, there are a handful
of common values and a long tail of custom values, while most IKE servers prefer the same
group parameters [ABD+15].

3.3 Prime Lengths
The number field sieve algorithms for factoring and discrete logarithm have the same
asymptotic running times, but the discrete logarithm problem is believed to be slightly
harder in practice [LV01], and discrete logarithm records have historically lagged several
years behind factoring records of the same length. While 512-bit RSA factorisation was
first carried out in 1999, the first discrete logarithm computation exceeding this, at 530 bits,
dates to 2007 [Kle07]. There is a similar gap between the 768-bit factoring and discrete log
records: 2009 for factoring [KAF+10], and 2016 for discrete log [KDL+17]. Nevertheless,
the official key-size recommendations for prime-field Diffie–Hellman have historically been
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quite similar to those for RSA [LV01]. The use of 1024-bit Diffie–Hellman moduli was
allowed by NIST until 2010, deprecated until 2013, and disallowed after 2013 [BR11].

Despite these recommendations, 512-bit and 1024-bit Diffie–Hellman remained in
common use well after 2010. In 2015, 8% of popular HTTPS web sites still supported 512-
bit ‘export’-grade Diffie–Hellman cipher suites [ABD+15], even though server maintainers
had already been encouraged earlier that year to disable TLS export cipher suites in
the wake of the publicity around the FREAK downgrade attack against export-grade
RSA [BBD+15].

Historically, 1024-bit primes for Diffie–Hellman have been very common. In 2015, 91%
of IPsec servers supported 1024-bit primes and 66% of them preferred 1024-bit primes over
other options in common client configurations; 99% of SSH servers supported 1024-bit
primes and 26% of them preferred 1024-bit primes over other options in common client
configurations; and 84% of HTTPS servers supporting prime-field Diffie–Hellman used
a 1024-bit prime for key exchange [ABD+15]. In 2017, 95% of HTTPS Diffie–Hellman
connections seen by Google Chrome telemetry used 1024-bit primes [Chr17].

Software maintainers had difficulty increasing Diffie–Hellman key sizes due to interop-
erability issues stemming from hard-coded size limits in libraries and hard-coded 1024-bit
primes in libraries and specifications. Java JDK versions prior to version 8 did not support
primes larger than 1024 bits for Diffie–Hellman key exchange and DSA signatures [Ora14].
Servers using Java without further upgrades could not generate or use larger Diffie–Hellman
keys, and older Java-based clients could not handle a larger modulus presented by a server.
The SSHv2 transport layer specification [YL06] includes a hard-coded 1024-bit prime
group for Diffie–Hellman key exchange, the Oakley Group 2 discussed in Section 3.4,
which all implementations were required to support. This group was removed from default
support by OpenSSH in 2015, but allowed as a ‘legacy’ option for backward compatibil-
ity [Ope20]. Many major web browsers raised the minimum Diffie–Hellman modulus length
for HTTPS to 768 or 1024 bits in 2015 [Res15], but by 2017, it appeared to be easier for
browsers to remove support entirely for prime-field Diffie–Hellman for old versions of TLS
in favour of elliptic-curve Diffie–Hellman than to increase minimum key strengths to 2048
bits [Chr17, tra15]. This issue has been avoided in TLS 1.3 [Gil16]: the protocol supports
only fixed groups, and the shortest Diffie–Hellman prime included in the standard is 2048
bits.

3.4 Standardised and Hard-Coded Primes
A number of protocols and implementations have pre-generated primes with various
properties for use in Diffie–Hellman. Some of the most widely used primes have been
carefully generated to ensure various desirable properties; the provenance of others is less
well documented although the group structures are verifiable.

Some of the most commonly used primes for Diffie–Hellman on the Internet originated
with RFC 2412, the Oakley key determination protocol [Orm98], which specified three
‘mod p’ groups and two elliptic-curve groups. These primes have the property that the high
and low 64 bits are all clamped to 1, with the explanation that this helps remaindering
algorithms [Orm98]. The middle bits are the binary expansion of π, intended to be
a ‘nothing up my sleeve’ number to allay concerns of trapdoors. The middle bits are
incremented until the prime is a ‘safe’ prime, so p = 2q+ 1 for prime q, and 2 generates the
subgroup of order q. These primes were built into the IKEv1 [HC98], IKEv2 [KHN+14]
and SSH [YL06] key exchange protocols as named groups that should be supported by
implementations and that can be negotiated for Diffie–Hellman key exchange, and the
1024-bit and 2048-bit primes of this form were historically some of the most commonly
used values for Diffie–Hellman key exchange for these protocols.

Adrian et al. [ABD+15] estimated that, in 2015, 66% of IPsec servers and 26% of SSH
servers used the 1024-bit Oakley prime by default for Diffie–Hellman, and 18% of the
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Alexa Top 1 Million HTTPS web sites used a 1024-bit prime that was hard-coded into the
Apache web server software by default.

The TLS 1.3 protocol includes several named Diffie–Hellman primes that have the same
structure as the Oakley groups, except that they use the binary expansion of e instead of
π [Gil16].

3.5 Fixed Primes and Pre-Computation
The fact that the number field sieve algorithms for factoring and discrete log have the
same asymptotic complexity has led to the heuristic estimate that equal key sizes for RSA
and prime-field Diffie–Hellman offer approximately the same amount of bit security.

As discussed previously in Section 3.3, 1024-bit Diffie–Hellman primes remained in
common use for many years after 1024-bit number field sieve computations were believed
to be tractable for powerful adversaries. Many implementers justified the continued use
of 1024-bit Diffie–Hellman via what they believed to be a calculated risk: given the
high estimated cost of 1024-bit number field sieve computations, it was thought that
even a powerful adversary would likely be able to carry out at most only a handful of
such computations per year. RSA keys typically have long validity periods and thus a
single factoring computation would allow the adversary to decrypt many RSA messages
encrypted to the broken private key, whereas implementations typically generate new
Diffie–Hellman secrets per session, and thus in principle an attacker would need to carry
out a new discrete log computation for each session. Prior to 2015, practitioners believed
that adversaries would be unlikely to expend the high cost of a full 1024-bit number field
sieve computation to break a single Diffie–Hellman key exchange, and thus chose to accept
the risk of cryptanalytic attacks in order to take advantage of the added efficiency of small
keys and avoid the interoperability issues from increasing key sizes.

However, this popular understanding of computational power was incomplete. The most
computationally expensive stages of the number field sieve discrete logarithm calculation
depend only on the prime modulus, and the final individual logarithm phase of the
algorithm that actually computes the log of the target is asymptotically faster [CS06, Bar13].
In practice, this asymptotic difference means that the individual log computation is
significantly faster than the prime-dependent precomputation.

This means that a well-resourced adversary could perform a single expensive pre-
computation for a given 1024-bit prime modulus, after which the private keys for many
individual sessions using that prime would be relatively efficient in practice to compute.
This attack is rendered more effective in practice because the adversary could target a
small number of hard-coded and standardised 1024-bit primes that account for a relatively
large fraction of Diffie–Hellman moduli used in the wild [ABD+15]. Adrian et al. estimate
that the 66% of IPsec servers and 26% of SSH servers that defaulted to the 1024-bit
Oakley prime would be vulnerable to passive decryption by an adversary who carried out
a single discrete log precomputation for that prime, and that carrying out ten discrete log
precomputations would allow passive decryption to 24% of the most popular HTTPS sites
in 2015 [ABD+15].

3.6 Short Exponents
It is quite common for implementations to generate ‘short’ Diffie–Hellman secret exponents
by default. In principle for an otherwise secure Diffie–Hellman group, the strongest attack
for short exponents is the Pollard lambda algorithm [Pol78], which takes O(2n/2) time
against an n-bit exponent a. Thus implementations that wish to achieve a 128-bit security
level often generate 256-bit exponents. The TLS 1.3 specification [Gil16] as well as the
SSH group exchange specification [FPS06] both suggest the use of shorter exponents for
performance reasons, as long as they are at least twice the length of the derived secret.
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Valenta et al. [VAS+17] examined nine different TLS libraries implementing Diffie–
Hellman in 2016 and found that eight of the nine used short exponents. Of these libraries,
the Mozilla NSS and libTomCrypt libraries used hardcoded short exponent lengths, the
Java OpenJDK uses the max of n/2 and 384 for an n-bit prime, OpenSSL and GnuTLS
used the bit length of the subgroup order (if specified), with a max of 256 in the latter
case, and three libraries used a quadratic curve or work factor calculation to set the bit
length of the exponent to match the expected cryptanalytic complexity of the number field
sieve algorithm for the length of the prime.

Short exponent lengths are not a vulnerability on their own, but the use of short
exponents in combination with common implementation flaws can make some of the key
recovery attacks described in Sections 3.8 and 3.10 more severe.

Some implementations appear to generate pathologically short exponents. In 2017,
Joshua Fried found that 3% of the 4.3 million hosts that responded to an IKEv1 IPsec
handshake and 1.3% of the 2.5 million hosts that responded to an IKEv2 IPsec handshake
used exponents that were shorter than 16 bits. These were found by precomputing 217

public key-exchange values for positive and negative 16-bit exponents for the most common
Diffie–Hellman groups, and comparing these to the key-exchange messages transmitted by
servers [Fri20].

3.7 Exponent Re-Use
Many implementations reuse Diffie–Hellman exponents by default across multiple connec-
tions. OpenSSL reused Diffie–Hellman exponents by default until January 2016, unless a
specific SSL_OP_SINGLE_DH_USE flag was set. Springall et al. found in 2016 that 7% of
the Alexa Top 1 Million HTTPS servers who supported prime-field Diffie–Hellman reused
Diffie–Hellman key-exchange values [SDH16].

Re-use of Diffie–Hellman key-exchange values for multiple connections is not in principle
a vulnerability, and should be no less secure than using an RSA public key for encryption
across multiple connections but, in practice, key-exchange message re-use can make some
of the attacks described in Section 3.10 more severe.

3.8 Group Structure
For prime-field Diffie–Hellman, there is a variety of choices of primes and group structures
that implementations can choose. The security of Diffie–Hellman relies crucially on the
structure of the group.

For a prime modulus p, the order of the group generated by g will divide p− 1. The
Pollard rho [Pol74] and ‘baby step giant step’ algorithms have running times that depend
on the group order: for a group of order q, these algorithms run in time O(√q).

If the order of the group generated by g has a prime factor qi, then an adversary can
take advantage of the existence of a subgroup of order qi, and use one of these algorithms to
compute the discrete logarithm of a target modulo qi. If the order of the group generated
by g has many such subgroups, the attacker can use the Pohlig–Hellman algorithm [PH78]
to repeat this for many subgroup orders qi and use the Chinese remainder theorem and
Hensel lifting to compute the secret exponent a modulo the product of the known qi.

To protect against these attacks, implementations should choose g such that g generates
a subgroup of large prime-order q, where q should have bit length at least twice the desired
security parameter of the encryption.

Safe Primes A common recommendation is for implementations to use ‘safe’ primes,
where p = 2q + 1 for q a prime, and then to use a generator g of the subgroup of order q
modulo p. This protects against attacks based on subgroup structure by maximising the
order of the subgroup an attacker would need to attack.
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Until 2019, OpenSSL would by default generate Diffie–Hellman group parameters where
p was a ‘safe’ prime, but where g generated the ‘full’ group of order 2q modulo p [Edl19].
This meant that an adversary could always compute one bit of information about the
exponent in any key-exchange message, by computing the discrete log in the subgroup
of order 2. Of around 70 000 distinct group parameters g, p in use by HTTPS servers
in 2015, around 64 000 of the prime moduli p were ‘safe’, and only 1250 of those used a
generator g that generated a group of prime-order q [ABD+15]. In other words, in practice
the Decisional Diffie–Hellman assumption [Bon98] is often false. In particular, textbook
ElGamal encryption, where a message is chosen as a non-zero integer modulo p, is not
semantically secure as a consequence.

DSA-Style Groups An alternative common structure for primes used for Diffie–Hellman
key exchange is to use a prime p generated so that p− 1 has a prime factor q of a fixed size
much smaller than p, and g is chosen in order to generate the subgroup of order q modulo
p. Commonly encountered parameter lengths include choosing the subgroup order q to be
160 bits for a 1024-bit modulus p, or choosing the subgroup order q to be 224 or 256 bits
for a 2048-bit prime p [Inf13]. Groups of this type were originally used for DSA, and then
recommended for many years for use in Diffie–Hellman by NIST SP800-56A [BCR+18].

RFC 5114 specified several pre-generated groups of this form for use in SMIME, SSH,
TLS and IPsec to conform to the NIST standard [LK08]. In 2017, Valenta et al. [VAS+17]
found that 11% of the 10.8 million HTTPS servers that supported prime-field Diffie–
Hellman were using the 1024-bit Group 22 specified in RFC 5114. In 2018, NIST updated
their recommendation to allow only ‘safe’ primes for Diffie–Hellman. ‘DSA’-style groups
are now only permitted for backwards compatibility [BCR+18].

In the context of the DSA digital signature algorithm, the presence of these subgroups
permits shorter digital signatures, and allows implementations to use hash functions of
common lengths. The length of the subgroup is chosen so that the bit complexity of
different families of attacks matches the desired overall security of the system [Len01]: for
the 1024-bit parameters, the number field sieve is believed to take about 280 time, which
matches the expected complexity of carrying out a Pollard rho attack against the 160-bit
subgroup q, or the Pollard lambda attack against the 160-bit secret exponent.

The reasoning behind the recommendation to use smaller subgroups appears to have
been a desire to use short secret exponents to make the modular exponentiations required
for key exchange more efficient, combined with concerns about vulnerability to hypothetical
attacks if the exponents were much shorter than the subgroup order. Such attacks exist for
DSA signatures [HGS01], but this is not known to be a vulnerability in the Diffie–Hellman
setting. However, the use of smaller subgroups necessitates additional validity checks to
prevent small subgroup attacks, described in Section 3.10.

Unstructured Primes and Composite-Order Groups For an arbitrary randomly gener-
ated prime p, the prime factorisation of (p− 1)/2 is expected to look like a random integer.
That is, it is likely to have many small factors, some medium-sized factors, and a few large
factors. The expected length of the largest subgroup order for a 1024-bit prime is over 600
bits [RGB+16], meaning that using the full Pohlig–Hellman algorithm [PH78] to compute
arbitrary discrete logarithms modulo such a prime is likely to be infeasible due to the
square root running time of computing discrete logs in such a large subgroup.

However, if the target of the attack also uses short exponents, van Oorschot and
Wiener’s attack [vW96] exploits the fact that an attacker could combine Pollard’s lambda
algorithm [Pol78] with the Pohlig–Hellman algorithm over a strategically chosen subgroup
whose order has relatively small prime factors to uniquely recover a shorter exponent. An
adversary would be able to recover a 160-bit exponent with 240 computation for 32% of
1024-bit primes.
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The prescribed subgroup structures described above are intended to prevent such
attacks, but some relatively rare implementations do not appear to take any steps to
generate primes with a cryptographically secure structure.

In 2015, among around 70 000 distinct primes p used for Diffie–Hellman key exchange
for 3.4 million HTTPS servers supporting Diffie–Hellman key exchange on the Internet,
there were 750 groups for which (p− 1)/2 was not prime, and an opportunistic effort to
factor (p − 1)/2 using the ECM algorithm [Len87] revealed prime factors of the order
of g. This allowed Adrian et al. [ABD+15] to apply van Oorschot and Wiener’s attack
to compute the full exponent for 159 key exchanges (many of which were using 128-bit
exponents) and partial information for 460 key exchanges.

Composite Moduli Diffie–Hellman key exchange is almost universally described as being
carried out modulo a prime p. However, non-prime moduli have been found in the wild.

If a non-prime Diffie–Hellman modulus can be efficiently factored, then, in general,
computing the discrete logarithm, and thus the private key for a Diffie–Hellman key
exchange, is only approximately as difficult as the problem of factoring the modulus
and computing the discrete logarithm of the target key-exchange message for each prime
factor or subgroup of the modulus. The Chinese remainder theorem can then be used
to reconstruct the discrete logarithm modulo the least common multiple of the totient
function of each of the prime factors.

Not all non-prime Diffie–Hellman moduli are necessarily insecure: a hard-to-factor
composite RSA modulus, for example, would likely still be secure to use for Diffie–Hellman,
since an adversary would not be able to factor the modulus to learn the group structure.
A composite Diffie–Hellman modulus with one small factor where computing the discrete
logarithm is easy and one large factor where computing the discrete logarithm is still
difficult could allow an adversary to compute partial information about the secret exponent.
And a highly composite Diffie–Hellman modulus where every prime factor is relatively
small or admits an easy discrete logarithm would allow the adversary to efficiently compute
the full secret exponent.

In 2016, the Socat tool was found to be using a hard-coded non-prime modulus p of
unknown origin for Diffie–Hellman key exchange [Rie16]. Lenstra et al. [LHA+12] found
82 ElGamal public keys in the PGP key repository in 2012 using non-prime p values. Many
of these shared bit patterns with other group parameters used by PGP users, suggesting
they may have been invalid, corrupted keys.

Valenta et al. [VAS+17] found 717 SMTP servers in 2016 in the wild using a 512-bit
composite Diffie–Hellman modulus whose hexadecimal representation differed in one byte
to a default Diffie–Hellman prime included in SSLeay, the predecessor to OpenSSL.

3.9 Group Parameter Confusion

Adrian et al. [ABD+15] found 5700 HTTPS hosts that were using DSA-style group
parameters that had been hard-coded in Java’s sun.security.provider package for
Diffie–Hellman, except that they were using the group order q in place of the generator
g. Adrian et al. hypothesised that this stemmed from a usability problem. The ASN.1
representation of Diffie–Hellman key-exchange parameters in PKCS#3 is the sequence
(p, g), while DSA parameters are specified as (p, q, g). For the parameters with 512-bit p,
the group generated by q would leak 290 bits of information about the secret exponent
using 240 computation. Java uses 384-bit exponents for this prime length. Computing
discrete logarithms for this group would thus be more efficient using the number field sieve
than using Pollard lambda on the remaining bits of the exponent, but this is a near-miss
vulnerability.
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3.10 Small Subgroup Attacks
Diffie–Hellman is vulnerable to a variety of attacks in which one party sends a maliciously
crafted key-exchange value that reduces the security of the shared secret by confining it to
a small set of values. These attacks could allow a man-in-the-middle attacker to coerce
a Diffie–Hellman shared secret to an insecure value, or let an attacker learn information
about a victim’s secret exponent by carrying out a protocol handshake with them.

Zero-Confinement For prime-field Diffie–Hellman, the value 0 is not a member of the
multiplicative group modulo p, and therefore should never be sent as a key-exchange value.
However, if Alice sends the value 0 as her key exchange value to Bob, then Bob will derive
the value 0 as his shared secret. For protocols like TLS versions 1.2 and below, where
the integrity of the handshake is ensured using a key derived from the shared secret, then
this could allow a man-in-the-middle to compromise the security of the key exchange.
To protect against this type of attack, implementations must reject the value 0 as a
key-exchange value.

Valenta et al. [VAS+17] scanned the Internet in 2016 and found that around 3% of SSH
servers and 0.06% of HTTPS servers were willing to accept a Diffie–Hellman key-exchange
value of 0. They note that, until 2015, a vulnerability in the Libreswan and Openswan
IPsec VPN implementations caused the daemon to restart when it received 0 as a key
exchange value [CVE15].

Subgroups of Order 1 and 2 Since (p− 1) is even for any prime p > 2, there will be a
multiplicative subgroup of order 2 modulo p, generated by the value −1, as well as the
trivial group of order 1 generated by the value 1. For Diffie–Hellman, if g generates the
full group of integers modulo p, then the group of order 2 generated by −1 will be a proper
subgroup; if g is a ‘safe’ prime or a DSA-style prime as described above and g is chosen
to generate a subgroup of prime-order q, then the value −1 will not be contained in the
group generated by g. The value 1 is contained in the group in either case.

Thus, similar to the case of 0, Alice could send the element 1 as a key exchange value
and ensure that the resulting shared secret derived by Bob is the value 1, or send −1 and
ensure that Bob’s resulting secret is either 1 or −1. In the latter case, if Alice subsequently
learns a value derived from Bob’s view of the shared secret (for example, a ciphertext or
MAC, depending on the protocol) then Alice can learn one bit of information about Bob’s
secret exponent, whether or not the Diffie–Hellman group Bob intended to use had large
prime order.

To prevent these attacks, implementations must reject the values 1 and −1 as key-
exchange values.

Valenta et al. [VAS+17] report that, in 2016, 3% of HTTPS servers and 25% of SSH
servers accepted the value 1, and 5% of HTTPS servers and 34% of SSH servers accepted
the value −1 as a Diffie–Hellman key-exchange value.

Subgroups of Larger Order For ‘safe’ primes p, the validation checks eliminating the
values 0, 1 and −1 are the only checks necessary to eliminate small subgroup confinement
attacks. For DSA-style primes where g generates a group of order q where q is much
less than p, then there are subgroups modulo p for each of the factors of (p− 1)/q. The
recommended prime-generation procedures do not require the co-factor (p− 1)/(2q) to be
prime, so in practice many primes in use have co-factors that are random integers with
many small prime factors. For example, the 1024-bit prime p specified in RFC 5114 [LK08]
was chosen to have a 160-bit prime-order subgroup, but it also has a subgroup of order 7.

Let g7 be a generator of the group of order 7 modulo p. If Alice sends g7 as her
key-exchange value, then the resulting shared secret derived by Bob will be confined to
this subgroup of order 7. If Alice subsequently learns a value derived from Bob’s view of
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the shared secret, then Alice can compute Bob’s secret exponent b mod 7 by brute forcing
over the subgroup size.

Lim and Lee [LL97] developed a full secret key recovery attack based on these principles.
In the Lim–Lee attack, the victim Bob reuses the secret exponent for multiple connections,
and the attacker Alice wishes to recover this secret. Alice finds many small subgroups
of order qi modulo Bob’s choice of Diffie–Hellman prime p, sends generators gqi of each
subgroup order in sequence, and receives a value derived from Bob’s view of the secret
shared key in return. Alice then uses this information to recover Bob’s secret exponent
b mod qi for each qi. Depending on the protocol, this may take O(

∑
i

√
(qi)) time if Bob

were to directly send back his view of the key share gb
qi , or O(

∑
i qi) time if Bob sends

back a ciphertext or MAC whose secret key is derived from Bob’s key share gb
qi .

To prevent these small subgroup attacks when using groups of this form, implement-
ations must validate that received key-exchange values y are in the correct subgroup of order
q by checking that yq ≡ 1 mod p. Unfortunately, although TLS versions 1.2 and below and
SSH allow servers to generate their own Diffie–Hellman groups, the data structures used
for transmitting those groups to the client do not include a field to specify the subgroup
order, so it is not possible for clients to perform these validation checks. In principle, it
should be feasible for servers to perform these validation checks on key-exchange values
received by clients, but in practice, Valenta et al. found in 2016 that almost no servers in
the wild actually performed these checks [VAS+17].

In 2016, OpenSSL’s implementation of the RFC 5114 primes was vulnerable to a full
Lim–Lee key-recovery attack, because it failed to validate that Diffie–Hellman key-exchange
values were contained in the correct subgroup, and servers reused exponents by default.
For the 2048-bit prime with a 224-bit subgroup specified in RFC 5114, a full key recovery
attack would require 233 online work and 247 offline work [VAS+17].

These attacks could also have been mitigated by requiring the co-factor of these groups
to have no small factors, so that primes would have the form p = 2qh + 1, where the
co-factor h is prime or has no factors smaller than the subgroup order q [LL97]. This was
not suggested by the relevant recommendations [BCR+18].

3.11 Cross-Protocol Attacks
In TLS versions 1.2 and earlier, the server signs its Diffie–Hellman key exchange message
to prevent man-in-the-middle attacks. However, the signed message does not include
the specific cipher suite negotiated by the two parties, which enables multiple types of
cross-protocol attacks.

A simple case is the Logjam attack of Adrian et al. [ABD+15]. In this attack, a man-
in-the-middle attacker impersonates the client, negotiates an ‘export-grade’ Diffie–Hellman
cipher suite with the server, and receives the server’s Diffie–Hellman key-exchange message
using a 512-bit prime, signed with the server’s certificate private key. This message does not
include any indication that it should be bound to an ‘export-grade’ Diffie–Hellman cipher
suite. The attacker can then impersonate the server and forward this weak key-exchange
message to the victim client, who believes that they have negotiated a normal-strength
Diffie–Hellman key-exchange with the server. From the client’s perspective, this message
is indistinguishable from a server who always uses a 512-bit prime for Diffie–Hellman. In
order to be successful in completing the man-in-the-middle attack undetected, the attacker
must compute the 512-bit discrete log of the client or server’s key-exchange message in
order to compute the symmetric authentication keys, forge the client and server MAC
contained in the ‘Finished’ messages sent at the end of the handshake, and decrypt the
symmetrically encrypted data. This was feasible or close to feasible, in practice, for 512-bit
primes because of the benefits of precomputation, discussed previously in Section 3.5.

Mavrogiannopoulos et al. [MVVP12] observed that TLS versions 1.2 and prior are
vulnerable to a more sophisticated cross-cipher-suite attack in which an attacker convinces
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the victim to interpret a signed elliptic-curve Diffie–Hellman key-exchange message as a
valid prime-field Diffie–Hellman key-exchange message. This attack exploits three protocol
features: first, for prime-field Diffie–Hellman, the server includes its choice of prime
and group generator as explicit parameters along with the ephemeral Diffie–Hellman
key-exchange value; second, for elliptic-curve Diffie–Hellman, the key-exchange message
included an option to specify an explicit elliptic-curve via the curve parameters; and third,
these messages do not include an indication of the server’s choice of cipher suite.

Putting these properties together for an attack, the man-in-the-middle impersonates
the client and initiates many connections to the server requesting an ECDH cipher suite
until it receives an ECDH key-exchange message that can be parsed as a prime-field
Diffie–Hellman key-exchange message by using a weak modulus. At this point, the man-in-
the-middle attacker forwards this weak message to the victim client, who believes that they
have negotiated a prime-field Diffie–Hellman key exchange. The attacker must compute
the discrete logarithm online in order to forge the ‘Finished’ messages and complete the
handshake. The key to the attack is that the random ECDH key-exchange values are
parsed as a ‘random’-looking modulus and group generator for prime-field Diffie–Hellman,
which could be exploited as described for the composite-order groups in Section 3.8 above.
Mavrogiannopoulos et al. estimate that the attacker is likely to succeed after 240 connection
attempts with the server.

3.12 Nearby Primes
Many of the most commonly used prime moduli used for Diffie–Hellman share many bits
in common with each other, because they have the same fixed most and least significant
bits, and use the digits of π or e for the middle bits.

In addition to the fixed, named groups of this form included in the SSH specification,
SSH also allows the client and server to negotiate group parameters by specifying approved
bit lengths for keys [FPS06]. When this group negotiation is carried out, SSH servers
choose group parameters from a pre-generated file (e.g., /etc/ssh/moduli on Linux) of
primes and group generators. Default files of these parameters are distributed along with
the operating system.

These files contain dozens of primes of each specified key length that all differ in only
the least-significant handful of bits. They appear to have been generated by starting at a
given starting point, and incrementing to output ‘safe’ primes.

It is not known whether an adversary would be able amortise cryptanalytic attacks
over many nearby primes of this form via the number field sieve or other discrete logarithm
algorithms.

3.13 Special Number Field Sieve
The number field sieve (NFS) is particularly efficient for integers that have a special form.
This algorithm is known as the special number field sieve (SNFS). The improved running
time applies for integers p where the attacker knows a pair of polynomials f , g, of relatively
low degree and small coefficients, such that they share a common root modulo p. A simple
case would be a p of the form m6 + c for small c; this results in the polynomial pair
f(x) = x6 + c and g(x) = x−m.

Although neither a general 1024-bit factorisation nor discrete logarithm have been known
to have been carried out in public as of this writing (2020), a 1039-bit SNFS factorisation
was completed in 2007 by Aoki et al. [AFK+07], and a 1024-bit SNFS discrete logarithm
was carried out in 2016 by Fried et al. in a few calendar months [FGHT17].

The latter note that they found several Diffie–Hellman primes in the wild with forms
that were clearly amenable to SNFS computations. These included 150 HTTPS hosts using
the 512-bit prime 2512− 38 117, and 170 hosts using the 1024-bit prime 21024− 1 093 337 in
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March 2015. They also report that the LibTomCrypt library included several hard-coded
Diffie–Hellman groups ranging in sizes from 768 to 4096 bits, with a readily apparent
special form amenable to the SNFS. The justification for using such primes appears to
have been to make modular exponentiation more efficient [LL96].

SNFS Trapdoors In 1991, in the context of debates surrounding the standardisation
of the Digital Signature Algorithm, Lenstra and Haber [LH91] and Gordon [Gor93]
raised the possibility that an adversary could construct a malicious prime with a hidden
trapdoor structure that rendered it amenable to the SNFS algorithm, but where the
trapdoor structure would be infeasible for an outside observer to discover. This could
be accomplished by constructing a pair of SNFS polynomials first, with resultant an
appropriately structured prime p, and publishing only p, while keeping the polynomial pair
secret. Computing discrete logarithms would then be easy for this group for the attacker,
but infeasible for anyone who did not possess the secret. Although this type of trapdoor
would be difficult to hide computationally for the 512-bit primes in use in the early 1990s,
Fried et al. [FGHT17] argue that such a trapdoor would be possible to hide for 1024-bit
primes.

In response to these concerns about trapdoor primes, the Digital Signature Standard
suggests methods to generate primes for DSA in a ‘verifiably random’ way, with a published
seed value [Inf13]. Alternatively, the use of ‘nothing up my sleeve’ values such as the digits
of π or e for the Oakley [Orm98] and TLS 1.3 [Gil16] primes is intended to certify that
these primes are not trapdoored, because it would not be possible for an attacker to have
embedded the necessary hidden structures.

The use of ‘nothing up my sleeve’ numbers is easily verifiable for those primes, but for
‘verifiably random’ primes generated according to FIPS guidelines, publishing the seeds is
optional, and almost none of the primes used for either DSA or Diffie–Hellman in the wild
are published with the seeds used to generate them. These include several examples of
widely used standardised and hard-coded primes whose generation is undocumented. An
example would be the primes included in RFC 5114 [LK08], which were taken from the
FIPS 186-2 [Inf00] test vectors, but were published without the seeds used to generate them.
These primes were used by 2% of HTTPS hosts and 13% of IPsec hosts in 2016 [FGHT17].

3.14 Countermeasures
The most straightforward countermeasure against the attacks we describe against prime-
field Diffie–Hellman is to avoid its use entirely, in favour of elliptic-curve Diffie–Hellman.
Given the current state of the art, elliptic-curve Diffie–Hellman appears to be more
efficient, permit shorter key lengths, and allow less freedom for implementation errors
than prime-field Diffie–Hellman. Most major web browsers have dropped support for
ephemeral prime-field Diffie–Hellman cipher suites for TLS 1.2 and below [Chr17, tra15],
and elliptic-curve Diffie–Hellman now represents the majority of HTTPS handshakes
carried out in the wild.

If prime-field Diffie–Hellman must be supported, then the implementation choices
made by TLS 1.3 are a good blueprint for avoiding known attacks: groups should use a
fixed, pre-generated ‘safe’ prime deterministically produced from a ‘nothing up my sleeve’
number, the minimum acceptable prime length is 2048 bits, and any Diffie–Hellman-based
protocol handshake must be authenticated via a digital signature over the full handshake.

4 Elliptic-Curve Diffie–Hellman
Elliptic-curve cryptography offers smaller key sizes and thus more efficient operation
compared with factoring and finite-field-based public-key cryptography, because sub-
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exponential-time index calculus-type algorithms for the elliptic-curve discrete log problem
are not known to exist. While the idea of using elliptic curves for cryptography dates to
the 1980s [Mil86, Kob87], adoption of elliptic-curve cryptography has been relatively slow,
and elliptic-curve cryptography did not begin to see widespread use in network protocols
until after 2010. As of this writing, however, elliptic-curve Diffie–Hellman is used in more
than 75% of the HTTPS key exchanges observed by the ICSI Certificate Notary [ICS20].

There were numerous contributing factors to the delays in wide adoption of elliptic-
curve cryptography, including concerns about patents, suspicions of the NSA’s role in the
development of standardised curves, competition from RSA, and the belief among practi-
tioners that elliptic curves were poorly understood compared with more the ‘approachable’
mathematics of modular exponentiation for RSA and prime-field Diffie–Hellman [KKM11].

The NSA has been actively involved in the development and standardisation efforts
for elliptic-curve cryptography, and the original version of the NSA’s Suite B algorithm
recommendations in 2005 for classified US government communications included only
elliptic-curve algorithms for key agreement and digital signatures. Thus it came as quite
a surprise to the community when the NSA released an announcement in 2015 that
owing to a ‘transition to quantum resistant algorithms in the not too distant future’,
those ‘that have not yet made the transition to Suite B elliptic-curve algorithms’ were
recommended to not make ‘a significant expenditure to do so at this point but instead to
prepare for the upcoming quantum resistant algorithm transition’ [Nat15]. The updated
recommendations included 3072-bit RSA and prime-field Diffie–Hellman; the algorithm
suite has been renamed but the recommended algorithms and key sizes remained the same.
Koblitz and Menezes evaluate the suspicions of an algorithmic break or backdoor that this
announcement sparked [KM16].

ECDH, in Theory An elliptic-curve group is defined by a set of domain parameters: the
order q of the field Fq, the coefficients of the curve equation y2 = x3 + ax+ b mod q, and
a generator G of a subgroup of prime-order n on the curve. The co-factor h is equal to the
number of curve points divided by n.

Alice and Bob carry out an elliptic-curve Diffie–Hellman key exchange in theory as
follows: Alice generates a secret exponent ka and sends the public value Qa = kaG. Bob
generates a secret exponent b and sends the public value Qb = kbG. Alice then computes
the shared secret as kaQb, and Bob computes the shared secret as kbQa.

Elliptic-curve public keys can be represented in uncompressed form by providing both
the x and y coordinates of the public point, or in compressed form by providing the x
coordinate and a bit to specify the y value.

4.1 Standardised Curves
In contrast to the situation with prime-field Diffie–Hellman, end users almost never
generate their own elliptic curves, and instead rely on collections of standardised curve
parameters. Several collections of curve parameters have been published. The SEC
2 [SEC00] recommendation published by Certicom includes ‘verifiably random’ and Koblitz
curve parameters for 192-, 224-, 256-, 384- and 521-bit prime field sizes, and 163-, 233-, 239-,
283-, 409- and 571-bit binary field sizes. NIST included the 224-, 256-, 384- and 521-bit
random curves in their elliptic-curve recommendations; the 256-bit prime-field ‘verifiably
random’ NIST P-256 curve is by far the most commonly used one in practice [VAS+17].
The ‘verifiably random’ curve generation procedure has been criticized for simply hashing
opaquely specified values [BCC+15]. Although the likelihood of undetectably backdoored
standardised curves is believed to be small [KM16], distrust of standardised elliptic curves
has slowed the adoption of elliptic-curve cryptography more generally.

Another prominent family of standardised curves are the Brainpool curves authored
by the German ECC Brainpool consortium [LM10], which give ‘verifiably pseudorandom’
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curves over prime fields of 160-, 192-, 224-, 256-, 320-, 384- and 512-bit lengths. These
curves are supported by many cryptographic libraries, although are less popular than the
NIST curves [VAS+17].

Curve25519 [Ber06] is a 256-bit curve that was developed by Bernstein to avoid
numerous usability and security issues that affect the SEC 2/NIST and Brainpool curves,
and has been growing in popularity in network protocols.

TLS versions 1.2 and below included a mechanism by which individual servers could
configure custom elliptic-curve parameters, but this does not seem to be used at all for
HTTPS servers reachable on the public Internet [VAS+17].

4.2 Invalid Curve Attacks
In principle, a small subgroup attack analogous to the small subgroup attacks described
in Section 3.10 for prime-field Diffie–Hellman is also possible against elliptic curves. To
mitigate these attacks, the elliptic curves that have been standardised for cryptography
have typically been chosen to have small co-factors. NIST recommends a maximum
co-factor for various curve sizes.

However, there is a much more severe variant of this attack that is due to Antipa et
al. [ABM+03]: an attacker could send an elliptic-curve point of small order qi that lies
on a different curve entirely. If the victim does not verify that the received key-exchange
value lies on the correct curve, the attacker can use the victim’s response to compute the
victim’s secret modulo qi. If the victim is using static Diffie–Hellman secrets, then the
attacker can repeat this for many chosen curves and curve points of small prime-order to
recover the full secret.

To mitigate this attack, implementations must validate that the points it receives lie
on the correct curve, or use a scalar multiplication algorithm that computes only on the
x-coordinate together with a curve that is secure against curve twist attacks.

Elliptic-curve implementations have suffered from repeated vulnerabilities due to failure
to validate that elliptic-curve points are on the correct curve. Jager et al. [JSS15] found
that three out of eight popular TLS libraries did not validate elliptic-curve points in 2015.
Valenta et al. [VAS+17] scanned TLS, SSH and IKE addresses in 2016 using a point of
small order on an invalid curve and estimated 0.8% of HTTPS hosts and 10% of IKEv2
hosts did not validate ECDH key-exchange messages.

4.3 Countermeasures
Elliptic-curve Diffie–Hellman has been growing in popularity, and currently appears to
offer the best security and performance for key exchange in modern network protocols.
Compared with the long history of implementation messes involving RSA and prime-field
Diffie–Hellman, ECDH seems relatively unscathed. The one dark spot is the relatively
expensive validation checks required to protect against the invalid curve and twist attacks
that have plagued some implementations of the NIST curves. As a countermeasure,
Curve25519 was designed to require only a minimal set of validation checks.

Elliptic-curve Diffie–Hellman (ECDH) implementations may paradoxically be ‘protected’
from implementation mistakes by a form of security through obscurity. Because the
mathematics of elliptic curves is so much more complex than RSA or prime-field Diffie–
Hellman, implementers seem empirically less likely to attempt to design their own curves,
or deviate from standard recommendations for secure implementations. Another protective
factor may have been the relatively late dates of ECDH adoption. By the time elliptic
curves began to be used on any scale in the wild, well after 2010, the cryptographic
community had already discovered the analogues of many of the basic cryptographic
vulnerabilities that early RSA and Diffie–Hellman implementations suffered from.
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5 (EC)DSA
The DSA algorithm was originally standardised in the early 1990s. Prime-field DSA never
found widespread use for SSL/TLS (Lenstra et al. [LHA+12] report finding only 141 DSA
keys out of more than 6 million distinct HTTPS certificates in 2012; nearly all of the rest
were RSA). However, the SSH specification requires implementations to support DSA as a
public-key format [YL06], and it was almost universally supported by SSH servers until it
began to be replaced by ECDSA. DSA public keys were also widely used for PGP: Lenstra
et al. [LHA+12] report that 46% of 5.4 million PGP public keys they scraped in the wild
in 2012 were DSA public keys. The relative popularity of DSA compared with RSA in
these different protocols is likely due to the fact that RSA was protected by a patent that
did not expire until the year 2000.

In the past handful of years, ECDSA, the elliptic-curve digital signature algorithm,
has rapidly grown in popularity. According to the ICSI Certificate Notary, 10% of the
HTTPS certificates seen in the wild as of this writing use ECDSA as their signature algo-
rithm [ICS20]. Most of the major cryptocurrencies use ECDSA signatures to authenticate
transactions.

DSA Key Generation, in Theory The DSA public parameters include a prime p chosen
so that (p− 1) is divisible by a smaller prime q of specified length, and g a generator of
the subgroup of order q modulo p. To generate a DSA public key, the signer generates a
random secret exponent x, computes the value y = gx mod p, and publishes the values
(p, q, g, y) [Inf13].

DSA Signatures and Verification, in Theory As originally published, the DSA is rand-
omised. To sign the hash of a message H(m), the signer chooses an integer k, which is
often called a signature nonce, although it serves as an ephemeral private key. The signer
computes the values r = gk mod p mod q and s = k−1(H(m) + xr) mod q, and publishes
the values (r, s) [Inf13]. To mitigate vulnerabilities due to random-number generation
failures in generating k, many implementations now use ‘deterministic’ nonce generation,
where the nonce value k is generated pseudorandomly and deterministically by applying a
pseudorandom function, typically based on HMAC, to the message m and the secret key
x [Por13].

To verify a signature (r, s) with a public key (p, q, g, y), the verifier computes the values
w = s−1 mod q, u1 = H(m)w mod q, and u2 = rw mod q. The verifier then verifies that
r = gu1yu2 mod p mod q [Inf13].

5.1 Distinct Primes
Perhaps in response to the trapdoor prime controversy surrounding the standardisation
of DSA described in Section 3.13, custom primes for DSA have been historically more
common than custom primes for Diffie–Hellman. Lenstra et al. [LHA+12] note that, of
the more than 2.5 million DSA public keys in the PGP key database in 2012, only 1900
(0.07%) used the same prime as another public key in the database. This is in contrast
to the choices for ElGamal PGP public keys, where 66% of the more than 2.5 million
ElGamal public keys used a prime that was used by another key in the database, and
there were only 93 such primes that were shared.

5.2 Repeated Public Keys
Repeated public keys are also common across hosts. Heninger et al. [HDWH12] docu-
mented extensive repetition of DSA public keys across SSH hosts in 2012, with common
keys being served by thousands of IP addresses. Many of these were large hosting providers
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with presumably shared infrastructure, but they also found evidence of hard-coded keys
baked into network device firmware, as well as evidence of random-number generation
issues similar to those affecting RSA. In these cases, the owner of a vulnerable key will
know the corresponding secret key for any host sharing the same public key, and could
thus generate valid signatures for these vulnerable hosts. For keys that have been hard-
coded into firmware images or repeated due to poor randomness, the secret keys can be
compromised by an attacker who reverse-engineers the implementation.

5.3 ECDSA
ECDSA Key Generation, in Theory The public-domain parameters for an ECDSA
public key are the same as for elliptic-curve Diffie–Hellman: for the purposes of this section,
the relevant curve parameters are a specification of a finite field F and an elliptic-curve
E, together with a generator G of a subgroup of prime-order q on the curve. The private
signing key is an integer x, and the public signature key is the point Y = xG [Inf13].

ECDSA Key Generation, in Practice The NIST P-256 curve is by far the most commonly
used curve for ECDSA by SSH and HTTPS servers in the wild. The most common
cryptocurrencies including Bitcoin, Ethereum and Ripple all use the curve secp256k1,
which is a 256-bit Koblitz curve described in SEC 2 [SEC00].

The Ed25519 signature scheme [BDL+12] is a variant of EdDSA, the DSA signature
scheme adapted to Edwards curves, specialised to Curve25519. It includes countermeasures
against many common implementation vulnerabilities: in particular, signature nonces
are defined as being generated deterministically, and it is implemented without secret-
dependent branches that might introduce side channels.

ECDSA Signatures and Verification, in Theory To sign a message hash H(m), the
signer chooses an integer k, computes the point (xr, yr) = kG, and outputs r = xr and
s = k−1(H(m) + xr) mod q. The signature is the pair (r, s) [Inf13]. In ‘deterministic’
ECDSA, the nonce k is generated pseudorandomly and deterministically by applying an
HMAC-based pseudorandom function to the message m and the secret key x [Por13].

To verify a message hash using a public key Y , the verifier computes (x′r, y′r) =
hs−1G+ rs−1Y and verifies that x′r ≡ r mod q.

Signature Normalisation ECDSA signatures have the property that the signatures (r, s)
and (r,−s) will validate with the same public key. In order to ensure that signatures
are not malleable, Bitcoin, Ethereum and Ripple all use ‘signature normalisation’, which
uses the smaller of s and −s for a signature. This is a mitigation against attacks in the
cryptocurrency context in which an attacker duplicates a transaction under a different
transaction identifier (computed as the deterministic hash over all of the transaction data
including the signature) by modifying the signature [Kli17].

5.4 Curve Replacement Attacks
In 2020, the NSA announced a critical security vulnerability in Microsoft’s Windows 10
certificate validation code [Nat20]. The code flaw failed to validate that the elliptic-curve
group parameters in the signature match the curve parameters in a trusted certificate.
This allowed an adversary to forge a signature that would validate for any given key under
this code by giving the public-key value Y in place of the generator G of the curve, and
generating a signature using the secret key x = 1.
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5.5 Small Secret Keys
Because the security of (EC)DSA relies on the (elliptic-curve) discrete logarithm of the
public key y or Y being hard to compute, the secret key x should be difficult to guess.
However, numerous implementation vulnerabilities appear to have led to predictable secret
exponents being used for ECDSA public keys in the context of Bitcoin. The Large Bitcoin
Collider is a project that is using a linear brute-force search algorithm to search for Bitcoin
keys with a small public exponent, and has found several secret keys used in the wild after
searching a 55-bit space [ric16].

5.6 Predictable Secret Keys
A Bitcoin ‘brainwallet’ is a tool that derives an ECDSA public–private key pair from a
passphrase provided by a user. A typical key derivation might apply a cryptographic hash
function H to a passphrase to obtain the ECDSA secret key x. This allows the user to
use this public–private key pair without having to store an opaque blob of cryptographic
parameters in a secure fashion. However, attackers have carried out dictionary attacks and
successfully recovered numerous Bitcoin secret keys, together with associated funds [Cas15].

5.7 Predictable Nonces
The security of (EC)DSA also relies crucially on the signature nonce (actually a one-time
secret key) for every signature remaining secret and hard to predict. If an attacker can
guess or predict the nonce value k used to generate a signature (r, s), the attacker can
compute the signer’s long-term secret key

x = r−1(ks−H(m)) mod q. (1)
Breitner and Heninger [BH19] found numerous Bitcoin signatures using 64-bit or smaller

signature nonces, including several whose values appeared to be hand-generated.
Several million signatures in the Bitcoin blockchain use the signature nonce value

(q − 1)/2, where q is the order of the secp256k1 curve. The x-coordinate of (q − 1)/2 ·G
is 166 bits long, where one would expect a random point to have 256 bits, resulting in
a much shorter signature than expected. This value is apparently used intentionally to
collect small amounts of funds from addresses that will be then abandoned, and appears
to be used because reducing the length of the digital signature reduces the transaction
costs [blo15]. Many Bitcoin private keys are intended to be used only once, so the users
of this nonce value appear to be using it intentionally because they do not care about
compromising the secret key.

5.8 Repeated Nonces
If a victim ever signs two distinct message hashes H(m1) and H(m2) using the same
(EC)DSA private key and signature nonce k to generate signatures (r1, s1) and (r2, s2),
then it is trivial to recover the long-term private signing key from the messages. If the
signatures have been generated using the same k value, then this is easy to recognise
because r1 = r2. Then the value k can be recovered as

k = (H(m1)−H(m2))(s1 − s2)−1 mod q.

Once k has been recovered, then the secret key x can be recovered as in Eq. (1).
Repeated DSA and ECDSA signature nonces have been found numerous times in the

wild.
In 2011, the ECDSA signature implementation used by the Sony PS3 was found to

always use the same nonce k, revealing the code-signing key.
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In 2012, the private keys of 1.6%, around 100 000, of SSH hosts with DSA host keys
were compromised via repeated signature nonces [HDWH12]. Most of these vulnerable
hosts appeared to be compromised due to poorly seeded deterministic pseudorandom-
number generators. First, numerous hosts appear to have generated identical public keys
using a pseudorandom-number generator seeded with the same value. Next, if the same
poorly seeded pseudorandom-number generator is used for signature generation, then
multiple distinct hosts will generate the same deterministic sequence of signature nonces.
There were also multiple SSH implementations that were observed always using the same
signature nonce for all signatures. In 2018, Breitner and Heninger [BH19] found 80 SSH
host public keys were compromised by repeated signature nonces from ECDSA or DSA
signatures, suggesting that the random-number generation issues found in 2012 may have
been mitigated. They found a small number of repeated ECDSA signature nonces from
HTTPS servers that compromised 7 distinct private keys used on 97 distinct IP addresses.

Repeated signature nonces in the Bitcoin blockchain have been well documented
over the course of many years [BHH+14, CEV14, CV16, BR18], and empirical evidence
suggests that attackers are regularly scanning the Bitcoin blockchain and immediately
stealing Bitcoins from addresses whose private keys are revealed through repeated signature
nonces. These vulnerabilities have been traced to at least two high-profile random-number
generation vulnerabilities: a 2013 bug in the Android SecureRandom random-number
generator [Kly13, MMS13] and a 2015 incident in which the Blockchain.info Android
application had been attempting to seed from random.org, but was instead seeding from
a 403 Redirect page to the HTTPS URL [Tea15].

To prevent this vulnerability, (EC)DSA implementations are recommended to avoid
generating nonces using a random-number generator, and instead to derive signature
nonces deterministically using a cryptographically-secure key derivation function applied
to the message and the secret key [Por13].

5.9 Nonces with Shared Prefixes and Suffixes
If an implementation generates signature nonces where some bits of the nonce are known,
predictable, or shared across multiple signatures from the same private key, then there
are multiple algorithms that can recover the private key from these signatures. Let us
specialise to the case where the signature nonce k has some most significant bits that are
0, so there is a bound B < q such that k < B. For a signature (ri, si) on message hash hi,
the signature satisfies the relation

ki = s−1
i rix− s−1

i hi mod q,

where the ki is known to be small, the secret key x is unknown, and the other values are
known.

Howgrave-Graham and Smart [HGS01] showed that one can solve for the secret key
using a lattice attack due to Boneh and Venkatesan [BV96]. Generate the lattice basis

M =



q
q

. . .
q

s−1
1 r1 s−1

2 r2 . . . s−1
m rm B/q

s−1
1 h1 s−1

2 h2 . . . s−1
m hm B


.

The vector vx = (k1, k2, . . . , km, Bx/q,B) is a short vector generated by the rows of M ,
and when |vx| < detM1/ dim M , we hope to recover vx using a lattice reduction algorithm
like LLL [LLL82] or BKZ [Sch87, SE94].

random.org
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In 2018, Breitner and Heninger found 302 Bitcoin keys that were compromised because
they had generated signatures with nonces that were short, or shared a prefix or a suffix
with many other nonces [BH19]. These were hypothesized to be due to implementation
flaws that used the wrong length for nonces, or memory-bounds errors that caused the
buffer used to store the nonce to overlap with other information in memory.

They also found three private keys used by SSH hosts whose signature nonces all shared
the suffix f27871c6, which is one of the constant words used in the calculation of a SHA-2
hash, suggesting that the implementation generating these nonces was attempting to use a
buggy implementation of SHA-2. In addition, there were keys used for both Bitcoin and
SSH that used 160-bit nonces, suggesting that a 160-bit hash function like SHA-1 may
have been used to generate the nonces.

5.10 Bleichenbacher Biased Nonces
Bleichenbacher developed an algorithm that uses Fourier analysis to recover the secret key
in cases of even smaller bias than the lattice attack described above works for [Ble00]. The
main idea is to define a function for signature samples (ri, si) on message hash hi

f(s−1
i ri) = e

−2πis−1
i

hi

q .

It can be shown that this function will have a large Fourier coefficient f̂(x) at the secret
key x, and will be close to 0 everywhere else.

Bleichenbacher’s algorithm then uses a technique for finding significant Fourier coeffi-
cients even when one cannot compute the full Fourier transform of the function to find the
secret key x.

Bleichenbacher’s algorithm was inspired by the observation that many DSA and ECDSA
implementations will simply generate an n-bit random integer as the nonce for an n-bit
group order, and do not apply rejection sampling if the nonce is larger than the group order.
This means that the distribution of the nonce k over many signatures will be non-uniform.
That is, if the group order q = 2n − t and an implementation naively generates an n-bit
nonce k, then the values between 0 and t are twice as likely to occur than all other values.

The countermeasure against this attack is for implementations to use rejection sampling
to sample a uniform distribution of nonces modulo q.

Most common elliptic curves have group orders that are very close to powers of two, so
a practical attack is likely infeasible for these curves, but prime-field DSA group-generation
procedures generally do not put such constraints on the subgroup order.

5.11 Countermeasures
The fact that a long-term (EC)DSA private key is compromised if that key is ever used to
generate signatures by using a faulty or even very slightly biased random-number generator
is a severe usability problem for the signature scheme, and has led to numerous problems
in the real world. To protect against this vulnerability, implementations must always
use ‘deterministic’ (EC)DSA to generate nonces. Fortunately, this countermeasure is
becoming more popular, and more recent signature schemes such as Ed25519 build this
nonce-generation procedure directly into the signature-generation scheme from the start.

6 Conclusion
The real-world implementation landscape for public-key cryptography contains numerous
surprises, strange choices, catastrophic vulnerabilities, oversights and mathematical puzzles.
Many of the measurement studies we toured evaluating real-world security have led
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to improved standards, more secure libraries, and a slowly improving implementation
landscape for cryptography in network protocols.

The fact that it has taken decades to iron out the implementation flaws for our oldest and
most well-understood public-key cryptographic primitives such as RSA and Diffie–Hellman
raises some questions about this process in the future: with new public-key standards on
the horizon, are we doomed to repeat the past several decades of implementation chaos
and catastrophic vulnerabilities?

Fortunately, the future seems a bit brighter than the complicated history of public-key
cryptographic deployments might suggest. Although the mathematical structure of our
future public-key cryptography standards will look rather different from the factoring and
cyclic-group based cryptography we use now, many of the general classes of vulnerabilities
are likely to remain the same: random-number generation issues, subtle biases and
rounding errors, precomputation trade-offs, backdoored constants and substitution attacks,
parameter negotiation, omitted validation checks and error-based side channels. With
an improved understanding of protocol integration, a focus on real-world threat models,
developer usability, and provably secure implementations, we have a chance to get these
new schemes mostly right before they are deployed into the real world.
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