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Abstract

In this paper, we present an asynchronous Byzantine reliable broadcast (RBC) protocol with bal-
anced costs and an improved asynchronous verifiable information dispersal (AVID) protocol. Our RBC
protocol broadcasts a message M among n nodes with total communication cost O(n|M |+κn2) and per-
node communication cost O(|M |+κn). In contrast, the state-of-the-art reliable broadcast protocol has
imbalanced costs where the broadcaster incurs O(n|M |) while other nodes incur a communication cost of
O(|M |+κn). We then use our new RBC protocol and additional techniques to design an asynchronous
verifiable information dispersal (AVID) protocol with total dispersal cost O(|M |+κn2) and retrieval cost
O(|M |+κn). In our AVID protocol, the clients incur a communication cost of O(|M |+κn) in comparison
to O(|M |+κn logn) cost of prior best AVID protocol that does not require any trusted setup. Moreover,
each node in our AVID protocol incurs a storage cost of O(|M |/n+ κ) bits, whereas in prior best AVID
protocol each node incurs a storage cost of O(|M |/n + κ logn) bits. Finally, we present lower bound
results on per-node communication cost of any deterministic RBC protocol and the total communication
cost of dispersal and retrieval phase in any deterministic AVID protocol. Both our balanced RBC and
AVID protocols have near-optimal communication costs.

1 Introduction
Reliable broadcast (RBC) and Verifiable information dispersal (VID) are fundamental primitives in dis-
tributed computing [9], and have many applications such as fault-tolerant consensus and replication [23, 14,
16, 21], secure multiparty computation [20, 28], verifiable secret sharing [11], and distributed key genera-
tion [1, 19, 12]. The goal of RBC is to have a designated broadcaster send its input message and to have all
nodes output the same message. VID lets a client, here on referred to as the dispersing client, disperse a
message among a set of nodes such that the message can be later retrieved by any node or any other client,
which we refer to as the retrieving client. In this paper, we consider these two problems in asynchronous
networks and we assume Byzantine faults that may deviate arbitrarily from the protocols. The problem of
asynchronous VID (AVID) was introduced by Cachin and Tessaro [10]. A protocol for AVID immediately
implies a protocol for asynchronous RBC, where the broadcaster acts as the dispersing client and each node
retrieves the data by acting as a retrieving client.
Existing works. The first RBC protocol due to Bracha [9] has a total communication cost of O(n2|M |),
where n is the number of protocol nodes and |M | is the size of the broadcaster’s message in bits. Two decades
later, Cachin and Tessaro [10], assuming a collision resistant hash function, proposed a RBC protocol that has
a total communication cost of O(n|M |+κn2 log n). Here κ is the size of output of the hash function. In both
of these RBC protocols, every node, including the broadcaster, incurs the same asymptotic communication
cost. Here on, we will refer to such a RBC protocol as a balanced RBC protocol. The state-of-the-art
asynchronous RBC protocol due to Das et al. [11], which has a total communication cost of O(n|M |+κn2)
and requires no trusted setup, however, has an unbalanced communication cost. The cost of the broadcaster
is approximately n times higher than that of other nodes, leading to a bottleneck at the broadcaster. We
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Table 1: Comparison with Existing RBC protocols. The following acronyms are used in the table; q-SDH: q-Strong
Diffie-Hellman, DBDH: Decisional Bilinear Diffie-Hellman. The upper bound for rounds means bad-case latency [3],
and the lower bound for rounds means lower bound for good-case latency when the broadcaster is honest [2].

Scheme Communication
Cost (broadcaster)

Communication
Cost (other node)

Communication
Cost (total) Rounds Cryptographic

Assumption Setup

Bracha [9] O(n|M |) O(n|M |) O(n2|M |) 4 None None
Cachin-Tessaro [10] O(|M |+κn logn) O(|M |+κn logn) O(n|M |+κn2 logn) 4 Hash None
Nayak et al. [24] O(|M |+κn) O(|M |+κn) O(n|M |+κn2) 7 q-SDH+DBDH Trusted
Das et al. [11] O(n|M |) O(|M |+κn) O(n|M |+κn2) 4 Hash None

This work O(|M |+κn) O(|M |+κn) O(n|M |+κn2) 5 Hash None
Lower bound Ω(|M |+n) Ω(|M |+n) Ω(n|M |+n2) 2 — —

Table 2: Comparison with existing AVID protocols. The following accronyms are used in the table; DL: Discrete
Logarithm, CRS: Common Reference String, q-SDH: q-Strong Diffie-Hellman.

Scheme Dispersal
Cost (client)

Dispersal
Cost (total)

Retrieval
Cost (total)

Storage
Cost (total)

Cryptographic
Assumption Setup

Cachin-Tessaro [10] O(|M |+κn logn) O(n|M |+κn2 logn) O(|M |+κn logn) O(|M |+κn logn) Hash None
Hendricks et al. [17] O(|M |+κn2) O(|M |+κn3) O(|M |+κn2) O(|M |+κn2) Hash None
Alhaddad et al. [4] O(|M |+κn logn) O(|M |+κn2) O(|M |+κn logn) O(|M |+κn logn) DL CRS
Alhaddad et al. [4] O(|M |+κn) O(|M |+κn2) O(|M |+κn) O(|M |+κn) q-SDH+Hash Trusted
DisperseLedger [27] O(|M |+κn logn) O(|M |+κn2) O(|M |+κn logn) O(|M |+κn logn) Hash None

This work O(|M |+κn) O(|M |+κn2) O(|M |+κn) O(|M |+κn) Hash None
Lower bound Ω(|M |+n) Ω(|M |+n2) Ω(|M |+n) Ω(|M |) — —

provide a detailed comparison with the RBC protocol of [11] in Table 1 and discuss other related work in
detail in §6.

Cachin et al. [10] presented the first AVID protocol with a total communication cost of O(n|M |+κn2 log n)
during the dispersal phase and O(|M |+κn log n) during the retrieval phase. Here κ is size of output of the
hash function. Moreover, in their protocol, both dispersing client and retrieving client incurs a communica-
tion cost O(|M |+κn log n) during the dispersal and retrieval phase, respectively. Also, each node needs incurs
a storage cost of O(|M |+κ log n). Hendricks et al. [17] gave a protocol with communication cost O(|M |+κn3)
for the dispersal phase and O(|M |+κn2) for retrieval phase. Very recently, the cost is further improved to
O(|M |+κn2) for dispersal and O(|M |+κn) for retrieval assuming a trusted setup [4]. Also, without a trusted
setup, [27, 4] proposed AVID protocols with O(|M |+κn2) for dispersal and O(|M |+κn log n) for retrieval
phase. Also, in their AVID protocol, both dispersing and retrieving client incur a cost of O(|M |+κn log n)
during the dispersal and retrieval phase, respectively. Moreover, each node needs incurs a storage cost of
O(|M |/n+κ log n). We summarize the existing works on AVID in Table 2 and describe them in more detail
in §6.
Our results. Our first contribution is a RBC protocol, which we referred to as the BalRBC, has the same
total communication cost of O(n|M |+κn2) as the state-of-the-art [11], but additionally achieves balanced
communication cost of O(|M |+κn) at every node, including the broadcaster. In particular, we eliminate the
need for the broadcasters to send the entire proposal message to every node.

Our second contribution is a new AVID protocol that does not require any trusted setup and has a
communication cost of O(|M |+κn2) during the dispersal phase. Moreover, the both dispersing client incurs
a cost of O(|M |+κn). Similar to existing AVID protocols [10, 17, 27, 4], during the dispersal phase, the
client uses error correction code to encode the message into n symbols and send a symbol to each node.
Unlike existing protocols, we do not use a Merkle tree for verification and instead reliably broadcast hashes
of each symbol and use them for verification. As a result, each node in our AVID protocol incurs a storage
cost of O(|M |/n+ κ). instead of O(|M |/n+ κ log n). Finally, using error-correcting codes and online error
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correction, we improve the communication cost of retrieval per client to O(|M |+κn).
Our third contribution is two lower bound results. First, we prove that in any deterministic RBC

protocol, each node incurs a communication cost of Ω(|M |+n). Second, we prove that in any deterministic
AVID protocol, the dispersal phase has a communication cost of Ω(|M |+n2). Hence, both of our protocols
have near-optimal communication costs.
Paper organizations. The rest of the paper is organized as follows. In §2 we provide the necessary
background. In §3 we discuss our balanced RBC protocol where the broadcaster has a comparable bandwidth
cost as other nodes. In §4 we describe our improved AVID protocol. In §5 we show several lower bounds on
the communication cost of RBC and AVID. We discuss the related work in §6 and conclude in §7.

2 System Model and Preliminaries

2.1 System Model
We consider a network of n nodes where every pair of nodes is connected via a pairwise authenticated
channel. We consider the presence of a malicious adversary A that can corrupt up to t nodes in the network.
The corrupted nodes can behave arbitrarily, and we call a node honest if it remains non-faulty for the entire
protocol execution. We assume the network is asynchronous, i.e., A can arbitrarily delay any message but
must eventually deliver all messages sent between honest nodes.

We use |S| to denote the size of a set S. Let F be a finite field. For any integer a, we use [a] to denote
the ordered set {1, 2, . . . , a}. We use κ to denote the size of output of the collision-resistant hash function.
We also assume that κ > log(|F|) ≥ log n.

2.2 Problem Formulations
Definition 1 (Reliable Broadcast). A protocol for a set of nodes {1, ...., n}, where a distinguished node
called the broadcaster holds an initial input M , is a reliable broadcast (RBC) protocol, if the following
properties hold

• Agreement: If an honest node outputs a message M ′ and another honest node outputs M ′′, then M ′ = M ′′.

• Validity: If the broadcaster is honest, all honest nodes eventually output the message M .

• Totality: If an honest node outputs a message, then every honest node eventually outputs a message.

An VID protocol has following two functions: DISPERSE(M), which a client invokes to disperse a message
M to n nodes, and RETRIEVE, which a (possibly different) client invokes to retrieve the message M . Clients
invoke DISPERSE and RETRIEVE for a particular instance of VID, identified by an instance tag. For simplicity,
in the paper we will focus on a single instance of an VID and omit the instance tag.

Definition 2 (Verifiable Information Dispersal [10]). A verifiable information dispersal (VID) scheme for a
message M consists of a pair of protocols DISPERSE and RETRIEVE which satisfy the following requirements:

• Termination: If an honest client invokes DISPERSE(M) and no other client invokes DISPERSE on the same
instance, then every honest node eventually finishes the dispersal phase.

• Agreement : If any honest node finishes the dispersal phase, all honest nodes eventually finish the dispersal
phase.

• Availability : If an honest node has finished the dispersal phase, and some honest client initiates RETRIEVE,
then the client eventually reconstructs some message M ′.

• Correctness: If an honest node has finished the dispersal phase, then honest clients always reconstruct the
same message M ′ when invoking RETRIEVE. Furthermore, if an honest client invoked DISPERSE(M) and
no other client invokes DISPERSE on the same instance, then M ′ = M .
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In this paper, we will propose protocols solving these two problems under asynchronous networks, and
also prove corresponding lower bounds for deterministic protocols.

Definition 3 (Communication Complexity). The communication complexity of a protocol measures the
total number of bits sent by all honest protocol nodes during the execution of the protocol.

In addition to the standard communication complexity above which measures the total cost of a protocol,
we also measure the cost for each honest protocol node, as the per-node communication complexity defined
below.

Definition 4 (Per-node Communication Complexity). The per-node communication complexity of any
honest protocol node p running a protocol measures the number of bits sent by p, and the number of bits p
received from any other honest node, during the execution of the protocol.

Note that, asymptotically, the communication complexity of a protocol equals the summation of per-node
communication complexity over all honest nodes. When a protocol has the same per-node communication
complexity C for every honest node, we say the protocol has per-node communication complexity C.

2.3 Primitives
Error Correcting Code We use error correcting codes. For concreteness, we will use the standard Reed-
Solomon (RS) codes [25]. A (m, k) RS code in Galois Field F = GF(2a) with m ≤ 2a − 1, encodes k data
symbols from GF(2a) into a codeword of m symbols from GF(2a). Let RSEnc(M,m, k) be the encoding
algorithm. Briefly, the RSEnc takes as input a message M consisting of k symbols, treats it as a polynomial
of degree k − 1 and outputs m evaluations of the corresponding polynomial.

Let RSDec(k, r, T ) be the RS decoding procedure. RSDec takes as input a set of symbols T (some of
which may be incorrect), and outputs a degree k−1 polynomial, i.e., k symbols, by correcting up to r errors
(incorrect symbols) in T . It is well-known that RSDec can correct up to r errors in T and output the original
message provided that |T |≥ k + 2r [22]. Concrete instantiations of RS codes include the Berlekamp-Welch
algorithm [26] and the Gao algorithm [15].

Collision-resistant Hash Function We use a cryptographic collision-resistant hash function hash, which
guarantees that a polynomially bounded adversary cannot come up with two inputs that hash to the same
value, except for a negligible probability.

3 Balanced Quadratic Reliable Broadcast
We present our balanced reliable broadcast (BalRBC) in Algorithm 1 and describe it next. In our RBC
protocol, each node, including the broadcaster, incur the same per-node communication cost of O(|M |+κn).
Also, our RBC protocol matches the state-of-the-art RBC protocol in terms of total cost [11].

3.1 Our Design
In order to reduce the cost of the broadcaster node, our protocol BalRBC first let the broadcaster encode its
message M into n symbols using a (n, t+ 1) Reed-Solomon code (line 4), and only send the i-th symbol to
node i together with the hash digest of the message M (line 5). Note that due to RS code, each symbol has
size |M |/(t+1), and therefore the cost of the broadcaster is reduced to O(n ·(|M |/(t+1)+κ)) = O(|M |+κn)
where κ is the size of the hash digest.

The next step is to let all nodes forward their symbols and the hash digest received from the broadcaster.
When a node receives a symbol from other nodes, it adds the symbol to a set Th indexed by the hash digest
h. Once enough symbols are collected, nodes use the standard Online Error Correcting (OEC) algorithm [5]
(line 11-14) to decode the message. Intuitively, the OEC algorithm performs up to t trials of reconstruction,
and during the r-th trial, a node uses 2t + r + 1 symbols to decode. If the reconstructed message M ′ has
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Algorithm 1 BalRBC protocol for long messages

1: // only broadcaster node
2: input M
3: Let h := hash(M)
4: Let [m1,m2, . . . ,mn] := RSEnc(M,n, t+ 1)
5: send ⟨PROPOSE,mj , h⟩ to node j for each j ∈ [n]

// each node i
6: input P (·) // predicate P (·) returns true unless otherwise specified.

7: Let M := ⊥
8: upon receiving the first ⟨PROPOSE,mi, h⟩ from the broadcaster do
9: send ⟨SHARE,mi, h⟩ to all nodes

10: For the first ⟨SHARE,m∗
j , h⟩ received from node j, add (j,m∗

j ) to Th // Th initialized as {}
11: for 0 ≤ r ≤ t do // online Error Correction
12: upon |Th|≥ 2t+ r + 1 do
13: Let M ′ := RSDec(t+ 1, r, Th)
14: if hash(M ′) = h and P (M ′) = true then
15: M := M ′

16: send ⟨ECHO,mj , h⟩ to node j for each j ∈ [n] where mj is the j-th symbol of RSEnc(M ′, n, t+1)

17: upon receiving 2t+ 1 ⟨ECHO,mi, h⟩ for matching messages and not having sent a READY message do
18: send ⟨READY,mi, h⟩ to all

19: upon receiving t+ 1 ⟨READY, ∗, h⟩ messages and not having sent a READY message do
20: Wait for t+ 1 matching ⟨ECHO,m′

i, h⟩
21: send ⟨READY,m′

i, h⟩ to all

22: For the first ⟨READY,m∗
j , h⟩ received from node j, add (j,m∗

j ) to T ′
h // T ′

h initialized as {}
23: for 0 ≤ r ≤ t do // Error Correction
24: upon |T ′

h|≥ 2t+ r + 1 do
25: if M ̸= ⊥ then
26: output M and return
27: Let M ′′ := RSDec(t+ 1, r, T ′

h)
28: if hash(M ′′) = h then
29: output M ′′ and return

the matching hash digest h, a node successfully reconstructs the message; otherwise, it waits for one more
symbol and tries again.

Once a node successfully reconstructs the message M ′, the rest of the protocol is similar to the four-round
RBC of Das et al. [11, Algorithm 4]. Briefly, nodes send ECHO messages with their symbols and the hash
digest to all nodes (line 16). Also, nodes send READY messages once 2t + 1 matching ECHO messages are
collected (line 17-18) or upon receiving t + 1 READY messages (line 19-21). Note that each node needs to
wait for t+1 matching ECHO messages to learn the symbol to be attached in the READY message (line 20-21).
Finally, nodes use the OEC algorithm to reconstruct the broadcaster’s message once receiving enough READY
messages of the same hash digest.

3.2 Analysis
We next analyze the properties of our BalRBC protocol and its performance.
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Lemma 1. Assuming a collision resistant hash function, if an honest node sends ⟨READY,mi, h⟩ where
h = hash(M), then mi is the ith symbol of RSEnc(M,n, t + 1), and furthermore, no honest node sends a
READY message for a different h′ ̸= h.

Proof. First we show no two honest nodes send READY messages for different hash digests. Let i be the first
honest node that sends a ⟨READY, ∗, h⟩. Then at least 2t+ 1 nodes sent ⟨ECHO, ∗, h⟩ to node i. Now, for the
sake of contradiction assume that an honest node i′ is the first honest node that sends a ⟨READY, ∗, h′⟩ for
h′ ̸= h. Again at least 2t+1 nodes sent ⟨ECHO, ∗, h′⟩ to node i′. Then, by quorum intersection, at least t+1
nodes sent ECHO message for both h and h′. This is impossible as there are at most t malicious nodes and
an honest node sends ECHO message at most once.

Now we show if an honest node sends ⟨READY,mi, h⟩ where h = hash(M), then mi is the ith symbol of
RSEnc(M,n, t + 1). Note that an honest node i sends ⟨READY,mi, h⟩ for h = hash(M) only upon receiving
at least t+ 1 matching ⟨ECHO,mi, h⟩. At least one of these ECHO message is from an honest node h. Before
the honest node h sends the ECHO message, it successfully reconstructed the message M ′ whose hash digest
equals h. Then, by the collision resistance property of the underlying hash function, M ′ = M and mi is the
ith symbol of RSEnc(M,n, t+ 1).

Lemma 2. If an honest node i receives t + 1 READY messages with a matching hash h, then node i will
eventually receive t+ 1 matching ⟨ECHO,mi, h⟩ messages and hence send ⟨READY,mi, h⟩.

Proof. Let j be the first honest node that sends ⟨READY, ∗, h⟩ message to all. Then, node j must have
received at least 2t + 1 ECHO messages with matching h. At least t + 1 of these ECHO messages are from
honest nodes. All these honest node will send ⟨ECHO,mi, h⟩ to node i. Hence, node i will eventually receive
t+ 1 ⟨ECHO,mi, h⟩ messages.

Theorem 1 (Totality and Agreement). If an honest node outputs a message, then every honest node even-
tually outputs a message. If an honest node outputs a message M ′ and another honest node outputs M ′′,
then M ′ = M ′′.

Proof. An honest node outputs a message M only upon receiving at least 2t + 1 READY messages with a
matching hash h = hash(M). At least t + 1 of them are sent by an honest node. Hence, all honest nodes
will receive at least t + 1 READY messages with hash h. By lemma 2, eventually all honest nodes will send
READY messages with hash h. Hence, all honest nodes will receive READY messages from all other honest
nodes. Furthermore, due to Lemma 1, all these READY message contain correct symbols from the codeword
RSEnc(M,n, t+ 1). Thus, every honest node will eventually output M such that h = hash(M).

Theorem 2 (Validity). If the broadcaster is honest, all honest nodes eventually output the message M , given
that the predicate P (·) evaluates to be true at all honest nodes.

Proof. When the broadcaster is honest and has input M , it sends the correct symbols and hash to all
nodes. Then, all honest nodes send the SHARE messages with the correct symbols. Thus, after receiving all
SHARE message from honest nodes, any honest node can reconstruct M ′ due to OEC. Moreover, the collision
resistance property of the hash function ensures that M ′ = M . Also, the predicate P (M ′) = true at all
honest nodes, therefore, at least 2t + 1 honest nodes will send ECHO messages with identical h = hash(M).
Hence, all honest nodes will eventually send READY messages for h. By lemma 1 no honest node will send
READY message for h′ ̸= h. As a result, all honest node will receive at least 2t+ 1 READY message for h with
valid symbols in it, which is sufficient to recover M .

Next, we will analyze the communication complexity of the protocol.

Theorem 3 (Performance). Assuming existence of collision resistant hash functions, Algorithm 1 solves
RBC with total communication complexity of O(n|M |+κn2), and per-node communication complexity of
O(|M |+κn), where κ is the size of the output of the hash function.
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Proof. In algorithm 1 the broadcaster sends a single PROPOSE to all other nodes. Moreover, each honest node
sends a single SHARE, ECHO and READY message. Each message in Algorithm 1 is O(|M |/n+κ) bits long, since
|mi|= |M |/(t+1) and hash outputs are κ bits long. Hence, each node incurs a per-node communication cost
of O(|M |+nκ). Hence, the total communication cost is O(n|M |+κn2).

4 Improved Asynchronous Verifiable Information Dispersal
We next describe our improved AVID protocol and summarize it in Algorithm 2. As mentioned in §2, the
protocol consists of two phases: dispersal phase, invoked by the dispersing client who wants to reliably store
its message M among n protocol nodes; and retrieval phase, invoked by any retrieving client (need not be
the one who initiated the dispersal phase), who wants to retrieve the message M .

4.1 Our Design
In the dispersal phase, first, the dispersing client encodes the message M using a (n, t+1) Reed-Solomon code
(line 2). Let M ′ = [m1,m2, . . . ,mn] be the encoded message that consists of n symbols m1,m2, . . . ,mn.
The dispersing client then computes a vector H = [h1, h2, . . . , hn] of n elements where the i-th element
hi = hash(mi) (line 3). The dispersing client then sends the i-th symbol mi to i-th node. Additionally, the
dispersing client reliably broadcasts H using our BalRBC protocol from §3 (line 4). During the BalRBC,
as per the predicate, the i-th node checks whether the i-th element of the hash vector that is being reliably
broadcast, is equal to the hash of the symbol it received from the dispersing client (line 5-7). Let H be
the output of the validated RBC. Each node then encodes H using a (n, t + 1) Reed-Solomon code; let
H ′ = [h′

1, h
′
2, . . . , h

′
n] be the output of the Reed-Solomon encoding (line 11). Also, let h = hash(H). At the

end of the dispersal phase, the i-th node outputs ⟨mi, h
′
i, h⟩ where mi = ⊥ if the i-th node did not receive a

valid symbol from the dispersing client.
The main idea of the retrieval phase is to let the retrieving client first recover the vector H and then use

it to validate symbols sent by nodes. More specifically, during the retrieval phase, the retrieving client sends
RETRIEVE request to all nodes (line 13). Upon receiving RETRIEVE request from the retrieving client, each
node waits till the dispersal phase terminates (line 33). The i-th node then sends the message ⟨HASH, h′

i, h⟩
to the retrieving client (line 34). Additionally, if node i received a symbol mi during the dispersal phase
such that hash(mi) = H[i], it sends a ⟨SYMBOL,mi⟩ to the retrieving client (line 35-36).

The retrieving client upon receiving a message ⟨HASH, hj , h⟩ from node j adds them to a set Th (line
15). Additionally, for every ⟨SYMBOL,mj⟩ message it receives, it adds it to the set TM . The retrieving client
then uses Th and the standard online error correction to recover H (line 17-21). After recovering H, the
retrieving client uses it to retrieve the message. In particular, for every tuple (j, a) ∈ TM , it first checks
whether hash(a) = H[j] and adds the tuple (j, a) to the set T (line 22-24).

The retrieving client waits till |T |= t+1 and then interpolates the tuples in T into a polynomial of degree
less than or equal to t (line 25-26). Let M ′ be the interpolated polynomial. The client then checks if there
exists any j ∈ [n] such that M [j] ̸= H[j]. If such j exists, then the client outputs ⊥ and returns. Otherwise,
the outputs the Reed-Solomon decoding of M ′ (line 27-31).

4.2 Analysis
We next analyze the properties of our AVID protocol and its performance.

Theorem 4 (Termination and Agreement). If an honest dispersing client invokes DISPERSE(M) and no
other client invokes DISPERSE on the same instance, then every honest node eventually finishes the dispersal
phase.

If any honest node finishes the dispersal phase, all honest nodes eventually finish the dispersal phase.

Proof. An honest dispersing client sends the correct symbols m1, ...,mn to all nodes where [m1,m2, . . . ,mn] =
RSEnc(M,n, t + 1), and reliab ly broadcasts the hash vector H = [hash(m1), hash(m2), . . . , hash(mn)]. By

7



Algorithm 2 Pseudocode for AVID

// the dispersing client invokes DISPERSE(M)
1: input M
2: Let M ′ := [m1,m2, . . . ,mn] := RSEnc(M,n, t+ 1)
3: Let H := [h1, h2, . . . , hn] := [hash(m1), hash(m2), . . . , hash(mn)]
4: Send mi to node i for each i ∈ [n], and invoke BalRBC(H) with predicate P (·) described below

// predicate P (·) for node i during BalRBC
5: procedure P (H)
6: upon receiving mi from the dispersing client do
7: return true iff hash(mi) = H[i]

// code for node i during the dispersal phase
8: Wait till BalRBC(·) terminate
9: Let H = [h1, h2, . . . , hn] be the output of BalRBC(·)

10: Let h = hash(H)
11: [h′

1, h
′
2, . . . , h

′
n] := RSEnc(H,n, t+ 1)

12: Output and store ⟨mi, h
′
i, h⟩ for the dispersal phase // Use mi = ⊥ if it does not receive mi with

hi = hash(mi) from the client.

// the retrieving client invokes RETRIEVE
13: send ⟨RETRIEVE⟩ to all nodes

// retrieving H
14: Let Th := {};TM := {}
15: For every ⟨HASH, h′

j , h⟩ received from node j, add (j, h′
j) to Th

16: For every ⟨SYMBOL,mj⟩ received from node j, add (j,mj) to TM

17: for 0 ≤ r ≤ t do // online Error Correction
18: Wait till |Th|≥ 2t+ r + 1
19: Let H = RSDec(t+ 1, r, Th)
20: if hash(H) = h then
21: break

// retrieving M after retrieving H
22: for each (j, a) ∈ TM do
23: if hash(a) = H[j] then
24: add (j, a) to T

25: Wait till |T |= t+ 1
26: Interpolate T as a degree-t polynomial
27: Let M ′ be the interpolated polynomial evaluated at every element in [n]
28: if ∃j ∈ [n] such that hash(M ′[j]) ̸= H[j] then
29: output ⊥ and return
30: else
31: output RSDec(t+ 1, 0,M ′) and return

// code for node i during RETRIEVE
32: upon receiving ⟨RETRIEVE⟩ from the retrieving client do
33: Wait till the dispersal phase outputs ⟨mi, h

′
i, h⟩

34: send ⟨HASH, h′
i, h⟩ to the retrieving client

35: if mi ̸= ⊥ then
36: send ⟨SYMBOL,mi⟩ to the retrieving client
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the Validity property of the RBC, the RBC will terminate at all honest nodes. Hence, every honest node
will finish the dispersal phase.

Nodes terminate the dispersal phase only after the RBC protocol terminates. Thus by the Totality
property of the RBC every node will terminates the RBC and thus terminates the dispersal phase.

Lemma 3. If the dispersal phase terminates at an honest node, then every honest node will output the same
vector of hashes H = [h1, h2, . . . , hn] for RBC. Furthermore, at least t + 1 honest nodes have received a
symbol that matches with the corresponding location of H.

Proof. Nodes terminate the dispersal phase only after the RBC protocol terminates. Thus by the Totality
and Agreement property of the RBC every node will receive the same message H. Furthermore, when any
honest node finishes the RBC, it has received READY messages from at least 2t + 1 nodes, among which at
least t+1 are honest. This implies that at least one honest node receives ECHO messages from at least 2t+1
nodes, among which at least t+ 1 are honest. Before these honest nodes send ECHO messages, they have the
predicate evaluated to be true, which implies that each honest node j above has received mj from the client
such that hash(mj) = H[j].

Lemma 4. If an honest node has finished the dispersal phase with H as the output of the RBC, then any
honest client can reconstruct the same H after invoking RETRIEVE.

Proof. By Agreement of AVID, all honest nodes eventually finish the dispersal phase once an honest node has
finished the dispersal phase. Also, due to Lemma 3 all honest nodes output the same H for RBC when the
dispersal phase terminates. Therefore, when an honest client invokes RETRIEVE, all 2t+ 1 honest nodes will
send the correct ⟨HASH, h′

i, hash(H)⟩ to the client. By OEC (line 17-20) and the collision resistance property
of the hash function, the client can successfully decode the same hash vector H.

Theorem 5 (Availability and Correctness). If an honest node has finished the dispersal phase, and some
honest clients invoke RETRIEVE, then they eventually output the same message M ′. Furthermore, if an honest
client invoked DISPERSE(M) and no other client invokes DISPERSE on the same instance, then M ′ = M .

Proof. By Lemma 4, the honest client reconstructs the same hash vector H as the one output by any
honest node during the dispersal phase. Moreover, at least t + 1 honest nodes have received mj such that
hash(mj) = H[j]. Therefore, when an honest client invokes RETRIEVE, all these t+ 1 honest nodes will send
the correct ⟨SYMBOL,mi⟩ where hash(mi) = H[i] to the client. As a result, the client can reconstruct the
message M ′ using these symbols.

Let fu(·) denote the polynomial of degree t or less a retrieving client u obtains via interpolation. The
client u then uses fu(·) to recover the message Mu only if hash(fu(i)) = H[i] for all i ∈ [n]. Hence, due to
collision resistance property of the hash(·), if two retrieving client, u and v outputs messages Mu ̸= ⊥ and
Mv ̸= ⊥, respectively, then Mu = Mv.

Also, if any honest retrieving client outputs ⊥, then every honest retrieving client outputs ⊥. For the
sake of contradiction, let us assume that a retrieving client u outputs ⊥ but another retrieving client v ̸= u
outputs Mv ̸= ⊥. Let Tu be the set of indices used by retrieving client u to interpolate fu. Then, there
exists a k ∈ [n] \ Tu such that H[k] ̸= hash(fu[k]). Since retrieving client v outputs Mv ̸= ⊥, this implies
fu[k] = fv[k] for all k ∈ Tu. However, both fu and fv have degree t or less and agrees on t+1 distinct points.
This implies fu and fv matches as polynomial and fu[k] = fv[k] for all k ∈ [n], which is a contradiction.

If an honest dispersing client invoked DISPERSE(M) and no other dispersing client invokes DISPERSE on
the same instance, by the Termination property of AVID, all honest nodes eventually finish the dispersal
phase with RBC output H = [hash(m1), . . . , hash(mn)] where [m1, . . . ,mn] = RSEnc(M,n, t + 1). Also,
from Lemma 4 the retrieving client will receive H during the retrieval phase. Then, by collision-resistant
property of the hash function, the honest retrieving client use correct symbol to recover the message, hence
will recover and output M .

Theorem 6 (Performance). The communication cost of a dispersing client during the dispersal phase is
O(|M |+κn) and the total communication cost of the dispersal phase is O(|M |+κn2). Also, each node incurs
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a storage cost of O(|M |/n + κ). Furthermore, the total communication cost for retrieval at a client is
O(|M |+κn).

Proof. During the dispersal phase, the dispersing client only sends a symbol of size O(|M |/n) to each node
and reliably broadcasts a message of size κn. Hence, the total communication cost of the dispersing client
is n · O(|M |/n) and the cost of RBC which is O(κn) from Lemma 3. Also, each node receives a symbol of
size O(|M |/n) and participates in the RBC of a message of size O(κn). Hence, using Lemma 3, the total
communication cost of the dispersal phase is O(|M |+κn2). At the end of the dispersal phase, each node
stores two symbol of size O(|M |/n) and O(κ), respectively, and a hash output of size κ. Thus, the total
storage cost of our AVID protocol is O(|M |+κn).

During retrieval at any retrieving client, each node sends at most two symbols of size O(κ) and O(|M |/n)
to the retrieving client. Hence, the communication cost of the retrieval at a single retrieving client is
O(|M |+κn).

5 Lower Bounds
In this section, we prove communication complexity lower bounds for deterministic protocols that solve RBC
and AVID, as mentioned in Table 1 and 2. To strengthen the result, the lower bounds for RBC are proven
under synchrony. The lower bound proofs are inspired by [13].

5.1 Reliable Broadcast
For any deterministic RBC protocol with input M and tolerates up to Θ(n) Byzantine nodes, it is straight-
forward to show a lower bound of Ω(n|M |+n2) [24] on the communication cost even under synchrony. The
Ω(n|M |) part is because O(n) honest nodes need to receive the message when the protocol terminates, and
the Ω(n2) part is due to the classic Dolev-Reischuk lower bound [13]. Therefore, both Das et al. [11] and
our BalRBC have near-optimal communication cost.

Next, for any deterministic protocol that solves RBC under synchrony, we will show that Ω(|M |+n) is a
lower bound on the communication cost of any protocol node including the broadcaster, which implies our
BalRBC has near-optimal per-node cost as well. The argument for broadcaster is straightforward. First, the
broadcaster needs to send at least Ω(|M |) bits for its input message M . Moreover, the broadcaster has to
send messages to at least t+ 1 nodes, otherwise it is possible that no honest nodes receive any information
from the broadcaster, and the Validity property of RBC can be violated. Since t = Θ(n), we conclude that
the broadcaster has to send Ω(|M |+n) bits. For any non-broadcaster node, we show the following lower
bound result.

Theorem 7. Any deterministic protocol that solves RBC must incur a per-node communication cost of
Ω(|M |+n) for any honest node.

Proof. We will prove that any deterministic RBC protocol incurs at least Ω(|M |+n) per-node communication
cost in at least one execution.

The theorem is true for broadcaster node as mentioned previously, thus we will only prove for non-
broadcaster node. Consider any non-broadcaster honest node during a failure-free execution where the
broadcaster has input M . Since the honest node needs to output M , at least Ω(|M |) bits needs to be
received.

Let Cp,E denote the number of messages an honest node p sends to any node and receives from any
honest node during an execution E. We show that Cp,E ≥ t/2 + 1 for any honest node p in at least one
execution E. Otherwise, suppose there exists a RBC protocol where an honest node q has Cq,E ≤ t/2 for
any execution E. Without loss of generality, suppose q outputs 0 if it receives no message during the entire
execution but other honest nodes output for RBC. Consider a failure-free execution E1 where the honest
broadcaster has input 1, and by assumption, Cq,E1 ≤ t/2. Let S denote the set of nodes that q receives
messages from in E1, and |S|≤ t/2. Consider execution E2 where the honest broadcaster has input 1, and
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q is Byzantine and remains silent. Since the broadcaster is honest and has input 1, by Validity, all honest
nodes output 1 in E2. Then, we construct another execution E3 same as E2 except that the nodes in S
are Byzantine and q is now honest. The nodes in S behave identically as in E2, except that they send no
message to q. By assumption, Cq,E3 ≤ t/2, and the adversary also corrupts the set of nodes R that q sends
messages to in E3. It is possible since |S ∪ R|≤ |S|+|R|≤ t. The Byzantine nodes in R behave identically
as in E2. Since q receives no message in E3, q will output 0 in E3 by assumption. Other honest nodes
will output 1 in E3 since they cannot distinguish E2, E3. However, the Agreement property of RBC is then
violated. Therefore, we prove that Cp,E ≥ t/2 + 1 for any honest node p in at least one execution E, which
implies the per-node communication cost of any RBC protocol is Ω(n).

Therefore, any RBC protocol has a per-node communication cost of Ω(|M |+n).

5.2 Asynchronous Verifiable Information Dispersal
For AVID (or even synchronous VID), the communication cost of the dispersing client during dispersal phase
is lower bounded by Ω(|M |+n) by a similar argument – the dispersing client needs to send Ω(|M |) bits and
needs to send messages to at least t + 1 = Ω(n) nodes. For the total communication cost during dispersal,
we will show the following Ω(|M |+n2) lower bound for AVID.

Theorem 8. Any deterministic protocol that solves AVID must incur a total communication cost of Ω(|M |+n2)
during the dispersal phase.

Proof. Using a similar argument as the cost of broadcaster node in proof of Theorem 7, the dispersing
client incurs a cost of Ω(|M |+n) during the dispersal phase, which is also a lower bound for total cost.
For the protocol nodes, we will prove that any deterministic AVID protocol incurs at least Ω(n) per-node
communication cost during the dispersal phase in at least one execution. Then, the total cost of dispersal
phase is Ω(|M |+n2) since there are n protocol nodes.

Similar to the proof of Theorem 7, let Cp,E denote the number of messages an honest node p sends to
any node and receives from any honest node during the dispersal phase of an execution E, and we will show
that Cp,E ≥ t/2+1 for any honest node p in dispersal phase of at least one execution E. Otherwise, suppose
there exists an AVID protocol where an honest node q has Cq,E ≤ t/2 during the dispersal phase for all
executions. There are two cases.

• Suppose q terminates the dispersal phase if it receives no message during the dispersal phase. Consider
a failure-free execution E1 where the honest dispersing client disperses M but its messages are delayed,
and by assumption, Cq,E1 ≤ t/2. Let S denote the set of nodes that q receives messages from in E1,
and |S|≤ t/2. Then, we construct another execution E2 where the dispersing client is Byzantine and
remain silent, and node q is also Byzantine and remain silent. Now consider execution E3 where the
honest dispersing client disperses a message M but its messages are delayed, the nodes in S are Byzantine
and q is honest. The nodes in S behave identically as in E2, except that they send no message to q.
By assumption, Cq,E3 ≤ t/2, and the adversary also corrupts the set of nodes R that q sends messages
to in E3. It is possible since |S ∪ R|≤ |S|+|R|≤ t. The Byzantine nodes in R behave identically as
in E2. Since q receives no message in E3, q will terminate the dispersal phase in E3 by assumption.
For other honest nodes, they cannot distinguish E2, E3 before receiving any message from the dispersing
client. Therefore, by Agreement property of AVID, these honest nodes will terminate the dispersal phase
in E3 before receiving any message from the dispersing client. In the retrieval phase of E3, according to
the Availability property, the retrieving client reconstructs some message eventually at some time point
τ . Suppose the messages of the dispersing client is delayed beyond time τ in E3. Since no honest node
receives any message from the dispersing client, during the retrieval phase of E3 the dispersed message
cannot be reconstructed, violating the Correctness property of AVID.

• Suppose q never terminates the dispersal phase if it receives no message during the dispersal phase.
Consider a failure-free execution E1 where the honest dispersing client disperses M , and by assumption,
Cq,E1 ≤ t/2. Let S denote the set of nodes that q receives messages from in E1, and |S|≤ t/2. Consider
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execution E2 same as E1 except that q is Byzantine and remains silent. Since the dispersing client is
honest, all honest nodes eventually terminates the dispersal phase in E2. Then, we construct another
execution E3 same as E2 except that the nodes in S are Byzantine and q is now honest. The nodes
in S behave identically as in E2, except that they send no message to q. By assumption, Cq,E3 ≤ t/2,
and the adversary also corrupt the set of nodes R that q sends messages to in E3. It is possible since
|S ∪R|≤ |S|+|R|≤ t. The Byzantine nodes in R behave identically as in E2. Since q receives no message
in E3, q will never terminate the dispersal phase in E3 by assumption. However, other honest nodes will
terminate the dispersal phase in E3 since they cannot distinguish E2, E3. Then, the Agreement property
of RBC is violated, contradiction.

Therefore, Cp,E ≥ t/2 + 1 for any honest node p in at least one execution E, which implies the per-node
communication cost of any AVID protocol during dispersal is Ω(n). Hence, the communication cost of any
deterministic AVID protocol is Ω(|M |+n2) during the dispersal phase.

Finally, the total communication cost during retrieval is lower bounded by Ω(|M |+n), since the client
needs to receive at least Ω(|M |) bits from the honest nodes to obtain M , and the client needs to send
messages to at least t + 1 = Ω(n) nodes for retrieval otherwise it could be the t nodes are Byzantine and
ignore the message.

6 Related Work

Reliable Broadcast. The problem of reliable broadcast (RBC) was introduced by Bracha [9]. In the same
paper, Bracha provided an RBC protocol for a single bit with a communication cost of O(n2), thus O(n2|M |)
for |M | bits using a naïve approach. Almost two decades later, Cachin and Tessaro [10] improved the cost
to O(n|M |+κn2 log n) assuming a collision-resistant hash function with κ being the output size of the hash.
Hendricks et al. in [17] propose an alternate RBC protocol with a communication cost of O(n|M |+κn3)
using a erasure coding scheme where each element of a codeword can be verified for correctness. Assuming
a trusted setup phase, hardness of q-SDH [6, 7] and Decisional Bilinear Diffie-Hellman (DBDH) [8], Nayak
et al. [24] reduced the communication cost to O(n|M |+κn2).

Recently, Das et al. [11] presents a RBC protocol that has a communication cost to O(n|M |+κn2) assum-
ing only collision-resistant hash function. However, in their RBC protocol, the broadcaster incurs a higher
communication cost than the non-broadcaster nodes. Our protocol maintains the same total communication
cost while ensuring that each node, including the broadcaster, incurs asymptotically the same communication
cost.
Asynchronous Verifiable Information Dispersal. The first AVID protocol is due to Cachin and Tes-
saro [10]. In the AVID protocol of [10], during the dispersal phase, each node, including the dispers-
ing client, incurs a communication cost of O(|M |+κn log n). As a result, it has a total dispersal cost of
O(n|M |+κn2 log n). The high communication cost of each node is because every node needs to gossip a
symbol and associated Merkle path during the dispersal phase. In our AVID protocol, we reduce the com-
munication cost of both dispersing client and other nodes by removing the need for nodes to gossip the
symbols and associated Merkle paths. Finally, during retrieval at each retrieving client, it has a communi-
cation cost of O(|M |+κn log n). Again, the factor of log n is because nodes need to send the Merkle path to
the retrieving client, which we obviate in our design.

Hendricks et al. in [17] propose an alternate AVID protocol where during dispersal, the dispersing client
incurs a communication cost of O(|M |+κn2). They improve the communication cost by proposing a non-
interactive verification scheme with fingerprinted cross-checksum. In their protocol, only the dispersing client
sends the symbols to all nodes, and the nodes only perform an RBC on the fingerprinted cross-checksum but
not the symbols. As a result, the remaining nodes incur a communication cost of O(κn2). Hence, the total
communication cost of their protocol during the dispersal phase is O(|M |+κn3). Also, the total retrieval cost
for a single retrieving client is O(|M |+κn2), as each node sends a O(κn) size finger-printed cross-checksum
and an encoded symbol to the retrieving client.
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Very recently, Yang et al. [27] presents a new AVID protocol in which, during the dispersal phase, the
dispersing client incurs a communication cost of O(|M |+κn log n). Furthermore, the total communication
cost of their dispersal phase is O(|M |+κn2). The main innovation of the AVID protocol of [27] is that they
remove the need for nodes to gossip symbols and Merkle paths during the dispersal phase. They do so by
designing a novel retrieval protocol and a RBC on the root of the associated Merkle tree. Nevertheless,
during the dispersal phase, the dispersing client still needs to send a Merkle path to every node. Moreover,
during retrieval at a retrieving client, each node still sends an encoded symbol and the associated Merkle
path to the retrieving client, leading to a communication cost of O(|M |+κn log n). Our protocol improves
the communication costs of both these steps by a factor of log n using a vector of hashes instead of a Merkle
tree and our balanced RBC protocol for long messages.

With trusted setup and assuming hardness of q-SDH [18], the recent work by Alhaddad et al. [4] reduced
the dispersing client cost to O(|M |+κn) and the total communication to O(|M |+κn2) using the KZG [18]
polynomial commitment scheme. Our protocol achieves the same cost using only collision-resistant hash
function without any trusted setup or additional cryptographic assumptions other than collision-resistant
hash functions.

7 Discussion and Conclusion
We have presented an asynchronous Byzantine reliable broadcast (RBC) protocol with a balanced com-
munication cost at all nodes, including the broadcaster. Our balanced RBC protocol immediately implies
a balanced communication cost of asynchronous verifiable/complete secret sharing schemes [11]. We also
present an asynchronous verifiable information dispersal (AVID) protocol with improved communication and
storage cost. Finally, we present lower bound results on the per-node communication cost of any determin-
istic RBC protocol and the total communication cost of dispersal phase in any deterministic AVID protocol.
Our balanced RBC protocol and AVID protocol have near-optimal communication costs. One interesting
open problem is to design an AVID protocol that also achieves optimal or near-optimal total storage cost.
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