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Abstract. For Multi-key Fully Homomorphic scheme(MKFHE) based on the Learning With
Error(LWE) problem, in order to enable multi-key function, ciphertext expansion is required. In
order to achieve ciphertext expansion, the random matrix used in encryption must be encrypted.
For an boolean circuit with input length N , multiplication depth L, security parameter λ , the
number of additional encryptions introduced to achieve ciphertext expansion is O(Nλ6L4),
which is a lot of overhead for computationally sensitive local users. In order to alleviate this
overhead, we proposed a weak version of the MKFHE, using the leakage resilient property
of Leftover Hash Lemma(LHL), the first weak version of the MKFHE scheme is constructed
under plain model. The total private key is the sum of all participant keys. We note that
previous MKFHE schemes with this key structure are all based on Common Reference String
Model(CRS). Our scheme is simpler and more efficient in construction: we dont need to encrypt
the random matrix, so the extra overhead O(Nλ6L4) is reduced to O(N).
For MKFHE based on Ring Learing With Error(RLWE) problem, since the Regularity Lemma
on rings does not have the corresponding leakage resilient property, we can only construct the
weak-MKFHE scheme under the random oracle model.

Keywords: Multi-key homomorphic encryption · LWE · RLWE · Leakage resilient cryptogra-
phy.

1 Introduction

Fully Homomorphic Encryption(FHE). The concept of Fully homomorphic encryption(FHE)
was proposed by Rivest et al. [RAD+78], within a year of publishing of the RSA scheme [RSA78]. It
was not until 2009 that Gentry gave the first truly FHE scheme in his doctoral dissertation [Gen09a].
Based on Gentry’s ideas, a series of FHE schemes have been proposed [Gen09b] [vGHV10] [BGV12]
[FV12] [GSW13] [CGGI16] [CKKS17], and their security and efficiency have been continuously im-
proved. FHE is suitable to the problem of unilateral outsourcing computations. However in the case
of multiple data providers, in order to support homomorphic evaluation, data must be encrypted by
a common public key. Due to privacy of data, it is unreasonable to require participants to use other
people’s public keys to encrypt their own data.

Multiparty Computation (MPC).This problem was initialized by Yao in [Yao82] [Yao86], who
considered two-party scenarios and gave a solution. Later, Goldreich, Micali and Wigderson extended
the model to k participants with malicious adversaries in [MGW87]. Compared to FHE, MPC is more
mature, as [Orl11] mentioned, generic MPC is a fast moving field: In 2009 the first implementation
of MPC for 2 parties with active security [PSSW09], was able to evaluate a circuit of 3 × 104 gates
in 103 seconds. Only two years after, the same circuit is evaluated in less than 5 seconds [NNOB12].
Subsequently, for active attacks, the literature [LP07] [Lin13] made a series of improvements.The first
large-scale and practical application of multi-party computation (demonstrated on an actual auction
problem) took place in Denmark in January 2008. However, MPC also has disadvantages: it suffers
from high communication overhead and is vulnerable to attacks by corrupt participants, although
these problems can be solved, but at the cost of high computational overhead.

Multi-key Fully Homomorphic Encryption(MKFHE).In order to solve this dilemma, López-
Alt et al. proposed the concept of MKFHE in [LTV12] and construct the first MKFHE scheme based
on modified-NTRU [SS11]. Conceptually, it is an enhancement of the FHE on function. MKFHE
allows data provider to encrypt data independent from other participants, its key generation and
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data encryption are done locally. To get the evaluated result, all participants are required to execute
a round of threshold decryption protocol.

After López-Alt et al. proposed the concept of MKFHE, many schemes were proposed. In 2015,
Clear and McGoldrick [CM15] constructed a GSW [GSW13] type multi-key fully homomorphic scheme
based on LWE. This scheme defined the total key as the concatenation of all keys, introduced CRS and
circular security assumptions, and constructed a masking scheme to converts the ciphertext under
single key to the ciphertext under total key,which only supports single-hop computation. In 2016,
Mukherjee and Wich [MW16], Perkert and shiehian [PS16], Brakerski and Perlman [BP16] constructed
MKFHE scheme based on GSW respectively. [MW16] simplified the mask scheme of [CM15], and
focused on constructing a two-round secure multi-party computing protocol. The work of [PS16] and
[BP16] is dedicated to constructing a multi-hop multi-key fully homomorphic encryption scheme, but
their methods are different. [BP16] introduces bootstrapping to realize ciphertext expansion, thereby
realizing the multi-hop function. [PS16] realize multi-hop function through ingenious construction.
It is worth mentioning that all MKFHE schemes constructed based on the GSW scheme require
a ciphertext expansion procedure, so the random matrix corresponding to ciphertext needs to be
encrypted, which leads to unsatisfactory efficiency of the GSW-type multi-key scheme.

1.1 Motivation

Why do we choose to construct a multi-key homomorphic scheme based on LWE? Now there are many
multi-key homomorphic scheme based on RLWE problem, such as [CDKS19] [MTBH21], and because
of the smaller public key, compact structure and fast arithmetic operation over rings, it is generally
believed that the homomorphic scheme based on RLWE is more efficient than the scheme based on
LWE . This is because the LWE-based MKFHE scheme can use the leakage resilient property of LHL
over the Integers Z to remove CRS, which is incomparable to the RLWE-based homomorphic scheme.

Structure is a double-edged sword: due to the more compact structure on polynomial ring
and various efficient ring algorithms, it is generally believed that FHE scheme based on RLWE is
more efficient than the homomorphic scheme based on LWE. This is the reason why most current
homomorphic schemes are constructed based on RLWE, but LHL lemma over integer ring Z enjoys
the leakage resilient property : It can transform an average quality random sources into higher quality
[ILL89], which is incomparable to general polynomial ring R : Z[x]/f(x), f(x) = xd + 1 . Thanks to
this property, the LWE-based multi-key homomorphic scheme can remove CRS, but the RLWE-based
MKFHE scheme can’t, because the regularity lemma [LPR13] over polynomial ring does not have
this property: As [DSGKS21]mentioned if the j-th Number theoretical Transfer(NTT) coordinate of
each ring element in x = (x1, . . . , xl). is leaked, then the j-th NTT coordinate of al+1 =

∑
aixi is

defined, and so al+1 is very far from uniform: Yet this is only a 1/n leakage rate.
Therefore, no matter how efficient the RLWE multi-key homomorphism scheme is, it has not been

possible to get rid of CRS so far. In some specific scenarios, such as the data provider questioning
the randomness of the common public string, or challenging the fairness of a trusted third party, to
deal with this dilemma, we can only choose the MKFHE based on LWE assumption. However, The
current LWE-based MKFHE efficiency is hardly satisfactory

For the multi-key homomorphism scheme based on LWE, the ciphertext under different keys needs
to be expanded, so it is necessary to encrypt the random matrix R ∈ Zm×m

q of each ciphertext, for
parameters m = n log q + ω(log λ), q = 2λLBχ, circuit input length N , the additional encryption
operation introduced is O(Nλ6L4), which for single-key FHE is O(N). For computing-sensitive par-
ticipants, this is a lot of overhead. Therefore, we propose the concept of weak-MKFHE, which allows
participants to conduct two rounds of interaction and pull encryption operation of participant back
to O(N).

As the reason mentioned above, we cannot apply the LWE construction method trivially to RLWE-
type MKFHE. As a compromise, we introduce a round of bit commitment protocol to guarantee the
independence of each participants, construct the corresponding weak-MKFHE based on ROM, and
optimize the re-linear algorithm of ciphertext. For k participants, previous schemes with concatenation
key structure, the ciphertext after tensor product is O(k2) dimension, so the complexity of the re-
linearization algorithm depends on k. If the sum key structure is adopted, the ciphertext after tensor
product is only 4 dimensions, we can pull the ciphertext back to the initial dimension by one shot.
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1.2 Our Results

In order to eliminate the extra overhead caused by the encryption of random matrix, we proposed
the concept of weak-MKFHE, using the leak resilient property of LHL to construct the first weak
version of the MKFHE scheme under the plain model. The total private key is the sum of the private
keys of all participants. We note that previous MKFHE schemes adopt this key structure are all
based on the CRS model. Not only is the CRS model removed, our solution is simpler and more
efficient in construction: we don’t need to encrypt the random matrix. For MKFHE based on the
RLWE assumption, since regularity lemma [LPR13] on rings has no corresponding leakage resilient
properties, we can only construct the MKFHE scheme under the random oracle model. We give a
review of our two scheme below.

Scheme#1: LWE-based weak MKFHE under plain model:
The security of Scheme#1 based on the Decision-LWE assumption. For a circuit with an input length
N , our scheme requires local participants to perform O(N) encryption operations, in contrast, for
those schemes that require ciphertext expansion, the required encryption operations is O(Nλ6L4).
In order to ensure the semantic security of encryption and make the threshold decryption procedure
simulatable, we have to choose a larger smuging error to conceal the local decryption result. At
the same time, we bounded the participants k by poly(λ), because a larger k will lead to a larger
smuging error, which further leads to a larger q. After estimation, we choose q = 2λLBχ, for such
q, the approximate factor of the GapSVP problem on lattice is Õ(2λL). For detailed security and
parameters, please refer to Section 4.

We give the efficiency comparison with the scheme [PS16] in Table1. Since we have no ciphertext
expansion, our scheme has lower computational overhead.

Scheme Space Time

Public key Ciphertext EvalkeyGen

[PS16] Õ(λ6L4(k+Nλ3L2)) Õ(Nk2λ6L4) Õ(Nλ14L9)

Scheme#1 Õ(k2λ6L4) Õ(Nk2λ8L6) -
Table 1. The notation Õ hides logarithmic factors. The public key and ciphertext size are bits; the EvalkeyGen
column denotes the number of multiplication operations over Zq; k denotes participants number; n denotes
the dimension of the LWE problem; L denotes the circuit depth; λ is the security parameter.

Scheme#2: RLWE-based weak MKFHE under ROM:
Scheme#2 is based on circular RLWE. Our approach is very simple. We introduce a bit commitment
protocol to guarantee the randomness of each participant’s public key. Due to the sum key structure,
the dimension of t⊗ t is independent of k, so the re-linear algorithm pull the ciphertext after tensor
product back to initial dimension by one shot, in addition, the "one shot re-linear algorithm" introduces
less noise. We compared with [CDKS19] in terms of memory and computational overhead, the results
are shown in Table2.

Scheme Space Time

Evalkey Ciphertext Relinear Mult

[CDKS19] Õ(kd) Õ(kd) Õ(k2d) Õ(k2d)

Scheme#2 Õ(kd) Õ(d) O(1) Õ(d)

Table 2. Memory (bit-size) and computational overhead (number of scalar operations over Zq). The notation
Õ hides logarithmic factors. k denotes the number of participants; d denotes the dimension of the RLWE
problem.
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1.3 Related works

Unlike our scheme, [CM15] [PS16] [MW16] [BP16] used the concatenation of all private key as the
total key structure, and the common reference string are introduced. [AJL+12] is the first scheme that
introduce the summation of all private key as the total key,which is also under common reference
string. [BHP17] is the first scheme using the leakage resilient property of LHL to get rid of the
common reference string, which has the concatenation total key structure, and random matrix must
be encrypted by local parties for ciphertext expansion. To be honest, our scheme are the combination
of those two schemes.

1.4 Overview of our construciton

Scheme#1: Similar to [BHP17], Scheme#1 is based on the Dual-GSW scheme. First, let’s review
the Dual-GSW scheme:
Let public key pk = (A,b = sA), private key sk = t = (s, 1), ciphertext:

C =

(
A
b

)
R+E+ uG, Obviously , tC ≈ utG (omit small noise)

For the convenience of explanation, we assume that there are only two participants p1, p2, naturally,
the whole process can be extended to N participants.

Key Generation: The interactive key generation includes the following three steps

– p1 generates (A1, s1), set s1 as a private key and then broadcasts A1 (p2 performs the same
operation)

– After receiving A2(sent by p2), p1 computes b11 = s1A1, b12 = s1A2, and discloses b11,b12.
– After receiving b21 = s2A1(sent by p2), p1 generates public key pk1=(A1,b1), where b1 =

b11 + b21 (p2 performs the same operation)

Encryption: Let the plaintext of p1 and p2 be u1, u2, the corresponding ciphertexts under public
keys pk1 and pk2 are

C1 =

(
A1

b1

)
R1 +E1 + uG, C2 =

(
A2

b2

)
R2 +E2 + u2G,

Decryption: Let t = (−s1 − s2, 1) , obviously tC1 ≈ u1tG, tC2 ≈ u2tG that is, although C1

and C2 are encrypted by different public key, they are both ciphertexts under private key t. Thus,
ciphertexts under different public keys can also perform homomorphic evaluation without ciphertext
expansion, and participants do not need to encrypt the random matrix R to prepare for ciphertext
expansion. The subsequent processes, such as module reduction, bootstrapping, etc. are the same as
the single-key FHE scheme. For a more detailed description, please refer to section 4.

Scheme#2: Scheme#2 is quite simple. Compared with [CDKS19], it has one more round of bit
commitment protocol. In addition, due to the sum key structure, re-linear algorithm can pull the
ciphertext after the tensor product back to initial dimension by one shot. For a more details, please
refer to section 5.

2 Preliminaries

2.1 Notation:

In this work, λ denotes security parameter, negl(λ) denotes the negligible function parameterized by
λ, vectors are represented by lowercase bold letters such as v, unless otherwise specified, vectors are
row vectors by default, and matrices are represented by uppercase bold letters such as M, [k] denotes
the set of integers {1, . . . , k}. If X is a distribution, then a← X means that value a according to the
distribution X. If X is a finite set, then a← X means that the value of a is uniformly selected from X.
For two distribution X,Y parameterized by λ , we useX

stat
≈ Y to represent X and Y are statistically

indistinguishable. Similarly, X
comp
≈ Y means that there are computationally indistinguishable.
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In order to decompose Zq into binary, we review the Gadget matrix [MP12] [AP14] here, let G−1

be the computable function that for any

M ∈ Zm×n
q , We have G−1(M) ∈ {0, 1}ml×n, where l = ⌈log q⌉

let g = (1, 2, . . . , 2l−1) ∈ Zl
q,G = Im ⊗ g ∈ Zm×ml

q , it satisfies GG−1(M) = M

Definition 1. A distribution ensemble {Dn}n∈[N ] supported over integer, is called B-bounded if :

Pre←Dn
[ |e| > B ] = negl(n).

In order to prove the security of our scheme under plain model and enable the simulatability of
threshold decryption, we need the following lemma:

Lemma 2. Let B1 = B1(λ), and B2 = B2(λ) be positive integers and let e1 ∈ [−B1, B1] be a fixed
integer, let e2 ∈ [−B2, B2] be chosen uniformly at random, Then the distribution of e2 is statistically
indistinguisable from that of e2 + e1 as long as B1/B2 = negl(λ)

2.2 The Learning With Error Problem(LWE)

The Learning With Error problem was introduced by Regev [Reg05].

Definition 3. Let λ be security parameter. For parameters n = n(λ), q = q(λ) > 2 ,and a distribution
χ = χ(λ) over Z, the LWEn,q,χ problem is to distinguish the following distribution:

– Distribution 0: the jointly distribution (A,b) ∈ (Zm×n
q ×Zn

q ) is computed by A← U(Zm×n
q ) b←

U(Zn
q )

– Distribution 1: the jointly distribution (A,b) ∈ Zm×n
q × Zn

q is computed by A← U(Zm×n
q ) b =

As+ e, where s← U(Zn
q ) e← χm

Regev proved that the LWEn,q,χ problem is true as long as certain worst case lattice problems
are hard to solve using a quantum algorithm, so we have the following theorem which is implicit
in [Reg05]

Theorem 4. Let λ be security parameter, n = n(λ), q = q(λ) be integer and let χ = χ(λ) be
distribution over Z , we have the jointly distribution (A,b) is computational indistingquishable from
uniform random:

(A,b)
comp
≈ (A, z)

where A← U(Zm×n
q ), b = sA+ e, s← U(Zn

q ), e← χm, and z← U(Zm
q )

2.3 The Ring Learning With Error Problem(RLWE)

Lyubaskevsky, Peikert and Regev defines The RLWE problem in [LPR10] as follows:

Definition 5. Let λ be a security parameter. For parameters d = d(λ), where d is a power of 2,
q = q(λ) > 2 ,and a distribution χ = χ(λ) over R = Z[x]/xd + 1, let Rq = R/qR, the RLWEd,q,χ

problem is to distinguish the following distribution:

– Distribution 0: the jointly distribution (a, b) ∈ R2
q is sampled by (a, b)← U(R2

q).
– Distribution 1: the jointly distribution (a, b) ∈ R2

q is computed by a← U(Rq), b = as+ e, where
s← U(Rq), e← χ.

[LPR10] proved that the RLWEn,q,χ problem is infeasible as long as the approximate worst case
shortest vector problem(SVP) over ideal lattice are hard to solve, so we have the following result
which is implicit in [LPR10]

(a, b)
comp
≈ (a, z)

where (a, b)← U(R2
q), z = as+ e, s← U(Rq), e← χ.

Specially, [LPR10] indicated that The RLWEn,q,χ problem is also infeasible when s is sampled
from nosie distribution χ. In homomorphic encryption, this property is especially popular, because
the low-norm s introduces less noise during homomorphic computation.
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2.4 Dual-GSW Encryption scheme

The Dual-GSW encryption scheme and GSW encryption scheme is similar to Dual Regev scheme
and Regev scheme : public key and encryption structure are just the opposite. Dual-GSW scheme is
defined as follows:

– pp ← Dual − GSW.setup(1λ, 1L) : For a given security parameter λ, circuit depth L, Choose a
appropriate lattice dimension n = n(λ,L), m = n log q + ω(λ), a discrete Gaussian distribution
χ = χ(λ,L) over Z which is bouned by Bχ, module q = poly(n)Bχ to meet the LWEn,q,χ,Bχ

,
Output pp = (n,m, q, χ,Bχ) as the initial parameters.

– (pk, sk) ← Dual − GSW.keyGen(pp): Let private key s ← U{0, 1}m−1, public key pk = (A,b),
where A← U(Zm−1×n

q ), b = sA mod q

– C ← Dual−GSW.enc(pk, u): Choose a random Matrix R← U(Zn×w
q ), w = m log q and an error

matrix E← χn×w, Output the ciphertext :

C =

(
A
b

)
R+E+ uG, where G is a gadget Matrix.

– u ← Dual − GSW.decrypt(sk, C): Let t = (−s, 1), v = tC = tE + utG, check the value of v
output 0 if it close to 0, or 1 otherwise.

Homomorphic addition and multiplication: For ciphertext C1, C2 ∈ Zm×w
q let Cadd = C1 +

C2, Cmult = C1G
−1(C2) It is easy to verify thatCaad andCmult are plaintext of u1 + u2 and u1u2,

respectively.
For the security and correctness of the Dual-GSW scheme, please refer to [cited]. Compared with

the GSW scheme, Dual-GSW scheme has bigger ciphertext, which is O(n2 log3 q), while O(n2 log q)
for GSW scheme. As [BHP17] mentioned, the Dual-GSW scheme makes it more convenient to use
the leakage resilient property of LHL to remove CRS.

2.5 Multi-Key Fully Homomorphic Encryption

We review the definition of MKFHE in detail here, the main purpose of which is to compare with the
definition of weak-MKFHE we proposed. The main difference is that in MKFHE, each participant is
required in key generation and encryption phase independently generates their own keys and completes
the encryption operation without interaction between participants. These two phases are similar to
single-key homomorphic encryption, the computational overhead is independent of k and only related
to λ and L, only in the decryption phase, interaction is involved when participants perform a round
of decryption protocol.

However, In the definition of weak-MKFHE, we do not have such restrictions. We allow interaction
in the key generation phase, and the computational overhead depends on the participants, which is
helpful to reduce the computational overhead and eliminate CRS. We review the definition of MKFHE
first, and weak-MKFHE will be defined later.

Definition 6. Let λ be the security parameter, L be the circuit depth, and k be the number of par-
ticipants. A Leveled multi-key fully homomorphic encryption scheme consists of a tuple of efficient
probabilistic polynomial time algorithms MKFHE=(Init, MKgen, MKenc, MKexpand, MKEval, De-
crypt)

– params ← Init(1λ, 1L) : Input security parameter λ, circuit depth L, Output system paremeter
params. We assume that all algorithm take params as input.

– (pki, ski) ← MKGen(params, id):On input params, identity id, the key generation algorithm
output a key pair for participant pi..

– ci ←MKenc(pki, ui):Input pki and ui, output ciphertext ci.
– c̄i ←MKEpand(pk, ci):Input the ciphertext ci of participant pi, the public key set pk = {pki}i∈[k]

of all participants, output expanded ciphertext c̄i which is under f(ski, . . . skk) whose structure is
undefined.

– c̄eval ←MK.Eval(c̄, Dc):Input the description Dc of circuit, the set of all ciphertext c̄ = {c̄1 . . . c̄N}
while N is the input length of circuit, output evaluated ciphertext c̄eval
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– u ← MKDec(c̄eval, f(sk1 . . . skk)) : Input evluated ciphertext c̄eval, total private key function
f(sk1 . . . skk), output u

Note:

1. The Expand algorithm is not necessary. For example, in the RLWE-based MKFHE scheme, the
ciphertext expansion process is trivial, but in the LWE-based MKFHE scheme, the ciphertext
expansion is a complicated and time-consuming process.

2. The ciphertext structure function f(sk1 . . . skk) represents an organization form, or a certain
function, which is not unique. For example, it can be the concatenation of all keys or the sum of
all keys.

Correctness and Compactness : a leveled MKFHE scheme is correct, if for a given security
parameter λ, circuit depth L, and participants k, we have:

Pr [Decrypt(f(sk1 . . . skk), c̄eval) ̸= C(u1 . . . uN ) ] = negl(λ).

where C is a circuit with input length N and depth less than L

3 weak-MKFHE scheme

Here we first give the definition of weak-MKFHE, and then construct a weak-MKFHE based on the
Dual-GSW scheme.

3.1 The definition of weak-MKFHE

The properties implicited in MKFHE: In the formal definition of the MKFHE [LTV12], the key
generation and encryption phase are both localized operations. The computation overhead of each
participant only depends on security parameters, circuit depth, and is independent from other param-
eters, which means there is no interaction between participant. Different from the standard MKFHE,
in our weak-MKFHE, similar with [BHP17] for the purpose to remove CRS, we allow interaction
which is constant round between participants.

Definition 7. A weak-MKFHE scheme is a tuple of probabilistic polynomial time algorithm weak-
MKFHE=(Init, Constant Round KeyGen, MKenc, MKeval, Dec), which can be divided into two
phases, online phase: Constant Round KeyGen and Decryption, where interaction is allowed between
participants, but the interaction rounds should be constant and independent from other parameters,
local phase : Init, MKenc, and MKeval, whose operations do not involve interaction. These five algo-
rithms are described as follows:

– pp← Init(1λ, 1L):Input security parameter λ, circuit depth L, output public parameters pp.
– (pki, ski)← KeyGen(pp, id):Input public parameter pp, identity id, output the key pair of partic-

ipant pi
– ci ← wmkEnc(pki, ui): Input ui and pki, output ciphertext ci
– ĉ← wmkEval(C, S): Input circuit C, ciphertext set S = {ci}i∈[N ] , output ciphertext ĉ
– u← wmkDec(ĉ, f(sk1 . . . skk)): Input evaluated ciphertext ĉ, f(sk1 . . . skk), output u.

We note that: weak-MKFHE does not have a ciphertext expansion procedure, indeed the inputed
ciphertext in wmkEnc(pki, ui) is encrypted by participants under their own public key, however,
which still supports homomorphic operations. Our construction below details it.

Similar to MKFHE, we require weak-MKFHE to satisfy the following properties: Here we just
briefly review it, refer to [LTV12] for details:
IND-CPA security of encryption : Let λ be the security parameter, L = poly(λ) is the circuit depth,
for any probabilistic polynomial time adversary A, he can distinguish the following two distributions
with negligible advantage.

Pr [A(pp, pk, wmkEnc(pk, 1))−A(pp, pk, wmkEnc(pk, 0)) ̸= 0 ] = negl(λ).
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Correctness and Compactness A leveled wkMKFHE scheme is correct if for a given security
parameter λ, circuit depth L, participants k, we have the following

Pr [Decrypt(f(sk1 . . . skk), ĉ) ̸= C(u1 . . . uN ) ] = negl(λ).

probability is negligible, where C is a circuit with input length N and depth length less than L. A
leveled wMKFHE scheme is compact, if the size ĉ of evaluated ciphertext is bounded by poly(λ,L, k),
but independent of circuit size.

4 Scheme#1:a weak-MKFHE scheme from Dual-GSW

Scheme#1 is different from the Dual-GSW scheme only in the public key: Let s =
∑k

i=1 si, for
participant pi, pki = (Ai,bi), where bi = sAi. We will point out later, however, this structure will
drew some security concerns, but more attention should be paid to its advantages. For any public
key pki, the corresponding private key is t = (−s, 1), that is to say, for ciphertexts under different
public keys, homomorphic evaluation are supported without ciphertext expansion. Let C1 and C2 be
the ciphertext of u1, u2 under pk1, pk2 respectively, Obviously tC1 ≈ u1tG, tC2 ≈ u2tG, and for
Cadd = C1 +C2,Cmult ≈ C1G

−1(C2), we have tCadd ≈ (u1 + u2)tG, tCmult ≈ u1u2tG, we detail
our construction as follows:

– params ← Init(1λ, 1L):Let λ be security parameter, L be circuit depth, lattice dimension n =
n(λ,L), noise distribution χ over Z, and e← χ, where |e| is bounded by Bχ, modulus q = 2λLBχ,
k = poly(λ), m = kn log q+λ, suitable choosing above parameters makes LWEn,q,Bχ

is infeasible.
Output params = (k, n,m, q, χ,Bχ)

– constant round keyGen: pi generates Ai ← U(Zm−1×n
q ), si ← U{0, 1}m−1, and let bi,i = siAi

mod q
• First round: pi broadcasts (Ai, bi,i) and receives all {Aj , bj,j}j∈[k]/i
• Second round: pi generates and discloses {bij}j∈[k], where bij = siAj mod q

After above two round interaction, pi receives {bji}j∈[k]

let bi =

k∑
j=1

bji, pi output pki = (Ai,bi) as public key

– Ci ← wMK.Enc(pki, ui): Input public key pki, plaintext ui, output ciphertext Ci =

(
Ai

bi

)
R+

E+ uiG, where R← χn×ml, E =

(
E0

e1

)
, E0 ← χ(m−1)×ml, e1 ← χ′ ml, χ′ is a distribution over

Z, satisfying |e1| is bounded by 2λ
ϵ1
Bχ, ϵ1 ∈ (0, 1

2 ), G = Im ⊗ g is a gadget matrix.

– Ĉ← wMK.Eval(S,C) : Input set S = {Ci}i∈[N ] which are ciphertext under different public key,
circuit C, output Ĉ.

Homomorphic addition and multiplication

– Cadd ← wMK.add(C1,C2): Input ciphertext C1, C2, output Cadd = C1 + C2, Obviously
tCadd ≈ (u1 + u2)tG

– Cmult ← wMK.mult(C1,C2): Input ciphertext C1, C2, output Cmult = C1G
−1(C2), Obviously

tCmult ≈ u1u2tG

Distributed decryption Similar to [MW16], the decryption procedure is a distributed protocol:

– Local Decryption: Input Ĉ, let Ĉ =

(
C0

c1

)
, where C0 ∈ Zm−1×ml

q , c1 ∈ Zml
q , pi computes

βi = ⟨si, C0G
−1(wT )⟩, and set γi = βi + e′′i , where w = (0 . . . 0, q

2 ) ∈ Zm
q , e′′i ← χ′′ is a discrete

gaussian distribution over Z, satisfying |e′′i | < 2dλ
ϵ2
Bχ, ϵ2 ∈ ( 12 , 1), then pi broadcast γi

– Final Decrytpion: After received {γi}i∈[k], let γ =
∑k

i=1 γi + ⟨c1, G−1(wT )⟩, output u = γ
⌈q/2⌋
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4.1 Bootstrapping

In order to eliminate the dependence on the circuit depth to achieve fully homomorphism, we need
to use Gentry’s bootstrapping technology. It is worth noting that the bootstrapping procedure of
our weak-MKFHE scheme is the same as single-key homomorphic scheme: After the interactive key
generation, participant pi uses its own public key pki to encrypt si to obtain evaluation key evki,
which is appended to the public key. Because evki and Ĉ are both ciphertexts under t = (

∑k
i=1 si, 1),

homomorphic decryption can be computed directly when Ĉ are need to be refresh. Therefore, in order
to evaluate any depth circuit, we only need to set the initial parameters to satisfy the homomorphic
evaluation of the decryption circuit.

However, for those MKFHE schemes that requires ciphertext expansion, additional ciphertext
expansion is required, for the reason that Ĉ is the ciphertext under t, but {evki}i∈[k] are the ciphertext
under {ti}i∈[k]. This is another large amount of computational overhead, because in order to expand
the {evki}i∈[k], participant pi needs to encrypt the random matrix of the ciphertext corresponding
to evki.

4.2 Correctness analysis

In order to illustrate the correctness of our scheme, we first study the accumulation of noise:

Let s =
k∑

i=1

si, t = (−s, 1), for fresh ciphertext C =

(
Ai

bi

)
R+

(
E0

e1

)
+ uG

we have tC = e1 + sE0 + utG, let einit = e1 + sE0, Obviously |einit| < (2λ
ϵ1

+ km)Bχ.
After L depth circuit evaluation let eL = (ml)Leinit,

γ =

k∑
i=i

βi +C1G
−1(wT ) = ⟨eL,G−1(wT )⟩+

k∑
i=1

e′′i + u⌊q
2
⌉ (1)

Let efinal = ⟨eL,G−1(wT )⟩ +
∑k

i=1 e
′′
i , in order to decrypt correctly, it requires efinal <

q
4 , for our

parameter settings, obviously |e′′i | > ⟨eL,G−1(wT )⟩, for taking the logarithm of both sides:

log e′′i = λϵ2L

log⟨eL,G−1(wT )⟩ = log(knL(λ)(2L+1)(2λ
ϵ2

+ k2nλL)Bχ = O(L+ λϵ2)

thus efinal <
q
4 .

4.3 Security analysis

We first prove the semantic security of wMKFHE. Goldwasser et al. proved that the dual regev scheme
is leakage resilient in [DGK+10], and similarly, Brakerski et al. [BHP17] proved that the Dual GSW
scheme is leakage resilient. We prove the security by constructing a reduction from our scheme to the
Dual GSW scheme. Consider the following game:

1. Challenger generates pkDual−GSW = (A,b1) where A← U(Zm−1×n
q ), b1 = s1A, s1 ← U{0, 1}m

and send pkDual−GSW to adversary A
2. A generates {bi|bi = siA}i∈[k]/1, choose a bit u ∈ {0, 1} and set pkscheme1 = (A,b), where

b =
∑k

i=1 bi, then send pkscheme1, u to challenger.
3. Challenger choose a bit α ∈ {0, 1}, if α = 0 , set Cscheme1 ← Scheme1.Enc(pkscheme1, u),

otherwise Cscheme1 ← U(Zm×ml
q ), and send Cscheme1 to A

4. After received Cscheme1, A output bit ᾱ, if ᾱ = α, then A wins.

Lemma 8. Let Adv = |Pr[ᾱ = α]− 1
2 | denote A’s advantage in winning the game, If A can win the

game with advantage Adv, then A can distinguish between the ciphertext distribution of Dual-GSW
and the uniform random distribution with the same advantage.
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Proof. We construct Scheme1.Enc(pkscheme1, 0) by Dual −GSW.Enc(pkDual−GSW , 0):

1. First, Challenger generates pkDual−GSW like Game1, set CDual−GSW = Dual−GSW.Enc(pkDual−GSW , 0)
send the both to A.

2. A generates {si}i∈[k]/1, let s′ =
∑k

i=2 si, CDual−GSW =

(
C0

c1

)
, c′1 = s′C0, C′ =

(
C0

c1 + c′1

)
,

obviously C′ =

(
A
b

)
R+

(
E0

e1 + s′E0

)
.

For our parameter settings |e1| < 2λ
ϵ1
Bχ, |s′E0| < kmBχ, thus e1/s

′E0 = negl(λ), we have C′
stat
≈

Scheme1.Enc(pksheme1, 0), if A can distinguish between Scheme1.Enc(pksheme1, 0) and uniform ran-
dom distribution by advantage Adv,then he can distinguish between Dual − GSW.enc(0) and the
uniform random distribution with the same advantage.

Note: we require k to be bounded by poly(λ), because if a larger k is introduced, it will lead to a larger
smudging error, which further leads to a larger q. For our choice of q = 2λLBχ, the corresponding
approximation factor of the SVP problem is Õ(2λL)

4.4 Simulatability of distributed decryption procedure

Similar to [MW16], we get a weak simulation of the distributed decryption procedure: input all private
keys {skj}j∈[k]/i except ski, evaluated result ueval, ciphertext Ĉ, we can simulate the local decryption
result γi. For stronger security requirements : Input any private keys set {skj}j∈S , S is any subset
of [k], evaluated result ueval and ciphertext Ĉ, to simulate {γi}i∈U, U=[k]−S , we don’t know how to
achieve it.

According to equantion (1) we have γ =
∑k

i=1 γi +C1G
−1(wT )

thus γi = ueval⌊
q

2
⌉+ efinal +

k∑
i=1

e′′i +C1G
−1(wT )−

k∑
j ̸=i

γj

For simulator S, input {skj}j∈[k]/i, evaluated result ueval, ciphertext Ĉ, output simulated γ′i

γ′i = ueval⌊
q

2
⌉+

k∑
i=1

e′′i +C1G
−1(wT )−

k∑
j ̸=i

γj .

For our parameter settings, we have :

|
k∑

i=1

e′′i | < k2Lλϵ2
Bχ

efinal < kn(Lλ)(2L+1)(2λ
ϵ2

+ k2nLλ)Bχ = 2O(Lλϵ1 )Bχ

thus |efinal/
k∑

i=1

e′′i | = k2−ω(Lλϵ2−Lλϵ1 ) = negl(λ)

we have γi
stat
≈ γ′i.

5 Scheme#2 : weak-MKFHE based on RLWE in ROM

It is regrettable that the regularity lemma on the general ring cannot enjoy the leak resilient property
of the leftover hash lemma on the integer ring Z. This means that we cannot transplant the above
construction process trivially to RLWE-based FHE. Indeed, [DSGKS21] pointed out that for x =
(x1 . . . xl) ∈ Rl, if the j− th NTT coordinate of each xi,i∈[l] is leaked, then the j− th NTT coordinate
of al+1 =

∑l
i=1 aixi is defined, thus al+1 is far from random, although the leakage ratio is only 1/n.

We also noticed a trivial solution: for a, s ∈ Rl
q, b = ⟨a, s⟩ ∈ Rq, b leaks information about s at most

n log q bits, therefore, as long as we set l long enough, for example, l = l + n log q, then obviously b
is close to uniformly random, but this will result in a extremely large key, thus it is not practical.
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To ensure the independence of the {ai}i∈[k] generated by each participant, we simply added a round
of bit commitment protocol. Under the Random Oracle Model, the cryptographic hash function is
used to ensure the independence of {ai}i∈[k]. Let H : {0, 1}⋆ → {0, 1}λ be a cryptography hash
function, ai ∈ Rq, H(ai) = δi. For a given δ ∈ {0, 1}λ, an adversary A sends a query x ∈ {0, 1}⋆ to
H, which happens to have probability Pr [H(x) = δ ] = 1

2λ
. Let Adv denotes the probability that A

finds a collision after making qro = poly(λ) queries, Obviously Adv = negl(λ), we have the following
result.

Lemma 9. For a given δ ∈ {0, 1}λ, k probabilistic polynomial time(ppt) adversary A, Each A makes
qro = poly(λ) queries to H, let Adv denotes the probability of finding a collision, then: Adv = negl(λ)

For Scheme#2, we only describe its key generation and re-linearization procedure in detail, the rest
is similar to other RLWE-based MKFHE schemes.

Key generation with one round bit commitment.
k participants perform the following steps to get their own public key and evaluation key

1. params← Init(1λ, 1L):Input security parameter λ, circuit depth L, output params = (d, q, χ,Bχ),
which χ is an noise distribution over R : Z[x]/xd + 1, satisfying e← χ, |e|can∞ is bounded by Bχ,
and RLWEd,q,χ,Bχ

is infeasible.
2. pi generates ai ← U(Rq), di ← U(Rl

q), fi ← U(Rl
q), computes δi = H(ai), ϵi = H(di), ζi = H(fi)

and broadcast δi, ϵi, ζi
3. After all {δi, ϵi, ζi}i∈[k] are public, pi discloses {ai, di, fi}.
4. After receiving {aj ,dj , fj}j∈[k]/i, pi broadcast {bi, hi}, where bi = asi + e1, hi = dsi + e2,

a =
∑k

i=1 ai, d =
∑k

i=1 di, (si, e1, e2)← χl+2.

After receiving {bj , hj}j∈[k]/i, pi output pki = (a, b) and EvalKeyi = (hi, ηi, θi)

b =

k∑
i=1

bi ηi = dri + e3 + sig

θi = fsi + e4 + rig (ri, e3, e4)← χ2l+1

Re-linearization ciphertext
Multiplying two ciphertext c1, c2 ∈ R2

q , which under the same private key t = (1, s), s =
∑k

i=1 si,
we obtain cmult = c1 ⊗ c2 ∈ R4

q , where its corresponding private key is t ⊗ t = (1, s, s2). In order
to re-linearize cmult , we need to construct the ciphertext of s2 under t. Let total evaluation key
T = (η, θ,h).

where η =

k∑
i=1

ηi θ =

k∑
i=1

θi h =

k∑
i=1

hi

Let k = (k0,k1), k0 = −θg−1(h) ∈ Rl
q, k1 = (η + fg−1(h)) ∈ Rl

q, obviously k0 + k1s ≈ s2g(omit
small error). Let cmult = (c0, c1, c2, c3).

⟨cmult, t⊗ t⟩ = c0 + (c1 + c2)s+ s2c3

= c0 + (c1 + c2)s+ s2gg−1(c3)

= c0 + k0g
−1(c3) + (c1 + c2 + k1g

−1(c3))s.

Let clinear = (c′0, c
′
1), c′0 = c0 + k0g

−1(c3), c′1 = c1 + c2 + k1g
−1(c3), output clinear as re-linearized

ciphertext. The algorithm defines as follows:

clinear ← Relinear(cmult, {Evalkeyi}i∈[k]): Input cmult ∈ R4
q , evaluation key {Evalkeyi}i∈[k], per-

form Relinear as follows, output clinear = (c′0, c
′
1). Due to the sum structure of keys, the dimension

of t⊗ t is independent of participants k, thus above algorithm pulls the tensor product ciphertext
back to initial dimension by one shot, and introduces less noise than those keys with concatenation
structure.
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Ciphertext Relinearization

Input: cmult = (c0, c1, c2, c3) ∈ R4
q , {Evalkeyi}i∈[k] = {hi, ηi, θi}i∈[k]

Output: clinear = (c′0, c
′
1) ∈ R2

q

1: η ←
∑k

i=1 ηi, θ ←
∑k

i=1 θi, h←
∑k

i=1 hi

2: k0 ← −θg−1(h), k1 ← η + fg−1(h)

3: c′0 ← c0 + k0g
−1(c3), c′1 ← c1 + c2 + k1g

−1(c3)

4: Output: (c′0, c′1)
5: End.

6 Conclusions

For the LWE-based multi-key homomorphism scheme, in order to alleviate the overhead of the local
participants, we proposed the concept of weak-MKFHE, combining the methods of [BHP17] and
[AJL+12] to construct a Dual GSW style weak-MKFHE under the plain model. Our Scheme#1 is
more friendly to local participants than previous scheme, since there is no ciphertext expansion.
However, to support semantic security and threshold decryption, module q is required to be O(2λL)
, such a large q results in high overhead of ciphertext evaluation. Reducing q while ensuring security
is the future direction.

For the multi-key homomorphic scheme based on RLWE, although the computation overhead of
the local participants is not large: to perform re-linearization, only one ring element needs to be
encrypted, but the common random string is always an insurmountable hurdle. Constructing RLWE-
type MKFHE under plain model is the future direction.
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