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Abstract. Ciphertext expansion is an essential component for Multi-key Fully Homomorphic
Encryption(MKFHE) scheme based on the Learning With Error(LWE) problem to enable multi-
key function. In order to achieve ciphertext expansion, the random matrix used in encryption
must be encrypted. For an boolean circuit with input length N , multiplication depth L, security
parameter λ , the number of additional encryptions introduced to achieve ciphertext expansion
is O(Nλ6L4), which is a lot of overhead for computationally sensitive local users. On the
other hand, current MKFHE schemes tend to be based on strong assumptions, either based
on Common Reference String model(CRS), or only against to semi-malicious adversaries, or
the both. For stronger adversary models, such as covert adversaries or rational adversaries,
expensive zero-knowledge proofs need to be introduced to ensure security. From the perspective
of improving efficiency and security, we propose the notion of weak-MKFHE and construct the
first weak-MKFHE scheme based on LWE. By introducing a key lifting procedure, the local
encryption O(Nλ6L4) is reduced to O(N). Furthermore, our scheme does not rely on CRS and
is robust against rational adversaries. For a stronger adversary (between rational adversaries
and malicious adversaries), we show that we can catch him with non-negligible probability. We
believe our results are interesting for some specific scenarios, especially for computationally-
sensitive and trust-sensitive scenarios.
Unfortunately, due to the structural properties of polynomial rings, we cannot trivially trans-
plant LWE-based construction methods to RLWE-based MKFHE. We can only construct RLWE-
based MKFHE under Random Oracle Model(ROM).

Keywords: Multi-key homomorphic encryption · LWE · RLWE · Leakage resilient cryptogra-
phy · Rational adversaries.

1 Introduction

Fully Homomorphic Encryption(FHE). The concept of FHE was proposed by Rivest et al.
[RAD+78], within a year of publishing of the RSA scheme [RSA78]. The first truly fully homomorphic
scheme was proposed by Gentry in his doctoral dissertation [Gen09a]in 2009. Based on Gentry’s ideas,
a series of FHE schemes have been proposed [Gen09b] [vGHV10] [BGV12] [FV12] [GSW13] [CGGI16]
[CKKS17], and their security and efficiency have been continuously improved. FHE is suitable to the
problem of unilateral outsourcing computations. However in the case of multiple data providers, in
order to support homomorphic evaluation, data must be encrypted by a common public key. Due to
privacy of data, it is unreasonable to require participants to use other people’s public keys to encrypt
their own data.

Multiparty Computation (MPC).This problem was initialized by Yao in [Yao82] [Yao86], who
considered two-party scenarios and gave a solution. Later, Goldreich, Micali and Wigderson extended
the model to k participants with malicious adversaries in [MGW87]. Compared to FHE, MPC is more
mature, as [Orl11] mentioned, "generic MPC is a fast moving field: In 2009 the first implementation
of MPC for 2 parties with active security [PSSW09], was able to evaluate a circuit of 3 × 104 gates
in 103 seconds. Only two years after, the same circuit is evaluated in less than 5 seconds [NNOB12]".
Subsequently, for active attacks, the literature [LP07] [Lin13] made a series of improvements.The first
large-scale and practical application of multi-party computation (demonstrated on an actual auction
problem) took place in Denmark in January 2008. However, MPC also has disadvantages: it suffers
from high communication overhead and is vulnerable to attacks by corrupt participants, as [CD+15]
mentioned, "All the general protocols we have seen require a number of rounds that is linear in the
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depth of circuit. We do not know if this is inherent, in fact, we do not even know which functions can
be computed with unconditional security and a constant number of rounds".

Multi-key Fully Homomorphic Encryption(MKFHE).To deal with this dilemma, López-Alt et
al. proposed the concept of MKFHE in [LTV12] and construct the first MKFHE scheme based on
modified-NTRU [SS11]. Conceptually, it is an enhancement of the FHE on function that allows data
provider to encrypt data independent from other participants, its key generation and data encryption
are done locally. To get the evaluated result, all participants are required to execute a round of
threshold decryption protocol.

After López-Alt et al. proposed the concept of MKFHE, many schemes were proposed. In 2015,
Clear and McGoldrick [CM15] constructed a GSW [GSW13] LWE-based MKFHE. This scheme defined
the total key as the concatenation of all keys, and constructed a masking scheme to converts the
ciphertext under single key to total key by introducing CRS and circular LWE assumptions, which only
supports single-hop computation. In 2016, Mukherjee and Wich [MW16], Perkert and shiehian [PS16],
Brakerski and Perlman [BP16] constructed MKFHE scheme based on GSW respectively. [MW16]
simplified the mask scheme of [CM15], and focused on constructing a two-round MPC protocol.
The work of [PS16] and [BP16] was dedicated to constructing a multi-hop MKFHE, but their used
different methods. [BP16] introduced bootstrapping to realize ciphertext expansion, thereby realizing
the multi-hop function. [PS16] realized multi-hop function through ingenious construction. It is worth
mentioning that all MKFHE schemes constructed based on the LWE scheme require a ciphertext
expansion procedure.

1.1 Motivation
Structure is a double-edged sword : due to the more compact structure on polynomial ring and
various efficient ring algorithms, it is generally believed that FHE scheme based on RLWE is more effi-
cient than the homomorphic scheme based on LWE. This is the reason why most current homomorphic
schemes, such as [CDKS19] [MTBH21] are constructed based on RLWE. However LHL lemma over in-
teger ring Z enjoys the leakage resilient property : It can transform an average quality random sources
into higher quality [ILL89], which is incomparable to cyclotomic ring R : Z[x]/f(x), f(x) = xd + 1,
as [DSGKS21]mentioned if the j-th Number theoretical Transfer(NTT) coordinate of each ring ele-
ment in x = (x1, . . . , xl). is leaked, then the j-th NTT coordinate of al+1 =

∑
aixi is defined, so al+1

is very far from uniform, yet this is only a 1/n leakage rate. Thus, LWE-based multi-key homomorphic
scheme can remove CRS, but infeasible for RLWE-based MKFHE scheme.

Therefore, no matter how efficient the RLWE-based MKFHE is, it has not been possible to get rid
of CRS so far. In some specific scenarios, for example, the data provider challenges the randomness
of the common reference string, or challenges the fairness of a trusted third party. To deal with this
dilemma, we can only choose the MKFHE based on LWE assumption. However, the efficiency of current
LWE-based MKFHE is hardly satisfactory.

Ciphertext expansion is expensive : for MKFHE based on LWE, in order to support homomorphic
evaluation, it is necessary to encrypt the random matrix R ∈ Zm×m

q of each ciphertext to prepare
for ciphertext expansion. For a boolean circuit with input length N , multiplication depth L, security
parameter λ, m = n log q + ω(log λ), the additional encryption operation introduced is O(Nλ6L4),
which is O(N) for single-key FHE. For computing-sensitive participants, this is a lot of overhead.

More powerful adversary : The semi-malicious adversary model assumes that the adversary
follows the step specified by protocol, but can arbitrarily choose values from a random distribution,
while a rational adversary can adaptively choose any value from any distribution(more detail please
refer to Section 3.2). An MKFHE scheme against semi-malicious adversaries may not be secure in the
presence of rational adversaries. For example, [BHP17] introduced Adaptively-secure Commitment
[PPV08] and Zero-knowledge proof in order to fight stronger adversaries. [AJL+12] assumed that the
input of the adversary would not exceed the specified bound, otherwise the security of the scheme
cannot be guaranteed.

1.2 Our Results
For trust-sensitive and computationally-sensitive data providers, facing the dilemma mentioned above,
it is difficult to find a suitable solution. In order to formalize this situation, we appropriately tighten
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and loosened the original definition of MKFHE, the modified definition handles the dilemma better.
Following this definition, we construct the first weak-MKFHE scheme based on LWE in the plain model
against rational adversaries.

Since regularity lemma [LPR13] on rings has no corresponding leakage resilient properties, we
cannot apply the LWE construction routine trivially to RLWE-based MKFHE, as a compromise, we
introduce a round of bit commitment protocol to guarantee the independence of each participants,
construct the corresponding weak-MKFHE based on ROM. We give a review of our definition and two
scheme below.

The definition of weak-MKFHE :
Different from previous definition [MW16], we abandon ciphertext expansion procedure, instead, in-
troducing a key lifting procedure which has the same function with ciphertext expansion, but at a
lower cost. In addition to the properties that required by MKFHE, such as Correctness, Compact-
ness, semantic security, Simulatability of decryption, weak-MKFHE should satisfy the following two
additional properties :

– Locally Computationally Compactness : A leveled weak-MKFHE is locally computationally
compact if the participants do the same number of encryptions as the single-key FHE scheme.

– Low round complexity : Only constant round interaction is allow in Key lifting procedure.

Scheme#1: LWE-based weak-MKFHE under plain model against rational adversaries :
The security of Scheme#1 is based on the LWE assumption. The total private key is the sum of the
private keys of all participants. We note that previous MKFHE schemes adopt this key structure are
all based on the CRS model. Not only is the CRS removed, our solution is simpler and more efficient
in construction : For a circuit with an input length N , our scheme requires local users to perform
O(N) encryption operations, while is O(Nλ6L4) for those schemes that require ciphertext expansion.
We simulate the security of Scheme#1 in the presence of rational adversaries, for a more aggressive
adversary we will catch him with a non-negligible probability.

However, in order to ensure the semantic security of encryption and make the threshold decryption
procedure simulatable, we have to choose a larger smuging error to conceal the local decryption result.
We bound the participants k by poly(λ), because a larger k will lead to a larger smuging error, which
further leads to a larger q. Here, we choose q = 2λLBχ, the approximate factor of the GapSVP problem
on lattice is Õ(2λL) for such q. For detailed security and parameters, please refer to Section4.

We give the efficiency comparison with the scheme [PS16] in Table1. Since we have no ciphertext
expansion, our scheme has a much lower computational overhead.

Scheme Space Time Adversary
model

CRS

PubKey + EvalKey CT EvalkeyGen

[PS16] Õ(λ6L4(k +Nλ3L2)) Õ(Nk2λ6L4) Õ(Nλ14L9) Semi-malicious Yes

[BHP17] Õ(k4λ15L11) Õ(Nk4λ8L6) Õ(Nk3λ15L10) Semi-malicious Yes

Scheme#1 Õ(k2λ6L4) Õ(Nk2λ8L6) - rational NO
Table 1. The notation Õ hides logarithmic factors. The public key, evaluation key and ciphertext size are
bits; the EvalkeyGen column denotes the number of multiplication operations over Zq; k denotes participants
number; L denotes the circuit depth; λ is the security parameter.
Remark : We replaced n with λ. To achieve 2λ security against known lattice attacks, one must have
n = Ω(λ log q/Bχ), for our parameter settings q = O(2λLBχ), thus we would like to be n = Ω(λ2L).

Scheme#2: RLWE-based weak-MKFHE under ROM :
Scheme#2 is based on circular RLWE. We introduce a bit commitment protocol to guarantee the
randomness of each participant’s public key. Due to the sum key structure, the dimension of t⊗ t is
independent of k, so the ciphertext relinearization algorithm pull the ciphertext after tensor product
back to initial dimension by one shot, in addition, the "one shot algorithm" introduces less noise. We
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compared with [CDKS19] in terms of memory and computational overhead, the results are shown in
Table2.

Scheme Space Time Adversary
model

CRS

Evalkey CT Relinear Mult

[CDKS19] Õ(kd) Õ(kd) Õ(k2d) Õ(k2d) Semi-malicious Yes

Scheme#2 Õ(kd) Õ(d) O(1) Õ(d) Semi-malicious ROM
Table 2. The Evalkey and CT size are in bits, the Relinear and Mult columns denotes the number of scalar
operations over Zq. The notation Õ hides logarithmic factors, k denotes the number of participants; d denotes
the dimension of the RLWE problem.

1.3 Related works

Unlike our scheme, [CM15] [PS16] [MW16] [BP16] [CDKS19] used the concatenation of all private key
as the total key structure, and CRS are introduced. [AJL+12] is the first scheme that introduce the
summation of all private key as the total key, which is also under CRS and only against semi-malicious
adversaries. [BHP17] is the first scheme using the leakage resilient property of LHL to get rid of the
CRS, which against semi-malicious adversaries and has the concatenation total key structure, and
ciphertext expansion is essential. For their scheme, to against more powerful adversary, extra tools
such as Adaptively-secure Commitment and Zero-knowledge proof are needed.

1.4 Overview of our construciton

Scheme#1 is based on DGSW scheme. we briefly review it first : let A ← U(Z(m×n)
q ), s ← {0, 1}m,

pk = (A,b = sA), sk = t = (−s, 1), plaintext u ∈ {0, 1}, the DGSW ciphertext C:

C =

(
A
b

)
R+E+ uG, R← U(Z(n×m)

q ), E is an noise matrix, G is a gadget matrix.

Obviously, tC ≈ utG (omit small noise)

Key Lifting procedure : Following the definition of weak-MKFHE, it requires the ciphertext
encrypted by hybrid key hk which are outputted by wMKLift(·) and are different among participants,
to support homomorphic evaluation without extra modification. We achieve this property by allowing
two round interaction between participants.

For the convenience of explanation, we assume that there are only two participants p1, p2, natu-
rally, the whole process can be extended to N participants.

– {hk1} ← wMKLift({pk1, sk1}): input the DGSW key pair of p1, where pk1 = (A1,b1,1), b1,1 =

s1A1, A1 ← U(Z(m−1)×n
q ), s1 ← U{0, 1}m−1. p1, p2 are engaged in the following two interaction

• First round : p1 broadcasts (A1,b1,1) and receives {A2,b2,2} (from p2).
• Second round : p1 generates and disclose b1,2, where b1,2 = s1A2

After above two round interaction, p1 receives b2,1(from p2). Let b1 = b1,1 + b2,1, p1 output hybrid
key hk1 = (A1,b1), similarly, p2 outputs hybrid key hk2 = (A2,b2).

After the Key Lifting procedure is completed, p1 and p2 get the corresponding hybrid keys hk1,
hk2. In short, what the key lifting procedure does is convert the DGSW key pair of p1 and p2 into the
hybrid keys hk1, hk2, which are used to encrypt their data. Let t̄ = (−s, 1), s = s1+ s2, for ciphertext
C1, C2 encrypted by hybrid key hk1, hk2 respectively :

C1 =

(
A1

b1

)
R1 +E1 + u1G, C2 =

(
A2

b2

)
R2 +E2 + u2G,
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obviously we have t̄C1 ≈ u1t̄G, t̄C2 ≈ u2t̄G (omit small error). Therefore, although C1 and C2 are
encrypted by different hybrid keys, they correspond to the same decryption key t̄. As we’ll point out
later, however, this structure will drew some security concern. We remedy this problem by increasing
the noise bounds in the last row of the noise matrix E. we discuss the security of Scheme#1 in Section
4.5

Scheme#2: Compared with [CDKS19], Scheme#2 has one more round of bit commitment protocol
and adopts the sum key structure. Due to the sum key structure, the Relinear algorithm can pull the
ciphertext after the tensor product back to initial dimension by one shot. For a more details, please
refer to section 5.

2 Preliminaries

2.1 Notation:

In this work, λ denotes security parameter, negl(λ) denotes the negligible function parameterized by
λ, vectors are represented by lowercase bold letters such as v, unless otherwise specified, vectors are
row vectors by default, and matrices are represented by uppercase bold letters such as M, [k] denotes
the set of integers {1, . . . , k}. If X is a distribution, then a ← X denotes that value a according to
the distribution X. If X is a finite set, then a ← U(X) denotes that the value of a is uniformly
sampled from X. For two distribution X,Y parameterized by λ, we use X

stat
≈ Y to represent X

and Y are statistically indistinguishable. Similarly, X
comp
≈ Y means that there are computationally

indistinguishable.
In order to decompose elements in Zq into binary, we review the Gadget matrix [MP12] [AP14]

here, let G−1(·) be the computable function that for any

M ∈ Zm×n
q , We have G−1(M) ∈ {0, 1}ml×n, where l = ⌈log q⌉

Let g = (1, 2, . . . , 2l−1) ∈ Zl
q, G = Im ⊗ g ∈ Zm×ml

q , it satisfies GG−1(M) = M.

Definition 1. A distribution ensemble {Dn}n∈[N ] supported over integer, is called B-bounded if :

Pre←Dn [ |e| > B ] = negl(n).

In order to prove the security of our scheme under plain model and enable the simulatability of
threshold decryption, we need the following lemma which is introduced by [AJL+12]:

Lemma 2 (in [AJL+12]). Let B1 = B1(λ), and B2 = B2(λ) be positive integers and let e1 ∈
[−B1, B1] be a fixed integer, let e2 ∈ [−B2, B2] be chosen uniformly at random, Then the distribution
of e2 is statistically indistinguisable from that of e2 + e1 as long as B1/B2 = negl(λ).

2.2 The Small Integer Solution(SIS) Problem

The Small Integer Solution(SIS) problem was introduced by Ajtai in the seminal work [Ajt96] which
presented a family of one-way function based on SIS problem. Subsequent series of works [Mic04]
[MR04] [GPV08] [MP13] have made efforts to reduce the size of q, the definition below comes from
[MR04]:

Definition 3 (in [MR04]). The small integer solution problem SISm,n,q,β(in the ℓ∞ norm) is : given
an integer q, a matrix A ∈ Zn×m

q and a real β, find a nonzero integer vector z ∈ Zm/{0} such that
Az = 0 mod q and ||z||∞ < β

[MP13] proved that solving the SISm,n,q,β problem is at least as hard as approximating lattice
problems in the worst case on lattices :

Theorem 4 (in [MP13]). Let n and m = poly(n) be integers, let β be reals, let Z = {z ∈ Zm :
||z||∞ < β}, and let q > β · nδ for some constant δ > 0. Then solving (on the average, with non-
negligible probability) SISm,n,q,β with parameters m,n, qβ and solution set Z/{0} is at least as hard
as approximating lattice problems in the worst case on n dimensional lattices to within γ = Õ(β

√
n).
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2.3 The Learning With Error(LWE) Problem

The Learning With Error problem was introduced by Regev [Reg05].
Definition 5 (LWE). Let λ be security parameter, for parameters n = n(λ) be an integer dimension,
q = q(λ) > 2 be an integer, and a distribution χ = χ(λ) over Z, the LWEn,q,χ problem is to distinguish
the following distribution:

– D0 : the jointly distribution (A, z) ∈ (Zm×n
q × Zn

q ) is sampled by A← U(Zm×n
q ) z← U(Zn

q )

– D1: the jointly distribution (A,b) ∈ (Zm×n
q × Zn

q ) is computed by A ← U(Zm×n
q ) b = sA + e,

where s← U(Zn
q ) e← χm

The LWEn,q,χ assumption assuming that D0

comp
≈ D1. Regev [Reg05] proved that for certain moduli q

and Gaussian error distributions χ the LWEn,q,χ problem is true as long as certain worst case lattice
problems are hard to solve using a quantum algorithm.

2.4 The Ring Learning With Error(RLWE) Problem

Lyubaskevsky, Peikert and Regev defines The RLWE problem in [LPR10] as follows:
Definition 6 (RLWE). Let λ be a security parameter. For parameters d = d(λ), where d is a power
of 2, q = q(λ) > 2 ,and a distribution χ = χ(λ) over R = Z[x]/xd +1, let Rq = R/qR, the RLWEd,q,χ

problem is to distinguish the following distribution:

– D0: the jointly distribution (a, z) ∈ R2
q is sampled by (a, z)← U(R2

q).
– D1: the jointly distribution (a, b) ∈ R2

q is computed by a← U(Rq), b = as+ e, where s← U(Rq),
e← χ.

[LPR10] gave a reduction from the RLWEd,q,χ problem to the Gap-SVP problem on an ideal lattice,
which is now generally considered to be intractable. Specially, [LPR10] indicated that The RLWEn,q,χ

problem is also infeasible when s is sampled from nosie distribution χ. In homomorphic encryption,
this property is especially popular, because the low-norm s introduces less noise during homomorphic
computation.

2.5 Dual-GSW(DGSW) Encryption scheme

The DGSW scheme [BHP17] and GSW scheme is similar to Dual-Regev scheme and Regev scheme
resp. which is defined as follows:

– pp ← Setup(1λ, 1L) : For a given security parameter λ, circuit depth L, choose a appropriate
lattice dimension n = n(λ,L), m = n log q + ω(λ), a discrete Gaussian distribution χ = χ(λ,L)
over Z, which is bouned by Bχ, module q = poly(n) · Bχ satisfying the LWEn,q,χ,Bχ

problem,
Output pp = (n,m, q, χ,Bχ) as the initial parameters.

– (pk, sk) ← KeyGen(pp): Let sk = t = (−s, 1), pk = (A,b), where s ← U{0, 1}m−1, A ←
U(Zm−1×n

q ), b = sA mod q

– C ← Enc(pk, u): Input public key pk and plaintext u, choose a random matrix R ← U(Zn×w
q ),

w = ml, l = ⌈log q⌉ and an error matrix E← χn×w, Output the ciphertext :

C =

(
A
b

)
R+E+ uG, where G is a gadget Matrix.

– u← Dec(sk,C): Input private key sk, ciphertext C, let w = (0, . . . , ⌈q/2⌉) ∈ Zm
q , v = ⟨tC,G−1(wT )⟩,

output u′ = ⌈ v
q/2⌉.

Homomorphic addition and multiplication:
For ciphertext C1, C2 ∈ Zm×w

q , let Cadd = C1 +C2, Cmult = C1G
−1(C2). It is easy to verify that

Cadd and Cmult are ciphertext of u1 + u2 and u1u2, respectively.

For the security and correctness of the DGSW scheme, please refer to [BHP17]. Compared with
the GSW scheme, DGSW scheme has bigger ciphertext, which is O(n2 log3 q), while O(n2 log q) for
GSW scheme. As [BHP17] mentioned, DGSW scheme makes it more convenient to use the leakage
resilient property of LHL to remove CRS.
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2.6 Multi-Key Fully Homomorphic Encryption(MKFHE)

We review the definition of MKFHE in detail here, the main purpose of which is to compare with the
definition of weak-MKFHE we proposed later.

Definition 7. Let λ be the security parameter, L be the circuit depth, and k be the number of par-
ticipants. A Leveled multi-key fully homomorphic encryption scheme consists of a tuple of efficient
probabilistic polynomial time algorithms MKFHE=(Init, MKGen, MKEnc, MKExpand, MKEval, MKDec)
which defines as follows.

– pp← Init(1λ, 1L) : Input security parameter λ, circuit depth L, output system paremeter pp. We
assume that all algorithm take pp as input.

– (pki, ski)← MKGen(pp, id) : Input pp, identity id, output a key pair for participant pi.
– ci ← MKEnc(pki, ui) : Input pki and ui, output ciphertext ci.
– c̄i ← MKExpand(pk, ci):Input the ciphertext ci of participant pi, the public key set pk = {pki}i∈[k]

of all participants, output expanded ciphertext c̄i which is under f(ski, . . . skk) whose structure is
undefined.

– c̄eval ← MKEval(c̄, C):Input circuit C, the set of all ciphertext c̄ = {c̄1 . . . c̄N} while N is the input
length of circuit C, output evaluated ciphertext c̄eval

– u ← MKDec(c̄eval, f(sk1 . . . skk)) : Input evaluated ciphertext c̄eval, total private key function
f(sk1 . . . skk), output u

Remark :

1. The MKExpand(·) algorithm is not necessary. For example, in the RLWE-based MKFHE scheme,
the ciphertext expansion procedure is trivial, but in the LWE-based MKFHE scheme, the ciphertext
expansion is a complicated and time-consuming process.

2. The ciphertext structure function f(sk1, . . . , skk) represents an organization form, or a certain
function, which is not unique, for example, it can be the concatenation of all keys or the sum of
all keys.

Properties implicited in the definition of MKFHE : For the above definition, each participant
is required in key generation and encryption phase independently to generates their own keys and
completes the encryption operation without interaction between participants. These two phases are
similar to single-key homomorphic encryption, the computational overhead is independent of k and
only related to λ and L, only in the decryption phase, interaction is involved when participants
perform a round of decryption protocol.

3 The weak version of Multi-key Fully homomorphic
encryption(weak-MKFHE) scheme

3.1 The definition of weak-MKFHE

In order to cope with computationally-sensitive and trust-sensitive scenarios, we appropriately tighten
and loosen the definition of MKFHE, we abandon ciphertext expansion procedure and introduce a
Key lifting procedure. In addition, a tighter bound is required on the amount of local computation,
as a compromise, we allow a small amount of interaction during Key lifting.

Definition 8. A leveled weak-MKFHE scheme is a tuple of probabilistic polynomial time algorithm
(Init, wMKGen, wMKLift, wMKEnc, wMKEval, wMKDec), which can be divided into two phases, online
phase: wMKLift and wMKDec, where interaction is allowed between participants, but the rounds should
be constant, local phase : Init, wMKGen, wMKEnc, and wMKEval, whose operations do not involve
interaction. These five algorithms are described as follows:

– pp← Init(1λ, 1L):Input security parameter λ, circuit depth L, output public parameters pp.
– (pki, ski)← wMKGen(pp, id):Input public parameter pp, identity id, output the key pair of partic-

ipant pi
– hki ← wMKLift(pki, ski, id): Input key pair of participants pi, output the hybrid key hki of pi..
– ci ← wMKEnc(hki, ui): Input ui and hki, output ciphertext ci
– ĉ← wMKEval(C, S): Input circuit C, ciphertext set S = {ci}i∈[N ] , output ciphertext ĉ
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– u← wMKDec(ĉ, f(sk1 . . . skk)): Input evaluated ciphertext ĉ, f(sk1 . . . skk), output u.

Remark : weak-MKFHE does not have ciphertext expansion procedure, indeed, the inputed ciphertext
set S in wMKEval(·) is encrypted by participants under their own hybrid key hki which are different
among participants, however, the resulting ciphertext ci supports homomorphic evaluation without
extra modification.

we require weak-MKFHE to satisfy the following properties:

Locally Computationally Compactness : A leveled weak-MKFHE is locally computationally
compact if the participants do the same number of encryptions as the single-key FHE scheme.

Low round complexity : Only constant round interaction is allow in wMKLift(·) procedure.

IND-CPA security of encryption : Let λ be the security parameter, L = poly(λ) is the cir-
cuit depth, for any probabilistic polynomial time adversary A, he can distinguish the following two
distributions with negligible advantage.

Pr [A(pp, pk,wMKEnc(pk, 1))−A(pp, pk,wMKEnc(pk, 0)) ̸= 0 ] = negl(λ).

Correctness and Compactness : A leveled weak-MKFHE scheme is correct if for a given security
parameter λ, circuit depth L, participants k, we have the following

Pr [wMKDec(f(sk1 . . . skk), ĉ) ̸= C(u1 . . . uN ) ] = negl(λ).

probability is negligible, where C is a circuit with input length N and depth length less than L. A leveled
weak-MKFHE scheme is compact, if the size ĉ of evaluated ciphertext is bounded by poly(λ,L, k), but
independent of circuit size.

3.2 Adversary model

Rational adversary VS. Semi-malicious adversary
the notion of semi-malicious adversary was introduce in [AJL+12], somewhat similar with the

semi-honest model, semi-malicious adversary follows the steps specified in the protocol, but differently
that the semi-honest model, it can choose the randomness that this protocol expect arbitrary and
adaptively(as opposed to just choosing it at random).

The notion of rational adversary was introduced in [IML05]. Their work consider the problem
which N players were engaged in a competitive game to maximize their payoffs while maintaining
their reputation. They give a definition of rational adversary and related security in the language of
Game Theory, involving mediated games and Nash equilibria, more details please refer to [cited].
We give the definition of it in cryptography language.

Rational Adversary(In Cryptography)

Definition 9. An adversary is rational if he runs the protocol as prescribed, but can adaptively choose
arbitrarily value for any distribution(as opposed to just random uniform distribution) in the protocol
to compromise other’s privacy, while maintaining that the probability of being caught is negl(λ).

It worth noting that the rational adversary is the midpoint between semi-malicious adversary and
malicious adversary. Indeed, he can choosing arbitrary value for any distribution not just random
distribution.

Simulatability under rational adversary(In Cryptography)

Simulatable : The security definition can also be cast in ideal/real paradigm. Let Γ be the game
sequence played by honest players, ∆ be the game sequence played by rational players, and ϕ be the
advantage of learning other player’s privacy, if ϕ(∆)− ϕ(Γ ) = negl(λ), we say that game Γ rational
simulates ∆.
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4 Scheme#1 : a weak-MKFHE scheme based on DGSW in plain model
against rational adversary

4.1 Key lifting procedure

Following the definition of weak-MKFHE, it requires the ciphertext encrypted by hybrid key hk which
is outputted by wMKLift(·) algorithm is different among participants, to support homomorphic evalu-
ation without extra modification. We achieve this property by allowing two round interaction between
participants.

Key Lifting

– {hki}i∈[k] ← wMKLift({pki, ski}i∈[k]): Input the DGSW key pair {pki, ski}i∈[k] of all participants,
where pki = (Ai,bi,i), Ai ← U(Z(m−1)×n

q ), si ← U{0, 1}m−1, bi,i = siAi mod q. All partici-
pants are engaged in the following two interaction :
• First round : pi broadcasts (Ai,bi,i) and receives all {Aj ,bj,j}j∈[k].
• Second round : pi generates and disclose {bi,j}j∈[k], where bi,j = siAj mod q

After above two round interaction, pi receives {bj,i}j∈[k]

let bi =

k∑
j=1

bj,i, pi output hybrid key hki = (Ai,bi)

Let t̄ = (−s, 1), s =
∑k

i=1 si, for ciphertext Ci, Cj encrypted by hybrid key hki, hkj respectively :

Ci =

(
Ai

bi

)
R1 +E1 + uiG, Cj =

(
Aj

bj

)
R2 +E2 + ujG,

obviously we have t̄Ci ≈ uit̄G, t̄Cj ≈ uj t̄G(omit small error). Therefore, although Ci and Cj are
encrypted by different hybrid keys, they correspond to the same decryption key t̄. As we’ll point out
later, however, this structure will drew some security concern. We remedy this problem by increasing
the noise bounds in the last row of the noise matrix E. we discuss the security of the scheme in Section
4.5

4.2 The entire scheme

Scheme#1 is based on the DGSW scheme, containing the following five algorithm (Init, wMKGen,
wMKLift, wMKEnc, wMKEval, wMKDec)

– pp← Init(1λ, 1L) : Let λ be security parameter, L be circuit depth, lattice dimension n = n(λ,L),
noise distribution χ over Z, and e ← χ, where |e| is bounded by Bχ, modulus q = 2λLBχ,
k = poly(λ), m = kn log q + λ, suitable choosing above parameters to make LWEn,m,q,Bχ

is
infeasible. Output pp = (k, n,m, q, χ,Bχ)

– (pki, ski) ← wMKGen(pp) : Input pp, output the DGSW key pair (pki, ski) of participants pi,
where pki = (Ai,bi,i), Ai ← U(Z(m−1)×n

q ), si ← U{0, 1}m−1, bi,i = siAi mod q.
– hki ← Key Lifting : All participants are engaged in the Key lifting procedure 4.1, output

the hybrid key hki.

– Ci ← wMKEnc(hki, ui): Input hybrid key hki, plaintext ui, output ciphertext Ci =

(
Ai

bi

)
R +

E + uiG, where R ← χn×ml, l = ⌈log q⌉, E =

(
E0

e1

)
, E0 ← χ(m−1)×ml, e1 ← χ′ ml, χ′ is a

distribution over Z, satisfying |e1| is bounded by 2λ
ϵ1
Bχ, ϵ1 ∈ (0, 1

2 ), G = Im ⊗ g is a gadget
matrix.

– Ĉ ← wMKEval(S, C) : Input the ciphertext S = {Ci}i∈[N ] which are encrypted by hybrid key
{hki}i∈[k], circuit C with input length N , output Ĉ.

Homomorphic addition and multiplication
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– Cadd ← wMKAdd(C1,C2): Input ciphertext C1, C2, output Cadd = C1 +C2, Obviously t̄Cadd ≈
(u1 + u2)̄tG

– Cmult ← wMKMult(C1,C2): Input ciphertext C1, C2, output Cmult = C1G
−1(C2), Obviously

t̄Cmult ≈ u1u2t̄G

Distributed decryption Similar to [MW16], the decryption procedure is a distributed procedure :

– LocalDec: Input Ĉ, let Ĉ =

(
C0

c1

)
, where C0 ∈ Z(m−1)×ml

q , c1 ∈ Zml
q , pi computes βi =

⟨si, C0G
−1(wT )⟩, and set γi = βi + e′′i , where w = (0, . . . , 0, ⌈q/2⌉) ∈ Zm

q , e′′i ← χ′′ is a
distribution over Z, satisfying |e′′i | < 2Lλϵ2

Bχ, ϵ2 ∈ ( 12 , 1), then pi broadcast γi

– FinalDec: After received {γi}i∈[k], let γ =
∑k

i=1 γi + ⟨c1, G−1(wT )⟩, output u = ⌈ γ
q/2⌋

4.3 Bootstrapping

In order to eliminate the dependence on the circuit depth to achieve fully homomorphism, we need
to use Gentry’s bootstrapping technology. It is worth noting that the bootstrapping procedure of
Scheme#1 is the same as single-key homomorphic scheme: After Key lifting procedure, participant
pi uses hybrid key hki to encrypt si to obtain evaluation key evki. Because evki and Ĉ are both
ciphertexts under t̄ = (−

∑k
i=1 si, 1), homomorphic evaluation of the decryption circuit could be

executed directly as Ĉ are need to be refresh. Therefore, in order to evaluate any depth circuit, we
only need to set the initial parameters to satisfy the homomorphic evaluation of the decryption circuit.

However, for those MKFHE schemes that requires ciphertext expansion, additional ciphertext
expansion is required, for the reason that Ĉ is the ciphertext under t̄, but {evki}i∈[k] are the ciphertext
under {ti}i∈[k]. This is another large amount of computational overhead, because in order to expand
{evki}i∈[k], participant pi needs to encrypt the random matrix of the ciphertext corresponding to
evki.

4.4 Correctness analysis

To illustrate the correctness of Scheme#1, we first study the accumulation of noise:

Let s =

k∑
i=1

si, t = (−s, 1), for fresh ciphertext C =

(
Ai

bi

)
R+

(
E0

e1

)
+ uG

we have tC = e1 + sE0 + utG, let einit = e1 + sE0, Obviously |einit| < (2λ
ϵ1

+ km)Bχ.
After L depth circuit evaluation, let eL = (ml)Leinit. According to the distributed encryption

of Scheme#1 we have :

γ =

k∑
i=i

βi +C1G
−1(wT ) = ⟨eL,G−1(wT )⟩+

k∑
i=1

e′′i + u⌊q
2
⌉ (1)

Let efinal = ⟨eL,G−1(wT )⟩ +
∑k

i=1 e
′′
i . In order to decrypt correctly, it requires efinal <

q
4 . For our

parameter settings, obviously |e′′i | > ⟨eL,G−1(wT )⟩, for taking the logarithm of both sides:

log e′′i = λϵ2L

log⟨eL,G−1(wT )⟩ = log(knL(λ)(2L+1)(2λ
ϵ2

+ k2nλL))Bχ = O(L+ λϵ2)

thus efinal <
q
4 .

4.5 Simulatability under rational adversary

In Scheme#1, the value ϕ(Γ ) − ϕ(∆) between the game sequence Γ and ∆ depends on the choose
of {Ai, si}i∈[k]. For a honest player pi, he generates Ai ← U(Z(m×n)

q ), si ← {0, 1}m as the protocol
specification, but an adversary(rational or irrational) may generates it arbitrarily. Brakerski et al.
[BHP17] proved that the DGSW scheme is leakage resilient, thus for arbitrary Ai the value ϕ(Γ ) −
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ϕ(∆) = negl(λ). We deal with what happens when si changes. Let Bsis be the bound keeping the
SISm,n,q,Bsis problem hard, according to Theorem 4, if Bsis ≪ qn/m, the problem is vacuously hard,
most likely, such solutions do not exists, if Bsis ≫ γm · qn/m, this is an instance of approx-SVP with
exponential approximation factor γ, which can be solved by LLL [LLL82]. Somewhere in between
these bounds is where cryptography takes place, typically for Bsis = qn/m ·poly(λ). For our parameter
Settings Bsis = qn/m · poly(λ) = poly(λ).

Depending on the choice of si, it can be divided into two cases : (1) |si|∞ < Bsis, (2) |si|∞ > Bsis.
In addition, there is a special case where the player pi dose not generate si at all, but adaptively
choose {bi}i∈[k].

For a rational adversary, he is better off generating |si|∞ < Bsis, otherwise, in the latter two case
he will be caught with non-negligible probability. First we prove Case 1.

Case 1 : |si|∞ < Bsis.

We complete the simulation by constructing a reduction from Scheme#1 to the DGSW scheme.
Consider the following Game:

1. Challenger generates pkDGSW = (A,b1) where A← U(Z(m−1)×n
q ), b1 = s1A, s1 ← U{0, 1}m and

send pkDGSW to rational adversary A
2. A adaptively chooses {si}i∈[k]/1 where |si| < Bsis and generates {bi}i∈[k]/1, bi = siA, choose a

bit u ∈ {0, 1} and set hkScheme#1 = (A,b), where b =
∑k

i=1 bi, then send hkScheme#1 and u to
Challenger.

3. Challenger choose a bit α ∈ {0, 1}, if α = 0 , set CScheme#1 ← wMKEnc(hkScheme#1, u), otherwise
CScheme#1 ← U(Zm×ml

q ), and send CScheme#1 to A
4. After receiving CScheme#1, A output bit ᾱ, if ᾱ = α, then A wins.

Lemma 10. Let Adv = |Pr[ᾱ = α]− 1
2 | denote A’s advantage in winning the game, If A can win the

game with advantage Adv, then A can distinguish between the ciphertext distribution of DGSW and
the uniform random distribution with the same advantage.

Proof. We construct CScheme#1 by DGSW.Enc(pkDGSW, u):

1. First, Challenger generates pkDGSW like the step 1 of above Game, set CDGSW = DGSW.Enc(pkDGSW, u)
send the both to A.

2. A generates {si}i∈[k]/1, let s′ =
∑k

i=2 si, CDGSW =

(
C0

c1

)
, C′ =

(
C0

c1 + c′1

)
, where c′1 = s′C0,

obviously C′ =

(
A
b

)
R+

(
E0

e1 + s′E0

)
.

For our parameter settings |e1| < 2λ
ϵ1
Bχ, |s′E0| < kmBχBsis, thus e1/s′E0 = negl(λ), we have C′

stat
≈

CScheme#1, if A can distinguish between CScheme#1 and uniform random distribution by advantage
Adv, then he can distinguish between DGSW.Enc(pkDGSW, u) and the uniform random distribution
with the same advantage.

Remark: we require k to be bounded by poly(λ), because if a larger k is introduced, it will lead
to a larger smudging error, which further leads to a larger q. For our choice of q = 2λLBχ, the
corresponding approximation factor of the SVP problem is Õ(2λL)

Case 2 : |si|∞ > Bsis.

In the second round of Key lifting procedure, after pi generates and discloses {bi,j}j∈[k],
where bi,j = siAj mod q, |si|∞ > Bsis, any participant pj,j ̸=i can solve si ∈ Zm

q with non-negligible
probability. Note that being able to solve for si doesn’t imply anything. Because m = kn log q + λ >
n log q, for a given bi,j ∈ Zm

q , there are many trivial solution si ∈ Zm
q satisfy bi,j = siAj . However,

pj can check the set {bi,t}t∈[k]/j against the value of si, as long as there is a bi,t ∈ {bi,t}t∈[k]/j that
satisfies bi,t = siAt, then pi is cheating. Note that there is a negligible false positive rate here :
let s1 ∈ {0, 1}m, s2 ∈ Zm

q , A ← U(Z(m×n)
q ), satisfy s1A = s2A, for another A′ ← U(Z(m×n)

q ), the
probability that s1A

′ = s2A
′ happens exactly is 2−n log q.
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thus if an adversary set |si|∞ > Bsis, he will be caught with non-negligible probability.

Case 3 : pi dose not generate si at all, but adaptively choose {bi,j}j∈[k].

Indeed, in this case, pi can not be found cheating until the decryption procedure. By default, the
decryption result is readable. Due to the mismatch between the public key and the private key, the
decryption result is unreadable. When the private key is required to prove innocence, pi will be found
to be a cheater.

4.6 Simulatability of distributed decryption procedure

Similar to [MW16], we get a weak simulation of the distributed decryption procedure: input all private
keys {skj}j∈[k]/i except ski, evaluated result ueval, ciphertext Ĉ, we can simulate the local decryption
result γi. For stronger security requirements : input any private key set {skj}j∈S , S is any subset
of [k], evaluated result ueval and ciphertext Ĉ, to simulate {γi}i∈U, U=[k]−S , we don’t know how to
achieve it.

According to equantion 1 we have γ =
∑k

i=1 γi +C1G
−1(wT )

thus γi = ueval⌊
q

2
⌉+ efinal +

k∑
i=1

e′′i +C1G
−1(wT )−

k∑
j ̸=i

γj

For a simulator S, input {skj}j∈[k]/i, evaluated result ueval, ciphertext Ĉ, output simulated γ′i

γ′i = ueval⌊
q

2
⌉+

k∑
i=1

e′′i +C1G
−1(wT )−

k∑
j ̸=i

γj .

For our parameter settings, we have :

|
k∑

i=1

e′′i | < k · 2Lλϵ2
Bχ

efinal < kn(Lλ)(2L+1)(2λ
ϵ2

+ k2nLλ)Bχ = 2O(Lλϵ1 )Bχ

thus |efinal/

k∑
i=1

e′′i | = k · 2−ω(Lλϵ2−Lλϵ1 ) = negl(λ)

we have γi
stat
≈ γ′i.

5 Scheme#2 : weak-MKFHE based on RLWE in ROM

It is regrettable that general polynomial ring R : Z[x]/f(x) cannot enjoy the leak resilient property
of the leftover hash lemma on the integer ring Z. This means that we cannot transplant the above
construction process trivially to RLWE-based FHE. Indeed, [DSGKS21] pointed out that for x =
(x1, . . . , xl) ∈ Rl, if the j-th NTT coordinate of each xi,i∈[l] is leaked, then the j-th NTT coordinate
of al+1 =

∑l
i=1 aixi is defined, thus al+1 is far from random, although the leakage ratio is only 1/n.

We also noticed a trivial solution : for a, s ∈ Rl
q, b = ⟨a, s⟩ ∈ Rq, b leaks information about s at most

n log q bits, therefore, as long as we set l long enough, for example, l = l + n log q, then obviously b
is close to uniformly random, but this will result in a extremely large key, thus it is not practical.

To ensure the independence of the {ai}i∈[k] generated by each participant, we simply added a round
of bit commitment protocol. Under the Random Oracle Model, the cryptographic hash function is
used to ensure the independence of {ai}i∈[k]. Let H : {0, 1}⋆ → {0, 1}λ be a cryptography hash
function, ai ∈ Rq, H(ai) = δi. For a given δ ∈ {0, 1}λ, an adversary A sends a query x ∈ {0, 1}⋆ to
H, which happens to have probability Pr [H(x) = δ ] = 1

2λ
. Let Adv denotes the probability that A

finds a collision after making qro = poly(λ) queries, Obviously Adv = negl(λ), we have the following
result.
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Lemma 11. For a given δ ∈ {0, 1}λ, k probabilistic polynomial time(ppt) adversary A, Each A makes
qro = poly(λ) queries to H, let Adv denotes the probability of finding a collision, then: Adv = negl(λ)

For Scheme#2, we only describe its key generation and re-linearization procedure in detail, the en-
cryption, evaluation and decryption algorithm is similar to other RLWE-based MKFHE schemes.

Key generation with bit commitment.
k participants perform the following steps to get their own public key and evaluation key

1. pp← Setup(1λ, 1L):Input security parameter λ, circuit depth L, output pp = (d, q, χ,Bχ), which
χ is an noise distribution over R : Z[x]/xd + 1, satisfying e ← χ, ||e||can∞ is bounded by Bχ, and
RLWEd,q,χ,Bχ

is infeasible.
2. pi generates Φi = {ai,di, fi} where ai ← U(Rq) is used for public key, di, fi ← U(Rl

q) for
evaluation key, and commitment Ψi = {δi, ϵi, ζi}, δi = H(ai), ϵi = H(di), ζi = H(fi), broadcast
Ψi.

3. After all {Ψi}i∈[k] are public, pi discloses Φi.
4. After receiving {Φj}j∈[k]/i, pi broadcast {bi, hi}, where bi = asi + e1, hi = dsi + e2, a =∑k

i=1 ai, d =
∑k

i=1 di, (si, e1, e2)← χl+2.
5. After receiving {bj , hj}j∈[k]/i, pi output pki = (a, b) and evaluation key evki = (hi,ηi,θi)

b =

k∑
i=1

bi ηi = dri + e3 + sig

θi = fsi + e4 + rig (ri, e3, e4)← χ2l+1

Re-linearization ciphertext
Multiplying two ciphertext c1, c2 ∈ R2

q , which under the same private key t = (1, s), s =
∑k

i=1 si,
resulting cmult = c1 ⊗ c2 ∈ R4

q , where its corresponding private key is t ⊗ t = (1, s, s, s2). In order
to re-linearize cmult , we need to construct the ciphertext of s2 under t. Let total evaluation key
Π = (η,θ,h).

where η =

k∑
i=1

ηi θ =

k∑
i=1

θi h =

k∑
i=1

hi

Let k = (k0,k1), k0 = −θg−1(h) ∈ Rl
q, k1 = (η + fg−1(h)) ∈ Rl

q, obviously k0 + k1s ≈ s2g (omit
small error). Let cmult = (c0, c1, c2, c3).

⟨cmult, t⊗ t⟩ = c0 + (c1 + c2)s+ s2c3

= c0 + (c1 + c2)s+ s2gg−1(c3)

= c0 + k0g
−1(c3) + (c1 + c2 + k1g

−1(c3))s.

Let clinear = (c′0, c
′
1), c′0 = c0 + k0g

−1(c3), c′1 = c1 + c2 + k1g
−1(c3), output clinear as re-linearized

ciphertext. The algorithm defines as follows:

– clinear ← Relinear(cmult, {evki}i∈[k]): Input cmult ∈ R4
q , evaluation key {evki}i∈[k], perform the

following algorithem, output clinear = (c′0, c
′
1).

Due to the sum structure of keys, the dimension of t⊗ t is independent of participants k, thus above
algorithm pulls the tensor product ciphertext back to initial dimension by one shot, and introduces
less noise than those keys with concatenation structure.

6 Conclusions

For the LWE-based MKFHE in order to alleviate the overhead of the local participants, we proposed
the concept of weak-MKFHE which introduced a Key lifting procedure, getting rid of expensive
ciphertext expansion operation and construct a Dual-GSW style weak-MKFHE under plain model.
Our Scheme#1 is more friendly to local participants than previous scheme, since there is no need to
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Ciphertext Relinearization

Input: cmult = (c0, c1, c2, c3) ∈ R4
q , {evki}i∈[k] = {hi, ηi, θi}i∈[k]

Output: clinear = (c′0, c
′
1) ∈ R2

q

1: η ←
∑k

i=1 ηi, θ ←
∑k

i=1 θi, h←
∑k

i=1 hi

2: k0 ← −θg−1(h), k1 ← η + fg−1(h)

3: c′0 ← c0 + k0g
−1(c3), c′1 ← c1 + c2 + k1g

−1(c3)

4: Output: (c′0, c′1)
5: End.

encrypt random matrix preparing for ciphertext expansion. However, to support semantic security
and threshold decryption, module q is required to be O(2λL) , such a large q results in high overhead
of ciphertext evaluation. Reducing q while ensuring security is the future direction.

For the multi-key homomorphic scheme based on RLWE, although the computation overhead of the
local participants is not large: to perform re-linearization, only one ring element needs to be encrypted,
but the common random string is always an insurmountable hurdle. Constructing RLWE-type MKFHE
under plain model is the future direction.
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