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Abstract. Multi-key Fully Homomorphic Encryption(MKFHE) based
on Learning With Error(LWE) usually lifts ciphertexts of different users
to new ciphertexts under a common public key to enable homomorphic
evaluation. The main obstacle of current MKFHE schemese in applica-
tions is huge ciphertext expansion cost especially in data intensive sce-
nario. For example, for an boolean circuit with input length N , mul-
tiplication depth L, security parameter λ , the number of additional
encryptions introduced to obtain ciphertext expansion is O(Nλ6L4).

In this paper we present a framework to slove this problem that we
call Key-Lifting Multi-key Fully Homomorphic Encryption (KL-MKFHE).
By introducing a key lifting procedure, the number of encryptio for a lo-
cal user is pulled back to O(N). Moreover, current MKFHE schemes are
often based on Common Reference String model(CRS). In our LWE-based
scheme, CRS is removed by using the leakage resilient property of the
leftover hash lemma(LHL). In particular, we noticed that as long as our
encryption scheme is leakage-resilient, the partial decryption does not
need to introduce noise flooding technique, and the semantic security of
fresh ciphertext can also be guaranteed, which greatly compresses the
modulus q and the computational overhead of the entire scheme.

Due to the structural properties of polynomial rings, such LWE-
based scheme cannot be trivially transplanted to RLWE-based scheme.
We give a RLWE-based KL-MKFHE under Random Oracle Model(ROM)
by introduing a bit commitment protocol.

Keywords: Multi-key homomorphic encryption · LWE · RLWE · Leak-
age resilient cryptography.

1 Introduction

Fully Homomorphic Encryption(FHE). The concept of FHE was proposed
by Rivest et al. [39], within a year of publishing of the RSA scheme [40]. The
first truly fully homomorphic scheme was proposed by Gentry in his doctoral
dissertation [19]in 2009. Based on Gentry’s ideas, a series of FHE schemes have
been proposed [20] [42] [8] [18] [22] [13] [12], and their security and efficiency
have been continuously improved. FHE is suitable to the problem of unilateral
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outsourcing computations. However in the case of multiple data providers, in
order to support homomorphic evaluation, data must be encrypted by a common
public key. Due to privacy of data, it is unreasonable to require participants to
use other people’s public keys to encrypt their own data.

Threshold fully holomorphic encryption(Th− FHE).After giving the first
fully homomorphic encryption scheme, also, for the situation of multiple partic-
ipants, Gentry gives the corresponding strategy : first, all participants execute
a secure multi-party computation protocol to obtain a public key which all data
are encrypted by, and then ciphertext evaluation is performed. After the eval-
uation is completed, all participants execute another secure MPC protocol to
obtain the result. Obviously, the threshold was initially added to FHE only to
support multiple users, while the later Th− FHE is more concerned with the flex-
ibility of the access strategy in order to cope with different application scenarios.
In addition, the public key of Th− FHE mainly has two initialization methods.
First, literature [24] [7] assumes that there is a central authority, which generates
the total public key and private key, and disperses the private key (using Secret
Sharing scheme) to each participant. Encryption and operation of data are all
under the same public key, when decryption is required, the set of participants
that satisfy the access control structure obtains the operation result through a
round of interactive decryption. Literature [7] further proposes the concept of
Universal Thresholdizer. For any fully homomorphic encryption scheme, it can
be converted into a threshold fully homomorphic encryption supporting mono-
tonic access control structure by using the Universal Thresholdizer in a black-box
manner.

The second method is for the parties to generate the master key in a dis-
tributed manner, where there is no central authority. For example, literature [36]
adds a threshold function to the integer homomorphic scheme [17], and uses a
distributed manner to generate the total public key and private key, without a
central setup. Although adopting the black box method for the construction pro-
cess, the distributed key generation process is quite complicated, which consists
of three steps, firstly generating the private key, then generating the private key
of the squeezed circuit, and finally generating the public key. These three pro-
cesses all need to repeatedly invoke the distributed bit generation, the compar-
ison, and the multiplication protocol. Based on the key homomorphic property,
literature [5] generates the master public key through two rounds of interaction
in a distributed manner, and the total private key is the sum of the individ-
ual private keys. In order to match the public and private keys and ensure the
security of the private key, a common reference string needs to be introduced,
and decryption requires everyone to provide the private key, which is actually a
(n-n)Th− FHE. Literature [16] introduces homomorphic encryption in order to
optimize the preprocessing stage (such preprocessing is typically based on the
classic circuit randomization technique of Beaver [6], it can be done by evaluat-
ing in parallel many small circuits of small multiplicative depth), also, a common
reference string needs to be introduced.
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Multi-key Fully Homomorphic Encryption(MKFHE).To deal with privacy
of multiple data providers, López-Alt et al. proposed the concept of MKFHE
in [26] and construct the first MKFHE scheme based on modified-NTRU [41].
Conceptually, it is an enhancement of the FHE on function that allows data
provider to encrypt data independent from other participants, its key generation
and data encryption are done locally. To get the evaluated result, all participants
are required to execute a round of threshold decryption protocol.

After López-Alt et al. proposed the concept of MKFHE, many schemes were
proposed. In 2015, Clear and McGoldrick [14] constructed a GSW [22] LWE-based
MKFHE. This scheme defined the total key as the concatenation of all keys, and
constructed a masking scheme to converts the ciphertext under single key to
total key by introducing CRS and circular LWE assumptions, which only sup-
ports single-hop computation. In 2016, Mukherjee and Wich [35], Perkert and
shiehian [37], Brakerski and Perlman [10] constructed MKFHE scheme based on
GSW respectively. [35] simplified the mask scheme of [14], and focused on con-
structing a two-round MPC protocol. The work of [37] and [10] was dedicated
to constructing a multi-hop MKFHE, but their used different methods. [10] in-
troduced bootstrapping to realize ciphertext expansion, thereby realizing the
multi-hop function. [37] realized multi-hop function through ingenious construc-
tion. It is worth mentioning that all MKFHE schemes constructed based on the
LWE scheme require a ciphertext expansion procedure.

1.1 Motivation

We note that the biggest difference between Th− FHE and MKFHE in form is
that MKFHE allows participants to encrypt data with their own public keys,
and does not require interaction during the initialization phase, while Th− FHE
needs to introduce a dealer or generate the master key pair in a distributed
manner. Conceptually, it is clear that MKFHE is more concise, and a body of
work [9] [35] [4] shows that MKFHE is an excellent base tool for building round-
optimal MPC. MKFHE seems attractive, but its actual construction involves some
cumbersome operations and some unavoidable assumptions. Below we describe
some details of the MKFHE scheme, and give our goal in the last paragraph of
this subsection.

Ciphertext expansion is expensive : Although the MKFHE based on LWE
can use LHL to remove CRS, in order to convert the ciphertext under different
keys to the ciphertext under the same key(ciphertext expansion), the participants
and the computing server need to do a lot of preparatory work. For ciphertext
expansion, it is necessary to encrypt the random matrix R ∈ Zm×m

q of each
ciphertext. For a boolean circuit with input length N , multiplication depth L,
security parameter λ, m = n log q+ω(log λ), the additional encryption operation
introduced is O(Nλ6L4), which is O(N) for single-key FHE. For computing-
sensitive participants, this is a lot of overhead.
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CRS looks inevitable : Due to the more compact structure on polynomial
ring and some interesting parallel algorithm such as SIMD, it is generally believed
that FHE scheme based on RLWE is more efficient than the homomorphic scheme
based on LWE. This is the reason why most current MKFHE schemes, such
as [11] [34] are constructed based on RLWE.

Leftover Hash Lemma (LHL) over integer ring Z enjoys the leakage resilient
property : It can transform an average quality random sources into higher qual-
ity [23] which can be used to get rid of CRS.That is what [9] does. However,
regularity lemma [28] over polynomial rings do not have corresponding proper-
ties, as [15]mentioned if the j-th Number theoretical Transfer(NTT) coordinate
of each ring element in x = (x1, . . . , xl) is leaked, then the j-th NTT coordinate
of al+1 =

∑
aixi is defined, so al+1 is very far from uniform, yet this is only

a 1/n leakage rate. Therefore, it seems to be more difficult to remove CRS for
RLWE-based MKFHE.

Noise flooding leads to extremely large module q : As far as we know so
far, whether it is MKFHE or Th− FHE, a great noise needs to be introduced in
the decryption stage to cover up the partial decryption result, otherwise, the indi-
vidual key may be leaked. In order to make the result of partial decryption simu-
latable, assuming that the noise accumulated after the evaluation is eeval and the
private key is s, then the flooding noise esm must satisfy esm = 2O(λ) ⟨eeval, s⟩.
At this time, in order to ensure the correctness of the decryption result, mod-
ule q needs to satisfy q ≥ 4esm. So noise flooding results in a size of q that is
exponentially larger than the size of q in a single-key FHE.

Therefore, MKFHE as a general framework, although conceptually attractive,
is not suitable for some specific scenarios. Especially in the era of mobile Internet,
data providers often do not know each other, and sometimes it is difficult to
convince them there is a dealer or the randomness of common reference string
generated by a third party. At the same time, it is unrealistic to require the data
provider to do a lot of computation on the personal terminal.

In response to the above problems, we propose our goal: we solve both trust-
sensitive and computationally-sensitive scenario. That is to say, we do not assume
the existence of a dealer or a common reference string, and do not require the
participants to undertake a large number of computation. At the same time,
we remove the noise flooding technology in the partial decryption stage, which
greatly compresses the size of q and reduces the computational overhead of the
entire scheme.

1.2 Our Results

For trust-sensitive and computationally-sensitive scenario, we appropriately tighten
and loosen the original definition of MKFHE, and introduce the concept of
KL-MKFHE which is more suitable for such scenarios. Following this concept,
we construct the first KL-MKFHE scheme based on LWE in the plain model.
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Since regularity lemma [29] on rings has no corresponding leakage resilient
properties, we cannot apply the LWE construction routine trivially to RLWE-
based MKFHE, as a compromise, we introduce a round of bit commitment pro-
tocol to guarantee the independence of each participants, construct the corre-
sponding KL-MKFHE based on ROM.

We give a review of our definition and two scheme below and briefly explain
how we remove noise flooding in the partial decryption phase.

The definition of KL-MKFHE :
Different from previous definition [35], we abandon ciphertext expansion proce-
dure, instead, introducing a key lifting procedure which has the same function
with ciphertext expansion, but at a lower cost. In addition to the properties that
required by MKFHE, such as Correctness, Compactness, semantic security, Sim-
ulatability of decryption, KL-MKFHE should satisfy the following two additional
properties :

– Locally Computationally Compactness : A leveled KL-MKFHE is lo-
cally computationally compact if the participants do the same number of
encryptions as the single-key FHE scheme.

– Low round complexity : Only constant round interaction for arbitrarily
many number of users is allowed in Key lifting procedure.

Here we feel compelled to explain that we are not proposing a new definition
for the purpose of grandstanding or bells and whistles. The definitions of MKFHE
and Th− FHE are good and complete enough to fit most application scenarios.
But as we mentioned in the previous subsection, the current scheme cannot meet
our requirements. Strictly classified by definition, the schemes(scheme#1) we
built are neither MKFHE (where we introduce interactions during initialization)
nor Th− FHE (where each party uses a different key to encrypt data). That’s
why we introduced KL-MKFHE. For more details, please refer to section3.1

Leakage resistance implies a smaller q :
We noticed that, in the partial decryption phase, by introducing large noise to
cover up the information of the private key, is essentially to ensure the security
of the plaintext, and adding noise is just one way to achieve it. In particular, we
observe that if the encryption scheme is leakage resistant, the same purpose can
be achieved by just increasing the significant bits of private key appropriately.

Assuming that the output length of the circuit to be evaluated is ∆, if no
noise flooding is introduced, the information of private key leaked in the partial
decryption phase is ∆ log q bits. Because our private key s ∈ {0, 1}⋆ is a binary
vector, as long as our encryption scheme is leakage resistant, we only need to add
∆ log q bits to the length of the original s, which can also ensure the security of
the plaintext. Thus, our q = 2λ+LBχ(λ is security parameter, L is the depth of
circuit Bχ is the initial LWE noise ), while q = 2λLBχ for the scheme introducing
noise flooding. Refer to section4.6 for a detailed discussion.

Scheme#1: LWE-based KL-MKFHE under plain model :
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The security of Scheme#1 is based on the LWE assumption. The total private key
is the sum of the private keys of all participants. We note that previous MKFHE
schemes adopt this key structure are all based on the CRS model. Not only is
the CRS removed, our solution is simpler and more efficient in construction :
For a circuit with an input length N , our scheme requires local users to perform
O(N) encryption operations, while is O(Nλ6L4) for those schemes that require
ciphertext expansion. We bound the participants k by poly(λ), because a larger
k will results in longer private key, which further leads to higher memory cost.
For our q = 2λ+LBχ, the approximate factor of the GapSVP problem on lattice
is Õ(2λ+L), while is Õ(2λL) for such scheme based on noise flooding.

We give a comparison with schemes [9] [37] [5] in Table1. Since we have no
ciphertext expansion, our scheme has a much lower computational overhead. For
detailed security and parameters, please refer to Section4.

Scheme Space Time Interaction(setup
phase)

CRS

PubKey + EvalKey Ciphertext Module q Extra encryption

MKFHE [37] Õ(λ6L4(k + Nλ3L2)) Õ(Nk2λ6L4) 2λLBχ Õ(Nλ14L9) - Yes

MKFHE [9] Õ(k4λ15L11) Õ(Nk4λ8L6) 2λLBχ Õ(Nk3λ15L10) 2 rounds No

Th − FHE
[5]

Õ(λ6L4) Õ(Nλ6L4) 2λLBχ - 1 rounds Yes

Scheme#1 Õ(k2λ6L4) Õ(Nk2λ8L6) 2λ+LBχ - 2 rounds NO

Table 1. The notation Õ hides logarithmic factors. The public key, evaluation key and
ciphertext size are bits; the Extra encryption column denotes the number of multipli-
cation operations over Zq; k denotes participants number; L the circuit depth; λ the
security parameter. Bχ the initial LWE noise.
Remark : Just for a little bit of intuition, we replaced n with λ and L. To achieve
2λ security against known lattice attacks, one must have n = Ω(λ log q/Bχ), for our
parameter settings q = 2λ+LBχ, thus we would like to be n = Ω(λ(λ + L)), while
n = Ω(λ2L) for the scheme introduced noise flooding.

Scheme#2: RLWE-based KL-MKFHE under ROM :

Same as scheme, [11] Scheme#2 is based on circular RLWE. We introduce a bit
commitment protocol to guarantee the randomness of each participant’s public
key. Due to the sum key structure, the dimension of t⊗ t is independent of k, so
the ciphertext relinearization algorithm pull the ciphertext after tensor product
back to initial dimension by one shot, in addition, the "one shot algorithm"
introduces less noise. We note that, as we mention before, regularity lemma on
polynomial ring : Z(x)/xd + 1 does not enjoy the leakage resilient property, we
have to introduce smudging noise in partial decryption phase as other RLWE-base
MKFHE.

We compared with [11] in terms of memory and computational overhead, the
results are shown in Table2.
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Scheme Space Time Interaction(Setup
phase)

CRS

Evalkey Ciphertext Relinear Mult

MKFHE
[11]

Õ(kd) Õ(kd) Õ(k2d) Õ(k2d) - Yes

Scheme#2 Õ(kd) Õ(d) O(1) Õ(d) 2 rounds ROM

Table 2. The Evalkey and Ciphertext size are in bits, the Relinear and Mult columns
denotes the number of scalar operations over Zq. The notation Õ hides logarithmic
factors, k denotes the number of participants; d denotes the dimension of the RLWE
problem.

1.3 Related works

Unlike our scheme, [14] [37] [35] [10] [11] used the concatenation of all private key
as the total key structure, and CRS are introduced. [3] removes CRS from a higher
dimension, instead of using LHL or regularity lemma, they base on Multiparty
Homomorphic Encryption(MHE) and modify the initialization method of its root
node to achieve this purpose, more details please refer to [3]. [5] is the first scheme
that introduce the summation of all private key as the total key, which is also
under CRS. [9] is the first scheme using the leakage resilient property of LHL
to get rid of the CRS, which has the concatenation total key structure, and
ciphertext expansion is essential.

2 Preliminaries

2.1 Notation:

Let λ denotes security parameter, negl(λ) the negligible function parameterized
by λ. Vectors are represented by lowercase bold letters such as v, unless otherwise
specified, vectors are row vectors by default, and matrices are represented by
uppercase bold letters such as M. [k] denotes the set of integers {1, . . . , k}. If X
is a distribution, then a← X denotes that value a according to the distribution
X. If X is a finite set, then a← U(X) denotes that the value of a is uniformly
sampled from X. For two distribution X,Y parameterized by λ, we use X

stat
≈ Y

to represent X and Y are statistically indistinguishable ,while X
comp
≈ Y are

computationally indistinguishable.
In order to decompose elements in Zq into binary, we review the Gadget

matrix [31] [2] here, let G−1(·) be the computable function that for any

M ∈ Zm×n
q , We have G−1(M) ∈ {0, 1}ml×n, where l = ⌈log q⌉

Let g = (1, 2, . . . , 2l−1) ∈ Zl
q, G = Im⊗g ∈ Zm×ml

q , it satisfies GG−1(M) = M.

Definition 1. A distribution ensemble {Dn}n∈[N ] supported over integer, is
called B-bounded if :

Pre←Dn
[ |e| > B ] = negl(n).
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Lemma 2 (Smudging lemma [5]). Let B1 = B1(λ), and B2 = B2(λ) be pos-
itive integers and let e1 ∈ [−B1, B1] be a fixed integer, let e2 ∈ [−B2, B2] be
chosen uniformly at random, Then the distribution of e2 is statistically indistin-
guisable from that of e2 + e1 as long as B1/B2 = negl(λ).

2.2 The Small Integer Solution(SIS) Problem

The Small Integer Solution(SIS) problem was introduced by Ajtai in the seminal
work [1] which presented a family of one-way function based on SIS problem.
Subsequent series of works [30] [33] [21] [32] have made efforts to reduce the size
of q, the definition below comes from [33]:

Definition 3 (in [33]). The small integer solution problem SISm,n,q,β(in the ℓ∞
norm) is : given an integer q, a matrix A ∈ Zn×m

q and a real β, find a nonzero
integer vector z ∈ Zm/{0} such that Az = 0 mod q and ||z||∞ < β

[32] proved that solving the SISm,n,q,β problem is at least as hard as approxi-
mating lattice problems in the worst case on lattices :

Theorem 4 (in [32]). Let n and m = poly(n) be integers, let β be reals, let
Z = {z ∈ Zm : ||z||∞ < β}, and let q > β · nδ for some constant δ > 0. Then
solving (on the average, with non-negligible probability) SISm,n,q,β with parame-
ters m,n, qβ and solution set Z/{0} is at least as hard as approximating lattice
problems in the worst case on n dimensional lattices to within γ = Õ(β

√
n).

2.3 The Learning With Error(LWE) Problem

The Learning With Error problem was introduced by Regev [38].

Definition 5 (Decision-LWE). Let λ be security parameter, for parameters
n = n(λ) be an integer dimension, q = q(λ) > 2 be an integer, and a distri-
bution χ = χ(λ) over Z, the LWEn,q,χ problem is to distinguish the following
distribution:

– D0 : the jointly distribution (A, z) ∈ (Zm×n
q × Zn

q ) is sampled by A ←
U(Zm×n

q ) z← U(Zn
q )

– D1: the jointly distribution (A,b) ∈ (Zm×n
q × Zn

q ) is computed by A ←
U(Zm×n

q ) b = sA+ e, where s← U(Zn
q ) e← χm

The Decision-LWEn,q,χ assumption assuming that D0

comp
≈ D1. Regev [38] proved

that for certain moduli q and Gaussian error distributions χ the Decision-
LWEn,q,χ problem is true as long as certain worst case lattice problems are hard
to solve using a quantum algorithm.
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2.4 The Ring Learning With Error(RLWE) Problem

Lyubaskevsky, Peikert and Regev defines The Decision-RLWE problem in [27] as
follows:

Definition 6 (Decision-RLWE). Let λ be a security parameter. For parameters
d = d(λ), where d is a power of 2, q = q(λ) > 2 ,and a distribution χ = χ(λ)
over R = Z[x]/xd + 1, let Rq = R/qR, the Decision-RLWEd,q,χ problem is to
distinguish the following distribution:

– D0: the jointly distribution (a, z) ∈ R2
q is sampled by (a, z)← U(R2

q).
– D1: the jointly distribution (a, b) ∈ R2

q is computed by a← U(Rq), b = as+e,
where s← U(Rq), e← χ.

[27] gave a reduction from the RLWEd,q,χ problem to the Gap-SVP problem
on an ideal lattice, which is now generally considered to be intractable. Spe-
cially, [27] indicated that The RLWEn,q,χ problem is also infeasible when s is
sampled from nosie distribution χ. In homomorphic encryption, this property is
especially popular, because the low-norm s introduces less noise during homo-
morphic computation.

2.5 Dual-GSW(DGSW) Encryption scheme

The DGSW scheme [9] and GSW scheme is similar to Dual-Regev scheme and
Regev scheme resp. which is defined as follows:

– pp ← Gen(1λ, 1L) : For a given security parameter λ, circuit depth L,
choose a appropriate lattice dimension n = n(λ,L), m = n log q + ω(λ),
a discrete Gaussian distribution χ = χ(λ,L) over Z, which is bouned by
Bχ, module q = poly(n) · Bχ satisfying the LWEn,q,χ,Bχ

problem, Output
pp = (n,m, q, χ,Bχ) as the initial parameters.

– (pk, sk) ← KeyGen(pp): Let sk = t = (−s, 1), pk = (A,b), where s ←
U{0, 1}m−1, A← U(Zm−1×n

q ), b = sA mod q

– C ← Enc(pk, u): Input public key pk and plaintext u, choose a random
matrix R← U(Zn×w

q ), w = ml, l = ⌈log q⌉ and an error matrix E← χn×w,
Output the ciphertext :

C =

(
A
b

)
R+E+ uG, where G is a gadget Matrix.

– u← Dec(sk,C): Input private key sk, ciphertext C, let w = (0, . . . , ⌈q/2⌉) ∈
Zm
q , v = ⟨tC,G−1(wT )⟩, output u′ = ⌈ v

q/2⌉.

Homomorphic addition and multiplication : For ciphertext C1, C2 ∈
Zm×w
q , let Cadd = C1 +C2, Cmult = C1G

−1(C2). It is easy to verify that Cadd
and Cmult are ciphertext of u1 + u2 and u1u2, respectively.
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For the security and correctness of the DGSW scheme, please refer to [9].
Compared with the GSW scheme, DGSW scheme has bigger ciphertext, which is
O(n2 log3 q), while O(n2 log q) for GSW scheme. As [9] mentioned, DGSW scheme
makes it more convenient to use the leakage resilient property of LHL to remove
CRS.

2.6 Multi-Key Fully Homomorphic Encryption(MKFHE)

We review the definition of MKFHE in detail here, the main purpose of which is
to compare with the definition of KL-MKFHE we proposed later.

Definition 7. Let λ be the security parameter, L be the circuit depth, and k be
the number of participants. A Leveled multi-key fully homomorphic encryption
scheme consists of a tuple of efficient probabilistic polynomial time algorithms
MKFHE=(Init, Gen, Enc, Expand, Eval, Dec) which defines as follows.

– pp← Init(1λ, 1L) : Input security parameter λ, circuit depth L, output system
paremeter pp. We assume that all algorithm take pp as input.

– (pki, ski)← Gen(pp, id) : Input pp, identity id, output a key pair for partici-
pant pi.

– ci ← Enc(pki, ui) : Input pki and ui, output ciphertext ci.
– c̄i ← Expand(pk, ci):Input the ciphertext ci of participant pi, the public key

set pk = {pki}i∈[k] of all participants, output expanded ciphertext c̄i which is
under f(ski, . . . skk) whose structure is undefined.

– c̄eval ← Eval(c̄, C):Input circuit C, the set of all ciphertext c̄ = {c̄1 . . . c̄N}
while N is the input length of circuit C, output evaluated ciphertext c̄eval

– u← Dec(c̄eval, f(sk1 . . . skk)) : Input evaluated ciphertext c̄eval, total private
key function f(sk1 . . . skk), output u

Remark :

1. The Expand(·) algorithm is not necessary. For example, in the RLWE-based
MKFHE scheme, the ciphertext expansion procedure is trivial, but in the
LWE-based MKFHE scheme, the ciphertext expansion is a complicated and
time-consuming process.

2. The private key function f(sk1, . . . , skk) represents an organization form, or
a certain function, which is not unique, for example, it can be the concate-
nation of all keys or the sum of all keys.

Properties implicited in the definition of MKFHE: For the above defini-
tion, each participant is required in key generation and encryption phase inde-
pendently to generates their own keys and completes the encryption operation
without interaction between participants. These two phases are similar to single-
key homomorphic encryption, the computational overhead is independent of k
and only related to λ and L, only in the decryption phase, interaction is involved
when participants perform a round of decryption protocol.
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3 Key Lifting Multi-key Fully Homomorphic
Encryption(KL-MKFHE) scheme

3.1 The definition of KL-MKFHE

In order to cope with computationally-sensitive and trust-sensitive scenarios, we
appropriately tighten and loosen the definition of MKFHE, we abandon cipher-
text expansion procedure and introduce a Key lifting procedure. In addition, a
tighter bound is required on the amount of local computation, as a compromise,
we allow a small amount of interaction during Key lifting.

Definition 8. A leveled KL-MKFHE scheme is a tuple of probabilistic polyno-
mial time algorithm (Init, Gen, KeyLifting, Enc, Eval, Dec), which can be divided
into two phases, online phase: KeyLifting and Dec, where interaction is allowed
between participants, but the rounds should be constant, local phase : Init, Gen,
Enc, and Eval, whose operations do not involve interaction. These five algorithms
are described as follows:

– pp ← Init(1λ, 1L):Input security parameter λ, circuit depth L, output public
parameters pp.

– (pki, ski) ← Gen(pp):Input public parameter pp, output the key pair of par-
ticipant pi

– hki ← KeyLifting(pki, ski): Input key pair of participants pi, output the hybrid
key hki of pi.

– ci ← Enc(hki, ui): Input plaintext ui and hki, output ciphertext ci
– ĉ← Eval(C, S): Input circuit C, ciphertext set S = {ci}i∈[N ] , output cipher-

text ĉ
– u← Dec(ĉ, f(sk1 . . . skk)): Input evaluated ciphertext ĉ, f(sk1 . . . skk), output
C(ui)i∈[N ].

Remark : KL-MKFHE does not have ciphertext expansion procedure, indeed,
the inputed ciphertext set S in Eval(·) is encrypted by participants under their
own hybrid key hki which are different among participants, however, the resulting
ciphertext ci supports homomorphic evaluation without extra modification.

we require KL-MKFHE to satisfy the following properties:
Locally Computationally Compactness : A leveled KL-MKFHE is locally
computationally compact if the participants do the same number of encryptions
as the single-key FHE scheme.
Low round complexity : Only constant round interaction is allow in KeyLifting(·)
procedure.
IND-CPA security of encryption : Let λ be the security parameter, L =
poly(λ) is the circuit depth, for any probabilistic polynomial time adversary A,
he can distinguish the following two distributions with negligible advantage.

Pr [A(pp, pk,Enc(pk, 1))−A(pp, pk,Enc(pk, 0)) ̸= 0 ] = negl(λ).
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Correctness and Compactness : A leveled KL-MKFHE scheme is correct
if for a given security parameter λ, circuit depth L, participants k, we have the
following

Pr [Dec(f(sk1 . . . skk), ĉ) ̸= C(u1 . . . uN ) ] = negl(λ).

probability is negligible, where C is a circuit with input length N and depth length
less than L. A leveled KL-MKFHE scheme is compact, if the size ĉ of evaluated
ciphertext is bounded by poly(λ,L, k), but independent of circuit size.

4 Scheme#1 : a KL-MKFHE scheme based on DGSW in plain
model

Our first scheme is based on DGSW, please refer to Section 4.2 for related back-
ground. In this section, we first introduce the key lifting process, then describe
the entire scheme, and finally give parameter analysis and security proof.

4.1 Key lifting procedure

Following the definition of KL-MKFHE, it requires the ciphertext encrypted by
hybrid key hk which is outputted by KeyLifting(·) algorithm and different among
participants, to support homomorphic evaluation without extra modification. We
achieve this property by allowing two round interaction between participants.

Key Lifting

– {hki}i∈[k] ← KeyLifting({pki, ski}i∈[k]): Input the DGSW key pair {pki, ski}i∈[k]
of all participants, where pki = (Ai,bi,i), Ai ← U(Z(m−1)×n

q ), si ← U{0, 1}m−1,
bi,i = siAi mod q. Assuming there is a broadcast channel, all participants
are engaged in the following two interaction :
• First round : pi broadcasts (Ai,bi,i) and receives all {Aj ,bj,j}j∈[k].
• Second round : pi generates and disclose {bi,j}j∈[k], where bi,j = siAj

mod q

After above two round interaction, pi receives {bj,i}j∈[k]

let bi =

k∑
j=1

bj,i, pi output hybrid key hki = (Ai,bi)

Let t̄ = (−s, 1), s =
∑k

i=1 si, for ciphertext Ci, Cj encrypted by hybrid key hki,
hkj respectively :

Ci =

(
Ai

bi

)
R1 +E1 + uiG, Cj =

(
Aj

bj

)
R2 +E2 + ujG,

obviously we have t̄Ci ≈ uit̄G, t̄Cj ≈ uj t̄G(omit small error). Therefore, al-
though Ci and Cj are encrypted by different hybrid keys, they correspond to
the same decryption key t̄.
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As we will point out later, however, this structure will drew some security
concern. First, semi-malicious adversary may generates matrix A with trap-
door, then s is leaked. Second, semi-malicious adversary pj may generate bj,i

adaptively after seeing bi,i, then the public key bi of pi may not distributed as
requirement. We note that as long as our encryption scheme is leakage-resistant,
properly lengthening private key s can guarantee the semantic security of the
scheme even if part of s is leaked. This is the result we derived from [9]. We
remedy second problem by increasing the noise bounds in the last row of the
noise matrix E. This is the result we derived from [5]. We discuss the security
of the scheme in Section 4.5

4.2 The entire scheme

In order to compare the impact of introducing noise flooding, our Scheme#1
prepares two parameter settings, one corresponds to noise flooding and the other
corresponds to leakage-resilient scenarios, especially q and key length.
Scheme#1 is based on the DGSW scheme, containing the following five algorithm
(Init, Gen, KeyLifting, Enc, Eval, Dec)

– pp ← Init(1λ, 1L) : Let λ be security parameter, L circuit depth, ∆ circuit
output length, lattice dimension n = n(λ,L), noise distribution χ over Z, e←
χ, where |e| is bounded by Bχ with overwhelming probability, modulus q =
2λLBχ(with noise flooding) or 2λ+LBχ, k = poly(λ), m = kn log q + λ(with
noise flooding) or (kn+∆) log q + λ, suitable choosing above parameters to
make LWEn,m,q,Bχ is infeasible. Output pp = (k, n,m, q, χ,Bχ)

– (pki, ski)← Gen(pp) : Input pp, output the DGSW key pair (pki, ski) of par-
ticipants pi, where pki = (Ai,bi,i), Ai ← U(Z(m−1)×n

q ), si ← U{0, 1}m−1,
bi,i = siAi mod q.

– hki ← Key Lifting : All participants are engaged in the Key lifting pro-
cedure 4.1, output the hybrid key hki.

– Ci ← Enc(hki, ui): Input hybrid key hki, plaintext ui, output ciphertext

Ci =

(
Ai

bi

)
R + E + uiG, where R ← χn×ml, l = ⌈log q⌉, E =

(
E0

e1

)
,

E0 ← χ(m−1)×ml, e1 ← χ′ ml, χ′ is a distribution over Z, satisfying |e1| is
bounded by 2λ

ϵ1
Bχ, ϵ1 ∈ (0, 1

2 ), G = Im ⊗ g is a gadget matrix.
– Ĉ ← Eval(S, C) : Input the ciphertext S = {Ci}i∈[N ] which are encrypted

by hybrid key {hki}i∈[k], circuit C with input length N , output Ĉ.

Homomorphic addition and multiplication

Let t̄ = (
∑k

i=1 si,−1)

– Cadd ← Add(C1,C2): Input ciphertext C1, C2, output Cadd = C1 + C2,
Obviously t̄Cadd ≈ (u1 + u2)̄tG

– Cmult ← Mult(C1,C2): Input ciphertext C1, C2, output Cmult = C1G
−1(C2),

Obviously t̄Cmult ≈ u1u2t̄G
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Distributed decryption Similar to [35], the decryption procedure is a dis-
tributed procedure :

– LocalDec: Input Ĉ, let Ĉ =

(
C0

c1

)
, where C0 ∈ Z(m−1)×ml

q , c1 ∈ Zml
q , pi

computes βi = ⟨si, C0G
−1(wT )⟩, and set γi = βi + e′′i (with flooding noise)

or γi = βi , where w = (0, . . . , 0, ⌈q/2⌉) ∈ Zm
q , e′′i ← χ′′ is a distribution

over Z, satisfying |e′′i | < 2Lλϵ2
Bχ, ϵ2 ∈ ( 12 , 1), then pi broadcast γi

– FinalDec: After received {γi}i∈[k], let γ =
∑k

i=1 γi + ⟨c1, G−1(wT )⟩, output
u = ⌈ γ

q/2⌋

4.3 Bootstrapping

In order to eliminate the dependence on the circuit depth to achieve fully homo-
morphism, we need to use Gentry’s bootstrapping technology. It is worth noting
that the bootstrapping procedure of Scheme#1 is the same as single-key homo-
morphic scheme: After Key lifting procedure, participant pi uses hybrid key
hki to encrypt si to obtain evaluation key evki. Because evki and Ĉ are both
ciphertexts under t̄ = (−

∑k
i=1 si, 1), homomorphic evaluation of the decryption

circuit could be executed directly as Ĉ are need to be refresh. Therefore, in or-
der to evaluate any depth circuit, we only need to set the initial parameters to
satisfy the homomorphic evaluation of the decryption circuit.

However, for those MKFHE schemes that requires ciphertext expansion, ad-
ditional ciphertext expansion is required, for the reason that Ĉ is the ciphertext
under t̄, but {evki}i∈[k] are the ciphertext under {ti}i∈[k]. This is another large
amount of computational overhead, because in order to expand {evki}i∈[k], par-
ticipant pi needs to encrypt the random matrix of the ciphertext corresponding
to evki.

4.4 Correctness analysis

To illustrate the correctness of Scheme#1, we first study the accumulation of
noise:

Let s =

k∑
i=1

si, t = (−s, 1), for fresh ciphertext C =

(
Ai

bi

)
R+

(
E0

e1

)
+ uG

we have tC = e1 + sE0 + utG, let einit = e1 + sE0, Obviously |einit| < (2λ
ϵ1

+
km)Bχ.

After L depth circuit evaluation, let eL = (ml)Leinit. According to the dis-
tributed encryption of Scheme#1 we have :

– with noise flooding q = 2λLBχ.

γ =

k∑
i=i

γi + c1G
−1(wT ) = ⟨eL,G−1(wT )⟩+

k∑
i=1

e′′i + u⌊q
2
⌉ (1)
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Obviously |e′′i | > ⟨eL,G−1(wT )⟩, for taking the logarithm of both sides:

log e′′i = λϵ2L

log⟨eL,G−1(wT )⟩ = log((knλ2L2)L(2λ
ϵ2

+ k2nλL)) = O(L+ λϵ2)

Let :

efinal = ⟨eL,G−1(wT )⟩+
k∑

i=1

e′′i

Thus :

efinal <

k+1∑
i=1

e′′i = poly(λ) · 2λ
ϵ2LBχ

– without noise flooding q = 2λ+LBχ.

γ =

k∑
i=i

γi + c1G
−1(wT ) = ⟨eL,G−1(wT )⟩+ u⌊q

2
⌉ (2)

efinal = ⟨eL,G−1(wT )⟩, log efinal = O(L+ λϵ2).

In order to decrypt correctly, it requires efinal <
q
4 . For our parameter settings,

with noise flooding q = 2λLBχ, m = kn log q + λ, or without q = 2λ+LBχ,
m = (kn+∆) log q + λ, requirements are fulfilled.

4.5 Semantic Security of Encryption against Semi-Malicious
Adversary

We assume that the adversary is semi-malicious, that is to say, he can generate
parameters adaptively and does not need to strictly execute the steps of the
protocol. For a more formal definition, please refer to [1]. First, we prove that
DGSW is leakage-resilient, and second, we prove scheme#1’s semantic security.

DGSW is leakage-resilient

The DGSW scheme and GSW scheme is similar to Dual-Regev scheme and Regev
scheme resp. [9] has proved that it is leakage-resilient, here, for completeness,
we repeat it. Let χ be LWE noise distribution bounded by Bχ, χ′ a distribution
over Z bounded by Bχ′ , satisfying Bχ/Bχ′ = negl(λ).

Lemma 9 (in [9]). Let Ai ∈ Z(m−1)×n
q be uniform, and let Aj for all j ̸=

i be chosen by a rushing adversary after seeing Ai. Let si ← {0, 1}m−1 and
bi,j = siAj. Let r ∈ Zn

q be uniform, e ← χm−1, e′ ← χ′. Then under the LWE
assumption, the vector c = Air + e and number c′ = ⟨bi,i, r⟩ + e′ are (jointly)
pseudorandom, even given the bi,j’s for all j ∈ [k] and the view of the adversary
that generated the Aj’s.
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We omit the proof here, more details please refer to [9].

The semantic security of scheme#1

For a honest player pi, he generates Ai ← U(Z(m×n)
q ), bi,j ← {0, 1}m as the

protocol specification, but a semi-malicious adversary may generates it arbitrar-
ily and adaptively. For arbitrary Ai, the leakage-resilient property of DGSW
guarantees the semantic security. Here, we deal with what happens when bi,j

generated adaptively. Note that in addition to an output tape, a semi-malicious
adversary also has a witness tape, whenever the adversary produces a new pro-
tocol message m, it must also write to its witness tape some pair (x, r) of input
x and randomness r.

In scheme#1, we require that for each bi,j , participant pi must know what the
output si on its corresponding witness tape is, and |si| is bounded by Bsis. Let
Bsis be the bound keeping the SISm,n,q,Bsis problem hard, according to Theorem
4, if Bsis ≪ qn/m, the problem is vacuously hard, most likely, such solutions do
not exists, if Bsis ≫ γm ·qn/m, this is an instance of approx-SVP with exponential
approximation factor γ, which can be solved by LLL [25], somewhere in between
these bounds is where cryptography takes place, typically for Bsis = qn/m ·
poly(λ). For our parameter Settings Bsis = qn/m ·poly(λ) = poly(λ). We complete
the simulation by constructing a reduction from Scheme#1 to the DGSW scheme.
Consider the following Game:

1. Challenger generates pkDGSW = (A,b1) where A ← U(Z(m−1)×n
q ), b1 =

s1A, s1 ← U{0, 1}m and send pkDGSW to adversary A
2. A adaptively chooses {bi}i∈[k]/1 where bi = siA and |si| < Bsis after seeing

pkDGSW, chooses a bit u ∈ {0, 1} and sets hkScheme#1 = (A,b), where b =∑k
i=1 bi, then send hkScheme#1 and u to Challenger.

3. Challenger chooses a bit α ∈ {0, 1}, if α = 0 , set CScheme#1 ← Enc(hkScheme#1, u),
otherwise CScheme#1 ← U(Zm×ml

q ), and send CScheme#1 to A
4. After receiving CScheme#1, A output bit ᾱ, if ᾱ = α, then A wins.

Lemma 10. Let Adv = |Pr[ᾱ = α] − 1
2 | denote A’s advantage in winning the

game, If A can win the game with advantage Adv, then A can distinguish between
the ciphertext distribution of DGSW and the uniform random distribution with
the same advantage.

Proof. We construct CScheme#1 by DGSW.Enc(pkDGSW, u):

1. First, Challenger generates pkDGSW like the step 1 of above Game, set CDGSW =
DGSW.Enc(pkDGSW, u) send the both to A.

2. A generates {si}i∈[k]/1, let s′ =
∑k

i=2 si, CDGSW =

(
C0

c1

)
, C′ =

(
C0

c1 + c′1

)
,

where c′1 = s′C0, obviously C′ =

(
A
b

)
R+

(
E0

e1 + s′E0

)
.
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For our parameter settings |e1| < 2λ
ϵ1
Bχ, |s′E0| < kmBχBsis, thus s′E0/e1 =

negl(λ), we have C′
stat
≈ CScheme#1, if A can distinguish between CScheme#1 and

uniform random distribution by advantage Adv, then he can distinguish between
DGSW.Enc(pkDGSW, u) and the uniform random distribution with the same ad-
vantage.

Remark: we require k to be bounded by poly(λ), because if a larger k is
introduced, it will lead to a larger smudging error, which further leads to a
larger q. For our choice of q = 2λLBχ(with noise flooding) or q = 2λ+LBχ, the
corresponding approximation factor of the SVP problem is Õ(2λL) or Õ(2λ+L)

4.6 Noise flooding technology VS. Leakage resilient property in
partial decryption

We note that the introduction of noise flooding in the partial decryption phase
is essentially to guarantee the semantic security of fresh ciphertext, and noise
flooding achieves this by masking the private key information hidden in the par-
tial decryption noise. For partial decryption to be simulatable, the magnitude
of the noise introduced needs to be exponentially larger than the noise after the
homomorphic evaluation. At the same time, as mentioned in [35], masking tech-
niques based on noise flooding can only guarantee weak simulatable properties
: input all private keys {skj}j∈[k]/i except ski, evaluated result ueval, ciphertext
Ĉ, it can simulate the local decryption result γi, while for stronger security re-
quirements : input any private key set {skj}j∈S , S is any subset of [k], evaluated
result ueval and ciphertext Ĉ, to simulate {γi}i∈U, U=[k]−S , it don’t know how to
achieve it.

If our encryption scheme is leakage-resilient, as long as we calculate the
amount of information of the leaked private key and lengthen the key appropri-
ately to ensure enough significant bits, then our fresh ciphertext will be indis-
tinguishable. Here, the reader might think that doing so would result in a key
that is longer than using noise flooding. We point out that as long as the output
length ∆ of circuit satisfies ∆ < kλ3L2−kλ(λ+L)2

λ+L , the length of the private key
will not be longer than when using noise flooding. For a circuit with output
length of ∆ , scheme#1 leaks the private key of participant pi in the partial
decryption phase by a maximum of ∆ log q bits. Let m′ = (kn + ∆) log q + λ,
q′ = 2(λ + L)Bχ, while with noise flooding m = kn log q + λ, q = 2(λL)Bχ. In
order to make m′ > m, only ∆ < kλ3L2−kλ(λ+L)2

λ+L is required, thus for circuits
with small output fields, our scheme does not lead to longer keys.

Here, for completeness and for comparison with no noise flooding, we give a
proof of the simulability of partial decryption of scheme#1 with noise flooding
introduced. According to Equantion 1 we have γ =

∑k
i=1 γi +C1G

−1(wT )

thus γi = ueval⌊
q

2
⌉+ efinal +

k∑
i=1

e′′i +C1G
−1(wT )−

k∑
j ̸=i

γj
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For a simulator S, input {skj}j∈[k]/i, evaluated result ueval, ciphertext Ĉ, output
simulated γ′i

γ′i = ueval⌊
q

2
⌉+

k∑
i=1

e′′i +C1G
−1(wT )−

k∑
j ̸=i

γj .

For our parameter settings, we have :

|
k∑

i=1

e′′i | < k · 2Lλϵ2
Bχ

efinal < kn(Lλ)(2L+1)(2λ
ϵ2

+ k2nLλ)Bχ = 2O(Lλϵ1 )Bχ

thus |efinal/

k∑
i=1

e′′i | = k · 2−ω(Lλϵ2−Lλϵ1 ) = negl(λ)

we have γi
stat
≈ γ′i.

5 Scheme#2 : KL-MKFHE based on RLWE in ROM

It is regrettable that general polynomial ring R : Z[x]/f(x) cannot enjoy the leak
resilient property of the LHL on the integer ring Z. This means that we cannot
transplant the above construction process trivially to RLWE-based FHE. Indeed,
[15] pointed out that for x = (x1, . . . , xl) ∈ Rl, if the j-th NTT coordinate of each
xi,i∈[l] is leaked, then the j-th NTT coordinate of al+1 =

∑l
i=1 aixi is defined,

thus al+1 is far from random, although the leakage ratio is only 1/n. We also
noticed a trivial solution : for a, s ∈ Rl

q, b = ⟨a, s⟩ ∈ Rq, b leaks information
about s at most n log q bits, therefore, as long as we set l long enough, for
example, l = l + n log q, then obviously b is close to uniformly random, but this
will result in a extremely large key, thus it is not practical.

To ensure the independence of the {ai}i∈[k] generated by each participant,
we simply added a round of bit commitment protocol. Under the ROM, the
cryptographic hash function is used to ensure the independence of {ai}i∈[k]. Let
H : {0, 1}⋆ → {0, 1}λ be a cryptography hash function, ai ∈ Rq, H(ai) =
δi. For a given δ ∈ {0, 1}λ, an adversary A sends a query x ∈ {0, 1}⋆ to H,
which happens to have probability Pr [H(x) = δ ] = 1

2λ
. Let Adv denotes the

probability that A finds a collision after making qro = poly(λ) queries, Obviously
Adv = negl(λ), we have the following result.

Lemma 11. For a given δ ∈ {0, 1}λ, k probabilistic polynomial time(ppt) adver-
sary A, Each A makes qro = poly(λ) queries to H, let Adv denotes the probability
of finding a collision, then: Adv = negl(λ)

For Scheme#2, we only describe its key generation and re-linearization procedure
in detail, the encryption, evaluation and decryption algorithm is similar to other
RLWE-based MKFHE schemes.
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Key generation with bit commitment.
k participants perform the following steps to get their own public key and eval-
uation key
1. pp← Setup(1λ, 1L):Input security parameter λ, circuit depth L, output pp =

(d, q, χ,Bχ), which χ is an noise distribution over R : Z[x]/xd +1, satisfying
e← χ, ||e||can∞ is bounded by Bχ, and RLWEd,q,χ,Bχ

is infeasible.
2. pi generates Φi = {ai,di, fi} where ai ← U(Rq) is used for public key, di,

fi ← U(Rl
q) for evaluation key, and commitment Ψi = {δi, ϵi, ζi}, δi = H(ai),

ϵi = H(di), ζi = H(fi), broadcast Ψi.
3. After all {Ψi}i∈[k] are public, pi discloses Φi.
4. After receiving {Φj}j∈[k]/i, pi broadcast {bi, hi}, where bi = asi + e1, hi =

dsi + e2, a =
∑k

i=1 ai, d =
∑k

i=1 di, (si, e1, e2)← χl+2.
5. After receiving {bj , hj}j∈[k]/i, pi output pki = (a, b) and evaluation key

evki = (hi,ηi,θi)

b =

k∑
i=1

bi ηi = dri + e3 + sig

θi = fsi + e4 + rig (ri, e3, e4)← χ2l+1

Re-linearization ciphertext
Multiplying two ciphertext c1, c2 ∈ R2

q , which under the same private key
t = (1, s), s =

∑k
i=1 si, resulting cmult = c1 ⊗ c2 ∈ R4

q , where its corresponding
private key is t ⊗ t = (1, s, s, s2). In order to re-linearize cmult , we need to
construct the ciphertext of s2 under t. Let total evaluation key Π = (η,θ,h).

where η =

k∑
i=1

ηi θ =

k∑
i=1

θi h =

k∑
i=1

hi

Let k = (k0,k1), k0 = −θg−1(h) ∈ Rl
q, k1 = (η + fg−1(h)) ∈ Rl

q, obviously
k0 + k1s ≈ s2g (omit small error). Let cmult = (c0, c1, c2, c3).

⟨cmult, t⊗ t⟩ = c0 + (c1 + c2)s+ s2c3

= c0 + (c1 + c2)s+ s2gg−1(c3)

= c0 + k0g
−1(c3) + (c1 + c2 + k1g

−1(c3))s.

Let clinear = (c′0, c
′
1), c

′
0 = c0+k0g

−1(c3), c
′
1 = c1+ c2+k1g

−1(c3), output clinear
as re-linearized ciphertext. The algorithm defines as follows:

– clinear ← Relinear(cmult, {evki}i∈[k]): Input cmult ∈ R4
q , evaluation key {evki}i∈[k],

perform the following algorithem, output clinear = (c′0, c
′
1).

Due to the sum structure of keys, the dimension of t⊗ t is independent of
participants k, thus above algorithm pulls the tensor product ciphertext back
to initial dimension by one shot, and introduces less noise than those keys with
concatenation structure.
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Ciphertext Relinearization

Input: cmult = (c0, c1, c2, c3) ∈ R4
q , {evki}i∈[k] = {hi, ηi, θi}i∈[k]

Output: clinear = (c′0, c
′
1) ∈ R2

q

1: η ←
∑k

i=1 ηi, θ ←
∑k

i=1 θi, h←
∑k

i=1 hi

2: k0 ← −θg−1(h), k1 ← η + fg−1(h)

3: c′0 ← c0 + k0g
−1(c3), c′1 ← c1 + c2 + k1g

−1(c3)

4: Output: (c′0, c′1)
5: End.

6 Conclusions

For the LWE-based MKFHE in order to alleviate the overhead of the local par-
ticipants, we proposed the concept of KL-MKFHE which introduced a Key lift-
ing procedure, getting rid of expensive ciphertext expansion operation and con-
struct a DGSW style KL-MKFHE under plain model. Our Scheme#1 is more
friendly to local participants than previous scheme, for which the local encryp-
tion O(Nλ6L4) is reduced to O(N), and by abandoning noise flooding, it com-
press q from 2λLBχ to 2λ+LBχ, reducing the computational scale of the entire
scheme. However, the key length depends on the number of participants and the
amount of leakage, which limits the application of the scheme to some extent.
Further work will focus on compressing the key length.

For the multi-key homomorphic scheme based on RLWE, although the compu-
tation overhead of the local participants is not large: to perform re-linearization,
only one ring element needs to be encrypted, the common random string is al-
ways an insurmountable hurdle. We introduced bit commitment to ensure the
independence of the {ai}i∈[k] generated by each participant under ROM. Con-
structing RLWE-type MKFHE under plain model is the future direction.
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