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Abstract. Multi-key Fully Homomorphic Encryption(MKFHE) based
on Learning With Error(LWE) usually lifts ciphertexts of different users
to new ciphertexts under a common public key to enable homomorphic
evaluation. The main obstacle of current MKFHE schemes in applica-
tions is huge ciphertext expansion cost especially in data intensive sce-
nario. For example, a boolean circuit with input length N , multiplication
depth L, security parameter λ , the number of additional encryptions in-
troduced to achieve ciphertext expansion is O(Nλ6L4).

In this paper we present a framework to solve this problem that we
call Key-Lifting Multi-key Fully Homomorphic Encryption ( KL-MKFHE).
With this key lifting procedure, the number of encryptions for a lo-
cal user is pulled back to O(N) as single-key fully homomorphic en-
cryption(FHE). Moreover, current MKFHE schemes are often based on
Common Reference String model(CRS). In our LWE-based scheme, CRS
is removed by using the leakage resilient property of the leftover hash
lemma(LHL). In particular, we prove that as long as encryption scheme
is leakage-resilient, the partial decryption does not need to introduce
noise flooding technique, the semantic security of fresh ciphertext can
also be guaranteed, which greatly reducing the size of modulus q and the
computational overhead of the entire scheme.

Moreover, we also consider RLWE for efficiency in practice. Due to
the structural properties of polynomial rings, such LWE-based scheme
based on LHL cannot be trivially transplanted to RLWE-based scheme.
We give a RLWE-based KL-MKFHE under Random Oracle Model(ROM)
by introducing a bit commitment protocol.

Keywords: Multi-key homomorphic encryption · LWE · RLWE · Leak-
age resilient cryptography.

1 Introduction

Fully Homomorphic Encryption(FHE). The concept of FHE was proposed
by Rivest et al. [48], within a year of publishing of the RSA scheme [49]. The
first truly fully homomorphic scheme was proposed by Gentry in his doctoral
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dissertation [23] in 2009. Based on Gentry’s ideas, a series of FHE schemes have
been proposed [24] [51] [12] [22] [26] [17] [16], and their security and efficiency
have been continuously improved. FHE is suitable to the problem of unilateral
outsourcing computations. However in the case of multiple data providers, in
order to support homomorphic evaluation, data must be encrypted by a common
public key. Due to privacy of data, it is unreasonable to require participants to
use other people’s public keys to encrypt their own data.

Threshold fully holomorphic encryption(Th-FHE). After giving the first
fully homomorphic encryption scheme, also, for the situation of multiple par-
ticipants, Gentry [23] gave the corresponding strategy : first, all participants
executed a secure multi-party computation protocol to obtain a common pub-
lic key which all data were encrypted by, and then ciphertext evaluation was
performed. After the evaluation was completed, all participants executed an-
other secure MPC protocol to obtain the result. Obviously, the threshold was
initially added to FHE only to support multiple users, while the later Th-FHE
was more concerned with the flexibility of the access strategy in order to cope
with different application scenarios.

In addition, there are two main ways to initialize the common public key of
Th-FHE. First, assuming that there is a central authority, which generates the
common public key, and disperses the private key (using Secret Sharing scheme)
to each participant [28] [10]. Encryption and evaluation of data are all under
the common public key, when decryption is required, the set of participants
that satisfy the access control structure obtains the result through a round of
interactive decryption. Boneh et al [10] further proposed the concept of Universal
Thresholdizer, which for any fully homomorphic encryption scheme, it can be
converted into a threshold fully homomorphic encryption supporting monotonic
access control structure in a black-box manner.

The second method is for the parties to generate the common public key in a
distributed manner, where there is no central authority. For example, Myers et
al [43] added a threshold functionality to the integer homomorphic scheme [21],
and used a distributed manner to generate the common public key and pri-
vate key, without a central setup. Although adopting black box method for the
construction process, the distributed key generation process was quite compli-
cated, which consists of three steps, firstly generating the private key, then the
private key of the squeezed circuit, and finally the common public key. These
three processes all need to repeatedly invoke the distributed bit generation, the
comparison, and the multiplication protocols. Based on the key homomorphic
property, Asharov et al [7] generated the common public key through two rounds
of interaction in a distributed manner, and the common private key was the sum
of the individual private keys. In order to match the public and private keys and
ensure the security of the private key, a common reference string(CRS) needed
to be introduced, and decryption required everyone to provide the private key,
which was actually a (n-n)Th-FHE. Damgård et al [20] introduced homomorphic
encryption in order to optimize the preprocessing stage (such preprocessing was
typically based on the classic circuit randomization technique of Beaver [9], it
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can be done by evaluating in parallel many small circuits of small multiplicative
depth), and, a common reference string also needs to be introduced.

Multi-key Fully Homomorphic Encryption(MKFHE). To deal with pri-
vacy of multiple data providers, López-Alt et al [30] proposed the concept of
MKFHE and constructed the first MKFHE scheme based on modified-NTRU
[50]. Conceptually, it was an enhancement of the FHE on functionality that al-
lowed data provider to encrypt data independent from other participants, its key
generation and data encryption were done locally. To get the evaluated result, all
participants were required to execute a round of threshold decryption protocol.

After López-Alt et al. proposed the concept of MKFHE, many schemes were
proposed. In 2015, Clear and McGoldrick [18] constructed a LWE-based MKFHE.
This scheme defined the common private key as the concatenation of all private
keys, and constructed a masking scheme to converts the ciphertext under indi-
vidual public key to common public key by introducing CRS and circular-LWE
assumptions, which only supports single-hop computation. In 2016, Mukherjee
and Wich [42], Perkert and shiehian [45], Brakerski and Perlman [14] constructed
MKFHE scheme based on GSW respectively. Mukherjee and Wich [42] simplified
the mask scheme of [18], and focused on constructing a two-round MPC protocol.
Different methods in [45] and [14] were put forward delicately to constructing
a multi-hop MKFHE. Brakerski and Perlman [14] introduced bootstrapping to
realize ciphertext expansion, thereby realizing the multi-hop function. Perkert
and shiehian [45] realized multi-hop function through ingenious construction. It
is worth mentioning that all MKFHE schemes constructed based on the LWE
requires a ciphertext expansion procedure.

1.1 Motivation

We note that the biggest difference between Th-FHE and MKFHE in form is
that MKFHE allows participants to encrypt data with their own public keys,
and does not require interaction during the initialization phase, while Th-FHE
needs to introduce a dealer or generate the common key pair in a distributed
manner. Conceptually, it is clear that MKFHE is more concise, and a series of
work [13] [42] [6] showed that MKFHE was an excellent base tool for building
round-optimal MPC. MKFHE seems attractive, but its actual construction in-
volves some cumbersome operations and some unavoidable assumptions. Below
we describe some details of the MKFHE scheme, and give our goal in the last
paragraph of this subsection.

Ciphertext expansion is expensive : Although the MKFHE based on LWE
can use LHL to remove CRS, in order to convert the ciphertext under different
keys to the ciphertext under a same key(ciphertext expansion), participants and
the computing server need to do a lot of preparatory work. For ciphertext expan-
sion, it is necessary to encrypt the random matrix R ∈ Zm×m

q of each ciphertext.
For a boolean circuit with input length N , multiplication depth L, security pa-
rameter λ, m = n log q+ω(logλ), the additional encryption operation introduced
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is O(Nλ6L4), in contrast to O(N) for single-key FHE. For computing-sensitive
participants, this is a lot of overhead.

CRS looks inevitable : Due to compact structure on polynomial ring and
some interesting parallel algorithm such as SIMD, it is generally believed that
FHE scheme based on RLWE is more efficient than FHE based on LWE. This is
the reason why most current MKFHE schemes, such as [15] [41] are constructed
based on RLWE.

Leftover Hash Lemma (LHL) over integer ring Z enjoys the leakage resilient
property : It can transform an average quality random sources into higher qual-
ity [27] which can be used to get rid of CRS as [13] does. However, regular-
ity lemma [33] over polynomial rings do not have corresponding properties,
as [19]mentioned if the j-th Number theoretical Transfer(NTT) coordinate of
each ring element in x = (x1, . . . , xl) is leaked, then the j-th NTT coordinate
of al+1 =

∑
aixi is defined, so al+1 is very far from uniform, yet this is only

a 1/n leakage rate. Therefore, it seems to be more difficult to remove CRS for
RLWE-based MKFHE.

Noise flooding leads to extremely large module q : As far as we know so
far, whether it is MKFHE or Th-FHE, a great noise needs to be introduced in
the decryption stage to cover up the partial decryption result, otherwise, private
key may be leaked. In order to make the result of partial decryption simulatable,
assuming that the noise accumulated after the evaluation is eeval and the private
key is s, the flooding noise esm must satisfy ⟨eeval, s⟩ /esm = negl(λ). At this time,
in order to ensure the correctness of the decryption result, module q needs to
satisfy q ≥ 4esm. Thus noise flooding results in a q that is exponentially larger
than the q in a single-key FHE3.

Therefore, MKFHE as a general framework, although conceptually attrac-
tive, is not suitable for some specific scenarios. Especially in the era of mobile
Internet, data providers often do not trust others, and sometimes it is difficult
to convince them there is a dealer or the randomness of common reference string
generated by a third party. At the same time, it is unreasonable to require the
data provider to do O(Nλ6L4) such a large number of encryption on personal
terminal.

Our goal : In response to the above problems, we propose our goal: we consider
trust-sensitive and computationally-sensitive scenario with multi-users.

– Without CRS : we do not assume the existence of a dealer or a common
reference string

3 Using Rényi divergence rather than statistical distance in the security proof, Agrawal
et al [1] reduce the amount of noise flooding used in the construction from 2Ω(λ)

to
√
Q, where Q is the bound on the number of generated signatures and λ is

the security parameter. If this result can be used in the distributed decryption of
MKFHE, it can significantly reduce the size of q
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– Data providers does as many encryptions as the single-key homomor-
phic scheme(O(N) for the circuit with input length N).

– q = 2O(λ+L)Bχ of the same size as the single-key homomorphic
scheme, while q = 2O(λL)Bχ for those schemes introduced noise flooding.

1.2 Related works

Except sum type of key structure [7], concatenation structure were studied in
[18] [45] [42] [14] [15] together with CRS. Ananth et al [5] removed CRS from
a higher dimension, instead of using LHL or regularity lemma, they based on
Multiparty Homomorphic Encryption and modified the initialization method of
its root node to achieve this purpose, more details please refer to [5]. Brakerski
et al [13] was the first scheme using leakage resilient property of LHL to get
rid of CRS, which had the concatenation common private key structure, and
ciphertext expansion was essential. All of the above schemes introduced noise
flooding technology in partial decryption.

We present a comparison of some properties in related work in Table 1.

Scheme Key structure CRS Noise
flooding(partial

decryption phase)

Interaction(setup
phase)

THFHE [7] Sum 3 3 3

MKFHE [15] Concatenation 3 3 5

MKFHE [42] Concatenation 3 3 5

MKFHE [13] Concatenation 3 3 3

Scheme#1 Sum 5 5 3

Scheme#2 Sum ROM 3 3

Table 1. 3 indicates that the corresponding operation or assumption needs to be
introduced, or 5 indicates that it is not required.

1.3 Our Results

For trust-sensitive and computationally-sensitive scenario, we introduce the con-
cept of KL-MKFHE which is more suitable for such scenarios. Following this
concept, we construct the first KL-MKFHE scheme based on LWE in the plain
model.

Since regularity lemma [34] on rings has no corresponding leakage resilient
properties, we cannot apply the LWE construction routine trivially to RLWE-
based MKFHE. As a compromise, we introduce a round of bit commitment
protocol to guarantee the independence of each participants, and construct the
corresponding KL-MKFHE based on ROM.

We give a brief introduction to the new concept and two scheme below and
explain how we remove noise flooding in the partial decryption phase.
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The concept of KL-MKFHE : Different from previous definition [42], we
abandon ciphertext expansion procedure, instead, introducing a key lifting pro-
cedure which at a lower cost. In addition to the properties that required by
MKFHE, such as Correctness, Compactness, semantic security, Simulatability
of decryption, KL-MKFHE should satisfy the following two additional properties
:

– Locally Computationally Compactness : A KL-MKFHE is locally com-
putationally compact if the participants do the same number of encryptions
as the single-key FHE scheme.

– Low round complexity : Only two round interaction is allowed in Key
lifting procedure.

For comparing with MKFHE, we describe the procedure of MKFHE and
KL-MKFHE in Fig 1, more detailed definitions, please refer to Section 3. Here
we feel compelled to explain that we are not proposing a new definition for the
purpose of grandstanding or bells and whistles. The definitions of MKFHE and
Th-FHE are good and suitable for many application scenarios. But as we men-
tioned in the previous subsection, the current schemes do not fit the scenario very
well. Strictly classified by definition, the schemes(Scheme#1) that we give are
neither MKFHE (we introduce interactions during initialization) nor Th-FHE
(each party uses a different key to encrypt data). That’s why we introduced the
concept of KL-MKFHE.

Leakage resistance implies a smaller q : We noticed that, in the partial
decryption phase, introducing large noise to cover up the information of the
private key is essentially to ensure the security of the plaintext. But adding
noise is just one way to achieve it. In particular, we observe that if the encryption
scheme is leakage resistant, the same purpose can be achieved by just increasing
the significant bits of private key appropriately. We proved Theorem 1 in Section
4.6

Theorem 1 If there is a multi-key homomorphic encryption scheme that is leak-
age resilient, then the semantic security of the initial ciphertext can be guaranteed
without introducing noise flooding in the distributed decryption stage.

Assuming that the output length of the circuit to be evaluated is W , without
noise flooding, the information of private key leaked in the partial decryption
phase is W log q bits. As long as our encryption scheme is leakage resistant, we
only need to add W log q bits to the length of the original s, which can also ensure
the security of the plaintext. Thus, the previous q = 2O(λL)Bχ in [7] [42] [15] can
be reduced to q = 2O(λ+L)Bχ in our scheme. Refer to Section 4.6 for a detailed
discussion.

Scheme#1: LWE-based KL-MKFHE under plain model :
The security of Scheme#1 is based on the LWE assumption. The common pri-
vate key is the sum of the private keys of all participants. We note that previous
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Fig. 1. The procedure of MKFHE and KL-MKFHE
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MKFHE or Th-FHE schemes [40] [7] adopt this key structure are all based on
the CRS model. Without CRS, our solution is simpler and more efficient in con-
struction : For a circuit with an input length N , our scheme requires local users
to perform O(N) encryption operations, while is O(Nλ6L4) for those schemes
that require ciphertext expansion. We bound the participants k by poly(λ), be-
cause a larger k will results in longer private key, which further leads to higher
memory cost.

We give a comparison with schemes [13] [45] [7] in Table 2. For detailed
security and parameters, please refer to Section 4.

Scheme Space Time Interaction(setup
phase)

CRS

PubKey + EvalKey Ciphertext Module q Extra encryption

MKFHE [45] Õ(λ6L4(k + Nλ3L2)) Õ(Nk2λ6L4) 2O(λL)Bχ Õ(Nλ14L9) - ✓

MKFHE [13] Õ(k4λ15L11) Õ(Nk4λ8L6) 2O(λL)Bχ Õ(Nk3λ15L10) 2 rounds

Th-FHE [7] Õ(λ6L4) Õ(Nλ6L4) 2O(λL)Bχ - 1 rounds ✓

Scheme#1
PubKey + EvalKey : Õ((kλ(λ + L) + W )λ(λ + L)2)

- 2 roundsCiphertext : Õ(N(kλ(λ + L) + W )2λ4(λ + L)4)

Module q : 2O(λ+L)Bχ

Table 2. The notation Õ hides logarithmic factors. Space column denotes the bit
size of public, evaluation key and ciphertext; the Extra encryption column denotes
the number of multiplication operations over Zq; λ denotes the security parameter,
k participants number, Bχ the initial LWE noise; N , L, W denotes the input length,
depth, and output length of the circuit respectively.

Remark : In [45] [13] [7], n represents the dimension of the LWE problem, in order to
compare under the same security level, we replace n with expression in terms of λ and L.
To achieve 2λ security against known lattice attacks, one must have n = Ω(λ log q/Bχ).
For our parameter settings q = 2O(λ+L)Bχ, thus we would have n = Ω(λ(λ+L)), while
n = Ω(λ2L) for the previous scheme by noise flooding.

Scheme#2: RLWE-based KL-MKFHE under ROM :
Same as the scheme in [15], Scheme#2 is based on circular-RLWE. We introduce
a bit commitment protocol to guarantee the randomness of each participant’s
public key. Due to the sum key structure, the dimension of t⊗ t is independent
of the number of participant k, so the ciphertext relinearization algorithm pulls
the ciphertext after tensor product back to initial dimension by one shot, in
addition, the ”one shot algorithm” introduces less noise. We note that, as we
mention before, regularity lemma on polynomial ring : Z(x)/xd + 1 does not
enjoy the leakage resilient property, we have to introduce smudging noise in
partial decryption phase as other RLWE-based MKFHE.
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We compared with [15] in terms of memory and computational overhead, the
results are shown in Table 3.

Scheme Space Time Interaction(Setup
phase)

CRS

Evalkey Ciphertext Relinear Mult

MKFHE
[15]

Õ(kd) Õ(kd) Õ(k2d) Õ(k2d) - Yes

Scheme#2 Õ(kd) Õ(d) O(1) Õ(d) 2 rounds ROM

Table 3. The notation Õ hides logarithmic factors, k denotes the number of partici-
pants; d denotes the degree of the RLWE problem. The Evalkey and Ciphertext columns
denote the asymptotic storage overhead, dominated by k and d. The Relinear and Mult
columns denotes the number of scalar operation over Zq.

2 Preliminaries

2.1 Notation:
We give the definitions of the relevant notations in Table 4:

λ security parameter n dimension of LWE problem
k participants number d degree of RLWE problem
N circuit input length q module base
L circuit multiplicative depth
W circuit output length

Table 4.

Let negl(λ) a negligible function parameterized by λ. Vectors are represented
by lowercase bold letters such as v, unless otherwise specified. Vectors are row
vectors by default, and matrices are represented by uppercase bold letters such
as M. [k] denotes the set of integers {1, . . . , k}. If X is a distribution, then a← X
denotes that value a is chosen according to the distribution X, or a finite set,
then a ← U(X) denotes that the value of a is uniformly sampled from X. For
two distribution X,Y , we use X

stat
≈ Y to represent X and Y are statistically

indistinguishable ,while X
comp
≈ Y are computationally indistinguishable.

In order to decompose elements in Zq into binary, we review the Gadget
matrix [36] [4] here, let G−1(·) be the computable function that for any

M ∈ Zm×n
q , We have G−1(M) ∈ {0, 1}ml×n, where l = ⌈log q⌉
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Let g = (1, 2, . . . , 2l−1) ∈ Zl
q, G = Im ⊗ g ∈ Zm×ml

q , it satisfies GG−1(M) = M.

2.2 Some background in probability theory

Definition 1 A distribution ensemble {Dn}n∈[N ] supported over integer, is called
B-bounded if :

Pre←Dn
[ |e| > B ] = negl(n).

Lemma 1 (Smudging lemma [7]) Let B1 = B1(λ), and B2 = B2(λ) be posi-
tive integers and let e1 ∈ [−B1, B1] be a fixed integer, let e2 ∈ [−B2, B2] be chosen
uniformly at random, Then the distribution of e2 is statistically indistinguishable
from that of e2 + e1 as long as B1/B2 = negl(λ).

Theorem 2 (Rewritten version of [31, Theorem 5.3.2]) Let 0 ≤ k ≤ n,

f(n, k) =
∑k

i=0

(
n
i

)
, the sum of the first k binomial coefficients f(n, k) is

bounded by :
f(n, k) ≤ 2n−1 exp

(
n− 2k − 2

4(1 + k − n)

)

2.3 Gaussian distribution on Lattice

Definition 2 Let ρs(x) = exp(−π||x/s||2) be a Gaussian function scaled by a
factor of s > 0. Let Λ ⊂ Rn be a lattice, and c ∈ Rn. The discrete Gaussian
distribution DΛ+c,s with support Λ + c is defined as :

DΛ+c,s(x) =
ρs(x)

ρs(Λ + x)

Smoothing parameter : We recall the definition of the smoothing parameter
from [39].

Definition 3 For a lattice Λ and positive real ϵ > 0, the smoothing parameter
ηϵ(Λ) is the smallest real r > 0 such that ρ1/r(Λ∗\{0}) ≤ ϵ.

Lemma 2 (Special case of [39, Lemma 3.3]) For any ϵ > 0,

ηϵ(Zn) ≤
√

ln(2n(1 + 1/ϵ))/π.

In particular, for any ω(
√

logn) function, there is a negligible ϵ = ϵ(n) such that
ηϵ(Zn) ≤ ω(

√
logn).

Lemma 3 (Simplified version of [44, Theorem 3.1]) Let ϵ > 0, r1, r2 > 0
be two Gaussian parameters, and Λ ⊂ Zm be a lattice. If r1r2√

r21+r22
≥ ηϵ(Λ), then

∆(y1 + y2, y′) ≤ 8ϵ

where y1 ← DΛ,r1 , y2 ← DΛ,r2 , and y′ ← D
Λ,
√

r21+r22
.
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Lemma 4 (in [3]) Let χ denote the Gaussian distribution with standard devi-
ation σ and mean zero. Then, for all C > 0, it holds that:

Pr[e← χ : |e| > C · σ] ≤ 2

C
√
2π

exp{−C2

2
}.

2.4 The Small Integer Solution(SIS) Problem

The Small Integer Solution(SIS) problem was introduced by Ajtai in the seminal
work [2] which presented a family of one-way function based on SIS problem.
Subsequent series of works [35] [38] [25] [37] have made efforts to reduce the size
of q, the definition below comes from [38]:

Definition 4 (SIS [38]) The small integer solution problem SISm,n,q,β(in the
ℓ∞ norm) is : given an integer q, a matrix A ∈ Zn×m

q and a real β, find a
nonzero integer vector z ∈ Zm/{0} such that AzT = 0 mod q and ||z||∞ < β

Solving the SISm,n,q,β problem is at least as hard as approximating lattice prob-
lems in the worst case on lattices [37].

Theorem 3 (SIS hardness [37]) Let n and m = poly(n) be integers, let β be
reals, let Z = {z ∈ Zm : ||z||∞ < β}, and let q > β · nδ for some constant
δ > 0. Then solving (on the average, with non-negligible probability) SISm,n,q,β

with parameters m,n, q, β and solution set Z/{0} is at least as hard as approx-
imating lattice problems in the worst case on n dimensional lattices to within
γ = Õ(β

√
n).

2.5 The Learning With Error(LWE) Problem

The Learning With Error problem was introduced by Regev [47].

Definition 5 (Decision-LWE) Let λ be security parameter, for parameters n =
n(λ) be an integer dimension, q = q(λ) > 2 be an integer, and a distribution χ =
χ(λ) over Z, the LWEn,q,χ problem is to distinguish the following distribution:

– D0 : the jointly distribution (A, z) ∈ (Zm×n
q × Zn

q ) is sampled by A ←
U(Zm×n

q ) z← U(Zn
q )

– D1: the jointly distribution (A, b) ∈ (Zm×n
q × Zn

q ) is computed by A ←
U(Zm×n

q ) b = sA + e, where s← U(Zn
q ) e← χm

Regev [47] proved that for certain module q and Gaussian error distributions
χ, the Decision-LWEn,q,χ problem is true as long as certain worst case lattice
problems are hard to solve using a quantum algorithm. It leads to the Decision-
LWEn,q,χ assumption D0

comp
≈ D1.
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2.6 The Ring Learning With Error(RLWE) Problem

Lyubaskevsky, Peikert and Regev defines the Decision-RLWE problem in [32] as
follows:

Definition 6 (Decision-RLWE) Let λ be a security parameter. For parameters
d = d(λ), where d is a power of 2, q = q(λ) > 2 ,and a distribution χ = χ(λ)
over R = Z[x]/xd + 1, let Rq = R/qR, the Decision-RLWEd,q,χ problem is to
distinguish the following distribution:

– D0: the joint distribution (a, z) ∈ R2
q is sampled by (a, z)← U(R2

q).
– D1: the joint distribution (a, b) ∈ R2

q is computed by a← U(Rq), b = as+ e,
where s← U(Rq), e← χ.

A reduction was given in [32] from the RLWEd,q,χ problem to the Gap-SVP
problem on an ideal lattice, which is now generally considered to be intractable.
Specially, Lyubashevsky et al [32] indicated that The RLWEd,q,χ problem is also
infeasible when s is sampled from noise distribution χ. In homomorphic encryp-
tion, this property is especially popular, because the low-norm s introduces less
noise during homomorphic computation.

2.7 Dual-GSW(DGSW) Encryption scheme

The DGSW scheme [13] and GSW scheme is similar to Dual-Regev scheme and
Regev scheme resp. which is defined as follows:

– pp← Gen(1λ, 1L) : For a given security parameter λ, circuit depth L, choose
a appropriate lattice dimension n = n(λ,L), m = n log q + ω(λ), a discrete
Gaussian distribution χ = χ(λ,L) over Z, which is bounded by Bχ, module
q = poly(n) ·Bχ, Output pp = (n,m, q, χ,Bχ) as the initial parameters.

– (pk, sk) ← KeyGen(pp): Let sk = t = (−s, 1), pk = (A, b), where s ←
U({0, 1}m−1), A← U(Zm−1×n

q ), b = sA mod q.
– C ← Enc(pk, u): Input public key pk and plaintext u ∈ {0, 1}, choose a

random matrix R ← U(Zn×w
q ), w = ml, l = ⌈log q⌉ and an error matrix

E← χm×w, Output the ciphertext :

C =

(
A
b

)
R + E + uG, where G is a gadget Matrix.

– u← Dec(sk,C): Input private key sk, ciphertext C, let w = (0, . . . , ⌈q/2⌉) ∈
Zm
q , v = ⟨tC,G−1(wT )⟩, output u′ = ⌈ v

q/2⌉.

Homomorphic addition and multiplication : For ciphertext C1, C2 ∈
Zm×w
q , let Cadd = C1 + C2, Cmult = C1G−1(C2). It is easy to verify that Cadd

and Cmult are ciphertext of u1 + u2 and u1u2, respectively.

For the security and correctness of the DGSW scheme, please refer to [13].
Compared with the GSW scheme, DGSW scheme has bigger ciphertext, which
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is O(n2 log3 q), while O(n2 log q) for GSW scheme. As [13] mentioned, DGSW
scheme makes it more convenient to use the leakage resilient property of LHL
to remove CRS.

2.8 Multi-Key Fully Homomorphic Encryption

We review the definition of MKFHE in detail here, the main purpose of which
is to compare with the definition of KL-MKFHE we proposed later.

Definition 7 Let λ be the security parameter, L be the circuit depth, and k be
the number of participants. A leveled multi-key fully homomorphic encryption
scheme consists of a tuple of efficient probabilistic polynomial time algorithms
MKFHE=(Init, Gen, Enc, Expand, Eval, Dec) which defines as follows.

– pp← Init(1λ, 1L) : Input security parameter λ, circuit depth L, output system
parameter pp. We assume that all algorithm take pp as input.

– (pki, ski) ← Gen(pp, crs) : Input pp, common reference string crs (generated
by a third party or random oracle), output a key pair for participant i.

– ci ← Enc(pki, ui) : Input pki and plaintext ui, output ciphertext ci.
– vi ← Enc(pki, ri): Input pki and the random ri used in ciphertext ci, output

auxiliary ciphertext vi.
– c̄i ← Expand({pki}i∈[k], vi, ci):Input the ciphertext ci of participant i, the

public key set {pki}i∈[k] of all participants, auxiliary ciphertext vi, output
expanded ciphertext c̄i which is under f(ski, . . . skk) whose structure is un-
defined.

– c̄eval ← Eval(S, C):Input circuit C, the set of all ciphertext S = {c̄i}i∈[N ]

while N is the input length of circuit C, output evaluated ciphertext c̄eval
– u ← Dec(c̄eval, f(sk1 . . . skk)) : Input evaluated ciphertext c̄eval, private key

function f(sk1 . . . skk), output u (This is usually a distributed process).

Remark : Although the definition of MKFHE in [30] does not contain auxiliary
ciphertext vi and ciphertext expansion procedure, in fact, the works [42] [46]
[18] include this procedure to support homomorphic operations. This procedure
seems to be essential, and we list it here for comparison with KL-MKFHE. The
common private key depends on {ski}i∈[k], f is a certain function, which is not
unique, for example, it can be the concatenation of all keys or the sum of all
keys.

Properties implicated in the definition of MKFHE : For the above
definition, each participant is required in key generation and encryption phase
independently to generates their own keys and completes the encryption opera-
tion without interaction between participants. These two phases are similar to
single-key homomorphic encryption, the computational overhead is independent
of k and only related to λ and L, only in the decryption phase, interaction is
involved when participants perform a round of decryption protocol.
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3 Key Lifting Multi-key Fully Homomorphic Encryption(
KL-MKFHE)

In order to cope with computationally-sensitive and trust-sensitive scenarios, we
avoid expensive ciphertext expansion procedure and introduce a relatively simple
Key lifting procedure to replace it. In addition, a tighter bound is required on
the amount of local computation, as a compromise, we allow a small amount of
interaction during Key lifting.

Definition 8 A KL-MKFHE scheme is a tuple of probabilistic polynomial time
algorithm (Init, Gen, KeyLifting, Enc, Eval, Dec), which can be divided into two
phases, online phase: KeyLifting and Dec, where interaction is allowed between
participants, but the rounds should be constant, local phase : Init, Gen, Enc,
and Eval, whose operations do not involve interaction. These five algorithms are
described as follows :

– pp ← Init(1λ, 1L):Input security parameter λ, circuit depth L, output public
parameters pp.

– (pki, ski) ← Gen(pp):Input public parameter pp, output the key pair of par-
ticipant i

– {hki}i∈[k] ← KeyLifting({pki, ski}i∈[k]): Input key pair {pki, ski}i∈[k] of all
participants, output the hybrid key {hki}i∈[k] of all i. (online phase : two
round interaction)

– ci ← Enc(hki, ui): Input plaintext ui and hki, output ciphertext ci
– ĉ← Eval(C, S): Input circuit C, ciphertext set S = {ci}i∈[N ] , output cipher-

text ĉ
– u← Dec(ĉ, f(sk1 . . . skk)): Input evaluated ciphertext ĉ, f(sk1 . . . skk), output
C(ui)i∈[N ].(online phase :one round interaction)

Remark : KL-MKFHE does not need ciphertext expansion procedure, indeed,
the input ciphertext set S in Eval(·) is encrypted by participants under their own
hybrid key hki which are different among participants, however, the resulting
ciphertext ci supports homomorphic evaluation without extra modification.

we require KL-MKFHE to satisfy the following properties:
Locally Computationally Compactness : A KL-MKFHE is locally com-
putationally compact if the participants do the same number of encryptions as
the single-key FHE scheme.
Two round interaction : Only two round interaction is allow in KeyLifting(·)
procedure.
IND-CPA security of encryption : Let λ be the security parameter, L =
poly(λ) is the circuit depth, for any probabilistic polynomial time adversary A,
he can distinguish the following two distributions with negligible advantage.

Pr [A(pp, pk,Enc(pk, 1))−A(pp, pk,Enc(pk, 0)) ̸= 0 ] = negl(λ).
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Correctness and Compactness : A KL-MKFHE scheme is correct if for a
given security parameter λ, circuit depth L, participants k, we have the following

Pr [Dec(f(sk1 . . . skk), ĉ) ̸= C(u1 . . . uN ) ] = negl(λ).
probability is negligible, where C is a circuit with input length N and depth length
less than or equal to L. A KL-MKFHE scheme is compact, if the size ĉ of
evaluated ciphertext is bounded by poly(λ,L, k), but independent of circuit size.

4 Scheme#1: a KL-MKFHE scheme based on DGSW in
plain model without noise flooding in partial decryption

Our first scheme is based on DGSW, please refer to Section 2.7 for details. In
this section, we first introduce the key lifting process, then describe the entire
scheme, and finally give parameter analysis and security proof.

4.1 Key lifting procedure
Following the definition of KL-MKFHE, the hybrid keys {hki}i∈[k] which are
obtained by KeyLifting(·) algorithm are different from each other. Each partici-
pant encrypts his own plaintext ui by hki and get Ci. The ciphertexts {Ci∈[N ]}
can be used to evaluation without extra computation by claim 1. We achieve
this property by allowing two round interaction between participants.

Key Lifting
– {hki}i∈[k] ← KeyLifting({pki, ski}i∈[k]): Input the DGSW key pair {pki, ski}i∈[k]

of all participants, where pki = (Ai, bi,i), Ai ← U(Z(m−1)×n
q ), si ← U{0, 1}m−1,

bi,i = siAi mod q. Assuming there is a broadcast channel, all participants
are engaged in the following two interaction :
• First round : i broadcasts Ai and receives all {Aj}j∈[k]\i.
• Second round : i generates and broadcasts {bi,j}j∈[k], where bi,j = siAj

mod q

After above two round interaction, i receives {bj,i}j∈[k]

let bi =

k∑
j=1

bj,i, i obtains hybrid key hki = (Ai, bi)

Claim 1 Let t̄ = (−s, 1), s =
∑k

i=1 si, for ciphertext Ci, Cj encrypted by hybrid
key hki, hkj respectively :

Ci =

(
Ai

bi

)
Ri + Ei + uiG, Cj =

(
Aj

bj

)
Rj + Ej + ujG,

we have(omit small error) :

t̄Ci ≈ uit̄G, t̄Cj ≈ uj t̄G
t̄(Ci + Cj) ≈ (ui + uj)t̄G, t̄CiG−1(Cj) ≈ (uiuj)t̄G
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Proof. According to the construction of KeyLifting(·) we have :

t̄Ci =

(
k∑

i=1

−si, 1
)[( Ai∑k

j=1 bj,i

)
+ Ei + uiG

]
= t̄Ei + uit̄G ≈ uit̄G.

Similarly, t̄Cj ≈ uj t̄G, and t̄(Ci + Cj) ≈ (ui + uj)t̄G
t̄CiG−1(Cj) ≈ uit̄GG−1(Cj) ≈ uit̄Cj ≈ (uiuj)t̄G

■
Therefore, although Ci and Cj are encrypted by different hybrid keys, they
correspond to the same decryption key t̄ and support homomorphic evaluation
without extra modification.

There are two main security issues about KeyLifting(·). First, semi-malicious
adversary may generates matrix A with trapdoor, then s is leaked. Second, semi-
malicious adversary j may generate bj,i adaptively after seeing bi,i, then the
public key bi of participant i may not distributed as requirement. We note
that as long as our encryption scheme is leakage-resistant, properly lengthening
private key s can guarantee the semantic security of the scheme even if part of s
is leaked. We remedy second problem by increasing the noise bounds in the last
row of the noise matrix E. We discuss the security of the scheme in Section 4.5.

4.2 The entire scheme
Scheme#1 is based on the DGSW scheme, containing the following five algorithm
(Init, Gen, KeyLifting, Enc, Eval, Dec)

– pp ← Init(1λ, 1L, 1W ) : Let λ be security parameter, L circuit depth, W
circuit output length, lattice dimension n = n(λ,L), noise distribution χ
over Z, e ← χ, where |e| is bounded by Bχ with overwhelming probability,
modulus q = 2O(λ+L)Bχ, k = poly(λ), m = (kn + W ) log q + λ, suitable
choosing above parameters to make LWEn,m,q,Bχ

is infeasible. Output pp =
(k, n,m, q, χ,Bχ)

– (pki, ski) ← Gen(pp) : Input pp, output the DGSW key pair (pki, ski) of
participants i, where pki = (Ai, bi,i), Ai ← U(Z(m−1)×n

q ), si ← U{0, 1}m−1,
bi,i = siAi mod q.

– hki ← Key Lifting : All participants are engaged in the Key lifting pro-
cedure 4.1, output the hybrid key hki.

– Ci ← Enc(hki, ui): Input hybrid key hki, plaintext ui ∈ {0, 1}, output cipher-

text Ci =

(
Ai

bi

)
R + E + uiG, where R ← χn×ml, l = ⌈log q⌉, E =

(
E0

e1

)
,

E0 ← χ(m−1)×ml, e1 ← χ′ ml, χ′ is a distribution over Z, satisfying ||e1||∞
is bounded by 2λBχ

4, G = Im ⊗ g is a gadget matrix.
4 To demonstrate the semantic security of our scheme, here we require ||e1||∞ <
2λ

ϵ2
Bχ. Interestingly, the recent work [1] improves the size of the bounds of the

noise flood by analyzing Rényi divergence, which maybe further reduce the size of
noise here.
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– C(L) ← Eval(S, C) : Input the ciphertext set S = {Ci}i∈[N ] which are en-
crypted by hybrid key {hki}i∈[k], circuit C with input length N , depth L,
output C(L).

Homomorphic addition and multiplication

Let Ci, Cj be ciphertext under hybrid key hki and hkj respectively, by claim 1,
we have the following results.

– Cadd ← Add(Ci,Cj): Input ciphertext Ci, Cj , output Cadd = Ci +Cj , which
t̄Cadd ≈ (ui + uj)t̄G

– Cmult ← Mult(Ci,Cj): Input ciphertext Ci, Cj , output Cmult = CiG−1(Cj),
which t̄Cmult ≈ uiuj t̄G

Distributed decryption Similar to [42], the decryption procedure is a dis-
tributed procedure :

– γi ← LocalDec(C(L), si): Input C(L), let C(L) =

(
Cup

clow

)
, where Cup ∈

Z(m−1)×ml
q , clow ∈ Zml

q . i computes γi = ⟨−si, CupG−1(wT )⟩, where w =
(0, . . . , 0, ⌈q/2⌉) ∈ Zm

q , then i broadcast γi

– uL ← FinalDec({γi}i∈[k]): After receiving {γi}i∈[k], let γ =
∑k

i=1 γi+⟨clow, G−1(wT )⟩,
output uL = ⌈ γ

q/2⌉

4.3 Bootstrapping

In order to eliminate the dependence on the circuit depth to achieve fully homo-
morphism, we need to use Gentry’s bootstrapping technology. It is worth noting
that the bootstrapping procedure of Scheme#1 is the same as single-key ho-
momorphic scheme: After Key lifting procedure, participant i uses hybrid key
hki to encrypt si to obtain evaluation key evki. Because evki and C(L) are both
ciphertexts under �t = (−

∑k
i=1 si, 1), homomorphic evaluation of the decryption

circuit could be executed directly as C(L) are need to be refresh. Therefore, in
order to evaluate any depth circuit, we only need to set the initial parameters
to satisfy the homomorphic evaluation of the decryption circuit.

However, for those MKFHE schemes that requires ciphertext expansion, addi-
tional ciphertext expansion is required, for the reason that C(L) is the ciphertext
under �t, but {evki}i∈[k] are the ciphertext under {ti}i∈[k]. In order to expand
{evki}i∈[k] → {êvki}i∈[k], participant i needs to encrypt the random matrix of
the ciphertext corresponding to evki. The extra encryption of i need to done
locally is O(λ9L6).

4.4 Correctness analysis

To illustrate the correctness of Scheme#1, we first study the accumulation of
noise. For fresh ciphertext C =

(
Ai

bi

)
R +

(
E0

e1

)
+ uG under t̄, it holds that
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t̄C = e1 − sE0 + ut̄G. Let einit = e1 − sE0, after L depth circuit evaluation :

t̄C(L) = eL + uLt̄G (1)

According to the noise analysis of GSW in [26], the noise eL in C(L) is bounded
by (ml)Leinit. By the distributed decryption of Scheme#1 we have :

γ =

k∑
i=1

γi + ⟨clow,G−1(wT )⟩ = ⟨
k∑

i=1

−si,CupG−1(wT )⟩+ ⟨clow,G−1(wT )⟩

= t̄C(L)G−1(wT ) = ⟨eL,G−1(wT )⟩+ uL⌈
q

2
⌉

In order to decrypt correctly, it requires ⟨eL,G−1(wT )⟩ < q
4 . For Scheme#1’s

parameter settings, we have :

⟨eL,G−1(wT )⟩ ≤ l · ||eL||∞
≤ l · (ml)L · ||einit||∞
≤ l · (ml)L · (2λ + km)Bχ

Thus, log(⟨eL,G−1(wT )⟩) = Õ(λ+L). For q = 2O(λ+L)Bχ, m = (kn+W ) log q+
λ, requirements are fulfilled.

4.5 Semantic Security of Encryption against Semi-Malicious
Adversary

We assume that the adversary is semi-malicious, that is to say, he can generate
parameters adaptively and does not need to strictly execute the steps of the
protocol. For a more formal definition, please refer to [7]. First, we prove that
DGSW is leakage-resilient, and second, we prove Scheme#1’s semantic security.

DGSW is leakage-resilient

The DGSW scheme and GSW scheme is similar to Dual-Regev scheme and Regev
scheme resp. It is leakage-resilient [13]. Here, for completeness, we present it. Let
χ be LWE noise distribution bounded by Bχ, χ′ a distribution over Z bounded
by Bχ′ , satisfying Bχ/Bχ′ = negl(λ).

Lemma 5 (in [13]) Let Ai ∈ Z(m−1)×n
q be uniform, and let Aj for all j ̸=

i be chosen by a rushing adversary after seeing Ai. Let si ← {0, 1}m−1 and
bi,j = siAj. Let r ∈ Zn

q be uniform, e ← χm−1, e′ ← χ′. Then under the LWE
assumption, the vector c = Air + e and number c′ = ⟨bi,i, r⟩ + e′ are (jointly)
pseudorandom, even given the bi,j’s for all j ∈ [k] and the view of the adversary
that generated the Aj’s.
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The semantic security of Scheme#1
For a honest player i, he generates Ai ← U(Z(m−1)×n

q ), bi,j ← {0, 1}n as the
protocol specification, but a semi-malicious adversary may generates it arbitrar-
ily and adaptively. For arbitrary Ai, the leakage-resilient property of DGSW
guarantees the semantic security. Here, we deal with what happens when bi,j

generated adaptively. Note that in addition to an output tape, a semi-malicious
adversary also has a witness tape, whenever the adversary produces a new pro-
tocol message m, it must also write to its witness tape some pair (x, r) of input
x and randomness r.

In Scheme#1, we require that for each bi,j , participant i must know what
the output si on its corresponding witness tape is, and ||si||∞ is bounded by
Bsis. Let Bsis be the bound keeping the SISm,n,q,Bsis problem hard, according
to Theorem 3, if Bsis ≪ qn/m, the problem is vacuously hard, most likely, such
solutions do not exists, if Bsis ≫ γm ·qn/m, this is an instance of approx-SVP with
exponential approximation factor γ, which can be solved by LLL [29], somewhere
in between these bounds is where cryptography takes place, typically for Bsis =
qn/m · poly(λ). For our parameter Settings Bsis = qn/m · poly(λ) = poly(λ). We
complete the simulation by constructing a reduction from Scheme#1 to the
DGSW scheme. Consider the following Game:

1. Challenger generates pkDGSW = (A, b1) where A← U(Z(m−1)×n
q ), b1 = s1A,

s1 ← U{0, 1}m−1 and send pkDGSW to adversary A
2. A adaptively chooses {bi}i∈[k]/1 where bi = siA and ||si||∞ < Bsis after

seeing pkDGSW, chooses a bit u ∈ {0, 1} and sets hkScheme#1 = (A, b), where
b =

∑k
i=1 bi, then send hkScheme#1 and u to Challenger.

3. Challenger chooses a bit α ∈ {0, 1}, if α = 0 , set CScheme#1 ← Enc(hkScheme#1, u),
otherwise CScheme#1 ← U(Zm×ml

q ), and send CScheme#1 to A
4. After receiving CScheme#1, A output bit ᾱ, if ᾱ = α, then A wins.

Claim 2 Let Adv = |Pr[ᾱ = α]− 1
2 | denote A’s advantage in winning the game,

If A can win the game with advantage Adv, then A can distinguish between the
ciphertext distribution of DGSW and the uniform random distribution with the
same advantage.

Proof. We construct CScheme#1 by DGSW.Enc(pkDGSW, u):

1. First, Challenger generates pkDGSW like the step 1 of above Game, sets :

DGSW.Enc(pkDGSW, 0) =

(
A
b1

)
R +

(
E0

e1

)
=

(
C0

c1

)
and sends DGSW.Enc(pkDGSW, 0) to A.
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2. After receiving DGSW.Enc(pkDGSW, 0),A generates {si}i∈[k]/1, set s′ =
∑k

i=2 si

s′C0 = s′(AR + E0) =

k∑
i=2

biR + s′E0

C′ = DGSW.Enc(pkDGSW, 0) +

(
0

s′C0

)
=

(
A
b1

)
R +

(
E0

e1

)
+

(
0

s′C0

)
=

(
A
b

)
R +

(
E0

e1 + s′E0

)
For our parameter settings ||e1||∞ is bounded by 2λBχ, and ||s′E0||∞ < kmBχBsis,
thus s′E0/e1 = negl(λ). By lemma 1, we have C′ stat

≈ CScheme#1, if A can distin-
guish between CScheme#1 and uniform random distribution by advantage Adv,
then he can distinguish between DGSW.Enc(pkDGSW, u) and the uniform random
distribution with the same advantage.

■

Remark: Shi Bai et al [8] pointed that Rényi divergence can be an alternative
for statistical distance in security proof, and benefits with smaller parameters.
Agrawal et al [1] applied it successfully in threshold signature scheme to reduce
the flooding noise in partial decryption. Unfortunately, using Rényi divergence
in distinguish problem requires a publicly samplable ability which seems not
supported by our scheme, otherwise ||e1||∞ can be further reduced.

We require k to be bounded by poly(λ), because if a larger k is introduced,
it will lead to a larger smudging error, which further leads to a larger q. For our
choice of q = 2O(λ+L)Bχ, the corresponding approximation factor of the SVP
problem is Õ(2λ+L).

4.6 Noise flooding technology VS. Leakage resilient property in
partial decryption

We note that the introduction of noise flooding in the partial decryption phase
is essentially to guarantee the semantic security of fresh ciphertext, and noise
flooding achieves this by masking the private key information in the partial de-
cryption noise. For partial decryption to be simulatable, the magnitude of the
noise introduced needs to be exponentially larger than the noise after the homo-
morphic evaluation. At the same time, as mentioned in [42], masking techniques
based on noise flooding can only guarantee weak simulatable properties : input
all private keys {skj}j∈[k]/i except ski, evaluated result uL, ciphertext C(L), it
can simulate the local decryption result γi, while for stronger security require-
ments : input any private key set {skj}j∈S for any subset S of [k], evaluated
result ueval and ciphertext C(L), to simulate {γi}i∈U, U=[k]−S , it don’t know how
to achieve it.
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With noise flooding : To illustrate how our approach works, let’s first look
at how the noise flooding technique works. Let C(L) =

(
Cup

clow

)
be the cipher-

text after L-layer homomorphic multiplication. With a flooding noise e′′i ←
U [−Bsmdg, Bsmdg], introduced in LocalDec(·), we have :

γi = ⟨−si,CupG−1(wT )⟩+ e′′i

By Equation (1) and FinalDec(·) :

γi = uL⌈
q

2
⌉+ ⟨eL,G−1(wT )⟩+ e′′i − ⟨clow,G−1(wT )⟩+ ⟨

k∑
j ̸=i

sj ,CupG−1(wT )⟩

For a simulator S, input {skj}j∈[k]/i, evaluated result uL, ciphertext C(L), output
simulated γ′i

γ′i = uL⌈
q

2
⌉+ e′′i − ⟨clow,G−1(wT )⟩+ ⟨

k∑
j ̸=i

sj ,CupG−1(wT )⟩

In order to make the partial decryption process simulatable, it requires :

⟨eL,G−1(wT )⟩+ e′′i
stat
≈ e′′i

For the parameter settings in [42] : Bsmdg = 2Lλ log λBχ, q = 2ω(Lλ log λ)Bχ,
obviously :

|⟨eL,G−1(wT )⟩/e′′i | = negl(λ)

thus γi
stat
≈ γ′i.

In short, the noise e′′i is introduced to cover up some information(private key
si and the noise Ei in initial ciphertext) of participant i contained in eL(Noise
after decrypting the ciphertext of level L, t̄C(L) = eL+uLt̄G) . Thus the partial
decryption result of participant i can be simulated, providing other participants
information.

Without noise flooding : Through the above analysis, we point out that
as long as our encryption scheme is leakage-resilient and covers the initial noise
{Ei}i∈[N ] in eL, there is no need to introduce noise flood in the partial decryption
stage. To illustrate what information is contained in eL, let’s look at how eL is
generated. For the initial ciphertext :

C1 =

(
A1

b1

)
R1 + E1 + u1G, C2 =

(
A2

b2

)
R2 + E2 + u2G,
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After performing a homomorphic multiplication operation, we obtain:

C1G−1(C2) =

[(
A1

b1

)
R1 + E1 + u1G

]
G−1(C2)

=

(
A1

b1

)
R1G−1(C2) + E1G−1(C2) + u1

(
A2

b2

)
R2 + u1E2 + u1u2G

= Π1 + δ1 + u1u2G

where :

Π1 =

(
A1

b1

)
R1G−1(C2) + u1

(
A2

b2

)
R2

δ1 = E1G−1(C2) + u1E2

and t̄Π1 = 0, δ1 is the noise after the first homomorphic evaluation. For the
ciphertexts C3,C4 of the same level, we have C3G−1(C4) = Π′1 + δ′1 + u3u4G,
where Π′1, δ

′
1 and Π1, δ1 have the same structure.

Let C(2), C(2)′ be the ciphertext at level 2 :

C(2) = C1G−1(C2), C(2)′ = C3G−1(C4)

δ2 = δ1G−1(C(2)′) + u1u2δ
′
1

we have C(2)G−1(C(2)′) = Π2 + δ2 + u1u2u3u4G. For the ciphertext at level L,
we have :

C(L) = C(L−1)G−1(C(L−1)′) = ΠL−1 + δL−1 + uL−1u
′
L−1G

δL−1 = δL−2G−1(C(L−1)′) + uL−1δ
′
L−2

To find out what information δL−1 contains, first, we observe δ1 = E1G−1(C2)+
u1E2.

Lemma 6 For the DGSW ciphertext C1, C2, let C(2) = C1G−1(C2), the noise
δ1 obtained by decrypting C(2) is dominated by the noise E1 in C1 :

δ1
stat
≈ E1G−1(C2) (2)

To prove the above statement, we first prove that the distribution of the sum of
multiple independent and identically distributed(iid) discrete Gaussian is close
to discrete Gaussian. The work [44] has already proved the case of two discrete
Gaussian summations, while we just generalize this result to the case of multiple
summations

Lemma 7 Let ϵ = 2−λ, σ >
√
2ηϵ(Z), m = (kn+W )l, l = ⌈log q⌉, {yi}i∈[ml] ←

DZ,σ, y′ ← DZ,
√
mlσ. we have :

∆(

ml∑
i=1

yi, y
′) ≤ 8mlϵ.
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Proof. Let {y(1)i }i∈[ml/2] ← DZ,
√
2δ, by lemma 3 :

∆(y1 + y2, y
(1)
1 ) < 8ϵ

∆(y3 + y4, y
(1)
2 ) < 8ϵ

· · ·

∆(yml−1 + yml, y
(1)
ml
2

) < 8ϵ

By the additivity of statistical distances (we proved it in Appendix A) we have :

∆(

ml∑
i=1

yi,

ml
2∑

i=1

y
(1)
i ) <

ml

2
· 8ϵ.

Let {y(2)i }i∈[ml/4] ← DZ,2δ, again by lemma 3 :

∆(y
(1)
1 + y

(1)
2 , y

(2)
1 ) < 8ϵ

thus :

∆(

ml
2∑

i=1

y
(1)
i ,

ml
4∑

i=1

y
(2)
i ) <

ml

4
· 8ϵ.

Iterating the above process, we have :

∆(

ml∑
i=1

yi, y
′) ≤ ml

2
· 8ϵ+ ml

4
· 8ϵ+, · · · ,+8ϵ = 8mlϵ.

we complete the proof.
■

Remark: We point out that the result here is certainly not sharp since we
directly exploit the results of Lemma 3, but this result already satisfies our
needs. For the case of summing multiple discrete Gaussian, if one follows the
path of [44], a smaller statistical distance bound should be obtained.

Here, we prove Lemma 6:
Proof. First, according to the LWE assumption, replace G−1(C2) with M ←
U{0, 1}ml×ml. When u1 = 0, it is proved. Assuming u1 = 1, let δ1(i, j), E1M(i, j)
be the i-th row, j-th column element of δ1, E1M respectively. We have :

δ1(1, 1) = z1e1 + z2e2 + · · ·+ zmleml + eml+1

E1M(1, 1) = z1e1 + z2e2 + · · ·+ zmleml

where {zi}i∈[ml] is the first column of M, {ei}i∈[ml] ← DZ,σ is the first row of
E1, E2(1, 1) = eml+1 ← DZ,σ. Suppose, the number of 1s in {zi}i∈[ml] is r. By
lemma 7 we have :

∆(δ1(1, 1),DZ,
√
r+1σ) ≤ 8(r + 1)ϵ.

∆(E1M(1, 1),DZ,
√
rσ) ≤ 8rϵ
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For our parameter setting, 8rϵ ≤ 8mlϵ = poly(λ) · 2−λ = negl(λ). Thus :

δ1(1, 1) ∼ DZ,
√
r+1σ

E1M(1, 1) ∼ DZ,
√
rσ

Let :
ρ√r+1σ(x)

ρ√r+1σ(Z)
=

ρ√rσ(x)

ρ√rσ(Z)

the solution x =
√
r(r + 1) ln r+1

r σ. The statistical distance of δ1(1, 1) and
E1M(1, 1) is :

∆(δ1(1, 1),E1M(1, 1)) =

x∑
−x
DZ,
√
rσ −DZ,

√
r+1σ

= 2

−x∑
−∞
DZ,
√
r+1σ −DZ,

√
rσ

< 2

−x∑
−∞
DZ,
√
r+1σ

Let C =
√
r(r + 1) ln r+1

r , By the Lemma 4 in [3], We have :

2

−x∑
−∞
DZ,
√
r+1σ <

2

C
√
2π

exp{−C2

2
}

=
2

C
√
2π

exp{−1

2
r(r + 1) ln r + 1

r
}

=
2

C
√
2π

exp{−r + 1

2
}

Generally, r is distributed like the summation of ml independent identically
distributed 0-1 distribution, thus r ∼ B(ml, 1

2 ). By Theorem 2,

Pr(r < λ) ≤ 1

2
exp

[
(ml − 2λ− 2)2

4(1 + λ−ml)

]
≤ 1

2
exp[−ml + 3(λ+ 1)]

= negl(λ)

Thus, the statistical distance of δ1(1, 1) and E1M(1, 1) :

∆(δ1(1, 1),E1M(1, 1)) <
2

C
√
2π

exp{−λ+ 1

2
} = negl(λ).

We completed the proof, for other item of δ1(i, j) and E1M(i, j)) the statement
also holds.

■
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Theorem 1 If there is a multi-key homomorphic encryption scheme that is leak-
age resilient, then the semantic security of the initial ciphertext can be guaranteed
without introducing noise flooding in the distributed decryption stage.

Proof. According to the results we proved above, the noise E2 of the right cipher-
text C2 in the ciphertext C1G−1(C2) is masked by the noise E1 in the left cipher-
text C1. Similarly, the noise E4 of C4 in C3G−1(C4) is masked by the noise E3 of
C3 on the leftside. For the noise δ2 = δ1G−1(C(2)′)+u1u2δ

′
1 of the third level, δ′1

is masked by δ1, and similarly the noise δL−1 = δL−2G−1(C(L−2)′) + uL−2δ
′
L−2

of the L-th level, δ′L−2 is masked by δL−2. We illustrate this continuous process
in Figure 2.

Fig. 2. Circuit

If the circuit with input length N and depth L, as long as L > logN , then
the noise δL−1 of the ciphertext C(L) of the L-th level only contains the infor-
mation of noise Et(t ∈ [N ]) in a certain initial ciphertext. At this point, we only
need to left-multiply C(L) by a ciphertext Enc(1) whose plaintext is 1, and let
Cclear = Enc(1)G−1(C(L)). Thus, the noise δclear in Cclear does not contain
any information about the noise {Ei}i∈[N ] in the initial ciphertext {Ci}i∈[N ].
Decrypting Cclear, we have :

�tCclearG−1(wT ) = �tδclearG−1(wT ) + uL⌈
q

2
⌉.

Let eL = �tδclear, therefore, ⟨eL,G−1(wT )⟩ ∈ Zq leaks participant i’s private key
si with at most log q bits. For a circuit with output length W , the entire partial
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decryption leaks W log q bits of si. Because Scheme#1 is leakage-resilient, as
long as we set the key length reasonably m = (kn + W ) log q + λ, the initial
ciphertext {Ci}i∈[N ] is semantically secure.

■

Remark : We point out that the asymmetric nature of noise in GSW ciphertext
has been noted in [11] before us, but their aims and results are completely
different from ours. Their purpose is to preserve the privacy of the circuit, i.e. to
ensure that the final decrypted noise is independent of the circuit C, whereas our
purpose is to be independent of the initial noise. They show a discrete Gaussian
version of the leftover hash lemma, whereas we show that the statistical distances
of the distributions

∑m
i=1 ei and

∑m+1
i=1 ei is exponentially close to zero with m.

Here, the reader might think that doing so would result in a key that is
longer than using noise flooding. We point out that as long as the output length
W of circuit satisfies W < kλ3L2−kλ(λ+L)2

λ+L , the length of the private key will
not be longer than when using noise flooding. For m = (kn + W ) log q + λ,
q = 2O(λ+L)Bχ, while with noise flooding m′ = kn log q′ + λ, q′ = 2O(λL)Bχ. In
order to make m < m′, only W < kλ3L2−kλ(λ+L)2

λ+L is required, thus for circuits
with small output fields, our scheme does not lead to longer keys.

5 Scheme#2: KL-MKFHE based on RLWE in ROM

It is regrettable that general polynomial ring R : Z[x]/f(x) cannot enjoy the leak
resilient property of the LHL on the integer ring Z. This means that we cannot
transplant the above construction process trivially to RLWE-based FHE. Indeed,
[19] pointed out that for x = (x1, . . . , xl) ∈ Rl, if the j-th NTT coordinate of each
xi,i∈[l] is leaked, then the j-th NTT coordinate of al+1 =

∑l
i=1 aixi is defined,

thus al+1 is far from random, although the leakage ratio is only 1/n. We also
notice a trivial solution : for a, s ∈ Rl

q, b = ⟨a, s⟩ ∈ Rq, b leaks information about
s at most n log q bits, therefore, as long as we set l long enough, for example,
l = l+n log q, then obviously b is close to uniformly random, but this will result
in a extremely large key, thus it is not practical.

To ensure the independence of the {ai}i∈[k] generated by each participant,
we simply added a round of bit commitment protocol. Under the ROM, the
cryptographic hash function is used to ensure the independence of {ai}i∈[k]. Let
H : {0, 1}⋆ → {0, 1}λ be a cryptography hash function, ai ∈ Rq, H(ai) =
δi. For a given δ ∈ {0, 1}λ, an adversary A sends a query x ∈ {0, 1}⋆ to H,
which happens to have probability Pr [H(x) = δ ] = 1

2λ
. Let Adv denotes the

probability that A finds a collision after making qro = poly(λ) queries, Obviously
Adv = negl(λ), we have the following result.

Claim 3 For a given δ ∈ {0, 1}λ, k probabilistic polynomial time(ppt) adversary
A, Each A makes qro = poly(λ) queries to H, let Adv denotes the probability of
finding a collision, then: Adv = negl(λ)
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For Scheme#2, we only describe its key generation and re-linearization proce-
dure in detail, the encryption, evaluation and decryption algorithm is similar to
other RLWE-based MKFHE schemes.

Key generation with bit commitment.
k participants perform the following steps to get their own public key and eval-
uation key

1. pp← Setup(1λ, 1L):Input security parameter λ, circuit depth L, output pp =
(d, q, χ,Bχ), which χ is an noise distribution over R : Z[x]/xd +1, satisfying
e← χ, ||e||can∞ is bounded by Bχ, and RLWEd,q,χ,Bχ is infeasible.

2. i generates Φi = {ai, di, fi} where ai ← U(Rq) is used for public key, di,
fi ← U(Rl

q) for evaluation key, and commitment Ψi = {δi, ϵi, ζi}, δi = H(ai),
ϵi = H(di), ζi = H(fi), broadcast Ψi.

3. After all {Ψi}i∈[k] are public, i discloses Φi.
4. After receiving {Φj}j∈[k]/i, i broadcast {bi, hi}, where bi = asi + e1, hi =

dsi + e2, a =
∑k

i=1 ai, d =
∑k

i=1 di, (si, e1, e2)← χl+2.
5. After receiving {bj , hj}j∈[k]/i, i output pki = (a, b) and evaluation key evki =

(hi,ηi,θi)

b =

k∑
i=1

bi ηi = dri + e3 + sig

θi = fsi + e4 + rig (ri, e3, e4)← χ2l+1

Re-linearization ciphertext
Multiplying two ciphertext c1, c2 ∈ R2

q , which under the same private key
t = (1, s), s =

∑k
i=1 si, resulting cmult = c1 ⊗ c2 ∈ R4

q , where its corresponding
private key is t ⊗ t = (1, s, s, s2). In order to re-linearize cmult , we need to
construct the ciphertext of s2 under t. Let total evaluation key Π = (η,θ, h).

where η =

k∑
i=1

ηi θ =

k∑
i=1

θi h =

k∑
i=1

hi

Let k = (k0, k1), k0 = −θg−1(h) ∈ Rl
q, k1 = (η + fg−1(h)) ∈ Rl

q, obviously
k0 + k1s ≈ s2g (omit small error). Let cmult = (c0, c1, c2, c3).

⟨cmult, t⊗ t⟩ = c0 + (c1 + c2)s+ s2c3

= c0 + (c1 + c2)s+ s2gg−1(c3)
= c0 + k0g−1(c3) + (c1 + c2 + k1g−1(c3))s.

Let clinear = (c′0, c
′
1), c′0 = c0 + k0g−1(c3), c′1 = c1 + c2 + k1g−1(c3), output clinear

as re-linearized ciphertext. The algorithm defines as follows:

– clinear ← Relinear(cmult, {evki}i∈[k]): Input cmult ∈ R4
q , evaluation key {evki}i∈[k],

perform the following algorithm, output clinear = (c′0, c
′
1).
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Ciphertext Relinearization
Input: cmult = (c0, c1, c2, c3) ∈ R4

q , {evki}i∈[k] = {hi, ηi, θi}i∈[k]

Output: clinear = (c′0, c
′
1) ∈ R2

q

1: η ←
∑k

i=1 ηi, θ ←
∑k

i=1 θi, h←
∑k

i=1 hi

2: k0 ← −θg−1(h), k1 ← η + fg−1(h)
3: c′0 ← c0 + k0g−1(c3), c′1 ← c1 + c2 + k1g−1(c3)

4: Output: (c′0, c′1)
5: End.

Due to the sum structure of keys, the dimension of t⊗ t is independent of par-
ticipants k, thus above algorithm pulls the tensor product ciphertext back to
initial dimension by one shot, and introduces less noise than those keys with
concatenation structure.

6 Conclusions

For the LWE-based MKFHE in order to alleviate the overhead of the local par-
ticipants, we proposed the concept of KL-MKFHE which introduced a Key
lifting procedure, getting rid of expensive ciphertext expansion operation and
construct a DGSW style KL-MKFHE under plain model. Our Scheme#1 is
more friendly to local participants than previous scheme, for which the local
encryption O(Nλ6L4) is reduced to O(N), and by abandoning noise flooding, it
compress q from 2O(λL)Bχ to 2O(λ+L)Bχ, reducing the computational scale of
the entire scheme. However, the key length depends on the number of partici-
pants and the amount of leakage, which limits the application of the scheme to
some extent. Further work will focus on compressing the key length.

For the multi-key homomorphic scheme based on RLWE, although the compu-
tation overhead of the local participants is not large: to perform re-linearization,
only one ring element needs to be encrypted, the common random string is al-
ways an insurmountable hurdle. We introduced bit commitment to ensure the
independence of the {ai}i∈[k] generated by each participant under ROM. Con-
structing RLWE-type MKFHE under plain model is the future direction.
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Appendix

A the additivity of statistical distances

Claim 4 For discrete random variables X,Y, Z with measurable space E, the
statistical distance ∆(X,Z), ∆(X,Y ), ∆(Y, Z) satisfy: (triangular inequality)

∆(X,Z) ≤ ∆(X,Y ) + ∆(Y, Z).
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Proof.

∆(X,Z) =
1

2

∑
k∈E

|(Pr(X = k)− Pr(Z = k))|

≤ 1

2

∑
k∈E

(|Pr(X = k)− Pr(Y = k)|+ |Pr(Y = k)− Pr(Z = k)|)

≤ ∆(X,Y ) + ∆(Y, Z).

■

Claim 5 For discrete random variables X,Y, Z with measurable space E, if
X,Y, Z are independent, then :

∆(X + Y, Y + Z) ≤ ∆(X,Z)

Proof.

∆(X + Y, Y + Z) =
1

2

∑
k∈E

|Pr(X + Y = k)− Pr(Z + Y = k)|

=
1

2

∑
k∈E

|Pr(X = k − Y )− Pr(Z = k − Y )|

=
1

2

∑
k∈E

|
∑
b∈E

(Pr(Y = b)Pr(X = k − b)− Pr(Y = b)Pr(Z = k − b)|

=
1

2

∑
k∈E

|
∑
b∈E

Pr(Y = b)(Pr(X = k − b)− Pr(Z = k − b))|

≤ 1

2

∑
k∈E

∑
b∈E

|Pr(Y = b)(Pr(X = k − b)− Pr(Z = k − b))|

=
1

2

∑
b∈E

Pr(Y = b)
∑
k∈E

|Pr(X = k − b)− Pr(Z = k − b)|

≤
∑
b∈E

Pr(Y = b) ·∆(X,Z)

= ∆(X,Z)

■

Claim 6 For discrete random variables X,Y, Z,W with measurable space E, if
X,Y, Z,W are independent, then :

∆(X + Y, Z +W ) ≤ ∆(X,Z) + ∆(Y,W ).

Proof. by Claim 4, We have :

∆(X + Y, Z +W ) ≤ ∆(X + Y, Z + Y ) + ∆(Z + Y, Z +W )
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then, by Claim 5, We have :

∆(X + Y, Z + Y ) + ∆(Z + Y, Z +W ) ≤ ∆(X,Z) + ∆(Y,W ).

■
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