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Abstract. Multi-key Fully Homomorphic Encryption (MKFHE), based
on the Learning With Error assumption (LWE), usually lifts ciphertexts
of different users to new ciphertexts under a common public key to enable
homomorphic evaluation. The efficiency of the current Multi-key Fully
Homomorphic Encryption (MKFHE) scheme is mainly restricted by two
aspects:

1. Expensive ciphertext expansion operation: In a boolean cir-
cuit with input length N , multiplication depth L, security param-
eter λ, the number of additional encryptions introduced to achieve
ciphertext expansion is O(Nλ6L4).

2. Noise flooding technology resulting in a large modulus q: In
order to prove the security of the scheme, the noise flooding technol-
ogy introduced in the encryption and distributed decryption stages
will lead to a huge modulus q = 2O(λL)Bχ, which corrodes the
whole scheme and leads to sub-exponential approximation factors
γ = Õ(n · 2

√
nL).

This paper solves the first problem by presenting a framework called Key-
Lifting Multi-key Fully Homomorphic Encryption (KL-MKFHE). With
this key lifting procedure, the number of encryptions for a local user
is reduced to O(N), similar to single-key fully homomorphic encryption
(FHE). For the second problem, based on Rényi divergence, we propose
an optimized proof method that removes the noise flooding technology in
the encryption phase. Additionally, in the distributed decryption phase,
we prove that the asymmetric nature of the DGSW ciphertext ensures
that the noise after decryption does not leak the noise in the initial
ciphertext, as long as the depth of the circuit is sufficient. Thus, our
initial ciphertext remains semantically secure even without noise flood-
ing, provided the encryption scheme is leakage-resilient. This approach
significantly reduces the size of the modulus q (with log q = O(L)) and
the computational overhead of the entire scheme.

Keywords: Multi-key homomorphic encryption · Rènyi divergence ·
Noise flooding · Leakage resilient cryptography.
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1 Introduction

Fully Homomorphic Encryption (FHE). The concept of FHE was proposed
by Rivest et al. [41] within a year of publishing the RSA scheme [42]. Gen-
try proposed the first truly fully homomorphic scheme in his doctoral disser-
tation [22] 2009. Based on Gentry’s ideas, a series of FHE schemes have been
proposed [23] [44] [11] [21] [24] [16] [15], and their security and efficiency have
been continuously improved. FHE is suitable for the problem of unilaterally
outsourcing computations. However, for multiple data providers, data must be
encrypted by a common public key to support homomorphic evaluation. Due to
privacy concerns, it is unreasonable to require participants to use other people’s
public keys to encrypt their data.

Threshold fully homomorphic encryption (Th-FHE). After introducing
the first fully homomorphic encryption scheme, Gentry [22] also provided a cor-
responding strategy for multiple participants: first, all participants execute a
secure multi-party computation protocol to obtain a common public key that
encrypts all data. Then, ciphertext evaluation is performed. After completing
the evaluation, all participants execute another secure MPC protocol to obtain
the result. Initially, the threshold was added to FHE only to support multiple
users. At the same time, the latter Th-FHE was more concerned with the flexi-
bility of the access strategy in order to cope with different application scenarios.

In addition, two main ways exist to initialize the common public key of
Th-FHE. First, assuming that there is a central authority which generates the
common public key and disperses the private key (using a Secret Sharing scheme)
to each participant [26] [9]. Encryption and evaluation of data are all under the
common public key. When decryption is required, the set of participants that
satisfy the access control structure obtains the result through a round of inter-
active decryption. Boneh et al. [9] further proposed the concept of the Universal
Thresholdizer, which can convert any fully homomorphic encryption scheme into
a threshold fully homomorphic encryption supporting monotonic access control
structure in a black-box manner.

The second method is for the parties to generate the common public key in
a distributed manner without a central authority. For example, Myers et al. [35]
added a threshold functionality to the integer homomorphic scheme [20] and
used a distributed manner to generate the common public key and private key
without a central setup. Although adopting a black box method for the con-
struction process, the distributed key generation process was quite complicated,
which consisted of three steps: generating the private key, then the private key of
the squeezed circuit, and finally, the common public key. These three processes
are all needed to invoke the distributed bit generation repeatedly, the compari-
son, and the multiplication protocols. Based on the key homomorphic property,
Asharov et al. [6] generated the common public key through two rounds of inter-
action in a distributed manner, and the common private key was the sum of the
individual private keys. In order to match the public and private keys and ensure
the security of the private key, a common reference string (CRS) needed to be
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introduced. Decryption required everyone to provide the private key, which was
actually a (n-n)-threshold fully homomorphic encryption (Th-FHE). Damgård
et al. [19] introduced homomorphic encryption in order to optimize the pre-
processing stage (such preprocessing was typically based on the classic circuit
randomization technique of Beaver [8]). A common reference string also needed
to be introduced.

Multi-key Fully Homomorphic Encryption (MKFHE). To deal with the
privacy of multiple data providers, López-Alt et al. [27] proposed the concept
of MKFHE and constructed the first MKFHE scheme based on modified-NTRU
[43]. Conceptually, it enhances the functionality of FHE by allowing data providers
to encrypt data independently from other participants. Key generation and data
encryption is done locally. To obtain the evaluated result, all participants are
required to execute a round of threshold decryption protocol.

After López-Alt et al. proposed the concept of MKFHE, many schemes
were developed. In 2015, Clear and McGoldrick [17] constructed the LWE-based
MKFHE scheme. This scheme defines the common private key as concatenat-
ing all private keys. It constructs a masking scheme to convert ciphertext un-
der individual public keys to the common public key by introducing CRS and
circular-LWE assumptions. However, this scheme only supports single-hop com-
putation. In 2016, Mukherjee and Wichs [34], Peikert and Shiehian [38], and
Brakerski and Perlman [13] constructed MKFHE schemes based on GSW, re-
spectively. Mukherjee and Wichs [34] simplified the masking scheme of [17] and
focused on constructing a two-round MPC protocol. Different methods in [38]
and [13] were proposed delicately to construct a multi-hop MKFHE. Braker-
ski and Perlman [13] introduced bootstrapping to realize ciphertext expansion,
thereby achieving the multi-hop functionality. Peikert and Shiehian [38] realized
the multi-hop function through an ingenious construction. It is worth mention-
ing that all MKFHE schemes constructed based on LWE require a ciphertext
expansion procedure.

1.1 Motivation

The biggest difference between Th-FHE and MKFHE in form is that MKFHE
allows participants to encrypt data with their public keys and does not require
interaction during the initialization phase. At the same time, Th-FHE needs to
introduce a dealer or generate the common key pair in a distributed manner.
Conceptually, it is clear that MKFHE is more concise, and a series of work
[5, 12, 34] showed that MKFHE was an excellent base tool for building round-
optimal MPC. However, despite looking attractive, the construction of MKFHE
involves some cumbersome operations and unavoidable assumptions. Below we
describe some details of the MKFHE scheme and state our goal in the last
paragraph of this subsection.

Ciphertext expansion is expensive: Although the MKFHE based on LWE
can use LHL to remove CRS, in order to convert the ciphertext under different
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keys to the ciphertext under the same key (ciphertext expansion procedure),
participants and the computing server need to do much preparatory work. For
ciphertext expansion, it is necessary to encrypt the random matrix R ∈ Zm×m

q of
each ciphertext. For a boolean circuit with an input length of N , multiplication
depth of L, and security parameter of λ, where m = n log q + ω(log λ), the
additional encryption operation introduced is O(Nλ6L4), in contrast to O(N)
for single-key FHE. For computing-sensitive participants, this is much overhead.

CRS looks inevitable: Due to the compact structure of the polynomial ring
and some fascinating parallel algorithms such as SIMD, it is generally believed
that FHE scheme based on RLWE is more efficient than FHE based on LWE. This
is why most current MKFHE schemes, such as [14,33], are constructed based on
RLWE.

Leftover Hash Lemma (LHL) over integer ring Z enjoys the leakage resilient
property: It can transform an average quality random sources into higher qual-
ity [25] which can be used to get rid of CRS as [12] does. However, regularity
lemma [29] over polynomial rings do not have corresponding properties, as [18]
mentioned if the j -th Number theoretical Transfer (NTT) coordinate of each
ring element in x = (x1, . . . , xl) is leaked, then the j -th NTT coordinate of
al+1 =

∑
aixi is defined, so al+1 is very far from uniform, yet this is only a

1/n leakage rate. Therefore, it seems to be more difficult to remove CRS for
RLWE-based MKFHE.

Noise flooding leads to extremely large module q : As far as we know
so far, whether it is MKFHE or Th-FHE, such as [12] [34] [17] [13] [6], a great
noise needs to be introduced in encryption phase to ensure the security or the
distributed decryption phase to cover up the partial decryption result, other-
wise, the private key may be leaked. In order to make the result of partial
decryption simulatable, assuming that the noise accumulated after the eval-
uation is eeval and the private key is s, the flooding noise esm must satisfy
⟨eeval, s⟩ /esm = negl(λ). At this time, in order to ensure the correctness of the
decryption result, module q needs to satisfy q ≥ 4esm. Thus noise flooding results
in a q exponentially larger than the q in a single-key FHE. Typically, in [34],
the flooding noise esm = 2O(Lλ log λ)Bχ, the modulus q = 2ω(Lλ log λ)Bχ, and
the corresponding approximation factor of GapSVPγ is γ = Õ(n · 2λL) (which is
sub-exponential in n by replacing λ =

√
n/L)3.

Therefore, although conceptually attractive, MKFHE as a general framework
is not suitable for some specific scenarios. Especially in the mobile Internet era,
data providers often do not trust others, and sometimes it is not easy to convince
them there is a dealer or the randomness of common reference string generated
by a third party. At the same time, it is unreasonable to require the data provider
to do O(Nλ6L4) such a large number of encryption on the personal terminal.

3 To achieve 2λ security against known lattice attacks, one must have n =
Ω(λ log q/Bχ)
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Our goal : In response to the above problems, we propose our goal: we consider
trust-sensitive and computationally-sensitive scenarios with multi-users.

– Without CRS : we do not assume the existence of a dealer or a common
reference string

– Data providers does as many encryptions as the single-key homomor-
phic scheme(O(N) for the circuit with input length N).

– q = 2O(L)Bχ of the same size as the single-key homomorphic scheme,
while q = 2O(λL)Bχ for those schemes introduced noise flooding.

1.2 Related works

Except sum type of key structure [6], concatenation structure were studied in
[17] [38] [34] [13] [14] together with CRS. Ananth et al. [4] removed CRS from
a higher dimension; instead of using LHL or regularity lemma, they based on
Multiparty Homomorphic Encryption and modified the initialization method of
its root node to achieve this purpose; more details, please refer to [4]. Brakerski
et al. [12] was the first scheme using the leakage resilient property of LHL to
get rid of CRS, which had the concatenation common private key structure, and
ciphertext expansion was essential. All of the above schemes introduced noise
flooding technology in distributed decryption phase.

Recently, the work [3] has proposed an alternative approach: instead of re-
moving it, they proposed the concept of accountability of CRS, that is, the
generator of CRS should be responsible for its randomness; otherwise, the chal-
lenging party can provide a publicly verifiable proof that certifies the authority’s
misbehaviour. We believe this could be an effective means of balancing authority.

We present a comparison of some properties in related work in Table 1.

Table 1. Scheme property comparison

Scheme Key structure CRS Noise flooding Interaction(setup
phase)

THFHE [6] S ✓ ✓ ✓

MKFHE [14] C ✓ ✓ ✕

MKFHE [34] C ✓ ✓ ✕

MKFHE [12] C ✓ ✓ ✓

Our scheme S ✕ ✕ ✓

S" and "C" in the column of Key structure represent the sum and concatenated key structure,
respectively. ✓ indicates that the corresponding operation or assumption needs to be introduced, or

✕ indicates that it is not required.

1.3 Our Results

For trust-sensitive and computationally-sensitive scenarios, we introduce the con-
cept of KL-MKFHE, which is more suitable for such scenarios. Following this
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concept, we construct the first KL-MKFHE scheme based on LWE in the plain
model.

We briefly introduce the new concept and our scheme below and explain how
we remove noise flooding in the encryption and distributed decryption phases,
respectively.

The concept of KL-MKFHE : Different from previous definition [34], we
abandon ciphertext expansion procedure, instead, introducing a key lifting pro-
cedure which at a lower cost. Informally, key-lifting is an interactive protocol.
The input is the key pair of all participants. After the protocol is executed, the
"lifted" key pair is output, called the hybrid key, which has such properties:

– Everyone’s hybrid key is different.
– The ciphertext encrypted by different hybrid keys supports homomorphic eval-

uation.

In addition to the properties that are required by MKFHE, such as Correctness,
Compactness, Semantic security, KL-MKFHE should satisfy the following three
additional properties :

– Plain model : No trusted setup or Common Reference String
– Locally Computationally Compactness : For a computational task

corresponds to a Boolean circuit with an input length of N , a KL-MKFHE
scheme is locally computationally compact if the participants do O(N) en-
cryptions as the single-key FHE scheme.

– Low round complexity : Only two round interaction is allowed in the Key
lifting procedure.

For comparison with MKFHE, we describe the procedure of MKFHE and
KL-MKFHE in Fig 1. Please refer to Section 4 for more detailed definitions.

Optimized security proof method based on Rényi divergence : In or-
der to prove the security of a scheme, a routine is to construct an instance of
the scheme from a well-known hard problem instance. Unfortunately, sometimes,
the process does not go so smoothly. To make the constructed distribution sta-
tistically indistinguishable from the target distribution, you need to add noise
distribution to smooth the gap between the two; this is where noise flooding
comes into play. For example, [6] [12] adopted this method to prove security.
Unfortunately, the added noise tends to be significant, reducing the scheme’s
efficiency.

Shi et al. [7] pointed out that Rényi divergence can also be used to distinguish
problems: they proved that, under certain conditions, if there is an algorithm
that can distinguish problem P , then there is an algorithm that can distinguish
problem P ′. Note that it does not require that the P problem is indistinguishable
from P ′, which is where the Rényi divergence comes into play. Based on the result
of [7, Theorem 4.2], our proof method is as follows :
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Fig. 1. The procedures of MKFHE and KL-MKFHE
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1. Define the P problem as distinguishing our scheme’s ciphertext from a uni-
form distribution.

2. Prove that for a given hard problem instance I, there exists a distribution
D, and a sample x of D can be constructed from this instance I(It is not
easy to construct a sample x of distribution D from instance I. For this
reason, we also introduce a new hardness problem, called the "interactive
LWE " problem, and give a reduction(see Section 3). We find this problem
interesting and believe it will also be useful in other ways.)

3. Define the P ′ problem as distinguishing D from a uniform distribution

Thus, if there is an adversary who can distinguish the P problem, then he can
distinguish the P ′ problem and can also distinguish the hard problem instance
I from the uniform distribution.

We believe that this Rényi divergence-based proof method provides an alter-
native idea for those proofs that must introduce strong assumptions and large
noise to ensure security. For example, we give the optimal proof method for the
leakage-resilient of the DGSW scheme in Appendix C(without introducing large
noise). For more details, please refer to Section 5.4.

Leakage resistance implies a smaller q : We noticed that the distributed de-
cryption of the MKFHE will leak the noise accumulated after the homomorphic
evaluation and the decryptor’s private key. In order to ensure security, previous
MKFHE, such as [6] [14] [34] [12], will add some additional noise to the dis-
tributed decryption results to cover up this part of the information. Because we
only care about the security of the initial ciphertext (note that the noise after
the homomorphic evaluation will leak the privacy of the circuit), as long as it
can be proved that the noise of distributed decryption is independent of the
noise in the initial ciphertext, and our scheme is anti-leakage, then even without
adding additional noise, the semantic security of the initial ciphertext can be
guaranteed.

For the Dual GSW-like scheme, we noticed that the noise after its homo-
morphic multiplication is very regular: let Cmult = C1 ·G−1(C2), the noise in
Cmult hardly contains the noise in C2. Assuming that the initial ciphertext is
{Ci}i∈[N ], and the circuit multiplication depth is L, as long as L ≥ logN , then
the noise in the ciphertext CL of the L-th layer only contains the noise of a
certain initial ciphertext. At this point, just multiply CL by a ciphertext Enc(1)
whose plaintext is 1, let Cclear = Enc(1)G−1(CL), then the noise in Cclear does
not contain any noise information in the initial ciphertext {Ci}i∈[N ]. At this
point, the distributed decryption of Cclear will only leak the decryptor’s private
key.

Suppose our scheme is anti-leakage and predicts the amount of private key
leakage in the distributed decryption process in advance. In that case, we only
need to cover this part of the leakage amount when the parameters are ini-
tialized. Even if no noise is added in the distributed decryption process, it can
guarantee the semantic security of the initial ciphertext. The disadvantage is
that the complexity of our scheme could be more circuit-dependent. However,
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there is no noise flooding in encryption and distributed decryption, so we can set
q = 2O(L)Bχ to be the same size as the single-key homomorphic scheme, where
q = 2O(λL)Bχ in [6] [34] with noise flooding technology(Correspondingly, the
approximation factor of Gapsvpγ is reduced to γ = Õ(n · 2L)). Refer to Section
5.5 for a detailed discussion.

Our scheme: LWE-based KL-MKFHE under plain model :
Our scheme is based on the LWE assumption. The common private key is the sum
of the private keys of all participants. Previous MKFHE or Th-FHE schemes [32]
[6] adopt this key, all based on the CRS model. Without CRS, our solution is
simpler and more efficient in construction. For a circuit with an input length N ,
our scheme requires local users to perform O(N) encryption operations, while it
is O(Nλ6L4) for those schemes that require ciphertext expansion.

We give a comparison with schemes [12] [38] [6] in Table 2. Please refer to
Section 5 for detailed security and parameters.

Table 2. Scheme complexity comparison

Scheme Space Time Interaction(setup phase) CRS

PubKey + EvalKey Ciphertext Module q Extra encryption

MKFHE [38] Õ(λ6L4(k + Nλ3L2)) Õ(Nk2λ6L4) 2O(λL)Bχ Õ(Nλ14L9) ✕ ✓

MKFHE [12] Õ(k4λ15L11) Õ(Nk4λ8L6) 2O(λL)Bχ Õ(Nk3λ15L10) 2 rounds ✕

Th-FHE [6] Õ(λ6L4) Õ(Nλ6L4) 2O(λL)Bχ ✕ 1 rounds ✓

Our scheme Õ((kλL + W )λL3) Õ(N(kλL + W )2L4) 2O(L)Bχ ✕ 2 rounds ✕

The notation Õ hides logarithmic factors. The "Space" column denotes the bit size of public,
evaluation key and ciphertext; the "Extra encryption" column denotes the number of multiplication
operations over Zq ; λ denotes the security parameter, k participants number, Bχ the initial LWE

noise; N , L, W denotes the input length, depth, and output length of the circuit respectively.
In [38] [12] [6], n represents the dimension of the LWE problem in order to compare under the same
security level, we replace n with the expression in terms of λ and L. To achieve 2λ security against
known lattice attacks, one must have n = Ω(λ log q/Bχ). For our parameter settings q = 2O(L)Bχ,

thus we would have n = Ω(λL), while n = Ω(λ2L) for the previous scheme with noise flooding.

1.4 Roadmap:

In Section2, we define some symbols and list some commonly used definitions
and results. In Section3, we define a new problem. In Section4, we define KL-
MKFHE. In Section5, we construct the first KL-MKFHE scheme based on LWE.
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2 Preliminaries

2.1 Notation:

We define the relevant notations in Table 3. Let negl(λ) be a negligible function

Table 3.

λ security parameter n dimension of LWE problem
k number of participants d degree of RLWE problem
N circuit input length q module base
L circuit multiplicative depth
W circuit output length

parameterized by λ. Lowercase bold letters such as v, unless otherwise spec-
ified, represent vectors. Vectors are row vectors by default, and matrices are
represented by uppercase bold letters such as M. [k] denotes the set of integers
{1, . . . , k}. If X is a distribution, then a ← X denotes that value a is chosen
according to the distribution X, or a finite set, then a ← U(X) denotes that
the value of a is uniformly sampled from X. Let ∆(X,Y ) denote the statistical
distance of X and Y . For two distributions X,Y , we use X

stat
≈ Y to represent

X and Y are statistically indistinguishable, while X
comp
≈ Y are computationally

indistinguishable.
In order to decompose elements in Zq into binary, we review the Gadget ma-

trix [30] [2] here. Let G−1(·) be the computable function that for any M ∈ Zm×n
q ,

it holds that G−1(M) ∈ {0, 1}ml×n, where l = ⌈log q⌉. Let g = (1, 2, . . . , 2l−1) ∈
Zl
q, G = Im ⊗ g ∈ Zm×ml

q , it satisfies GG−1(M) = M.

2.2 Some background in probability theory

Definition 1 A distribution ensemble {Dn}n∈[N ] supported over integer, is called
B-bounded if :

Pre←Dn [ |e| > B ] = negl(n).

Lemma 1 (Smudging lemma [6]) Let B1 = B1(λ), and B2 = B2(λ) be pos-
itive integers and let e1 ∈ [−B1, B1] be a fixed integer, let e2 ∈ [−B2, B2] be
chosen uniformly at random, Then the distribution of e2 is statistically indistin-
guishable from that of e2 + e1 as long as B1/B2 = negl(λ).

Theorem 1 ( [28, Theorem 5.3.2]) Let 0 ≤ t ≤ m. Then the probability that
out of 2m coin tosses, the number of heads is less than m− t or large than m+ t,
is at most e−t

2/(m+t).
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The Rènyi divergence (in [7]) : For any two discrete probability distributions
P and Q such that Supp(P ) ⊆ Supp(Q) where Supp(P ) = {x : P (x) ̸= 0} and
a ∈ (1,+∞), The Rènyi divergence of order a is defined by :

Ra(P ||Q) =

 ∑
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1

Omitting the a subscript when a = 2, defining the The Rènyi divergence of order
1 and +∞ by :

R1(P ||Q) = exp

 ∑
x∈Supp(P )

P (x) log
P (x)

Q(x)


R∞(P ||Q) = max

x∈Supp(P )

P (x)

Q(x)
.

The definitions are extended naturally to continuous distributions. The diver-
gence R1 is the (exponential of ) the Kullback-Leibler divergence.

Theorem 2 ( [7, Theorem 4.2]) Let Φ, Φ′ denote two distribution with Supp(Φ) ⊆
Supp(Φ′), and D0(r) and D1(r) denote two distributions determined by some pa-
rameter r ∈ Supp(Φ′). Let P , P ′ be two decision problems defined as follows :

– Problem P : distinguish whether input x is sampled from distribution X0 or
X1, where

X0 = {x : r ←↩ Φ, x←↩ D0(r)}, X1 = {x : r ←↩ Φ, x←↩ D1(r)}.

– Problem P ′: distinguish whether input x is sampled from distribution X ′0 or
X ′1, where

X ′0 = {x : r ←↩ Φ′, x←↩ D0(r)}, X ′1 = {x : r ←↩ Φ′, x←↩ D1(r)}.

Assume that D0(·) and D1(·) satisfy the following public sampleability property:
there exists a sampling algorithm S with run-time TS such that for all (r, b),
given any sample x from Db(r):

– S(0, x) outputs a fresh sample distributed as D0(r) over the randomness of
S,

– S(1, x) outputs a fresh sample distributed as D1(r) over the randomness of
S.

Then, given a T -time distinguisher A for problem P with advantage ϵ, we
can construct a distinguisher A′ for problem P ′ with run-time and distinguishing
advantage, respectively, bounded from above and below by (for any a ∈ (1,+∞]):

64

ϵ2
log

(
8Ra(Φ||Φ′)
ϵa/(a−1)+1

)
· (TS + T ) and

ϵ

4 ·Ra(Φ||Φ′)
·
( ϵ
2

) a
a−1

.
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2.3 Gaussian distribution on Lattice

Definition 2 Let ρs(x) = exp(−π||x/s||2) be a Gaussian function scaled by a
factor of s > 0. Let Λ ⊂ Rn be a lattice, and c ∈ Rn. The discrete Gaussian
distribution DΛ+c,s with support Λ+ c is defined as :

DΛ+c,s(x) =
ρs(x)

ρs(Λ+ x)

Smoothing parameter : We recall the definition of the smoothing parameter
from [31].

Definition 3 For a lattice Λ and positive real ϵ > 0, the smoothing parameter
ηϵ(Λ) is the smallest real r > 0 such that ρ1/r(Λ∗\{0}) ≤ ϵ.

Lemma 2 (Special case of [31, Lemma 3.3]) For any ϵ > 0,

ηϵ(Zn) ≤
√
ln(2n(1 + 1/ϵ))/π.

In particular, for any ω(
√
log n) function, there is a negligible ϵ = ϵ(n) such that

ηϵ(Zn) ≤ ω(
√
log n).

Lemma 3 (Simplified version of [37, Theorem 3.1]) Let ϵ > 0, r1, r2 > 0
be two Gaussian parameters, and Λ ⊂ Zm be a lattice. If r1r2√

r21+r22
≥ ηϵ(Λ), then

∆(y1 + y2,y
′) ≤ 8ϵ

where y1 ← DΛ,r1 , y2 ← DΛ,r2 , and y′ ← D
Λ,
√

r21+r22
.

Lemma 4 ( [1]) Let χ denote the Gaussian distribution with standard deviation
σ and mean zero. Then, for all C > 0, it holds that:

Pr[e← χ : |e| > C · σ] ≤ 2

C
√
2π

exp{−C2

2
}.

2.4 The Learning With Error(LWE) Problem

The Learning With Error problem was introduced by Regev [40].

Definition 4 (Decision-LWE) Let λ be security parameter, for parameters n =
n(λ) be an integer dimension, q = q(λ) > 2 be an integer, and a distribution χ =
χ(λ) over Z, the LWEn,q,χ problem is to distinguish the following distribution:

– D0 : the jointly distribution (A, z) ∈ (Zm×n
q × Zn

q ) is sampled by A ←
U(Zm×n

q ) z← U(Zn
q )

– D1: the jointly distribution (A,b) ∈ (Zm×n
q × Zn

q ) is computed by A ←
U(Zm×n

q ) b = sA+ e, where s← U(Zn
q ) e← χm
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As shown in Regev [40] [36], the LWEn,q,χ problem with χ being discrete Gaussian
distribution with parameter σ = αq ≥ 2

√
n is at least as hard as approximating

the shortest independent vector problem(SIVP) to within a factor of γ = Õ(n/α)
in worst case dimension n lattices. It leads to the Decision-LWEn,q,χ assumption
D0

comp
≈ D1.

2.5 Dual-GSW(DGSW) Encryption scheme

The DGSW scheme [12] and GSW scheme are similar to the Dual-Regev scheme
and Regev scheme resp. Which is defined as follows:

– pp← Gen(1λ, 1L) : For a given security parameter λ, circuit depth L, choose
an appropriate lattice dimension n = n(λ, L), m = n log q+ω(λ), a discrete
Gaussian distribution χ = χ(λ, L) over Z, which is bounded by Bχ, module
q = poly(n) ·Bχ, Output pp = (n,m, q, χ,Bχ) as the initial parameters.

– (pk, sk) ← KeyGen(pp): Let sk = t = (−s, 1), pk = (A,b), where s ←
U({0, 1}m−1), A← U(Zm−1×n

q ), b = sA mod q.

– C ← Enc(pk, u): Input public key pk and plaintext u ∈ {0, 1}, choose a
random matrix R ← U(Zn×w

q ), w = ml, l = ⌈log q⌉ and an error matrix
E← χm×w, Output the ciphertext :

C =

(
A
b

)
R+E+ uG

where G is a gadget Matrix.
– u← Dec(sk,C): Input private key sk, ciphertext C, let w = (0, . . . , ⌈q/2⌉) ∈

Zm
q , v = ⟨tC,G−1(wT )⟩, output u′ = ⌈ v

q/2⌉.

Leak resistance : Brakerski et al proved in [12] that DGSW is leak-resistant.
Informally, even if part of the private key of the DGSW scheme is leaked, the
DGSW ciphertext is still semantically secure. As Lemma 5 says :

Lemma 5 ( [12]) Let χ be LWE noise distribution bounded by Bχ, χ′ a distri-
bution over Z bounded by Bχ′ , satisfying Bχ/Bχ′ = negl(λ). Let Ai ∈ Z(m−1)×n

q

be uniform, and let Aj for all j ̸= i be chosen by a rushing adversary after seeing
Ai. Let si ← {0, 1}m−1 and bi,j = siAj. Let r ∈ Zn

q be uniform, e ← χm−1,
e′ ← χ′. Then under the LWE assumption, the vector c = Air + e and number
c′ = ⟨bi,i, r⟩+ e′ are (jointly) pseudorandom, even given the bi,j’s for all j ∈ [k]
and the view of the adversary that generated the Aj’s.

Remark : Note that in the proof of [12], the condition for the establishment
of Lemma 5 is |e/e′| = negl(λ). We point out that this condition is not required
with our analytical method. We prove it in the Appendix C.
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2.6 Multi-Key Fully Homomorphic Encryption

We review the definition of MKFHE in detail here, the main purpose of which
is to compare with the definition of KL-MKFHE proposed later.

Definition 5 Let λ be the security parameter, L be the circuit depth, and k be
the number of participants. A levelled multi-key fully homomorphic encryption
scheme consists of a tuple of efficient probabilistic polynomial time algorithms
MKFHE=(Init, Gen, Enc, Expand, Eval, Dec) which defines as follows.

– pp← Init(1λ, 1L) : Input security parameter λ, circuit depth L, output system
parameter pp. We assume that all algorithms take pp as input.

– (pki, ski) ← Gen(pp, crs) : Input pp, common reference string crs (generated
by a third party or random oracle), output a key pair for participant i.

– ci ← Enc(pki, ui) : Input pki and plaintext ui, output ciphertext ci.
– vi ← Enc(pki, ri): Input pki and the random ri used in ciphertext ci, output

auxiliary ciphertext vi.
– c̄i ← Expand({pki}i∈[k], vi, ci):Input the ciphertext ci of participant i, the

public key set {pki}i∈[k] of all participants, auxiliary ciphertext vi, output
expanded ciphertext c̄i which is under f(ski, . . . skk) whose structure is un-
defined.

– c̄eval ← Eval(S, C):Input circuit C, the set of all ciphertext S = {c̄i}i∈[N ]

while N is the input length of circuit C, output evaluated ciphertext c̄eval
– u ← Dec(c̄eval, f(sk1 . . . skk)) : Input evaluated ciphertext c̄eval, private key

function f(sk1 . . . skk), output u (This is usually a distributed process).

Remark : Although the definition of MKFHE in [27] does not contain auxiliary
ciphertext vi and ciphertext expansion procedure, in fact, the works [34] [39]
[17] include this procedure to support homomorphic operations. This procedure
seems essential; we list it here for comparison with KL-MKFHE. The common
private key depends on {ski}i∈[k], f is a certain function, which is not unique;
for example, it can be the concatenation of all keys or the sum of all keys.

Properties implicated in the definition of MKFHE : For the above
definition, each participant is required in the key generation and encryption
phase independently to generate their keys and complete the encryption opera-
tion without interaction between participants. These two phases are similar to
single-key homomorphic encryption; the computational overhead is independent
of k and only related to λ and L. Only in the decryption phase interaction is
involved when participants perform a round of decryption protocol.

3 The "interactive LWE " problem

This section introduces a new hardness problem called the "interactive LWE "
problem. This problem can be seen as a variant of the standard LWE problem,
where the interactive process reveals the linear relationship between the secret
and the noise in standard LWE. We prove this problem is similar to the low
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dimensional LWE problem. This new problem is introduced because we will use
it in the optimization proof method based on Rènyi divergence. Furthermore, as
a standalone result, it will also be useful elsewhere.

Definition 6 (Interactive LWE) Let λ be security parameter, for parameters
n = n(λ) be an integer dimension, q = q(λ) > 2 be an integer, and a distribution
χ = χ(λ) over Z, the matrix version of the LWEn,q,χ samples is (A,B = A ·R+
E), where A← U(Zm×n

q ), R← U(Zn×w
q ), E← χm×w satisfying n|w. Consider

the following Game.

1. Challenger generates the matrix version LWEn,q,χ samples (A,B) and an
uniform samples (A,U), send it to an adversary A.

2. After receiving (A,B) and (A,U), A adaptively chooses s ∈ Zm
q , and send

it to Challenger.
3. After receiving s, challenger computes {vi}i∈[g] by {viRi = sEi}i∈[g], where

Ri ∈ Zn×n
q and Ei ∈ Zm×n

q are i-th block of R = (R1,R2, · · · ,Rg) and
E = (E1,E2, · · · ,Eg) respectively, send {vi}i∈[g] to A.

4. After receiving {vi}i∈[g], A try to distinguish (A,B, {vi}i∈[g], s) and (A,U, {vi}i∈[g], s)

Theorem 3 For any probabilistic polynomial time adversary A, If he can dis-
tinguish (A,B, {vi}i∈[g], s) with (A,U, {vi}i∈[g], s), then he can also distinguish
n − 1 dimensional LWE samples. (we note that (A,B) are n dimensional LWE
samples.)

Proof. Note that exposing {vi}i∈[g] to A will reveal the linear relationship be-
tween Ri and Ei. We need to ensure that after A gets {vi}i∈[g], (A,B) and
(A,U) are still indistinguishable. Let us take a look at what is the distribution
of {vi}i∈[g]. For viRi = sEi ,thus vi = sEiR

−1
i (We discuss in the Appendix A

the probability that Rn×n
q is reversible). For Ri is uniform and Ei is discrete

Gaussian, so EiR
−1
i is uniform over Zm×n

q . Therefore, when s ̸= 0, vi is uniform
random over Zn

q , that is, vi and s are independent except at zero.
Let A = (a1,a2, · · · ,an), where ai is the i-th column of A. Let r = (r1, · · · , rn)T ,

e = (e1, · · · , em)T be the first column of R1, E1 respectively. Let b = (b1, · · · , bm)T

be the first column of the B. Let v1 = (v1, · · · , vn), s = (s1, · · · , sm). Consider
the first column of the B and the first element of vector v1R1 = sE1, it holds
that :

(a1,a2, · · · ,an)


r1
r2
· · ·
rn

+


e1
e2
· · ·
em

 =


b1
b2
· · ·
bm


v1r1 + v2r2 + · · ·+ vnrn = s1e1 + s2e2 + · · ·+ smem

We show that for any m LWE samples of n − 1 dimensions, After getting s =
(s1, s2, · · · , sm) from A. We can always construct a sample of (A,b,v1, s).
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For m LWE samples of n− 1 dimensional and s :

(a′1,a
′
2, · · · ,a′n−1)


r′1
r′2
· · ·
r′n−1

+


e′1
e′2
· · ·
e′m

 =


b′1
b′2
· · ·
b′m


s = (s1, s2, · · · , sm)

Let w0 = t
∑m

i=1 sie
′
i, where t ← U(Zq), {wi}i∈[n−1] ← U(Zq) , rn = w0 −∑n−1

i=1 wir
′
i, an ← U(Zm

q ), {ai = a′i + wian}i∈[n−1]


r1
r2
· · ·
rn−1

 =


r′1
r′2
· · ·
r′n−1




e1
e2
· · ·
em

 =


e′1
e′2
· · ·
e′m




b1
b2
· · ·
bm

 =


b′1
b′2
· · ·
b′m

+ w0an

It holds that :

(a1,a2, · · · ,an)


r1
r2
· · ·
rn

+


e1
e2
· · ·
em

 =


c1
c2
· · ·
cm


t−1w1r1 + t−1w2r2 + · · ·+ t−1wn−1rn−1 + t−1rn = s1e1 + s2e2 + · · ·+ smsm.

We note that rn is independent of {ri}i∈[n−1] for the reason that w0 is uniform
over Zq, and similarly {ai}i∈[n] are independent. Thus :

({ai}i∈[n], {bi}i∈[m], (t
−1w1, t

−1w2, · · · , t−1wn−1, t
−1), s)

is a sample of (A,b,v1, s). If there is an adversary can distinguish (A,b,v1, s)
, then he can also distinguish n − 1 dimensional LWE samples. Above, we have
given the reduction of the first column of B, the hardness of the matrix version
(A,B, {vi}i∈[g], s) for any w = poly(n) can be established from (A,b,v1, s) via
a routine hybrid-argument. ■

4 Key Lifting Multi-key Fully Homomorphic Encryption

In order to cope with computationally-sensitive and trust-sensitive scenarios,
we avoid expensive ciphertext expansion procedures and introduce a relatively
simple Key lifting procedure to replace it. In addition, a tighter bound is required
on the amount of local computation and parameter size; as a compromise, we
allow a small amount of interaction during Key lifting.

Definition 7 A KL-MKFHE scheme is a tuple of probabilistic polynomial time
algorithm (Init, Gen, KeyLifting, Enc, Eval, Dec), which can be divided into two
phases, online phase: KeyLifting and Dec, where interaction is allowed between
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participants, but the rounds should be constant, local phase: Init, Gen, Enc, and
Eval, whose operations do not involve interaction. These five algorithms are de-
scribed as follows :

– pp ← Init(1λ, 1L):Input security parameter λ, circuit depth L, output public
parameters pp.

– (pki, ski) ← Gen(pp):Input public parameter pp, output the key pair of par-
ticipant i

– {hki}i∈[k] ← KeyLifting({pki, ski}i∈[k]): Input key pair {pki, ski}i∈[k] of all
participants, output the hybrid key {hki}i∈[k] of all i. (online phase: two-
round interaction)

– ci ← Enc(hki, ui): Input plaintext ui and hki, output ciphertext ci
– ĉ← Eval(C, S): Input circuit C, ciphertext set S = {ci}i∈[N ] , output cipher-

text ĉ
– u← Dec(ĉ, f(sk1 . . . skk)): Input evaluated ciphertext ĉ, f(sk1 . . . skk), output
C(ui)i∈[N ].(online phase: one round interaction)

Remark : KL-MKFHE does not need ciphertext expansion procedure; indeed,
the input ciphertext set S in Eval(·) is encrypted by participants under their own
hybrid key hki which are different among participants, however, the resulting
ciphertext ci supports homomorphic evaluation without extra modification.

we require KL-MKFHE to satisfy the following properties :
Plain model : No trusted setup or Common Reference String

Locally Computationally Compactness : For a computational task corre-
sponds to a Boolean circuit with an input length of N , a KL-MKFHE scheme is
locally computationally compact if the participants do O(N) encryptions as the
single-key FHE scheme.
Two round interaction : Only two round interaction is allow in KeyLifting(·)
procedure.
The indistinguishable of initial ciphertext : Let N and W be the input
and out length of a circuit, respectively. Let {ci}i∈[N ], {γi}i∈[W ] be the initial
ciphertext and partial decryption result respectively. The following two distribu-
tions are computationally indistinguishable for any probabilistic polynomial time
adversary A.

(pp, {pki}i∈[k], {hki}i∈[k], {ci}i∈[N ], {γi}i∈[W ])
comp
≈ (pp, {pki}i∈[k], {hki}i∈[k],U, {γi}i∈[W ])

where U is uniform random

Correctness and Compactness : A KL-MKFHE scheme is correct if for a
given security parameter λ, circuit depth L, participants k, we have the following

Pr [Dec(f(sk1 . . . skk), ĉ) ̸= C(u1 . . . uN ) ] = negl(λ).

probability is negligible, where C is a circuit with input length N and depth length
less than or equal to L. A KL-MKFHE scheme is compact if the size ĉ of eval-
uated ciphertext is bounded by poly(λ, L, k), but independent of circuit size.
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5 A KL-MKFHE scheme based on DGSW in plain
model without noise flooding

Our scheme is based on DGSW. In this section, we first introduce the key lift-
ing process, describe the entire scheme, and finally give parameter analysis and
security proof.

5.1 Key lifting procedure

Following the definition of KL-MKFHE, the hybrid keys {hki}i∈[k] which are
obtained by KeyLifting(·) algorithm are different from each other. Each partici-
pant encrypts his plaintext ui by hki and gets Ci. The ciphertexts {Ci∈[N ]} can
be used to evaluation without extra computation by Claim 1. We achieve this
property by allowing two-round interaction between participants.

{hki}i∈[k] ← KeyLifting({pki, ski}i∈[k]): Input the DGSW key pair {pki, ski}i∈[k]
of all participants, where pki = (Ai,bi,i), Ai ← U(Z(m−1)×n

q ), si ← U{0, 1}m−1,
bi,i = siAi mod q. Assuming there is a broadcast channel, all participants are
engaged in the following two interactions:

– First round : i broadcasts pki and receives {pkj}j∈[k]\i from other partici-
pants.

– Second round : i generates and broadcasts {bi,j = siAj}j∈[k]\i, and receives
{bj,i = sjAi}j∈[k]\i from other participants.

After above two round interaction, i receives {bj,i = sjAi}j∈[k]/i. Let bi =∑k
j=1 bj,i, i obtains hybrid key hki = (Ai,bi)

Claim 1 Let t̄ = (−s, 1), s =
∑k

i=1 si, for ciphertext Ci, Cj encrypted by hybrid
key hki, hkj respectively :

Ci =

(
Ai

bi

)
Ri +Ei + uiG, Cj =

(
Aj

bj

)
Rj +Ej + ujG,

it holds that(omit small error) :

t̄Ci ≈ uit̄G, t̄Cj ≈ uj t̄G

t̄(Ci +Cj) ≈ (ui + uj)t̄G, t̄CiG
−1(Cj) ≈ (uiuj)t̄G

Proof. According to the construction of KeyLifting(·), it holds that :

t̄Ci =

(
k∑

i=1

−si, 1

)[(
Ai∑k

j=1 bj,i

)
+Ei + uiG

]
= t̄Ei + uit̄G ≈ uit̄G.

Similarly, t̄Cj ≈ uj t̄G, and t̄(Ci +Cj) ≈ (ui + uj)t̄G

t̄CiG
−1(Cj) ≈ uit̄GG−1(Cj) ≈ uit̄Cj ≈ (uiuj)t̄G

■
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Therefore, although Ci and Cj are encrypted by different hybrid keys, they
correspond to the same decryption key t̄ and support homomorphic evaluation
without extra modification.

Two hidden dangers for semi-malicious adversaries : There are two main
security concerns about KeyLifting(·). First, a semi-malicious adversary may gen-
erate matrix A with trapdoor, then si is leaked. More specifically, our scheme
leaks the key si in two phases: in the KeyLifting(·) phase, {bi,j = siAj}j∈[k]
will lose si at most kn log q bits, in the distributed decryption phase, since we
do not introduce noise flooding, for a circuit with output length W , distributed
decryption lose si at most W log q bits, so the total leaked amount of si is
(kn +W ) log q bits. According to the proof of Lemma 5, the length of si must
be at least (kn+W ) log q+2λ to ensure the indistinguishable of the ciphertext,
which is why we set m = (kn + W ) log q + 2λ in the scheme. Second, semi-
malicious adversary j may generate bj,i adaptively after seeing bi,i, then the
hybrid key bi of participant i may not distributed as requirement. The gen-
eral solution is to assume that bj,i generated by adversary j satisfies the linear
relationship bj,i = sjAi, sj ∈ {0, 1}m−1, and introduce a large noise in the en-
cryption phase to ensure security. Large encryption noise leads to large modulus
q and high computational and communication overhead. In order to alleviate
this problem, we proposed an analysis method based on Rényi divergence that
neither introduces the above assumptions nor a large noise in the encryption
process. For more details, please refer to Section 5.4.

5.2 The entire scheme

Our scheme is based on the DGSW scheme, containing the following five algo-
rithms (Init, Gen, KeyLifting, Enc, Eval, Dec)

– pp← Init(1λ, 1L, 1W ) : Let λ be security parameter, L circuit depth, W cir-
cuit output length, lattice dimension n = n(λ, L), noise distribution χ over Z,
e← χ, where |e| is bounded by Bχ with overwhelming probability, modulus
q = 2O(L)Bχ, k = poly(λ), m = (kn+W ) log q + λ, suitable choosing above
parameters to make LWEn,m,q,Bχ

is infeasible. Output pp = (k, n,m, q, χ,Bχ)

– (pki, ski) ← Gen(pp) : Input pp, output the DGSW key pair (pki, ski) of
participants i, where pki = (Ai,bi,i), Ai ← U(Z(m−1)×n

q ), si ← U{0, 1}m−1,
bi,i = siAi mod q.

– hki ← KeyLifting({pki, ski}i∈[k]) : All participants are engaged in the Key
lifting procedure 5.1, output the hybrid key hki.

– Ci ← Enc(hki, ui): Input hybrid key hki, plaintext ui ∈ {0, 1}, output ci-

phertext Ci =

(
Ai

bi

)
R + E + uiG, where R ← U(Zn×ml

q ), l = ⌈log q⌉,

E← χm×ml, G = Im ⊗ g is a gadget matrix.
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– C(L) ← Eval(S, C) : Input the ciphertext set S = {Ci}i∈[N ] which are en-
crypted by hybrid key {hki}i∈[k], circuit C with input length N , depth L,
output C(L).

Remark : In the security proof in Section ??, we require that χ be a discrete
Gaussian distribution DZ,σ over Z with σ >

√
2ηϵ(Z). and ml > 4λ.

Homomorphic addition and multiplication : Let Ci, Cj be ciphertext
under hybrid key hki and hkj respectively, by claim 1, we have the following
results.

– Cadd ← Add(Ci,Cj): Input ciphertext Ci, Cj , output Cadd = Ci + Cj ,
which t̄Cadd ≈ (ui + uj)t̄G

– Cmult ← Mult(Ci,Cj): Input ciphertext Ci, Cj , output Cmult = CiG
−1(Cj),

which t̄Cmult ≈ uiuj t̄G

Distributed decryption Similar to [34], the decryption procedure is a dis-
tributed procedure :

– γi ← LocalDec(C(L), si): Input C(L), let C(L) =

(
Cup

clow

)
, where Cup is the

first m − 1 rows of C(L), and clow is last row of C(L). i computes γi =
⟨−si, CupG

−1(wT )⟩, where w = (0, . . . , 0, ⌈q/2⌉) ∈ Zm
q , then i broadcast γi

– uL ← FinalDec({γi}i∈[k]): After receiving {γi}i∈[k], let γ =
∑k

i=1 γi+⟨clow, G−1(wT )⟩,
output uL = ⌈ γ

q/2⌉

5.3 Correctness analysis

To illustrate the correctness of our scheme, we first study the accumulation of

noise. For fresh ciphertext C =

(
Ai

bi

)
R +

(
E0

e1

)
+ uG under t̄, it holds that

t̄C = e1 − sE0 + ut̄G. Let einit = e1 − sE0, after L depth circuit evaluation :

t̄C(L) = eL + uLt̄G (1)

According to the noise analysis of GSW in [24], the noise eL in C(L) is bounded
by (ml)Leinit. By the distributed decryption of our scheme, it holds that :

γ =

k∑
i=1

γi + ⟨clow,G−1(wT )⟩ = ⟨
k∑

i=1

−si,CupG
−1(wT )⟩+ ⟨clow,G−1(wT )⟩

= t̄C(L)G−1(wT ) = ⟨eL,G−1(wT )⟩+ uL⌈
q

2
⌉
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In order to decrypt correctly, it requires ⟨eL,G−1(wT )⟩ < q
4 . For our parameter

settings :

⟨eL,G−1(wT )⟩ ≤ l · ||eL||∞
≤ l · (ml)L · ||einit||∞
≤ l · (ml)L · (km+ 1)Bχ

Thus, log(⟨eL,G−1(wT )⟩) = Õ(L). For those q = 2O(L)Bχ ≥ 4⟨eL,G−1(wT ⟩,
requirements are fulfilled.

5.4 Semantic Security of Encryption against Semi-Malicious
Adversary

The concept of a semi-malicious adversary was proposed by Asharov et al. in [6],
which is formalized as a polynomial capability Turing machine with an additional
witness tape. It must explain the "legality" of the record on the output tape.
Please refer to [6] for a more formal definition.

The semantic security of our scheme: For an honest player i, he gen-
erates Ai ← U(Z(m−1)×n

q ), bi,j = siAj as the protocol specification, but a
semi-malicious adversary may generate it adaptively. Under the semi-malicious
adversary model, a common method to prove security is as follows: Assume that
bi,j satisfies the linear relationship bi,j = siAj , and si ∈ {0, 1}m−1, and intro-
duce large noise during encryption. In the following, we introduce this general
method and then give an optimization proof method based on Rényi divergence.

A common approach : We complete the simulation by constructing a reduc-
tion from our scheme to the DGSW scheme. Consider the following Game:

1. Challenger generates pk1 = (A1,b1,1 = s1A1) where A1 ← U(Z(m−1)×n
q ),

s1 ← U{0, 1}m−1 and send pk1 to adversary A
2. After receiving pk1, A generates {pki}i∈[k]/1, where pki = (Ai,bi,i = siAi),

and send it to Challenger.
3. After receiving {pki}i∈[k]/1, Challenger sets {b1,i = s1Ai}i∈[k]/1(the leakage

of s1), and send it to A
4. After receiving {b1,i}i∈[k]/1, A adaptively chooses {s′i}i∈[k]/1, where s′i ∈
{0, 1}m−1, set {bi,1 = s′iA1}i∈[k]/1, and send it to Challenger.

5. After receiving {bi,1}i∈[k]/1, Challenger sets hk1 = (A1,
∑k

i=1 bi,1).
6. A chooses a bit u← {0, 1}, send it to Challenger.
7. Challenger chooses a bit α← {0, 1}, if α = 0 sets C← Enc(hk1, u), otherwise

C← U(Zm×ml
q ), send C to A.

8. After receiving C, A output bit ᾱ, if ᾱ = α, then A wins.



22 Xiaokang Dai Wenyuan WuB, and Yong Feng

Claim 2 Let Adv = |Pr[ᾱ = α]− 1
2 | denote A’s advantage in winning the game

If A can win the game with advantage Adv, then A can distinguish between the
ciphertext distribution of DGSW and the uniform random distribution with the
same(up to negligible) advantage.

Proof. After the third step of the above game,A obtained pk1 and {b1,i}i∈[k]/1(the
leakage of s1). Next, we use the ciphertext of DGSW to construct C. Consider
the following sequence :

1. Challenger chooses a bit α ← {0, 1}, if α = 0 sets CDGSW =

(
A1

b1,1

)
R +(

E0

e1

)
, otherwise CDGSW ← U(Zm×ml

q ), send it to A.

2. After receiving CDGSW, A adaptively chooses {s′i}i∈[k]/1, a bit u ← {0, 1},
send it to Challenger.

3. After receiving {s′i}i∈[k]/1 and u, let CDGSW =

(
C0

c1

)
, s′ =

∑k
i=2 s

′
i,

C′ = CDGSW +

(
0

s′C0

)
+ uG

Obviously, if α = 1, C′ is uniform, otherwise it holds that :

s′C0 = s′(A1R+E0) =

k∑
i=2

bi,1R+ s′E0

C′ = CDGSW +

(
0

s′C0

)
+ uG

=

(
A1

b1,1

)
R+

(
E0

e1

)
+

(
0

s′C0

)
+ uG

=

(
A1

b1

)
R+

(
E0

e1 + s′E0

)
+ uG

If ||e1||∞ is bounded by 2λBχ, and ||s′E0||∞ < kmBχ, thus s′E0/e1 = negl(λ).
By Lemma 1, it holds that C′

stat
≈ C, if A can distinguish between C and uniform

random distribution by advantage Adv, then he can distinguish between CDGSW
and the uniform random distribution with the same advantage. We note that the
above sequence handles the leakage of s1, for CDGSW is a ciphertext generated
by pk1, which security is guaranteed by Lemma 5. ■

Remark: When ||e1||∞ is bounded by 2λBχ, according to the correctness anal-
ysis in Section 5.3, the initial noise einit = e1−sE0 is bounded by (2λ+km)Bχ.
After L-level evaluation, ⟨eL,G−1(wT )⟩ is bounded by l · (ml)L · (2λ + km)Bχ,
log(⟨eL,G−1(wT )⟩) = Õ(λ+ L). Thus result in a q = 2O(λ+L)Bχ
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Rényi divergence-based optimization : The work of Shi et al. [7] pointed
out that Rényi divergence can also be applied in distinguish problems, and in
some cases, it can lead to better parameters than statistical distance. Based on
these results, they obtained better parameters of the Regev encryption scheme.
Theorem 2 states: if there is an algorithm that can distinguish the P problem,
then there is an algorithm that can distinguish the P ′ problem. Our proof method
is as follows :

– Define the P problem as distinguishing our ciphertext from a uniform dis-
tribution

– Prove that for a given DGSW ciphertext, there exists a distribution X ′0, and
a sample x of X ′0 can be constructed from this DGSW ciphertext,

– Define the P ′ problem as distinguishing X ′0 from a uniform distribution

Thus, if there is an adversary who can distinguish the P problem, then he can
distinguish the P ′ problem and can also distinguish the DGSW ciphertext from
the uniform distribution.

Let 01×ml be a zero vector of length ml, Φ be the distribution of hybrid key
of Challenger followed by 01×ml :

(A1,b1,0
1×ml)← Φ

which determined by KeyLifting(·) procedure. Let D0(A1,b1,0
1×ml) be the joint

distribution of (A1,b1,0
1×ml) and the ciphertext

(
A1

b1

)
R+

(
E0

e1

)
encrypted

by (A1,b1) over the randomness R, E0, e1 :

(A1,b1,0
1×ml,

(
A1

b1

)
R+

(
E0

e1

)
)← D0(A1,b1,0

1×ml)

Let D1(A1,b1,0
1×ml) be the joint distribution of (A1,b1,0

1×ml) and U ←
U(Zm×ml

q ) :
(A1,b1,0

1×ml,U)← D1(A1,b1,0
1×ml)

Let P be the decision problems defined as follows :

– Problem P : distinguish whether input x is sampled from distribution X0 or
X1, where

X0 = {x : (A1,b1,0
1×ml)← Φ, x = (A1,b1,0

1×ml,

(
A1

b1

)
R+

(
E0

e1

)
)← D0(A1,b1,0

1×ml)}.

X1 = {x : (A1,b1,0
1×ml)← Φ, x = (A1,b1,0

1×ml,U)← D1(A1,b1,0
1×ml)}.

In the above common approach, we showed how to construct C′ =

(
A1

b1

)
R+(

E0

e1 + s′E0

)
with a given DGSW ciphertext CDGSW =

(
A1

b1,1

)
R +

(
E0

e1

)
and {s′i}i∈[k]/1, which generated by the adversary A. Next, we show that each



24 Xiaokang Dai Wenyuan WuB, and Yong Feng

such C′ is sampled from some distribution. For the random R ∈ Zn×ml
q used

in CDGSW, without loss of generality, assuming ml
n = g, we can divide R into g

square matrices :
R = (R1,R2, · · · ,Rg)

where Ri ∈ Zn×n
q . Similarly, for E0 ∈ Z(m−1)×ml

q , e1 ∈ Zml
q :

E0 = (E0,1,E0,2, · · · ,E0,g)

e1 = (e1,1, e1,2, · · · , e1,g)

where E0,i ∈ Z(m−1)×n
q , e1,i ∈ Zn

q . Then, C′ can be expressed as :

C′ =

(
A1R+E0

b1R1 + s′E0,1 + e1,1,b1R2 + s′E0,2 + e1,2, · · · ,b1Rg + s′E0,g + e1,g

)
Let {vi ∈ Zn

q }i∈[g] be the solution of equation :

{viRi = s′E0,i}i∈[g]

Obviously, if Ri is random over Zn×n
q , then vi has a unique solution with an

overwhelming probability(See Appendix A). Define set V :

V = {01×ml, (v1,v2, · · · ,vg)}

Define the distribution D(V ) over set V :

d← D(V ) :

{
Pr(d = 01×ml) = p

Pr(d = (v1,v2, · · · ,vg)) = 1− p

Let Φ′ be the joint distribution of the hybrid key of our scheme and D(V ) :

(A′,b′,d)← Φ′

Let P ′ be the decision problems defined as follows :

– Problem P ′ : distinguish whether input x is sampled from distribution X ′0
or X ′1, where

X ′0 = {x : (A′,b′,d)← Φ′,

x = (A′,b′,d,

(
A′R′ +E′0

(b′ + d1)R
′
1 + e′1, (b

′ + d2)R
′
2 + e′2, · · · , (b′ + dg)R

′
g + e′g

)
)← D0(A

′,b′,d)}

X ′1 = {x : (A′,b′,d)← Φ′, x = (A′,b′,d,U)← D1(A
′,b′,d)}.

where R′ = (R′1,R
′
2, · · · ,R′g), d = (d1,d2, · · · ,dg)

Thus for any C′ :

C′ =

(
A1R+E0

b1R1 + s′E0,1 + e1,1,b1R2 + s′E0,2 + e1,2, · · · ,b1Rg + s′E0,g + e1,g

)



Title Suppressed Due to Excessive Length 25

it is a sample :

x = (A′,b′,d,

(
A′R′ +E′0

(b′ + d1)R
′
1 + e′1, (b

′ + d2)R
′
2 + e′2, · · · , (b′ + dg)R

′
g + e′g

)
)

of X ′0 with A′ = A1, b′ = b1, R′ = R, E′0 = E0, d = (v1,v2, · · · ,vg), e′i = e1,i.
We note that C′ only forms part of the sample of X ′0. The completed sample

also contains {vi}i∈[g] which are determined by {viRi = s′E0,i}i∈[g] where Ri,
E0,i is generated by Challenger, s′ is generated by adversary A. Consider the
following sequence :

1. Challenger generates DGSW ciphetext CDGSW =

(
A1

b1.1

)
R +

(
E0

e1

)
and

send it to adversary
2. After receiving CDGSW, A adaptively generates s′, and send it to Challenger.
3. Challenger computes {vi}i∈[g] by {viRi = s′E0,i}i∈[g], and then constructs

a complete X ′0 sample from C′ and {vi}i∈[g]
Note that exposing {vi}i∈[g] to adversary will reveal the linear relationship

between Ri and E0,i. We need to ensure that afterA gets {vi}i∈[g], CDGSW is still
indistinguishable. By leftover hash lemma, we can replace b1,1 by u ← U(Zn

q ).
Thus, distinguish

(

(
A1

b1.1

)
,CDGSW, {vi}i∈[g], s′)

with uniform corresponding to distinguish the "interactive LWE " problem :

(A,AR+E, {vi}i∈[g], s′)

with (A,U, {vi}i∈[g], s′) which by Theorem 3 is not simpler than the low dimen-
sional LWE problem.

So far, we have completed the construction of X ′0 samples: that is, for each
given DGSW ciphertext CDGSW, after getting s′ from A, Challenger can convert
it into a sample of X ′0. Since the outputs of our distributions of D0(·) and D1(·)
contain the samples (A1,b1,0

1×ml) or (A′,b′,d) of the prior distributions Φ and
Φ′, thus D0(·) and D1(·) satisfy the publicly sampleable property(see Theorem
2) required by Theorem 2. The sampling algorithm S is just the encryption
operation of our scheme with hybrid key (A1,b1,0

1×ml) or (A′,b′,d). Then, by
Theorem 2, if given a T - time distinguisher A for problem P with advantage ϵ, we
can construct a distinguisher A′ for problem P ′ with run-time and distinguishing
advantage, respectively, bounded from above and below by(for any a ∈ (1,+∞]) :

64

ϵ2
log

(
8Ra(Φ||Φ′)
ϵa/(a−1)+1

)
· (TS + T ) and

ϵ

4 ·Ra(Φ||Φ′)
·
( ϵ
2

) a
a−1

.

For convenience, we take R∞(Φ||Φ′) analysis, let :

R∞(Φ||Φ′) = max
Y ∈Supp(Φ)

Φ(Y )

Φ′(Y )
=

Φ(A0,b0,0
1×ml)

Φ′(A0,b0,01×ml)
.

=
Pr(A = A0,b = b0)

Pr(A = A0,b = b0,d = 01×ml)
(2)
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Because (A,b) and D(V ) are independent, thus :

(2) =
Pr(A = A0,b = b0)

Pr(A = A0,b = b0) Pr(d = 01×ml)
=

1

p

Then, given a T - time distinguisher A for problem P with advantage ϵ, we can
construct a distinguisher A′ for problem P ′ with run-time and distinguishing
advantage, respectively, bounded from above and below by :

64

ϵ2
log

(
8

p · ϵ2

)
· (TS + T ) and

p · ϵ2

8
.

Remark : Under the semi-honest adversary model, {Ai}i∈[k] and {si}∈[k] are
sampled as specified by the protocol, and the security is obvious. Under the
semi-malicious adversary model, the common approach assumes bj,i = sjAi

and{sj∈[k]/1} ∈ {0, 1}m−1 is chosen adaptively, and introduces large noise in the
encryption process to ensure security. In our proof method based on Rényi diver-
gence, we need to introduce neither the above assumptions nor large encryption
noise.

This Rényi divergence-based proof method provides an alternative idea for
those proofs that must introduce strong assumptions and large noise to ensure
security.

5.5 Noise flooding technology VS Leakage resilient property in
partial decryption

We note that introducing noise flooding in the partial decryption phase is es-
sential to guarantee the semantic security of fresh ciphertext, and noise flooding
achieves this by masking the private key information in the partial decryption
noise. For partial decryption to be simulatable, the magnitude of the noise in-
troduced needs to be exponentially larger than the noise after the homomorphic
evaluation. At the same time, as mentioned in [34], masking techniques based on
noise flooding can only guarantee weak simulatable properties: input all private
keys {skj}j∈[k]/i except ski, evaluated result uL, ciphertext C(L), it can simulate
the local decryption result γi, while for stronger security requirements: input
any private key set {skj}j∈S for any subset S of [k], evaluated result ueval and
ciphertext C(L), to simulate {γi}i∈U, U=[k]−S , it do not know how to achieve it.

With noise flooding : To illustrate how our approach works, let us first review

the noise flooding technique. Let C(L) =

(
Cup

clow

)
be the ciphertext after L-layer

homomorphic multiplication. With a flooding noise e′′i ← U [−Bsmdg, Bsmdg],
introduced in LocalDec(·), we have :

γi = ⟨−si,CupG
−1(wT )⟩+ e′′i
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By Equation (1) and FinalDec(·) :

γi = uL⌈
q

2
⌉+ ⟨eL,G−1(wT )⟩+ e′′i − ⟨clow,G−1(wT )⟩+ ⟨

k∑
j ̸=i

sj ,CupG
−1(wT )⟩

For a simulator S, input {skj}j∈[k]/i, evaluated result uL, ciphertext C(L), output
simulated γ′i

γ′i = uL⌈
q

2
⌉+ e′′i − ⟨clow,G−1(wT )⟩+ ⟨

k∑
j ̸=i

sj ,CupG
−1(wT )⟩

In order to make the partial decryption process simulatable, it requires :

⟨eL,G−1(wT )⟩+ e′′i
stat
≈ e′′i

For the parameter settings in [34] : Bsmdg = 2Lλ log λBχ, q = 2ω(Lλ log λ)Bχ,
obviously :

|⟨eL,G−1(wT )⟩/e′′i | = negl(λ)

thus γi
stat
≈ γ′i.

In short, the noise e′′i is introduced to cover up some information(private key
si and the noise Ei in initial ciphertext) of participant i contained in eL(Noise
obtained by decrypting the ciphertext of level L, t̄C(L) = eL + uLt̄G) . Thus
the partial decryption result of participant i can be simulated, providing other
parties with information.

Without noise flooding : Through the above analysis, we point out that
as long as our encryption scheme is leakage-resilient and covers the initial noise
{Ei}i∈[N ] in eL, there is no need to introduce noise flood in the partial decryption
stage. To illustrate what information is contained in eL, let us look at how eL
is generated. For the initial ciphertext :

C1 =

(
A1

b1

)
R1 +E1 + u1G, C2 =

(
A2

b2

)
R2 +E2 + u2G,

After performing a homomorphic multiplication operation, we obtain:

C1G
−1(C2) =

[(
A1

b1

)
R1 +E1 + u1G

]
G−1(C2)

=

(
A1

b1

)
R1G

−1(C2) +E1G
−1(C2) + u1

(
A2

b2

)
R2 + u1E2 + u1u2G

= Π1 + δ1 + u1u2G
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where :

Π1 =

(
A1

b1

)
R1G

−1(C2) + u1

(
A2

b2

)
R2

δ1 = E1G
−1(C2) + u1E2

and t̄Π1 = 0, δ1 is the noise after the first homomorphic evaluation. For the
ciphertexts C3,C4 of the same level, we have C3G

−1(C4) = Π ′1 + δ′1 + u3u4G,
where Π ′1, δ

′
1 and Π1, δ1 have the same structure.

Let C(2), C(2)′ be the ciphertext at level 2 :

C(2) = C1G
−1(C2), C(2)′ = C3G

−1(C4)

δ2 = δ1G
−1(C(2)′) + u1u2δ

′
1

we have C(2)G−1(C(2)′) = Π2 + δ2 + u1u2u3u4G. For the ciphertext at level L,
we have :

C(L) = C(L−1)G−1(C(L−1)′) = ΠL−1 + δL−1 + uL−1u
′
L−1G

δL−1 = δL−2G
−1(C(L−1)′) + uL−1δ

′
L−2

To find out what information δL−1 contains, first, we observe δ1 = E1G
−1(C2)+

u1E2.

Lemma 6 For the DGSW ciphertext C1, C2, let C(2) = C1G
−1(C2), the noise

δ1 obtained by decrypting C(2) is dominated by the noise E1 in C1 :

δ1
stat
≈ E1G

−1(C2) (3)

To prove the above statement, we first prove that the distribution of the sum of
multiple independent and identically distributed(iid) discrete Gaussian is close
to discrete Gaussian. The work [37] has already proved the case of two discrete
Gaussian summations, while we generalize this result to the case of multiple
summations.

Lemma 7 Let ϵ = 2−λ, σ >
√
2ηϵ(Z), m = (kn+W )l, l = ⌈log q⌉, {yi}i∈[ml] ←

DZ,σ, y′ ← DZ,
√
mlσ. we have :

∆(

ml∑
i=1

yi, y
′) ≤ 8mlϵ.

Proof. Let {y(1)i }i∈[ml/2] ← DZ,
√
2δ, by lemma 3 :

∆(y1 + y2, y
(1)
1 ) < 8ϵ

∆(y3 + y4, y
(1)
2 ) < 8ϵ

· · ·

∆(yml−1 + yml, y
(1)
ml
2

) < 8ϵ
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By the subadditivity of statistical distances (we proved it in Appendix B), we
have :

∆(

ml∑
i=1

yi,

ml
2∑

i=1

y
(1)
i ) <

ml

2
· 8ϵ.

Let {y(2)i }i∈[ml/4] ← DZ,2δ, again by lemma 3 :

∆(y
(1)
1 + y

(1)
2 , y

(2)
1 ) < 8ϵ

Thus:

∆(

ml
2∑

i=1

y
(1)
i ,

ml
4∑

i=1

y
(2)
i ) <

ml

4
· 8ϵ.

Iterating the above process, we have :

∆(

ml∑
i=1

yi, y
′) ≤ ml

2
· 8ϵ+ ml

4
· 8ϵ+, · · · ,+8ϵ = 8mlϵ.

we complete the proof.
■

Remark: We point out that the result here is certainly not sharp since we
directly exploit the results of Lemma 3, which already satisfies our needs. For
the case of summing multiple discrete Gaussian, if one follows the path of [37],
a smaller statistical distance bound should be obtained.

Here, we prove Lemma 6:

Proof. First, according to the LWE assumption, replace G−1(C2) with M ←
U{0, 1}ml×ml. When u1 = 0, it is proved. Assuming u1 = 1, let δ1(i, j), E1M(i, j)
be the i-th row, j-th column element of δ1, E1M respectively. We have :

δ1(1, 1) = z1e1 + z2e2 + · · ·+ zmleml + eml+1

E1M(1, 1) = z1e1 + z2e2 + · · ·+ zmleml

where {zi}i∈[ml] is the first column of M, {ei}i∈[ml] ← DZ,σ is the first row of
E1, E2(1, 1) = eml+1 ← DZ,σ. Suppose, the number of 1s in {zi}i∈[ml] is r. By
lemma 7 we have :

∆(δ1(1, 1),DZ,
√
r+1σ) ≤ 8(r + 1)ϵ.

∆(E1M(1, 1),DZ,
√
rσ) ≤ 8rϵ

For our parameter setting, 8rϵ ≤ 8mlϵ = poly(λ) · 2−λ = negl(λ). Thus :

δ1(1, 1) ∼ DZ,
√
r+1σ

E1M(1, 1) ∼ DZ,
√
rσ
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The statistical distance of δ1(1, 1) and E1M(1, 1) is :

∆(δ1(1, 1),E1M(1, 1)) =
1

2

+∞∑
−∞

∣∣∣∣ ρ√rσ(x)

ρ√rσ(Z)
−

ρ√r+1σ(x)

ρ√r+1σ(Z)

∣∣∣∣ = x∑
−x

(
ρ√rσ(x)

ρ√rσ(Z)
−

ρ√r+1σ(x)

ρ√r+1σ(Z)

)

= 2

−x∑
−∞

(
ρ√r+1σ(x)

ρ√r+1σ(Z)
−

ρ√rσ(x)

ρ√rσ(Z)

)
< 2

−x∑
−∞

ρ√r+1σ(x)

ρ√r+1σ(Z)
.

where x =
√
r(r + 1) ln r+1

r σ is the root of equation :

ρ√r+1σ(x)

ρ√r+1σ(Z)
=

ρ√rσ(x)

ρ√rσ(Z)

Let C =
√
r(r + 1) ln r+1

r , By the Lemma 4 in [1], We have :

2

−x∑
−∞

ρ√r+1σ(x)

ρ√r+1σ(Z)
<

2

C
√
2π

exp{−C2

2
}

=
2

C
√
2π

exp{−1

2
r(r + 1) ln

r + 1

r
}

=
2

C
√
2π

exp{−r + 1

2
}

Generally, r is distributed like the summation of ml independent identically
distributed 0-1 distribution, thus r ∼ B(ml, 1

2 ). By Theorem 1,

Pr(r < λ) ≤ e−
( 1
2
ml−λ)2

ml−λ = negl(λ)

for ml > 4λ. Thus, the statistical distance of δ1(1, 1) and E1M(1, 1) :

∆(δ1(1, 1),E1M(1, 1)) <
2

C
√
2π

exp{−λ+ 1

2
} = negl(λ).

We completed the proof, for other item of δ1(i, j) and E1M(i, j)) the statement
also holds.

■

According to the results we proved above, the noise E2 of the right ciphertext
C2 in the ciphertext C1G

−1(C2) is masked by the noise E1 in the left ciphertext
C1. Similarly, the noise E4 of C4 in C3G

−1(C4) is masked by the noise E3 of
C3 on the leftside. For the noise δ2 = δ1G

−1(C(2)′)+u1u2δ
′
1 of the third level, δ′1

is masked by δ1, and similarly the noise δL−1 = δL−2G
−1(C(L−2)′) + uL−2δ

′
L−2

of the L-th level, δ′L−2 is masked by δL−2. We illustrate this continuous process
in Figure 2.

If the circuit with input length N and depth L, as long as L > logN , then
the noise δL−1 of the ciphertext C(L) of the L-th level only contains the infor-
mation of noise Et(t ∈ [N ]) in a certain initial ciphertext. At this point, we only
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Fig. 2. Circuit

need to left-multiply C(L) by a ciphertext Enc(1) whose plaintext is 1, and let
Cclear = Enc(1)G−1(C(L)). Thus, the noise δclear in Cclear does not contain
any information about the noise {Ei}i∈[N ] in the initial ciphertext {Ci}i∈[N ].
Decrypting Cclear, we have :

t̄CclearG
−1(wT ) = t̄δclearG

−1(wT ) + uL⌈
q

2
⌉.

Let eL = t̄δclear, therefore, ⟨eL,G−1(wT )⟩ ∈ Zq leaks participant i’s private
key si with at most log q bits. For a circuit with output length W , the partial
decryption leaks W log q bits of si. Because our scheme is leakage-resilient, as
long as we set the key length reasonably m = (kn + W ) log q + λ, the initial
ciphertext {Ci}i∈[N ] is semantically secure.

Remark : We point out that the asymmetric nature of noise in GSW ciphertext
has been noted in [10] before us, but their aims and results are completely
different from ours. Their purpose is to preserve the privacy of the circuit, i.e. to
ensure that the final decrypted noise is independent of the circuit C. In contrast,
our purpose is to be independent of the initial noise. They show a discrete
Gaussian version of the leftover hash lemma. In contrast, we show that the
statistical distances of the distributions

∑m
i=1 ei and

∑m+1
i=1 ei are exponentially

close to zero with m.

Here, the reader might think that doing so would result in a longer key than
noise flooding. We point out that as long as the output length W of the circuit
satisfies W < kn(λ − 1), the length of the private key will not be longer than
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when using noise flooding. For m = (kn+W ) log q+λ, q = 2O(L)Bχ, while with
noise flooding m′ = kn log q′+λ, q′ = 2O(λL)Bχ. In order to make m < m′, only
W < kn(λ−1) is required; thus, for circuits with small output fields, our scheme
does not lead to longer keys.

5.6 Bootstrapping

In order to eliminate the dependence on the circuit depth to achieve full homo-
morphism, we need to use Gentry’s bootstrapping technology. It is worth noting
that the bootstrapping procedure of our scheme is the same as the single-key
homomorphic scheme: After Key lifting procedure, participant i uses hybrid key
hki to encrypt si to obtain evaluation key evki. Because evki and C(L) are both
ciphertexts under t̄ = (−

∑k
i=1 si, 1), homomorphic evaluation of the decryption

circuit could be executed directly as C(L) are need to be refresh. Therefore, to
evaluate any depth circuit, we only need to set the initial parameters to satisfy
the homomorphic evaluation of the decryption circuit.

However, for those MKFHE schemes that require ciphertext expansion, addi-
tional ciphertext expansion is required, for the reason that C(L) is the ciphertext
under t̄, but {evki}i∈[k] are the ciphertext under {ti}i∈[k]. In order to expand
{evki}i∈[k] → {êvki}i∈[k], participant i needs to encrypt the random matrix of
the ciphertext corresponding to evki. The extra encryption of i needs to be done
locally are O(λ9L6).

6 Conclusions

For the LWE-based MKFHE, in order to alleviate the overhead of the local
participants, we proposed the concept of KL-MKFHE, which introduced a Key
lifting procedure, getting rid of expensive ciphertext expansion operation and
constructing a DGSW style KL-MKFHE under the plain model. Our scheme is
more friendly to local participants than the previous scheme, for which the local
encryption O(Nλ6L4) are reduced to O(N). By abandoning noise flooding, it
compresses q from 2O(λL)Bχ to 2O(L)Bχ, reducing the computational scale of the
entire scheme. However, the key length depends on the number of participants
and the amount of leakage, which limits the scheme’s application to some extent.
Further work will focus on compressing the key length.
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Appendix

A Probability that {vi}i∈[g] has a solution

Random Matrices : For a prime q, the probability that a uniformly random
matrix A← U(Zn×m

q )(with m ≥ n) has full rank is given by :

Pr[rank(A) < n] = 1−
n−1∏
i=0

(1− qi−m).

For equations :
{viRi = s′E0,i}i∈[g]

if {Ri}i∈[g] are all invertible, obviously {vi}i∈[g] has a solution. For a random
matrix R over Zn×n

q , the probability that it is invertible is
∏n−1

i=0 (1− qi−n). For
the parameter settings in our scheme, q = 2O(L)Bχ, m = (kn +W ) log q + 2λ,
g = mL/n, the probability that {Ri}i∈[g] are all invertible is :

Pr = (

n−1∏
i=0

(1− (2L)i−n)
(kn+W )L2+2λL

n ≥ (1− 2−L)(kn+W )L2+2λL

This probability is close to 1, for 2−L decreases faster than L2. We tested
the probability on Maple18 by set q = 2100, k = 50, n = 500, W = 1000,
λ = 128(which should be able to cover the actual application) obtained Pr >
0.99999999999999999999979487596980336327269120254193.

https://eprint.iacr.org/2016/196
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B the additivity of statistical distances

Claim 3 For discrete random variables X,Y, Z with measurable space E, the
statistical distance ∆(X,Z), ∆(X,Y ), ∆(Y, Z) satisfy: (triangular inequality)

∆(X,Z) ≤ ∆(X,Y ) +∆(Y,Z).

Proof.

∆(X,Z) =
1

2

∑
k∈E

|(Pr(X = k)− Pr(Z = k))|

≤ 1

2

∑
k∈E

(|Pr(X = k)− Pr(Y = k)|+ |Pr(Y = k)− Pr(Z = k)|)

≤ ∆(X,Y ) +∆(Y, Z).

■

Claim 4 For discrete random variables X,Y, Z with measurable space E, if
X,Y, Z are independent, then :

∆(X + Y, Y + Z) ≤ ∆(X,Z)

Proof.

∆(X + Y, Y + Z) =
1

2

∑
k∈E

|Pr(X + Y = k)− Pr(Z + Y = k)|

=
1

2

∑
k∈E

|Pr(X = k − Y )− Pr(Z = k − Y )|

=
1

2

∑
k∈E

|
∑
b∈E

(Pr(Y = b) Pr(X = k − b)− Pr(Y = b) Pr(Z = k − b)|

=
1

2

∑
k∈E

|
∑
b∈E

Pr(Y = b)(Pr(X = k − b)− Pr(Z = k − b))|

≤ 1

2

∑
k∈E

∑
b∈E

|Pr(Y = b)(Pr(X = k − b)− Pr(Z = k − b))|

=
1

2

∑
b∈E

Pr(Y = b)
∑
k∈E

|Pr(X = k − b)− Pr(Z = k − b)|

≤
∑
b∈E

Pr(Y = b) ·∆(X,Z)

= ∆(X,Z)

■
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Claim 5 For discrete random variables X,Y, Z,W with measurable space E, if
X,Y, Z,W are independent, then :

∆(X + Y, Z +W ) ≤ ∆(X,Z) +∆(Y,W ).

Proof. by Claim 3, We have :

∆(X + Y, Z +W ) ≤ ∆(X + Y,Z + Y ) +∆(Z + Y, Z +W )

then, by Claim 4, We have :

∆(X + Y, Z + Y ) +∆(Z + Y,Z +W ) ≤ ∆(X,Z) +∆(Y,W ).

■

C The proof of DGSW leakage-resilient in [12], and our
improved method.

For a given DGSW ciphertext :

C =

(
A
b

)
R+

(
E0

e1

)
Let C0 = AR + E0, c1 = bR + e1. Because b = sA, thus C can be rewritten
as :

C =

(
C0

sC0 + e1 − sE0

)
(4)

The proof in [12] required sE0/e1 = negl(λ), thus C
stat
≈
(

C0

sC0 + e1

)
. Using

the leftover hash lemma with C0 as a seed and s as a source, they had that
(C0, sC0) were jointly statistically indistinguishable from uniform, which Lemma
5 followed.

Our method : Below we show that sE0/e1 = negl(λ) is not necessary to prove
that DGSW is leakage-resilient. Through the above analysis, we know that for
any DGSW ciphertext, we can always write it in the form of (4). For random
R ∈ Zn×ml

q , without loss of generality, assuming ml
n = g, we can divide R into

g square matrices :
R = (R1,R2, · · · ,Rg)

where Ri ∈ Zn×n
q . Similarly, for E0 ∈ Z(m−1)×ml

q , e1 ∈ Zml
q :

E0 = (E0,1,E0,2, · · · ,E0,g)

e1 = (e1,1, e1,2, · · · , e1,g)

where E0,i ∈ Z(m−1)×n
q , e1,i ∈ Zn

q . Let {vi ∈ Zn
q }i∈[g] be the solution of equation

:
{viRi = sE0,i}i∈[g]
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Obviously, if Ri is random over Zn×n
q , then vi has a unique solution with an

overwhelming probability. Let 01×ml be a zero vector of length ml, Φ be the
distribution of public key of DGSW followed by 01×ml :

(A,b,01×ml)← Φ

Let D0(A,b,01×ml) be the joint distribution of public key and ciphertext of
DGSW, over the randomness R, E0, e1 :

(A,b,01×ml,

(
A
b

)
R+

(
E0

e1

)
)← D0(A,b,01×ml)

LetD1(A,b,01×ml) be the joint distribution of (A,b,01×ml) and U← U(Zm×ml
q )

:
(A,b,01×ml,U)← D1(A,b,01×ml)

Let P be the decision problems defined as follows :

– Problem P : distinguish whether input x is sampled from distribution X0 or
X1, where

X0 = {x : (A,b,01×ml)← Φ, x = (A,b,01×ml,

(
A
b

)
R+

(
E0

e1

)
)← D0(A,b,01×ml)}.

X1 = {x : (A,b,01×ml)← Φ, x = (A,b,01×ml,U)← D1(A,b,01×ml)}.

Define set V :
V = {01×ml, (v1,v2, · · · ,vg)}

Define the distribution d← D(V ) over set V :

{d← D(V ) : Pr(d = 01×ml) = p Pr(d = (v1,v2, · · · ,vg)) = 1− p}

Let Φ′ be the joint distribution of DGSW public key and D(V ) :

(A′,b′,d)← Φ′

Let P ′ be the decision problems defined as follows :

– Problem P ′ : distinguish whether input x is sampled from distribution X ′0
or X ′1, where

X ′0 = {x : (A′,b′,d)← Φ′,

x = (A′,b′,d,

(
A′R′ +E′0

(b′ + d1)R
′
1 + e′1, · · · , (b′ + dg)R

′
g + e′g

)
)← D0(A

′,b′,d)}.

X ′1 = {x : (A′,b′,d)← Φ′, x = (A′,b′,d,U)← D1(A
′,b′,d)}.

where R′ = (R′i, · · · ,R′g) ← U(Zn×ml
q ), e′i ← χn, d = (d1,d2, · · · ,dg). Thus ,

for C′ :

C′ =

(
C0

sC0 + e1

)
=

(
AR+E0

bR+ e1 + sE0

)
=

(
AR+E0

bR1 + e1,1 + sE0,1, · · · ,bRg + e1,g + sE0,g

)
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it is a sample of X ′0 :(
A′R′ +E′0

(b′ + d1)R
′
1 + e′1, · · · , (b′ + dg)R

′
g + e′g

)
with A′ = A, b′ = b, R′ = R, E′0 = E0, (e′1, e′2, · · · , e′g) = (e1,1, e1,2, · · · , e1,g),
d = (v1,v2, · · · ,vg).

The following process is the same as we showed in Section 5.4. By Theorem
2, if there is an adversary who can distinguish the DGSW ciphertext with uni-
form distribution(Problem P ) that leaks part of the private key, then he can
distinguish(C0, sC0 + e1) with uniform distribution which is jointly statistically
indistinguishable by leftover hash lemma.
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