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Abstract. Multi-key Fully Homomorphic Encryption (MKFHE), based on the Learning With
Error assumption (LWE), usually lifts ciphertexts of different users to new ciphertexts under a
common public key to enable homomorphic evaluation. The efficiency of the current Multi-key
Fully Homomorphic Encryption (MKFHE) scheme is mainly restricted by two aspects:

1. Expensive ciphertext expansion operation: In a boolean circuit with input length
N , multiplication depth L, security parameter λ, the number of additional encryptions
introduced to achieve ciphertext expansion is O(Nλ6L4).

2. Noise flooding technology resulting in a large modulus q: In order to prove the
security of the scheme, the noise flooding technology introduced in the encryption and
distributed decryption stages will lead to a huge modulus q = 2O(λL)Bχ, which corrodes
the whole scheme and leads to sub-exponential approximation factors γ = Õ(n · 2

√
nL).

This paper solves the first problem by presenting a framework called Key-Lifting Multi-key
Fully Homomorphic Encryption (KL-MKFHE). With this key lifting procedure, the number
of encryptions for a local user is reduced to O(N), similar to single-key fully homomorphic
encryption (FHE). For the second problem, we prove the discrete Gaussian version of the
Smudging lemma, and combined with the anti-leakage properties of the encryption, we remove
the noise flooding technique introduced in the distributed decryption. Secondly, we propose an
analysis method based on Rényi divergence, which removes the noise flooding technology in
the encryption stage. These approaches significantly reduces the size of the modulus q (with
log q = O(L)) and the computational overhead of the entire scheme.

Keywords: Multi-key homomorphic encryption · Rènyi divergence · Noise flooding · Leakage
resilient cryptography.

1 Introduction

Multi-key Fully Homomorphic Encryption (MKFHE). To deal with the privacy of multiple
data providers, López-Alt et al. [16] proposed the concept of MKFHE and constructed the first
MKFHE scheme based on the modified-NTRU [26]. Conceptually, it enhanced the functionality of
Fully Homomorphic Encryption(FHE) by allowing data providers to encrypt data independently from
other parties. Key generation and data encryption is done locally. To obtain the evaluated result, all
parties are required to execute of a round of threshold decryption protocol.

After López-Alt et al. proposed the concept of MKFHE, many schemes were developed. In 2015,
Clear and McGoldrick [12] constructed a LWE-based MKFHE scheme. This scheme defined the com-
mon private key as concatenating all private keys. It constructed a masking scheme to convert cipher-
text under the individual public keys to the common public key by introducing a Common reference
string (CRS) and the circular-LWE assumptions. In 2016, Mukherjee and Wichs [21], Peikert and
Shiehian [23], and Brakerski and Perlman [9] constructed MKFHE schemes based on GSW, respec-
tively. Mukherjee and Wichs [21] simplified the masking scheme of [12] and focused on constructing
a two-round MPC protocol. Different methods in [23] and [9] were proposed delicately to construct
a multi-hop MKFHE. It is worth mentioning that all MKFHE schemes constructed based on LWE
require a ciphertext expansion procedure.
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1.1 Motivation

A series of work [4,8,21] showed that MKFHE was an excellent base tool for building round-optimal
MPC. However, despite looking attractive, the construction of MKFHE involves some cumbersome
operations and unavoidable assumptions. Below we describe some details of the MKFHE scheme and
state our goal in the last paragraph of this subsection.

Ciphertext expansion is expensive. Although the MKFHE based on LWE can use the Leftover
hash lemma (LHL) to remove CRS, to convert the ciphertext under different keys to the ciphertext
under the same key (ciphertext expansion procedure), parties and the computing server need to
do much preparatory work. For ciphertext expansion, it is necessary to encrypt the random matrix
R ∈ Zm×m

q of each ciphertext. For a boolean circuit with an input length of N , multiplication depth
of L, security parameter of λ, m = n log q+ ω(log λ), the additional encryption operation introduced
is O(Nλ6L4), in contrast to O(N) for single-key FHE.

CRS looks inevitable. Due to the compact structure of the polynomial ring and some fascinating
parallel algorithms such as SIMD, it is generally believed that FHE scheme based on RLWE is more
efficient than FHE based on LWE. This is why most current MKFHE schemes, such as [10, 11, 20],
are constructed based on RLWE. Leftover Hash Lemma (LHL) over integer ring Z enjoys the leakage
resilient property: It can transform an average quality random sources into higher quality [15] which
can be used to get rid of CRS as [8] does. However, regularity lemma [17] over polynomial rings
does not have corresponding properties, as [13] mentioned: if the j -th Number theoretical transfer
(NTT) coordinate of each ring element in x = (x1, . . . , xl) is leaked, then the j -th NTT coordinate
of al+1 =

∑
aixi is defined, so al+1 is very far from uniform, yet this is only a 1/n leakage rate.

Therefore, it seems to be more difficult to remove CRS for RLWE-based MKFHE.

Noise flooding technology resulting in a large modulus q. As far as we know so far, whether
it is MKFHE or Threshold fully homomorphic encryption (Th-FHE), such as [8] [21] [12] [9] [5],
a great noise needs to be introduced in encryption phase or the distributed decryption phase to
ensure security; otherwise, the private key may be leaked. To make the result of partial decryption
simulatable, assuming that the noise accumulated after the evaluation is eeval and the private key
is s, the flooding noise esm must satisfy ⟨eeval, s⟩ /esm = negl(λ). To ensure the decryption result’s
correctness, modulus q needs to satisfy q ≥ 4esm. Thus noise flooding results in a q exponentially
larger than the q in a single-key FHE. Typically, in [21], the flooding noise esm = 2O(Lλ log λ)Bχ, the
modulus q = 2ω(Lλ log λ)Bχ, and the corresponding approximation factor of GapSVPγ is γ = Õ(n ·2λL)
(which is sub-exponential in n by replacing λ =

√
n/L)3.

Our goal : We try our best to make MKFHE "closer" to FHE in terms of security assumptions
and efficiency.

– Without CRS : we do not assume the existence of a dealer or a common reference string
– Data providers do as many encryptions as the single-key FHE(O(N) for the circuit with

input length N).
– q = 2O(L)Bχ of the same size as the single-key FHE, while q = 2O(λL)Bχ for those schemes

introduced noise flooding.

1.2 Related works

Except sum type of key structure [5], concatenation structures were studied in [12] [23] [21] [9] [10]
together with CRS. Ananth et al. [3] removed CRS from a higher dimension; instead of using LHL or
regularity lemma, they based on Multiparty Homomorphic Encryption and modified the initialization
method of its root node to achieve this purpose. Brakerski et al. [8] was the first scheme using the
leakage resilient property of LHL to get rid of CRS, which had the concatenation common private key

3 To achieve 2λ security against known lattice attacks, one must have n = Ω(λ log q/Bχ)



Key lifting : Multi-key Fully Homomorphic Encryption in plain model without noise flooding 3

structure, and ciphertext expansion was essential. All of the above schemes introduced noise flooding
technology in distributed decryption phase.

Recently, the work [2] has proposed an alternative approach: instead of removing it, they proposed
the concept of accountability of CRS, that is, the generator of CRS should be responsible for its
randomness; otherwise, the challenging party can provide a publicly verifiable proof that certifies the
authority’s misbehaviour. This could be an effective means of balancing authority. We compare some
properties in related work in Table 1.

Table 1. Scheme property comparison

Scheme Key structure CRS Noise flooding Interaction(setup
phase)

THFHE [5] S ✓ ✓ ✓

MKFHE [10] C ✓ ✓ ✕

MKFHE [21] C ✓ ✓ ✕

MKFHE [8] C ✓ ✓ ✓

Our scheme S ✕ ✕ ✓

S" and "C" in the column of Key structure represent the sum or concatenated key structure, respectively. ✓ indicates that
the corresponding operation or assumption needs to be introduced, or ✕ indicates that it is not required.

1.3 Our Contributions

We propose the concept of KL-MKFHE which, under multiple users, compared with MKFHE, it puts
forward more stringent requirements on assumptions, parameters, and computational complexity,
making it closer to single-key FHE. (As a compromise, we allow a small amount of interaction during
the key generation)

KL-MKFHE. Different from previous definition [21], we abandon the ciphertext expansion proce-
dure, instead, introducing a key lifting procedure which at a lower cost. Informally, the key lifting is
an interactive protocol. The input is the key pair of all parties. After the protocol, the "lifted" key
pair outputs, called the hybrid key, which has such properties :

– Everyone’s hybrid key is different.
– The ciphertext encrypted by different hybrid keys supports homomorphic evaluation.

In addition to the properties that are required by MKFHE, such as Correctness, Compactness, Se-
mantic security, KL-MKFHE should satisfy the following three additional properties :

– Plain model : No trusted setup or Common Reference String
– Locally Computationally Compactness : For a computational task corresponds to a Boolean

circuit with an input length of N , a KL-MKFHE scheme is locally computationally compact if the
parties do O(N) encryptions as the single-key FHE scheme.

– Low round complexity : Only two round interaction is allowed in the key lifting procedure.

Smudging lemma over discrete Gaussian. We prove the discrete Gaussian version of the smudg-
ing lemma. Since we consider the distribution of masked terms, the theorem 1 has smaller noise terms
than the general lemma (reduce from superpolynomial to polynomial). This should be a widely used
result. As long as the noise you want to drown out is discrete Gaussian, then our results can be used
instead of the general smudging lemma, thereby greatly reducing the size of the parameters. Further-
more, combining the corollary 1 of this theorem and the properties of leakage-resistant encryption,
we remove the noise flooding technique in the distributed decryption stage.

Theorem 1 Let DZ,σ be the discrete gaussian distribution over Z with variance σ2. Let n > 0 be an
integer. Let e1 ← DZn,σ, e2 ← DZn,σ, M← {0, 1}n×n. Let δ ∈ R and

ρΣ′(Zn)

ρΣ(Zn)
= δ

√
det(Σ′)

det(Σ)
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if δ > e−2+
6π

n+1 , we have :
∆(e1M, e1M+ e2) < 2−n

where Σ and Σ′ are the covariance matrix of e1M and e1M+ e2 respectively.

Remark: You can think of e2 as a term that needs to be masked. If the smudging lemma is used,
we need ||e1M/e2||∞ = suppoly(n), but in our Theorem 1 we obviously have ||e1M/e2||∞ = O(n).

Corollary 1 Let DZ,σ be the discrete gaussian distribution over Z with variance σ2. Let m > 0,
n > 0 be two integers. Let E1 ← DZm×n,σ, E2 ← DZm×n,σ, M← {0, 1}n×n. Let δ ∈ R and

ρΣ′(Zmn)

ρΣ(Zmn)
= δ

√
det(Σ′)

det(Σ)

if δ > e−2+
2π(m+1)

n+1 + 2
mn , we have

∆(E1M, E1M+E2) < 2−n

where Σ and Σ′ are the covariance matrix of E1M and E1M+E2 respectively.

LWE-based KL-MKFHE under plain model. Our scheme is based on the LWE assumption.
The common private key is the sum of the private keys of all parties, where MKFHE or Th-FHE
schemes [19] [5] have this key are based on the CRS model. For a circuit with an input length N , our
scheme has local users to perform O(N) encryption, which O(Nλ6L4) for those schemes that require
ciphertext expansion. In addition, because we remove the noise flooding technique, our scheme has
q = 2O(L), while q = 2O(λL) for other schemes. We give a comparison with schemes [8] [23] [5] in
Table 2.

Table 2. Scheme complexity comparison

Scheme Module q Extra encryption Interaction(setup phase) CRS

MKFHE [23] 2O(λL)Bχ Õ(Nλ14L9) ✕ ✓

MKFHE [8] 2O(λL)Bχ Õ(Nk3λ15L10) 2 rounds ✕

Th-FHE [5] 2O(λL)Bχ ✕ 1 rounds ✓

Our scheme 2O(L)Bχ ✕ 2 rounds ✕

The notation Õ hides logarithmic factors. The "Module q" column denotes module base; the "Extra encryption" column
denotes the number of multiplication over Zq ; λ denotes the security parameter, k parties number, Bχ the initial LWE noise;

N , L, W denotes the input length, depth, and output length of the circuit respectively. In [23] [8] [5], n represents the
dimension of the LWE problem, in order to compare under the same security level, we replace n with the expression in terms

of λ and L. To achieve 2λ security against known lattice attacks, one must have n = Ω(λ log q/Bχ). For our parameter
settings q = 2O(L)Bχ, thus we would have n = Ω(λL), while n = Ω(λ2L) for the previous scheme with noise flooding.

1.4 Technical overview

The discrete Gaussian version of smudging lemma is obtained from our observation of continuous
Gaussian distributions: The sum of n independent identically distributed(iid) Gaussian distributions
is almost the same distribution as the sum of n+1 iid Gaussian distributions, when n is large enough.
Let X, Y be the Gaussian distributions over R with variance nσ2, (n+ 1)σ2 and probability density
function

f(x) =
1√
nσ

e−
πx2

nσ2 , g(x) =
1√

n+ 1σ
e
− πx2

(n+1)σ2

respectively. The intersection point of f(x) and g(x) falls outside
√

n+1
2π σ (when x >

√
n+1
2π σ, we

have g(x) > f(x)). Then the Statistical distance of X and Y is

∆(X,Y ) =

∫
||x||∞>

√
n+1
2π σ

g(x)− f(x) dx <

∫
||x||∞>

√
n+1
2π σ

g(x) dx = negl(n).



Key lifting : Multi-key Fully Homomorphic Encryption in plain model without noise flooding 5

That is to say, if the masked item e is Gaussian with variance σ2, we only need to sample e′ from a
Gaussian distribution with variance nσ2, then e+e′

stat
≈ e′, and ||e/e′|| = O(n−1)(while for the general

smudging lemma ||e/e′|| = negl(n).
Extending the above result to a multi-dimensional discrete Gaussian distribution requires solving

the intersection equation (which is an ellipsoid in this case), and extending Banaszczyk’s spherical
theorem to the ellipsoid. It’s just that the discrete Gaussian summation on Zn is not simple. As a
compromise, we use continuous Gaussian integrals instead. Generally speaking, the idea is the same
as that of one dimension, first find the intersection point, and then the statistical distance.

Asymmetry of ciphertext multiplication. The distributed decryption of the MKFHE will leak
the noise accumulated after the homomorphic evaluation and the decryptor’s private key. In order to
ensure security, previous MKFHE, such as [5] [10] [21] [8], will use a large noise term to "drown out"
this part of private term. Because we only care about the security of the initial ciphertext (note that
the noise after the homomorphic evaluation will leak the privacy of the circuit), as long as it can be
proved that the noise of distributed decryption is independent of the noise in the initial ciphertext,
provided that the scheme is anti-leakage, then even without the drown term, the semantic security of
the initial ciphertext can be guaranteed.

For the Dual GSW-like scheme, we noticed that the noise after its homomorphic multiplication
is very regular. Let Cmult = C1G

−1(C2), the noise in Cmult hardly contains the noise of C2. In fact,
let E1, E2 be the noise of C1, C2 respectively. Then the noise in Cmult is E1G

−1(C2) + E2. By our
Corollary 1, we have

E1G
−1(C2) +E2

stat
≈ E1G

−1(C2)

In other words, if we left-multiply the initial ciphertext by a "dummy" ciphertext(plaintext is 1),
then the noise in the resulting ciphertext hardly contains the noise in the initial ciphertext. Thus, the
resulting noise by decrypting the ciphertext after homomorphic evaluation hardly contains the noise
in the initial ciphertext, besides the decryptor’s private key.

Suppose our scheme is leakage-resilient and predicts the amount of private key leakage in the
distributed decryption process in advance. In that case, we only need to cover this part of the leak-
age amount when the parameters are initialized. Even without the drown term in the distributed
decryption, it can guarantee the semantic security of the initial ciphertext. The disadvantage is that
the complexity of our scheme could be more circuit-dependent. However, there is no noise flooding
in encryption and distributed decryption, so we can set q = 2O(L)Bχ to be the same size as the
single-key FHE, where q = 2O(λL)Bχ in [5] [21] with noise flooding technology(Correspondingly, the
approximation factor of Gapsvpγ is reduced to γ = Õ(n · 2L)).

Optimized security proof method based on Rényi divergence : In order to prove the
security of a scheme, a routine is to construct an instance of the scheme from a well-known hard
problem instance. Unfortunately, sometimes, this process does not go so smoothly. To make the
constructed distribution statistically indistinguishable from the target distribution, you need to add
noise distribution to smooth the gap between the two; this is where noise flooding comes into play.
For example, [5] [8] adopted this method to prove security. Unfortunately, the added noise tends to
be significant, reducing the scheme’s efficiency.

Shi et al. [6] pointed out that Rényi divergence can also be used to distinguish problems: they
proved that, under certain conditions, if there is an algorithm that can distinguish problem P , then
there is an algorithm that can distinguish problem P ′. Note that it does not require that the P
problem is indistinguishable from P ′, which is where the Rényi divergence comes into play. Based on
the result of [6, Theorem 4.2], our proof method is as follows :

1. Define the P problem as distinguishing our scheme’s ciphertext from a uniform distribution.
2. Prove that for a given hard problem instance I, there exists a distribution D, and a sample x of
D can be constructed from this instance I.

3. Define the P ′ problem as distinguishing D from a uniform distribution

Thus, if there is an adversary who can distinguish the P problem, then he can distinguish the P ′

problem and can also distinguish the hard problem instance I from the uniform distribution.
We believe that this Rényi divergence-based proof method provides an alternative idea for those

proofs that do not want to introduce large noise to ensure security.
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1.5 Roadmap:

In Section 2, we define some symbols and list some commonly used definitions and our extended
results on lattice. In Section 3, we define the KL-MKFHE. In Section 6.2, we define a new problem.
In Section 5, we construct the first KL-MKFHE scheme based on LWE.

2 Preliminaries

2.1 Notation:

Let λ, n, q be the security parameter, LWE dimension, and module base respectively. Let N , W , L
be the circuit input, output length and multiplicative depth respectively. Let negl(λ) be a negligible
function parameterized by λ. Lowercase bold letters such as v, unless otherwise specified, represent
vectors. Vectors are row vectors by default, and matrices are represented by uppercase bold letters
such as M. [k] denotes the set of integers {1, . . . , k}. If X is a distribution, then a← X denotes that
value a is chosen according to the distribution X, or a finite set, then a ← U(X) denotes that the
value of a is uniformly sampled from X. Let ∆(X,Y ) denote the statistical distance of X and Y .
For two distributions X,Y , we use X

stat
≈ Y to represent X and Y are statistically indistinguishable,

while X
comp
≈ Y are computationally indistinguishable.

In order to decompose elements in Zq into binary, we review the Gadget matrix [18] [1] here. Let
G−1(·) be the computable function that for any M ∈ Zm×n

q , it holds that G−1(M) ∈ {0, 1}ml×n,
where l = ⌈log q⌉. Let g = (1, 2, . . . , 2l−1) ∈ Zl

q, G = Im ⊗ g ∈ Zm×ml
q , it satisfies GG−1(M) = M.

2.2 Some background in probability theory

Definition 1 A distribution ensemble {Dn}n∈[N ] supported over integer, is called B-bounded if :

Pre←Dn
[ |e| > B ] = negl(n).

Lemma 1 (Smudging lemma [5]) Let B1 = B1(λ), and B2 = B2(λ) be positive integers and let
e1 ∈ [−B1, B1] be a fixed integer, let e2 ∈ [−B2, B2] be chosen uniformly, Then the distribution of e2
is statistically indistinguishable from that of e2 + e1 as long as B1/B2 = negl(λ).

The Rènyi divergence (in [6]) : For any two discrete probability distributions P and Q such that
Supp(P ) ⊆ Supp(Q) where Supp(P ) = {x : P (x) ̸= 0} and a ∈ (1,+∞), The Rènyi divergence of
order a is defined by :

Ra(P ||Q) =

 ∑
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1

Omitting the a subscript when a = 2, defining the The Rènyi divergence of order 1 and +∞ by :

R1(P ||Q) = exp

 ∑
x∈Supp(P )

P (x) log
P (x)

Q(x)


R∞(P ||Q) = max

x∈Supp(P )

P (x)

Q(x)
.

The definitions are extended naturally to continuous distributions. The divergence R1 is the (expo-
nential of ) the Kullback-Leibler divergence.

Theorem 2 ( [6, Theorem 4.2]) Let Φ, Φ′ denote two distribution with Supp(Φ) ⊆ Supp(Φ′), and
D0(r) and D1(r) denote two distributions determined by some parameter r ∈ Supp(Φ′). Let P , P ′ be
two decision problems defined as follows :

– Problem P : distinguish whether input x is sampled from distribution X0 or X1, where

X0 = {x : r ←↩ Φ, x←↩ D0(r)}, X1 = {x : r ←↩ Φ, x←↩ D1(r)}.
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– Problem P ′: distinguish whether input x is sampled from distribution X ′0 or X ′1, where

X ′0 = {x : r ←↩ Φ′, x←↩ D0(r)}, X ′1 = {x : r ←↩ Φ′, x←↩ D1(r)}.

Assume that D0(·) and D1(·) satisfy the following public sampleability property: there exists a sampling
algorithm S with run-time TS such that for all (r, b), given any sample x from Db(r):

– S(0, x) outputs a fresh sample distributed as D0(r) over the randomness of S,
– S(1, x) outputs a fresh sample distributed as D1(r) over the randomness of S.

Then, given a T -time distinguisher A for problem P with advantage ϵ, we can construct a dis-
tinguisher A′ for problem P ′ with run-time and distinguishing advantage, respectively, bounded from
above and below by (for any a ∈ (1,+∞]):

64

ϵ2
log

(
8Ra(Φ||Φ′)
ϵa/(a−1)+1

)
· (TS + T ) and

ϵ

4 ·Ra(Φ||Φ′)
·
( ϵ
2

) a
a−1

.

2.3 Gaussian distribution on Lattice

Definition 2 Let ρσ(x) = exp(−π||x/σ||2) be a Gaussian function scaled by a factor of σ > 0. Let
Λ ⊂ Rn be a lattice, and c ∈ Rn. The discrete Gaussian distribution DΛ+c,σ with support Λ + c is
defined as :

DΛ+c,σ(x) =
ρσ(x)

ρσ(Λ+ x)

We note that ρσ(x) is just a special case of ρΣ(x), where Σ = σ2I. Therefore, some results on σ2I
should be naturally extended to Σ(symmetric positive definite)

Definition 3 Let ρΣ(x) = e−πxΣ
−1xT

be a Gaussian function with covariance matrix Σ(symmetric
positive definite). Let Λ ⊂ Rn be a lattice, and c ∈ Rn. The discrete Gaussian distribution DΛ+c,Σ

with support Λ+ c is defined as :

DΛ+c,Σ(x) =
ρΣ(x)

ρΣ(Λ+ x)

Obviously, the above definition does satisfy the definition of probability distribution. For the
positive definite matrix Σ, when ||x|| → ∞, ρΣ(x) is convergent.

Poisson’s summation formula : We recall that the Fourier transform of ρΣ(x) is ρ̂Σ(k) =
det(Σ)ρΣ−1(k). The Poisson’s summation formula of ρΣ(x) on a full-rank lattice Λ is :

ρΣ(Λ) = det(Σ) det(Λ∗)ρΣ−1(Λ∗)

Lemma 2 For positive definite matrix Σ1 and Σ2, if Σ1Σ2 − Σ2 is positive definite, then it holds
that :

ρΣ1Σ2
(Λ) ≤ det(Σ1)ρΣ2

(Λ)

Banaszczyk’s spherical theorem

Theorem 3 ( [7]) Let B = {x ∈ Rm : ||x|| ≤ 1} be the closed ball of radius 1 in Rn, for any lattice
Λ ∈ Rm, parameter σ > 0 and u ≥ 1/

√
2π it holds that

ρσ(Λ\uσ
√
mB) ≤ 2−cu·m · ρσ(Λ),

where cu = − log(
√
2πeu · e−πu2

)

The ellipsoid version of the Banaszczyk’s spherical Theorem.

Theorem 4 For any lattice Λ ∈ Rm, let Σ ∈ Rm×m be a positive definite matrix, E(k) = {x ∈ Rm :
xΣ−1xT ≤ k} be a ellipsoid in Rn with radius k > 0, then it holds that :

ρΣ(Λ\E(k)) ≤ 2−2k+m · ρΣ(Λ)

We give the proofs of the above theorem and lemma in Appendix B.1B.2
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2.4 The Learning With Error(LWE) Problem

The Learning With Error problem was introduced by Regev [25].

Definition 4 (Decision-LWE) Let λ be security parameter, for parameters n = n(λ) be an integer
dimension, q = q(λ) > 2 be an integer, and a distribution χ = χ(λ) over Z, the LWEn,q,χ problem is
to distinguish the following distribution:

– D0 : the jointly distribution (A, z) ∈ (Zm×n
q × Zn

q ) is sampled by A← U(Zm×n
q ) z← U(Zn

q )

– D1: the jointly distribution (A,b) ∈ (Zm×n
q × Zn

q ) is computed by A ← U(Zm×n
q ) b = sA + e,

where s← U(Zn
q ) e← χm

As shown in Regev [25] [22], the LWEn,q,χ problem with χ being discrete Gaussian distribution with
parameter σ = αq ≥ 2

√
n is at least as hard as approximating the shortest independent vector

problem(SIVP) to within a factor of γ = Õ(n/α) in worst case dimension n lattices. It leads to the
Decision-LWEn,q,χ assumption D0

comp
≈ D1.

2.5 Dual-GSW(DGSW) Encryption scheme

The DGSW scheme [8] and GSW scheme are similar to the Dual-Regev scheme and Regev scheme
resp. Which is defined as follows:

– pp ← Gen(1λ, 1L) : For a given security parameter λ, circuit depth L, choose an appropriate
lattice dimension n = n(λ, L), m = n log q + ω(λ), a discrete Gaussian distribution χ = χ(λ, L)
over Z, which is bounded by Bχ, module q = poly(n) · Bχ, Output pp = (n,m, q, χ,Bχ) as the
initial parameters.

– (pk, sk) ← KeyGen(pp): Let sk = t = (−s, 1), pk = (A,b), where s ← U({0, 1}m−1), A ←
U(Zm−1×n

q ), b = sA mod q.

– C ← Enc(pk, u): Input public key pk and plaintext u ∈ {0, 1}, choose a random matrix R ←
U(Zn×w

q ), w = ml, l = ⌈log q⌉ and an error matrix E← χm×w, Output the ciphertext :

C =

(
A
b

)
R+E+ uG

where G is a gadget Matrix.
– u← Dec(sk,C): Input private key sk, ciphertext C, let w = (0, . . . , ⌈q/2⌉) ∈ Zm

q , v = ⟨tC,G−1(wT )⟩,
output u′ = ⌈ v

q/2⌉.

Leak resistance : Brakerski et al proved in [8] that DGSW is leak-resistant. Informally, even if part
of the private key of the DGSW scheme is leaked, the DGSW ciphertext is still semantically secure.
As Lemma 3 says :

Lemma 3 (In [8]) Let χ be LWE noise distribution bounded by Bχ, χ′ a distribution over Z bounded
by Bχ′ , satisfying Bχ/Bχ′ = negl(λ). Let Ai ∈ Z(m−1)×n

q be uniform, and let Aj for all j ̸= i be
chosen by a rushing adversary after seeing Ai. Let si ← {0, 1}m−1 and bi,j = siAj. Let r ∈ Zn

q be
uniform, e← χm−1, e′ ← χ′. Then under the LWE assumption, the vector c = Air+ e and number
c′ = ⟨bi,i, r⟩+ e′ are (jointly) pseudorandom, even given the bi,j’s for all j ∈ [k] and the view of the
adversary that generated the Aj’s.

2.6 Multi-Key Fully Homomorphic Encryption

We review the definition of MKFHE in detail here, the main purpose of which is to compare with the
definition of KL-MKFHE proposed later.

Definition 5 Let λ be the security parameter, L be the circuit depth, and k be the number of parties.
A levelled multi-key fully homomorphic encryption scheme consists of a tuple of efficient probabilistic
polynomial time algorithms MKFHE=(Init, Gen, Enc, Expand, Eval, Dec) which defines as follows.
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– pp← Init(1λ, 1L) : Input security parameter λ, circuit depth L, output system parameter pp. We
assume that all algorithms take pp as input.

– (pki, ski) ← Gen(pp, crs) : Input pp, common reference string crs (generated by a third party or
random oracle), output a key pair for party i.

– ci ← Enc(pki, ui) : Input pki and plaintext ui, output ciphertext ci.
– vi ← Enc(pki, ri): Input pki and the random ri used in ciphertext ci, output auxiliary ciphertext

vi.
– c̄i ← Expand({pki}i∈[k], vi, ci):Input the ciphertext ci of party i, the public key set {pki}i∈[k] of all

parties, auxiliary ciphertext vi, output expanded ciphertext c̄i which is under f(ski, . . . skk) whose
structure is undefined.

– c̄eval ← Eval(S, C):Input circuit C, the set of all ciphertext S = {c̄i}i∈[N ] while N is the input
length of circuit C, output evaluated ciphertext c̄eval

– u← Dec(c̄eval, f(sk1 . . . skk)) : Input evaluated ciphertext c̄eval, private key function f(sk1 . . . skk),
output u (This is usually a distributed process).

Remark : Although the definition of MKFHE in [16] does not contain auxiliary ciphertext vi and ci-
phertext expansion procedure, in fact, the works [21] [24] [12] include this procedure to support homo-
morphic operations. This procedure seems essential; we list it here for comparison with KL-MKFHE.
The common private key depends on {ski}i∈[k], f is a certain function, which is not unique; for
example, it can be the concatenation of all keys or the sum of all keys.

Properties implicated in the definition of MKFHE : For the above definition, each party
is required in the key generation and encryption phase independently to generate their keys and
complete the encryption operation without interaction between parties. These two phases are similar
to single-key homomorphic encryption; the computational overhead is independent of k and only
related to λ and L. Only in the decryption phase interaction is involved when parties perform a
round of decryption protocol.

3 Key Lifting Multi-key Fully Homomorphic Encryption

We avoid expensive ciphertext expansion procedures and introduce a relatively simple Key lifting
procedure to replace it. In addition, a tighter bound is required on the amount of local computation
and parameter size; as a compromise, we allow a small amount of interaction during Key lifting.

Definition 6 A KL-MKFHE scheme is a tuple of probabilistic polynomial time algorithm (Init, Gen,
KeyLifting, Enc, Eval, Dec), which can be divided into two phases, online phase: KeyLifting and Dec,
where interaction is allowed between parties; local phase: Init, Gen, Enc, and Eval, whose operations
do not involve interaction. These five algorithms are described as follows :

– pp← Init(1λ, 1L):Input security parameter λ, circuit depth L, output public parameters pp.
– (pki, ski)← Gen(pp):Input public parameter pp, output the key pair of party i
– {hki}i∈[k] ← KeyLifting({pki, ski}i∈[k]): Input key pair {pki, ski}i∈[k] of all parties, output the

hybrid key {hki}i∈[k] of all parties. (online phase: two-round interaction)
– ci ← Enc(hki, ui): Input plaintext ui and hki, output ciphertext ci
– ĉ← Eval(C, S): Input circuit C, ciphertext set S = {ci}i∈[N ] , output ciphertext ĉ
– u ← Dec(ĉ, f(sk1 . . . skk)): Input evaluated ciphertext ĉ, f(sk1 . . . skk), output C(ui)i∈[N ].(online

phase: one round interaction)

Remark : KL-MKFHE does not need ciphertext expansion procedure; indeed, the input ciphertext
set S in Eval(·) is encrypted by parties under their hybrid key hki which are different among parties,
however, the resulting ciphertext ci supports homomorphic evaluation without extra modification.

we require KL-MKFHE to satisfy the following properties :
Plain model : No trusted setup or Common Reference String

Locally Computationally Compactness : For a computational task corresponds to a Boolean
circuit with an input length of N , a KL-MKFHE scheme is locally computationally compact if the
parties do O(N) encryptions as the single-key FHE scheme.
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Two round interaction : Only two round interaction is allow in KeyLifting(·) procedure.
The indistinguishable of initial ciphertext : Let N and W be the input and out length of
a circuit, respectively. Let {ci}i∈[N ], {γi}i∈[W ] be the initial ciphertext and partial decryption result
respectively. The following two distributions are computationally indistinguishable for any probabilistic
polynomial time adversary A.

(pp, {pki}i∈[k], {hki}i∈[k], {ci}i∈[N ], {γi}i∈[W ])
comp
≈ (pp, {pki}i∈[k], {hki}i∈[k],U, {γi}i∈[W ])

where U is uniform

Correctness and Compactness : A KL-MKFHE scheme is correct if for a given security
parameter λ, circuit depth L, parties k, we have the following

Pr [Dec(f(sk1 . . . skk), ĉ) ̸= C(u1 . . . uN ) ] = negl(λ).

probability is negligible, where C is a circuit with input length N and depth length less than or equal to
L. A KL-MKFHE scheme is compact if the size ĉ of evaluated ciphertext is bounded by poly(λ, L, k),
but independent of circuit size.

4 Smudging lemma over discrete Gaussian

Next, we prove two results for discrete Gaussians on the integer lattice Zn. Simply put, similar to the
continuous Gaussian, when n is large enough, the distribution of the sum of n idd discrete Gaussians
is statistically indistinguishable from the distribution of the sum of n+ 1 idd discrete Gaussians.

Theorem 5 Let DZ,σ be the discrete gaussian distribution over Z with variance σ2. Let n > 0 be an
integer. Let e1 ← DZn,σ, e2 ← DZn,σ, M← {0, 1}n×n. Let δ ∈ R and

ρΣ′(Zn)

ρΣ(Zn)
= δ

√
det(Σ′)

det(Σ)

if δ > e−2+
6π

n+1 , we have :
∆(e1M, e1M+ e2) < 2−n

where Σ and Σ′ are the covariance matrix of e1M and e1M+ e2 respectively.

Note that
∫
Rn ρΣ(x) dx =

√
det(Σ), that is to say, when the ratio of the discrete Gaussian sum and

the ratio of the continuous Gaussian integral are not much different(up to δ), we have Theorem 5.

Proof. We can think of e1M as an n-dimensional random variable x = (x1, x2, · · · , xn) over Zn,
where {xi =

∑n
j=1 ejzj,i}i∈[n], ej is the j-th element of e1, zj,i is the element in row j and column i

of M. According to the properties of covariance, we have the covariance matrix Σ of x

Σ =


1
2nσ

2 1
4nσ

2 · · · 1
4nσ

2

1
4nσ

2 1
2nσ

2 · · · 1
4nσ

2

· · ·
1
4nσ

2 1
4nσ

2 · · · 1
2nσ

2

 , Cov(xi, xj)


1

2
nσ2, if i = j

1

4
nσ2, if i ̸= j

(1)

In the same way, we can also regard e1M+e2 as a n-dimensional random variable x′ = (x1+e′1, x2+
e′2, · · · , xn + e′n), where e′i is the i-th element of e2. Let Σ′ be the covariance matrix of x′, by the
properties of covariance, we have Σ′ = Σ + σ2I. Thus, we have x ∼ DZn,Σ(x), and x′ ∼ DZn,Σ′(x).
Let

f(x) =
ρΣ(x)

ρΣ(Zn)
, g(x) =

ρΣ′(x)

ρΣ′(Zn)

Let f(x) = g(x), we have

x(Σ +
1

σ2
Σ2)−1xT =

1

π
ln

ρΣ′(Zn)

ρΣ(Zn)



Key lifting : Multi-key Fully Homomorphic Encryption in plain model without noise flooding 11

Let B = Σ + 1
σ2Σ

2, a = 1
π ln ρΣ′ (Zn)

ρΣ(Zn) , we have the ellipsoid equation Eints of the intersection of f(x)
and g(x) is

Eints : x
1

a
B−1xT = 1

Obviously, for points x ∈ Zn\Eints outside the ellipsoid Eints, we have g(x) > f(x). Thus, we have
the statistical distance of x and x′

∆(x,x′) =
∑

x∈Zn\Eints

g(x)− f(x) <
∑

x∈Zn\Eints

g(x)

Because the "shapes" of Eints and g(x) are inconsistent(The "shape" of Eints is 1
aB
−1, and the "shape"

of g(x) is Σ′), so we need to find an ellipsoid with the "shape" of Σ′(radius to be determined) inscribed
in Eints. Let k > 0 and kΣ′

−1
xT = 1

aB
−1xT , thus

kxT =
1

a
Σ′B−1xT

The conclusion of convex optimization tells us that when k takes the minimum eigenvalue of 1
aΣ
′B−1,

we have kxΣ′
−1

xT = 1 is inscribed in Eints. The minimum eigenvalue of Σ′B−1 and the maximum
eigenvalue of BΣ′

−1
= 1

σ2Σ which is n(n+1)
4 , are reciprocals of each other. Therefore, the ellipsoid

Einsc inscribed in Eints is

Einsc : xΣ′
−1

xT =
an(n+ 1)

4

Thus, we have

∆(x,x′) =
∑

x∈Zn\Eints

g(x)− f(x) <
∑

x∈Zn\Eints

g(x) <
∑

x∈Zn\Einsc

g(x)

By Theorem 4 and the assumption δ > e−2+
6π

n+1 , we have∑
x∈Zn\Einsc

g(x) < 2−
an(n+1)

4 +n < 2−n

■

Remark : We cannot accurately obtain the value of the discrete Gaussian sum ρΣ(Zn), so we
can only use

∫
Rn ρΣ(x) dx =

√
det(Σ) the integral of the Gaussian function instead. This is our

motivation for introducing δ. Numerical experiments show that the difference between the two is not
large, and the ratio is close to 1, so δ > e−2+

6π
n+1 should be a conservative estimate.

The Theorem 5 can be easily extended to discrete Gaussian matrices E1.

Corollary 2 Let DZ,σ be the discrete gaussian distribution over Z with variance σ2. Let m > 0,
n > 0 be two integers. Let E1 ← DZm×n,σ, E2 ← DZm×n,σ, M← {0, 1}n×n. Let δ ∈ R and

ρΣ′(Zmn)

ρΣ(Zmn)
= δ

√
det(Σ′)

det(Σ)

if δ > e−2+
2π(m+1)

n+1 + 2
mn , we have

∆(E1M,E1M+E2) < 2−n

where Σ and Σ′ are the covariance matrix of E1M and E1M+E2 respectively.

Proof. The proof of Corollary 2 is exactly the same as the proof of Theorem 5, except that the
covariance matrices of E1M and e1M are different. Also, we can think of E1M as an mn-dimensional
random variable x = (x1, x2, · · · , xmn) over Zmn, where {xi =

∑n
j=1 ec,jzj,d}i∈[mn], c = ⌈ in⌉, d = i
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mod n, ec,j is the element in row c and column j of E1, zj,d is the element in row j and column d of
M. Let T ∈ Rn×n be the symmetric matrix

T =


1
2nσ

2 1
4nσ

2 · · · 1
4nσ

2

1
4nσ

2 1
2nσ

2 · · · 1
4nσ

2

· · ·
1
4nσ

2 1
4nσ

2 · · · 1
2nσ

2

 (2)

The covariance matrix Σ ∈ Rmn×mn of the random variable x is

Σ =


T

T
· · ·

T

 Cov(xi, xj)


1

2
nσ2, if i = j

1

4
nσ2, if |i− j| < n, i ̸= j

0, if |i− j| ≥ n, i ̸= j

The following proof is the same as Theorem 5, we omit it here.
■

5 A KL-MKFHE scheme based on DGSW in plain model without noise
flooding

Our scheme is based on DGSW. In this section, we first introduce the key lifting process, describe
the entire scheme, and finally give the correctness analysis.

We intentionally place the security proof and the proof of the asymmetric properties of the Dual-
GSW ciphertext in the next two section. This is to emphasize the difference between our approach
and traditional methods which using noise flooding technology. At the same time, in order to describe
these two parts clearly, we really need two entire section to describe them. We think this combination
is reasonable.

5.1 Key lifting procedure

Following the definition of KL-MKFHE, the hybrid keys {hki}i∈[k] which are obtained by KeyLifting(·)
algorithm are different from each other. Each party encrypts his plaintext ui by hki and gets Ci. The
ciphertexts {Ci∈[N ]} can be used to evaluation without extra computation by Claim 1. We achieve
this property by allowing two-round interaction between parties.

{hki}i∈[k] ← KeyLifting({pki, ski}i∈[k]): Input the DGSW key pair {pki, ski}i∈[k] of all parties, where
pki = (Ai,bi,i), Ai ← U(Z(m−1)×n

q ), si ← U{0, 1}m−1, bi,i = siAi mod q. Assuming there is a
broadcast channel, all parties are engaged in the following two interactions:

– First round : i broadcasts pki and receives {pkj}j∈[k]\i from the channel.
– Second round : i generates and broadcasts {bi,j = siAj}j∈[k]\i, and receives {bj,i = sjAi}j∈[k]\i

from the channel.

After above two round interaction, i receives {bj,i = sjAi}j∈[k]/i. Let bi =
∑k

j=1 bj,i, i obtains
hybrid key hki = (Ai,bi)

Claim 1 Let t̄ = (−s, 1), s =
∑k

i=1 si, for ciphertext Ci, Cj encrypted by hybrid key hki, hkj
respectively :

Ci =

(
Ai

bi

)
Ri +Ei + uiG, Cj =

(
Aj

bj

)
Rj +Ej + ujG,

it holds that(omit small error) :

t̄Ci ≈ uit̄G, t̄Cj ≈ uj t̄G

t̄(Ci +Cj) ≈ (ui + uj)t̄G, t̄CiG
−1(Cj) ≈ (uiuj)t̄G
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Proof. According to the construction of KeyLifting(·), it holds that :

t̄Ci =

(
k∑

i=1

−si, 1

)[(
Ai∑k

j=1 bj,i

)
+Ei + uiG

]
= t̄Ei + uit̄G ≈ uit̄G.

Similarly, t̄Cj ≈ uj t̄G, and t̄(Ci +Cj) ≈ (ui + uj)t̄G

t̄CiG
−1(Cj) ≈ uit̄GG−1(Cj) ≈ uit̄Cj ≈ (uiuj)t̄G

■

Therefore, although Ci and Cj are encrypted by different hybrid keys, they correspond to the same
decryption key t̄ and support homomorphic evaluation without extra modification.

5.2 The entire scheme

Our scheme is based on the DGSW scheme, containing the following five algorithms (Init, Gen, KeyLift-
ing, Enc, Eval, Dec)

– pp ← Init(1λ, 1L, 1W ) : Let λ be security parameter, L circuit depth, W circuit output length,
lattice dimension n = n(λ, L), noise distribution χ over Z, e← χ, where |e| is bounded by Bχ with
overwhelming probability, modulus q = 2O(L)Bχ, k = poly(λ), m = (kn +W ) log q + λ, suitable
choosing above parameters to make LWEn,m,q,Bχ

is infeasible. Output pp = (k, n,m, q, χ,Bχ)

– (pki, ski) ← Gen(pp) : Input pp, output the DGSW key pair (pki, ski) of parties i, where pki =

(Ai,bi,i), Ai ← U(Z(m−1)×n
q ), si ← U{0, 1}m−1, bi,i = siAi mod q.

– hki ← KeyLifting({pki, ski}i∈[k]) : All parties are engaged in the Key lifting procedure 5.1, output
the hybrid key hki.

– Ci ← Enc(hki, ui): Input hybrid key hki, plaintext ui ∈ {0, 1}, output ciphertext Ci =

(
Ai

bi

)
R+

E+ uiG, where R← U(Zn×ml
q ), l = ⌈log q⌉, E← χm×ml, G = Im ⊗ g is a gadget matrix.

– C(L) ← Eval(S, C) : Input the ciphertext set S = {Ci}i∈[N ] which are encrypted by hybrid key
{hki}i∈[k], circuit C with input length N , depth L, output C(L).

Homomorphic addition and multiplication : Let Ci, Cj be ciphertext under hybrid key hki
and hkj respectively, by Claim 1, we have the following results.

– Cadd ← Add(Ci,Cj): Input ciphertext Ci, Cj , output Cadd = Ci+Cj , which t̄Cadd ≈ (ui+uj)t̄G

– Cmult ← Mult(Ci,Cj): Input ciphertext Ci, Cj , output Cmult = CiG
−1(Cj), which t̄Cmult ≈

uiuj t̄G

Distributed decryption Similar to [21], the decryption procedure is a distributed procedure :

– γi ← LocalDec(C(L), si): Input C(L), let C(L) =

(
Cup

clow

)
, where Cup is the first m−1 rows of C(L),

and clow is last row of C(L). i computes γi = ⟨−si, CupG
−1(wT )⟩, where w = (0, . . . , 0, ⌈q/2⌉) ∈

Zm
q , then i broadcast γi

– uL ← FinalDec({γi}i∈[k]): After receiving {γi}i∈[k], let γ =
∑k

i=1 γi + ⟨clow, G−1(wT )⟩, output
uL = ⌈ γ

q/2⌉

5.3 Correctness analysis

To illustrate the correctness of our scheme, we first study the accumulation of noise. For fresh cipher-

text C =

(
Ai

bi

)
R+

(
E0

e1

)
+ uG under t̄, it holds that t̄C = e1− sE0 + ut̄G. Let einit = e1− sE0,

after L depth circuit evaluation :
t̄C(L) = eL + uLt̄G (3)
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According to the noise analysis of GSW in [14], the noise eL in C(L) is bounded by (ml)Leinit. By
the distributed decryption of our scheme, it holds that :

γ =

k∑
i=1

γi + ⟨clow,G−1(wT )⟩ = ⟨
k∑

i=1

−si,CupG
−1(wT )⟩+ ⟨clow,G−1(wT )⟩

= t̄C(L)G−1(wT ) = ⟨eL,G−1(wT )⟩+ uL⌈
q

2
⌉

In order to decrypt correctly, it requires ⟨eL,G−1(wT )⟩ < q
4 . For our parameter settings :

⟨eL,G−1(wT )⟩ ≤ l · ||eL||∞
≤ l · (ml)L · ||einit||∞
≤ l · (ml)L · (km+ 1)Bχ

Thus, log(⟨eL,G−1(wT )⟩) = Õ(L). For those q = 2O(L)Bχ ≥ 4⟨eL,G−1(wT ⟩, requirements are
fulfilled.

6 Security Proof against Semi-Malicious Adversary

Two hidden dangers for semi-malicious adversaries : There are two main security concerns
about KeyLifting(·). First, a semi-malicious adversary may generate matrix A with trapdoor, then
si is leaked. More specifically, in the KeyLifting(·) phase, {bi,j = siAj}j∈[k] will lose si at most
kn log q bits. Second, semi-malicious adversary A may generate bj,i adaptively after seeing bi,i, then
the hybrid key bi of party i may not distributed as requirement. This place is very subtle. In the
first round of KeyLifting(·), the semi-malicious adversary has already generated {pkj}j∈[k]\i, but we
noticed that because {Aj}j∈[k]\i may not be uniform, the adversary can find multiple groups of
{s′j ∈ {0, 1}m−1, s′j ̸= sj}, satisfying s′jAj = sjAj . So in the second round(we always assume that
the adversary makes the last move, that is, the adversary has already obtained the leakage of si
and seen bi,i), the adversary A can choose any s′j from {s′j ∈ {0, 1}m−1, s′j ̸= sj , s

′
jAj = sjAj} to

construct bj,i and control bi as much as possible. So for semi-malicious adversaries we assume that
sj in {pkj}j∈[k]/i and s′j in {bj,i}j∈[k]/i can be different.

The general solution is to introduce a flooding noise in encryption to ensure security. Large en-
cryption noise leads to large modulus q, which further leads to large computational overhead and
communication overhead.

In order to alleviate this problem, we proposed an analysis method based on Rényi divergence
and get rid of the flooding noise in the encryption. In the following, we first introduce the general
method and then give an optimization proof method based on Rényi divergence.

6.1 A common approach(By noise flooding)

We complete the simulation by constructing a reduction from our scheme to the DGSW scheme.
We assume that the first person is the challenger and the other k − 1 people are controlled by the
adversary A. Consider the following Game:

1. Challenger generates pk1 = (A1,b1,1 = s1A1) where A1 ← U(Z(m−1)×n
q ), s1 ← U{0, 1}m−1 and

send pk1 to adversary A
2. After receiving pk1, the adversary A generates {pki}i∈[k]/1, where pki = (Ai,bi,i = siAi), and

send it to Challenger.
3. After receiving {pki}i∈[k]/1, Challenger sets {b1,i = s1Ai}i∈[k]/1(the leakage of s1), and send it

to A
4. After receiving {b1,i}i∈[k]/1, A adaptively chooses {s′i}i∈[k]/1, where s′i ∈ {0, 1}m−1, set {bi,1 =

s′iA1}i∈[k]/1, and send it to Challenger.
5. After receiving {bi,1}i∈[k]/1, Challenger sets hk1 = (A1,

∑k
i=1 bi,1).
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6. A chooses a bit u← {0, 1}, send it to Challenger.
7. Challenger chooses a bit α ← {0, 1}, if α = 0 sets C ← Enc(hk1, u), otherwise C ← U(Zm×ml

q ),
send C to A.

8. After receiving C, A output bit ᾱ, if ᾱ = α, then A wins.

Obviously the above Game simulates the KeyLifting(·) and Enc(·) of our scheme. The first four
steps are the detailed process of KeyLifting(·), and we assume a rushing adversary.

Claim 2 Let Adv = |Pr[ᾱ = α] − 1
2 | denote A’s advantage in winning the game. If A can win the

game with advantage Adv, then A can distinguish between the ciphertext of DGSW and the uniform
distribution with the same(up to negligible) advantage.

Proof. After the third step of the above game, A obtained pk1 and {b1,i}i∈[k]/1(the leakage of s1).
Next, we use the ciphertext of DGSW to construct C. Let :

CDGSW =

(
A1

b1,1

)
R+

(
E0

e1

)
=

(
C0

c1

)
be the Dual-GSW ciphertext generated by pk1 which is semantically secure by Lemma 3, even s1 is
lossy. Let s′ =

∑k
i=2 s

′
i are adaptively chosen by A after seeing pk1 and {b1,i}i∈[k]/1(the leakage of

s1). Let :

C′ = CDGSW +

(
0

s′C0

)
it holds that :

s′C0 = s′(A1R+E0) =

k∑
i=2

bi,1R+ s′E0

C′ = CDGSW +

(
0

s′C0

)
=

(
A1

b1,1

)
R+

(
E0

e1

)
+

(
0

s′C0

)
=

(
A1

b1

)
R+

(
E0

e1 + s′E0

)
If ||e1||∞ is bounded by 2λBχ, and ||s′E0||∞ < kmBχ, thus s′E0/e1 = negl(λ). By Lemma 1, it holds
that C′

stat
≈ C, if A can distinguish between C and uniform distribution by advantage Adv, then he can

distinguish between CDGSW and the uniform distribution with the same(up to negligible) advantage.
■

Remark: When ||e1||∞ is bounded by 2λBχ, according to the correctness analysis in Section 5.3, the
initial noise einit = e1− sE0 is bounded by (2λ + km)Bχ. After L-level evaluation, ⟨eL,G−1(wT )⟩ is
bounded by l · (ml)L · (2λ+km)Bχ, log(⟨eL,G−1(wT )⟩) = Õ(λ+L). Thus result in a q = 2O(λ+L)Bχ

6.2 Distingushing DGSW ciphertext with linear relationship between noise and
random numbers

In this section we introduce a new problem: distingushing DGSW ciphertext with linear relationship
between noise and random numbers. From Lemma 3, we already know that DGSW ciphertext is
leakage-resistant, that is: even the key s is lossy, DGSW ciphertext is still semantically secure. Here,
we go one step further: in addition to leaking s, we also leak the linear relationship between random
numbers and noise in the ciphertext.

This new problem is introduced because we will use it in the optimization proof method based on
Rènyi divergence. We believe it will be useful elsewhere as well. Below, we formally define it

Definition 7 (DGSWLRL) Let λ be security parameter, n = n(λ), w = w(λ), q = q(λ), m =
O(n log q) be integers satisfying n|w. Let χ = χ(λ) and χ′ = χ′(λ) be two distribution defined over
Z, bounded by Bχ and 2λBχ respectively. Let pkDGSW = (A,b = sA), where A ← U(Zm×n

q ), s ←
{0, 1}m. Let f(·) be any computable functions. Assuming H̃∞(s|f(s)) ≥ log q + 2λ, consider the
following Game.
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1. Challenger generates the DGSW ciphertext:

CDGSW =

(
A
b

)
R+

(
E
e

)
where R ← U(Zn×w

q ), E ← χm×w, e ← χ′
w. Then computes {vi}i∈[g] by {viRi = ei}, where

Ri ∈ Zn×n
q and ei ∈ Zn

q are the i-th block of R = (R1,R2, · · · ,Rg) and e = (e1, e2, · · · , eg)
respectively. Send {vi}i∈[g] and CDGSW to adversary A.

2. After receiving {vi}i∈[g] and CDGSW, A try to distinguish :(
pkDGSW, {vi}i∈[g], f(s),CDGSW

)
and

(
pkDGSW, {vi}i∈[g], f(s),U

)
If A can distinguish the two by a non-negligible advantage, then A wins, otherwise the challenger
wins.

Obviously, if there is no {vi}i∈[g], then this problem can be directly proved by Lemma 3. Before
starting the proof, let’s take a look at {vi}i∈[g]. For uniform Ri, it is almost certainly reversible, and
further vi = eiR

−1
i . Thus it defines a bijection from Zn

q to Zn
q , so giving vi will expose the linear

relationship between ei and Ri. How much does this linear relationship contribute to distinguishing
DGSW ciphertext? Next, we prove that, to a certain extent, this linear relationship is equivalent to
reducing the dimension of the LWE problem under the DGSW ciphertext by 1.

For convenience, we abbreviate this problem as DGSWLRL4 problem.

Lemma 4 If there is an adversary who can distinguish the DGSWLRL problem, then he can distin-
guish the DGSW ciphertext(n− 1 dimension LWE) from uniform.

Proof. For a given DGSW ciphertext CDGSW and {vi}i∈[g], let c be the last row first n item of CDGSW.
It holds that :

bR1 + e1 = c

v1R1 = e1

}
(4)

Next, we will prove that (4) can be constructed from low-dimensional DGSW ciphertext (note
that R1 ∈ Zn×n

q ).
Let c′ be the last row fisrt n item of n− 1 dimensional DGSW ciphertext(without linear relation-

shop leakage). It holds that :
b′R′1 + e′1 = c′

where b′ = sA′, A′ ← U(Zm×(n−1)
q ), R′1 ← U(Z(n−1)×n

q ), e′1 ← χ′
n. Let

b′ = (b′1, b
′
2, · · · , b′n−1), R′1 =


r′1
r′2
· · ·
r′n−1

 , bn = ⟨s,an⟩, an ← U(Zm
q ),

{ri = r′i + b′i
−1

bnriW}i∈[n−1], W← U(Zn×n
q ), rn = W0 −

n−1∑
i=1

riW,

W0 = e′1T, T← U(Zn×n
q )

Let b̄ = (b′, bn), R̄1 =


r1
r2
· · ·
rn

, ē1 = e′1, c̄ = c′ + bnW0. It holds that :

b̄R̄1 + ē1 = c̄

Because W0 = rn +
∑n−1

i=1 riW = ē1T, we have

r1WT−1 + r2WT−1 + · · ·+ rn−1WT−1 + rnT
−1 = ē1

4 DGSW ciphertext with linear relationship leakage
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Let vi be the eigenvalue of the WT−1 corresponding eigenvector ri, we have {viri = riWT−1}i∈[n−1],
vnrn = rnT

−1 thus
v1r1 + v2r2 + · · ·+ vn−1rn−1 + vnrn = ē1

Thus, we have (5) corresponding to (4) :

b̄R̄1 + ē1 = c̄

v1r1 + v2r2 + · · ·+vn−1rn−1 + vnrn = ē1

}
(5)

Obviously, the distributions of b and b̄ are consistent. For {ri}i∈[n−1], we have

{ri = r′i(I− b′i
−1

bnW)−1}

Because W is uniform over Zn×n
q , (I−b′i

−1
bnW)−1 defines a bijection from Zn

q to Zn
q , so the distribu-

tions of {r′i}i∈[n−1] and {ri}i∈[n−1] are consistent. Furthermore, because T and W are both uniform
and independent on Zn×n

q , rn = ē1T −
∑n−1

i=1 riW is uniform over Zn×n
q . Therefore R1 and R̄1 are

consistent.
Therefore, we completed the construction from n−1-dimensional DGSW ciphertext(without linear

relationship leakage) to n-dimensional DGSW ciphertext (with linear relationship leakage), and the
former can be directly proved by Lemma 3. Notice that this only completes the construction of the
first block, other g − 1 block can be completes via a hybrid argument routine.

■

6.3 Rényi divergence-based optimization :

The work of Shi et al. [6] pointed out that Rényi divergence can also be applied in distinguish problems,
and in some cases, it can lead to better parameters than statistical distance. Based on these results,
they obtained better parameters of the Regev encryption scheme. Theorem 2 states: if there is an
algorithm that can distinguish the P problem, then there is an algorithm that can distinguish the P ′

problem. Our proof method is as follows :

– Define the P problem as distinguishing our ciphertext from a uniform distribution
– Prove that for a given DGSW ciphertext, there exists a distribution X ′0, and a sample x of X ′0

can be constructed from this DGSW ciphertext,
– Define the P ′ problem as distinguishing X ′0 from a uniform distribution

Thus, if there is an adversary who can distinguish the P problem, then he can distinguish the P ′

problem and can also distinguish the DGSW ciphertext from the uniform distribution.

Claim 3 Let a be constant in R+. Let our scheme’s encryption run-time be TS. If there is an adver-
sary who can distinguish the ciphertext of our scheme from uniform with run-time T and advantage ϵ,
then the adversary can distinguish the DGSWLRL problem with run-time and advantage respectively,
bounded from above and below by:

64

ϵ2
log

(
poly(λ)

ϵa/(a−1)+1

)
· (TS + T ) and

ϵ

4 · poly(λ)
·
( ϵ
2

) a
a−1

.

Proof. We first define several distributions. Let 0ml be the zero vector of length ml, Φ be the distri-
bution of hybrid key (AH,bH) followed by 0ml and f(s) the leakage of private key s which determined
by KeyLifting(·) procedure.

(AH,bH,0
ml, f(s))←↩ Φ

Obviously, Φ simulates the KeyLifting(·)5 process of our scheme. Let D0(AH,bH,0
ml, f(s)) be the

joint distribution of (AH,bH,0
ml, f(s)) and the ciphertext

(
AH

bH

)
R+

(
E0

e1

)
encrypted by (AH,bH)

over the randomness R← U(Zn×ml
q ), E0 ← χ(m−1)×ml, e1 ← χml :

(AH,bH,0
ml, f(s),

(
AH

bH

)
R+

(
E0

e1

)
)←↩ D0(AH,bH,0

ml, f(s))

5 Here we ignore the input of Φ, which should be s, AH and other party’s DGSW key pair, but it is irrelevant
here.
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Obviously, D0(·) simulates the encryption of our scheme. Let D1(AH,bH,0
ml, f(s)) be the joint dis-

tribution of (AH,bH,0
ml, f(s)) and U← U(Zm×ml

q ) :

(AH,bH,0
ml, f(s),U)←↩ D1(AH,bH,0

ml, f(s))

Define P problem as follows :

– Problem P : distinguish whether input x is sampled from distribution X0 or X1, where

X0 = {x : r ←↩ Φ, x←↩ D0(r)}, X1 = {x : r ←↩ Φ, x←↩ D1(r)}.

Obviously, the P problem is to distinguish the ciphertext of our scheme from uniform.

Construct auxiliary distribution : Before defining the P ′ problem, we need to construct an
auxiliary distribution. For the random R̄ ← U(Zn×ml

q ) and ē1 ← χ′
ml6, without loss of generality,

assuming ml
n = g, we can divide R̄ into g square matrices :

R̄ = (R̄1, R̄2, · · · , R̄g)

where R̄i ∈ Zn×n
q . Similarly

ē1 = (ē1,1, ē1,2, · · · , ē1,g)

where ē1,i ∈ Zn
q . Let {vi ∈ Zn

q }i∈[g] be the solution of equation {viR̄i = ē1,i}i∈[g]. Obviously, if Ri

is random over Zn×n
q , then vi has a unique solution with an overwhelming probability(See Appendix

A). Let D be the distribution over the randomness of R̄ and ē1.

v = (v1,v2, · · · ,vg)←↩ D

Let Φ′ be the joint distribution of hybrid key, D and the leakage of s :

(AH,bH,v, f(s))←↩ Φ′

Let D0(AH,bH,v, f(s)) be the joint distribution of (AH,bH,v, f(s)) and the ciphertext

C =

(
AHR+E0

(bH + v1)R1 + e1,1, (bH + v2)R2 + e1,2, · · · , (bH + vg)Rg + e1,g

)
encrypted by (AH,bH,v) over the randomness R = (R1, · · · ,Rg) ← U(Zn×ml

q ), E0 ← χ(m−1)×ml,
e1 = (e1,1, · · · , e1,g)← χml :

(AH,bH,v, f(s),C)←↩ D0(AH,bH,v, f(s))

Similarly, Let D1(AH,bH,v, f(s)) be the joint distribution of (AH,bH,v, f(s)) and the uniform U

(AH,bH,v, f(s),U)←↩ D1(AH,bH,v, f(s))

Let P ′ be the decision problems defined as follows :

– Problem P ′ : distinguish whether input x is sampled from distribution X ′0 or X ′1, where

X ′0 = {x : r ←↩ Φ′, x←↩ D0(r)}, X ′1 = {x : r ←↩ Φ′, x←↩ D1(r)}.

So far, we have completed the construction of P and P ′ problems. Next, we show that some
samples of X ′0 can be constructed from samples of DGSWLRL.

Let
(
pkDGSW, {vi}i∈[g], f(s),CDGSW

)
be a DGSWLRL sample generated by challenger. After receiv-

ing s′ from the adversary A, he can construct a tuple (AH,bH,v, f(s),C
′), by setting AH = ADGSW,

bH = bDGSW + s′AH, and C′ = CDGSW +

(
0

s′C0

)
, where C0 is the first m− 1 rows CDGSW. We note

that this tuple is exactly a sample of X ′0, when r = (AH,bH,v, f(s)), and the R̄ used in v and the R
used in D0 are consistent.
6 note that ||e1||/||ē1|| = negl(λ)
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Next, we verify the conditions for the establishment of Theorem 2. Firstly, we have Supp(Φ) ⊆
Supp(Φ′), and D0(·), D1(·) are determined by pre-image sample r ∈ Supp(Φ′). Since the outputs of
D0(·) and D1(·) contain the r of the prior distributions Φ and Φ′, thus D0(·) and D1(·) satisfy the
publicly sampleable property required by Theorem 2. The sampling algorithm S is just the encryption
of our scheme with hybrid key (AH,bH,0

ml) or (AH,bH,v), over the randomness of {R,E0, e1}
By Theorem 2, if given a T - time distinguisher A for problem P with advantage ϵ, we can construct

a distinguisher A′ for problem P ′(also for distinguishing DGSWLRL) with run-time and distinguishing
advantage, respectively, bounded from above and below by(for any a ∈ (1,+∞]) :

64

ϵ2
log

(
8Ra(Φ||Φ′)
ϵa/(a−1)+1

)
· (TS + T ) and

ϵ

4 ·Ra(Φ||Φ′)
·
( ϵ
2

) a
a−1

.

Assume that Ra(Φ||Φ′) is well-behaved7, that is, there is a in R+ such that Ra(Φ||Φ′) = poly(λ),
then we have :

64

ϵ2
log

(
poly(λ)

ϵa/(a−1)+1

)
· (TS + T ) and

ϵ

4 · poly(λ)
·
( ϵ
2

) a
a−1

.

■

Remark : Under the semi-honest adversary model, {Ai}i∈[k] and {si}∈[k] are sampled as specified
by the protocol, and the security is obvious. Under the semi-malicious adversary model, the com-
mon approach assumes bj,i = sjAi and{sj∈[k]/1} ∈ {0, 1}m−1 are chosen adaptively, and introduces
large noise in the encryption to ensure security. However, in our proof method based on the Rényi
divergence, in order to better quantify Ra(Φ||Φ′), we introduce a heuristic assumptions.

7 Decryption without noise flooding

We note that introducing noise flooding in the partial decryption phase is essential to guarantee the
semantic security of fresh ciphertext, and noise flooding achieves this by masking the private key in
the partial decryption noise. For partial decryption to be simulatable, the magnitude of the noise
introduced needs to be exponentially larger than the noise after the homomorphic evaluation.

By noise flooding : To illustrate how our approach works, let us first review the noise flooding

technique. Let C(L) =

(
Cup

clow

)
be the ciphertext after L-layer homomorphic multiplication. With a

flooding noise e′′i ← U [−Bsmdg, Bsmdg], introduced in LocalDec(·), we have :

γi = ⟨−si,CupG
−1(wT )⟩+ e′′i

By Equation (3) and FinalDec(·) :

γi = uL⌈
q

2
⌉+ ⟨eL,G−1(wT )⟩+ e′′i − ⟨clow,G−1(wT )⟩+ ⟨

k∑
j ̸=i

sj ,CupG
−1(wT )⟩

For a simulator S, input {skj}j∈[k]/i, evaluated result uL, ciphertext C(L), output simulated γ′i

γ′i = uL⌈
q

2
⌉+ e′′i − ⟨clow,G−1(wT )⟩+ ⟨

k∑
j ̸=i

sj ,CupG
−1(wT )⟩

In order to make the partial decryption process simulatable, it requires :

⟨eL,G−1(wT )⟩+ e′′i
stat
≈ e′′i

For the parameter settings in [21] : Bsmdg = 2Lλ log λBχ, q = 2ω(Lλ log λ)Bχ, it holds that :

|⟨eL,G−1(wT )⟩/e′′i | = negl(λ)

thus γi
stat
≈ γ′i. In short, the noise e′′i is introduced to "drown out" the private key si and the noise

Ei in initial ciphertext of party i contained in eL(The noise obtained by decrypting the ciphertext of
level L, t̄C(L) = eL + uLt̄G). Thus the partial decryption result of party i can be simulated.
7 We have not yet found a suitable a. Here we can only introduce this heuristic assumption
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Without noise flooding : Through the above analysis, we point out that as long as our encryption
scheme is leakage-resilient and eL is independent of the noise {Ei}i∈[N ] in initial ciphertext, there is
no need to introduce noise flood in the partial decryption. Before the homomorphic evaluation begins,
we can left-multiply each initial ciphertext by a "dummy" ciphertext whose plaintext is 1 to drown
out noise in the initial ciphertext. For example, let the "dummy" and initial ciphertext be Cdummy,
C, respectively

Cdummy =

(
A
b

)
R1 +E1 +G, C =

(
A
b

)
R2 +E2 + uG

After the homomorphic multiplication , we obtain:

Cmult = CdummyG
−1(C) = Π + Ψ + uG

where :

Π =

(
A
b

)
R1G

−1(C) +

(
A
b

)
R2

Ψ = E1G
−1(C) +E2

t̄Π = 0, Ψ is the noise after the the homomorphic multiplication. By corollary 2, we have

Ψ
stat
≈ E1G

−1(C)

Therefore, the ciphertext after homomorphic evaluation hardly contains the noise in the initial cipher-
text {Ci}i∈[N ]. Let eL = t̄Ψ , therefore, ⟨eL,G−1(wT )⟩ ∈ Zq leaks party i’s private key si with at most
log q bits. For a circuit with output length W , the partial decryption leaks W log q bits of si. Because
our scheme is leakage-resilient, as long as we set the key length reasonably m = (kn+W ) log q + λ,
the initial ciphertext {Ci}i∈[N ] are semantically secure.

Here, the reader might think that doing so would result in a longer key than noise flooding. We
point out that as long as the output length W of the circuit satisfies W < kn(λ − 1), the length
of the private key will not be longer than when using noise flooding. For m = (kn + W ) log q + λ,
q = 2O(L)Bχ, while with noise flooding m′ = kn log q′ + λ, q′ = 2O(λL)Bχ. In order to make m < m′,
only W < kn(λ− 1) is required; thus, for circuits with small output fields, our scheme does not lead
to longer keys.

7.1 Bootstrapping

In order to eliminate the dependence on the circuit depth to achieve full homomorphism, we need to
use Gentry’s bootstrapping technology. It is worth noting that the bootstrapping procedure of our
scheme is the same as the single-key homomorphic scheme: After Key lifting procedure, party i uses
hybrid key hki to encrypt si to obtain evaluation key evki. Because evki and C(L) are both ciphertexts
under t̄ = (−

∑k
i=1 si, 1), homomorphic evaluation of the decryption circuit could be executed directly

as C(L) are need to be refresh. Therefore, to evaluate any depth circuit, we only need to set the initial
parameters to satisfy the homomorphic evaluation of the decryption circuit.

However, for those MKFHE schemes that require ciphertext expansion, additional ciphertext
expansion is required, for the reason that C(L) is the ciphertext under t̄, but {evki}i∈[k] are the
ciphertext under {ti}i∈[k]. In order to expand {evki}i∈[k] → {êvki}i∈[k], party i needs to encrypt the
random matrix of the ciphertext corresponding to evki. The extra encryption of i needs to be done
locally are O(λ9L6).

8 Conclusions

For the LWE-based MKFHE, in order to alleviate the overhead of the local parties, we proposed the
concept of KL-MKFHE, which introduced a Key lifting procedure, getting rid of expensive ciphertext
expansion operation and constructing a DGSW style KL-MKFHE under the plain model. Our scheme
is more friendly to local parties than the previous scheme, for which the local encryption O(Nλ6L4)
are reduced to O(N). By abandoning noise flooding, it compresses q from 2O(λL)Bχ to 2O(L)Bχ,
reducing the computational scale of the entire scheme. However, the key length depends on the
number of parties and the amount of leakage, which limits the scheme’s application to some extent.
Further work will focus on compressing the key length.
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Appendix

A Probability that {vi}i∈[g] has a solution

Random Matrices : For a prime q, the probability that a uniformly random matrix A ←
U(Zn×m

q )(with m ≥ n) has full rank is :

Pr[rank(A) < n] = 1−
n−1∏
i=0

(1− qi−m).

For equations :

{viRi = e1,i}i∈[g]

if {Ri}i∈[g] are all invertible, obviously {vi}i∈[g] has a solution. For a random matrix R over Zn×n
q ,

the probability that it is invertible is
∏n−1

i=0 (1 − qi−n). For the parameter settings in our scheme,
q = 2O(L)Bχ, m = (kn+W ) log q+ 2λ, g = mL/n, the probability that {Ri}i∈[g] are all invertible is
:

Pr = (

n−1∏
i=0

(1− (2L)i−n)
(kn+W )L2+2λL

n ≥ (1− 2−L)(kn+W )L2+2λL

This probability is close to 1, for 2−L decreases faster than L2. We tested the probability on Maple18
by set q = 2100, k = 50, n = 500, W = 1000, λ = 128(which should be able to cover the actual
application) obtained Pr > 0.99999999999999999999979487596980336327269120254193.

B The proof of Lemma 2 and Theorem 4

Recall that the integral of ρΣ(x) is det(Σ), thus the Fourier transform of ρΣ(x) is ρ̂Σ(k) = det(Σ)ρΣ−1(k),
and the Poisson summation formula of ρΣ(x) is ρΣ(Λ) = det(Σ) det(Λ∗)ρΣ−1(Λ∗)

B.1 The proof of Lemma 2

By the Poisson summation formula, we have :

ρΣ1Σ2
= det(Σ1) det(Σ2) det(Λ

∗)ρ(Σ1Σ2)−1(Λ∗)

det(Σ1)ρΣ2
= det(Σ1) det(Σ2) det(Λ

∗)ρΣ−1
2

(Λ∗)

If ρΣ−1
2

(Λ∗) > ρ(Σ1Σ2)−1(Λ∗), then we done. For ρΣ−1
2

(x) = e−πxΣ2x
T

, ρ(Σ1Σ2)
−1(x) = e−πxΣ1Σ2x

T

,
if Σ1Σ2 − Σ2 is positive semi-definite, then we have ρΣ−1

2
(x) > ρ(Σ1Σ2)−1(x), thus ρΣ−1

2
(Λ∗) >

ρ(Σ1Σ2)−1(Λ∗).
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B.2 The proof of Theorem 4

Let E(k) = {x ∈ Rm : xΣ−12 xT < k} be the ellipsoid with "shape" Σ2 and radius k, and positive
definite matrix Σ1, Σ2, we have :

ρΣ1Σ2(Λ) ≥ ρΣ1Σ2(Λ\E(k))

=
∑

x∈(Λ\E(k))

e−πx(Σ1Σ2)
−1xT+πxΣ−1

2 xT

· e−πxΣ
−1
2 xT

=
∑

x∈(Λ\E(k))

e
1
2πxΣ

−1
2 xT

· e−πxΣ
−1
2 xT

(let Σ1 = 2I)

≥
∑

x∈(Λ\E(k))

e
1
2πk · e−πxΣ

−1
2 xT

= e
π
2 k · ρΣ2

(Λ\E(k))

By Lemma 2 we have 2m · ρΣ2
(Λ) ≥ ρ2Σ2

(Λ) and e
π
2 > 4, thus ρΣ2

(Λ\E(k)) < 2m−2k · ρΣ2
(Λ).
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