
LedgerHedger: Gas Reservation for Smart-Contract Security
Itay Tsabary

itaytsabary@gmail.com
Technion and IC3, Israel

Alex Manuskin
alex@manuskin.org

Israel

Ittay Eyal
ittay@technion.ac.il

Technion and IC3, Israel

ABSTRACT

Smart-contract ledger platforms, like Ethereum, rate-limit their
workload with incentives. Users issue orders, called transactions,
with assigned fees, and system operators, called miners, confirm
them and receive the fees. The combination of limited throughput
and varying demand results in a volatile fee market, where under-
paying transactions are not confirmed. However, the security of
prominent smart contracts, securing billions of dollars, critically
relies on their transactions being confirmed in specific, future time
frames. Despite theoretical and practical active efforts, guaranteeing
timely confirmation remained an open problem.

We present LedgerHedger, a two-party mechanism for assuring
that a transaction will be confirmed in a target time frame. As
the name implies, LedgerHedger employs hedging: An issuing
party pays for a transaction in advance; the other party commits to
bearing its required fee, even if it rises above the paid amount.

Unlike regulated markets, there are no external enforcers, and the
committing party can technically break her commitment. Due to the
amounts at stake, relying on her altruism does not suffice. Therefore,
LedgerHedger uses a combination of collateral deposits, giving rise
to a game. The contract requires the issuer to deposit her payment
and the committing party to deposit a collateral. During the target
time frame, the latter should confirm the issuer’s transaction if
it exists, but is also capable of withdrawing the payment and the
collateral if not.

For a wide range of parameter values there is a subgame perfect
equilibrium where both parties are incentivized to act as desired.
We implement LedgerHedger and deploy it on an Ethereum test
network, showing its efficacy and minor overhead.

CCS CONCEPTS

• Security and privacy→ Distributed systems security; Secu-
rity protocols; Economics of security and privacy.

KEYWORDS

Blockchains; Cryptocurrency; Smart Contracts; Hedging; Gas Price

1 INTRODUCTION

Decentralized smart-contract platforms like Ethereum [21, 155],
Solana [157], Avalanche [122, 123] and Binance Smart Chain [15]
have reached market caps of hundreds of billions of dollars [32].
These systems facilitate transactions of virtual cryptocurrency tokens
among their users. They run smart contracts – stateful programs
that users can interact with using the transactions. For a transac-
tion to take effect it needs to be confirmed by one of the system
operators, called miners; those place the transaction in a ledger
called a blockchain.

The blockchain has a limited transaction throughput [38, 40, 155].
Therefore, transaction issuers assign fees to their transactions, paid
to the confirming miner. Miners prioritize transactions by their

fees, ignoring those that offer lower amounts. Due to the varying
demand [37, 57, 69, 100, 130, 132, 146], the required confirmation
fee at a future time frame is unknown and volatile [4, 74], e.g.,
doubles itself within day.

This unpredictability is not just an inconvenience, but a security
concern. Many smart-contract applications, valued in billions of dol-
lars [33, 34], rely on their transactions being confirmed in a timely
manner (§2). These include optimistic and zero-knowledge roll-

ups [11, 22, 61, 73, 78, 83, 93, 107, 134, 149], off-chain channels [41,
46, 47, 65, 95, 96, 114, 116], atomic swaps [72, 88, 97, 145, 156, 162],
vaults [19, 94, 99, 158], and contingent payments [9, 20, 23, 58, 91].
For any of the above applications, price surges can result with
either safety or liveness violations, despite previous progress in
addressing the issue [10, 84, 87, 92, 126].

We present LedgerHedger, a blockchain reservation smart
contract, conducted between a Buyer (transaction issuer) and
a Seller (naturally, but not necessarily, a miner). Buyer and Seller

agree on a predetermined fee for a future time frame, guaranteeing
a future transaction inclusion despite the fee market volatility.

To reason about LedgerHedger, we use a model (§3) with an
append-only log of transactions called the blockchain. Miners batch
transactions in blocks, and append the blocks to the blockchain;
this confirms the added transactions. Transactions consume system
resources, measured in gas. Each block has a gas-price, a tokens-
per-gas-unit metric indicating the required transaction fee for con-
firmation based on a transaction’s gas consumption.

We consider two system participants: a Seller with gas allocation
at a specific, future time frame, and a Buyer, interested in having a
transaction confirmed within that time frame. We use a common
price fluctuation model for the stochastic future gas-price, which
we validate using historical Ethereum data.

The LedgerHedger mechanism (§4) employs hedging. In regu-
lated markets, hedging contracts are enforced by external measures,
e.g., courts. In a decentralized cryptocurrency system, only the min-
ers, but not users, decide on transaction confirmation, making them
the sole enforcers of any contract. Faced with clear incentives as
potential contract participants, the inherent power asymmetry in-
validates solutions that rely on parties’ altruistic behavior [104].

LedgerHedger overcomes this by incentivizing honest behavior
of both parties, despite their disparate capabilities. For that, Seller
deposits a collateral as part of the contract initiation [6, 45, 140],
which is later returned only if she abides by the contract. Ledger-
Hedger also protects Seller, ensuring she is paid even if Buyer
misbehaves. Nonetheless, it is Seller’s best response to have Buyer’s
transaction confirmed if it is available.

The contract operates in two phases. In the first, setup

phase, Buyer initiates the contract, setting its parameters, and
then Seller accepts it. Note that Buyer does not commit to a transac-
tion yet. In the second, exec phase, Buyer publishes her transaction,
and Seller has it confirmed through the contract.

Itay Tsabary, Alex Manuskin, and Ittay Eyal

We analyze the incentives of Buyer and Seller as a game with two
phases (§5). In the first phase, Buyer and Seller choose whether to en-
gage in a LedgerHedger contract or to wait without hedging. Then,
when the target interval arrives, if there exists a contract, Buyer
and Seller can interact with it; otherwise, they can publish or con-
firm transactions at the market gas-price.

The players’ strategies, along with the stochastic market gas-
price, determine the number of tokens each player has at the game
conclusion. Buyer and Seller are risk averse [27, 28, 35, 75], that is,
their utilities are concave functions of their token holdings.

We analyze the game using the subgame-perfect-equilibrium (SPE)

solution concept (§6), suitable for its dynamic, turn-based nature.
A SPE comprises a strategy of Buyer and a strategy of Seller such
that both cannot increase their utility by deviating at any stage of
the game. We show that engaging in the contract and fulfilling it is
a SPE for a wide range of practical parameters.

We conclude the analysis by showing that LedgerHedger is
applicable for a Seller that is a miner, regardless if block generators
are chosen probabilistically, as in Ethereum, or deterministically,
as in planned Central Bank Digital Currencies (CBDCs) [2, 60] (§7).
Specifically, for probabilistic systems, we show that for practi-
cal LedgerHedger parameter values, a mining Seller creates a
block with overwhelming probability. We also show how a non-
mining Seller can use the transaction-fee mechanism to facilitate
the required actions of LedgerHedger.

We demonstrate LedgerHedger’s efficacy by implementing it as
an Ethereum smart contract and deploying it on a test network (§8).
LedgerHedger’s overhead is low – three orders of magnitude lower
than the hedged gas for prevalent use cases.

In summary, our contributions are: (1) a gas-price fluctuation
model, verified with Ethereum measurements; (2) LedgerHedger,
the first mechanism for addressing the prevalent requirement of
timely blockchain confirmation; (3) an analysis showing Ledger-
Hedger’s security and applicability for a wide range of parameters;
and (4) an open-source implementation for Ethereum, deployed on
a test network.

2 RELATEDWORK

We are not aware of previous work that guarantees future transac-
tion confirmation in a timely manner, despite this being a security
requirement of prominent cryptocurrency applications. We review
several of these applications (e.g., roll-ups) in Appendix A.

Recently, Lotem et al. [87] suggested extending Ethereum’s con-
tract capabilities to allow applications to monitor the blockchain
congestion level. The applications can then extend their timeouts
in case of congestion. This mechanism replaces safety with liveness
violations – the timeout does not expire, but the application cannot
progress to its post-timeout state. In contrast, LedgerHedger as-
sures confirmation at the desired interval, and is directly applicable
to Ethereum and similar blockchains.

Infura’s any.sender [92] service gets issuers’ transactions con-
firmed at competitive fees using estimation and dynamic fee update.
Unlike LedgerHedger, it does not address long-term reservation
and its necessary mechanisms.

Several projects suggest mitigating gas-price changes using so-
called gas-tokens. These are tokens, managed by designated smart
contracts, whose value follows the gas-price. To protect against

gas-price rising (falling), one buys (sells) gas-tokens, and later sells
(buys) them. A future transaction issuer can acquire gas-tokens
beforehand, and sell them to fund the transaction fees at the desired
inclusion time.

The first type of gas tokens [1, 18, 102] was implemented by abus-
ing Ethereum’s gas refund mechanism, where several operations
had negative gas costs. The principle was to deliberately expend
gas on storing arbitrary data when the gas-price is low, and later,
when the gas-price rises, delete that data for a gas refund. This
method was inefficient, as only about a third of the spent gas is
refunded. Moreover, the August 2021 Ethereum upgrade [55] broke
this mechanism by changing the refund policy [13, 147]. In contrast,
LedgerHedger does not rely on Ethereum’s internal implementa-
tion, and hence applies to a wide range of systems. Moreover, its
overhead is three orders of magnitude less than the hedged amount
for practical parameter values.

Another approach for implementing gas tokens is pegging
them to the gas value, e.g., uGAS [42]. uGAS tokens have month-
granularity expiration dates, and their expiration value is set accord-
ing to an oracle [142] – another contract that, by external measures,
feeds the median gas price of all Ethereum transactions. Users can
deposit and release cryptocurrency to mint and destroy uGAS to-
kens, respectively. The required cryptocurrency amount, deposit
duration and withdrawal availability all depend on a set of variables
such as the oracle-reported price and the token availability in the
managing contract. Moreover, user deposits may be confiscated in
a so-called liquidation if their deposit value falls below a certain
threshold. Protocols of this kind are susceptible various attacks and
manipulations [39, 119, 120, 151, 160, 161], in particular to taking
advantage of the oracle [3, 49, 68, 110, 112, 118, 127, 128, 136, 137,
150, 159]. Furthermore, setting the oracle measured time period
is nontrivial – short periods make it easy to manipulate, but long
periods result with the reported value being inaccurate. In contrast,
LedgerHedger does not rely on oracles, and is conducted solely
among the two interacting parties, removing the ability to affect its
state through the aforementioned manipulations. LedgerHedger
also enables arbitrary choice of the target time frame.

The August 2021 [55] update to the Ethereum network ap-
plied Ethereum Improvement Proposal (EIP) 1559 [126], chang-
ing the transaction fee mechanism. EIP1559, along with other
work [86, 89, 113, 141, 143, 153], attempts to ease transaction issuers
estimation of the required fee solely for the next block; they do not
apply (or claim to apply) to further blocks.

Aside from benign price fluctuations, previous work shows the
fee market is susceptible to congestion attacks [70, 98, 100]. These
create multiple transactions that artificially increase the market
price, congesting the network, resulting with the time-sensitive
transactions being delayed.

LedgerHedger can withstand these attacks or benign market
spikes of any magnitude by including a sufficiently-high Seller col-
lateral, incentivizing Seller to abide by the contract. This guarantees
transaction issuers even far-future confirmations at predetermined
prices. We emphasize LedgerHedger is functional regardless of
the EIP1559 changes.

3 MODEL

To reason about blockchain reservation, we first describe a general
model for an underlying blockchain-based cryptocurrency (§3.1).
We then present the setup for a future transaction inclusion
deal (§3.2) and the stochastic value of fees (§3.3).

3.1 Cryptocurrency System

The blockchain system tracks internal cryptocurrency tokens that
its users can transact. To apply their transactions, users broadcast
them across a peer-to-peer network. A subset of users, called miners,
batch transactions in data structures called blocks.

Miners add blocks to a global data structure, called the blockchain,
forming an append-only list of blocks. Blocks have indexes match-
ing their append order, and we denote the 𝑖’th block by 𝑏𝑖 . A trans-
action is confirmed when it is included in the blockchain.

We follow the common assumption [21, 45, 47, 72, 88, 96, 103,
115, 126, 139, 140] that all miners create blocks according to the
above description, and all published transactions and all created
blocks are instantaneously available to all system users and miners.

The system state is the association of tokens to smart contracts,
predicates that need to be satisfied in order to transact their asso-
ciated tokens. Parties infer the state by sequentially parsing the
blockchain. Only transactions that satisfy the contract predicates
can be confirmed, and we disregard transactions that do not.

The smart-contract predicates can verify that the transaction
is digitally signed, for an existentially unforgeable under chosen

message attacks (EU-CMA) [8, 45, 63, 76, 140] digital signature algo-
rithm; that the transaction is included in a block numbered higher
or lower than a parameter; that the transaction transfers a number
of tokens; or a combination of the above. We say a user owns tokens
if she is the only user that is able to satisfy the contract predicate.

Transactions are measured by their gas requirement – an inter-
nal measure of transaction resource consumption. Each operation
in a transaction requires a certain amount of gas, and the total
transaction gas is the sum of all operations’ gas. When considering
a transaction tx’s gas requirement, denoted by 𝑔tx, we consider it
with respect to the system state when it is confirmed.

Each block has a bound on the total gas of its transactions. Trans-
actions may offer tokens as a fee for the including miner. This
fee is set by the transaction issuer, determining a non-negative
tokens-per-gas ratio, which we denote by 𝜋 tx for transaction tx.
Therefore, 𝜋 tx is a rational number. When confirmed, transaction tx

pays 𝑔tx · 𝜋 tx tokens to the miner that included it in a block.
Miners choose which transactions to include in a block based

on their offered 𝜋 tx values. We refer to the minimal required value
to be included in a block by gas-price. For simplicity, we assume
there are always sufficiently many transactions that offer gas-price
to exactly fill a block [24, 139], and that any transaction offering at
least gas-price is confirmed.

3.2 Future Transaction Setup

Consider two system participants, Buyer and Seller, with the follow-
ing interests: Buyer requires 𝑔

alloc
gas allocated to a transaction of

her choice in future blocks; Seller has a gas allocation of 𝑔
alloc

in
such a suitable block, which she can sell for tokens.

We denote the transaction that Buyer wants to be included
by tx

payload
, and the relevant block interval for its inclusion

by [𝑏start, 𝑏end]. Note that the content of tx
payload

is not neces-
sarily known up to 𝑏start. We also denote the block interval in
which Buyer wishes to assure the future allocation by [𝑏init, 𝑏acc]
such that init ≤ acc < start ≤ end.

3.3 Gas Price

To reason about hedging, one requires a prediction of the commod-
ity future price. We assume the future gas-price is drawn from some
price distribution. We assume both Buyer and Seller have perfect
knowledge of this distribution.

Previous work [86, 89, 113, 141, 143, 153] provides gas-price pre-
dictions, but focuses exclusively on prediction for the next block.
We are not aware of work modeling the gas-price for a further
future (e.g., a week ahead), hence we assume it follows the preva-
lent random-walk price model [17, 54, 80, 121]. According to this
model, the gas-price follows a Gaussian random walk, where in
each block it changes according to a random sample from a normal
distribution 𝑁

(
𝜇, 𝜎2) . It follows [111, 148] that the future gas-price

change after 𝑛 blocks is also drawn from a normal distribution with
parameters 𝑁

(
𝑛 · 𝜇, 𝑛 · 𝜎2) .

For simplicity, we assume the random walk is without a drift,
meaning 𝜇 = 0. We also assume that 𝜎2 is small [51], so in the short
term the gas-price has a low variance.

We validate this model using the Kolmogorov–Smirnov [90] test
on historical Ethereum gas prices over a month (Appendix B).

We slightly enhance the price model to neglect rare events.
Specifically, the gas-price cannot be negative, as that would im-
ply the miner pays users to transact, instead of the obvious option
of leaving blocks empty; excessively high gas-price is also impos-
sible, as that removes any incentive to transact and renders the
system unusable.

In summary, denote by F the gas-price distribution in the tar-
get interval. F is a truncated normal distribution [135]; its mean
value is the gas-price for block 𝑏init; its lower tail is truncated such
that the gas-price is non-negative, and we truncate the upper tail
symmetrically with respect to the mean. Denote the probability den-
sity function (PDF) of F by Fpdf.

Denote the gas-price for block 𝑏init by 𝜋 setup. We assume
that [𝑏init, 𝑏acc] is relatively short, and make the simplifying as-
sumption that the gas-price for this entire interval is 𝜋 setup. Sim-
ilarly, we assume that [𝑏start, 𝑏end] is relatively short, and denote
the gas-price for this interval by 𝜋exec ∼ F .

4 LEDGER-HEDGER

We present LedgerHedger, our construction enabling a Buyer and
a Seller to hedge future block gas for a predetermined gas-price. We
begin by detailing LedgerHedger’s design (§4.1), and follow by
formalizing its security guarantees (§4.2).

4.1 Ledger-Hedger Design

LedgerHedger operates in two phases, setup and exec, representing
its setup and execution in the block intervals of interest, presented
in Figure 1. Throughout the following functions, the contract veri-
fies identities using the EU-CMA digital signature algorithm.

In the setup phase, Buyer initiates a LedgerHedger instance
using a transaction. The initiation sets the contract parameters,
including the block ranges in which interactions can be made with

Itay Tsabary, Alex Manuskin, and Ittay Eyal

Blocks:

Phases:

binit bacc bstart bend
//

setup exec

Figure 1: LedgerHedger interaction block ranges.

the contract instance, the required gas for the future transaction,
and a required collateral to be deposited by Seller. She also deposits
the token payment for the future transaction confirmation.

Following its initiation, the contract starts an acceptance block

countdown, during which a Seller can accept it using a transaction.
Additionally, accepting the contract requires Seller to deposit tokens
as a collateral matching the collateral parameter. The collateral is
returned conditioned on Seller further interacting with the contract.
Either if Seller accepted the contract, or if the acceptance countdown
is completed, the contract accepts no further interactions until
the exec phase.

Towards or even during the exec phase, Buyer can pub-
lish tx

payload
. This allows Seller to apply it, executing tx

payload
, and

getting the payment and collateral tokens from the contract. This
is the main functionality of LedgerHedger – enabling Seller to
execute a transaction provided by Buyer.

Alternatively, Seller can exhaust the contract, consuming the
hedged gas on null operations, and then receiving its tokens. The
motivation for this functionality is to enable Seller to claim the
tokens, regardless if Buyer provides a transaction or not; this pro-
tects Seller from a faulty or malicious Buyer. However, the naive
solution of letting Seller report Buyer as faulty is not sufficient: It
allows a Seller to falsely accuse a correct Buyer, getting the contract
tokens without providing the confirmation service. By making Seller
waste equivalent gas, we remove her incentive to do so.

If Seller has not accepted the contract, then Buyer can recoup the
contract tokens using a transaction.

LedgerHedger comprises these functions, which we now de-
scribe in detail and present in Alg. 1.

Initiate. Buyer initiates the contract through the invocation of
the Initiate function (lines 1–6), setting the contract parameters.
These include acc, the block number by which Seller is required to
accept the contract; start and end, the range in block numbers dur-
ing which block Seller is required to confirm the transaction; 𝑔

alloc
,

a positive number of gas units Buyer wishes to use; col, the non-
negative token collateral required by Seller; and, 𝜀, an additional
non-negative number of tokens that will be transferred to Seller

for confirming the provided Buyer transaction. For simplicity we
consider the block confirming the initiation transaction is 𝑏init.

The contract verifies the provided parameters are valid according
to the above specification, specifically, that the block numbers are
ascending, that the gas parameter is positive, and that the token
parameters are non-negative (lines 2– 3).

After this verification, the contract derives the offered payment:
the additional 𝜀 tokens are subtracted from the sent to-
kens sentTokens. This is the number of tokens that will be paid
to Seller for either executing a transaction or exhausting the con-
tract. This implies the contract’s offered gas-price is 𝜋contract =
payment

𝑔alloc
(line 4). It also stores the public identifier of Buyer

as PKBuyer (line 5). Finally, the contract sets its status variable status
to initiated (line 6), indicating the contract has been initiated, but

no further transactions have interacted with it. We denote the gas
consumption of the Initiate function by 𝑔init.

Accept. Once the contract is initiated, a Seller can accept it
through the invocation of the Accept function (lines 6–12). This
enables only a single Seller to accept the contract, and only before
the timeout set by Buyer expires. It also requires Seller to deposit
the requested collateral.

For that, this function first verifies that this invocation is no
later than 𝑏acc (line 8), that the contract has been initiated, but not
further interacted with (line 9), and that the sent tokens collateral
suffices (line 10).

The contract then stores Seller public identifier
as PK

Seller
(line 11), and updates its status variable status

to accepted, indicating the contract has been accepted (line 12).
We denote the gas consumption of the Accept function by 𝑔accept.

The previous Initiate and Accept functions facilitate the initiation
and acceptance of LedgerHedger. The following three functions
detail its conclusion.

Recoup. The Recoup function (lines 12–18) enables Buyer to with-
draw her deposited tokens from LedgerHedger if no Seller accepts
it prior to 𝑏acc.

For that, it first verifies the invocation is
within [𝑏start, 𝑏end] (line 14), that the contract is initiated,
but no Seller had accepted it (line 15), and that the invocation is
by Buyer (line 15). We discuss earlier recouping in Appendix C.

Then, the contract marks its status completed (line 17), and
sends Buyer her deposited payment + 𝜀 tokens (line 18). We denote
the gas consumption of the Recoup function by 𝑔

done
.

Apply. The Apply function (lines 18–26) implements the
main functionally of LedgerHedger: Seller executing a transac-
tion txprovided provided by Buyer, and receiving the agreed-upon
payment for doing so.

This function takes as an input a transaction txprovided, and first
verifies txprovided was issued by Buyer (line 20). Then, it verifies the
invocation is within [𝑏start, 𝑏end] (line 21), that Seller had previously
accepted (line 22), and that the invocation is by Seller (line 23).

The contract then executes the operations of txprovided as a
subroutine (line 24), marks its status completed (line 32), and
sends payment + 𝜀 + col tokens to Seller (line 33).

Considering all operations except the execution of txprovided,
the Apply function performs similar operations to those of Recoup.
We therefore consider its gas consumption, aside from execution
of txprovided, is also 𝑔

done
.

Exhaust. The Exhaust function (lines 26–33) allows Seller to
get payment+col tokens for expending𝑔

alloc
gas during the required

block interval. Its goal is to protect Seller from a spiteful Buyer,
specifically from the case where Buyer does not publish a txprovided
transaction, or publishes ones that consume more than 𝑔

alloc
gas.

When Exhaust is invoked, the contract first verifies the invo-
cation is within [𝑏start, 𝑏end] (line 28), that Seller had previously
accepted (line 29), and that the invocation is by Seller (line 30).

The contract then performs null operations consuming 𝑔
alloc

gas (line 31), marks its status completed (line 32), and
sends Seller payment + col tokens (line 33).

Algorithm 1: LedgerHedger
Parameter :acc, start, end, block number operation ranges
Parameter :𝑔

alloc
, required gas

Parameter : col, the required collateral by Seller

Parameter :payment, payment for execution
Parameter :𝜀 , additional payment for successful execution.
Global Variable : current, current block number
Variable : status← ⊥, contract status variable
Variable :PK

Seller
← ⊥, public identifier of Seller

Variable :PK
Buyer

← ⊥, public identifier of Buyer

1 Function Initiate(txIssuer, sentTokens; acc, start, end, 𝑔
alloc

, col, 𝜀):
2 Assert: current ≤ acc < start ≤ end

3 Assert: 𝑔
alloc

> 0, col ≥ 0, 𝜀 ≥ 0, sentTokens ≥ 𝜀

4 Set acc, start, end, 𝑔
alloc

, col from inputs, payment← sentTokens − 𝜀
5 PK

Buyer
← txIssuer

6 status← initiated

7 Function Accept(txIssuer, sentTokens):
8 Assert: current ≤ acc

9 Assert: status = initiated
10 Assert: sentTokens ≥ col

11 PK
Seller

← txIssuer

12 status← accepted

13 Function Recoup(txIssuer, sentTokens):
14 Assert: start ≤ current ≤ end

15 Assert: status = initiated
16 Assert: PK

Buyer
= txIssuer

17 status← completed
18 Send payment + 𝜀 to PK

Buyer

19 Function Apply(txIssuer, sentTokens; tx
provided

):

20 Assert: tx
provided

was issued by PK
Buyer

21 Assert: start ≤ current ≤ end

22 Assert: status = accepted
23 Assert: PK

Seller
= txIssuer

24 Execute the operations of txprovided
25 status← completed
26 Send payment + 𝜀 + col to PK

Seller

27 Function Exhaust(txIssuer, sentTokens):
28 Assert: start ≤ current ≤ end

29 Assert: status = accepted
30 Assert: PK

Seller
= txIssuer

31 Perform null operations summing to 𝑔
alloc

gas
32 status← completed
33 Send payment + col to PK

Seller

Note that executing Exhaust results with the remaining 𝜀 being
forever locked in the contract.

Similarly, the operations of Exhaust, aside from the exhaustion,
resemble those of Recoup. Therefore its gas cost, aside from the
exhaustion, is also 𝑔

done
.

4.2 Possible Ledger-Hedger Interactions

Following immediately from the functions of Ledger-
Hedger (Alg. 1) and the EU-CMA digital signature algorithm, we
get the following properties, which define all possible interactions
of the participants with the contract:

Contract parameters are immutable. The contract parameters are
set only once by Buyer at its initiation and are immutable.

These parameters are set before 𝜋exec is drawn. Moreover, Buyer
must transfer payment + 𝜀 tokens to the contract at its initiation.

Single Seller accepting. Only a single Seller can accept the con-
tract, only after it is initiated, and only before𝑏acc. That means Seller
can accept the contract only after its parameters are set, and only
after Buyer has already transferred payment + 𝜀 tokens to it. Seller

can accept the contract only before 𝜋exec is known, and only by
transferring col tokens.

Contract token extraction. Extracting the contract tokens requires
successfully invoking either Recoup, Apply or Exhaust, which all
require to be invoked during [𝑏start, 𝑏end].

Buyer extracting tokens. Only Buyer can successfully in-
voke Recoup, only during [𝑏start, 𝑏end], and only if Seller had not
accepted the contract.

Seller extracting tokens. Only Seller that accepted the contract can
successfully invoke Apply or Exhaust, but not both. For either func-
tion, a successful invocation can be made only during [𝑏start, 𝑏end],
and only if Seller had accepted the contract before 𝑏start (specifically,
before 𝑏acc which precedes 𝑏start).

Additionally, Seller can only successfully invoke Apply by pro-
viding a transaction tx

payload
published by Buyer.

5 GAME DEFINITION

The need of Buyer to confirm a future transaction, Seller having a
future gas allocation, and the existence of LedgerHedger contract,
all give rise to a game played by Buyer and Seller. The game, denoted
by Γ, begins when the blockchain is at the block preceding 𝑏init,
and progresses with the players taking actions.

We present the possible game states and actions (§5.1), consider
player strategies (§5.2) and their resultant player utilities (§5.3).

5.1 States and Actions

The game takes places during two phases. The first phase, denoted
by 𝜑setup, describes the creation of blocks 𝑏init to 𝑏acc. The sec-
ond phase, denoted by 𝜑exec, describes the creation of blocks 𝑏start
to 𝑏

end
.

The game state comprises the player tokens, the contracts they
possibly engage with, their published transactions, the current
phase, and the gas-price. Figure 2 summarizes the game progress.

Broadly speaking, Buyer and Seller can set a LedgerHedger
contract at the game start for 𝜑exec, and then execute it. Alterna-
tively, Buyer and Seller can wait for 𝜑exec, and then Buyer can pub-
lish tx

payload
as any other transaction for confirmation, and Seller

can use her gas allocation to confirm any transaction.
We ignore nonsensical, obviously dominated or unrelated ac-

tions [152] such as either party sharing her private key, Seller not
using her gas allocation, or either player publishing unrelated trans-
actions. We assume both parties initially have sufficiently many
tokens to support the following actions.

The value of 𝜋 setup is known to Buyer and Seller at the game
beginning. However, the value of 𝜋exec is drawn by Nature from F
just before 𝜑exec starts. After the players publish and confirm trans-
actions for 𝜑exec the game is concluded.

The game starts in state InitLH (in 𝜑setup), where Buyer can
choose to initiate a LedgerHedger instance (action 𝑎init), and
choose its parameters. She incurs the initiation cost 𝑔init · 𝜋 setup,
deposits the payment payment + 𝜀, and the game transitions to
state AcceptLH. Alternatively, she can choose to refrain from initi-
ating (action 𝑎wait), incurring no costs, and the game transitions to
game state NoLH.

Game state NoLH (in 𝜑exec) takes place after Nature

draws 𝜋exec ∼ F . In this state, Buyer can pay the gas-price 𝜋exec
to have tx

payload
confirmed (action 𝑎

pubTx
), incurring the fee

cost 𝑔
alloc
· 𝜋exec, but have tx

payload
confirmed. Alternatively, she

Itay Tsabary, Alex Manuskin, and Ittay Eyal
ϕ
se

tu
p

ϕ
e
x
ec

InitLH (Buyer)

AcceptLH (Seller)

Initiate (ainit)

Nature draws πexec ∼ F

Wait (await)

Nature draws πexec ∼ F

Decline (adecline)

Nature draws πexec ∼ F

Accept (aaccept)

NoLH (Buyer) RecoupLH (Buyer) PublishTx (Buyer)

txpayload confirmed
for market price

Publish (apubTx)

txpayload not
confirmed

No-op (anoPubTx)

Contract recouped
by Buyer

Refund (arecoup)

Contract forfeited
by Buyer

Forfeit (aforfeit)

FulfillTx (Seller)

Publish (apubTx)

txpayload confirmed
through contract

Confirm (aapply)

Contract forfeited by Seller,
txpayload not confirmed

Ignore (aignore)

Contract exhausted,
txpayload not confirmed

Exhaust (aexhaust)

FulfillNoTx (Seller)

No-op (anoPubTx)

Contract forfeited by Seller,
txpayload not confirmed

Ignore (aignore)

Contract exhausted,
txpayload not confirmed

Exhaust (aexhaust)

Figure 2: Γ game states, actions, and conclusion.

can do nothing, incurring no costs, but receiving no reward. Seller
sells her 𝑔

alloc
gas for the gas-price 𝜋exec, earning 𝑔

alloc
· 𝜋exec.

In game state AcceptLH (𝜑setup) Seller chooses whether to ac-
cept the LedgerHedger instance (action 𝑎accept). To accept, Seller
publishes a transaction that invokes the Accept function, deposits
the col collateral tokens, and incurs a cost of 𝑔accept · 𝜋 setup. The
game then transitions to state PublishTx . Alternatively, she can
decline by simply ignoring it (𝑎

decline
), leading to RecoupLH.

Game state RecoupLH is in 𝜑exec, after Nature draws 𝜋exec ∼ F .
Buyer can choose to withdraw her deposited payment + 𝜀 tokens
from the declined LedgerHedger instance (action 𝑎recoup), incur-
ring the withdrawal transaction fee cost 𝑔

done
· 𝜋exec. If not, she

can simply ignore it (action 𝑎
forfeit

), forfeiting the payment + 𝜀 to-
kens. As in NoLH, Buyer can also publish tx

payload
, and Seller can

also confirm other transactions; the former costs Buyer 𝑔
alloc
· 𝜋exec

tokens, but has tx
payload

confirmed, and the latter rewards Seller
with 𝑔

alloc
· 𝜋exec.

Game state PublishTx is in 𝜑exec, after Nature draws 𝜋exec ∼ F .
Here Buyer can publish transactions for Seller to confirm using
the contract’s Apply function . These transactions do need not
to further incentivize a miner to confirm them, hence offer no
fee. However, Buyer can publish multiple transactions for Seller

to choose from, and Seller is clearly incentivized to consider only
the transaction requiring the least gas. So, we consider the follow-
ing two cases. First, Buyer chooses not to publish a transaction
at all (action 𝑎

noPubTx
), incurring no costs, leading to FulfillNoTx .

Alternatively, Buyer publishes tx
payload

(action 𝑎
pubTx

), leading to
the FulfillTx state.

In game states FulfillNoTx and FulfillTx (𝜑exec) Seller can choose
to invoke the contract’s Exhaust function (action 𝑎

exhaust
). This

transfers payment + col tokens to Seller, but requires 𝑔
alloc

for the
null operations and 𝑔

done
gas for the remaining operations (verifica-

tion, token transfer, etc.). Note this action exceeds the 𝑔
alloc

quota
of Seller, requiring Seller to pay fees for 𝑔

done
, resulting in an in-

curred cost of 𝑔
done
·𝜋exec. Action 𝑎

exhaust
results with tx

payload
not

confirmed, so Buyer can have it included by paying the gas-price.
Alternatively, Seller can choose to ignore the contract (ac-

tion 𝑎ignore), receiving no tokens but incurring no additional costs.
Action 𝑎ignore results with Seller not using her gas, which she can

sell for the gas-price of 𝜋exec. It also results with tx
payload

not be-
ing confirmed through the contract, so Buyer can pay the current
gas-price 𝜋exec to have it confirmed.

Finally, in FulfillTx , Seller can choose to invoke the con-
tract’s Apply function, using the published transaction tx

payload
.

This rewards Seller with payment+𝜀+col tokens, but requires𝑔
pub
+

𝑔
done

gas, resulting in an incurred cost of
(
𝑔
alloc
−
(
𝑔
pub
+ 𝑔

done

))
·

𝜋exec.

Note 1. We assume that Seller verifies the execution of tx
payload

and is content with its results (as in, e.g., [25, 64, 67]). Namely, Seller

verifies tx
payload

does not terminate the contract nor transfer away

its funds.

Note 2. LedgerHedger works whether Seller is a miner or not: If

she is a miner she can use some of her block’s gas to confirm tx
payload

and get the contract tokens, forfeiting other transactions that pay

the market price (cost of loss-of-opportunity); if she is not, she can

confirm tx
payload

and get the contract tokens by publishing a transac-

tion that pays the gas-price to a miner (cost of the transaction fee).

In both cases, the cost is (𝑔
alloc
+ 𝑔

done
) · 𝜋exec, and the remainder of

the game-theoretic analysis is identical.

As in the NoLH and the RecoupLH states, if tx
payload

is not con-
firmed by Seller as part of the contract (i.e., if Seller plays 𝑎

exhaust

or 𝑎ignore), then Buyer can pay to have tx
payload

included at market
price, resulting with tx

payload
confirmed and a cost of 𝑔

alloc
· 𝜋exec.

Any of these actions concludes the game.

5.2 Strategy

Each player has a strategy, mapping each game state to an action.
The action space for Buyer comprises which transactions to publish
and when to do so. For Seller, it comprises which transactions to
publish, when to publish them, and which transactions to confirm
using her allotted gas.

We denote by 𝑠 a strategy profile, comprising the strategies
of Buyer and Seller.

We denote 𝑠 (state) = 𝑎 if the player’s strategy in the profile 𝑠
dictates playing action 𝑎 in game state state. We say a player follows
strategy profile 𝑠 if at each game state she chooses to play her
strategy’s mapped action.

5.3 Wealth and Utility

The game concludes with each player having some number of
tokens – their resultant wealth. We model the exogenous motiva-
tion of Buyer from having a transaction tx

payload
that consumes at

least 𝑔
alloc

gas confirmed during 𝜑exec as her receiving tokens from
doing so, denoting their number by 𝑤exo. We capture the player’s
happiness from having wealth using a utility function.

We denote the initially available tokens of Buyer and Seller

by 𝑤 init

Buyer
and 𝑤 init

Seller
, respectively.

Each player’s resultant wealth therefore depends on these values,
their paid and received transaction fees, and the values of 𝜋 setup
and 𝜋exec.

A player’s utility 𝑈 : 𝑊 → R is a function describing happi-
ness from having𝑊 tokens at the game conclusion, including the
exogenous motivation 𝑤exo for Buyer.

We assume both Seller and Buyer are risk averse [5, 30, 44, 82,
85, 117], that is, they value the certainty of their resultant wealth.
This implies that they might not prefer to maximize their expected
wealth. For example, a risk-averse player might prefer getting 4
tokens with probability 1 over getting 10 token with probability 0.5,
despite the latter higher expected value of 5. Risk aversion justifies
actions like individuals purchasing insurance [31, 109], or airlines
hedging oil prices [36, 71]. Risk and ambiguity [48, 138] aversion
also capture that players do not have perfect knowledge of F .

The common practice [5, 28, 117] to model risk aversion is using a
utility function𝑈 (𝑊) with the following two properties: (1)𝑈 (𝑊)
is strictly increasing in 𝑊 , meaning a player is strictly happier
with having more tokens, and (2) 𝑈 (𝑊) is concave, where higher
curvature implies a stronger risk aversion tendency. Hereinafter,
we consider utility functions that meet this definition.

6 ANALYSIS

The goal of our analysis goal is twofold – find contract parameters
for which Buyer initiates and Seller accepts, and, given an initiated
and accepted contract, find conditions for Seller to confirm the
transaction of Buyer.

We first specify the solution concept (§6.1): We consider subgame

perfect equilibrium (SPE), capturing the dynamic, turn-based nature
of the game. We then express the equilibrium strategy as a function
of the distribution, the utility functions, and the contract parameters,
and prove there are scenarios where engaging and fulfilling the
contract is SPE (§6.2):

Theorem 1. There exists utility functions, a distribution F , and
contract gas and token parameters such that: Buyer is incentivized

to initiate the contract; Seller is incentivized to accept the initiated

contract; Buyer is incentivized to publish tx
payload

such that 𝑔
pub

=

𝑔
alloc

; and, Seller is incentivized to fulfill the contract by confirm-

ing tx
payload

.

Finally, we analyze LedgerHedger using parameters from an
operational system, while considering plausible distributions and
utility functions, showing its efficacy and applicability in a variety
of settings (§6.3).

6.1 Solution Concept

The sequential nature of Γ lends itself to the definition of subgames,
each capturing the possible extensions starting from a specific state.

We denote by Γ
player

state the subgame starting at state state
where player ∈ {Buyer, Seller} is to take an action. The game begins
with the initial subgame Γ

Buyer

InitLH = Γ.
We can therefore define the wealth and utility of each player

starting in a subgame as follows. Let Buyer and Seller follow a
strategy profile 𝑠 in subgame Γ

player

state , and let Nature draw gas-

price 𝜋exec. We denote the resultant wealth of Buyer and of Seller
by𝑊Buyer (𝜋exec, state, 𝑠) and by𝑊

Seller
(𝜋exec, state, 𝑠), respectively.

We denote the utility of Buyer by 𝑈 Buyer

(
𝑊Buyer (𝜋exec, state, 𝑠)

)
and of Seller by 𝑈

Seller
(𝑊

Seller
(𝜋exec, state, 𝑠)), or sim-

ply 𝑈Buyer (state, 𝑠) and 𝑈
Seller
(state, 𝑠) for succinctness.

We denote the expected utility of Buyer and Seller when they
follow strategy profile 𝑠 starting in Γ

player

state , over the distribution F ,
by E

[
𝑈Buyer (state, 𝑠)

]
and by E [𝑈

Seller
(state, 𝑠)], respectively.

We focus on rational Buyer and Seller that strive to maximize
their expected utility. We assume the players’ utility functions, their
utility-maximizing tendencies, and the game state are all common
knowledge. So, the defined game is of perfect information [108, 131].

We are interested in a strategy profile that is a subgame perfect

equilibrium (SPE) [14, 26, 59, 101, 124, 129, 144, 152]. Intuitively, this
means that at any stage of the game both players are content with
the action defined in the strategy profile. Formally, SPE is a strategy
profile where no player can increase her utility by deviating in any
subgame, considering the other player’s reaction to such deviation,
i.e., Nash equilibrium at every subgame.

We are interested in finding conditions in which the SPE, denoted
by 𝑠spe, results with Buyer initiating the contract, Seller accepting
it, Buyer publishing tx

payload
with 𝑔

pub
= 𝑔

alloc
, and Seller confirm-

ing it.
The common method for finding 𝑠spe is using backward induc-

tion [7, 14, 79, 125], applicable in perfect information and finite
games. The analysis begins at the subgames comprising only the
last action (e.g., subgames ΓSellerFulfillNoTx and ΓSellerFulfillTx), where the SPE
is found by directly comparing the utility from the different possi-
ble actions. Then, considering the last player chooses that utility-
maximizing action, the second to last subgames are analyzed (e.g.,
subgame Γ

Buyer

PublishTx). This process is repeated recursively until the

initial subgame
(
Γ
Buyer

InitLH = Γ
)

is analyzed. We move forward to find-
ing 𝑠spe in Γ.

6.2 SPE Expressions

We start by expressing the SPE for an initiated and accepted con-
tract (§6.2.1), and then address the initiation (§6.2.2) and accep-
tance (§6.2.3).

6.2.1 Fulfilling an Initiated and Accepted Contract. The subgame
describing possible interactions with the initiated and accepted
contract is Γ

Buyer

PublishTx , which is played after Nature had already

drawn 𝜋exec. Therefore, any choice of action in Γ
Buyer

PublishTx and its
the subsequent subgames results with deterministic wealth for
both Buyer and Seller.

It follows that maximizing the expected utility (by choosing
preferable actions) is the same as maximizing the utility. Addition-
ally, since utility functions are monotonic, maximizing the utility
is equivalent to maximizing wealth.

Itay Tsabary, Alex Manuskin, and Ittay Eyal

Following this observation, we compare the resultant wealth of
each action in Γ

Buyer

PublishTx and its the subsequent subgames, present-
ing a condition on 𝜋exec, by which the 𝑠spe action is decided.

Throughout the analysis, we assume 𝜀 = 1, that is, a single
token (we consider different 𝜀 values in Appendix C).

Towards the upcoming resultant wealth analysis, recall that in
the subgames preceding Γ

Buyer

PublishTx , Buyer already incurred a cost
of 𝑔init · 𝜋 setup + payment + 𝜀 for initiating the contract, and Seller

incurred a cost of 𝑔accept · 𝜋 setup + col for accepting the contract.
The available actions in Γ

Buyer

PublishTx are 𝑎
pubTx

, leading to ΓSellerFulfillTx ,

or 𝑎
noPubTx

, leading to ΓSellerFulfillNoTx . We begin by considering these
two subgames, and present their analysis summary in Table 1.

Subgame ΓSellerFulfillNoTx. In the ΓSellerFulfillNoTx subgame Seller plays ei-
ther 𝑎

exhaust
or 𝑎ignore.

Playing 𝑎
exhaust

results with Seller exhausting the contract’s gas,
rewarding Seller with payment + col at the incurred cost of 𝑔

done
·

𝜋exec. Alternatively, playing 𝑎ignore results with Seller forfeiting
the contract tokens, but selling her gas for the gas-price, that is, a
reward of 𝑔

alloc
· 𝜋exec.

It follows 𝑎
exhaust

is preferred over 𝑎ignore if

payment + col − 𝑔
done
· 𝜋exec > 𝑔

alloc
· 𝜋exec ,

and the resultant wealth of Seller in this subgame is therefore

𝑊
Seller

(
𝜋exec, FulfillNoTx, 𝑠spe

)
= 𝑤 init

Seller
− 𝑔accept · 𝜋 setup

+max (payment − 𝑔
done
· 𝜋exec, 𝑔alloc · 𝜋exec − col) .

(1)

Regardless of the action Seller chooses, Buyer can pay the gas-

price 𝜋exec for her transaction inclusion. The cost for that is 𝑔
alloc
·

𝜋exec with a reward of 𝑤exo. This is profitable as long as 𝑤exo >

𝑔
alloc
· 𝜋exec, resulting with

𝑊Buyer

(
𝜋exec, FulfillNoTx, 𝑠spe

)
= 𝑤 init

Buyer
− 𝑔init · 𝜋 setup

− payment − 𝜀 +max
(
𝑤exo − 𝑔

alloc
· 𝜋exec, 0

) . (2)

Subgame ΓSellerFulfillTx. In the ΓSellerFulfillTx subgame Seller plays ei-
ther 𝑎

apply
, 𝑎

exhaust
or 𝑎ignore.

Playing either 𝑎
exhaust

or 𝑎ignore results with the same wealth
as playing them in ΓSellerFulfillNoTx . However, playing 𝑎

apply
includes

the published tx
payload

transaction with its gas requirement 𝑔
pub

,
resulting with a reward of payment+𝜀 + col. However, it also results
with a cost of 𝑔

done
· 𝜋exec, and an additional

(
𝑔
alloc
− 𝑔

pub

)
· 𝜋exec;

note the latter is negative if 𝑔
alloc

< 𝑔
pub

, that is, if tx
payload

exceeds
the agreed quota 𝑔

alloc
, or positive if tx

payload
under-utilizes it.

Comparing 𝑎
apply

and 𝑎
exhaust

, we get 𝑎
apply

is preferred if 𝜀 >(
𝑔
pub
− 𝑔

alloc

)
· 𝜋exec. As 𝜀 = 1, 𝜋exec > 0, and

(
𝑔
pub
− 𝑔

alloc

)
· 𝜋exec

is a number of tokens (i.e., an integer), this inequality holds if𝑔
pub
≤

𝑔
alloc

.
Similarly, comparing 𝑎

apply
and 𝑎ignore results with the former

yielding more tokens if 𝜋exec <
payment+col+𝜀
𝑔pub+𝑔done .

The resultant wealth of Seller in this subgame is therefore

𝑊
Seller

(
𝜋exec, FulfillTx, 𝑠spe

)
= 𝑤 init

Seller
− 𝑔accept · 𝜋 setup

+max
(
payment − 𝑔

done
· 𝜋exec, 𝑔alloc · 𝜋exec − col,

payment + 𝜀 −
(
𝑔
done
+ 𝑔

alloc
− 𝑔

pub

)
· 𝜋exec

) . (3)

If Seller chooses not to confirm tx
payload

, then Buyer can pay
the gas-price 𝜋exec for her transaction inclusion. The cost for that
is 𝑔

alloc
· 𝜋exec with a reward of 𝑤exo. This is preferred as long

as 𝑤exo > 𝑔
alloc
· 𝜋exec, resulting with

𝑊Buyer

(
𝜋exec, FulfillTx, 𝑠spe

)
= 𝑤 init

Buyer
− 𝑔init · 𝜋 setup − payment − 𝜀+

𝑤exo,
𝜋exec <

payment+col+𝜀
𝑔pub+𝑔done

and 𝑔
pub
≤ 𝑔

alloc

max (𝑤exo − 𝑔
alloc
· 𝜋exec, 0) , otherwise

. (4)

We are now ready to consider the Γ
Buyer

PublishTx subgame.

Subgame Γ
Buyer

PublishTx. In this subgame Buyer chooses whether
to publish tx

payload
, and with what gas requirement 𝑔

pub
. We

present the following lemma, providing an upper bound for
gas-price 𝜋exec such that Buyer is strictly incentivized to pub-
lish tx

payload
with 𝑔

pub
= 𝑔

alloc
:

Lemma 1. If 𝜋exec <
payment+col+𝜀
𝑔alloc+𝑔done then 𝑠spe (PublishTx) = 𝑎

pubTx
,

satisfying 𝑔
pub

= 𝑔
alloc

.

Intuitively, Buyer publishing a transaction with gas consump-
tion 𝑔

pub
> 𝑔

alloc
disincentivizes Seller to confirm it. But, by defini-

tion, the transaction of Buyer yields no value to her if 𝑔
pub

< 𝑔
alloc

,
resulting with the optimal gas consumption being 𝑔

pub
= 𝑔

alloc
. Ad-

ditionally, meeting the 𝜋exec bound results with Seller confirming
the published transaction, incentivizing Buyer to publish it to begin
with. We bring the full proof in Appendix D.

Following Lemma 1, if the gas-price satisfies 𝜋exec <
payment+col+𝜀
𝑔alloc+𝑔done then Seller confirms tx

payload
, and we get the resultant

wealth of the ΓSellerFulfillTx subgame (see Eq. 3 and Eq. 4).

However, if gas-price exceeds 𝜋exec >
payment+col+𝜀
𝑔pub+𝑔done then Seller

does not confirm tx
payload

. In that case, Seller chooses between
exhausting or ignoring the contract, and the resultant wealth is
that of the ΓSellerFulfillNoTx subgame (see Eq. 1 and Eq. 2).

Therefore, we get

𝑊
Seller

(
𝜋exec, PublishTx, 𝑠spe

)
={

𝑊
Seller

(
𝜋exec, FulfillTx, 𝑠spe

)
, 𝜋exec <

payment+col+𝜀
𝑔alloc+𝑔done

𝑊
Seller

(
𝜋exec, FulfillNoTx, 𝑠spe

)
, 𝜋exec >

payment+col+𝜀
𝑔alloc+𝑔done

(5)

and
𝑊Buyer

(
𝜋exec, PublishTx, 𝑠spe

)
={

𝑊Buyer

(
𝜋exec, FulfillTx, 𝑠spe

)
, 𝜋exec <

payment+col+𝜀
𝑔alloc+𝑔done

𝑊Buyer

(
𝜋exec, FulfillNoTx, 𝑠spe

)
, 𝜋exec >

payment+col+𝜀
𝑔alloc+𝑔done

.
(6)

In conclusion, Lemma 1 presents the required conditions for the
SPE to include the publication and confirmation of tx

payload
. We

now proceed to express the conditions for initiation and acceptance.

Table 1: ΓSellerFulfillNoTx and ΓSellerFulfillTx subgame summaries.

Subgame Condition 𝑠spe Action 𝑊Buyer 𝑊Seller

ΓSellerFulfillNoTx

𝜋exec <
payment+col
𝑔
alloc
+𝑔

done

𝑎
exhaust

𝑤init

Buyer
− 𝑔init · 𝜋 setup − payment − 𝜀 +

max (𝑤exo − 𝑔
alloc
· 𝜋exec, 0) (Eq. 2)

𝑤init

Seller
− 𝑔accept · 𝜋 setup + payment − 𝑔

done
· 𝜋exec (Eq. 1)

𝜋exec >
payment+col
𝑔
alloc
+𝑔

done

𝑎ignore
𝑤init

Buyer
− 𝑔init · 𝜋 setup − payment − 𝜀 +

max (𝑤exo − 𝑔
alloc
· 𝜋exec, 0) (Eq. 2)

𝑤init

Seller
− 𝑔accept · 𝜋 setup + 𝑔alloc · 𝜋exec − col (Eq. 1)

ΓSellerFulfillTx

𝜋exec <
payment+col+𝜀
𝑔
pub
+𝑔

done 𝑎
apply

𝑤init

Buyer
− 𝑔init · 𝜋 setup − payment − 𝜀+ 𝑤init

Seller
− 𝑔accept · 𝜋 setup + payment + 𝜀

𝑔
pub
≤ 𝑔

alloc
𝑤exo (Eq. 4) −

(
𝑔
done
+ 𝑔

alloc
− 𝑔

pub

)
· 𝜋exec (Eq. 3)

𝜋exec <
payment+col
𝑔
alloc
+𝑔

done
𝑎
exhaust

𝑤init

Buyer
− 𝑔init · 𝜋 setup − payment − 𝜀 𝑤init

Seller
− 𝑔accept · 𝜋 setup + payment

𝑔
pub

> 𝑔
alloc

+max (𝑤exo − 𝑔
alloc
· 𝜋exec, 0) (Eq. 4) −𝑔

done
· 𝜋exec (Eq. 3)

𝜋exec >
payment+col
𝑔
alloc
+𝑔

done 𝑎ignore

𝑤init

Buyer
− 𝑔init · 𝜋 setup − payment − 𝜀

𝑤init

Seller
− 𝑔accept · 𝜋 setup + 𝑔alloc · 𝜋exec − col (Eq. 3)

𝜋exec >
payment+col+𝜀
𝑔
pub
+𝑔

done

+max (𝑤exo − 𝑔
alloc
· 𝜋exec, 0) (Eq. 4)

6.2.2 Seller Accepting. We start with analyzing the contract accep-
tance, that is, with subgame ΓSellerAcceptLH . In this subgame, Seller can

play 𝑎accept, leading to subgame Γ
Buyer

PublishTx , discussed in Lemma 1.

She can also play 𝑎
decline

, leading to subgame Γ
Buyer

RecoupLH , which we
analyze below.

Subgame Γ
Buyer

RecoupLH. In the Γ
Buyer

RecoupLH subgame Buyer plays ei-
ther 𝑎recoup or 𝑎

forfeit
.

Playing 𝑎recoup results with Buyer getting payment+𝜀 and spend-
ing 𝑔

done
· 𝜋exec tokens. Alternatively, she can play 𝑎

forfeit
, not

getting or spending any tokens. She can also publish tx
payload

for 𝑤exo − 𝑔
alloc
· 𝜋exec. Either way, Seller gets 𝑔

alloc
· 𝜋exec for her

gas allocation.
It follows 𝑎recoup is preferred over 𝑎

forfeit
if payment+ 𝜀 > 𝑔

done
·

𝜋exec. The resultant wealth of Seller is

𝑊
Seller

(
𝜋exec, RecoupLH, 𝑠spe

)
= 𝑤 init

Seller
+ 𝑔

alloc
· 𝜋exec , (7)

and of Buyer is

𝑊Buyer

(
𝜋exec, RecoupLH, 𝑠spe

)
= 𝑤 init

Buyer
− 𝑔init · 𝜋 setup

+max
(
𝑤exo − 𝑔

alloc
· 𝜋exec, 0

)
+max (−𝑔

done
· 𝜋exec,−payment − 𝜀) .

(8)

We are now ready to analyze the ΓSellerAcceptLH subgame.

Subgame ΓSellerAcceptLH. Recall this is played in 𝜑setup, before 𝜋exec

is drawn, so Seller chooses the action that maximizes her expected
utility.

She can either play 𝑎accept, resulting with

E
[
𝑈
Seller

(
PublishTx, 𝑠spe

)]
=∫ ∞

−∞
𝑈
Seller

(
PublishTx, 𝑠spe

)
· Fpdf (𝜋exec) 𝑑𝜋exec ,

(9)

or play 𝑎
decline

, resulting with

E
[
𝑈
Seller

(
RecoupLH, 𝑠spe

)]
=∫ ∞

−∞
𝑈
Seller

(
RecoupLH, 𝑠spe

)
· Fpdf (𝜋exec) 𝑑𝜋exec .

(10)

Let us denote the expected utility difference (EUD) of Seller by

EUD
Seller

= E
[
𝑈
Seller

(
PublishTx, 𝑠spe

)]
−E

[
𝑈
Seller

(
RecoupLH, 𝑠spe

)]
.

The following corollary therefore details the condition for Seller to
accept the contract:

Corollary 1. In ΓSellerAcceptLH, if EUD
Seller

> 0
then 𝑠spe (AcceptLH) = 𝑎accept, and if EUD

Seller
< 0

then 𝑠spe (AcceptLH) = 𝑎
decline

.

Corollary 1 presents the contract acceptance condition, as dis-
cussed in Theorem 1. It also allows us to draft the expected utility
of Buyer in ΓSellerAcceptLH in the following equation:

E
[
𝑈Buyer

(
AcceptLH, 𝑠spe

)]
={

E
[
𝑈Buyer

(
PublishTx, 𝑠spe

)]
, EUD

Seller
> 0

E
[
𝑈Buyer

(
RecoupLH, 𝑠spe

)]
, EUD

Seller
< 0

.
(11)

6.2.3 Buyer Initiating. It remains to consider the conditions for
contract initiation being SPE for Buyer. The subgame describing
this decision is Γ

Buyer

InitLH , where Buyer decides whether to initiate
the contract (𝑎init), leading to ΓSellerAcceptLH , or to not initiate (𝑎wait),

leading to Γ
Buyer

NoLH .
Subgame Γ

Buyer

InitLH is also before Nature draws 𝜋exec,
so we compare the actions’ expected utilities. Eq. 11
gives E

[
𝑈Buyer

(
AcceptLH, 𝑠spe

)]
, the expected utility from

playing 𝑎init.
We now find E

[
𝑈Buyer

(
NoLH, 𝑠spe

)]
, the expected utility from

playing 𝑎wait. For that, we first analyze the Γ
Buyer

NoLH subgame.

Subgame Γ
Buyer

NoLH. In the ΓBuyerNoLH subgame Buyer can pay𝑔
alloc
·𝜋exec

to have tx
payload

confirmed, receiving 𝑤exo tokens. We get

𝑊Buyer

(
𝜋exec,NoLH, 𝑠spe

)
= 𝑤 init

Buyer
+max

(
𝑤exo − 𝑔

alloc
· 𝜋exec, 0

)
and

E
[
𝑈Buyer

(
NoLH, 𝑠spe

)]
=∫ ∞

−∞
𝑈Buyer

(
NoLH, 𝑠spe

)
· Fpdf (𝜋exec) 𝑑𝜋exec

. (12)

We are finally ready to address the full game Γ = Γ
Buyer

InitLH .

Subgame Γ
Buyer

InitLH. Given E
[
𝑈Buyer

(
NoLH, 𝑠spe

)]
(Eq. 12)

and E
[
𝑈Buyer

(
AcceptLH, 𝑠spe

)]
(Eq. 11), we denote the expected

utility difference of Buyer by

EUDBuyer = E
[
𝑈Buyer

(
AcceptLH, 𝑠spe

)]
−E

[
𝑈Buyer

(
NoLH, 𝑠spe

)]
.

The following corollary presents the condition for Buyer initiating
the contract:

Corollary 2. If EUDBuyer > 0 then 𝑠spe

(
Γ
Buyer

InitLH

)
= 𝑎init.

Corollary 2 shows the contract initiation condition, thus con-
cluding the conditions for the SPE to be as detailed in Theorem 1.

It is now easy to see the correctness of Theorem 1. Take any distri-
bution F . By Lemma 1, setting col sufficiently high deterministically

Itay Tsabary, Alex Manuskin, and Ittay Eyal

assures (or assures with high probability for an unbounded distri-
bution) that if LedgerHedger is initiated and accepted, then Buyer

publishes an adequate tx
payload

and Seller confirms it.
Corollary 1 and Corollary 2 both present conditions for the

contract initiation and acceptance – conditions on preferring a
predetermined payment over one that changes according to the
drawn 𝜋exec. Sufficiently risk-averse participants result with both
of them preferring a predetermined contract over the drawn price
uncertainty.

Next, we consider Theorem 1 in practical settings. Specifically,
we show that engaging in LedgerHedger is beneficial in a wide
range of practical parameters, relevant to operational systems.

6.3 Efficacy

To show the efficacy of LedgerHedger, we first review rele-
vant contract parameters, gas-price distributions, and utility func-
tions (§6.3.1). We then show how to set the contract parameters to
assure its fulfillment (§6.3.2), and conclude by describing concrete
ranges where both parties benefit from the contract (§6.3.3).

6.3.1 Contract Parameters, Distributions, Utility Functions.

Contract parameters. We set 𝑔
alloc

= 5𝑒6
(
5 · 106) as a represen-

tative example of a ZK roll-up proof gas requirement [53, 105],
and arbitrarily choose 𝑤exo = 𝑤 init

Buyer
= 𝑤 init

Seller
= 1𝑒9. Considering

our implementation gas requirements (presented in §8), we fix the
contract function gas requirements at 𝑔init = 0.1𝑒6, 𝑔accept = 75𝑒3
and 𝑔

done
= 20𝑒3. We still consider 𝜀 = 1, and derive the desired

values of payment and col throughout this section.

Distribution F . The resultant players’ wealth depends on their
strategies and on the gas-price value 𝜋exec, which is drawn from F .
Therefore, towards our analysis, we need to instantiate F .

Inspired by Ethereum current gas-price [52], we set the gas-

price at initiation to 𝜋 setup = 100. For the distribution F , we
consider normal distributions with a mean value of 𝜋 setup, and
truncate them symmetrically at 0 and 200. We consider three dif-
ferent distributions, denoted ∀𝑖 ∈ [1, 3] : F 𝑖 , differing in their
variance 𝜎2

𝑖
= 10𝑖+1.

Utility functions. Agent risk aversion is modeled through the
concavity of its utility function. However, the optimal strategy is not
affected by affine transformations of the utility function [12, 133],
so simply measuring the curvature fails to capture this preference.

Instead, the risk preference of a utility function𝑈 (𝑊) is typically
measured using its Arrow-Pratt Relative Risk Aversion (RRA) [5,
117], RRA = −𝑊 ·𝑈

′′ (𝑊)
𝑈 ′ (𝑊) , where 𝑈 ′ (𝑊) and 𝑈 ′′ (𝑊) are the first

and second derivatives of 𝑈 (𝑊), respectively.
For our instantiation we use a few common options for utility

functions [30, 44, 82]: Linear utility 𝑈 (𝑊) = 𝑊 with RRA = 0,
exhibiting risk-neutrality; Sqrt utility𝑈 (𝑊) =

√
𝑊 with RRA = 0.5,

exhibiting mild risk-aversion; and, Log utility 𝑈 (𝑊) = log (𝑊)
with RRA = 1, exhibiting higher risk-aversion.

6.3.2 Contract Fulfillment. With the contract parameters, distri-
butions, and utility functions set, we are first interested in find-
ing the payment and col parameters for Seller to confirm tx

payload
.

6e+08

8e+08

1e+09

0.5 0.6 0.7 0.8 0.9 1

p
a
y
m
e
n
t
+
c
o
l
+
𝜀

Desired Pr [𝜋exec < 𝜋
bound

]

F 1
F 2
F 3

Figure 3: Required contract funds payment+col+𝜀 to achieve

desired fulfillment probability Pr [𝜋exec < 𝜋bound].

By Lemma 1, this occurs when 𝜋exec <
payment+col+𝜀
𝑔alloc+𝑔done . Let us de-

note 𝜋
bound

=
payment+col+𝜀
𝑔alloc+𝑔done , hence we are interested in finding

when 𝜋exec < 𝜋
bound

.
Recall 𝜋exec ∼ F , so the condition holds only with some proba-

bility. This is not a predicament specific to LedgerHedger but to
hedging in general – in extreme cases one party might be better
off violating the contract, as the incurred punishment is smaller
than the cost of abiding by the contract. However, setting a suffi-
cient incentive can achieve any desired probability. For bounded
probabilities, we can achieve deterministic success.

The probability that 𝜋exec < 𝜋
bound

is given by the distribution’s
cumulative distribution function (CDF) at 𝜋

bound
. Figure 3 shows the

required payment + col + 𝜀 value to achieve Pr [𝜋exec < 𝜋
bound

].
Figure 3 illustrates that increasing payment and col results

with higher fulfillment probability, as they increase the incentive
for Seller to fulfill the contract.

Additionally, Figure 3 shows the effect of the distribution vari-
ance on meeting the 𝜋

bound
bound. As expected, the more vari-

ant distributions have heavier right tails, requiring more funds to
achieve the same success probability.

If there exists an upper bound on the distribution value, like
in the truncated normal distribution, simply setting payment +
𝜀 + col such that 𝜋

bound
exceeds that upper bound assures success

deterministically. In case of an unbounded distribution, the failure
probability is negligible in payment+𝜀+col according to the Chernoff
bound [29].

As such, hereinafter, we consider payment and col values such
that Pr [𝜋exec < 𝜋

bound
] = 1, and move to consider the contract

initiation and acceptance.

6.3.3 Initiation and Acceptance. Let us begin by considering the
effect of the payment and the col parameters. Buyer pays payment

tokens to Seller for 𝑔
alloc

gas. Too high payment values disincen-
tivize Buyer from initiating the contract, as she can buy𝑔

alloc
for the

gas-price instead. Too low payment values disincentivize Seller from
accepting the contract, as she can instead sell 𝑔

alloc
for gas-price.

The col tokens are used to incentivize Seller to abide by an ac-
cepted contract, as she loses them otherwise.

We now analyze the contract initiation and acceptance for
concrete values of payment and col, for a specific F , and as-
suming Buyer and Seller each have a utility function Utility ∈
{Linear, Sqrt, Log}.

Recall that Corollary 2 shows that Buyer initiates the contract
if EUDBuyer > 0. Similarly, Corollary 1 shows that Seller accepts the
contract if EUD

Seller
> 0.

-4
-2
0
2
4

96 98 100 102 104

E
U
D

(s
ca

le
d)

𝜋contract

𝑈
Buyer

= Log
𝑈
Buyer

= Sqrt
𝑈
Buyer

= Linear

𝑈
Seller

= Log
𝑈
Seller

= Sqrt
𝑈
Seller

= Linear

(a) Distribution F1

-4
-2
0
2
4

96 98 100 102 104

E
U
D

(s
ca

le
d)

𝜋contract

𝑈
Buyer

= Log
𝑈
Buyer

= Sqrt
𝑈
Buyer

= Linear

𝑈
Seller

= Log
𝑈
Seller

= Sqrt
𝑈
Seller

= Linear

(b) Distribution F3

Figure 4: Normalized expected utility difference.

We arbitrarily set col = 1𝑒9 to satisfy Pr [𝜋exec < 𝜋
bound

] =

1 (lower values suffice as well, as we need payment+col > 1𝑒9), and
numerically calculate EUDBuyer and EUD

Seller
for the various distri-

butions and utility functions, as a function of 𝜋contract =
payment

𝑔alloc
.

Figure 4 presents these values, scaled for comparison, for the
various utility functions, and for the lowest-variance distribu-
tion F 1 (Figure 4a) and for highest-variant distribution F 3 (Fig-
ure 4b).

As expected, the higher the agreed price 𝜋contract is, engaging
in a contract becomes less profitable for Buyer and more for Seller,
since the utility functions are strictly increasing. That is, Buyer
agrees to initiate up to a maximal price, and Seller agrees to accept
for no less than a minimal price. We denote these by 𝜋max

Buyer
and

by 𝜋min
Seller

, respectively, and refer to these as the required prices.
Determining the 𝜋contract that Buyer and Seller agree upon is a

matter of negotiation, outside the scope of this work. We focus on
finding conditions for such a price to exist, i.e., for 𝜋max

Buyer
> 𝜋min

Seller
.

Figure 4 shows that utility functions with higher RRA are
more amenable to engage in the contract. Specifically, it shows
that 𝜋max

Buyer
is the highest in case of a logarithmic utility func-

tion Log (RRA = 1), followed by the price in case of a square root
utility function Sqrt (RRA = 0.5), and then by the price in case of a
linear utility function Linear (RRA = 0). This is expected – higher
RRA means higher preference for certainty, which is achieved
through engaging in the contract.

Symmetrically, it shows that 𝜋min
Seller

is the lowest with a logarith-
mic utility function, and highest with a linear utility function.

Lastly, Figure 4 highlights how the distribution F affects the
existence of a 𝜋contract such that 𝜋max

Buyer
> 𝜋min

Seller
. For F 1 (Fig-

ure 4a), there is no 𝜋contract where for any combination of utility
function for Buyer and Seller both utility differences are positive,
i.e., 𝜋max

Buyer
< 𝜋min

Seller
. However, for F 3 (Figure 4b), there is a range

of 𝜋contract values where 𝜋max
Buyer

> 𝜋min
Seller

for some utility function
combinations.

95

97.5

100

102.5

105

F1 F2 F3

Re
qu

ire
d
𝜋
c
o
n
t
r
a
c
t 𝑈

Seller
= Log

𝑈
Seller

= Sqrt

𝑈
Seller

= Linear

𝑈
Buyer

= Log

𝑈
Buyer

= Sqrt

𝑈
Buyer

= Linear

Figure 5: 𝜋contract for initiation and acceptance.

95

97.5

100

102.5

105

F1 F2 F3

Re
qu

ire
d
𝜋
c
o
n
t
r
a
c
t 𝑈

Seller
= Log

𝑈
Seller

= Sqrt

𝑈
Seller

= Linear

𝑈
Buyer

= Log

𝑈
Buyer

= Sqrt

𝑈
Buyer

= Linear

Figure 6: 𝜋contract for initiation and acceptance without fric-

tion.

The difference is due to the different variance values of the
distributions. Intuitively, a distribution with higher variance offers
less certainty about 𝜋exec, making the contract-induced certainty
more appealing for risk averse (RRA > 0) participants.

To further emphasize the distribution effect, Figure 5 presents the
required prices for the various utility functions and distributions.
It shows the distributions with lower variance values F 1 and F 2
both result with 𝜋max

Buyer
< 𝜋min

Seller
, i.e., no contract.

However, for a high variance value, there exist combinations
of 𝑈Buyer and 𝑈

Seller
that result with 𝜋max

Buyer
> 𝜋min

Seller
. For example,

the above is satisfied for F 3 when𝑈Buyer is Log and𝑈
Seller

is Linear,
or vice versa. This implies that the parties engage in a contract even
if one of them is risk neutral.

Figure 5 also shows that the required prices are fixed for the lin-
ear utility function, for both Buyer and Seller, for any considered F .
Broadly speaking, this holds due to Pr [𝜋exec < 𝜋

bound
] = 1, the

linearity of the utility function, and the fact all considered distribu-
tions have the same mean value. We bring a thorough explanation
in Appendix E.

Finally, as a theoretical exercise, we consider the cost of fric-
tion [77] – the inherent costs of 𝑔init, 𝑔accept and 𝑔

done
that Buyer

and Seller incur. The reason this experiment might be of interest
is due to further optimizations in LedgerHedger that result with
even lower overheads.

We set 𝑔init = 𝑔accept = 𝑔
done

= 0 and find the required prices for
the various utility functions and distributions, brought in Figure 6.

As expected, reducing the friction results with both Buyer

and Seller being more amenable to initiate and accept the contract.
Specifically, this relaxation facilitates the contract creation even
for F 1 and F 2.

7 GAS ALLOCATION ASSURANCES

As mentioned (§3.2), we consider Seller to have a gas allocation
of 𝑔

alloc
in the required block interval. This modeling trivially fits

ledger systems where the system validators (miners) are chosen

Itay Tsabary, Alex Manuskin, and Ittay Eyal

in advance, such as planned Central Bank Digital Currencies (CB-
DCs) [2, 60].

We now show this modeling also applies to systems where min-
ers are chosen probabilistically. We begin by first considering prac-
tical parameters, showing that Seller manages to create a block
with overwhelming probability. Conservatively, consider a short
interval of a one hour (cf., Optimistic roll-ups like Optimism [107]
and Arbitrum [78] that use week-long intervals). For Ethereum, in
one hour interval there are about 240 blocks, and the probability
that a 10% miner would fail to create any block in that interval
is (1 − 0.1)240 ≈ 10−11. A 5% miner would reach the same probabil-
ity in about two hours. These values mean failing to find a single
block is expected to occur only once in a few million years. We
emphasize that in a probabilistic system we do not expect a miner
to reserve all her expected future blocks, i.e., miners will retain
margins of their reservations.

Finally, we emphasize that a Seller does not need to create a block
by herself to begin with, as she can have the tx

payload
confirmed (the

action denoted by 𝑎
apply

) by paying the required gas-price, regard-
less of her block-creation capabilities and regardless of random
events occurring or not. Moreover, all of Seller’s possible interac-
tions with LedgerHedger do not require Seller creating a block by
herself, and therefore can all be performed even by non-mining en-
tities. It immediately follows that any mining or non-mining Seller

can simply use the aforementioned transaction-fee mechanism to
fulfill the contract as required.

8 IMPLEMENTATION

To demonstrate the practicality of LedgerHedger, we implement
it as an Ethereum smart contract, and deploy it on a test network.

Ethereum smart contracts are written in the Solidity smart con-
tract programming language [50]; we bring the code in Appendix G.

Design. Our implementation follows the smart contract wallet

(SCW) [43, 56, 92] design pattern. This design enables customizing
the retrieval of the contract tokens, which, for LedgerHedger, is
done only through the Apply, Exhaust, and Recoup functions.

Additionally, this design enables decoupling the transaction is-

suer (i.e., the party that pays the transaction fees) from the trans-
action signer (the party that creates the transaction). This, in turn,
enables having one party, Seller, use her gas allocation (or pay the
transaction fees) to confirm a transaction by the other party Buyer,
using so-called meta transactions [66].

We implemented LedgerHedger to be reusable for Buyer, that
is, it is deployed once, and then can be used to create new instances
over and over again. This amortizes the deployment gas require-
ments, which are higher than other operations [155].

Function Implementations. The implementation of Initiate,Accept
and Recoup is straightforward, based on Alg. 1.

In the Exhaust function, the only novel element is the gas ex-
haustion through null operations. We implement this by looping
sufficiently many times to ensure the exhausted gas matches its
target. Our implementation results in a difference between the tar-
get 𝑔

alloc
and actual consumed gas of up to 120 gas units – 4 orders

of magnitude lower than practical values of 𝑔
alloc

.
Finally, the contract pinnacle, the Apply function, is implemented

using the aforementioned meta-transaction mechanism. It accepts
a meta transaction, issued by Seller, verifies it is signed by Buyer,

and then executes it. The signature verification is performed us-
ing a prevalent Ethereum cryptographic library [106]. Note this
requires Buyer to create her transaction tx

payload
in a format fitting

this design.

EIP1559 Compatibility. Recall the payment for tx
payload

con-
firmed by LedgerHedger is payment, and it does not need to pay
an additional fee. In principle, we could have had tx

payload
offer no

fee, and let Seller confirm it as an ordinary transaction. However,
Ethereum’s EIP1559 [55, 126] requires that all transactions in a
block pay a minimal, base fee. Our implementation is compatible
with EIP1559 since tx

payload
is a meta transaction, and the trans-

action by Seller that invokes the Apply is the one that pays the
required base fee.

Deployment and Gas Costs. We deploy LedgerHedger on the
Ethereum Goerli test network [62], and invoke all its functions. We
bring the transaction identifiers in Appendix F.

We initiate the contract using the Initiate function three times,
and conclude it differently after each initiation.

The first initiation consumed 𝑔init = 117𝑒3 gas. We then con-
cluded the contract using the Recoup function, consuming 𝑔

done
=

57.3𝑒3 gas.
The second initiation consumed 𝑔init = 37.4𝑒3 gas, followed by

an invocation of the Accept, consuming 𝑔accept = 50𝑒3 gas, and then
an invocation of Exhaust, consuming 𝑔

alloc
+ 𝑔

done
= 3.021𝑒6 gas.

Using a local profiler, we found that 𝑔
done

= 21𝑒3, aligned with this
experiment’s chosen 𝑔

alloc
= 3𝑒6 value.

Finally, we initiated the contract for the third time, consum-
ing 𝑔init = 37.4𝑒3 gas, again invoked Accept for 𝑔accept = 50𝑒3
gas. Then, we invoked the Apply function on an arbitrary meta-
transaction that we created, consuming 𝑔

pub
+ 𝑔

done
= 2.668𝑒6 gas.

Again, using a local profiler, we find that 𝑔
done

= 12𝑒3.
Note that the first initiation required 2.5𝑋 gas compared to the

second and third initiations. This discrepancy is due to Ethereum op-
erations consuming gas as a function of their state changes, e.g., set-
ting a value to an unassigned variable is more gas-consuming than
assigning a value to an already-assigned one. The first initiation
higher costs can therefore be considered as part of the deployment.

To conclude, our LedgerHedger implementation incurs an
(amortized) overhead of 𝑔init = 37.4𝑒3 gas on Buyer, and 𝑔accept +
𝑔
done

= 62𝑒3 gas on Seller in the desired execution. These are 3
orders of magnitude lower than a representative example of an
applicable hedging use-case of 𝑔

alloc
= 10𝑒6 gas [53].

Appendix C reviews possible modifications of interest, concern-
ing user experience and overheads. These include enabling Buyer

to withdraw the tokens earlier in case Seller is unresponsive, and
reducing function overheads by using constant, predefined param-
eters.

9 CONCLUSION

We introduce LedgerHedger, a blockchain smart contract for
confirming a future transaction of Buyer for a predetermined fee
by Seller. We analyze fee variability and prove that fulfilling the
contract is SPE for a wide range of practical parameters. We imple-
ment LedgerHedger as a smart contract for Ethereum, deploy it,
and show its efficacy and low gas overhead compared to common
gas requirements.

LedgerHedger is directly applicable to secure smart contracts
executed over Ethereum and similar systems, resolving the preva-
lent issue of unjustified reliance on fee stability.

REFERENCES

[1] 1inch Network. 2020. 1inch Introduces Chi Gastoken. https://blog.1inch.io/
1inch-introduces-chi-gastoken-d0bd5bb0f92b

[2] Sarah Allen, Srđjan Čapkun, Ittay Eyal, Giulia Fanti, Bryan A Ford, James
Grimmelmann, Ari Juels, Kari Kostiainen, Sarah Meiklejohn, Andrew Miller,
et al. 2020. Design choices for central bank digital currency: Policy and technical

considerations. Technical Report. National Bureau of Economic Research.
[3] Chainsight Analytica. 2021. MEV attack – Just-in-Time Liquidity. https:

//twitter.com/ChainsightA/status/1457958811243778052
[4] Dune Analytics. 2022. Average gas price per day for the last 30 days. https:

//dune.xyz/queries/7898/15742 Accessed: 2022-01-13.
[5] Kenneth J Arrow. 1971. The theory of risk aversion. Essays in the theory of

risk-bearing (1971), 90–120.
[6] Aditya Asgaonkar and Bhaskar Krishnamachari. 2019. Solving the buyer and

seller’s dilemma: A dual-deposit escrow smart contract for provably cheat-proof
delivery and payment for a digital good without a trusted mediator. In IEEE

ICBC.
[7] Robert J Aumann. 1995. Backward induction and common knowledge of ratio-

nality. Games and Economic Behavior (1995).
[8] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. 2017.

Bitcoin as a transaction ledger: A composable treatment. In Annual International

Cryptology Conference.
[9] Wacław Banasik, Stefan Dziembowski, and Daniel Malinowski. 2016. Efficient

zero-knowledge contingent payments in cryptocurrencies without scripts. In
European Symposium on Research in Computer Security.

[10] Soumya Basu, David Easley, Maureen O’Hara, and G Sirer. 2020. StableFees: A
Predictable Fee Market for Cryptocurrencies. Work. Pap. (2020).

[11] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2018. Scalable,
transparent, and post-quantum secure computational integrity. IACR Cryptol.

ePrint Arch. 2018 (2018), 46.
[12] Jonathan Benchimol. 2014. Risk aversion in the Eurozone. Research in Economics

68, 1 (2014), 39–56.
[13] Jeff Benson. 2021. Ethereum London Hard Fork to Make Some Tokens

Worthless. https://decrypt.co/77345/ethereum-london-hard-fork-make-some-
tokens-worthless

[14] B Douglas Bernheim. 1984. Rationalizable strategic behavior. Econometrica:

Journal of the Econometric Society (1984).
[15] Binance. 2020. Binance Smart Chain. https://github.com/binance-chain/

whitepaper/blob/master/WHITEPAPER.md
[16] Blockchair. 2021. Blockchain explorer, analytics and web services. blockchair.com
[17] Chakriya Bowman, Aasim M Husain, et al. 2004. Forecasting commodity prices:

Futures versus judgment. March.
[18] Lorenz Breidenbach, Phil Daian, and Florian Tramer. 2018. Gas Token. https:

//gastoken.io/
[19] Bryan Bishop. [n. d.]. Bitcoin vaults with anti-theft recovery/clawback mecha-

nisms. https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-August/
017231.html

[20] Sergiu Bursuc and Steve Kremer. 2019. Contingent payments on a public ledger:
models and reductions for automated verification. In European Symposium on

Research in Computer Security.
[21] Vitalik Buterin. 2013. A Next Generation Smart Contract & Decentralized Appli-

cation Platform. https://www.ethereum.org/pdfs/EthereumWhitePaper.pdf/
[22] Vitalik Buterin. 2019. The dawn of hybrid layer 2 protocols. Available online.
[23] Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Nizzardo.

2017. Zero-knowledge contingent payments revisited: Attacks and payments
for services. In Proceedings of the 2017 ACM CCS.

[24] Miles Carlsten, Harry Kalodner, S. Matthew Weinberg, and Arvind Narayanan.
2016. On the Instability of Bitcoin Without the Block Reward. In Proceedings of

the 2016 ACM CCS.
[25] Ethan Cecchetti, Siqiu Yao, Haobin Ni, and Andrew C Myers. 2021. Composi-

tional security for reentrant applications. In 2021 IEEE Symposium on Security

and Privacy (SP). IEEE, 1249–1267.
[26] J Cerny. 2014. Playing general imperfect-information games using game-theoretic

algorithms. Ph. D. Dissertation. PhD thesis, Czech Technical University.
[27] Panagiotis Chatzigiannis, Foteini Baldimtsi, Igor Griva, and Jiasun Li. 2019.

Diversification across mining pools: Optimal mining strategies under pow.
arXiv preprint arXiv:1905.04624 (2019).

[28] Xi Chen, Christos Papadimitriou, and Tim Roughgarden. 2019. An Axiomatic
Approach to Block Rewards. In Proceedings of ACM AFT.

[29] Herman Chernoff et al. 1952. A measure of asymptotic efficiency for tests of
a hypothesis based on the sum of observations. The Annals of Mathematical

Statistics (1952).

[30] Pierre-André Chiappori and Monica Paiella. 2011. Relative risk aversion is
constant: Evidence from panel data. Journal of the European Economic Association

9, 6 (2011), 1021–1052.
[31] Charles J Cicchetti and Jeffrey A Dubin. 1994. A microeconometric analysis of

risk aversion and the decision to self-insure. Journal of political Economy 102, 1
(1994), 169–186.

[32] coinmarketcap.com. 2022. Cryptocurrency Market Capitalizations. https://
coinmarketcap.com/ Accessed: 2022-01-10.

[33] coinmarketcap.com. 2022. Hermez Market Cap. https://coinmarketcap.com/
currencies/hermez-network/ Accessed: 2022-01-10.

[34] coinmarketcap.com. 2022. Loopring Market Cap. https://coinmarketcap.com/
currencies/loopring/ Accessed: 2022-01-10.

[35] Lin William Cong, Zhiguo He, and Jiasun Li. 2021. Decentralized mining in
centralized pools. The Review of Financial Studies 34, 3 (2021), 1191–1235.

[36] Thomas Conlon, John Cotter, and Ramazan Gençay. 2016. Commodity futures
hedging, risk aversion and the hedging horizon. The European Journal of Finance
22, 15 (2016), 1534–1560.

[37] ConsenSys. 2018. The Inside Story of the CryptoKitties Congestion

Crisis. https://media.consensys.net/the-inside-story-of-the-cryptokitties-
congestion-crisis-499b35d119cc

[38] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed
Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, et al. 2016.
On scaling decentralized blockchains. In International conference on financial

cryptography and data security. Springer, 106–125.
[39] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,

Lorenz Breidenbach, and Ari Juels. [n. d.]. Flash Boys 2.0: Frontrunning in
Decentralized Exchanges, Miner Extractable Value, and Consensus Instability.
In 2020 IEEE S&P.

[40] Christian Decker and Roger Wattenhofer. 2013. Information Propagation in the
Bitcoin Network. In IEEE P2P. Trento, Italy.

[41] Christian Decker and Roger Wattenhofer. 2015. A Fast and Scalable Payment
Network with Bitcoin Duplex Micropayment Channels. In Stabilization, Safety,

and Security of Distributed Systems - 17th International Symposium.
[42] Degenerative. 2021. uGAS Token. https://docs.degenerative.finance/synthetics/

ugas
[43] Monika di Angelo and Gernot Salzer. 2020. Wallet Contracts on Ethereum–

Identification, Types, Usage, and Profiles. arXiv preprint arXiv:2001.06909 (2020).
[44] James S Dyer and Rakesh K Sarin. 1982. Relative risk aversion. Management

science 28, 8 (1982), 875–886.
[45] Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. 2018. Fairswap: How to

fairly exchange digital goods. In ACM CCS.
[46] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. 2017.

PERUN: Virtual Payment Channels over Cryptographic Currencies. IACR ePrint

(2017).
[47] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. 2018. General

state channel networks. In Proceedings of the 2018 ACM CCS.
[48] Daniel Ellsberg. 1961. Risk, ambiguity, and the Savage axioms. The quarterly

journal of economics (1961), 643–669.
[49] Shayan Eskandari, Mehdi Salehi, Wanyun Catherine Gu, and Jeremy Clark. 2021.

SoK: Oracles from the Ground Truth to Market Manipulation. arXiv preprint
arXiv:2106.00667 (2021).

[50] Ethereum. 2020. Solidity Language. https://github.com/ethereum/solidity
[51] etherscan.info. 2021. Ethereum Average Gas Price Chart. https://etherscan.io/

chart/gasprice
[52] etherscan.io. [n. d.]. Ether Transaction Fees. https://etherscan.io/chart/

transactionfee
[53] etherscan.io. 2021. Optimism 10.2M Gas Transaction. https://etherscan.io/tx/

0x90ebd9630d98d5b0a186eec4c2382c296e5f41e828da910d76a53ab72ffe30e8
[54] Eugene F Fama. 1995. Random walks in stock market prices. Financial analysts

journal 51, 1 (1995), 75–80.
[55] Ethereum Foundation. 2021. Ethereum London Hard Fork. https://

ethereum.org/en/history/#london
[56] Ethereum Foundation. 2022. Smart Contract Wallets. https://docs.ethhub.io/

using-ethereum/wallets/smart-contract-wallets/
[57] Emilio Frangella. 2020. Crypto Black Thursday: The Good, the Bad, and the

Ugly. https://medium.com/aave/crypto-black-thursday-the-good-the-bad-
and-the-ugly-7f2acebf2b83

[58] Georg Fuchsbauer. 2019. WI Is Not Enough: Zero-Knowledge Contingent (Ser-
vice) Payments Revisited. In Proceedings of the 2019 ACM CCS.

[59] Drew Fudenberg and Jean Tirole. 1991. Game theory, 1991. Cambridge, Mas-

sachusetts (1991).
[60] Ben SC Fung and Hanna Halaburda. 2016. Central bank digital currencies: a

framework for assessing why and how. Available at SSRN 2994052 (2016).
[61] Alberto Garoffolo, Dmytro Kaidalov, and Roman Oliynykov. 2020. Zendoo: a

zk-SNARK verifiable cross-chain transfer protocol enabling decoupled and de-
centralized sidechains. In 2020 IEEE 40th International Conference on Distributed

Computing Systems (ICDCS). IEEE, 1257–1262.
[62] Goerli. 2018. Ethereum Goerli Test Network. https://goerli.net/

https://blog.1inch.io/1inch-introduces-chi-gastoken-d0bd5bb0f92b
https://blog.1inch.io/1inch-introduces-chi-gastoken-d0bd5bb0f92b
https://twitter.com/ChainsightA/status/1457958811243778052
https://twitter.com/ChainsightA/status/1457958811243778052
https://dune.xyz/queries/7898/15742
https://dune.xyz/queries/7898/15742
https://decrypt.co/77345/ethereum-london-hard-fork-make-some-tokens-worthless
https://decrypt.co/77345/ethereum-london-hard-fork-make-some-tokens-worthless
https://github.com/binance-chain/whitepaper/blob/master/WHITEPAPER.md
https://github.com/binance-chain/whitepaper/blob/master/WHITEPAPER.md
blockchair.com
https://gastoken.io/
https://gastoken.io/
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-August/017231.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-August/017231.html
https://www.ethereum.org/ pdfs/EthereumWhitePaper.pdf/
https://coinmarketcap.com/
https://coinmarketcap.com/
https://coinmarketcap.com/currencies/hermez-network/
https://coinmarketcap.com/currencies/hermez-network/
https://coinmarketcap.com/currencies/loopring/
https://coinmarketcap.com/currencies/loopring/
https://media.consensys.net/the-inside-story-of-the-cryptokitties-congestion-crisis-499b35d119cc
https://media.consensys.net/the-inside-story-of-the-cryptokitties-congestion-crisis-499b35d119cc
https://docs.degenerative.finance/synthetics/ugas
https://docs.degenerative.finance/synthetics/ugas
https://github.com/ethereum/solidity
https://etherscan.io/chart/gasprice
https://etherscan.io/chart/gasprice
https://etherscan.io/chart/transactionfee
https://etherscan.io/chart/transactionfee
https://etherscan.io/tx/0x90ebd9630d98d5b0a186eec4c2382c296e5f41e828da910d76a53ab72ffe30e8
https://etherscan.io/tx/0x90ebd9630d98d5b0a186eec4c2382c296e5f41e828da910d76a53ab72ffe30e8
https://ethereum.org/en/history/#london
https://ethereum.org/en/history/#london
https://docs.ethhub.io/using-ethereum/wallets/smart-contract-wallets/
https://docs.ethhub.io/using-ethereum/wallets/smart-contract-wallets/
https://medium.com/aave/crypto-black-thursday-the-good-the-bad-and-the-ugly-7f2acebf2b83
https://medium.com/aave/crypto-black-thursday-the-good-the-bad-and-the-ugly-7f2acebf2b83
https://goerli.net/

Itay Tsabary, Alex Manuskin, and Ittay Eyal

[63] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. 1988. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on

computing (1988).
[64] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz,

and Yannis Smaragdakis. 2018. Madmax: Surviving out-of-gas conditions in
ethereum smart contracts. Proceedings of the ACM on Programming Languages

2, OOPSLA (2018), 1–27.
[65] Matthew Green and Ian Miers. 2017. Bolt: Anonymous payment channels for

decentralized currencies. In Proceedings of the 2017 ACM CCS.
[66] Austin Thomas Griffith. 2022. Ethereum Meta Transactions.
[67] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam

Rinetzky, Mooly Sagiv, and Yoni Zohar. 2017. Online detection of effectively
callback free objects with applications to smart contracts. Proceedings of the
ACM on Programming Languages 2, POPL (2017), 1–28.

[68] Mudit Gupta. 2021. All TWAPs are subject to manipulation. https://tinyurl.com/
5xv2nnpj

[69] Mark R. Hake. [n. d.]. Fees Threaten Ethereum’s Perch as King of
NFTs. https://www.nasdaq.com/articles/fees-threaten-ethereums-perch-as-
king-of-nfts-2021-10-11

[70] Jona Harris and Aviv Zohar. 2020. Flood & Loot: A Systemic Attack On The
Lightning Network. In Proceedings ACM AFT.

[71] David Haushalter. 2001. Why hedge? Some evidence from oil and gas producers.
Journal of Applied Corporate Finance 13, 4 (2001), 87–92.

[72] Maurice Herlihy. 2018. Atomic cross-chain swaps. In Proceedings of the 2018

ACM symposium on principles of distributed computing.
[73] Hermez. 2020. Scalable payments. Decentralised by design, open for everyone.

https://hermez.io/hermez-whitepaper.pdf
[74] Jochen Hoenicke. 2021. Johoe’s Mempool Statistics. https://jochen-hoenicke.de/

queue/#ETH,all,fee Accessed: 2022-01-13.
[75] Shangrong Jiang, Yuze Li, Shouyang Wang, and Lin Zhao. 2022. Blockchain

competition: The tradeoff between platform stability and efficiency. European
Journal of Operational Research 296, 3 (2022), 1084–1097.

[76] Don Johnson, Alfred Menezes, and Scott Vanstone. 2001. The elliptic curve
digital signature algorithm (ECDSA). International journal of information security

1, 1 (2001), 36–63.
[77] Jan Kallsen and Johannes Muhle-Karbe. 2015. Option pricing and hedging with

small transaction costs. Mathematical Finance 25, 4 (2015), 702–723.
[78] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Weinberg, and

Edward W Felten. 2018. Arbitrum: Scalable, private smart contracts. In 27th

{USENIX} Security Symposium ({USENIX} Security 18). 1353–1370.
[79] Marek M Kamiński. 2017. Backward induction: Merits and flaws. Studies in

Logic, Grammar and Rhetoric (2017).
[80] Maurice George Kendall and A Bradford Hill. 1953. The analysis of economic

time-series-part i: Prices. Journal of the Royal Statistical Society. Series A (General)

116, 1 (1953), 11–34.
[81] Majid Khabbazian, Tejaswi Nadahalli, and Roger Wattenhofer. [n. d.]. Time-

locked Bribing. ([n. d.]).
[82] Miles S Kimball. 1993. Standard risk aversion. Econometrica: Journal of the

Econometric Society (1993), 589–611.
[83] Matter Labs. 2021. Matter Labs website. https://matter-labs.io/
[84] Ron Lavi, Or Sattath, and Aviv Zohar. 2019. Redesigning Bitcoin’s fee market.

In The World Wide Web Conference.
[85] Haim Levy. 2015. Stochastic dominance: Investment decision making under un-

certainty. Springer.
[86] Fangxiao Liu, Xingya Wang, Zixin Li, Jiehui Xu, and Yubin Gao. 2020. Effective

GasPrice Prediction for Carrying Out Economical Ethereum Transaction. In
2019 6th International Conference on Dependable Systems and Their Applications

(DSA). IEEE, 329–334.
[87] Ayelet Lotem, Sarah Azouvi, Aviv Zohar, and Patrick McCorry. 2022. Sliding

Window Challenge Process for Congestion Detection. In Financial Cryptography

and Data Security.
[88] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and

Matteo Maffei. 2019. Anonymous Multi-Hop Locks for Blockchain Scalability
and Interoperability.. In NDSS.

[89] Rawya Mars, Amal Abid, Saoussen Cheikhrouhou, and Slim Kallel. 2021. A
Machine Learning Approach for Gas Price Prediction in Ethereum Blockchain.
In 2021 IEEE 45th Annual Computers, Software, and Applications Conference

(COMPSAC). IEEE, 156–165.
[90] Frank J Massey Jr. 1951. The Kolmogorov-Smirnov test for goodness of fit.

Journal of the American statistical Association 46, 253 (1951), 68–78.
[91] Gregory Maxwell. [n. d.]. The first successful Zero-Knowledge Contingent

Payment. https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-
payments-announcement/

[92] Patrick McCorry. 2020. any.sender, transactions made simple. https:
//medium.com/anydot/any-sender-transactions-made-simple-34b36ba7519b

[93] Patrick McCorry, Chris Buckland, Bennet Yee, and Dawn Song. 2021. SoK:
Validating Bridges as a Scaling Solution for Blockchains. Cryptology ePrint

Archive (2021).

[94] Patrick McCorry, Malte Möser, and Syed Taha Ali. 2018. Why preventing a
cryptocurrency exchange heist isn’t good enough. In Cambridge International

Workshop on Security Protocols.
[95] Patrick McCorry, Malte Möser, Siamak F Shahandasti, and Feng Hao. 2016.

Towards bitcoin payment networks. In Australasian Conference on Information

Security and Privacy.
[96] Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Kumaresan, and Patrick Mc-

Corry. 2019. Sprites and state channels: Payment networks that go faster than
lightning. In Financial Cryptography and Data Security.

[97] Mahdi H Miraz and David C Donald. 2019. Atomic cross-chain swaps: devel-
opment, trajectory and potential of non-monetary digital token swap facilities.
Annals of Emerging Technologies in Computing (AETiC) Vol (2019).

[98] Ayelet Mizrahi and Aviv Zohar. 2020. Congestion attacks in payment channel
networks. arXiv preprint arXiv:2002.06564 (2020).

[99] Malte Möser, Ittay Eyal, and Emin Gün Sirer. 2016. Bitcoin covenants. In Financial

Cryptography and Data Security.
[100] Andrew Munro. 2018. FOMO3D Ethereum ponzi game R1 ends as hot play

outmaneuvers bots. https://www.finder.com.au/fomo3d-ethereum-ponzi-game-
r1-ends-as-hot-play-outmaneuvers-bots

[101] R Myerson. 1991. Game Theory: Analysis of Conflict Harvard Univ. Press,

Cambridge (1991).
[102] Matthias Nadler. 2020. A quantitative analysis of the Ethereum fee market: How

storing gas can result in more predictable prices.
[103] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. http:

//www.bitcoin.org/bitcoin.pdf
[104] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven

Goldfeder. 2016. Bitcoin and cryptocurrency technologies: a comprehensive intro-

duction.
[105] Ohad Barta. 2021. ZK Roll-Up Gas Consumption. https://twitter.com/

OhadBarta/status/1463875770196049931
[106] OpenZeppelin. 2022. ECDSA Solidity Library. https://github.com/

OpenZeppelin/openzeppelin-contracts/blob/master/contracts/cryptography/
ECDSA.sol

[107] Optimism. 2021. Optimism website. https://www.optimism.io/
[108] Martin J Osborne and Ariel Rubinstein. 1994. A course in game theory.
[109] J François Outreville. 2014. Risk aversion, risk behavior, and demand for insur-

ance: A survey. Journal of Insurance Issues (2014), 158–186.
[110] Paleko. 2020. The bZx attacks explained. https://www.palkeo.com/en/projets/

ethereum/bzx.html
[111] Athanasios Papoulis and S Unnikrishna Pillai. 2002. Probability, random variables,

and stochastic processes. Tata McGraw-Hill Education.
[112] Daniel Perez, Sam M Werner, Jiahua Xu, and Benjamin Livshits. 2021. Liquida-

tions: DeFi on a Knife-edge. In International Conference on Financial Cryptogra-

phy and Data Security. Springer, 457–476.
[113] Giuseppe Antonio Pierro, Henrique Rocha, Roberto Tonelli, and Stéphane

Ducasse. 2020. Are the gas prices oracle reliable? a case study using the eth-
gasstation. In 2020 IEEE International Workshop on Blockchain Oriented Software

Engineering (IWBOSE). IEEE, 1–8.
[114] Joseph Poon and Vitalik Buterin. 2017. Plasma: Scalable autonomous smart

contracts. White paper (2017), 1–47.
[115] Joseph Poon and Thaddeus Dryja. [n. d.]. The Bitcoin Lightning Network.

http://lightning.network/lightning-network.pdf
[116] Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network: Scalable

off-chain instant payments.
[117] John W Pratt. 1978. Risk aversion in the small and in the large. In Uncertainty

in economics. Elsevier, 59–79.
[118] Kaihua Qin, Liyi Zhou, Pablo Gamito, Philipp Jovanovic, and Arthur Gervais.

2021. An Empirical Study of DeFi Liquidations: Incentives, Risks, and Instabili-
ties. arXiv preprint arXiv:2106.06389 (2021).

[119] Kaihua Qin, Liyi Zhou, and Arthur Gervais. 2021. Quantifying Blockchain
Extractable Value: How dark is the forest? arXiv preprint arXiv:2101.05511

(2021).
[120] Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais. 2021. Attacking

the defi ecosystem with flash loans for fun and profit. In International Conference

on Financial Cryptography and Data Security. Springer, 3–32.
[121] Trevor A Reeve and Robert J Vigfusson. 2011. Evaluating the forecasting perfor-

mance of commodity futures prices. FRB International Finance Discussion Paper

1025 (2011).
[122] Team Rocket. 2018. Snowflake to avalanche: A novel metastable consensus

protocol family for cryptocurrencies. Available [online] (2018).
[123] Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gün

Sirer. 2019. Scalable and probabilistic leaderless BFT consensus through metasta-
bility. arXiv preprint arXiv:1906.08936 (2019).

[124] Robert W Rosenthal. 1981. Games of perfect information, predatory pricing
and the chain-store paradox. Journal of Economic theory (1981).

[125] Tim Roughgarden. 2010. Algorithmic game theory. Commun. ACM (2010).
[126] Tim Roughgarden. 2020. Transaction Fee Mechanism Design for the Ethereum

Blockchain: An Economic Analysis of EIP-1559. arXiv preprint arXiv:2012.00854

https://tinyurl.com/5xv2nnpj
https://tinyurl.com/5xv2nnpj
https://www.nasdaq.com/articles/fees-threaten-ethereums-perch-as-king-of-nfts-2021-10-11
https://www.nasdaq.com/articles/fees-threaten-ethereums-perch-as-king-of-nfts-2021-10-11
https://hermez.io/hermez-whitepaper.pdf
https://jochen-hoenicke.de/queue/#ETH,all,fee
https://jochen-hoenicke.de/queue/#ETH,all,fee
https://matter-labs.io/
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://medium.com/anydot/any-sender-transactions-made-simple-34b36ba7519b
https://medium.com/anydot/any-sender-transactions-made-simple-34b36ba7519b
https://www.finder.com.au/fomo3d-ethereum-ponzi-game-r1-ends-as-hot-play-outmaneuvers-bots
https://www.finder.com.au/fomo3d-ethereum-ponzi-game-r1-ends-as-hot-play-outmaneuvers-bots
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://twitter.com/OhadBarta/status/1463875770196049931
https://twitter.com/OhadBarta/status/1463875770196049931
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/cryptography/ECDSA.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/cryptography/ECDSA.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/cryptography/ECDSA.sol
https://www.optimism.io/
https://www.palkeo.com/en/projets/ethereum/bzx.html
https://www.palkeo.com/en/projets/ethereum/bzx.html
http://lightning.network/lightning-network.pdf

(2020).
[127] Mehdi Salehi, Jeremy Clark, and Mohammad Mannan. 2021. Red-Black Coins:

Dai without liquidations. In International Conference on Financial Cryptography

and Data Security. Springer, 136–145.
[128] Aetienne Sardon. 2021. Zero-Liquidation Loans: A Structured Product Approach

to DeFi Lending. arXiv preprint arXiv:2110.13533 (2021).
[129] Reinhard Selten. 1965. Spieltheoretische behandlung eines oligopolmodells mit

nachfrageträgheit: Teil i: Bestimmung des dynamischen preisgleichgewichts.
Zeitschrift für die gesamte Staatswissenschaft/Journal of Institutional and Theo-

retical Economics (1965).
[130] Andrey Shevchenko. 2021. Here are the best and worst times of the day to

use Ethereum. https://cointelegraph.com/news/here-are-the-best-and-worst-
times-of-the-day-to-use-ethereum

[131] Yoav Shoham and Kevin Leyton-Brown. 2008. Multiagent systems: Algorithmic,

game-theoretic, and logical foundations.
[132] MacKenzie Sigalos. 2021. Ethereum had a rough September. Here’s why and how

it’s being fixed. https://www.cnbc.com/2021/10/02/ethereum-had-a-rough-
september-heres-why-and-how-it-gets-fixed.html

[133] Carl P Simon. 1994. Mathematics for economists. Norton & Company, Inc.
[134] Starkware. 2021. Starkware website. https://starkware.co/
[135] Nick T Thomopoulos, Nicholas T Thomopoulos, and Philipson. 2018. Probability

Distributions. Springer.
[136] Kevin Tjiam, Rui Wang, Huanhuan Chen, and Kaitai Liang. 2021. Your Smart

Contracts Are Not Secure: Investigating Arbitrageurs and Oracle Manipulators
in Ethereum. In Proceedings of the 3rd Workshop on Cyber-Security Arms Race.
25–35.

[137] Ryan Todd. 2019. Synthetix suffers oracle attack, more than 37 million synthetic
ether exposed. https://www.theblockcrypto.com/linked/28748/synthetix-
suffers-oracle-attack-potentially-looting-37-million-synthetic-ether

[138] Christian P Traeger. 2014. Why uncertainty matters: discounting under intertem-
poral risk aversion and ambiguity. Economic Theory 56, 3 (2014), 627–664.

[139] Itay Tsabary and Ittay Eyal. 2018. The Gap Game. In ACM CCS.
[140] Itay Tsabary, Matan Yechieli, Alex Manuskin, and Ittay Eyal. 2021. MAD-HTLC:

because HTLC is crazy-cheap to attack. In 2021 IEEE Symposium on Security

and Privacy (SP).
[141] Kemal Turksonmez, Marcin Furtak, Mike P Wittie, and David L Millman. 2021.

Two Ways Gas Price Oracles Miss The Mark. In 2021 IEEE International Confer-

ence on Omni-Layer Intelligent Systems (COINS). IEEE, 1–7.
[142] UMA. 2020. How UMA solves the Oracle Problem. https://docs.umaproject.org/

oracle/econ-architecture
[143] Pranay Valson. 2020. Transaction Fee Estimations: How To Save On

Gas? https://medium.com/@pranay.valson/transaction-fee-estimations-how-
to-save-on-gas-part-2-72f908b13d67

[144] Eric Van Damme. 2002. Strategic equilibrium. Handbook of game theory with

economic applications (2002).
[145] Ron van der Meyden. 2019. On the specification and verification of atomic swap

smart contracts. In IEEE ICBC.
[146] Sahana Venugopal. 2022. Users raise a stink over Sunflower Farmers NFT for

gas fee spikes on Polygon. https://ambcrypto.com/users-raise-a-stink-over-
sunflower-farmers-nft-for-gas-fee-spikes-on-polygon/

[147] Martin Swende Vitalik Buterin. 2021. EIP-3529: Reduction in Refunds. https:
//eips.ethereum.org/EIPS/eip-3529

[148] Helen M Walker and M Helen. 1985. De Moivre on the law of normal probability.
Smith, David Eugene. A source book in mathematics. Dover (1985).

[149] Daniel Wang, Jay Zhou, Alex Wang, and Matthew Finestone. 2018.
Loopring: A decentralized token exchange protocol. URL https://github.

com/Loopring/whitepaper/blob/master/en_whitepaper. pdf (2018).
[150] Yuheng Wang, Jiliang Li, Zhou Su, and Yuyi Wang. 2022. Arbitrage attack:

Miners of the world, unite!. In Financial Cryptography and Data Security.
[151] Zhipeng Wang, Kaihua Qin, Duc Vu Minh, and Arthur Gervais. 2022. Specu-

lative Multipliers on DeFi: Quantifying On-Chain Leverage Risks. In Financial

Cryptography and Data Security.
[152] Joel Watson. 2002. Strategy: an introduction to game theory.
[153] Sam M Werner, Paul J Pritz, and Daniel Perez. 2020. Step on the gas? A better

approach for recommending the Ethereum gas price. In Mathematical Research

for Blockchain Economy. Springer, 161–177.
[154] Fredrik Winzer, Benjamin Herd, and Sebastian Faust. 2019. Temporary censor-

ship attacks in the presence of rational miners. In 2019 IEEE EuroS&PW.
[155] Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised transac-

tion ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.
[156] Yingjie Xue and Maurice Herlihy. 2021. Hedging Against Sore Loser Attacks in

Cross-Chain Transactions. arXiv preprint arXiv:2105.06322 (2021).
[157] Anatoly Yakovenko. 2018. Solana: A new architecture for a high performance

blockchain v0. 8.13. Whitepaper (2018).
[158] Alexei Zamyatin, Dominik Harz, Joshua Lind, Panayiotis Panayiotou, Arthur

Gervais, and William Knottenbelt. 2019. Xclaim: Trustless, interoperable,
cryptocurrency-backed assets. In 2019 IEEE S&P.

[159] Ming Zhao. 2021. Yield Farming is a Misnomer. https://twitter.com/
FabiusMercurius/status/1454513434209312772

[160] Liyi Zhou, Kaihua Qin, Antoine Cully, Benjamin Livshits, and Arthur Gervais.
2021. On the just-in-time discovery of profit-generating transactions in defi
protocols. arXiv preprint arXiv:2103.02228 (2021).

[161] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V Le, and Arthur Gervais.
2021. High-frequency trading on decentralized on-chain exchanges. In 2021

IEEE Symposium on Security and Privacy (SP). IEEE, 428–445.
[162] Jean-Yves Zie, Jean-Christophe Deneuville, Jérémy Briffaut, and Benjamin

Nguyen. 2019. Extending Atomic Cross-Chain Swaps. In Data Privacy Manage-

ment, Cryptocurrencies and Blockchain Technology.

A FUTURE-CONFIRMATION-DEPENDENT

APPLICATIONS

We review two prevalent constructions whose security requires
their future transactions to be confirmed in a timely manner. Failure
of such confirmation can result in a safety violation, i.e., theft of
tokens by unauthorized parties.

First, roll-up applications execute a bundle of transactions off-
chain, and only publish on-chain the execution’s summary for
verification. There are two types of roll-ups, differing in their sum-
mary verification method: Optimistic roll-ups [78, 107] assume the
published summary is correct, but include a dispute period in which
transaction issuers can publish, on chain, proofs of fraud. Failing
to include a proof of fraud during the dispute period can result
with a safety violation, e.g., funds being stolen. Zero-Knowledge
(ZK) roll-ups [11, 61, 73, 83, 134, 149] publish recurrent succinct
correctness proofs along with the transaction summary, which are
validated on-chain. Failing to include the transaction prevents the
system progress, i.e., a liveness violation.

Additionally, Hash Time Locked Contracts (HTLCs) are an es-
sential building block of cross-chain atomic swaps [72, 87, 88, 97,
145, 156, 162], off-chain state channels [41, 46, 47, 65, 95, 96, 116],
vaults [19, 94, 99, 158], and contingent payments [9, 20, 23, 58, 91].
Conducted between two parties, an HTLC pays the first party for
providing a suitable hash preimage (hash lock), or the other party
after a timeout elapses (time lock). All these HTLC-based applica-
tions assume the first party is able to confirm the preimage trans-
action before the timeout elapses. If that assumption is not met,
then the first party’s tokens might be unjustly taken by the second
party [81, 140, 154].

LedgerHedger allows all of these applications to reserve future
transaction confirmation for when they will need it.

B PRICE-PREDICTION-MODEL VALIDATION

We compare Ethereum past gas-price measurements with a normal
distribution, validating the random walk prediction model (§3.3).

First, we use Blockchair [16] to obtain measurements of
Ethereum’s blocks for September 2021, chosen arbitrarily. During
this period, about 200K blocks (numbered 13136427 to 13330089)
were created, for which we consider the gas-price as the ratio of the
total paid fees and the total consumed gas (while ignoring empty
blocks).

Then, we find the gas-price difference between each two consecu-
tive blocks; the hypothesis is that these differences follow a normal
distribution, i.e., they are each independently drawn from 𝑁

(
𝜇, 𝜎2) ,

for some 𝜇 and 𝜎2 values.
To mitigate effects of long-lasting trends (e.g., gas-price increases

at US day-time, where there is generally higher volume of trade

https://cointelegraph.com/news/here-are-the-best-and-worst-times-of-the-day-to-use-ethereum
https://cointelegraph.com/news/here-are-the-best-and-worst-times-of-the-day-to-use-ethereum
https://www.cnbc.com/2021/10/02/ethereum-had-a-rough-september-heres-why-and-how-it-gets-fixed.html
https://www.cnbc.com/2021/10/02/ethereum-had-a-rough-september-heres-why-and-how-it-gets-fixed.html
https://starkware.co/
https://www.theblockcrypto.com/linked/28748/synthetix-suffers-oracle-attack-potentially-looting-37-million-synthetic-ether
https://www.theblockcrypto.com/linked/28748/synthetix-suffers-oracle-attack-potentially-looting-37-million-synthetic-ether
https://docs.umaproject.org/oracle/econ-architecture
https://docs.umaproject.org/oracle/econ-architecture
https://medium.com/@pranay.valson/transaction-fee-estimations-how-to-save-on-gas-part-2-72f908b13d67
https://medium.com/@pranay.valson/transaction-fee-estimations-how-to-save-on-gas-part-2-72f908b13d67
https://ambcrypto.com/users-raise-a-stink-over-sunflower-farmers-nft-for-gas-fee-spikes-on-polygon/
https://ambcrypto.com/users-raise-a-stink-over-sunflower-farmers-nft-for-gas-fee-spikes-on-polygon/
https://eips.ethereum.org/EIPS/eip-3529
https://eips.ethereum.org/EIPS/eip-3529
https://twitter.com/FabiusMercurius/status/1454513434209312772
https://twitter.com/FabiusMercurius/status/1454513434209312772

Itay Tsabary, Alex Manuskin, and Ittay Eyal

0

100

200

300

400

500

600

700

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

P-value median – 0.966
P-value average – 0.941

N
um

be
ro

fb
at

ch
es

P-values of best-fitting 𝑁
(
𝜇, 𝜎2)

Figure 7: Kolmogorov–Smirnov test p-values for September

2021 Ethereum blocks and normal distributions.

and therefore higher demand), we split our samples to batches of 20
blocks, corresponding to an expected time period of 5 minutes. For
each batch we numerically find 𝜇 and 𝜎2 values that maximizes
the p-value for the Kolmogorov–Smirnov test [90], i.e., values of 𝜇
and 𝜎2 that maximize the probability that the gas-price change
is drawn from 𝑁

(
𝜇, 𝜎2) . We present histogram of the resultant

p-values (significance levels) in Figure 7.
Figure 7 shows that, indeed, gas-price fluctuations for most of

the examined batches can be modeled as drawn from a normal
distribution with high probability, thus justifying the gas-price ran-
dom walk model. Specifically, 99.8% of the batches are normally
distributed with significance level of at least 0.5, 90.4% of batches are
normally distributed with significance level of at least 0.85, and 66%
of the batches are normally distributed with significance level of
at least 0.95. Additionally, we note the average p-value is 0.941,
and the median is 0.966, both indicating statistical significance that
the samples were drawn from a normal distribution, verifying the
hypothesis.

Finally, we consider the found normal distribution parameters 𝜇
and 𝜎2, presented (excluding a few outliers) in Figure 8.

Figure 8 shows the vast majority of batches are best-fitted
with 𝜇 ≈ 0 and relatively low 𝜎2 values. Indeed, 98% of the exam-
ined batches are best-fitted with 𝜇 ∈ [−1, 1] and 𝜎2 ≤ 5.

Repeating this analysis for different batch sizes (10, 40 and 80)
yields similar results. We thus conclude that the random walk model
describes with statistical significance the gas-price changes over
the sampled period, and that each step has little drift, if any, and
low variance.

C MODIFICATIONS

We present a few modifications to LedgerHedger that might be
of practical interest. These focus on user experience in case of
unintended usage, e.g., enabling Buyer to get the contract tokens
earlier in case of no Seller accepting the contract. We also present a
few modifications for reducing the contract overhead.

Enabling earlier refunds from a declined contract. First, one can
consider a modification the Recoup function requires to be invoked
after 𝑏acc instead of during [𝑏start, 𝑏end]. This allows Buyer to with-
draw tokens from a declined contract at an earlier stage.

Note that initiating a contract that will not be accepted is not
SPE – Buyer pays the initiation fees, and then later either forfeits
her tokens or pays additional fees to withdraw them (Eq. 8).

Enabling refund from a non-depleted contract. Additionally, we
can change the Recoup function to accept invocations after 𝑏

end

if Seller accepted the contract, but then ignored it.
This allows Buyer to withdraw tokens in case Seller crashed.

Similarly to the previous refund modification, initiating a contract
that will be refunded is not SPE.

Higher 𝜀 values. Setting 𝜀 = 1 suffices to incentivize Seller to
prefer confirming tx

payload
(assuming she meets the 𝑔

alloc
quota).

Buyer setting higher values for 𝜀 further improves this incentive,
even in the presence of Seller having exogenous considerations for
excluding tx

payload
.

Setting 𝜀 = 0. Setting 𝜀 = 0 means Buyer has to pay (a sin-
gle token) less for tx

payload
. This, however, means Seller has the

same benefit from confirming tx
payload

and from exhausting the
contract (see Table .1). This change might be suitable if Seller is
expected to prefer the former due to an exogenous consideration
or due to being benign.

Hard coding block intervals. Our implementation takes as param-
eters 𝑏start and 𝑏

end
, indicating the block interval for transaction

confirmation or contract exhaustion. However, this requires stor-
ing two values, and storing data is a rather costly operation [155].
Instead, one can create a contract with a hard coded interval length,
and take only 𝑏start as a parameter. This still enables enforcing the
engagement interval, but requires storing one less variable.

D LEMMA 1 PROOF

Proof of Lemma 1. In the PublishTx subgame, Buyer chooses
if to publish tx

payload
or not. Additionally, if she chooses to pub-

lish tx
payload

then she also decides what its gas consumption 𝑔
pub

is.
Publishing tx

payload
(𝑎
pubTx

) leads to subgame ΓSellerFulfillTx . If so, her
resultant wealth is 𝑊Buyer

(
𝜋exec, FulfillTx, 𝑠spe

)
= 𝑤 init

Buyer
− 𝑔init ·

𝜋 setup−payment−𝜀+𝑤exo if 𝜋exec <
payment+col+𝜀
𝑔pub+𝑔done and 𝑔

pub
≤ 𝑔

alloc

, and𝑤 init

Buyer
−𝑔init ·𝜋 setup−payment−𝜀+max (𝑤exo − 𝑔

alloc
· 𝜋exec, 0)

otherwise (Eq. 4).
Alternatively, not publishing a transaction (𝑎

noPubTx
),

leads to subgame ΓSellerFulfillNoTx . This results with
wealth 𝑊Buyer

(
𝜋exec, FulfillNoTx, 𝑠spe

)
= 𝑤 init

Buyer
− 𝑔init · 𝜋 setup −

payment − 𝜀 +max (𝑤exo − 𝑔
alloc
· 𝜋exec, 0) (Eq. 2).

Let us take note that 𝑤exo > 0, 𝜋exec > 0 and 𝑔
alloc

> 0. There-
fore, we get that𝑤exo > max (𝑤exo − 𝑔

alloc
· 𝜋exec, 0). Subsequently,

considering all the aforementioned options, the wealth of Buyer is
maximized when 𝜋exec <

payment+col+𝜀
𝑔pub+𝑔done and 𝑔

pub
≤ 𝑔

alloc
.

With that, let us consider the value of 𝑔
pub

. First, setting 𝑔
pub

>

𝑔
alloc

violates the mentioned condition, as Seller will not con-
firm tx

payload
.

And, setting 𝑔
pub

< 𝑔
alloc

is also unfavorable, as 𝑔
pub
≥ 𝑔

alloc
is

required to receive the 𝑤exo tokens to begin with. Thus, publishing

0.20

1.45

2.70

3.95

5.20

6.45

7.70

8.95

-2.4 -2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 2.4

𝜎
2

𝜇

3 292 253 3

17 890 937 15 2

3 81 1063 1151 103 1 1

1 1 5 76 602 655 98 12 1

1 10 85 431 492 124 15 4 1

2 1 10 56 221 233 80 18 2 2

1 1 18 48 138 172 74 12 3 3 2 2

1 4 3 27 72 82 40 10 5 3 1

1 1 5 29 59 57 39 9 3 1 1

1 1 4 4 25 41 30 19 1 1 1

1 2 3 12 10 32 28 18 8 3 1

1 4 6 13 11 9 3 1 1 1 1

1 3 1 2 15 16 7 2 2 2 1 1 1

1 1 1 1 5 8 6 9 1 5 2 1

1 1 1 1 6 11 5 2 1 1 1 1 1

1 1 2 1 2 5 3 4 3 1 1 1

1 1 3 3 4 1 4 1 1 1 1

1 1 1 2 1 1 2 2 2 1 1 2 2 3 2 1

1 1 2 2 2 5 3 2 2

1 1 3 2 2 2 2 1

2 1 2 3 2 1 1 1 1

3 2 5 3 1 1 1

1 2 1 1 2 2 1 1

1 1 1 1 1 1 1

1 2 1 2 1

1 1 1 2 2 1

1 1 1 1 1 1 1 2 2

1 1 1 2 1

1 1 2 1 1 1

2 1 1 1 1

1 1 1 1 1

1 2 1

1

1 1 1 1 1 1

1 1 1 1 1

1

0

200

400

600

800

1000

Ba
tc

h
co

un
t

Figure 8: Best-fitted 𝜇 and 𝜎2
values for September 2021 Ethereum blocks.

a transaction that requires exactly 𝑔
pub

= 𝑔
alloc

is the preferred
action.

When 𝑔
pub

= 𝑔
alloc

, we get the condition for the preferable out-
come is simply 𝜋exec <

payment+col+𝜀
𝑔alloc+𝑔done , which is exactly the condition

mentioned in the lemma, concluding its proof. �

E RESULTANT REQUIRED PRICE FOR

LINEAR UTILITY FUNCTIONS

Recall Figure 5 shows that the required prices are fixed for the linear
utility function, for both Buyer and Seller, for any considered F .
We thoroughly explain this result.

Broadly speaking, this holds due to Pr [𝜋exec < 𝜋
bound

] = 1,
the linearity of the utility function, and the fact all considered
distributions have the same mean value.

First, note that our parameter choice results
in Pr [𝜋exec < 𝜋

bound
] = 1, where 𝜋

bound
=

payment+col+𝜀
𝑔alloc+𝑔done (Lemma 1).

So, we get 𝑊
Seller

(
𝜋exec, Γ

Buyer

PublishTx , 𝑠spe
)

(Eq. 5)

and𝑊Buyer

(
𝜋exec, Γ

Buyer

PublishTx , 𝑠spe
)

(Eq. 6) are linear in 𝜋exec. This is

in contrast to parameter values where 0 < Pr [𝜋exec < 𝜋
bound

] < 1,
resulting in piece-wise linear functions of 𝜋exec.

Following that, consider the linear utility Linear is
also a linear function, so both 𝑈

Seller

(
Γ
Buyer

PublishTx , 𝑠spe
)

and 𝑈Buyer

(
Γ
Buyer

PublishTx , 𝑠spe
)

are also linear in 𝜋exec.
When considering the expected utility (e.g., Eq. 10), the

integration is therefore of a linear function. Let us de-
note that function as 𝑎𝜋exec + 𝑏 for some constants 𝑎

and 𝑏, and note that
∫ ∞
−∞ (𝑎𝜋exec + 𝑏) · Fpdf (𝜋exec) 𝑑𝜋exec =

𝑎
∫ ∞
−∞ 𝜋exec · Fpdf (𝜋exec) 𝑑𝜋exec + 𝑏

∫ ∞
−∞ Fpdf (𝜋exec) 𝑑𝜋exec.

The result of the first integral
∫ ∞
−∞ 𝜋exec · Fpdf (𝜋exec) 𝑑𝜋exec

is the distribution’s mean value, which is equal for all
our considered distributions. The result of the second inte-
gral

∫ ∞
−∞ Fpdf (𝜋exec) 𝑑𝜋exec is exactly 1, as Fpdf (𝜋exec) is a proba-

bility density function.
So, we get that the expected utility from the Γ

Buyer

PublishTx subgame
is equal for all distributions. Similar considerations apply to the
expected utility from the Γ

Buyer

NoLH subgame, resulting with these ex-
pected utility differences being constant across the distributions,
as indicated by Figure 5.

Itay Tsabary, Alex Manuskin, and Ittay Eyal

Table 2: Ethereum Goerli Network Deployment and Gas Re-

quirements.

Invocation Transaction Identifier Consumed Gas

Initiate

37d4a7332ad18753277c62b96f9e8b97
d2f59c7aa22126dd23fe6825c361743f

𝑔init = 117𝑒3

Recoup

e8b69c4ae70f40e72e3a8df353c38e44
9c176d9a4d7aee86b073e3a3a6a55531

𝑔
done

= 57.3𝑒3

Initiate

7a47b67e574b748105ef31f6ebed8990
c17a96f19ef01307779a6119edf2318f

𝑔init = 37.4𝑒3

Accept

b5607e9c499279c7bd4b0abf2f3d212b
b3c294c684d87678cd06dd5d049a6b26

𝑔accept = 50𝑒3

Exhaust

c482ad2b3bfc1ca64b83e8fcdc29fe82
652ef7d839fc24323d035f8aba0b66b0

𝑔
alloc
+ 𝑔

done
= 3.021𝑒6

Initiate

9fee96dcfedd8f94e5442c1d8d50c92e
40bcfbf27ae512f9e2e3b01e670b005f

𝑔init = 37.4𝑒3

Accept

b0f3cd808d5ad637b94541f3519614dc
444d2c76eaf60e4917f32bfc57df6eb9

𝑔accept = 50𝑒3

Apply

facb062758d24a2266b3e6d989ffe430
202fdc2f23f4f73a585945e132fe0d7b

𝑔
pub
+ 𝑔

done
= 2.668𝑒6

Arbitrary tx without Apply 27b4ad41e814d432a6c3e060eee6c6e7
f7e8fdc615b904548dfd9387db79020a

𝑔
pub

= 63𝑒3

Arbitrary tx with Apply

b8a45902b247cd812e784e940ed822c3
cf8155a732b09ced2823fc27265fb7e2

𝑔
pub
+ 𝑔

done
= 75𝑒3

F GOERLI TEST NETWORK DEPLOYMENT

Table 2 presents our deployment of LedgerHedger on the Goerli
Ethereum test network. It lists the invoked contract function, the
transaction identifiers, and the consumed gas.

We took the following approach to verify the gas overhead
of Apply produced by our local profiler. We created another meta-
transaction, and performed its operations both with and without
the contract. The gas consumption difference is 12𝑒3, matching
the local profiler measurement 𝑔

done
= 12𝑒3. Table 2 includes the

relevant transaction identifiers for this experiment as well.

G LEDGER-HEDGER SOLIDITY IMPLEMENTATION

/ / SPDX−L i c e n s e − I d e n t i f i e r : MIT
pragma s o l i d i t y ^ 0 . 8 . 0 ;

impor t " @openzeppel in / c o n t r a c t s / u t i l s / c r y p t o g r a p h y /ECDSA . s o l " ;

s t r u c t MetaTx {
u i n t 2 5 6 nonce ;
a d d r e s s t o ;
u i n t 2 5 6 v a l u e ;
b y t e s c a l l D a t a ;

}

enum S t a t e {
INIT ,
REGISTERED ,
IDLE

}

c o n t r a c t GasFuture {
u i n t 2 5 6 p u b l i c nonce ;

u i n t 3 2 p u b l i c s t a r t B l o c k ;
u i n t 3 2 p u b l i c endBlock ;
u i n t 3 2 p u b l i c r e g B l o c k ;

a d d r e s s p u b l i c buyer ;
a d d r e s s p u b l i c s e l l e r ;
u i n t 2 5 6 p u b l i c gasHedged ;

u i n t 2 5 6 p u b l i c c o l l a t e r a l ;
u i n t 2 5 6 p u b l i c payment ;
u i n t 2 5 6 p u b l i c eps ;

S t a t e p u b l i c s t a t u s ;

c o n s t r u c t o r (a d d r e s s _owner) p u b l i c {
buyer = _owner ;
s t a t u s = S t a t e . IDLE ;

}

r e c e i v e () e x t e r n a l p a y a b l e { }

function i n i t (
u i n t 3 2 _regBlock ,
u i n t 3 2 _ s t a r t B l o c k ,
u i n t 3 2 _endBlock ,
u i n t 2 5 6 _gasHedged ,
u i n t 2 5 6 _co l ,
u i n t 2 5 6 _eps

) e x t e r n a l p a y a b l e {

Itay Tsabary, Alex Manuskin, and Ittay Eyal

r e q u i r e (buyer == msg . sender , " Not ␣ owner ") ;
r e q u i r e (b l o c k . number <= _ r e g B l o c k && _ r e g B l o c k < _ s t a r t B l o c k

&& _ s t a r t B l o c k <= _endBlock , " b l o c k ␣ out ␣ o f ␣ bound ") ;
/ / NOTE : O p t i o n a l l y l e t t h i s be r e i n i t i a t e d i f d e p e l e t e d
r e q u i r e (s t a t u s == S t a t e . IDLE , " C o n t r a c t ␣ a l r e a d y ␣ i n i t i a l i z e d ") ;
r e q u i r e (_gasHedged > 0 , " Hedged ␣ amount ␣ can ' t ␣ be ␣ n e g a t i v e ") ;
r e q u i r e (_ c o l >= 0 , " C o l l a t e r a l ␣ can ' t ␣ be ␣ n e g a t i v e ") ;
r e q u i r e (_eps > 0 , " E p s i l o n ␣ can ' t ␣ be ␣ n e g a t i v e ") ;
r e q u i r e (msg . v a l u e > eps , " Payment ␣ can ' t ␣ be ␣ n e g a t i v e ") ;

r e g B l o c k = _ r e g B l o c k ;
s t a r t B l o c k = _ s t a r t B l o c k ;
endBlock = _endBlock ;

gasHedged = _gasHedged ;

eps = _eps ;
payment = msg . v a l u e − eps ;
c o l l a t e r a l = _ c o l ;

s t a t u s = S t a t e . INIT ;
}

/ / The c a l l e r s o f the function s e t s t h e m s e l v e s as the gasPayer
function r e g i s t e r () e x t e r n a l p a y a b l e {

r e q u i r e (b l o c k . number <= regBlock , " R e g i s t e r ␣ b l o c k ␣ e x p i r e d ") ;
r e q u i r e (s t a t u s == S t a t e . INIT , " C o n t r a c t ␣ not ␣ i n i t i a l i z e d ") ;
r e q u i r e (msg . v a l u e >= c o l l a t e r a l , " I n s u f f i c i e n t ␣ c o l l a t e r a l ␣ p r o v i d e d ") ;
s e l l e r = msg . s e n d e r ;
s t a t u s = S t a t e . REGISTERED ;

}

function r e f u n d () e x t e r n a l {
r e q u i r e (b l o c k . number >= s t a r t B l o c k

&& b l o c k . number <= endBlock , " B lock ␣ must ␣ be ␣ between ␣ s t a r t ␣ and ␣ end ") ;
r e q u i r e (s t a t u s == S t a t e . INIT , " C o n t r a c t ␣ must ␣ be ␣ on ly ␣ i n i t i a t e d ") ;
r e q u i r e (msg . s e n d e r == buyer , " Not ␣ owner ") ;
s t a t u s = S t a t e . IDLE ;
buyer . c a l l { v a l u e : payment + eps } (" ") ;

/ / the payment i s s e n t t o the buyer anyway
}

function e x e c u t e (MetaTx memory _metaTx , b y t e s memory _ s i g) e x t e r n a l {
r e q u i r e (b l o c k . number >= s t a r t B l o c k

&& b l o c k . number <= endBlock , " B lock ␣ must ␣ be ␣ between ␣ s t a r t ␣ and ␣ end ") ;
r e q u i r e (s t a t u s == S t a t e . REGISTERED , " C o n t r a c t ␣ not ␣ r e g i s t e r e d ") ;
r e q u i r e (msg . s e n d e r == s e l l e r , " Wrong ␣ s e l l e r ") ;
s t a t u s = S t a t e . IDLE ;
v e r i f y A n d E x e c u t e (_metaTx , _ s i g) ;
s e l l e r . c a l l { v a l u e : c o l l a t e r a l + payment + eps } (" ") ;

/ / the payment i s s e n t t o the s e l l e r anyway
}

function e x h a u s t () e x t e r n a l {
r e q u i r e (b l o c k . number >= s t a r t B l o c k

&& b l o c k . number <= endBlock , " B lock ␣ must ␣ be ␣ between ␣ s t a r t ␣ and ␣ end ") ;
r e q u i r e (s t a t u s == S t a t e . REGISTERED , " C o n t r a c t ␣ not ␣ r e g i s t e r e d ") ;
r e q u i r e (msg . s e n d e r == s e l l e r , " Wrong ␣ s e l l e r ") ;
l o o p U n t i l () ;
s t a t u s = S t a t e . IDLE ;
s e l l e r . c a l l { v a l u e : c o l l a t e r a l + payment } (" ") ;

/ / the payment i s s e n t t o the s e l l e r anyway
}

function v e r i f y A n d E x e c u t e (MetaTx memory _metaTx , b y t e s memory _ s i g)
p u b l i c r e t u r n s (b y t e s memory) {

r e q u i r e (_metaTx . nonce == nonce , " Nonce ␣ i n c o r r e c t ") ;
b y t e s 3 2 metaTxHash = keccak256 (a b i . encode (_metaTx . nonce ,

_metaTx . to , _metaTx . va lue , _metaTx . c a l l D a t a)) ;
a d d r e s s s i g n e r = ECDSA . r e c o v e r (ECDSA . toEthS ignedMessageHash (metaTxHash) , _ s i g) ;
r e q u i r e (buyer == s i g n e r , "UNAUTH") ;
nonce ++ ; / / We up the nonce r e g a r d l e s s o f s u c c e s s
(b o o l _ s u c c e s s , b y t e s memory _ r e s u l t) = _metaTx . t o . c a l l {

v a l u e : _metaTx . v a l u e } (_metaTx . c a l l D a t a) ;
i f (s t a t u s == S t a t e . INIT) {

r e q u i r e (a d d r e s s (t h i s) . balance >= payment + eps ,
" cannot ␣ spend ␣ l o c k e d ␣ funds ") ;

} e l se i f (s t a t u s == S t a t e . REGISTERED) {
r e q u i r e (a d d r e s s (t h i s) . balance >= payment + eps + c o l l a t e r a l ,

" cannot ␣ spend ␣ l o c k e d ␣ funds ") ;
}
return _ r e s u l t ;

}

function l o o p U n t i l () p u b l i c {
u i n t 2 5 6 i = 0 ;
u i n t 2 5 6 t i m e s = (gasHedged − 2 3 3 3 0) / 1 1 7 ;
for (i ; i < t i m e s ; i ++) { }

}
}

	Abstract
	1 Introduction
	2 Related work
	3 Model
	3.1 Cryptocurrency System
	3.2 Future Transaction Setup
	3.3 Gas Price

	4 Ledger-Hedger
	4.1 Ledger-Hedger Design
	4.2 Possible Ledger-Hedger Interactions

	5 Game Definition
	5.1 States and Actions
	5.2 Strategy
	5.3 Wealth and Utility

	6 Analysis
	6.1 Solution Concept
	6.2 SPE Expressions
	6.3 Efficacy

	7 Gas Allocation Assurances
	8 Implementation
	9 Conclusion
	References
	A Future-Confirmation-Dependent Applications
	B Price-Prediction-Model Validation
	C Modifications
	D Lemma 1 Proof
	E Resultant Required Price for Linear Utility Functions
	F Goerli Test Network Deployment
	G Ledger-Hedger Solidity Implementation

