
Non-Interactive Zero-Knowledge Proofs to Multiple Verifiers

Kang Yang
State Key Laboratory of Cryptology

yangk@sklc.org

Xiao Wang
Northwestern University

wangxiao@cs.northwestern.edu

Abstract

In this paper, we study zero-knowledge (ZK) proofs for circuit satisfiability that can prove to n
verifiers at a time efficiently. The proofs are secure against the collusion of a prover and a subset of t
verifiers. We refer to such ZK proofs as multi-verifier zero-knowledge (MVZK) proofs and focus on the
case that a majority of verifiers are honest (i.e., t < n/2). We construct efficient MVZK protocols in
the random oracle model where the prover sends one message to each verifier, while the verifiers only
exchange one round of messages. When the threshold of corrupted verifiers t < n/2, the prover sends
1/2+o(1) field elements per multiplication gate to every verifier; when t < n(1/2−ε) for some constant
0 < ε < 1/2, we can further reduce the communication to O(1/n) field elements per multiplication gate
per verifier. Our MVZK protocols demonstrate particularly high scalability: the proofs are streamable
and only require a memory proportional to what is needed to evaluate the circuit in the clear.

1

yangk@sklc.org
wangxiao@cs.northwestern.edu

Contents

1 Introduction 3
1.1 Our Contribution . 3
1.2 Applications . 5
1.3 Related Work . 6

2 Preliminaries 7

3 Technical Overview 8
3.1 Black-Box Constructions of NIMVZK Proofs . 9
3.2 Information-Theoretic Non-Interactive MVZK . 9
3.3 Distributing Fiat-Shamir for Strong Non-Interactive MVZK 10
3.4 More Efficient Strong NIMVZK from Packed Secret Sharing 11

4 Information-Theoretic NIMVZK Proof in the Honest-Majority Setting 13
4.1 From General Adversaries to Maximal Adversaries for MVZK 13
4.2 Our Information-Theoretic NIMVZK Protocol . 14

5 Strong NIMVZK Proof in the Honest-Majority Setting 15

6 Strong NIMVZK with Lower Communication from PSS 17
6.1 Strong NIMVZK based on Packed Secret Sharing . 18
6.2 Strong NIMVZK Proof for Packed Inner-Product Tuples 22

A More Preliminaries 30
A.1 Security Model . 30
A.2 Two Instantiations of Linear Secret Sharings . 31
A.3 Coin-Tossing Functionality . 32

B Proof of Lemma 1 32

C Information-Theoretic NIMVZK Proof in the Honest-Majority Setting 34
C.1 Proof of Theorem 1 . 34
C.2 Information-Theoretic Verification of Inner-Product Tuples 37

C.2.1 Prover-Aided Inner-Product Protocol . 37
C.2.2 Prover-Aided Verification for Inner-Product Tuples 39

D Proof of Theorem 2 44

E Preprocess Circuits 46

F Proof of Theorem 3 47

G Proof of Theorem 4 53

2

1 Introduction

Zero-knowledge (ZK) proofs allow a proverP , who knows a witnessw, to convince a verifier V thatC(w) =
0 for a circuit C, in the way that V learns nothing beyond the validity of the statement. One important
type of ZK proofs is non-interactive ZK (NIZK), where the prover just needs to send one message to a
verifier. This is particularly useful as the prover’s message (i.e., the proof) can be reused to convince multiple
verifiers. The efficiency of NIZK proofs has been significantly improved in recent years, based on different
frameworks (e.g., [IKOS07, GKR08, Gro10, GGPR13, BCS16, BCC+16, BBB+18, WTs+18, BCR+19,
BBHR19, Set20, BFS20, ZXZS20, AHIV17, BFH+20] and references therein). Another important type of
ZK proofs is designated-verifier ZK (DVZK), where an interactive protocol needs to be executed between
the prover and the verifier. Compared to NIZK, DVZK protocols can often achieve a higher efficiency to
prove to one verifier and scale to a very large circuit with a small memory. For example, recent DVZK
proof systems [WYKW21, DIO21, BMRS21, YSWW21, BBMH+21, DILO22] can prove tens of millions
of gates per second with very limited bandwidth. However, such an advantage diminishes when the number
of verifiers increases: DVZK protocols require the prover to execute the protocol with every verifier, while
an NIZK proof enables all verifiers to verify the proof concurrently after the prover generates and publishes
the proof.

In this work, we explore the middle ground between NIZK and DVZK: we study the efficiency of ZK
proofs when a prover wants to prove to multiple verifiers (i.e., multi-verifier ZK, MVZK in short). This
setting was first studied by Abe, Cramer and Fehr [ACF02]. Specifically, we consider that a prover P needs
to convince n verifiers V1, . . . ,Vn, and the adversary can potentially corrupt a subset of t verifiers and
optionally the prover. More specifically, we focus on the honest-majority setting, meaning that t < n/2
verifiers could be corrupted and can collude with the prover. Such an MVZK protocol is closely connected
to DVZK in which the prover can only prove to a designated set of verifiers who are known ahead of the
protocol execution. However, due to the fact that there is a majority of honest verifiers, it turns out the
MVZK protocol can achieve some surprising features, e.g., being non-interactive between the prover and
the verifiers in the information-theoretic setting.

Because of the involvement of multiple verifiers, there are two types of communications: 1) between
the prover and verifiers and 2) between different verifiers. We say that the protocol is a non-interactive
multi-verifier ZK (NIMVZK) proof if the prover only sends one message to each verifier. We say that the
protocol is a strong NIMVZK proof if it is an NIMVZK and that there is only one round of communication
between verifiers. We allow the verifiers to communicate for one round because without any communication
between the verifiers, constructing NIMVZKs appears as difficult as constructing NIZKs.

In the MVZK setting, the known protocol [ACF02] or those that can be implicitly constructed from
the known techniques [BBC+19, BGIN20] either are not concretely efficient or only prove some specific
circuits instead of generic circuits. Furthermore, none of the prior work considers how to stream the MVZK
proofs, which is a crucial property to prove large-scale circuits.

1.1 Our Contribution

In this paper, we propose streamable NIMVZK protocols on generic circuits with both theoretical insights
and practical implication. The protocols work in the honest-majority setting, meaning that the number t
of corrupted verifiers is less than n/2, where n is the total number of verifiers. Compared to NIZKs, our
NIMVZK protocols are much cheaper in terms of computational cost and use significantly less memory.
Compared to DVZK, our protocols have three advantages: 1) the computation is still cheaper; 2) we can
achieve the strongly non-interactive property; and 3) the communication is lower, especially when the num-
ber of verifiers is large. Specifically, our results are summarized as follows:

1. We present an information-theoretic NIMVZK protocol, where the prover sends 1 + o(1) field elements

3

per multiplication gate to every verifier in one message (thus non-interactive), and the verifiers interact
in both communication and rounds logarithmic to the circuit size. We consider the protocol as a stepping
stone to introduce the following two main NIMVZK protocols.

2. Assuming a random oracle (and thus in the computational setting), we construct a strong NIMVZK proof
based on Shamir secret sharing, where the verifiers only need to communicate for one round. The prover
needs to send 1/2 + o(1) field elements per multiplication gate to each verifier and the communication
cost between verifiers is still logarithmic.

The challenge is that the message sent by the prover consists of the shares of every verifier that are private
information and thus cannot be revealed. This makes the verifiers have no way to compute the public
message that can be used as the input of a random oracle in the Fiat-Shamir transform. We proposed
an efficient approach to allow Fiat-Shamir to work across multiple verifiers, i.e., enabling the prover to
generate a small public message that can be securely used in the Fiat-Shamir transform, even if a minority
of verifiers collude with the malicious prover.

3. When the corruption threshold is smaller (i.e., t < n(1/2 − ε) for some constant 0 < ε < 1/2), we use
packed secret sharing (PSS) [FY92] to construct a strong NIMVZK protocol for proving a single generic
circuit, which further reduces the communication complexity toO(1/n) field elements per multiplication
gate per verifier, while the communication complexity between verifiers is logarithmic to the circuit
size. If applying the state-of-art secure multi-party computation (MPC) protocol [GPS21] based on PSS
to design an interactive MVZK protocol, the resulting protocol can achieve the same communication
complexity. However, the constant in the O notation is significantly larger than our protocol.

For a single generic circuit, PSS has been used in MPC protocols [DIK10, GIP15, GIOZ17, GPS21] in the
honest-majority setting, but the overhead is often high due to the constraint how to pack the wire values
to realize secure evaluation of the circuit. In the ZK setting, our strong NIMVZK protocol can remove the
constraint, and achieve optimality for packing wire values and significantly better efficiency for checking
correctness of packed sharings. For example, the state-of-the-art PSS-based MPC protocol [GPS21]
incurs a total communication cost of O(n5k2) to check the consistency between packed input sharings
and output sharings, where k > εn+1/2 is the number of secrets packed in a single sharing. When being
improved in the ZK setting, the total communication cost of our protocol can be reduced to O(n2k2).
Furthermore, we develop a non-interactive verification technique for checking correctness of PSS-based
multiplication tuples, while the approach used in MPC [GPS21] requires logarithmic rounds.

In summary, we designed concretely efficient MVZK protocols, which provide the attractive properties of
NIZK (non-interactivity) and DVZK (memory efficiency and prover-computation efficiency). Although it is
not applicable to all settings (due to the assumption of honest-majority verifiers), when it is applicable, the
performance improvements to existing protocols are huge.

Streamable property of our NIMVZK. Although the communication complexity between the prover and
verifiers is linear to the circuit size, all our protocols as described above are streamable, meaning that the
prover can generate and send the proof on-the-fly and no party needs to store the whole proof during the
protocol execution. As a result, the memory consumption of our protocols is proportional to what is needed
to evaluate the statement in the clear. Furthermore, we make our strong NIMVZK proofs streamable in the
way that the rounds among verifiers keep unchanged (i.e., only one round between verifiers is needed for
proving multiple batches of gates).

Asymmetric property of our strong NIMVZK. One surprising feature of our two strong NIMVZK proto-
cols in the computational setting is the asymmetry among verifiers. Specifically, among all verifiers, a subset
of t verifiers only has a sublinear communication complexity: each verifier only receives O(n + log |C|)

4

Protocols Threshold
Communication cost Communication cost Rounds

of circuit evaluation of circuit verification (V ↔ V)

IT-SSS-ZK t < n
2 |I|+ |C| (7τ − 5) logτ |C|+ 3n+ 4 logτ |C|+ 3

FS-SSS-ZK t < n
2 (1

2 + 1
2n)(|I|+ |C|) 3 log |C|+ (λ+ 3)n+ 2 1

FS-PSS-ZK t < (1
2 − ε)n (1

n + n−1
2nk)(|I|+ |C|+ kN)

(2k + 1) log |C|k + (λ+ 3)n
1

+2k + (2n+ 2k + 1)k2

Table 1: Concrete communication cost per verifier for our NIMVZK protocols. We use |I| and |C| to denote the
number of circuit-input wires and multiplication gates respectively, where we often have |I| � |C|. We denote by n
and t the number of verifiers and corruption threshold respectively. Here, τ ≥ 2 is a compression parameter, λ is the
computational security parameter, and k > εn + 1/2 is the number of secrets packed in a single sharing. Notation
N = O(|C|/k) is the number of wire tuples depending on the structure of the circuit, where we refer the reader to
[GPS21] or Section 3.4 for the definition of wire tuples.

field elements from the prover, and only needs to sendO(n) field elements to other verifiers, where |C| is the
number of multiplication gates in a circuitC. It makes the protocols particularly suitable for the applications
where the verifiers are a mix of powerful servers and lower-resource mobile devices.

Communication cost of our NIMVZK protocols. In Table 1, we summarize the concrete communication
cost for our NIMVZK protocols, where IT-SSS-ZK is the information-theoretic NIMVZK protocol from
Shamir secret sharing (SSS), FS-SSS-ZK is the SSS-based strong NIMVZK protocol using the Fiat-Shamir
(FS) heuristic, and FS-PSS-ZK is the PSS-based strong NIMVZK protocol using the FS transform. Com-
munication cost of the circuit-evaluation phase is counted as the number of field elements sent by a prover
to every verifier, and dominates the communication of our protocols. 1 For completeness , we also give the
communication cost to verify the correctness of circuit evaluation, even though it is sublinear to the circuit
size, where this communication cost is counted as the number of field elements sent by every verifier to
other verifiers. In this table, we ignore some minor terms when counting the communication cost of circuit
verification for the sake of simplicity. In Table 1, we also compare the rounds between verifiers for our
proofs, where the communication between the prover and verifiers is non-interactive for all our protocols.

1.2 Applications

Non-interactive MVZK proofs have the following applications:

1. Drop-in replacement to NIZK and DVZK. NIMVZK can be used in normal ZK applications as long
as the identifies of the verifiers are known ahead of time and satisfy the security requirement (e.g., a
majority of verifiers are honest for our NIMVZK protocols). For example, as described in [CK21], a
ZK proof could potentially be used by Apple for auditing their Child Sexual Abuse Material detection
protocol. Our NIMVZK protocol can be used when such an auditing needs to be performed to multiple
agencies efficiently.

2. Honest-majority MPC with input predicate check. In some computational tasks, it is desired to exe-
cute the MPC protocol among multiple parties only if the input of every party is valid, where the validity
is defined by some predicate. Although generic MPC can realize this functionality, using our NIMVZK
1Similar to previous work [GPS21], we consider that the number of addition gates is at most O(|C|) and the number of wire

tuples N = O(|C|/k). If most of gates in a circuit are addition gates, then FS-SSS-ZK will often achieve significantly better
efficiency than FS-PSS-ZK, and thus may be a better choice for such special circuits.

5

protocols could further reduce the overhead of proving the predicate. As our protocols are based on
Shamir sharings, it can be seamlessly integrated with MPC protocols also based on Shamir sharings.

3. Private aggregation systems. Systems like Prio [CGB17] use a set of servers to collect and aggregate
users’ data. To prevent mistakes and attacks, users need to prove to the servers that their data is valid,
which was done via secret-shared non-interactive proof in Prio. However, the protocol assumes the
prover not to collude with any verifier for soundness. Our protocol could be a more efficient alternative
and is sound even when a user colludes with a minority of servers. On the other hand, for zero-knowledge,
Prio can tolerate all-but-one corrupted servers, while our protocols need to assume an honest majority of
servers.

1.3 Related Work

The concept of MVZK proofs was first discussed by Burmester and Desmedt [BD91], where they focus on
how to save broadcasts. Lepinski, Micali and shelat [LMs05] proposed a fair ZK proof, which ensures that
even malicious verifiers who collude with the prover can learn nothing beyond the validity of the statement if
the honest verifiers accept the proof. More recently, Baldimtsi et al. [BKZZ20] proposed a crowd verifiable
zero-knowledge proof, where the focus is to transform a Sigma protocol to their setting. All of the above
works focus on extending the ZK functionality rather than the concrete efficiency of ZK proofs.

Abe, Cramer and Fehr [ACF02] first studied the MVZK setting, and proposed a strong NIMVZK pro-
tocol for circuit satisfiability if at most t < n/3 verifiers are corrupted. Their protocol builds on the tech-
nique [Abe99], and adopts the Pedersen commitment and verifiable secret sharing. Due to the usage of
public-key operations for every non-linear gate, their protocol is not concretely efficient. In addition, the ZK
proof by Groth and Ostrovsky [GO07] could be transformed into a strong NIMVZK proof in the corruption
threshold of t < n/2, but their proof requires public-key operations per gate and thus is not concretely
efficient. Compared to the NIMVZK proofs [ACF02, GO07], our proofs do not require any public-key
operation and are concretely efficient.

Although Boneh et al. [BBC+19] did not explicitly consider the MVZK setting, the ZK proofs proposed
by them work in this setting. However, these protocols are only efficient applicable for circuits that can be
represented by low-degree polynomials (instead of generic circuits). Recently, Boyle et al. [BGIN20] shown
how to use the ZK proof [BBC+19] to design honest-majority MPC protocols with malicious security.
However, they only considered how to prove correctness of degree-2 relations, and did not involve MVZK
proofs on generic circuits yet. In addition, Boyle et al. [BGIN20] proposed an approach based on Fiat-
Shamir to make the ZK proof on inner-product tuples non-interactive, where the difference between the
secret and randomness needs to be sent. One can generalize their approach into our MVZK framework,
and make the resulting MVZK proof strongly non-interactive. However, their approach requires 3× larger
communication than ours. Both works [BBC+19, BGIN20] did not consider how to make the ZK proofs
streamable, which is addressed by our work.

The Prio proof system [CGB17] works in the MVZK setting when assuming the prover cannot collude
with any verifier, as additive secret sharing is used. In terms of efficiency, Prio needs 2× larger communi-
cation cost than our NIMVZK proof, and requires the computation complexity of O(|C| log2 |C|) while our
proof has the linear computation complexity.

One can also use maliciously secure MPC protocols in the honest-majority setting (e.g., [GIP15, LN17,
NV18, CGH+18, BGIN20, GS20, GSZ20, GLO+21, GPS21]) to directly obtain interactive MVZK proofs.
However, both of communication and computation costs will be significantly larger than our NIMVZK pro-
tocols. While NIZK can be transformed into NIMVZK directly, these NIZK proofs with performance similar
to our proofs (e.g., recent succinct non-interactive proofs [Set20, BFS20, ZXZS20, BFH+20, ZLW+21]) re-
quire memory linear to the circuit size, which could lead to a huge memory consumption for circuits with

6

Functionality Fmvzk

This functionality runs with a prover P and n verifiers V1, . . . ,Vn. Let H denote the set of honest verifiers. This
functionality operates as follows:

1. Upon receiving (prove, C,w) from P and (verify, C) from Vi for all i ∈ [1, n] where C is a circuitover a field
F , set b := true if C(w) = 0 and b := false otherwise.

2. Send b to the adversary. For each i ∈ H, wait for an input from the adversary, and then do the following:

• If it is continuei, send b to the verifier Vi.
• If it is aborti, send abort to the verifier Vi.

Figure 1: Zero-knowledge functionality for multiple verifiers in the honest-majority setting.

billions of gates. Our NIMVZK protocols are streamable, and the memory consumption of these protocols
is proportional to what is needed to evaluate the circuit in the clear (meaning that these protocols only need a
small memory cost for proving very large circuits). Compared to MVZK that is constructed from the recent
VOLE-based DVZK proofs [WYKW21, DIO21, BMRS21, YSWW21, BBMH+21, DILO22] by executing
the protocol with every verifier, our strong NIMVZK proofs reduce round complexity from O(1) to only
one round between the prover and verifiers, and significantly improve efficiency.

Very recently, two works by Applebaum et al. [AKP22] and Baum et al. [BJO+22] also presented MVZK
protocols in the setting that a majority of verifiers are honest. Applebaum et al. [AKP22] focuses on a
theoretical perspective, and gave two strong NIMVZK protocols based on “Minicrypt”-type assumptions in
the plain model. Baum et al. [BJO+22] adopted an approach similar to ours, and aim to construct concretely
efficient MVZK protocols. In particular, they proposed two NIMVZK protocols that allow to identify the
cheating verifiers (and thus have stronger security than ours); however, their protocols only tolerate a smaller
number of corrupted verifiers (either t < n/3 or t < n/4). Neither of the works [AKP22, BJO+22] adopted
packed secret sharings and achieve the communication complexity of O(1/n) per multiplication gate per
verifier.

2 Preliminaries

We discuss some important preliminaries here and provide more preliminaries (e.g., security model) in
Appendix A.

Notation. We use λ and ρ to denote the computational and statistical security parameters, respectively. We
use x ← S to denote that sampling x uniformly at random from a finite set S. For a, b ∈ Z with a ≤ b,
we write [a, b] = {a, . . . , b}. We will use bold lower-case letters like x for column vectors, and denote by
xi the i-th component of x with x1 the first entry. For two vectors x,y of dimension m, x � y denotes
the inner product of x and y (i.e., x � y =

∑
i∈[1,m] xi · yi). Sometimes, when the dimension of vectors

x,y is 1 (i.e., x = x and y = y), we abuse the notation x � y to denote the multiplication x · y for the
sake of simplicity. We use logk to denote the logarithm in base k, and denote by log the logarithm notation
log2 for simplicity. For a finite field F, we use K to denote a degree-r extension field of F. In particular, we
fix some monic, irreducible polynomial f(X) of degree r and write K ∼= F[X]/f(X). Every field element
w ∈ K can be denoted uniquely as w =

∑
h∈[1,r]wh ·Xh−1 with wh ∈ F for all h ∈ [1, r]. When we write

arithmetic expressions involving both elements of F and elements of K, it is understood that field elements
in F are viewed as the polynomials lying in K that have only constant terms. For a circuit C, we use |C| to
denote the number of multiplication gates.

7

Zero-knowledge functionality. Our ZK functionality for proving circuit satisfiability against multiple ver-
ifiers is shown in Figure 1. Let n be the total number of verifiers. We consider the MVZK protocols in the
honest-majority setting, i.e, the adversary allows to corrupt at most t < n/2 verifiers. The adversary is also
allowed to corrupt the prover. When the prover is honest, functionality Fmvzk defined in Figure 1 captures
zero-knowledge, meaning that t malicious verifiers cannot learn any information on the witness. When the
prover is malicious, Fmvzk captures soundness, i.e., the malicious prover cannot make the honest verifiers
accept if C(w) 6= 0, even though it colludes with t malicious verifiers. From the definition of Fmvzk, it
requires that the ZK protocol realizing Fmvzk supports knowledge extraction.

We can consider MVZK protocols as special MPC protocols. Thus, we adopt the notion of security with
abort in the MPC setting to define Fmvzk and other functionalities defined in the subsequent sections, where
the corrupted verifiers may receive output while the honest verifiers do not. Our definition does not guarantee
unanimous abort, meaning that some honest verifiers may receive output while other honest verifiers abort.
Nevertheless, it is easy to tune our protocols to satisfy the security notion of unanimous abort, by having the
verifiers broadcast whether they will abort or not at the end of the protocol execution [GL05].

Communication model. The default communication between the prover and verifiers is private chan-
nel, unless otherwise specified. We assume that all verifiers are connected via authenticated channels. In
the computational setting, the prover sometimes needs to communicate with all verifiers over a broadcast
channel. Since we allow abort, the broadcast channel can be established using a standard echo-broadcast
protocol [GL05], where the communication overhead can be improved to be constant small using a collision-
resistant hash function. In our strong NIMVZK protocols, the verifiers need to exchange the shares in one
round at the end of protocol execution. In parallel with the communication of shares, every verifier can
send the hash output of the messages broadcast by the prover to all other verifiers. Therefore, although the
echo-broadcast protocol is used in our MVZK proofs, we can still achieve strongly non-interactive.

Linear secret sharing scheme. In our NIMVZK protocols, we will extensively use linear secret sharing
schemes (LSSSs) with a threshold t. A t-out-of-n LSSS enables a secret x to be shared among n parties, such
that no subset of t parties can learn any information on x, while any subset of t + 1 parties can reconstruct
the secret. To align with the description of our NIMVZK protocols, we let the prover P play the role of the
dealer and let every verifier Vi obtain the shares. We require that LSSS supports the following procedures:

• [x] ← Share(x): In this procedure, a dealer P shares a secret x among the parties V1, . . . ,Vn, such that
Vi gets a share xi for i ∈ [1, n]. The sharing of x output by this procedure is denoted by [x].

• x ← Open([x]): Given a sharing [x], this procedure is executed by parties V1, . . . ,Vn. At the end of the
execution, if [x] is not valid, then all honest parties abort; otherwise, every party will output x.

• Linear combination: Given the public coefficients c0, c1, . . . , c` and secret sharings [x1], . . . , [x`], parties
V1, . . . ,Vn can locally compute [y] =

∑`
i=1 ci · [xi] + c0, such that y =

∑`
i=1 ci · xi + c0 holds.

We describe two LSSS instantiations shown in Appendix A, where one is Shamir secret sharing and the
other is packed secret sharing (a generalization of Shamir secret sharing). For Shamir secret sharing, for a
vector x = (x1, . . . , xm), we will use [x] to denote ([x1], . . . , [xm]). For packed secret sharing, for a vector
x ∈ Fk, we will use [x] to denote a single packed sharing that stores k secrets of x. We assume that the
shares of any t parties are uniformly random, which is satisfied by the two instantiations.

3 Technical Overview

We describe the ideas in our NIMVZK protocols and how we come up with these constructions in this
section. We leave the full details and their proofs of security in later sections.

8

3.1 Black-Box Constructions of NIMVZK Proofs

Multi-verifier zero-knowledge proof and its non-interactive version are closely connected to popular con-
cepts in prior work but also with crucial differences. As a warm-up, we discuss how to construct MVZK
proofs using well-studied building blocks in a black-box way.

Given a linear probabilistically checkable proof (PCP) [BCI+13], one can construct an NIMVZK proof,
where the verifiers communicate for 3 rounds between themselves (and thus is not a strong NIMVZK). In
detail, the prover can locally construct a PCP proof π and then secretly share π to all verifiers. Now, the
verifiers can locally perform all linear queries using a coin-tossing functionality to generate the randomness.
Any linear query can be answered easily as long as the secret sharing scheme is linear (so that the queries
can be computed efficiently) and verifiable (so that malicious verifiers cannot affect the soundness). The
protocol requires coin tossing (at least 2 rounds) followed by reconstructing the secrets on the query results
(at least 1 round), and thus at least 3 rounds are needed between verifiers. Similarly, a linear interactive
oracle proof (IOP) such as [BBC+19] can be converted to an NIMVZK as well, but the round complexity
between verifiers is increased as the rounds of queries increase.

In theory, it is possible to obtain an NIMVZK proof, where the verifiers only interact for 2 rounds (in-
stead of 3 rounds) from linear PCP using a two-round maliciously secure MPC protocol such as [ACGJ19].
Following the above structure and after the prover sends the shares of a proof π, one can instead use a two-
round MPC protocol where each party inputs their shares of π and randomness, and use the MPC protocol to
emulate the verifier of linear PCP. However, this idea incurs a very high cost among verifiers due to: 1) non-
black-box use of the PCP verifier, and 2) the high overhead in the two-round MPC protocol. What’s more,
the idea does not seem extendable to allow 1-round communication among verifiers (i.e., strong NIMVZK).

3.2 Information-Theoretic Non-Interactive MVZK

We introduce our non-interactive MVZK proofs starting from an information-theoretic NIMVZK protocol
that is a warm-up to describe the techniques in our strong NIMVZK protocols. Note that the black-box
construction as described above is already information-theoretically secure, but the computation and com-
munication between the prover and verifiers are often high (i.e., the black-box construction is significantly
less efficient than our information-theoretic protocol).

Our approach for NIMVZK. Our NIMVZK proofs follow the “commit-and-prove” paradigm, where se-
crets are committed using Shamir sharings and the security of commitments is guaranteed in the honest-
majority setting. At a high level, our information-theoretic protocol (as well as other two protocols discussed
later) have the following steps.

1. For the output z of each circuit-input gate or multiplication gate, the prover runs Share(z) to distribute
the shares of [z] to all verifiers. Since LSSS is used, the addition gates can be locally computed by the
verifiers.

2. For a circuit with N multiplication gates, we have N multiplication triples ([xi], [yi], [zi]) over a field F
that the verifiers need to check. All parties jointly sample a uniform element χ ∈ K, and then compute
the inner-product tuple:

[x] :=
(
[x1], χ · [x2], . . . , χN−1 · [xN]

)
, [y] := ([y1], [y2], . . . , [yN]) , [z] :=

∑N
i=1χ

i−1 · [zi].

If there exists one incorrect multiplication triple, then the inner-product tuple defined as above is also
incorrect, except with probability N−1

|K| .

3. The verifiers check correctness of the inner-product tuple ([x], [y], [z]) with logarithmic communication.

9

In the information-theoretic setting, the verifiers can call a coin-tossing functionality (shown in Appendix A)
to sample the coefficient χ, but χ is not available to the prover while keeping non-interactive between the
prover and verifiers. The distributed ZK proofs by Boneh et al. [BBC+19] could check correctness of an
inner-product tuple, but it only works when the prover knows the secrets. To use their protocol directly,
we would need the verifiers to send χ to the prover, and then the round complexity between the prover and
verifiers will be at least 3 rounds. Our task is to design a non-interactive protocol that verifies correctness
of an inner-product tuple, where the secrets are shared among verifiers and unknown to the prover. We
adapt the checking approach by Goyal et al. [GS20, GSZ20] (building upon the technique [BBC+19]) from
the MPC setting to the MVZK setting, and construct a verification protocol to check correctness of inner-
product tuples. In particular, our verification protocol makes the prover generate the random sharings and
random multiplication triples (instead of letting the verifiers run the DN multiplication protocol [DN07] that
is done in [GS20, GSZ20]), which is sufficient for MVZK as zero-knowledge only needs to hold for an
honest prover.

3.3 Distributing Fiat-Shamir for Strong Non-Interactive MVZK

With the above preparation, we now discuss how to construct a strong NIMVZK proof, where the verifiers
communicate for only one round. This is a highly non-trivial task, as it is even unclear how to sample a
random coefficient χ ∈ K as needed in step 2. Since every verifier can only send one message to other
verifiers, using a secure coin-tossing protocol is not possible. The other randomness source that we can use
is random oracle (i.e., adopting the Fiat-Shamir heuristic). However, only the shares are sent by the prover
where the shares need to be kept secret, and thus the verifiers has no way to compute a public message that
can be used as the input of a random oracle. This was in fact attempted in the distributed ZK proof [BBC+19]
as well, but their non-interactive solution does not allow the prover to collude with any verifier.

Let’s first review how Boneh et al. [BBC+19] use Fiat-Shamir in the case that all verifiers do not collude
with the prover. Suppose that the prover P sends a message Msgi along with a randomness ri to a verifier
Vi for i ∈ [1, n], where Msgi and ri need to be kept secret. Every verifier Vi can send νi := H(Msgi, ri) to
other verifiers where H is a random oracle, and then generates a random challenge χ :=

⊕
i∈[1,n] νi, when

ignoring some details for simplicity. Prover P can also compute the challenge χ as it knows all messages
and randomness. When the prover is corrupted (and thus we are concerning soundness), all verifiers are
assumed to be honest and thus can exchange the correct values {νi}i∈[1,n], so that the verifiers can compute
a random challenge χ to execute the protocol. However, when P colludes with a verifier Vi∗ , this method
does not work anymore: P can cheat when the challenge is some value χ∗ 6=

⊕
i∈[1,n] H(Msgi, ri); after

receiving the values of other verifiers, Vi∗ can compute νi∗ = H(Msgi∗ , ri∗) and the correct challenge χ,
and then send ν ′i∗ = νi∗ ⊕ χ⊕ χ∗ to every other verifier such that the invalid proof can still go through.

Because of the round-complexity requirement on the verifier side, we cannot let the verifiers to sample
χ. So it appears that in order to get a strong NIMVZK, we must find an approach to enable the prover
to generate public messages via some sort of Fiat-Shamir transformation in the distributed setting so that:
1) the protocol tolerates the collusion of the prover and a minority of verifiers, and 2) does not require the
verifiers to interact more than one round. Let H,H′ be two random oracles with exponentially large ranges.
Our technique to support Fiat-Shamir is presented as follows.

1. Suppose that the prover P sends (Msgi, ri) to every verifier Vi over a private channel, where Msgi
consists of the shares held by Vi for our NIMVZK protocols.

2. Now, P also broadcasts commitments comi := H(Msgi, ri) for all i ∈ [1, n] to all verifiers, where the
broadcast does not increase the rounds between verifiers that has been explained in Section 2.

3. Every verifier Vi checks that comi = H(Msgi, ri). As we assume that t < n/2, we can guarantee that a
majority of commitments in com1, . . . , comn are computed correctly.

10

4. The verifiers can generate a random challenge χ := H′(com1, . . . , comn), as they now know the public
messages com1, . . . , comn. Then, the verifiers use χ to transform the verification of N multiplication
triples into that of an inner-product tuple as described in Section 3.2.

If H has a 2λ-bit output length and thus is collision-resistant, then it would make comi binding and the
proof can easily go through, where all the commitments {comi} held by n− t honest verifiers will uniquely
define the secrets on all wires. However, we make a key observation that it is sufficient to prove security,
if the challenge χ is guaranteed to be defined after the secrets on all wires have been determined (i.e., χ
is independent of these secrets). Therefore, it is unnecessary to require the collision resistance for H, but
rather we only need H to be second preimage-resistant, which allows to achieve better efficiency, e.g., using
the construction [DNNR17]. In particular, if χ has been defined and known by the malicious prover, then it
must make a query (com1, . . . , comn) to random oracle H′. Then, the malicious prover cheats to find a pair
(Msg′i, r

′
i) associated with χ, and then sends it to some honest verifier Vi. The cheat will not be detected only

if comi = H(Msg′i, r
′
i), which is equivalent to find either a preimage or a second preimage of comi. The

Fiat-Shamir approach as described above only introduces a small communication overhead, i.e., O(n2λ)
bits in total between the prover and all verifiers that is independent of the circuit size.

Through the above approach, the verifiers can generate a random challenge non-interactively, and then
use it to convert the verification of multiplication triples into that of an inner-product tuple. We can simplify
the verification technique (shown in Section 3.4) by viewing Shamir secret sharing as a special case of
packed secret sharing, and then use it to verify the inner-product tuple in one round between verifiers. The
resulting strong NIMVZK protocol is streamable while keeping the round complexity between verifiers
unchanged (see below).

3.4 More Efficient Strong NIMVZK from Packed Secret Sharing

The above discussion shows a strong NIMVZK protocol where a prover sends one message to each verifier
and the verifiers communicate only one round. It is secure against the adversary corrupting up to a minority
of verifiers (i.e., t < n/2) and the prover. However, the downside is the communication of 1/2 + o(1) field
elements per multiplication gate per verifier, and a majority of the proof is used to transmit the shares of
wire values. We now discuss the strong NIMVZK protocol that reduces the communication cost to O(1/n)
field elements per multiplication gate per verifier, when the threshold of corrupted verifiers t < n(1/2− ε)
for any 0 < ε < 1/2. This protocol adopts packed secret sharing (PSS) [FY92] as the underlying LSSS,
where each sharing packs k = O(n) secrets.

Using packed secret sharing efficiently for a single generic circuit is a huge challenge, because the layout
of the circuit could be complicated for packing k gates, and it is not possible to move around any individual
wire when using PSS. In fact, because of this, prior MPC works [GSY21, BGJK21] using PSS focus on
SIMD operations (i.e., repeated circuits). For a single generic circuit, the state-of-the-art PSS-based MPC
protocol [GPS21] requires to evaluate the circuit layer-by-layer that needs the rounds linear to the circuit
depth, and splits each output wire into different output wires that each can be used only once. Fortunately,
we observe that even a single generic circuit can be packed optimally in the context of zero-knowledge, and
can remove the constraints in MPC. Particularly, the prover can prove a circuit in a streamable way without
the constraint of proving the circuit layer-by-layer, as the prover knows all the wire values.

Consistency check of wire values. In our NIMVZK protocol, if the out degree of a gate is greater than 1,
we allow an output wire to appear multiple times (instead of splitting the output wire into multiple output
wires), which enables us to obtain better communication. In this case, we need to use the consistency check
to ensure that the same wire is assigned with the same value. Specifically, for each input packed sharing [y],
if the j-th secret yj comes from the i-th secret xi stored in an output packed sharing [x], then we need to
check xi = yj . This corresponds to the wire that carries the value xi = yj . Following the work [GPS21],

11

we refer to ([x], [y], i, j) as a wire tuple. For the consistency check of wire tuples, we reduce the total
communication complexity from O(n5k2) in MPC [GPS21] to O(n2k2) for our strong NIMVZK protocol.
For each i, j ∈ [1, k], let ([x1], [y1], i, j), . . . , ([xm], [ym], i, j) be the wire tuples with the same indices
i, j. We use the random-linear-combination approach to check the consistency. Specifically, the prover P
samples two random vectors x0,y0 such that x0,i = y0,j , and then distributes the shares of [x0] and [y0] to
all verifiers. To support Fiat-Shamir, we need P to generate these shares in two steps: 1) distributing the
shares of two random sharings [r] and [s]; and 2) broadcasts the differences u = x0 + r and v = y0 + s to
all verifiers. Then the verifiers can locally compute [x0] := u− [r] and [y0] := v − [s]. P and all verifiers
can generate a random challenge α = H′(χ,u,v, i, j), where χ is another random challenge related to the
secrets {(xh,yh)}h∈[1,m]. Then, the verifiers can now check correctness of the following wire tuple:

[x] :=
∑m

h=1α
h · [xh] + [x0], [y] :=

∑m
h=1α

h · [yh] + [y0].

This check can be done by letting the verifiers open ([x], [y]) and check xi = yj . When streaming the
strong NIMVZK protocol, the verification of wire tuples do not increase the rounds between verifiers (see
Section 6.1 for details).

Verification of PSS-based inner-product tuples. Once we enable Fiat-Shamir as shown in Section 3.3,
we also get another benefit that now the challenge χ is also known to the prover P . Thus, we can non-
interactively transform the verification of PSS-based multiplication tuples into that of a packed inner-product
tuple. We present a non-interactive technique to verify the correctness of a packed inner-product tuple,
which is inspired by prior work [BBC+19, BGIN20, GS20, GSZ20, GPS21]. We also adapt the technique
by Baum et al. [BMRS21] from the DVZK setting to the MVZK setting in order to further improve com-
putational efficiency. Our verification approach has lower round complexity than that used in PSS-based
MPC [GPS21] (one round vs logarithm rounds). At a high level, our protocol for verifying correctness of a
packed inner-product tuple works as follows:

1. Suppose that all verifiers hold the shares of a dimension-M packed inner-product tuple (([x1], . . . , [xM]),
([y1], . . . , [yM]), [z]), where {xi,yi}i∈[1,M] and z are secret vectors in Kk. ProverP knows all the secret
vectors, and wants to prove z =

∑
i∈[1,M] xi ∗ yi where ∗ denotes the component-wise product.

2. The verifiers recursively reduce the dimension of (([x1], . . . , [xM]), ([y1], . . . , [yM]), [z]) to 2. This is
performed by splitting a packed inner-product tuple (([x1], . . . , [xm]), ([y1], . . . , [ym]), [z]) into two
inner-product tuples (([a1,1], . . . , [a1,`]), ([b1,1], . . . , [b1,`]), [c1]) and (([a2,1], . . . , [a2,`]), ([b2,1], . . . ,
[b2,`]), [c2]), where ` = m/2 and [z] = [c1] + [c2]. Then, we use a protocol to compress the two
packed inner-product tuples into one inner-product tuple.

3. To realize the above splitting step, P can directly distribute the shares of [c1] = [
∑

h∈[1,`] a1,h ∗ b1,h]
to all verifiers. However, this does not support Fiat-Shamir, as no public message is available. Instead,
we let P distribute the shares of a random packed sharing [r], and then broadcast a public message
u = c1 + r to all verifiers, who can locally compute [c1] := u − [r]. Then, the verifiers can locally
compute [c2] := [z]− [c1].

4. We adopt the polynomial approach to compress two packed inner-product tuples (([a1,1], . . . , [a1,`]),
([b1,1], . . . , [b1,`]), [c1]) and (([a2,1], . . . , [a2,`]), ([b2,1], . . . , [b2,`]), [c2]) into a single tuple (([x1], . . . ,
[x`]), ([y1], . . . , [y`]), [z]), which has been used in prior work such as [GPS21]. Differently, we will use
the Fiat-Shamir transform to realize the non-interactive compression. Specifically, the parties compute
the sharings of polynomials [fj(·)], [gj(·)] for j ∈ [1, `] and [h(·)], such that fj(i) = ai,j , gj(i) = bi,j
and h(i) = ci for i ∈ [1, 2]. ThenP needs to convince the verifiers that h(X) =

∑
j∈[1,`] fj(X)∗gj(X),

which can be realized by proving h(α) =
∑

j∈[1,`] fj(α) ∗ gj(α) for a random challenge α. P and

12

all verifiers can generate α by computing H′(γ,msg) where γ is the challenge used in the previous
iteration and msg is the public message sent in the current iteration. Now, the parties can define ([xj] =
[fj(α)], [yj] = [gj(α)]) for j ∈ [1, `] and [z] = [h(α)], and execute the next iteration.

5. Let (([x1], [x2]), ([y1], [y2]), [z]) be the packed inner-product tuple after the dimension reduction was
completed. We can adapt the randomization technique [BBC+19, GPS21] to check the correctness
of this tuple. In the same way, we can split it into two multiplication tuples ([x1], [y1], [z1]) and
([x2], [y2], [z2]) with [z] = [z1] + [z2]. The prover P can distribute the shares of a random multi-
plication tuple ([x0], [y0], [z0]) with z0 = x0 ∗y0 to all verifiers in the way compatible with Fiat-Shamir.
Then, P and the verifiers can compress {([xi], [yi], [zi])}i∈[0,2] into ([x], [y], [z]). All verifiers can run
the Open procedure to obtain (x,y, z) and check that z = x ∗ y.

Streaming strong NIMVZK with the same round complexity. We can use the strong NIMVZK pro-
tocol to prove a very large circuit in a streamable way, such that between the prover and verifiers are
non-interactive for proving a batch of N = k · M multiplication gates each time, and the verifiers still
communicate only one round for proving the whole circuit. For a batch of N = k ·M multiplication gates,
the parties can transform M PSS-based multiplication tuples into a packed inner-product tuple with dimen-
sion M , and then compress it into a packed inner-product tuple denoted by IPtuple1 with dimension M/2c

for some integer c ≥ 1. For another batch of multiplication gates, the parties can generate another packed
inner-product tuple IPtuple2 with dimension M/2c in the same way. Then, the prover and verifiers can
compress IPtuple1 andIPtuple2 into a packed inner-product tuple IPtuple3 with the same dimension M/2c,
where the challenge α for this compression is computed with random oracle H′ and two challenges to obtain
IPtuple1 andIPtuple2. After the whole circuit has been evaluated, the verifiers can check correctness of
the final packed inner-product tuple (with dimension M/2c) stored in memory by communicating only one
round. As a result, all parties only need memory linear to what is needed to evaluate the statement in the
clear.

4 Information-Theoretic NIMVZK Proof in the Honest-Majority Setting

We present a non-interactive multi-verifier zero-knowledge (NIMVZK) protocol with information-theoretic
security in the (Fcoin,Fverifyprod)-hybrid model, assuming an honest majority of verifiers, where Fcoin is a
coin-tossing functionality shown in Appendix A. Functionality Fverifyprod allows to verify the correctness of
an inner-product tuple secretly shared among verifiers. It is possible to instantiateFverifyprod using prior work
on fully linear PCP (or IOP) [BBC+19], but we can improve its communication (or rounds) by adapting the
technique by Goyal et al. [GS20, GSZ20] in the MPC setting to the MVZK setting.

4.1 From General Adversaries to Maximal Adversaries for MVZK

Before we describe the NIMVZK protocol, we prove an important lemma that can be used to simplify the
proofs of the MVZK protocols in this paper and the future works. Informally, this lemma states that if an
MVZK protocol is secure against exactly t malicious verifiers, then the protocol is also secure against at
most t malicious verifiers. The proof of this lemma is based on that of a similar lemma for honest-majority
MPC by Genkin et al. [GIP+14]. This lemma allows us to only consider the maximum adversaries who
corrupt exactly t verifiers, and thus simplifies the security proofs of MVZK protocols. One caveat is that the
proof of this lemma needs to specially deal with the case that the honest verifiers will receive output as well
as the possible random-oracle queries (e.g., the Fiat-Shamir transform [FS87] is used).

13

Functionality Fverifyprod

This functionality runs with a prover P and n verifiers V1, . . . ,Vn. Let ([x], [y], [z]) be an inner-product tuple
defined over a field K, where the dimension of vectors x,y is N . This functionality operates as follows:

1. Upon receiving the shares of [x], [y], [z] from honest verifiers, execute the following:

• Reconstruct the secret vectors x,y ∈ FN and secret z ∈ F from these shares.

• Compute the shares of [x], [y], [z] held by corrupted verifiers, and send them to the adversary.

• If P is corrupted, send (x,y, z) to the adversary.

2. If z 6= x � y, then set b := abort, otherwise set b := accept. Send b to the adversary. For each i ∈ H, wait
for an input from the adversary, and then do the following:

• If it is continuei, send b to Vi.
• If it is aborti, send abort to Vi.

Figure 2: Zero-knowledge verification functionality for an inner-product tuple.

Lemma 1. Let Π be an MVZK protocol proving the satisfiability of a circuit C for n ≥ 2t + 1 verifiers.
Then, if protocol Π securely realizes Fmvzk in the presence of any malicious adversary corrupting exactly t
verifiers, then Π securely realizes Fmvzk against any malicious adversary corrupting at most t verifiers.

The proof of the above lemma is given in Appendix B. The above lemma can be applied to not only our
information-theoretic NIMVZK protocol but also the strong NIMVZK proofs in the computational setting
that will be described in Section 5 and Section 6.

4.2 Our Information-Theoretic NIMVZK Protocol

In Figure 3, we describe the detailed NIMVZK protocol with information theoretic security in the (Fcoin,
Fverifyprod)-hybrid model. For each circuit-input gate or multiplication gate, the prover directly shares the
output value to all verifiers. The verifiers can locally compute the shares on the output wires of addition
gates. Then, all verifiers check the correctness of all multiplication gates by transforming multiplication
triples into an inner-product tuple and then calling functionality Fverifyprod. In parallel, the verifiers also
check correctness of the single circuit-output gate via running the Open procedure.

In Figure 2, we give the precise definition of functionalityFverifyprod. In particular, if the prover is honest,
the adversary can only obtain the shares of corrupted verifiers from this functionality, which does not reveal
any information on the secrets. In other words, this functionality naturally captures zero-knowledge. If the
prover is corrupted, this functionality reveals all secrets to the adversary, as the secrets have been known
anyway by the adversary. We can view deciding the correctness of an inner-product tuple as a statement
which is shared among n verifiers. Functionality Fverifyprod guarantees that the malicious prover cannot
make any honest verifier accept a false statement, and thus captures soundness. In Appendix C, we present
an efficient protocol to securely realize Fverifyprod, where the communication and round complexities are
O((n+τ) logτ |C|) field elements per verifier and logτ |C|+3 rounds between verifiers respectively, where
τ ≥ 2 is a parameter.

Theorem 1. Protocol Πit
nimvzk shown in Figure 3 securely realizes functionality Fmvzk with information-

theoretic security and soundness error N−1
|K| in the (Fcoin,Fverifyprod)-hybrid model in the presence of a

malicious adversary corrupting up to a prover and t verifiers.

The proof of this theorem can be found in Appendix C.

14

Protocol Πit
nimvzk

Inputs: A prover P holds a witness w ∈ Fm. P and all verifiers V1, . . . ,Vn hold an arithmetic circuit C over a
field F with |F| > n. Let N denote the number of multiplication gates in the circuit. P will convince the verifiers
that C(w) = 0.

Circuit evaluation: In a predetermined topological order, P and all verifiers evaluate the circuit as follows:

• For each circuit-input wire with input value w ∈ F, P (acting as the dealer) runs [w]← Share(w) to distribute
the shares to all verifiers.

• For each addition gate with input sharings [x] and [y], all verifiers locally compute [z] := [x] + [y], and P
computes z := x+ y ∈ F.

• For each multiplication gate with input values x, y ∈ F, P computes z := x · y ∈ F, and then executes
[z]← Share(z) which distributes the shares to all verifiers.

Verification of multiplication gates: Let ([xi], [yi], [zi]) be the sharings on the i-th multiplication gate for i ∈
[1, N]. All verifiers and P execute as follows:

1. The verifiers call the coin-tossing functionality Fcoin to generate a random element χ ∈ K, and then set the
following inner-product tuple:

[x] :=
(
[x1], χ · [x2], . . . , χN−1 · [xN]

)
, [y] := ([y1], [y2], . . . , [yN]) , [z] :=

∑
i∈[1,N] χ

i−1 · [zi].

2. The verifiers and P call functionality Fverifyprod on ([x], [y], [z]) to check that z = x � y. If the verifiers
receive abort from Fverifyprod, then they abort.

Verification of circuit output: Let [η] be the input sharing associated with the single circuit-output gate. All
verifiers execute η ← Open([η]), and abort if outputting abort in the Open procedure. If η = 0, then the verifiers
output true, otherwise they output false.

Figure 3: Information-theoretic NIMVZK protocol in the (Fcoin,Fverifyprod)-hybrid model.

5 Strong NIMVZK Proof in the Honest-Majority Setting

In this section, we present a strong NIMVZK proof based on the Fiat-Shamir transform, where a minority
of verifiers are allowed to be corrupted and collude with the prover. Recall that non-interactive means that
the prover only sends one message to every verifier, and a verifier only sends one message to every other
verifier. Our strong NIMVZK protocol adopts a non-interactive commitment based on random oracle to
non-interactively transform the verification of multiplication triples into the verification of an inner-product
tuple. This protocol still works in the Fverifyprod-hybrid model, where functionality Fverifyprod can now be
non-interactively realized using the Fiat-Shamir transform.

In Figure 4, we describe the strong NIMVZK protocol Πfs
snimvzk in theFverifyprod-hybrid model, where the

shares are computed over a field F and the verification of multiplication gates is performed over an extension
field K with |K| ≥ 2λ. The strong NIMVZK protocol is the same as the protocol shown in Figure 3, except
for the verification of multiplication gates. In the strong NIMVZK protocol, the verification of multiplication
gates is executed non-interactively using a non-interactive commitment based on a random oracle H1, where
a commitment com on a message x is defined as H1(x, r) for a randomness r ∈ {0, 1}λ. However, we do
not require that the commitment is binding. Instead, we only need the commitment to be hard to find a pair
(x′, r′) such that H1(x′, r′) = H1(x, r) and x′ 6= x, after H1(x, r) has been defined. This has been explained
in Section 3.3 (see the proof of Theorem 2 for details). The random challenge χ ∈ K is now generated using
another random oracle H2 and the public commitments, instead of calling Fcoin. In this case, the prover

15

Protocol Πfs
snimvzk

Inputs: A prover P holds a witness w ∈ Fm. P and the verifiers V1, . . . ,Vn hold an arithmetic circuit C over
a field F with |F| > n such that C(w) = 0. Let N denote the number of multiplication gates in the circuit. Let
H1 : {0, 1}∗ → {0, 1}λ and H2 : {0, 1}∗ → K be two random oracles.

Circuit evaluation: P and all verifiers evaluate the circuit in the same way as described in Figure 3.

Verification of multiplication gates: For all m circuit-input wires, the verifiers V1, . . . ,Vn hold the shares of
[w1], . . . , [wm], and P has the witness w = (w1, . . . , wm). For all N multiplication gates, P and the verifiers
respectively hold the secrets and the shares of multiplication triples ([x1], [y1], [z1]), . . . , ([xN], [yN], [zN]). For
j ∈ [1,m], let w1

j , . . . , w
n
j be the shares of [wj] held by all verifiers, which are also known by P . For j ∈ [1, N],

let z1j , . . . , z
n
j be the shares of [zj], which are also obtained by P . All verifiers V1, . . . ,Vn and P execute as

follows:

1. For each i ∈ [1, n], P samples ri ← {0, 1}λ and computes

comi := H1(wi1, . . . , w
i
m, z

i
1, . . . , z

i
N , ri).

Then, P broadcasts (com1, . . . , comn) to all verifiers, and also sends ri to every verifier Vi over a private
channel.

2. Every verifier Vi checks that comi = H1(wi1, . . . , w
i
m, z

i
1, . . . , z

i
N , ri), and aborts if the check fails.

3. P and all verifiers compute χ := H2(com1, . . . , comn) ∈ K.

4. P and all verifiers respectively compute the secrets and the shares of the following inner-product tuple:

[x] := ([x1], χ · [x2], . . . , χN−1 · [xN]), [y] := ([y1], [y2], . . . , [yN]) , [z] :=
∑
i∈[1,N] χ

i−1 · [zi].

5. The verifiers and P call functionality Fverifyprod on ([x], [y], [z]) to check that z = x � y. If the verifiers
receive abort from Fverifyprod, then they abort.

Verification of circuit output: All verifiers check the correctness of a single circuit-output gate in the same way
as shown in Figure 3.

Figure 4: Strong non-interactive MVZK protocol in the Fverifyprod-hybrid model and random oracle model.

can compute the secrets (x,y, z) underlying the inner-product tuple using the public coefficient χ and the
secret wire values. At first glance, the secrets (x,y, z) seem to be useless for the protocol execution of
Πfs

snimvzk. Nevertheless, the prover can use (x,y, z) to compute all the secrets involved in the protocol that
securely realizes functionalityFverifyprod. In this case, we can securely computeFverifyprod in a strongly non-
interactive way by making the prover distribute the shares of all secrets non-interactively and all verifiers
interact only one round for Open.

Theorem 2. Let H1 and H2 be two random oracles. Protocol Πfs
snimvzk shown in Figure 4 securely realizes

functionality Fmvzk with soundness error at most Q1n+(Q2+1)N
2λ

in the Fverifyprod-hybrid model in the pres-
ence of a malicious adversary corrupting up to a prover and t verifiers, where Q1 and Q2 are the number
of queries to random oracles H1 and H2 respectively.

The proof of the above theorem is given in Appendix D.

Optimizations. We can further optimize the strong NIMVZK protocol Πfs
snimvzk shown in Figure 4 as

follows:

1. For Shamir secret sharing defined in Appendix A.2, in the computational setting, the prover P can send

16

a random seedi ∈ {0, 1}λ to a verifier Vi for each i ∈ [1, t], who computes all its shares with seedi and
a pseudo-random generator (PRG). This reduces the communication by a half. Furthermore, for each
i ∈ [1, t], P can send comi = H1(seedi, ri) to Vi, who checks the correctness of comi using seedi and
ri. This optimization will reduce the computational cost of generating and verifying t commitments.

Using the above optimization, the communication among verifiers is asymmetry. In particular, among
all verifiers, t verifiers V1, . . . ,Vt only has a sublinear communication complexity. That is, each verifier
only receives O(n+ log |C|) field elements from the prover, and only needs to send O(n) field elements
to other verifiers. It makes our strong NIMVZK protocol particularly suitable for the applications where
V1, . . . ,Vt are lower-resource mobile devices and the other verifiers are powerful servers.

2. The prover and all verifiers can use H2(com1, . . . , comn) to compute random challenges χ1, . . . , χN ∈
K, and then use these challenges to transform the verification of N multiplication triples into that of
an inner-product tuple. In particular, [x] := (χ1 · [x1], . . . , χN · [xN]) and [z] :=

∑
i∈[1,N] χi · [zi]

where [y] is defined in the same way as shown in Figure 4. In this way, the soundness error can be
reduced from Q1n+(Q2+1)N

2λ
to Q1n+Q2+1

2λ
, as independent random coefficients χ1, χ2, . . . , χN instead of

1, χ, . . . , χN−1 are used.

Strong NIMVZK proof for inner-product tuples. Boneh et al. [BBC+19] introduced a powerful tool,
called distributed zero-knowledge (DZK) proof (a.k.a., ZK proof on a distributed or secret-shared state-
ment), to prove the inner-product statements (and other useful statements). We can use their DZK proof
with logarithmic communication to securely realize functionality Fverifyprod shown in Figure 2. When ap-
plying the Fiat-Shamir transform [BGIN20] into their DZK proof, the prover non-interactively sends a proof
to all verifiers, and the verifiers execute one-round communication to verify correctness of an inner-product
tuple. Note that the proof on the inner-product statement can be sent in parallel with our proof on circuit sat-
isfiability shown in Figure 4. Therefore, using the DZK proof to instantiate Fverifyprod, our MVZK protocol
is strongly non-interactive. While Boneh et al. [BBC+19] originally instantiated the DZK proof with repli-
cated secret sharing, Boyle et al. [BGIN20] shown that their DZK proof also works for verifiable Shamir
secret sharing meaning that a consistency check is needed to guarantee either all verifiers hold a consistent
sharing of the secret or honest verifiers abort.

We can simplify the technique by Boneh et al. [BBC+19] by avoiding the use of verifiable secret sharing,
and slightly optimize the communication from 4.5 log |C|+5n field elements to 3 log |C|+3n field elements.
We can also improve the hash computation cost for Fiat-Shamir. The improved approach has been described
in Section 3 by considering Shamir secret sharing as a special case of packed secret sharing. The detailed
protocol to strongly non-interactively realize Fverifyprod can be directly obtained by simplifying the PSS-
based protocol Πpss

verifyprod shown in Figure 8 of Section 6.2 via setting the number of packed secrets k = 1.

6 Strong NIMVZK with Lower Communication from PSS

Based on packed secret sharing (PSS), we present a strong NIMVZK proof with communication complexity
O(|C|/n) per verifier, when the threshold of corrupted verifiers t < n(1/2 − ε) for any 0 < ε < 1/2.
Our strong NIMVZK protocol is highly efficient for proving satisfiability of a single generic circuit. In the
ZK setting, we use PSS optimally. In particular, we eliminate the constraints in the state-of-the-art PSS-
based MPC protocol [GPS21] including: 1) evaluating a circuit layer-by-layer, 2) interactively permuting
the secrets in a single packed sharing, 3) interactively collecting the secrets from different packed sharings
and 4) splitting an output wire into multiple output wires, where all these constraints will make the rounds
and communication cost significantly larger than our protocol.

Firstly, we discuss how to transform a general circuit C into another circuit C ′ with the same output and
|C ′| = |C| + O(k), such that 1) the number of circuit-input wires, addition gates and multiplication gates

17

Functionality Fpss
verifyprod

The packed inner-product tuple over a field K is denoted by ([x1], . . . , [x`]), ([y1], . . . , [y`]) and [z]. This func-
tionality runs with a prover P and n verifiers V1, . . . ,Vn, and operates as follows:

1. Upon receiving the shares of {[xi], [yi]}i∈[1,`] and [z] from all honest verifiers, execute the following:

• Reconstruct the secrets (x1, . . . ,x`), (y1, . . . ,y`) and z from the shares of honest verifiers inHH .

• Compute the shares of corrupted verifiers on ([x1], . . . , [x`]), ([y1], . . . , [y`]) and [z], and then send these
shares to the adversary.

• If P is corrupted, send the shares of
(
{[xi], [yi]}i∈[1,`], [z]

)
held by honest verifiers in H and the secrets(

{xi,yi}i∈[1,`], z
)

to the adversary.

2. If z 6=
∑
h∈[1,`] xh ∗ yh where ∗ denotes the component-wise product, then set b := abort, otherwise set

b := accept. Send b to the adversary. For i ∈ H, wait for an input from the adversary, and do the following:

• If it is continuei, send b to Vi.
• If it is aborti, send abort to Vi.

Figure 5: ZK verification functionality for packed inner-product tuples.

is the multiple of k; 2) there are at least k circuit-output wires; 3) the gates with the same type are divided
into groups of k. This is done by adding “dummy” wires and gates, and is described in Appendix E. Then,
we present the detailed strong NIMVZK protocol in the Fpss

verifyprod-hybrid model, where Fpss
verifyprod verifies

the correctness of a packed inner-product tuple. Next, we present a strong non-interactive MVZK protocol
to securely realize functionality Fpss

verifyprod.

6.1 Strong NIMVZK based on Packed Secret Sharing

Before showing the detailed strong NIMVZK protocol, we give the definition of functionality Fpss
verifyprod.

Functionality for verifying packed inner-product tuples. LetHH ⊂ H be a fixed (d+ 1)-sized subset of
honest verifiers and HC = H\HH , where recall that H is the set of all d + k honest verifiers and d is the
degree of polynomials for PSS. For a degree-d packed sharing [x], we use [x]H to denote the whole sharing
that is reconstructed from the shares of honest verifiers in HH . Given the shares of honest verifiers in H as
input, we can reconstruct the whole sharing [x] as follows:

1. Use the d+1 shares of honest verifiers inHH to reconstruct the whole sharing [x]H. Define the shares of
corrupted verifiers on [x] as that on [x]H. Following prior MPC work [GPS21], we always assume that
the corrupted verifiers in C hold the correct shares that they should hold, while they may use incorrect
shares during the protocol execution, where C is the set of corrupted verifiers.

2. Define the secrets of [x] to be that of [x]H.

3. Define the shares of [x] held by honest verifiers inH as the shares input by the verifiers directly.

The zero-knowledge verification functionality for packed inner-product tuples is shown in Figure 5. This
functionality takes as input a packed inner-product tuple and then checks correctness of the tuple, where each
sharing packs k secrets. This functionality sends the shares of corrupted verifiers for each packed sharing to
the adversary, where the shares are computed by the above approach based on the shares of honest verifiers
inHH . If the prover is corrupted, this functionality also sends the shares of all honest verifiers and the secrets
in all packed sharings to the adversary, as these shares and secrets have been known by the adversary.

18

Protocol Πpss
snimvzk

Inputs: A prover P holds a witness w̄. P and n verifiers V1, . . . ,Vn hold a circuit C over a field F. Let k denote
the number of secrets that are packed in a single sharing. Letm be the number of packed sharings on circuit-input
wires, where each packs k circuit-input gates. Let M = d|C|/ke denote the number of multiplication tuples
where each packs k multiplication gates. Let N = O(|C|/k) represent the number of wire tuples in the form of
([x], [y], i, j) with xi = yj . Let H1 : {0, 1}∗ → {0, 1}λ and H2 : {0, 1}∗ → K be two random oracles.

Preprocess circuit: All parties run the PrepCircuit procedure shown in Figure 16 of Appendix E to preprocess
the circuit C, and obtain an equivalent circuit C ′ such that C ′(w̄) = C(w̄) for any input w̄.

Circuit evaluation: In a predetermined topological order, P and all verifiers evaluate the circuit C ′ as follows:
• Let w1, . . . ,wm ∈ Fk be the secret vectors where each associates with k circuit-input wires. For each group

of k circuit-input wires with an input vector w ∈ {w1, . . . ,wm}, P runs [w] ← Share(w) to distribute the
shares to all verifiers.

• For each group of k addition gates with input sharings [x] and [y], all verifiers locally compute [z] := [x]+ [y],
and P computes z := x + y ∈ Fk.

• For each group of k multiplication gates with input sharings [x] and [y], P computes z := x ∗ y ∈ Fk where ∗
denotes the component-wise product, and executes [z]← Share(z) which distributes the shares to all verifiers.

• For each group of k input wires of multiplication, addition, or circuit-output gates, such that the corresponding
input vector y ∈ Fk has not been stored in any single packed input sharing, P runs [y] ← Share(y), which
distributes the shares to all verifiers.

Locally prepare packed sharings. All verifiers locally do the following:
• For each input sharing [y] on a group of k multiplication, addition, or circuit-output gates, for each position
j ∈ [1, k], suppose that yj comes from the i-th secret of [x] that is an output sharing on a group of k circuit-
input, multiplication, or addition gates. If [y] 6= [x], then set a wire tuple as ([x], [y], i, j).

• Denote these wire tuples by ([x1], [y1], i1, j1), . . . , ([xN], [yN], iN , jN).

• Remove the repetitive packed sharings in [y1], . . . , [yN], and then denote the resulting sharings as [y′1], . . . , [y′`],
where ` denotes the number of different packed sharings in [y1], . . . , [yN].

All verifiers hold the shares of the following packed sharings:
• The shares of [w1], . . . , [wm] on all circuit-input wires, which are denoted by (ŵ1

i , . . . , ŵ
n
i) for i ∈ [1,m].

• Let ([xi], [yi], [zi]) be the i-th multiplication tuple packing the secrets of k multiplication gates for i ∈ [1,M].
The shares of {([xi], [yi], [zi])}i∈[1,M], where ẑ1i , . . . , ẑ

n
i denote the shares of [zi] for i ∈ [1,M].

• The shares of {[y′i]}i∈[1,`], which are denoted by ŷ1i , . . . , ŷ
n
i for i ∈ [1, `].

P holds the whole sharings {[wi]}i∈[1,m], {([xi], [yi], [zi])}i∈[1,M] and {[y′i]}i∈[1,`].

Figure 6: PSS-based strong NIMVZK in the Fpss
verifyprod-hybrid model and random oracle model.

19

Protocol Πpss
snimvzk, continued

Procedure for Fiat-Shamir: All verifiers V1, . . . ,Vn and P execute as follows:

1. For i ∈ [1, n], P samples ri ← {0, 1}λ and computes

comi := H1(ŵi1, . . . , ŵ
i
m, ẑ

i
1, . . . , ẑ

i
M , ŷ

i
1, . . . , ŷ

i
`, ri).

Then, P broadcasts (com1, . . . , comn) to all verifiers, and sends ri to every verifier Vi over a private channel.

2. Each verifier Vi checks that comi = H1(ŵi1, . . . , ŵ
i
m, ẑ

i
1, . . . , ẑ

i
M , ŷ

i
1, . . . , ŷ

i
`, ri), and aborts if the check fails.

3. P and all verifiers compute χ := H2(com1, . . . , comn) ∈ K.

Verification of multiplication tuples: P and all verifiers execute as follows:

1. P and all verifiers respectively compute the secrets and the shares of [x̃i] = χi−1 · [xi], [ỹi] = [yi] for
i ∈ [1,M] and [z̃] :=

∑
i∈[1,M] χ

i−1 · [zi].

2. The verifiers and P call functionality Fpss
verifyprod on packed inner-product tuple

(([x̃1], . . . , [x̃M]), ([ỹ1], . . . , [ỹM]), [z̃]) to check that z̃ =
∑
h∈[1,M] x̃h ∗ ỹh. If the verifiers receive

abort from Fpss
verifyprod, then they abort.

Verification of consistency of wire tuples: For all i, j ∈ [1, k], P and all verifiers initiate an empty list L(i, j).
Then, from h = 1 to N , they insert ([xh], [yh], ih, jh) into the list L(ih, jh). For each i, j ∈ [1, k], P and all
verifiers check the consistency of the wire tuples in L(i, j) as follows:

1. Let N ′ be the size of L(i, j). Let ([a1], [b1], i, j), . . . , ([aN ′], [bN ′], i, j) denote the wire tuples in L(i, j).

2. P samples a0, b0 ← Kk with a0,i = b0,j , and also picks r, r′ ← Kk. Then P and all verifiers execute the
following:

(a) P runs [r]← Share(r) and [r′]← Share(r′), which distributes the shares to all verifiers.

(b) P computes u := a0 + r and u′ := b0 + r′, and then broadcasts (u,u′) to all verifiers.

(c) The verifiers compute [a0] := u− [r] and [b0] := u′ − [r′].

3. All verifiers compute α := H2(χ,u,u′, i, j) ∈ K.

4. All verifiers compute [a] :=
∑N ′

h=0 α
h · [ah] and [b] :=

∑N ′

h=0 α
h · [bh].

5. All verifiers run a ← Open([a]) and b ← Open([b]). If abort is output for the Open procedure, the verifiers
abort. Otherwise, they check that ai = bj , and abort if the check fails.

Verification of circuit output: Let [z] be the sharing on the group of k circuit-output wires including the single
actual circuit-output wire. All verifiers execute z ← Open([z]), and abort if receiving abort from the Open
procedure. If z = 0k, then the verifiers output true, otherwise they output false.

Figure 7: PSS-based strong NIMVZK in the Fpss
verifyprod-hybrid model and random oracle model, continued.

20

PSS-based strong NIMVZK protocol from the Fiat-Shamir transform. Our PSS-based strong non-
interactive MVZK protocol in the Fpss

verifyprod-hybrid model is described in Figures 6 and 7, where the circuit
is defined over a field F and the verification is performed over an extension field K with |K| ≥ 2λ.

The prover and all verifiers first transform the circuit C into an equivalent circuit C ′, which satisfies the
requirements of packed secret sharings. For an input vector w ∈ Fk, if the j-th secret of w for j ∈ [1, k]
corresponds to a dummy circuit-input wire, the secret is set as 0. If w corresponds to k dummy circuit-input
wires, then w = 0k and [w] can be locally generated by all verifiers without any communication (as shown
in Appendix A.2).

Using the non-interactive commitment based on a random oracle, we adopt a similar approach as de-
scribed in the previous section to transform the check of multiplication tuples into the check of a packed
inner-product tuple. Then, by calling functionality Fpss

verifyprod, the verifiers can check correctness of the
packed inner-product tuple. Note that the prover can compute the secrets of the packed inner-product tuple,
which will be useful for designing a strongly non-interactive protocol to securely realizeFpss

verifyprod as shown
in Section 6.2.

During the protocol execution, we need to check the consistency of some secrets stored in two different
packed sharings. We perform the consistency check using the random-linear-combination approach based
on the Fiat-Shamir transform, which is inspired by the recent checking approach by Goyal et al. [GPS21]
for information-theoretic MPC. In particular, the prover will generate a packed input sharing [y] on k multi-
plication gates, addition gates or circuit-output gates, such that the j-th secret yj of [y] comes from the i-th
secret xi of a packed output sharing [x] of k circuit-input gates, multiplication gates or addition gates. We
need to check that xi = yj to guarantee the consistency of yj . This corresponds to the wire which carries the
value xi = yj in the circuit. We refer to a tuple ([x], [y], i, j) as a wire tuple following prior work [GPS21].
We perform the consistency check of wire tuples in the total communication complexity O(nk2) elements
between the prover and verifiers and O(n2k2) elements among verifiers.

Theorem 3. Let H1 and H2 be two random oracles. Protocol Πpss
snimvzk shown in Figures 6 and 7 securely

realizes functionality Fmvzk with soundness error at most Q1n+(Q2+1)(M+N)
2λ

in the Fpss
verifyprod-hybrid model

in the presence of a malicious adversary corrupting up to a prover and t = d − k + 1 verifiers, where
degree-d packed sharings are used in protocol Πpss

snimvzk, each sharing packs k secrets, and Q1 and Q2 are
the number of queries to H1 and H2 respectively.

The proof of Theorem 3 can be found in Appendix F.

Optimizations. We can further optimize the protocol Πpss
snimvzk shown in Figures 6 and 7. Specifically,

similar to the protocol Πfs
snimvzk described in Section 5 based on Shamir secret sharing, we can use the

PRG and random seeds to reduce the communication of Πpss
snimvzk by t elements per sharing generation

and improve the computational efficiency of generating and verifying t commitments. We can also use
H2(com1, . . . , comn) to generate χ1, . . . , χM ∈ K instead of 1, . . . , χM−1, and adopt H2(χ,u,u′, i, j) to
compute α1, . . . , αN ′ instead of α, . . . , αN

′
. In this way, the soundness error of protocol Πpss

snimvzk can be
reduced to Q1n+3(Q2+1)

2λ
.

Streaming strong NIMVZK proof. Protocol Πpss
snimvzk shown in Figures 6 and 7 are streamable, i.e., the

circuit can be proved on-the-fly. The prover P can prove a batch of addition and multiplication gates each
time, and stores the secrets that will be used as the input wire values in the next batches of gates.

For each batch of M multiplication gates, the verifiers need to check the correctness of a packed
inner-product tuple (([x̃1], . . . , [x̃M]), ([ỹ1], . . . , [ỹM]), [z̃]). The verifiers can use the verification proto-
col shown in Section 6.2 to compress the packed inner-product tuple into a packed inner-product tuple
(([x1], . . . , [xm]), ([y1], . . . , [ym]), [z]) with m = M/2s for some integer s ≥ 1. For another batch of
M multiplication gates, the verifiers can do the same operations and obtain a packed inner-product tu-
ple (([x′1], . . . , [x′m]), ([y′1], . . . , [y′m]), [z′]). Then, all verifiers can compress the two resulting packed

21

inner-product tuples into a new inner-product tuple (([a1], . . . , [am]), ([b1], . . . , [bm]), [c]). In this way,
the verifiers can always store an inner-product tuple with a small dimension. When the whole circuit has
been evaluated, the verifiers can run the verification protocol (as described in Section 6.2) to compress the
packed inner-product tuple (([a1], . . . , [am]), ([b1], . . . , [bm]), [c]) stored in memory into a multiplication
tuple ([a], [b], [c]), where note that ([a], [b], [c]) is also randomized with a random packed multiplication
tuple generated by the prover. Then the verifiers run the one-round Open procedure to check correctness
of ([a], [b], [c]). By the above approach, the verifiers can communicate only one round for verifying all
multiplication gates in the whole circuit.

For each batch of N wire tuples, the verifiers need to check their correctness. That is, for each i, j ∈
[1, k], they will verify correctness of the wire tuples ([a1], [b1], i, j), . . . , ([aN ′], [bN ′], i, j) in L(i, j). By
running the verification protocol shown in Figure 7, the verifiers can compress the wire tuples in L(i, j) into
a wire tuple ([a], [b], i, j). For another batch ofN wire tuples, the verifiers need to check correctness of wire
tuples ([a′1], [b′1], i, j), . . . , ([a′N ′′], [b

′
N ′′], i, j) in L(i, j) for each i, j ∈ [1, k]. Then, for each i, j ∈ [1, k],

the verifiers can run the verification protocol to compress {([a′h], [b′h], i, j)}h∈[1,N ′′] along with ([a], [b], i, j)
into a new wire tuple ([a′], [b′], i, j). When the whole circuit has been evaluated, the verifiers open the k2

wire tuples stored in memory to check their correctness. In this way, the verifiers can communicate only
one round for all batches of wire tuples. Note that the Open procedure for verifying k2 wire tuples can be
executed in parallel with that for verifying an inner-product tuple. Therefore, only one-round communication
is needed for the verifiers in total. Besides, only the resulting wire tuple that compresses the final batch
of wire tuples needs to be randomized with a random wire tuple generated by the prover P . Therefore,
streaming the strong NIMVZK proof does not increase the communication.

Overall, using the above approach, we can prove a very large circuit when keeping the memory costs of
the prover and verifiers small.

6.2 Strong NIMVZK Proof for Packed Inner-Product Tuples

Below, we present a strongly non-interactive MVZK protocol with logarithmic communication complexity
to verify packed inner-product tuples, which is inspired by the technique by Goyal et al. [GPS21] for MPC
that is in turn built on the techniques [BBC+19, GS20, GSZ20]. While the MPC protocol [GPS21] requires
logarithmic rounds to check correctness of packed inner-product tuples, our strong NIMVZK protocol needs
only one round between verifiers. Furthermore, our protocol reduces the communication overhead for veri-
fication by making the prover generate the random sharings and messages associated with secrets, compared
to the verification of packed inner-product tuples directly using the MPC protocol [GPS21].

Our PSS-based strong NIMVZK protocol Πpss
verifyprod for verifying a packed inner-product tuple is de-

scribed in Figure 8. This protocol invokes two sub-protocols Πpss
inner-prod and Πpss

compress that are described
in Figures 9 and 10 respectively, where Πpss

inner-prod is used to generate the inner product of two vectors
and Πpss

compress is used to compress two packed inner-product tuples into a single tuple. In the dimension-
reduction and randomization phases of this protocol, we adapt the approach by Baum et al. [BMRS21] used
in the DVZK setting to non-interactively generate a challenge α used in sub-protocol Πpss

compress based on
the Fiat-Shamir transform. Based on the round-by-round soundness [CCH+19, BMRS21], we can prove
that the soundness error of our protocol is negligible (see Theorem 4). In the dimension-reduction phase of
Πpss

verifyprod, we always assume that the dimensionm of the packed inner-product tuple is the multiple of 2 for
each iteration. If not, we can pad the dummy zero sharing [0] into the packed inner-product tuple to satisfy
the requirement, where [0] can be locally computed by all verifiers.

In the protocol Πpss
verifyprod shown in Figure 8, we assume that P and all verifiers input a public challenge

χ, which is determined after the secrets packed in the input inner-product tuple (([x1], . . . , [xM]), ([y1], . . . ,
[yM]), [z]) have been defined. In particular, χ can be defined as H2(com1, . . . , comn) as shown in Figure 7.
When using Πpss

verifyprod to realize functionality Fpss
verifyprod, χ ∈ K can be generated by P and all verifiers

22

Protocol Πpss
verifyprod

Inputs: Prover P and all verifiers V1, . . . ,Vn respectively hold the secrets and shares of a packed inner-product
tuple (([x1], . . . , [xM]), ([y1], . . . , [yM]), [z]). P and all verifiers also hold a public value χ, which is determined
after these secrets have been defined. The verifiers will check that z =

∑
h∈[1,M] xh ∗ yh ∈ Kk. Let H2 :

{0, 1}∗ → K be a random oracle where |K| ≥ 2λ.

• Dimension-reduction: Let m denote the dimension of the packed inner-product tuple in the current iteration,
where m is initialized as M . Let γ be the public value in the current iteration, which is initialized as χ.
While m > 2, P and all verifiers do the following:

1. Let ` = m/2. P and all verifiers define ([a1,1], . . . , [a1,`]) := ([x1], . . . , [x`]) and ([a2,1], . . . , [a2,`]) =
([x`+1], . . . , [xm]), where P holds all the secrets and the verifiers hold the shares. Similarly, they define
([b1,1], . . . , [b1,`]) := ([y1], . . . , [y`]) and ([b2,1], . . . , [b2,`]) = ([y`+1], . . . , [ym]).

2. P and all verifiers execute the sub-protocol Πpss
inner-prod (shown in Figure 9) on ([a1,1], . . . , [a1,`]) and

([b1,1], . . . , [b1,`]) to compute the whole sharing [c1] = [
∑
h∈[1,`] a1,h ∗ b1,h], where the secrets and the

shares are output to P and the verifiers respectively. P and all verifiers also obtain u ∈ Kk.

3. P and all verifiers compute [c2] := [z]− [c1], where P obtains c2 and the verifiers get the shares of [c2].

4. P and all verifiers execute sub-protocol Πpss
compress on ([ai,1], . . . , [ai,`]), ([bi,1], . . . , [bi,`]) and [ci] for i ∈

[1, 2] and (γ,u), where Πpss
compress is described in Figure 10.

5. P and all verifiers update γ as the public element α output by Πpss
compress, and also set m := m/2. Then,

P and the verifiers use the whole output sharings (([a1], . . . , [a`]), ([b1], . . . , [b`]), [c]) from Πpss
compress to

update (([x1], . . . , [xm]), ([y1], . . . , [ym]), [z]).

• Randomization: Let γ ∈ K along with the inner-product tuple (([x1], [x2]), ([y1], [y2]), [z]) be the final
output from the previous phase. P and all verifiers execute the following procedure:

1. P samples x0,y0 ← Kk, and then runs [x0] ← Share(x0) and [y0] ← Share(y0), which distribute the
shares to all verifiers.

2. For i ∈ [0, 1], P and all verifiers execute the sub-protocol Πpss
inner-prod on ([xi], [yi]) to compute the whole

sharing [zi] = [xi ∗ yi]. Additionally, P and the verifiers also obtain u0,u1 ∈ Kk.

3. P and all verifiers compute [z2] := [z]− [z1], where P obtains z2 and the verifiers get the shares of [z2].

4. P and all verifiers execute sub-protocol Πpss
compress on {([xi], [yi], [zi])}i∈[0,2] and (γ,u0,u1). Then, all

verifiers obtain the output ([a], [b], [c]).

5. All verifiers run v ← Open([v]) for each v ∈ {a, b, c}. If abort is received during the Open procedure,
then the verifiers abort. Then, the verifiers check that c = a∗b. If the check fails, the verifiers output abort.
Otherwise, they output accept.

Figure 8: One-round ZK verification protocol for packed inner-product tuples.

23

Protocol Πpss
inner-prod

Inputs: Prover P and verifiers V1, . . . ,Vn respectively hold the secrets and the shares of packed sharings
([x1], . . . , [x`]) and ([y1], . . . , [y`]) over a field K.

Protocol execution: P and all verifiers execute as follows:
1. P samples r ← Kk, and then runs [r]← Share(r) that distributes the shares to all verifiers.

2. P computes z :=
∑
h∈[1,`] xh ∗ yh ∈ Kk, and then broadcasts u := z + r ∈ Kk to all verifiers.

3. The verifiers compute [z] := u − [r]. Then, P and the verifiers respectively output the secrets and shares of
[z], and also output u ∈ Kk.

Figure 9: Non-interactive inner-product protocol for packed sharings secure up to additive errors.

Protocol Πpss
compress

Inputs: Let m be the number of packed inner-product tuples, and ` be the dimension of each packed inner-
product tuple. For i ∈ [1,m], prover P and all verifiers V1, . . . ,Vn respectively hold the secrets and shares of
packed inner-product tuple (([xi,1], . . . , [xi,`]), ([yi,1], . . . , [yi,`]), [zi]). P and all verifiers also input γ ∈ K and
v1, . . . ,vd ∈ Kk. Let H2 : {0, 1}∗ → K be a random oracle.

Protocol execution: P and all verifiers execute as follows:
1. For each j ∈ [1, `], P computes vectors of degree-(m−1) polynomials fj(·) and gj(·), such that fj(i) = xi,j

and gj(i) = yi,j for all i ∈ [1,m].

2. For j ∈ [1, `], all verifiers locally compute [fj(·)] and [gj(·)] using their shares of {[xi,j]}i∈[1,m] and
{[yi,j]}i∈[1,m] respectively.

3. For i ∈ [m + 1, 2m − 1], P and all verifiers respectively compute the secrets and shares of packed sharings
[fj(i)] and [gj(i)] for j ∈ [1, `]. Then, for i ∈ [m + 1, 2m − 1], they execute the sub-protocol Πpss

inner-prod
(shown in Figure 9) on ([f1(i)], . . . , [f`(i)]) and ([g1(i)], . . . , [g`(i)]) to compute the whole sharing [zi] =
[
∑
j∈[1,`] fj(i)∗gj(i)], where P obtains zi and the verifiers get the shares of [zi]. Besides, P and the verifiers

obtain um+1, . . . ,u2m−1 ∈ Kk.

4. P and all verifiers locally compute the whole sharing [h(·)] from [z1], . . . , [z2m−1], such that h(·) is a vector
of degree-2(m− 1) polynomial and h(i) = zi for i ∈ [1, 2m− 1].

5. P and all verifiers compute α := H2(γ,v1, . . . ,vd,um+1, . . . ,u2m−1) ∈ K. If α ∈ [1,m], the verifiers abort.

6. P and all verifiers output the secrets and shares of ([f1(α)], . . . , [f`(α)]), ([g1(α)], . . . , [g`(α)]) and [h(α)]
respectively, and also output the element α.

Figure 10: Protocol for compressing packed inner-product tuples.

in the main NIMVZK protocol shown in Figures 6 and 7. For the sake of simplicity, we ignore the case
that the adversary (who corrupts P) did not make a query to obtain χ but made a query to get a challenge
α = H2(χ, · · ·) used in protocol Πpss

verifyprod, which occurs with probability at most 1
|K| ≤

1
2λ

. When
the adversary makes a query (com1, . . . , comn) to random oracle H2 and obtains χ, the challenge χ is
determined after the secrets stored in the input packed tuple have been defined, except with probability at
most Q1n

2λ
following the proof of Theorem 3.

Sub-protocol for computing inner product. Sub-protocol Πpss
inner-prod shown in Figure 9 is used to compute

the inner product of two vectors ([x1], . . . , [x`]) and ([y1], . . . , [y`]). The prover now knows all the chal-
lenges due to the use of the Fiat-Shamir transform, and thus holds all the secrets involved in the verification

24

procedure. Thus, the prover can directly distribute the shares of [z] with z =
∑

h∈[1,`] xh∗yh to all verifiers.
To support Fiat-Shamir, the verifiers need to know public messages instead of secret shares. Therefore, we
first let the prover generate a random packed sharing [r], and then make it broadcast the public difference
u = z + r to all verifiers. The prover and verifiers also need to output the message u, which will be used in
the Fiat-Shamir transform of the main verification protocol. When the prover is malicious, it can introduce
an additive error to the sharing [z] output by the verifiers, which is harmless when integrating Πpss

inner-prod
into the main protocol Πpss

verifyprod.

Sub-protocol for compression. Sub-protocol Πpss
compress shown in Figure 10 is used to compress m packed

inner-product tuples into a single packed inner-product tuple. In particular, this protocol invokes the sub-
protocol Πpss

inner-prod instead of calling an inner-product functionality, which seems necessary to support Fiat-
Shamir, where the messages related to the secrets need to be used as the input of a random oracle H2.
For every protocol execution of Πpss

compress, the prover and all verifiers generate a random challenge α ∈ K
using the Fiat-Shamir transform. To realize non-interactively recursive compression in the main verification
protocol, the prover and verifiers also input the public challenge γ from the previous iteration and the public
messages produced in the current iteration.

Theorem 4. Let H2 : {0, 1}∗ → K be a random oracle. Protocol Πpss
verifyprod shown in Figure 8 securely

realizes functionality Fpss
verifyprod with soundness error at most 4dlogMe+5Q2

2λ−3
in the presence of a malicious

adversary corrupting up to the prover and exactly t verifiers, where Q2 is the number of queries to random
oracle H2.

The proof of Theorem 4 is given in Appendix G.

Acknowledgements

Work of Kang Yang is supported by the National Natural Science Foundation of China (Grant Nos. 62102037,
61932019). Work of Xiao Wang is supported in part by DARPA under Contract No. HR001120C0087, NSF
award #2016240, and research awards from Meta, Google and PlatON Network. The views, opinions, and/or
findings expressed are those of the author(s) and should not be interpreted as representing the official views
or policies of the Department of Defense or the U.S. Government.

References

[Abe99] Masayuki Abe. Robust distributed multiplication without interaction. In Advances in
Cryptology—Crypto 1999, volume 1666 of LNCS, pages 130–147. Springer, 1999.

[ACF02] Masayuki Abe, Ronald Cramer, and Serge Fehr. Non-interactive distributed-verifier proofs
and proving relations among commitments. In Advances in Cryptology—Asiacrypt 2002,
LNCS, pages 206–223. Springer, 2002.

[ACGJ19] Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain. Two
round information-theoretic MPC with malicious security. In Advances in Cryptology—
Eurocrypt 2019, Part II, volume 11477 of LNCS, pages 532–561. Springer, 2019.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.
Ligero: Lightweight sublinear arguments without a trusted setup. In ACM Conf. on Com-
puter and Communications Security (CCS) 2017, pages 2087–2104. ACM Press, 2017.

25

[AKP22] Benny Applebaum, Eliran Kachlon, and Arpita Patra. Verifiable relation sharing and multi-
verifier zero-knowledge in two rounds: Trading nizks with honest majority. Cryptology ePrint
Archive, Paper 2022/167, 2022. https://eprint.iacr.org/2022/167.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In IEEE Symp.
Security and Privacy 2018, pages 315–334. IEEE, 2018.

[BBC+19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-
knowledge proofs on secret-shared data via fully linear PCPs. In Advances in Cryptology—
Crypto 2019, Part III, volume 11694 of LNCS, pages 67–97. Springer, 2019.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero knowledge
with no trusted setup. In Advances in Cryptology—Crypto 2019, Part III, volume 11694 of
LNCS, pages 701–732. Springer, 2019.

[BBMH+21] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, Benoı̂t Razet, and Peter Scholl.
Appenzeller to brie: Efficient zero-knowledge proofs for mixed-mode arithmetic and Z2k. In
ACM Conf. on Computer and Communications Security (CCS) 2021, pages 192–211. ACM
Press, 2021.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient
zero-knowledge arguments for arithmetic circuits in the discrete log setting. In Advances in
Cryptology—Eurocrypt 2016, Part II, volume 9666 of LNCS, pages 327–357. Springer, 2016.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Omer Paneth, and Rafail Ostrovsky. Succinct
non-interactive arguments via linear interactive proofs. In Theory of Cryptography, pages
315–333. Springer Berlin Heidelberg, 2013.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Advances in
Cryptology—Eurocrypt 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer, 2019.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In 9th
Theory of Cryptography Conference—TCC 2016, LNCS, pages 31–60. Springer, 2016.

[BD91] Mike Burmester and Yvo Desmedt. Broadcast interactive proofs (extended abstract). In
Advances in Cryptology—Eurocrypt 1991, LNCS, pages 81–95. Springer, 1991.

[BFH+20] Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakrishnan Venkitasubramaniam,
Tiancheng Xie, and Yupeng Zhang. Ligero++: A new optimized sublinear IOP. In ACM Conf.
on Computer and Communications Security (CCS) 2020, pages 2025–2038. ACM Press,
2020.

[BFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In Advances in Cryptology—Crypto 2012,
volume 7417 of LNCS, pages 663–680. Springer, 2012.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK com-
pilers. In Advances in Cryptology—Eurocrypt 2020, Part I, volume 12105 of LNCS, pages
677–706. Springer, 2020.

26

https://eprint.iacr.org/2022/167

[BGIN20] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Efficient fully secure computation via
distributed zero-knowledge proofs. In Advances in Cryptology—Asiacrypt 2020, Part III,
LNCS, pages 244–276. Springer, 2020.

[BGJK21] Gabrielle Beck, Aarushi Goel, Abhishek Jain, and Gabriel Kaptchuk. Order-C secure multi-
party computation for highly repetitive circuits. In Advances in Cryptology—Eurocrypt 2021,
Part II, LNCS, pages 663–693. Springer, 2021.

[BJO+22] Carsten Baum, Robin Jadoul, Emmanuela Orsini, Peter Scholl, and Nigel P. Smart. Feta:
Efficient threshold designated-verifier zero-knowledge proofs. Cryptology ePrint Archive,
Paper 2022/082, 2022. https://eprint.iacr.org/2022/082.

[BKZZ20] Foteini Baldimtsi, Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. Crowd ver-
ifiable zero-knowledge and end-to-end verifiable multiparty computation. In Advances in
Cryptology—Asiacrypt 2020, Part III, LNCS, pages 717–748. Springer, 2020.

[BMRS21] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl. Mac’n’cheese: Zero-
knowledge proofs for boolean and arithmetic circuits with nested disjunctions. In Advances
in Cryptology—Crypto 2021, Part IV, LNCS, pages 92–122. Springer, 2021.

[BTH08] Zuzana Beerliová-Trubı́niová and Martin Hirt. Perfectly-secure MPC with linear communi-
cation complexity. In 5th Theory of Cryptography Conference—TCC 2008, volume 4948 of
LNCS, pages 213–230. Springer, 2008.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology,
13(1):143–202, January 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd Annual Symposium on Foundations of Computer Science (FOCS), pages 136–145.
IEEE, 2001.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Roth-
blum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In 51th Annual ACM Sympo-
sium on Theory of Computing (STOC), pages 1082–1090. ACM Press, 2019.

[CGB17] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable computation of
aggregate statistics. In 14th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 17), pages 259–282. USENIX Association, March 2017.

[CGH+18] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell, and
Ariel Nof. Fast large-scale honest-majority MPC for malicious adversaries. In Advances in
Cryptology—Crypto 2018, Part III, volume 10993 of LNCS, pages 34–64. Springer, 2018.

[CK21] Ran Canetti and Gabriel Kaptchuk. The broken promise of apple’s announced forbidden-
photo reporting system – and how to fix it. https://www.bu.edu/riscs/2021/08/
10/apple-csam/, 2021.

[DIK10] Ivan Damgård, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty compu-
tation and the computational overhead of cryptography. In Advances in Cryptology—
Eurocrypt 2010, LNCS, pages 445–465. Springer, 2010.

27

https://eprint.iacr.org/2022/082
https://www.bu.edu/riscs/2021/08/10/apple-csam/
https://www.bu.edu/riscs/2021/08/10/apple-csam/

[DILO22] Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Improving line-point zero
knowledge: Two multiplications for the price of one. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security. ACM Press, 2022.

[DIO21] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-point zero knowledge and its appli-
cations. In 2nd Conference on Information-Theoretic Cryptography, 2021.

[DN07] Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty com-
putation. In Advances in Cryptology—Crypto 2007, volume 4622 of LNCS, pages 572–590.
Springer, 2007.

[DNNR17] Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci. The TinyTable
protocol for 2-party secure computation, or: Gate-scrambling revisited. In Advances in
Cryptology—Crypto 2017, Part I, volume 10401 of LNCS, pages 167–187. Springer, 2017.

[FL19] Jun Furukawa and Yehuda Lindell. Two-thirds honest-majority MPC for malicious adver-
saries at almost the cost of semi-honest. In ACM Conf. on Computer and Communications
Security (CCS) 2019, pages 1557–1571. ACM Press, 2019.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Advances in Cryptology—Crypto 1986, LNCS, pages 186–194.
Springer, 1987.

[FY92] Matthew K. Franklin and Moti Yung. Communication complexity of secure computation
(extended abstract). In 24th Annual ACM Symposium on Theory of Computing (STOC), pages
699–710. ACM Press, 1992.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span pro-
grams and succinct NIZKs without PCPs. In Advances in Cryptology—Eurocrypt 2013,
LNCS, pages 626–645. Springer, 2013.

[GIOZ17] Juan A. Garay, Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. The price of low commu-
nication in secure multi-party computation. In Advances in Cryptology—Crypto 2017, Part I,
volume 10401 of LNCS, pages 420–446. Springer, 2017.

[GIP+14] Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran Tromer. Circuits
resilient to additive attacks with applications to secure computation. In 46th Annual ACM
Symposium on Theory of Computing (STOC), pages 495–504. ACM Press, 2014.

[GIP15] Daniel Genkin, Yuval Ishai, and Antigoni Polychroniadou. Efficient multi-party computa-
tion: From passive to active security via secure SIMD circuits. In Advances in Cryptology—
Crypto 2015, Part II, volume 9216 of LNCS, pages 721–741. Springer, 2015.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: inter-
active proofs for muggles. In 40th Annual ACM Symposium on Theory of Computing (STOC),
pages 113–122. ACM Press, 2008.

[GL05] Shafi Goldwasser and Yehuda Lindell. Secure multi-party computation without agreement. J.
Cryptology, 18(3):247–287, July 2005.

[GLO+21] Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni Polychroniadou, and Yifan Song. AT-
LAS: Efficient and scalable MPC in the honest majority setting. In Advances in Cryptology—
Crypto 2021, Part II, LNCS, pages 244–274. Springer, 2021.

28

[GO07] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. In Advances in
Cryptology—Crypto 2007, volume 4622 of LNCS, pages 323–341. Springer, 2007.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge
University Press, Cambridge, UK, 2004.

[GPS21] Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Unconditional communication-
efficient MPC via hall’s marriage theorem. In Advances in Cryptology—Crypto 2021, Part II,
LNCS, pages 275–304. Springer, 2021.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Advances in
Cryptology—Asiacrypt 2010, LNCS, pages 321–340. Springer, 2010.

[GS20] Vipul Goyal and Yifan Song. Malicious security comes free in honest-majority MPC. Cryptol-
ogy ePrint Archive, Report 2020/134, 2020. https://eprint.iacr.org/2020/134.

[GSY21] S. Dov Gordon, Daniel Starin, and Arkady Yerukhimovich. The more the merrier: Reducing
the cost of large scale MPC. In Advances in Cryptology—Eurocrypt 2021, Part II, LNCS,
pages 694–723. Springer, 2021.

[GSZ20] Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed output delivery comes free in honest
majority MPC. In Advances in Cryptology—Crypto 2020, Part II, LNCS, pages 618–646.
Springer, 2020.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure
multiparty computation. In 39th Annual ACM Symposium on Theory of Computing (STOC),
pages 21–30. ACM Press, 2007.

[KLR06] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically secure protocols
and security under composition. In 38th Annual ACM Symposium on Theory of Computing
(STOC), pages 109–118. ACM Press, 2006.

[LMs05] Matt Lepinski, Silvio Micali, and abhi shelat. Fair-zero knowledge. In 2nd Theory of Cryp-
tography Conference—TCC 2005, volume 3378 of LNCS, pages 245–263. Springer, 2005.

[LN17] Yehuda Lindell and Ariel Nof. A framework for constructing fast MPC over arithmetic cir-
cuits with malicious adversaries and an honest-majority. In ACM Conf. on Computer and
Communications Security (CCS) 2017, pages 259–276. ACM Press, 2017.

[NV18] Peter Sebastian Nordholt and Meilof Veeningen. Minimising communication in honest-
majority MPC by batchwise multiplication verification. In Intl. Conference on Applied Cryp-
tography and Network Security (ACNS), LNCS, pages 321–339. Springer, 2018.

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In
Advances in Cryptology—Crypto 2020, Part III, LNCS, pages 704–737. Springer, 2020.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, November
1979.

[WTs+18] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish. Doubly-
efficient zkSNARKs without trusted setup. In IEEE Symp. Security and Privacy 2018, pages
926–943. IEEE, 2018.

29

https://eprint.iacr.org/2020/134

[WYKW21] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits. In IEEE
Symp. Security and Privacy 2021, pages 1074–1091. IEEE, 2021.

[YSWW21] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. QuickSilver: Efficient and af-
fordable zero-knowledge proofs for circuits and polynomials over any field. In ACM Conf. on
Computer and Communications Security (CCS) 2021, pages 2986–3001. ACM Press, 2021.

[ZLW+21] Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang Xie, and Yupeng
Zhang. Doubly efficient interactive proofs for general arithmetic circuits with linear prover
time. In ACM Conf. on Computer and Communications Security (CCS) 2021, pages 159–177.
ACM Press, 2021.

[ZXZS20] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Transparent polynomial
delegation and its applications to zero knowledge proof. In IEEE Symp. Security and Pri-
vacy 2020, pages 859–876. IEEE, 2020.

A More Preliminaries

A.1 Security Model

We use the standard ideal/real paradigm [Can00, Gol04] to prove security of our NIMVZK protocols in
the presence of a malicious, static adversary. In the ideal-world execution, the parties interact with a func-
tionality F, and some of them may be corrupted by an ideal-world adversary (a.k.a., simulator) S. In
the real-world execution, the parties interact with each other in an execution of protocol Π, and some of
them may be corrupted by a real-world adversary A (that is often called an adversary for simplicity). Let
REALΠ,A(κ, z) denote the output of the honest parties and A in a real-world execution of protocol Π with
a security parameter κ and an auxiliary input z for A. Let IDEALF,S(κ, z) be the output of the honest
parties and S in an ideal-world execution with the functionality F, a security parameter κ and an auxiliary
input z to S. Let REALΠ,A be the ensemble {REALΠ,A(κ, z)}κ∈N,z∈{0,1}∗ , and IDEALF,S be the ensemble
{IDEALF,S(κ, z)}κ∈N,z∈{0,1}∗ .

Definition 1. We say that a protocol Π securely realizes an ideal functionality F, if for any adversary A,
there exists a simulator S such that

IDEALF,S ≈ REALΠ,A ,

where ≈ denotes the statistical (or computational) distinguishability of two distributions.

In the information-theoretic setting, the real-world adversary A are computationally unbounded (where
the ideal-world adversary S runs in time that is polynomial in the running time of A), and IDEALF,S is
statistically distinguishable from REALΠ,A which is denoted by IDEALF,S

s
≈ REALΠ,A . In the computa-

tional setting, the adversaries in the two worlds run in non-uniform probabilistic polynomial time (PPT), and
IDEALF,S

c
≈ REALΠ,A where

c
≈ denotes the computational indistinguishability of two distributions. We

prove security of our NIMVZK protocols in the G-hybrid model, where the parties execute a protocol with
real messages and also have access to a sub-functionality G. In [KLR06, Theorem 5], it has been shown that
any protocol, that is proven secure in the stand-alone model with a black-box straight-line simulator and start
synchronization (i.e., the inputs of all parties are fixed before the protocol execution starts), is also secure
under the universal composability (UC) framework [Can01]. All our protocols satisfy these conditions, and
thus are also UC-secure. This allows us to run the protocols in parallel and concurrently. In all our proofs
of security, we will useH and C to denote the sets of honest verifiers and corrupted verifiers, respectively.

30

A.2 Two Instantiations of Linear Secret Sharings

Instantiation 1: Shamir secret sharing [Sha79]. The standard Shamir secret sharing scheme allows any
t < n/2. Following prior MPC work, we always set n = 2t+ 1 for the sake of simplicity. Let α1, . . . , αn ∈
F be n predetermined distinct non-zero elements. The procedures for Shamir secret sharing over a field F
with |F| > n are defined as follows:

• [x] ← Share(x): On input a secret x ∈ F, a dealer P samples x1, . . . , xt ← F, and then uses Lagrange
interpolation to compute a polynomial f(X) ∈ F[X] of degree at most t, such that f(0) = x and f(αi) =
xi for i ∈ [1, t]. For each i ∈ [1, n], P sends xi = f(αi) to Vi over a private channel.

In the computational setting, the communication could be further reduced using a pseudo-random gener-
ator (PRG).Since t out of n shares are uniformly random, they can be generated by the pre-agreed seeds,
which can be reused across multiple different sharings. This reduces the communication by a factor of 2.

• x← Open([x]): On input a sharing [x], every party Vi sends its share xi to all other parties {Vj}j∈[1,n],j 6=i.
After obtaining n shares x1, . . . , xn, every party Vi reconstructs the secret x as follows:

1. Use the first t+1 shares to compute the unique degree-t polynomial f(·) using Lagrange interpolation.

2. Check xi = f(αi) for all i ∈ [t+2, n]. If the check fails, then output abort; otherwise output x = f(0).

• For a constant v ∈ F that is known by all parties, it is convenient to locally transform it to a Shamir secret
sharing by defining a constant polynomial f(X) = v and the share of every party Vi to be f(αi) = v.

To explicitly express the degree t, we sometimes denote by Sharet(·) the Share procedure. For degree
2t < n, the procedure Share2t(·) can be defined similarly.

Instantiation 2: Packed secret sharing [FY92]. The packed secret sharing scheme is a generalization of
the standard Shamir secret sharing scheme described as above. Let k be the number of secrets that are packed
in a single sharing. Similar to the recent MPC work [GSY21, GPS21], we adopt n = 2d+ 1 for simplicity,
where d = t + k − 1 is the degree of polynomials. For example, we can choose to adopt t = b(n− 1)/3c
and k = b(n− 1)/6c + 1. When setting k = 1, packed secret sharing becomes Shamir secret sharing. In
addition to α1, . . . , αn ∈ F, we also need k more predetermined distinct elements β1, . . . , βk ∈ F, which
are different from α1, . . . , αn. The procedures for packed secret sharing over a field F with |F| ≥ n+ k are
defined as follows:

• [x] ← Share(x): On input a vector of secrets x ∈ Fk, a dealer P samples s1, . . . , st ← F, and then uses
the interpolation approach to compute a polynomial f(X) ∈ F[X] of degree at most d = t+ k − 1, such
that f(βi) = xi for i ∈ [1, k] and f(αi) = si for i ∈ [1, t]. For i ∈ [1, n], P sends si = f(αi) to Vi over a
private channel.

Similar to Shamir secret sharing, the communication complexity can also be reduced using a PRG in the
computational setting, where the shares for V1, . . . ,Vt can be computed with the random seeds and PRG.

• x ← Open([x]): Given a packed sharing [x], every party Vi sends its share si to all other parties
{Vj}j∈[1,n],j 6=i. After obtaining n shares s1, . . . , sn, every party Vi reconstructs the vector x as follows:

1. Use the first d+ 1 shares to compute the degree-d polynomial f(·) based on Lagrange interpolation.

2. Check that si = f(αi) for all i ∈ [d + 2, n]. If the check fails, then output abort; otherwise, output a
vector x ∈ Fk such that xi = f(βi) for i ∈ [1, k].

• For a constant vector v ∈ Fk that is known by all parties, it is convenient to transform it to a packed secret
sharing without any communication as follows:

31

Functionality Fcoin

This functionality runs with n parties P1, . . . , Pn as follows:

• Upon receiving (coin,K) from all parties where K is a field, sample r ← K and send r to all parties.

Figure 11: Coin-tossing functionality.

1. All parties define a polynomial f(·) ∈ F[X] of degree k − 1 such that f(βi) = vi for each i ∈ [1, k].

2. Every party Vi defines f(αi) as its share.

It is well known that the secret-sharing schemes described as above are linear and allows local linear com-
bination. Following the prior work such as [LN17, BGIN20, GPS21], the Open procedure for Shamir or
packed secret sharings guarantees that all honest parties can output the same correct values, when there are
at most t < n/2 (resp., t ≤ n/2− k) malicious parties for Shamir (resp., packed) secret sharing.

A.3 Coin-Tossing Functionality

In the information-theoretic setting, our NIMVZK protocol will use a coin-tossing functionality shown in
Figure 11 to generate a public random element in a field K. This functionality can be efficiently realized
using the standard protocol in the honest-majority setting, which has been used in previous MPC work such
as [BTH08, LN17, CGH+18, FL19, GSZ20, BGIN20]. The coin-tossing protocol works as follows:

1. Every party shares a random element to the other parties.

2. Then, the parties transform n sharings into n− t random sharings using the Vandermonde matrix.

3. Finally, the parties run the Open procedure to obtain a public random element from a random sharing.

B Proof of Lemma 1

Lemma 2 (Lemma 1, restated). Let Π be an MVZK protocol proving the satisfiability of a circuit C for
n ≥ 2t+ 1 verifiers. Then, if protocol Π securely realizes Fmvzk in the presence of any malicious adversary
corrupting exactly t verifiers, then Π securely realizes Fmvzk against any malicious adversary corrupting at
most t verifiers.

Proof. Let P be the prover and V1, . . . ,Vn be the set of n verifiers in a protocol execution of Π. Let A
be a malicious adversary who corrupts a set C of verifiers such that |C| < t. (If |C| = t, then this proof
is straightforward and thus omitted.) Fix C∗ to be some minimum set of verifiers such that |C∗ ∪ C| = t.
Consider the adversary A∗ who controls the verifiers in C∗ ∪ C. If A corrupts the prover P , then A∗ also
corrupts P . Adversary A∗ behaves as follows:

1. A∗ honestly simulates the behavior of the verifiers in C∗. In particular, when a verifier in C∗ intends to
send a message m to another verifier in C or P (if P is corrupted), A∗ internally sends m to A.

2. A∗ simulates A on the verifiers in C and the prover P (if P is corrupted). Specifically, when A wants to
send a message m to a verifier in C∗, A∗ internally sends m to the verifier in C∗.

3. If a random oracle H is involved in protocol Π, then whenever A makes a query to H, A∗ makes the
same query to H.

32

Note that A∗ corrupts exactly t verifiers, and thus Π is secure against adversary A∗. In particular, there
exists a simulator S∗ such that

IDEALFmvzk,S∗,C∗∪C ≈ REALΠ,A∗,C∗∪C ,

where the set of corrupted verifiers are explicitly written. Below, using S∗ andA∗, we construct a simulator
S for adversary A as follows:

1. If the prover P is corrupted, S invokes S∗ to extract a witness w from A.

2. Whenever S∗ calls functionality Fmvzk, S also calls Fmvzk. In the case that P is corrupted, if S∗ wants
to send the witness to Fmvzk, then S sends w to Fmvzk. After receiving a single-bit output from Fmvzk,
S forwards it to S∗. If S∗ wants to send abort or continue to Fmvzk, S forwards it to Fmvzk.

3. S invokes S∗ to simulate the view of A, where S simulates the verifiers in C∗ by invoking A∗ with the
view simulated by S∗.

4. If a random oracle H is involved in protocol Π, S responds the random-oracle queries by invoking S∗.

In the following, we prove that
IDEALFmvzk,S,C ≈ REALΠ,A,C .

Let ViewAC denote the view ofA in the real protocol execution, and ViewSC be the view simulated by S forA
in the ideal-world execution. Similarly, we can define ViewA

∗

C∗∪C and ViewS
∗

C∗∪C . From IDEALFmvzk,S∗,C∗∪C ≈
REALΠ,A∗,C∗∪C , we have that

ViewS
∗

C∗∪C ≈ ViewA
∗

C∗∪C .

We denote by MsgS
∗

C∗ be the messages, which are sent by the verifiers in C∗ to the verifiers in C and the
prover P (if P is corrupted), in the step 3 of the above simulation of S. Let MsgA

∗

C∗ be the messages that are
sent among the same parties during the step 1 inside A∗ in the real protocol execution. Both of MsgS

∗

C∗ and
MsgA

∗

C∗ are computed by A∗, except that A∗ is given the view simulated by S∗ in the first one and the real
view in the second one. From ViewS

∗

C∗∪C ≈ ViewA
∗

C∗∪C , we easily have(
ViewS

∗

C∗∪C ,MsgS
∗

C∗
)
≈
(
ViewA

∗

C∗∪C ,MsgA
∗

C∗
)
.

Let FixView(ViewC∗∪C , C∗,MsgC∗) be a function, which removes from ViewC∗∪C the incoming messages to
the verifiers in C∗ and adds to ViewC∗∪C the messages MsgC∗ that are sent by the verifiers in C∗ to the verifiers
in C and the prover P (if P is corrupted), where ViewC∗∪C is a view of the verifiers in C∗ ∪ C and the prover
P (ifP is corrupted). In the real protocol execution, we note that ViewAC ≡ FixView(ViewA

∗

C∗∪C , C∗,MsgA
∗

C∗).
From the construction of S, we obtain that ViewSC ≡ FixView(ViewS

∗

C∗∪C , C∗,MsgS
∗

C∗). Therefore, we have
that the following holds:

ViewSC ≡ FixView(ViewS
∗

C∗∪C , C
∗,MsgS

∗

C∗)

≈ FixView(ViewA
∗

C∗∪C , C
∗,MsgA

∗

C∗)

≡ ViewAC .

In the ZK setting, only the verifiers obtain the output. Let BS
∗

H be the outputs of the honest verifiers in
the ideal-world execution with S∗, where the honest verifiers either output true or false, or output abort.
Similarly, we can also define BSH. Let BA

∗

H be the outputs of the honest verifiers in the real protocol
execution against A∗. As such, we can define BAH . By the construction of A∗, we obtain that the messages

33

sent byA∗ andA to the honest verifiers and the (possible) honest prover are the same, andA∗ simulates the
verifiers in C∗ honestly. Therefore, together with the definition of FixView, we have(

ViewAC , B
A
H

)
≡
(
FixView(ViewA

∗

C∗∪C , C
∗,MsgA

∗

C∗), BA
∗

H

)
.

From IDEALFmvzk,S∗,C∗∪C ≈ REALΠ,A∗,C∗∪C , we also have: that the following holds:(
ViewS

∗

C∗∪C , B
S∗
H

)
≈
(
ViewA

∗

C∗∪C , B
A∗
H

)
.

Note that S and S∗ make the same calls to functionality Fmvzk, where the same witness and abort/continue
are sent to Fmvzk. Thus, we obtain that BSH ≡ B

S∗
H . Overall, we have the following:(

ViewSC , B
S
H

)
≡
(
FixView(ViewS

∗

C∗∪C , C
∗,MsgS

∗

C∗), B
S∗
H

)
≈
(
FixView(ViewA

∗

C∗∪C , C
∗,MsgA

∗

C∗), BA
∗

H

)
≡
(
ViewAC , B

A
H

)
.

In conclusion, the real-world execution is indistinguishable from the ideal-world execution, which completes
this proof.

C Information-Theoretic NIMVZK Proof in the Honest-Majority Setting

C.1 Proof of Theorem 1

Theorem 5 (Theorem 1, restated). Protocol Πit
nimvzk shown in Figure 3 securely realizes functionality Fmvzk

with information-theoretic security and soundness error N−1
|K| in the (Fcoin,Fverifyprod)-hybrid model in the

presence of a malicious adversary corrupting up to a prover and t verifiers.

Proof. We first consider the case of a malicious prover (i.e., soundness), and then consider the case of an
honest prover (i.e., zero knowledge), where exactly t of n = 2t + 1 verifiers are assumed to be corrupted
in both cases according to Lemma 1. In each case, we construct a simulator S, which is given access to
functionality Fmvzk, and runs an adversary A as a subroutine while emulating Fcoin and Fverifyprod for A.
In the simulation, whenever A aborts, S sends abort to Fmvzk, and then aborts.

Malicious prover. S emulates Fcoin and Fverifyprod, and interacts with adversary A as follows:

1. From i = 1 to m, for the i-th circuit-input wire, S receives the shares of t + 1 honest verifiers from A,
and then reconstructs the whole sharing [wi], which means that the secret wi as well as the shares of all
verifiers (including the shares held by corrupted verifiers) are computed using the t+ 1 shares of honest
verifiers. Then, S defines a witness w := (w1, . . . , wm).

2. For each addition gate with input sharings [x] and [y], S computes the whole sharing [z] := [x] + [y].

3. From i = 1 to N , for the i-th multiplication gate with whole input sharings [xi] and [yi], S receives the
shares of t+ 1 honest verifiers from A, and then reconstructs the whole output sharing [zi].

4. S emulates Fcoin by sending a uniform element χ ∈ K to A, and then computes the whole sharings
([x], [y], [z]) with χ and {([xi], [yi], [zi])}i∈[1,N] following the protocol specification.

5. S emulates Fverifyprod and sends the shares of corrupted verifiers on ([x], [y], [z]) along with (x,y, z)
to A. If there exists some i ∈ [1, N] such that zi 6= xi · yi, then S sends abort to adversary A and
functionality Fmvzk, and then aborts. Otherwise, S sends accept to A and continues the simulation.

34

6. For the single circuit-output gate, S plays the role of honest verifiers and runs the Open procedure with
A. Then, S sends w to functionality Fmvzk who returns a decisional result b ∈ {true, false} to S. For
each honest verifier Vi simulated by S, if Vi accepts in the Open procedure, then S sends continuei to
Fmvzk, otherwise S sends aborti to Fmvzk.

Hybrid argument. Below, we use a series of hybrids to prove that the real-world execution is indistinguish-
able from the ideal-world execution, except with probability N−1

|K| .

Hybrid0: This is the real-world execution.

Hybrid1: In this hybrid, S extracts a witness w from A. S also computes the whole sharing on each wire
in the circuit using the shares of t+ 1 honest verifiers.

It is clear that Hybrid1 has the identical distribution as Hybrid0.

Hybrid2: In this hybrid, S emulates Fcoin honestly by sending a uniform χ ∈ K to A. Then S emulates
Fverifyprod as described above. In particular, S checks whether zi = xi · yi for all i ∈ [1, N] instead of
checking z = x� y as done in Hybrid1.

It is easy to see that the simulation of Fcoin is perfect. Furthermore, the shares of ([x], [y], [z]) held by the
corrupted verifiers and secrets (x,y, z) that are sent by Fverifyprod toA in Hybrid2 have the identical distri-
bution as that in Hybrid1. The only difference between Hybrid1 and Hybrid2 is the output of Fverifyprod,
where the output depends on whether z = x � y in Hybrid1, while the output is determined relying on
whether zi = xi · yi for all i ∈ [1, N] in Hybrid2. In the following, we prove that checking zi = xi · yi for
all i ∈ [1, N] is equivalent to checking z = x � y, except with probability N−1

|K| . Consider the following
two polynomials of degree-(N − 1) over K:

F (X) = (x1 · y1) + (x2 · y2) ·X + · · ·+ (xN · yN) ·XN−1,

G(X) = z1 + z2 ·X + · · ·+ zN ·XN−1.

Therefore, we have x � y = F (χ) and z = G(χ) for a uniform element χ ∈ K. If there exists some
i ∈ [1, N] such that zi 6= xi · yi, then F (X) −G(X) is a non-zero polynomial of degree at most (N − 1).
According to the Schwartz–Zippel lemma, for a random element χ ∈ K, the probability that x � y − z =
F (χ)−G(χ) = 0 is at most N−1

|K| .

Hybrid3: In this hybrid, S simulates the circuit-output verification phase as described above. In particular,
S sends w to Fmvzk, and determines which honest verifiers obtain the output b ∈ {true, false} relying on
whether the honest verifier accepts or not during the Open procedure. This is the ideal-world execution.

If an honest verifier Vi aborts in the Open procedure, S sends aborti to Fmvzk which outputs abort to Vi
in Hybrid3. Honest verifier Vi has the same output (i.e., abort) in Hybrid2. If Vi does not abort, then it
will obtain an output bit η ∈ {true, false} computed following the protocol specification in Hybrid2,2 while
it will receive b ∈ {true, false} from functionality Fmvzk in Hybrid3. Therefore, we only need to bound
the probability that b ≡ η. If honest verifier Vi does not abort in Hybrid2, then all multiplication gates are
computed correctly, and the output bit is also opened correctly. The evaluation of addition gates is trivially
correct. Therefore, Vi will always obtain the correct output bit η = C(w) in Hybrid2, which has the same
distribution as b in Hybrid3.

Honest prover. If S receives false from functionality Fmvzk, S aborts. Otherwise, S emulates Fcoin and
Fverifyprod, and interacts with A as follows:

2If η = 0, define η = true. If η = 1, set η = false.

35

1. For each circuit-input wire on an unknown value w ∈ F, S samples t uniform elements in F as the shares
of [w] held by corrupted verifiers, and then sends them to A.

2. From i = 1 to N , for the i-th multiplication gate with input sharings [xi], [yi], S samples t uniform
elements in F as the shares of corrupted verifiers on the output sharing [zi], and then sends them to A.

3. S emulates Fcoin by sending a uniform element χ ∈ K to A, and computes the shares of corrupted
verifiers on ([x], [y], [z]) with χ and the shares of corrupted verifiers on {([xi], [yi], [zi])}i∈[1,N] following
the protocol specification.

4. S emulates Fverifyprod by sending the shares of corrupted verifiers on ([x], [y], [z]) to A and always
outputting accept to A.

5. S uses the shares of t corrupted verifiers on the sharing [η] of the single circuit-output gate along with
the secret η = 0 to compute the shares of [η] held by honest verifiers.

6. S uses the shares of honest verifiers on [η] to run the Open procedure with A. For each i ∈ H, if Vi
accepts in the Open procedure, then S sends continuei to Fmvzk, otherwise S sends aborti to Fmvzk.

Hybrid argument. Below, we use a series of hybrids to prove that the real-world execution has the identical
distribution as the ideal-world execution, meaning that protocol Πit

nimvzk is perfect zero-knowledge.

Hybrid0: This is the real-world execution.

Hybrid1: In this hybrid, S emulates two functionalities Fcoin and Fverifyprod as described above. Particu-
larly, S sends the shares of corrupted verifiers on ([x], [y], [z]) to A, and also sends accept to A.

Clearly, the simulation of Fcoin is the same in both Hybrid0 and Hybrid1. Besides, the shares of corrupted
verifiers on ([x], [y], [z]) are computed following the protocol description in Hybrid1, and thus have the
identical distribution as that in Hybrid0. In Hybrid0, Fverifyprod checks whether z = x � y and returns
the result to A, while in Hybrid1, Fverifyprod always returns accept to A. In Hybrid0, the output sharings
{[zi]}i∈[1,N] of all multiplication gates are computed correctly by the honest prover. Thus, we always have
that zi = xi · yi for all i ∈ [1, N]. Following the definition of inner-product tuple ([x], [y], [z]), we obtain
that z = x� y. Therefore, Fverifyprod will always return accept to A in Hybrid0. This means that Hybrid1

has the same distribution as Hybrid0.

Hybrid2: In this hybrid, S simulates the circuit-output verification phase as described above. In particular,
S uses 0 along with the shares of t corrupted verifiers to reconstruct the whole sharing [η] on the circuit-
output wire. Then, S runs the Open procedure with A using the shares of honest verifiers on [η]. For each
i ∈ H, S sends continuei or aborti to Fmvzk depending on whether Vi accepts or not in the Open procedure.

In Hybrid1, all multiplication gates are computed correctly, and thus the verifiers corrupted by A obtain an
output bit C(w) = 0. In Hybrid2, S reconstructs the whole sharing [η] such that η = 0. Therefore, the
simulation of the Open procedure in Hybrid2 has the identical distribution as that in Hybrid1. Note that
the outputs of honest verifiers in Hybrid2 have the identical distribution as that in Hybrid1. Thus, Hybrid2

is perfectly indistinguishable from Hybrid1.

Hybrid3: In this hybrid, S acts as the honest prover, samples uniform elements in F as the shares of cor-
rupted verifiers on the output sharings of all circuit-input gates and multiplication gates, and send them toA,
where the shares held by corrupted verifiers on the output sharings of addition gates are computed locally.
This is the ideal-world execution.

36

Functionality Finner-prod

Let [x], [y] be the input vectors of sharings over a field K. Let C be the set of corrupted verifiers. This functionality
runs with a prover P and n verifiers V1, . . . ,Vn, and operates as follows:

1. Upon receiving the shares of [x] and [y] from honest verifiers, execute the following:

• Reconstruct the secrets x,y from the shares.

• Compute the shares of [x], [y] held by corrupted verifiers, and send these shares to the adversary.

• If P is corrupted, send (x,y) to the adversary.

2. Receive an additive error d ∈ K from the adversary. Also receive a set of shares {zi}i∈C for corrupted verifiers
from the adversary.

3. Compute z := x� y + d ∈ K, and then run [z] ← Share(z) such that the share of corrupted verifier Vi is zi

for i ∈ C. Then, distribute the shares of [z] to honest verifiers.

Figure 12: Inner-product functionality with additive errors.

In Hybrid2, S uses the real witness and actual wire values to generate the output sharings of all circuit-
input gates and multiplication gates, while in Hybrid3, S simply samples random elements as the shares
of corrupted verifiers. According to the security of the underlying threshold secret sharing scheme, the
distribution of the shares of corrupted verifiers in Hybrid3 is the same as that in Hybrid2. Therefore,
Hybrid3 has the identical distribution as Hybrid2.

In conclusion, the real-world execution is indistinguishable from the ideal-world execution except with
probability N−1

|K| , which completes the proof.

C.2 Information-Theoretic Verification of Inner-Product Tuples

In this subsection, we describe the information-theoretic protocol to verify the correctness of inner-product
tuples. In particular, the prover provides the random sharings to help n verifiers computing the inner-
product sharings and a random multiplication triple. For the dimension N of vectors, we can achieve the
communication complexity O((n + τ) logτ N) and the round complexity O(logτ N) for some parameter
τ ∈ N (e.g., τ = 64). First of all, we present two useful sub-protocols to compute the inner product of two
vectors and compress the dimension of inner-product vectors, respectively.

C.2.1 Prover-Aided Inner-Product Protocol

In the prover-aided setting, we show an information-theoretic inner-product protocol, which securely real-
izes the functionality Finner-prod shown in Figure 12. In this functionality, we allow the adversary to add
an additive error into the output, where additive errors will be detected in our subsequent zero-knowledge
verification protocol. Similar to Fmvzk, if the prover is corrupted, Finner-prod reveals the secret vectors to the
adversary.

In Figure 13, we describe the prover-aided inner-product protocol Πit
inner-prod with information-theoretic

security. This protocol builds on the inner-product variant of the original DN multiplication protocol [DN07],
which has been used in several previous MPC works such as [CGH+18, GSZ20]. The main difference of our
protocol is that the prover helps n verifiers to generate a sharing on the inner-product of two vectors, by pro-
viding the random double sharings [DN07], i.e., ([r], 〈r〉) for a random r ∈ F. Here [r] denotes a degree-t
sharing, and 〈r〉 to denote a degree-2t sharing. By letting the prover aid to generate random double sharings,
protocol Πit

inner-product reduces the communication by at least 0.5 elements per inner product, compared to

37

Protocol Πit
inner-prod

Inputs: Every verifier Vi holds the shares of [x] and [y] over a field K for i ∈ [1, n].

Protocol execution: P and V1, . . . ,Vn execute the following:

1. P samples r ← K, and runs [r]← Sharet(r) and 〈r〉 ← Share2t(r) which distribute the shares to all verifiers.

2. All verifiers locally compute 〈u〉 := [x]� [y] + 〈r〉.

3. For i 6= 1, every verifier Vi sends its share of 〈u〉 to V1, who reconstructs the secret u = x� y + r.

4. V1 runs [u]← Sharet(u) that distributes the shares to all verifiers, where V1 sets the shares of a predetermined
set of t verifiers (excluding V1) as 0.

5. All verifiers locally compute [z] := [u]− [r] and output [z].

Figure 13: Information-theoretic prover-aided inner-product protocol secure up to additive errors.

the state-of-the-art inner-product protocol [GLO+21] in the MPC setting that requires the amortized com-
munication of 4 elements for n inner products. In the protocol Πit

inner-product shown in Figure 13, [x] � [y]
denotes that every verifier locally computes the inner product of its shares on [x] and [y], and the resulting
shares constitute a degree-2t sharing 〈x� y〉.

Theorem 6. Protocol Πit
inner-prod shown in Figure 13 securely realizes functionality Finner-prod in the pres-

ence of a malicious adversary corrupting up to a prover and exactly t verifiers.

Proof. For any adversary A, we construct a simulator S, which is given access to Finner-prod, and runs A as
a subroutine. In the simulation, whenever A aborts, S sends abort to Finner-prod, and also aborts.

Description of simulation. Given access to functionality Finner-prod, S interacts with A as follows:

1. S simulates the generation of random double sharings as follows:

• If P is honest, S samples 2t + 1 uniform elements in K as the shares of all verifiers on a degree-2t
sharing 〈r〉, and reconstructs the secret r. Then, S uses the same secret r to generate a random degree-t
sharing [r] by running Sharet(r), and sends the shares of ([r], 〈r〉) to the corrupted verifiers.

• If P is corrupted, S receives the shares of honest verifiers on ([r], 〈r〉) from A, and then reconstructs
the whole sharing [r] using the shares of t+ 1 honest verifiers.

2. S receives the shares of corrupted verifiers on [x] and [y] from Finner-prod.

3. S computes the shares of honest verifiers on 〈u〉 = [x]� [y] + 〈r〉 and the secret u as follows:

• If P is honest, then for every honest verifier, S samples a uniform element in K as its share on 〈u〉.
Moreover, S computes the shares of corrupted verifiers on 〈u〉 by using their shares on [x], [y] and 〈r〉.
Then, S uses the shares of all verifiers on 〈u〉 to reconstruct u.

• If P is corrupted, S receives the secret vectors x,y from Finner-prod, and reconstructs the whole shar-
ings [x] and [y] using vectors x,y and the shares of t corrupted verifiers. In this case, S computes the
shares of honest verifiers on 〈u〉 following the protocol specification, and also computes u = x�y+r.

4. S computes an additive error d and the shares of corrupted verifiers on [z] = [x� y + d] as follows:

• If V1 is honest, then S receives the shares of corrupted verifiers on 〈u〉 = [x] � [y] + 〈r〉. Then, S
reconstructs the secret u′ using these shares and the shares of honest verifiers on 〈u〉. Next, S generates
the sharing [u′] following the protocol description, and sends the shares to the corrupted verifiers.

38

• If V1 is corrupted, then S sends the shares of honest verifiers on 〈u〉 = [x] � [y] + 〈r〉 to A. Then,
S receives the shares of honest verifiers on [u] from A under the constraint that the share of an honest
verifier is 0 if it is in a predetermined set of t verifiers. Next, S uses these shares to reconstruct the
whole sharing [u′] (involving the secret u′).

S computes the additive error d := u′ − u, and also computes the shares of corrupted verifiers on
[z] = [u′]− [r] using their shares on [u′] and [r].

5. S sends the additive error d and the shares of [z] held by corrupted verifiers to functionality Finner-prod.

Hybrid argument. Below, we use a series of hybrids to prove that the real-world execution is perfectly
indistinguishable from the ideal-world execution.

Hybrid0: This is the real-world execution.

Hybrid1: In this hybrid, S simulates the generation of random double sharings as described above. In
particular, if P is honest, S samples 2t + 1 uniform elements to reconstruct a degree-2t whole sharing 〈r〉,
and then uses the same secret r to generate a random degree-t sharing [r]. Besides, S receives the shares of
corrupted verifiers on [x] and [y] from Finner-prod.

The only difference between Hybrid0 and Hybrid1 is that the generation manner of random double sharings
in the case that P is honest. Specifically, the honest prover P samples r ← K and generates a pair of random
double sharings ([r], 〈r〉) by running the Share procedure in Hybrid0, while S samples 2t+1 random shares
to reconstruct 〈r〉 and uses the same secret r to generate [r] in Hybrid1. For a random element r, the two
manners of generating ([r], 〈r〉) are the same. Therefore, Hybrid1 has the identical distribution as Hybrid0.

Hybrid2: In this hybrid, S computes an additive error d and the shares of corrupted verifiers on [z] =
[x� y + d] as described above. Then, S sends d and these shares of [z] to Finner-prod.

The only difference between Hybrid1 and Hybrid2 is that in Hybrid1, the shares of honest verifiers on [z]
are computed following the protocol description, while in Hybrid2, the honest verifiers obtain their shares
on [z] from Finner-prod. Note that the shares of [z] held by honest verifiers are determined by the shares of
corrupted verifiers and the secret x�y + d. Therefore, the distribution of Hybrid2 is the same as Hybrid1.

Hybrid3: In this hybrid, S computes the shares of honest verifiers on 〈u〉 = [x]� [y] + 〈r〉 and the secret
u as described above. In particular, if P is honest, then S samples uniform elements as the shares of honest
verifiers on 〈u〉 = [x]� [y] + 〈r〉. This is the ideal-world execution.

The only difference between Hybrid2 and Hybrid3 is that if P is honest, S uses the real shares of 〈u〉 held
by honest verifiers in Hybrid2, while S samples uniform elements as the shares of honest verifiers on 〈u〉 in
Hybrid3. In the case that P is honest, the shares of 〈r〉 held by honest verifiers are uniformly random, and
thus the shares of honest verifiers on 〈u〉 = [x] � [y] + 〈r〉 are also random. Therefore, the distribution of
Hybrid3 is identical to that of Hybrid2.

Overall, the real-world execution has the identical distribution as the ideal-world execution, which completes
the proof.

C.2.2 Prover-Aided Verification for Inner-Product Tuples

Firstly, we show an efficient sub-protocol Πit
compress shown in Figure 14 in the (Finner-prod,Fcoin)-hybrid

model, which compresses m inner-product tuples into a single inner-product tuple. This protocol is based

39

Protocol Πit
compress

Inputs: V1, . . . ,Vn hold the shares of ([x1], [y1], [z1]), . . . , ([xm], [ym], [zm]) over a field K.

Protocol execution: Prover P and all verifiers execute as follows:

1. All verifiers locally compute [f(·)] and [g(·)] with [xi] and [yi] for all i ∈ [1,m] respectively, where f(·) and
g(·) are vectors of degree-(m − 1) polynomials such that f(i) = xi and g(i) = yi for i ∈ [1,m]. For each
i ∈ [m+ 1, 2m− 1], all verifiers also locally compute [f(i)] and [g(i)].

2. For i ∈ [m+ 1, 2m− 1], P and all verifiers call Finner-prod on ([f(i)], [g(i)]) to compute [zi] = [f(i)� g(i)].

3. Let h(·) be a degree-2(m−1) polynomial such that h(i) = zi for i ∈ [1, 2m−1]. All verifiers locally compute
[h(·)] by using sharings [z1], . . . , [z2m−1].

4. All verifiers call Fcoin to sample a random element α ∈ K. If α ∈ [1,m], the verifiers abort. Otherwise, the
verifiers output ([f(α)], [g(α)], [h(α)]).

Figure 14: Protocol for compressing inner-product tuples in the (Finner-prod,Fcoin)-hybrid model.

on the inner-product extension of the batch-wise multiplication verification technique [BFO12], which has
been used in honest-majority MPC protocols [NV18, GSZ20]. The main difference for Πit

compress is that it
works in the MVZK setting and can adopt the prover-aided inner-product protocol described in the previous
subsection to instantiate Finner-prod.

Lemma 3. If there exists at least one incorrect inner-product tuple and protocol Πit
compress does not abort,

then the resulting tuple output by Πit
compress is correct with probability at most 2(m−1)

|K|−m .

Proof. If α ∈ [1,m], then Πit
compress aborts. Thus, there are |K| − m choices of α that do not cause an

abort of Πit
compress. Since there are at least one incorrect inner-product tuple, we have that f � g 6= h.

Note that the polynomial f � g − h has a degree at most 2(m − 1). Under the condition that Πit
compress

does not abort, according to the Schwartz–Zippel lemma, for a random element α ∈ K, the probability that
f(α) � g(α) − h(α) = 0 is bounded by 2(m−1)

|K|−m . That is, if Πit
compress does not abort, it outputs a correct

inner-product tuple with probability at most 2(m−1)
|K|−m , which completes the proof.

Below, we describe the information-theoretic verification protocol for inner-product tuples in the prover-
aided setting. This protocol invokes functionality Finner-prod and sub-protocol Πit

compress, and is shown in
Figure 15, where the prover samples random sharings to aid the verification without affecting the soundness,
while keeping the secrets zero-knowledge. This protocol is divided into two phases: 1) the first phase is to
recursively reduce the dimension of the input inner-product tuple ([x], [y], [z]); 2) the second phase is to
randomize the inner-product tuple with a small dimension that is the final output in the first phase, and then
to check correctness of the tuple by the Open procedure. While the randomization technique has been used
in prior work [NV18, BBC+19, GSZ20], we use it in the prover-aided setting, where the prover generates a
random multiplication triple. In the dimension-reduction phase, for each iteration, if the dimension m is not
a multiple of τ , then τ · dm/τe −m zero sharings [0] are generated locally by all verifiers and added into
the vectors of sharings [x] and [y].

Theorem 7. Protocol Πit
verifyprod shown in Figure 15 securely realizes functionalityFverifyprod with information-

theoretic security and soundness error 2τdlogτ Ne
|K|−τ in the (Finner-prod,Fcoin)-hybrid model in the presence of

a malicious adversary corrupting up to the prover and exactly t verifiers.

40

Protocol Πit
verifyprod

Inputs: V1, . . . ,Vn hold an inner-product tuple ([x], [y], [z]) defined over a field K, where the dimension of
vectors x,y is N . Let τ be the compression parameter.

• Dimension-reduction: P and all verifiers initialize the dimension m := N of the inner-product tuple, and
iteratively execute the following steps till m ≤ τ .

1. All verifiers parse [x] and [y] as [x] = ([a1], . . . , [aτ]) and [y] = ([b1], . . . , [bτ]) respectively, where ai, bi
are vectors of dimension ` = m/τ for i ∈ [1, τ].

2. For i ∈ [1, τ − 1], P and all verifiers call Finner-prod on ([ai], [bi]) to compute [ci] = [ai � bi]. Then, the
verifiers set [cτ] := [z]−

∑
i∈[1,τ−1][ci].

3. P and all verifiers execute the sub-protocol Πit
compress shown in Figure 14 on {([ai], [bi], [ci])}i∈[1,τ].

4. The verifiers update ([x], [y], [z]) := ([a], [b], [c]), which is the output from Πit
compress, and set m := m/τ .

• Randomization: Let ([x], [y], [z]) be the inner-product tuple output in the previous phase, where the dimension
of vectors x,y is m ≤ τ . Prover P and all verifiers execute the following:

1. All verifiers parse [x] = ([a1], . . . , [am]) and [y] = ([b1], . . . , [bm]).

2. P samples a0, b0 ← K and computes c0 := a0 · b0. Then, P runs [v]← Share(v) for each v ∈ {a0, b0, c0},
which distributes the shares to all verifiers.

3. For i ∈ [1,m − 1], P and all verifiers call Finner-prod on ([ai], [bi]) to compute [ci] = [ai · bi]. Then, the
verifiers set [cm] := [z]−

∑
i∈[1,m−1][ci].

4. P and all verifiers execute the sub-protocol Πit
compress shown in Figure 14 on {([ai], [bi], [ci])}i∈[0,m]. Then,

all verifiers obtain the output ([a], [b], [c]).

5. All verifiers run v ← Open([v]) for each v ∈ {a, b, c}. If abort is received in the Open procedure, the
verifiers abort. Then, the verifiers check that c = a · b. If the check fails, the verifiers output abort.
Otherwise, they output accept.

Figure 15: Information-theoretic verification protocol for inner-product tuples in the prover-aided setting.

Proof. For any adversary A, we construct a simulator S, which is given access to functionality Fverifyprod

and runs A as a subroutine. Whenever A aborts, S sends abort to Fverifyprod and also aborts.

Description of simulation. S receives the shares of corrupted verifiers on ([x], [y], [z]) from functionality
Fverifyprod. IfP is corrupted, S also receives fromFverifyprod the secrets x,y, z, and computes d := z−x�y.
Otherwise, S sets d = 0. Then, S emulates Fcoin and Finner-prod, and interacts with A as follows:

• Simulation of sub-protocol Πit
compress: Given {([xi], [yi], [zi])}i∈[1,m] as input, S simulates a protocol

execution of Πit
compress as follows:

1. S computes the shares of corrupted verifiers on [f(·)] and [g(·)] using their shares on {([xi], [yi])}i∈[1,m].
If P is corrupted, S computes the polynomials f(·) and g(·).

2. For i ∈ [m + 1, 2m − 1], S emulates Finner-prod and sends the shares of [f(i)] and [g(i)] held by
corrupted verifiers to A. If P is corrupted, S sends f(i) and g(i) for all i ∈ [m + 1, 2m − 1] to A.
Then, S receives the shares of corrupted verifiers on [zi] = [f(i) � g(i)] along with an additive error
di from A.

3. S computes the shares of corrupted verifiers on [h(·)] using their shares on {[zi]}i∈[1,2m−1].

4. S emulates Fcoin by sending a uniform element α to A. If α ∈ [1,m], S sends abort to functionality
Fverifyprod and then aborts. Otherwise, S computes the shares of corrupted verifiers on [a] = [f(α)],

41

[b] = [g(α)] and [c] = [h(α)] using their shares on [f(·)], [g(·)] and [h(·)]. Besides, S uses the errors
{di}i∈[1,2m−1] to reconstruct an additive error d′ with d′ = c − a � b. If P is corrupted, S computes
a = f(α), b = g(α) and c = h(α) = a� b + d′.

• Simulation of dimension-reduction: Following the protocol specification, S simulates the view ofA in the
following iterative manner:

1. For i ∈ [1, τ], S computes the shares of [ai], [bi] held by corrupted verifiers directly from the shares of
corrupted verifiers on [x], [y]. If P is corrupted, S uses x,y to compute ai, bi for i ∈ [1, τ].

2. For i ∈ [1, τ − 1], S emulates Finner-prod and sends the shares of corrupted verifiers on [ai], [bi] to A.
If P is corrupted, S also sends ai, bi to A. Then, for i ∈ [1, τ − 1], S receives the shares of [ci] held
by corrupted verifiers and an additive error di from A.

3. S computes the shares of corrupted verifiers on [cτ] = [z] −
∑

i∈[1,τ−1][ci], and also computes dτ :=
d−

∑
i∈[1,τ−1] di.

4. S simulates the protocol execution of Πit
compress on the input inner-product tuples {([ai], [bi], [ci])}i∈[1,τ]

as described above.

5. S updates the shares of corrupted verifiers on ([x], [y], [z]) with their shares of ([a], [b], [c]), and also
updates d := d′. If P is corrupted, S updates (x,y, z) as (a, b, c). Then, S performs the next iteration.

• Simulation of randomization: S knows the shares of corrupted verifiers on ([x], [y], [z]) output in the
dimension-reduction phase, where the dimension of vectors x,y is m ≤ τ . Furthermore, S knows the
additive error d = z − x� y, and gets (x,y, z) if P is corrupted.

1. S computes the shares of corrupted verifiers on [ai], [bi] for i ∈ [1,m] from their shares of [x], [y]. If
P is corrupted, S also computes ai, bi for all i ∈ [1,m].

2. If P is honest, S samples uniform elements as the shares of ([a0], [b0], [c0]) held by corrupted verifiers,
and then sends them to A. Otherwise, S receives from A the shares of t + 1 honest verifiers on
([a0], [b0], [c0]), and then reconstructs the whole sharings [a0], [b0], [c0]. In both cases, S computes
d0 := c0 − a0 · b0, where d0 = 0 for the case of honest P .

3. For i ∈ [1,m− 1], S emulates Finner-prod and sends the shares of corrupted verifiers on [ai], [bi] to A.
If P is corrupted, S also sends ai, bi to A. Then, for i ∈ [1,m − 1], S receives the shares of [ci] held
by corrupted verifiers and an additive error di from A.

4. S computes the shares of corrupted verifiers on [cm] = [z] −
∑

i∈[1,m−1][ci], and sets dm := d −∑
i∈[1,m−1] di.

5. S simulates the execution of sub-protocol Πit
compress on {([ai], [bi], [ci])}i∈[0,m] as described above. In

particular, S obtains the shares of corrupted verifiers on the output sharings ([a], [b], [c]), and also gets
the additive error d′ = c−a · b depending on the errors d0, d1, . . . , dm. If P is corrupted, S also knows
the secrets a, b, c.

6. If P is honest, S samples a, b uniformly at random and computes c = a · b + d′. Otherwise, S has
known a, b, c. Then, S uses the secrets a, b, c along with the shares of corrupted verifiers to reconstruct
the whole sharings [a], [b], [c].

7. S receives an output either abort or accept from functionalityFverifyprod. S uses the shares of [a], [b], [c]
held by honest verifiers to run the Open procedure with A. Then, S plays the role of honest verifiers
and checks that c = a · b. For every honest verifier Vi (simulated by S), if it aborts, then S sends aborti
to Fverifyprod, otherwise S sends continuei to Fverifyprod.

42

Hybrid argument. Below, we use a series of hybrids to prove that the real-world execution is indistinguish-
able from the ideal-world execution, except with probability 2τdlogτ Ne

|K|−τ .

Hybrid0: This is the real-world execution.

Hybrid1: In this hybrid, S computes the shares of corrupted verifiers and the additive errors (together
with computing the secrets if P is corrupted) as described above, where Finner-prod and Fcoin are simulated
honestly.

The simulation of S in Hybrid1 does not change the behaviors of honest parties. Thus, Hybrid1 has the
identical distribution as Hybrid0.

Hybrid2: In this hybrid, if P is honest, then S samples uniform elements as the shares of corrupted verifiers
on ([a0], [b0], [c0]). Furthermore, instead of using the real sharings [a], [b], [c], S constructs ([a], [b], [c]) with
uniform elements a, b as described above. Note that if P is corrupted, then S knows the real secrets a, b, c
and thus can reconstruct and use the real sharings [a], [b], [c].

Clearly, the shares of corrupted verifiers on ([a0], [b0], [c0]) in Hybrid2 have the same distribution as that
in Hybrid1 for an honest prover P . In the randomization procedure, a and b are linear combinations of
{ai}i∈[0,m] and {bi}i∈[0,m] respectively, where the coefficients are all non-zero. Since a0, b0 are uniformly
random in the case that P is honest, a, b are also uniformly random. The only difference between Hybrid1

and Hybrid2 is that in Hybrid1, a and b are masked by random elements a0 and b0, while in Hybrid2, a, b
are randomly sampled by S. Therefore, a, b have the identical distribution in Hybrid1 and Hybrid2. In
addition, c is determined by elements a, b and the additive error d′, and thus the distribution of c remains the
same in two hybrids. Overall, the distribution of Hybrid2 is identical to that of Hybrid1.

Hybrid3: In this hybrid, S simulates the Open procedure and interacts with functionality Fverifyprod which
sends an output or abort to every honest verifier, as described above. This is the ideal-world execution.

The only difference between Hybrid2 and Hybrid3 is that if the input inner-product tuple ([x], [y], [z])
is incorrect for a malicious prover, an honest verifier outputs accept in Hybrid2, while the honest verifier
outputs abort in Hybrid3. We bound the difference between two hybrids by the following lemmas.

Lemma 4. If the input inner-product tuple ([x], [y], [z]) is incorrect where the dimension of x,y is N , all
honest verifiers will output abort, except with probability at most 2τdlogτ Ne

|K|−τ .

Proof. For the i-th iteration with i ∈ [1, logτ N−1] in the dimension-reduction phase, suppose that the input
inner-product tuple ([x], [y], [z]) is incorrect. We first show that at least one of the following τ inner-product
tuples is incorrect:

([a1], [b1], [c1]), . . . , ([aτ], [bτ], [cτ])

where [x] = ([a1], . . . , [aτ]), [y] = ([b1], . . . , [bτ]) and [z] =
∑

i∈[1,τ][ci]. If at least one of the first τ − 1
inner-product tuples is incorrect, then the statement holds. Otherwise (i.e., all of the first τ − 1 tuples are
correct), ai� bi = ci for all i ∈ [1, τ − 1]. Since the input inner-product tuple ([x], [y], [z]) is incorrect, we
have that x� y 6= z. Thus, we have the following:

aτ � bτ = x� y −
∑

i∈[1,τ−1]

ai � bi = x� y −
∑

i∈[1,τ−1]

ci 6= z −
∑

i∈[1,τ−1]

ci = cτ .

This means that the τ -th inner-product tuple ([aτ], [bτ], [cτ]) is incorrect. According to Lemma 3, we obtain
that the resulting inner-product tuple ([a], [b], [c]) output by Πit

compress is incorrect except with probability at

most 2(τ−1)
|K|−τ .

43

In the randomization phase, the input inner-product tuple ([x], [y], [z]) output by the dimension-reduction
phase is incorrect, except with probability at most 2(τ−1)(dlogτ Ne−1)

|K|−τ from the above analysis, where the
dimension of x,y is now m ≤ τ . In the following, we assume that the input tuple ([x], [y], [z]) is incorrect.
Let ([a1], [b1], [c1]), . . . , ([am], [bm], [cm]) be the m multiplication triples such that [x] = ([a1], . . . , [am]),
[y] = ([b1], . . . , [bm]) and [z] =

∑
i∈[1,m][ci]. Following a similar analysis, we have that at least one of

these multiplication triples is incorrect. No matter what correctness of the additional triple ([a0], [b0], [c0])
is, based on Lemma 3, the resulting multiplication triple ([a], [b], [c]) output by Πit

compress is incorrect, except
with probability at most 2m

|K|−m−1 ≤
2τ

|K|−τ−1 ≈
2τ
|K|−τ for a large field K.

Overall, if the input inner-product tuple ([x], [y], [z]) is incorrect, the resulting multiplication triple ([a], [b], [c])
output in the randomization phase is also incorrect, except with probability at most

2(τ − 1)(dlogτ Ne − 1)

|K| − τ
+

2τ

|K| − τ
≤ 2τdlogτ Ne

|K| − τ
.

Note that an incorrect multiplication triple ([a], [b], [c]) will cause all honest verifiers either abort in the
Open procedure, or output abort by checking that a · b 6= c. Therefore, all honest verifiers will output abort,
except with probability at most 2τdlogτ Ne

|K|−τ , which completes the proof.

From the above lemma, we have that Hybrid3 is indistinguishable from Hybrid2, except with probability
at most 2τdlogτ Ne

|K|−τ .

By the above hybrids, we obtain that the real-world execution is indistinguishable from the ideal-world
execution, except with probability at most 2τdlogτ Ne

|K|−τ , which completes the proof.

D Proof of Theorem 2

Theorem 8 (Theorem 2, restated). Let H1 and H2 be two random oracles. Protocol Πfs
snimvzk shown in

Figure 4 securely realizes functionality Fmvzk with soundness error at most Q1n+(Q2+1)N
2λ

in the Fverifyprod-
hybrid model in the presence of a malicious adversary corrupting up to a prover and t verifiers, where Q1

and Q2 are the number of queries to random oracles H1 and H2 respectively.

Proof. According to Lemma 1, we only need to consider that exactly t of n = 2t+1 verifiers are corrupted.
We first consider the case of a malicious prover (i.e., soundness), and then consider the case of an honest
prover (i.e., zero knowledge). In each case, we construct a PPT simulator S, which is given access to
functionality Fmvzk, and runs a PPT adversary A as a subroutine while emulating Fverifyprod for A. In the
simulation, whenever A aborts, S sends abort to Fmvzk, and then aborts.

The simulation of S for the circuit-evaluation phase and the circuit-output verification phase is the same
as that in the proof of Theorem 1. Therefore, we focus on the simulation of S for the verification of
multiplication gates, which is described as follows:

Malicious prover. In the verification phase of multiplication gates, S emulatesFverifyprod, and interacts with
A as follows:

1. After the circuit-evaluation phase, for i ∈ [1,m], S gets the whole sharings [wi]. For i ∈ [1, N], S also
obtains the whole sharings [xi], [yi], [zi] on the i-th multiplication gate.

2. S simulates the random oracles H1 and H2 by responding the queries with random values while keeping
the consistency of answers.

44

3. S receives fromA the public commitments com1, . . . , comn. For i ∈ H, S acts as honest verifier Vi and
receives a randomness ri ∈ {0, 1}λ from A.

4. For each i ∈ H, S uses the shares of [w1], . . . , [wm] and [z1], . . . , [zN] held by honest verifier Vi as well
as ri to check the correctness of commitment comi, where S makes the corresponding query to H1 by
itself. If the check fails, S sends abort to Fmvzk, and then aborts.

5. S sets the public random coefficient χ := H2(com1, . . . , comn) by making the corresponding query to
H2. Then, S computes the shares of corrupted verifiers on [x], [y], [z], and also computes the correspond-
ing secrets x,y, z, following the protocol specification.

6. S emulates Fverifyprod by sending the shares of corrupted verifiers on ([x], [y], [z]) along with (x,y, z)
to A. If there exists some i ∈ [1, N] such that zi 6= xi · yi, then S sends abort to A and functionality
Fmvzk, and then aborts. Otherwise, S sends accept to A.

Below, we show that S perfectly simulates the view of A in the verification phase of multiplication gates,
except with probability at most Q1n+(Q2+1)N

2λ
. In this phase, the difference between the real-world execution

and ideal-world execution is that the real-world execution checks that z = x�y when emulating Fverifyprod,
while the ideal-world execution checks that zi = xi · yi for i ∈ [1, N]. Let E1 be the event that for some
i ∈ H, comi = H1(Msgi, ri) and (Msgi, ri) was queried to H1 after χ = H2(com1, . . . , comn) has already
been queried, where Msgi denotes the shares of {[wj]}j∈[1,m] and {[zj]}j∈[1,N] held by honest verifier Vi
and ri is sent to Vi. If E1 occurs, then when A makes a query (com1, . . . , comn) to obtain χ, comi for
some i ∈ H is either chosen byA without querying H1 or output by H1 for some query made by A. In both
cases, we have that Pr[E1] ≤ Q1(t+1)

2λ
< Q1n

2λ
, where A makes at most Q1 queries to random oracle H1.

Let E2 be the event that the real-world execution outputs accept for Fverifyprod, but the ideal-world exe-
cution outputs abort when emulatingFverifyprod. EventE2 happens if and only if there exists some i ∈ [1, N]

such that zi 6= xi ·yi but z = x�y in the real protocol execution. We show that Pr[E2|¬E1] ≤ (Q2+1)(N−1)
|K| .

Specifically, if E1 does not occur, then the challenge χ is independent of the shares held by t+ 1 honest ver-
ifiers. These shares determine the secrets w1, . . . , wm on all circuit-input wires and the secrets z1, . . . , zN
on the output wires of all multiplication gates. Furthermore, these secrets also determine the values on the
output wires of all addition gates, which are computed locally. Overall, χ is independent of the secrets
(xi, yi, zi) of the i-th multiplication gate for all i ∈ [1, N]. If A does not make a query (com1, . . . , comn)
to random oracle H2, the behavior of A is independent of χ, i.e., χ = H2(com1, . . . , comn) is independent
from zi−xi · yi for all i ∈ [1, N]. Since χ ∈ K is uniformly random in the random-oracle model, the differ-
ence between checking z = x�y and checking zi = xi · yi for i ∈ [1, N] is bounded by N−1

|K| , according to
the analysis in the proof of Theorem 1. If A queried (com1, . . . , comn) to H2, the difference is bounded by
Q2(N−1)
|K| , as A makes at most Q2 queries to H2. Overall, Pr[E2|¬E1] ≤ (Q2+1)(N−1)

|K| < (Q2+1)N
2λ

, where
|K| ≥ 2λ. Therefore, we have

Pr[E2] = Pr[E2|E1] · Pr[E1] + Pr[E2|¬E1] · Pr[¬E1]

≤ Pr[E1] + Pr[E2|¬E1] ≤ Q1n+ (Q2 + 1)N

2λ
.

In conclusion, for the verification phase of multiplication gates, the simulation of S is perfect, except with
probability at most Q1n+(Q2+1)N

2λ
.

Honest prover. In the verification phase of multiplication gates, S emulates Fverifyprod, and interacts with
A as follows:

1. After the circuit-evaluation phase, S has the shares of corrupted verifiers on the sharings [w1], . . . , [wm]
and [z1], . . . , [zN] associated with the output wires of all circuit-input gates and multiplication gates.

45

2. S simulates the random oracles H1 and H2 by responding the queries with random values while keeping
the consistency of answers.

3. On the behalf of the honest prover, S computes comi honestly with the shares of corrupted verifier Vi
and a uniform ri ∈ {0, 1}λ for each i ∈ C, and samples comi ← {0, 1}λ for each i ∈ H. Then, S sends
(com1, . . . , comn) to A over an echo-broadcast channel.

4. Following the protocol specification, S computes the public coefficient χ ∈ K, and then computes the
shares of [x], [y], [z] held by corrupted verifiers. Then, S emulates Fverifyprod by sending the shares of
corrupted verifiers on ([x], [y], [z]) to A and outputting accept to A.

Below, we prove that S perfectly simulates the view of A in the verification phase of multiplication gates,
except with probability at most Q1n

2λ
. The only difference between the real-world execution and ideal-world

execution is that in the real-world execution, A receives the actual commitment comi, while in the ideal-
world execution, A always receives an independent random string in {0, 1}λ. The difference is bounded by
the probability that A makes a query in the form of (· · · , ri) to random oracle H1 for some i ∈ H, and is at
most Q1(t+1)

2λ
< Q1n

2λ
.

Combining the above proof for the verification phase of multiplication gates in the random-oracle model
with the proof of Theorem 1 for the circuit-evaluation phase and the circuit-output verification phase, we
conclude that the real-world execution is indistinguishable from the ideal-world execution, except with
probability at most Q1n+(Q2+1)N

2λ
.

E Preprocess Circuits

We transform a general circuit C into another circuit C ′, which satisfies the following properties hold:

• For each input w, we have that C(w) = C ′(w).

• In the circuit-input layer, the number of circuit-input wires is the multiple of k. There are at least k circuit-
output wires in the circuit-output layer. For the whole circuit, both of the number of addition gates and
the number of multiplication gates are multiples of k.

• During the circuit evaluation, the gates with the same type (i.e., circuit-input gates, addition gates, multi-
plication gates and circuit-output gates) are divided into groups of k. Each group of k gates are evaluated
simultaneously.

• Circuit size: |C ′| = |C|+O(k) where here |C| denotes the number of all gates for a circuit C.

Circuit C ′ is obtained by adding new “dummy” circuit-input wires and circuit-output wires that take 0 as the
values and inserting new “dummy” addition or multiplication gates that take these “dummy” circuit-input
and circuit-output wires as their inputs and outputs. The detailed transformation from C to C ′ is described
in Figure 16. In this figure, we also show how to divide k same-type gates into a group, and to store the
corresponding values in a single packed sharing. Note that the preprocessing procedure shown in Figure 16
only depends on the circuit C and does not need any communication.

From the construction of C ′, it is easy to prove that the above properties hold. In particular, for any
input w, we obtain C(w) = C ′(w), as only “dummy” wires and gates are added and the input and output
values are 0. When the state-of-the-art MPC protocol based on PSS [GPS21] is directly used to construct an
interactive MVZK protocol, the compiled circuitC ′ has the size |C ′| = O(|C|+k ·d) where d is the depth of
circuit C. We significantly optimize the size of circuit C ′ to |C ′| = |C|+O(k) by observing that the prover
knows all wire values and thus it is unnecessary to evaluate the circuit layer-by-layer. Specifically, at most

46

Procedure PrepCircuit

Inputs: Prover P and all verifiers V1, . . . ,Vn hold a circuit C defined over a field F. Let M (resp., A) be the
number of multiplication (resp., addition) gates in the circuit. Let k denote the number of secrets that are packed
in a single sharing.

Circuit transformation: P and all verifiers transform a circuit C into another equivalent circuit C ′ as follows:

1. Insert dMk e·k−M multiplication gates and dAk e·k−A addition gates into the circuit. Specifically, each of these
inserted gates takes two new circuit-input wires as the inputs of the gate, and creates one new circuit-output
wire as its output. The values on these new circuit-input wires are set as 0.

2. Let h be the number of all circuit-output wires (including these new added circuit-output wires from the
previous step). If h < k, insert k − h new circuit-input wires that set 0 as the wire values, and then define
these circuit-input wires as circuit-output wires directly.

3. Letm be the number of all circuit-input wires (including these new added circuit-input wires from the previous
two steps). Insert dmk e · k −m new circuit-input wires which set 0 as the wire values, and also define these
circuit-input wires as circuit-output wires directly.

Pack wire values: Now, the number of gates that have the same type in the circuit is multiple of k. This is also
the case for the number of circuit-input wires. Prover P and all verifiers do the following:

• For the circuit-input layer, divide the circuit-input wires into groups of k in an increasing order. For each group
of k circuit-input wires, the corresponding input values will be stored in a single packed secret sharing.

• For all intermediate layers, following a predetermined topological order and the breadth-first search, execute
the following:

1. Collect k unused multiplication gates into a group. For the group of multiplication gates,

– the values on the first input wires of these gates will be stored in a single packed secret sharing;
– the values on the second input wires of these gates will be stored in a single packed secret sharing;
– the values on the output wires of these gates will be stored in a single packed secret sharing.

2. Collect k unused addition gates into a group. For the group of addition gates, divide the input and output
values into packed secret sharings in the same way described as above.

• For the circuit-output layer, divide the single actual circuit-output wire along with any k − 1 dummy circuit-
output wires into a group. The values on the group of circuit-output wires will be stored in a single packed
secret sharing.

Figure 16: Procedure for preprocessing a circuit without any communication.

k− 1 new addition gates and k− 1 new multiplication gates are created, and there are at most 6(k− 1) new
circuit-input gates and 4(k − 1) new circuit-output gates that are created. Our procedure for preprocessing
circuits supports streaming an NIMVZK proof (i.e., proving a very large statement on-the-fly).

F Proof of Theorem 3

Theorem 9 (Theorem 3, restated). Let H1 and H2 be two random oracles. Protocol Πpss
snimvzk shown in

Figures 6 and 7 securely realizes functionality Fmvzk with soundness error at most Q1n+(Q2+1)(M+N)
2λ

in the
Fpss
verifyprod-hybrid model in the presence of a malicious adversary corrupting up to a prover and t = d−k+1

verifiers, where degree-d packed sharings are used in protocol Πpss
snimvzk, each sharing packs k secrets, and

Q1 and Q2 are the number of queries to H1 and H2 respectively.

47

Proof. We first consider the case of a malicious prover (i.e., soundness), and then consider the case of an
honest prover (i.e., zero knowledge), where exactly t verifiers are assumed to be corrupted in both cases
according to Lemma 1. Let n = 2d + 1 be the number of all verifiers. In each case, we construct a PPT
simulator S, which is given access to functionality Fmvzk, and runs a PPT adversaryA as a subroutine while
emulating Fpss

verifyprod for A. In the simulation, whenever A aborts, S sends abort to Fmvzk, and then aborts.

Malicious prover. S simulates the random oracles H1 and H2 by responding the queries with random values
while keeping the consistency of answers. S transforms the circuit C into an equivalent circuit C ′ following
the protocol specification. Then, S emulates Fverifyprod, and interacts with A as follows:

• Simulation of circuit evaluation phase:

1. From i = 1 to m, for the i-th group of k circuit-input wires, S receives the shares of n − t = d + k
honest verifiers fromA, and then reconstructs the whole sharing [wi] from the shares of honest verifiers
in H. Then, S defines a witness w̄ using the values on actual circuit-input wires from (w1, . . . ,wm),
where the values on dummy circuit-input wires are ignored.

2. For each group of k addition gates with whole input sharings [x] and [y], S computes the whole output
sharing [z] := [x] + [y].

3. From i = 1 to M , for the i-th group of k multiplication gates with whole input sharings [xi] and [yi],
S receives the shares of d+ k honest verifiers from A, and then reconstructs the whole output sharing
[zi] using the shares held by honest verifiers inH.

4. For each input sharing [y] such that [y] has not been generated, and yj for j ∈ [1, k] is identical to xi for
i ∈ [1, k] stored in a different output sharing [x], S receives the shares of all honest verifiers from A,
and reconstructs the whole input sharing [y]. Let ([x1], [y1], i1, j1), . . . , ([xN], [yN], iN , jN) denote
the wire tuples, where S knows the whole sharings. Let [y′1], . . . , [y′`] be the sharings [y1], . . . , [yN]
when the repetitive sharings are removed.

• Simulation of Fiat-Shamir procedure and verification of multiplication tuples:

1. S receives from A the public commitments com1, . . . , comn. For i ∈ H, S acts as honest verifier Vi
and receives a randomness ri ∈ {0, 1}λ from A.

2. For i ∈ H, S uses the shares of {[wi]}i∈[1,m], {[zi]}i∈[1,M] and {[y′i]}i∈[1,`] held by honest verifier Vi
as well as ri to check the correctness of commitment comi, where S makes the corresponding query to
H1 by itself. If the check fails, S sends abort to Fmvzk, and then aborts.

3. S sets the public challenge χ := H2(com1, . . . , comn) by making the corresponding query to H2.
Then, S computes the whole sharings ([x̃1], . . . , [x̃M]), ([ỹ1], . . . , [ỹM]) and [z̃] following the protocol
specification.

4. Let E1 be the event that for some i ∈ H, comi = H1(Msgi, ri) and (Msgi, ri) was queried to H1 after
χ = H2(com1, . . . , comn) has already been queried, where Msgi consists of all the shares held by Vi
and ri is received by Vi. If event E1 occurs, S sends abort to Fmvzk, and then aborts.

5. S emulates Fpss
verifyprod by sending the whole sharings {[x̃i]}i∈[1,M], {[ỹi]}i∈[1,M] and [z̃] to A. If there

exists some i ∈ [1,M] such that zi 6= xi ∗ yi, then S sends abort to A and Fmvzk, and aborts.
Otherwise, S sends accept to A.

• Simulation of verification of wire tuples: For each i, j ∈ [1, k], let ([a1], [b1], i, j), . . . , ([aN ′], [bN ′], i, j)
denote the wire tuples in L(i, j), and S interacts with A as follows:

1. S receives the shares of honest verifiers in H on [r] and [r′] from A, and then reconstructs the whole
sharings [r] and [r′] using these shares.

48

2. S receives from A the public messages (u,u′), and then computes the whole sharings [a0] and [b0]
following the protocol description.

3. Following the protocol specification, S computes α := H2(χ,u,u′, i, j) by making the corresponding
query to H2. Then, S computes the whole sharings [a] and [b] using the whole sharings {[ah]}h∈[0,N ′],
{[bh]}h∈[0,N ′] and public coefficient α.

4. On behalf of every honest verifier Vl, S uses the shares of [a] and [b] held by Vl to run the Open
procedure with A. If honest verifier Vl simulated by S aborts or ah,i 6= bh,j for some h ∈ [1, N ′], S
sends abortl to Fmvzk.

• Simulation of circuit-output phase: For the sharing on k circuit-output wires including the actual circuit-
output wire, S plays the role of honest verifiers and runs the Open procedure with A. Then, S sends w̄ to
Fmvzk who returns a decisional result b ∈ {true, false} to S. For each honest verifier Vi simulated by S, if
Vi accepts in the Open procedure, then S sends continuei to Fmvzk, otherwise S sends aborti to Fmvzk.

Hybrid argument. Below, we use a series of hybrids to prove that the real-world execution is indistinguish-
able from the ideal-world execution, except with probability at most Q1n+(Q2+1)(M+N)

2λ
.

Hybrid0: This is the real-world execution.

Hybrid1: In this hybrid, S simulates the circuit-evaluation phase as described above. Specifically, S ex-
tracts a witness w̄ from A, and also computes the whole sharing on each group of k input or output wires
using the shares of d+ k honest verifiers.

It is clear that Hybrid1 has the identical distribution as Hybrid0.

Hybrid2: In this hybrid, S simulates the Fiat-Shamir procedure as described above. Specifically, S checks
the correctness of comi for each i ∈ H following the protocol specification. In this procedure, S computes
χ = H2(com1, . . . , comn), and also computes the whole sharings ([x̃1], . . . , [x̃M]), ([ỹ1], . . . , [ỹM]) and
[z̃] from {([xi], [yi], [zi])}i∈[1,M] and χ. If event E1 occurs, S sends abort to Fmvzk, and then aborts.

The only difference between Hybrid1 and Hybrid2 is that if E1 occurs, S does not abort in Hybrid1, while
S aborts in Hybrid2. It is clear that Pr[E1] ≤ Q1(t+1)

2λ
< Q1n

2λ
following the proof of Theorem 2. Thus, the

difference between Hybrid2 and Hybrid1 is bounded by Q1n
2λ

.

Hybrid3: In this hybrid, S emulates Fpss
verifyprod by checking that zi = xi ∗ yi for all i ∈ [1,M] (instead of

checking z̃ =
∑

h∈[1,M] x̃h ∗ ỹh) and sending the whole sharings {[x̃i]}i∈[1,M], {[ỹi]}i∈[1,M] and [z̃] to A.

The only difference between Hybrid2 and Hybrid3 is that Fpss
verifyprod checks whether z̃ =

∑
h∈[1,M] x̃h ∗ ỹh

in Hybrid2, while Fpss
verifyprod checks whether zi = xi ∗ yi for all i ∈ [1,M] in Hybrid2. If the event E1

happens, both Hybrid2 and Hybrid3 abort. In the following, we assume that E1 does not occur.

Let E2 be the event that Fpss
verifyprod outputs accept in Hybrid2, but Fpss

verifyprod outputs abort in Hybrid3.
Event E2 occurs if and only if there exists some i ∈ [1,M] such that zi 6= xi ∗yi but z̃ =

∑
h∈[1,M] x̃h ∗ ỹh

holds. In the following, we prove that Pr[E2] ≤ (Q2+1)(M−1)
2λ

. Specifically, since E1 does not occur,
the challenge χ is independent of the shares held by d + k honest verifiers, which determine the secrets
w1, . . . ,wm on all circuit-input wires, z1, . . . ,zM on the output wires of all multiplication gates and
y′1, . . . ,y

′
` on the input sharings related to all wire tuples. Note that these secrets also determine the se-

crets on the output wires of all addition gates, which are computed locally. Overall, the challenge χ is
independent of the secrets {(xi,yi, zi)}i∈[1,M] stored in all multiplication tuples. If A does not make a

49

query (com1, . . . , comn) to random oracle H2, coefficient χ = H2(com1, . . . , comn) is independent from
(xi,yi, zi) for all i ∈ [1,M]. Consider the following two vectors of degree-(M − 1) polynomials over an
extension field K:

F (X) = (x1 ∗ y1) + (x2 ∗ y2) ·X + · · ·+ (xM ∗ yM) ·XM−1,

G(X) = z1 + z2 ·X + · · ·+ zN ·XM−1.

Therefore, we have that
∑

h∈[1,M] x̃h ∗ ỹh = F (χ) and z̃ = G(χ) for a uniform element χ ∈ K. If there
exists some i ∈ [1,M] such that zi 6= xi∗yi, then F (X)−G(X) is a non-zero polynomial vector of degree
at most (M − 1). According to the Schwartz–Zippel lemma, for a random element χ ∈ K, the probability
that x̃h ∗ ỹh − z̃ = F (χ)−G(χ) = 0k is at most M−1

|K| . Therefore, we directly obtain that Pr[E2] ≤ M−1
|K| .

If A queried (com1, . . . , comn) to H2, we have Pr[E2] ≤ Q2(M−1)
|K| , where A makes at most Q2 queries to

random oracle H2. Overall, we obtain Pr[E2] ≤ (Q2+1)(M−1)
|K| ≤ (Q2+1)(M−1)

2λ
, where recall that |K| ≥ 2λ.

This means that the difference between Hybrid2 and Hybrid3 is bounded by (Q2+1)(M−1)
2λ

.

Hybrid4: In this hybrid, S simulates the verification of wire tuples as described above. In particular, for
each i, j ∈ [1, k], S checks that ah,i = bh,j for all h ∈ [1, N ′] rather than checking that ai = bj for
a =

∑N ′

h=0 α
h · ah and b =

∑N ′

h=0 α
h · bh. S also reconstructs the whole sharings of [a] and [b], and use

the shares of honest verifiers to run the Open procedure with A.

The only difference between Hybrid3 and Hybrid4 is that for i, j ∈ [1, k], Hybrid3 checks ai = bj , while
Hybrid4 checks ah,i = bh,j for all h ∈ [1, N ′]. If the event E1 (defined as above) occurs, S aborts in both
of Hybrid3 and Hybrid4. In the following, we always assume that E1 does not abort.

Let E3 be the event that there exists some h ∈ [1, N ′] such that ah,i 6= bh,j but ai = bj for some i, j ∈ [1, k].
Below, we prove that Pr[E3] ≤ (Q2+1)(N+1)

2λ
. Let E4 be the event that A first made a query (χ,u,u′, i, j)

to random oracle H2, and either later A made a query (com1, . . . , comn) to H2, or A did not query H2 to
obtain χ. Since A did not query H2 to obtain χ before it makes a query (χ,u,u′, i, j) to H2, we have that
the query (χ,u,u′, i, j) happens with probability at most Q2

|K| . Thus, Pr[E4] ≤ Q2

|K| ≤
Q2

2λ
. In the following

analysis, we assume that E4 does not occur.

If A did not make a query (χ,u,u′, i, j) to obtain α. Then the behavior of A is independent of α. From
ai = bj , we obtain that

∑N ′

h=0 α
h · ah,i =

∑N ′

h=0 α
h · bh,j . Consider the following polynomial of degree N ′

over a field K:

H(X) = (a0,i − b0,j) + (a1,i − b1,j) ·X + · · ·+ (aN ′,i − bN ′,j) ·XN ′ .

Thus, we have thatH(α) =
∑N ′

h=0 α
h ·ah,i−

∑N ′

h=0 α
h ·bh,j = ai−bj = 0. If there exists some h ∈ [1, N ′]

such that ah,i 6= bh,j , H is a non-zero polynomial. According to the Schwartz–Zippel lemma, for a random
element α ∈ K, the probability that H(α) = 0 is at most N

′

|K| . If A queried (χ,u,u′, i, j) to obtain α, then
α is determined after χ,u,u′ has been defined. The messages u,u′ determine the error a0,i − b0,j . Since
both E1 and E4 do not happen, the challenge χ is determined after the secrets {ah,i, bh,j}h∈[1,N ′] have been
defined. Overall, α is independent from the errors {ah,i − bh,j}h∈[0,N ′]. Therefore, in this case, event E3

happens with probability at most Q2N ′

|K| . In conclusion, we have that Pr[E3|¬E4] ≤ (Q2+1)N ′

|K| ≤ (Q2+1)N ′

2λ
.

Further, we have the following:

Pr[E3] = Pr[E3|E4] · Pr[E4] + Pr[E3|¬E4] · Pr[¬E4]

≤ Pr[E4] + Pr[E3|¬E4] ≤ (Q2 + 1)N ′ +Q2

2λ
<

(Q2 + 1)(N + 1)

2λ
.

Hence, we obtain that the difference between Hybrid3 and Hybrid4 is bounded by (Q2+1)(N+1)
2λ

.

50

Hybrid5: In this hybrid, S simulates the circuit-output verification phase as described above. In particular,
S sends w̄ to Fmvzk, and determines which honest verifiers obtain the output b ∈ {true, false} relying on
whether the honest verifier accepts or not during the Open procedure. This is the ideal-world execution.

If an honest verifier Vi aborts in the Open procedure, S sends aborti to Fmvzk which outputs abort to Vi
in Hybrid5. The verifier Vi has the same output (i.e., abort) in Hybrid4. If Vi does not abort, then it will
obtain an output bit η ∈ {true, false} computed following the protocol specification in Hybrid4, while it
will receive b ∈ {true, false} from functionality Fmvzk in Hybrid5. Therefore, it is sufficient to bound the
probability that b ≡ η. If an honest verifier Vi does not abort in Hybrid4, then all multiplication tuples
and wire tuples are correct, and the circuit-output is also opened correctly. In addition, the evaluation of
addition gates is trivially correct. Therefore, Vi will always obtain the correct output η = C ′(w̄) = C(w̄)
in Hybrid4, which has the identical distribution as b in Hybrid5.

Honest prover. If S receives false from functionality Fmvzk, then S aborts. S simulates random oracles H1

and H2 honestly. S transforms the circuitC into an equivalent circuitC ′ following the protocol specification.
Then, S emulates Fverifyprod, and interacts with A as follows:

• Simulation of circuit evaluation phase:

1. For each group of k circuit-input wires with input vectors w ∈ Fk, S samples t uniform elements in F
as the shares of corrupted verifiers on [w], and sends them to A. Note that if w = 0k corresponds to k
dummy circuit-input wires, S computes the shares of corrupted verifiers on [w] following the protocol
description.

2. For each group of k multiplication gates with an output vector z ∈ Fk, S samples t uniform elements
in F as the shares of corrupted verifiers on the output packed sharing [z], and then sends them to A.

3. For each input sharing [y] such that yj is identical to xi stored in a different output sharing [x] for
i, j ∈ [1, k], S samples t uniform elements in F as the shares of [y] held by corrupted verifiers, and
then sends them to A.

• Simulation of Fiat-Shamir procedure and verification of multiplication tuples:

1. On the behalf of the honest prover, S computes comi honestly with the shares of corrupted verifier Vi
and a uniform ri ∈ {0, 1}λ for each i ∈ C, and samples comi ← {0, 1}λ for each i ∈ H. Then, S
sends (com1, . . . , comn) to A over an echo-broadcast channel.

2. Following the protocol specification, S computes a challenge χ ∈ K, and then computes the shares of
([x̃1], . . . , [x̃M]), ([ỹ1], . . . , [ỹM]) and [z̃] held by corrupted verifiers. Then, S emulates Fpss

verifyprod by
sending these shares to A and outputting accept to A.

• Simulation of verification of wire tuples: For each i, j ∈ [1, k], let ([a1], [b1], i, j), . . . , ([aN ′], [bN ′], i, j)
denote the wire tuples in L(i, j), and S interacts with A as follows:

1. S samples 2t uniform elements in F as the shares of corrupted verifiers on [r] and [r′], and then sends
them to A.

2. S samples u,u′ ← Fk, and then broadcasts (u,u′) to A.

3. Following the protocol specification, S computes the shares of [a] and [b] held by corrupted verifiers.

4. S samples k random elements in K as the shares of k honest verifiers on [a], and then uses the k
elements along with the t shares of [a] held by corrupted verifiers to reconstruct the whole sharing [a].
Besides, S samples k − 1 uniform elements in K, sets the secret bj = ai, and then uses the k − 1
elements, bj and the t shares of [b] held by corrupted verifiers to reconstruct the whole sharing [b].

51

5. On behalf of every honest verifier Vi, S uses the shares of [a] and [b] held by Vi to run the Open
procedure with A. If Vi aborts, S sends aborti to functionality Fmvzk.

• Simulation of circuit-output phase:

1. S uses the shares of output sharing [z] held by t corrupted verifiers on k circuit-output gates (involving
the actual circuit-output wire) along with k zero secrets to compute the shares of honest verifiers on
[z].

2. S uses the shares of [z] held by honest verifiers to run the Open procedure with A. For each i ∈ H, if
Vi accepts in the Open procedure, then S sends continuei to Fmvzk, otherwise S sends aborti to Fmvzk.

Hybrid argument. Below, we use a series of hybrids to prove that the real-world execution is indistinguish-
able from the ideal-world execution, except with probability at most Q1n

2λ
.

Hybrid0: This is the real-world execution.

Hybrid1: In this hybrid, S simulates the Fiat-Shamir procedure and the verification phase of multiplication
tuples as described above. In particular, S samples comi ← {0, 1}λ for each i ∈ H and emulates Fpss

verifyprod
by sending the shares of corrupted verifiers on ({[x̃i], [ỹi]}i∈[1,M], [z̃]) to A.

It is clear that the shares of ({[x̃i], [ỹi]}i∈[1,M], [z̃]) held by corrupted verifiers are computed following
the protocol description in Hybrid1, and thus have the identical distribution as that in Hybrid0. The only
difference between Hybrid0 and Hybrid1 is that for each i ∈ H, Hybrid0 computes comi with the shares
of honest verifier Vi, while Hybrid1 samples comi uniformly at random. Let E5 be the event that A makes
a query (ŵi1, . . . , ŵ

i
m, ẑ

i
1, . . . , ẑ

i
M , ŷ

i
1, . . . , ŷ

i
`, ri) to random oracle H1 for some i ∈ H. It is sufficient to

show the probability that E5 occurs. For a fixed index i ∈ H, the probability that E5 happens is at most Q1

2λ
.

There are at most n− t honest verifiers inH, and thus we have that Pr[E5] ≤ Q1(n−t)
2λ

< Q1n
2λ

.

Hybrid2: In this hybrid, S simulates the verification phase of wire tuples as described above. Specifically,
for each i, j ∈ [1, k], S samples random elements as the shares of [r] and [r′] held by corrupted verifiers,
and samples (u,u′) uniformly at random. Additionally, S samples k random elements and k − 1 random
elements as the shares of [a] and [b] held by a part of honest verifiers, when guaranteeing ai = bj .

According to the definition of packed secret sharings, the shares of [r] and [r′] held by corrupted verifiers
are uniform in Hybrid1. Note that the secret vectors r and r′ are perfectly hidden against the adversary’s
view. Thus, u and u′ are uniformly distributed in Hybrid1. Due to that a0, b0 ∈ Kk are uniformly random
except for a0,i = b0,j , a and b are uniform in Kk such that ai = bj in Hybrid1. Overall, we have that
Hybrid2 has the identical distribution as Hybrid1.

Hybrid3: In this hybrid, S simulates the circuit-output verification phase as described above. In particular,
S uses the shares of t corrupted verifiers along with k zero secrets to reconstruct the whole sharing [z] on
the k circuit-output wires. Then, S runs the Open procedure with A using the shares of honest verifiers on
[z]. For i ∈ H, S sends either continuei or aborti to functionality Fmvzk depending on whether Vi accepts
or not in the Open procedure.

In Hybrid2, the circuit is evaluated correctly in the case of an honest prover. Thus, the corrupted verifiers
will obtain a circuit-output C ′(w̄) = C(w̄) = 0. In Hybrid3, S reconstructs the whole sharing [z] such
that z = 0k. Therefore, the simulation of the Open procedure in Hybrid3 has the identical distribution as
that in Hybrid2. Note that the outputs of honest verifiers in Hybrid3 have the identical distribution as that
in Hybrid2. Thus, Hybrid3 is perfectly indistinguishable from Hybrid2.

52

Hybrid4: In this hybrid, S simulates the circuit evaluation phase as described above. Specifically, S sam-
ples uniform elements in F as the shares of corrupted verifiers on the packed sharings that will be sent by
the honest prover in this phase. This is the ideal-world execution.

In Hybrid3, S uses the actual wire values and the Share procedure to generate the packed sharings, while in
Hybrid4, S simply samples uniform elements as the shares of corrupted verifiers. According to the defini-
tion of packed secret sharings, the distribution of the shares of corrupted verifiers in Hybrid4 is identical to
that in Hybrid3. Therefore, Hybrid4 has the identical distribution as Hybrid3.

In conclusion, the real-world execution is indistinguishable from the ideal-world execution except with
probability at most Q1n+(Q2+1)(M+N)

2λ
, which completes the proof.

G Proof of Theorem 4

Theorem 10 (Theorem 4, restated). Let H2 : {0, 1}∗ → K be a random oracle. Protocol Πpss
verifyprod

shown in Figure 8 securely realizes functionality Fpss
verifyprod with soundness error at most 4dlogMe+5Q2

2λ−3
in

the presence of a malicious adversary corrupting up to the prover and exactly t verifiers, where Q2 is the
number of queries to random oracle H2.

Proof. For any PPT adversary A, we construct a PPT simulator S, which is given access to Fpss
verifyprod and

runs A as a subroutine. Whenever A aborts, S sends abort to Fpss
verifyprod and also aborts.

Malicious prover. S receives the whole sharings ([x1], . . . , [xM]), ([y1], . . . , [yM]) and [z] from function-
ality Fpss

verifyprod, and computes d := z −
∑

h∈[1,M] xh ∗ yh ∈ Kk. Then, S interacts with A as follows:

• Simulation of sub-protocol Πpss
inner-prod: Let ([x1], . . . , [x`]) and ([y1], . . . , [y`]) be the input packed shar-

ings. Specifically, S receives the shares of [r] held by honest verifiers in H from A, and reconstructs the
whole sharing [r]. Then, S receives u from A, and computes the whole sharing [z] = u− [r].

• Simulation of sub-protocol Πpss
compress: For each i ∈ [1,m], let (([xi,1], . . . , [xi,`]), ([yi,1], . . . , [yi,`]), [zi])

be the input packed inner-product tuple. By interacting with A, S simulates the protocol execution as
follows:

1. For j ∈ [1, `], S computes the whole sharings [fj(·)] and [gj(·)] from the whole input sharings
{[xi,j]}i∈[1,m] and {[yi,j]}i∈[1,m].

2. For i ∈ [m+ 1, 2m− 1], S simulates the execution of Πpss
inner-prod as described above for input sharings

([f1(i)], . . . , [f`(i)]) and ([g1(i)], . . . , [g`(i)]), and obtains the whole sharing [zi].

3. S computes the whole sharing [h(·)] from the whole sharings [z1], . . . , [z2m−1].

4. S computes a public coefficient α following the protocol specification. If α ∈ [1,m], then S sends
abort to functionality Fpss

verifyprod and aborts. Otherwise, S computes the whole sharings [fj(α)] and
[gj(α)] for j ∈ [1, `], and also computes the whole sharing [h(α)].

• Simulation of dimension-reduction: Following the protocol specification, S simulates the view ofA in the
iterative manner. For the current iteration, let (([x1], . . . , [xm]), ([y1], . . . , [ym]), [z]) be the input packed
inner-product tuple, where m > 2.

1. For each i ∈ [1, 2], S computes the whole sharings ([ai,1], . . . , [ai,`]) and ([bi,1], . . . , [bi,`]) from the
input inner-product tuple, where ` = m/2.

53

2. S simulates the protocol execution of Πpss
inner-prod as described above for input sharings ([a1,1], . . . , [a1,`])

and ([b1,1], . . . , [b1,`]), and then obtains the whole sharing [c1].

3. S computes the whole sharing [c2] = [z]− [c1].

4. S simulates the protocol execution of Πpss
compress as described above for input sharings ([ai,1], . . . , [ai,`]),

([bi,1], . . . , [bi,`]) and [ci] for i ∈ [1, 2]. Then, S uses the whole sharings ([a1], . . . , [a`]), ([b1], . . . , [b`])
and [c] output by Πpss

compress to update ([x1], . . . , [xm/2]), ([y1], . . . , [ym/2]) and [z] respectively that
are the input packed sharings used in the next iteration.

5. S update γ as α output by Πpss
compress, and also set m := m/2. Then, S performs the next iteration.

• Simulation of randomization: S has the whole sharings ([x1], [x2]), ([y1], [y2]) and [z] output in the
dimension-reduction phase. S interacts with A as follows:

1. S receives the shares of ([x0], [y0]) held by honest verifiers in H from A, and then reconstructs the
whole sharings [x0] and [y0] using these shares.

2. For i ∈ [0, 1], S simulates the protocol execution of Πpss
inner-prod as described above for input ([xi], [yi]),

and then obtains the whole sharing [zi].

3. S computes the whole sharing [z2] := [z]− [z1].

4. S simulates the execution of Πpss
compress as described above for input sharings {([xi], [yi], [zi])}i∈[0,2],

and then obtains the whole sharings ([a], [b], [c]).

5. S receives an output either abort or accept from functionality Fpss
verifyprod. S uses the shares of honest

verifiers on ([a], [b], [c]) to run the Open procedure with A. For every honest verifier Vi (simulated
by S), if Vi aborts in the Open procedure, then S sends aborti to functionality Fpss

verifyprod, otherwise S
sends continuei to Fpss

verifyprod.

Hybrid argument. Below, we use a series of hybrids to prove that the real-world execution is indistinguish-
able from the ideal-world execution, except with probability at most 4dlogMe+5Q2

2λ−3
.

Hybrid0: This is the real-world execution.

Hybrid1: In this hybrid, S simulates two sub-protocols Πpss
inner-prod and Πpss

compress as described above.

In Hybrid1, S only reconstructs the whole sharings from the shares of honest verifiers in H. This does not
change the behaviors of honest verifiers. Thus, Hybrid1 has the identical distribution as Hybrid0.

Hybrid2: In this hybrid, S simulates the dimension-reduction phase as described above.

In the dimension-reduction phase of Hybrid2, S still simply reconstructs the whole sharings from the shares
of honest verifiers inH. Therefore, the distributions of Hybrid1 and Hybrid2 are identical.

Hybrid3: In this hybrid, S simulates the randomization phase as described above. In particular, S recon-
structs the whole sharings [a], [b] and [c]. Then, S uses the shares of honest verifiers on ([a], [b], [c]) to run
the Open procedure with A. For every honest verifier Vi, if Vi aborts in the Open procedure, then S sends
aborti to Fpss

verifyprod, which sends abort to Vi. Otherwise, S sends continuei to Fpss
verifyprod, which sends the

decision result whether z =
∑

h∈[1,M] xh ∗ yh or not to Vi, where (([x1], . . . , [xM]), ([y1], . . . , [yM]), [z])
is the input inner-product tuple. This is the ideal-world execution.

Clearly, the simulation of the Open procedure is perfect. Let E1 be the event that the input packed inner-
product tuple (([x1], . . . , [xM]), ([y1], . . . , [yM]), [z]) is incorrect and the protocol execution does not abort,

54

but some honest verifier outputs accept in Hybrid2, while the honest verifier outputs abort in Hybrid3. The
only difference between Hybrid2 and Hybrid3 is that E1 occurs. Below, we prove Pr[E1] ≤ 4dlogMe+5Q2

2λ−3
.

Let σ = dlogMe. We divide the protocol Πpss
verifyprod into σ iterations, where the first σ−1 iterations execute

in the dimension-reduction phase and the σ-th iteration is run in the randomization phase. Let q1, . . . , qσ be
the queries to random oracle H2 during the σ iterations, which should be made to generate the challenges.
Let E2 be the event that both of the following hold:

• For any i, j ∈ [1, σ] with i < j, ifA queries both qi and qj to random oracle H2, then qi was queried first.

• For any i ∈ [1, σ] where the packed inner-product tuple output in the (i − 1)-th iteration is incorrect but
the packed inner-product tuple output in the i-th iteration is correct, then A queries qi to random oracle
H2. Here the tuple in the 0-th iteration is defined as the packed inner-product tuple input by all verifiers.

Suppose that E1 occurs and E2 does not. Then, at least one of the following cases holds:

1. For some i < j with i, j ∈ [1, σ], A queried qj , and either later made a query qi or did not query qi.

2. There exists some i ∈ [1, σ] where the packed inner-product tuple output in the (i − 1)-th iteration is
incorrect but the tuple output in the i-th iteration is correct, and A did not query qi.

If the first case occurs, let i, j ∈ [1, σ] be such a pair of indices such that i < j, j − i is smallest, and A
queried qj and either later queried qi or did not query qi. Therefore,A did not make a query qj−1 to random
oracle H2 before it queries qj to H2. One of the values in qj is αj−1 = H2(qj−1) ∈ K, and thus the behavior
of A up until querying qj is independent of coefficient αj−1. So the query qj occurs with probability at
most Q2

|K| ≤
Q2

2λ
, where |K| ≥ 2λ.

Suppose that the second case happens, let i ∈ [1, σ] be the first index such that the packed inner-product
tuple output in the (i− 1)-th iteration is incorrect, the packed inner-product tuple output in the i-th iteration
is correct and A did not query qi. Before giving the probability that the second case occurs, we prove the
following two lemmas.

Lemma 5. Suppose that A does not make a query of random oracle H2 to obtain the coefficient α in the
protocol execution of Πpss

compress. If there exists at least one incorrect packed inner-product tuple and protocol
Πpss

compress shown in Figure 10 does not abort, then the resulting inner-product tuple output by Πpss
compress is

correct with probability at most 2(m−1)
|K|−m .

Proof. If α ∈ [1,m], then the protocol execution of Πpss
compress aborts. Therefore, there are at most |K| −m

choices of α that do not cause an abort of Πpss
compress. In the following, we assume that Πpss

compress does not
abort. Since there are at least one incorrect packed inner-product tuple, we have that

∑
j∈[1,`] fj ∗ gj 6= h.

Note that the polynomial
∑

j∈[1,`] fj ∗ gj − h has a degree at most 2(m − 1). Since A does not make a
H2-query (γ,v1, . . . ,vd,um+1, . . . ,u2m−1) to obtain α, the behavior ofA is independent from α, meaning
that α is independent of the polynomial vectors {fj , gj}j∈[1,`] and h. According to the Schwartz–Zippel
lemma, for a uniform element α ∈ K\[1,m], the probability that

∑
j∈[1,`] fj ∗ gj − h = 0k is bounded by

2(m−1)
|K|−m . Therefore, if protocol Πpss

compress does not abort, it outputs a correct packed inner-product tuple with

probability at most 2(m−1)
|K|−m , which completes the proof.

Lemma 6. For each iteration of protocol Πpss
verifyprod, if the input packed inner-product tuple (([x1], . . . , [xm]),

([y1], . . . , [ym]), [z]) is incorrect, the output packed inner-product tuple (([a1], . . . , [a`]), ([b1], . . . , [b`]), [c])
is correct with probability at most 4

|K|−3 , where ` = m/2.

55

Proof. For the i-th iteration with i ∈ [1, σ − 1] in the dimension-reduction phase, suppose that the input
inner-product tuple (([x1], . . . , [xm]), ([y1], . . . , [ym]), [z]) is incorrect. We first show that at least one of
the following two packed inner-product tuples is incorrect:

(([ai,1], . . . , [ai,`]), ([bi,1], . . . , [bi,`]), [ci]) for i ∈ [1, 2],

where for i ∈ [1, 2], ([ai,1], . . . , [ai,`]) = ([x(i−1)`+1], . . . , [x(i−1)`+`]), ([bi,1], . . . , [bi,`]) = ([y(i−1)`+1],
. . . , [y(i−1)`+`]) and [c1] + [c2] = [z]. If the first packed inner-product tuple is incorrect, then the state-
ment holds. Otherwise, we have that

∑
h∈[1,`] a1,h ∗ b1,h = c1. As the input packed inner-product tuple

(([x1], . . . , [xm]), ([y1], . . . , [ym]), [z]) is incorrect, we have that
∑

h∈[1,m] xh ∗yh 6= z. Thus, we have the
following:∑

h∈[1,`]

a2,h ∗ b2,h =
∑

h∈[1,m]

xh ∗ yh −
∑
h∈[1,`]

a1,h ∗ b1,h =
∑

h∈[1,m]

xh ∗ yh − c1 6= z − c1 = c2.

This means that the second packed inner-product tuple (([a2,1], . . . , [a2,`]), ([b2,1], . . . , [b2,`]), [c2]) is in-
correct. According to Lemma 5, we obtain that the resulting packed inner-product tuple (([a1], . . . , [a`]),
([b1], . . . , [b`]), [c]) output by Πpss

compress is correct with probability at most 2
|K|−2 .

For the σ-th iteration (i.e., the randomization phase), suppose that the input packed inner-product tuple
(([x1], [x2]), ([y1], [y2]), [z]) is incorrect. In the following, let {([xi], [yi], [zi])}i∈[0,2] be three multiplica-
tion tuples such that [z1] + [z2] = [z]. Following a similar analysis as described above, we have that at least
one of two multiplication tuples ([x1], [y1], [z1]) and ([x2], [y2], [z2]) is incorrect. No matter what correct-
ness of the additional multiplication tuple ([x0], [y0], [z0]) is, the resulting multiplication tuple ([a], [b], [c])
output by Πpss

compress is correct with probability at most 4
|K|−3 , according to Lemma 5.

In conclusion, the statement described in this lemma holds with probability at most 4
|K|−3 .

According to Lemma 6, we obtain the probability that the second case occurs is bounded by 4dlogMe
|K|−3 ≤

4dlogMe
2λ−3

, by taking a union bound over all σ = dlogMe iterations. Overall, we have Pr[E1|¬E2] ≤
Q2

2λ
+ 4dlogMe

2λ−3
< Q2+4dlogMe

2λ−3
.

Below, suppose that both E1 and E2 occur. For some i ∈ [1, σ], in the i-th iteration, A made the queries
q1, . . . , qi to random oracle H2 in the increasing order. Note that the entire partial transcript up to the
messages sent in the i-th iteration is fixed, at the time whenA queries qi to obtain αi. Furthermore, the input
coefficient χ, which is determined after the secrets of the input packed inner-product tuple have been defined,
is involved in the first query q1. Therefore, the coefficient αi used in the protocol execution of Πpss

compress for
the i-th iteration is determined after the secret polynomials (f1(·), . . . ,f`(·)), (g1(·), . . . , g`(·)) and h(·)
have been defined. Based on Lemma 6, we have Pr[E1|E2] ≤ 4Q2

|K|−3 ≤
4Q2

2λ−3
.

We can sum up the bounds as described above to get

Pr[E1] = Pr[E1|E2] · Pr[E2] + Pr[E1|¬E2] · Pr[¬E2]

≤ Pr[E1|E2] + Pr[E1|¬E2] ≤ 4dlogMe+ 5Q2

2λ − 3
.

Honest prover. S receives the shares of corrupted verifiers on ([x1], . . . , [xM]), ([y1], . . . , [yM]) and [z]
from Fpss

verifyprod. If S receives abort from Fpss
verifyprod, it aborts. Then, S interacts with A as follows:

56

• Simulation of sub-protocol Πpss
inner-prod: Let ([x1], . . . , [x`]) and ([y1], . . . , [y`]) be the input packed shar-

ings. S samples random elements in K as the shares of [r] held by corrupted verifiers, and sends them to
A. Then, S samples u ← Kk, and broadcasts u to A. Following the protocol description, S computes
the shares of corrupted verifiers on [z] = [

∑
h∈[1,`] xh ∗ yh].

• Simulation of sub-protocol Πpss
compress: For each i ∈ [1,m], let (([xi,1], . . . , [xi,`]), ([yi,1], . . . , [yi,`]), [zi])

be the input packed inner-product tuple. S interacts with A as follows:

1. For j ∈ [1, `], S computes the shares of corrupted verifiers on [fj(·)] and [gj(·)] from their shares of
{[xi,j]}i∈[1,m] and {[yi,j]}i∈[1,m].

2. For i ∈ [m + 1, 2m − 1], S simulates the protocol execution of Πpss
inner-prod as described above for

input sharings ([f1(i)], . . . , [f`(i)]) and ([g1(i)], . . . , [g`(i)]), and obtains the shares of [zi] held by
corrupted verifiers.

3. S computes the shares of corrupted verifiers on [h(·)] from their shares of {[zi]}i∈[1,2m−1].
4. S computes the coefficient α ∈ K following the protocol specification. If α ∈ [1,m], S sends abort to
Fpss
verifyprod and aborts. Otherwise, S computes the shares of corrupted verifiers on {[fj(α)], [gj(α)]}j∈[1,`]

and [h(α)].

• Simulation of dimension-reduction: Simulator S simulates the view of adversary A in the following it-
erative manner. For the current iteration, let (([x1], . . . , [xm]), ([y1], . . . , [ym]), [z]) be the input packed
inner-product tuple, where m > 2.

1. For i ∈ [1, 2], S computes the shares of ([ai,1], . . . , [ai,`]) and ([bi,1], . . . , [bi,`]) held by corrupted
verifiers from their shares of {([xj], [yj])}j∈[1,m] and [z], where ` = m/2.

2. S simulates the protocol execution of Πpss
inner-prod as described above for input sharings ([a1,1], . . . , [a1,`])

and ([b1,1], . . . , [b1,`]), and then obtains the shares of corrupted verifiers on [c1].
3. S computes the shares of [c2] = [z]− [c1] held by corrupted verifiers.
4. S simulates the protocol execution of Πpss

compress as above for input sharings ([ai,1], . . . , [ai,`]), ([bi,1], . . . ,
[bi,`]) and [ci] for i ∈ [1, 2]. Then, S updates the shares of corrupted verifiers on the input packed inner-
product tuple (([x1], . . . , [xm/2]), ([y1], . . . , [ym/2]), [z]) used in the next iteration, by setting them as
the shares of corrupted verifiers on ([a1], . . . , [a`]), ([b1], . . . , [b`]) and [c] output by Πpss

compress.
5. S update γ as α output by Πpss

compress, and also set m := m/2. Then, S performs the next iteration.

• Simulation of randomization: S holds the shares of ([x1], [x2]), ([y1], [y2]) and [z] held by corrupted
verifiers from the dimension-reduction phase. S interacts with A as follows:

1. On behalf of the honest prover, S samples random elements in K as the shares of ([x0], [y0]) held by
corrupted verifiers.

2. For i ∈ [0, 1], S simulates the protocol execution of Πpss
inner-prod as described above for input sharings

([xi], [yi]), and then obtains the shares of [zi] held by corrupted verifiers.
3. S computes the shares of corrupted verifiers on [z2] := [z]− [z1].
4. S simulates the execution of Πpss

compress as described above for input sharings {([xi], [yi], [zi])}i∈[0,2],
and then obtains the shares of corrupted verifiers on ([a], [b], [c]).

5. S samples a, b ← Kk and computes c = a ∗ b. Then, S uses the secrets a, b, c along with the shares
of ([a], [b], [c]) held by t corrupted verifiers to reconstruct the whole sharings ([a], [b], [c]). S uses
the shares of honest verifiers to run the Open procedure with A. For each i ∈ H, if honest verifier
Vi aborts in the Open procedure, then S sends aborti to functionality Fpss

verifyprod, otherwise S sends
continuei to Fpss

verifyprod.

57

Hybrid argument. Below, we use a series of hybrids to prove that the real-world execution is perfectly
indistinguishable from the ideal-world execution.

Hybrid0: This is the real-world execution.

Hybrid1: In this hybrid, S simulates each protocol execution of Πpss
inner-prod as described above. In particular,

S samples uniform elements over K as the shares of corrupted verifiers and a random vector in Kk as a
broadcast message u.

In Hybrid0, for every protocol execution of Πpss
inner-prod, a random vector r ∈ Kk is perfectly hidden from

the view of A. Thus, u = z + r is uniform in Kk. In Hybrid0, it is easy to see that the shares of corrupted
verifiers are uniform in K. Therefore, Hybrid1 has the identical distribution as Hybrid0.

Hybrid2: In this hybrid, S simulates each protocol execution of Πpss
compress, and also simulates the dimension-

reduction phase, as described above.

It is clear that Hybrid2 has the identical distribution as Hybrid1, where only the shares of corrupted verifiers
are computed by S.

Hybrid3: In this hybrid, S simulates the randomization phase as described above. In particular, S samples
random elements in K as the shares of [x0] and [y0] held by corrupted verifiers. S samples a, b at random
and computes c = a ∗ b. Then, S uses (a, b, c) along with the shares of ([a], [b], [c]) held by t corrupted
verifiers to reconstruct the whole sharings ([a], [b], [c]). S uses the shares of honest verifiers to run the Open
procedure with A. This is the ideal-world execution.

In Hybrid2, x0 and y0 are uniformly random over Kk, and are kept secret from the view of A. Thus, a and
b stored in the multiplication tuple ([a], [b], [c]) are uniform in Kk. For an honest prover, we always have
that c = a∗b. Therefore, (a, b, c) in Hybrid2 has the same distribution as that in Hybrid3. In Hybrid3, the
shares of honest verifiers on ([a], [b], [c]) are computed from the secrets a, b, c and the shares of corrupted
verifiers. Thus, the shares of ([a], [b], [c]) held by honest verifiers in Hybrid3 has the identical distribution
as that in Hybrid2. Overall, the distributions of Hybrid2 and Hybrid3 are identical.

In conclusion, the real-world execution is indistinguishable from the ideal-world execution, except with
probability ≤ 4dlogMe+5Q2

2λ−3
, which completes the proof.

58

	Introduction
	Our Contribution
	Applications
	Related Work

	Preliminaries
	Technical Overview
	Black-Box Constructions of NIMVZK Proofs
	Information-Theoretic Non-Interactive MVZK
	Distributing Fiat-Shamir for Strong Non-Interactive MVZK
	More Efficient Strong NIMVZK from Packed Secret Sharing

	Information-Theoretic NIMVZK Proof in the Honest-Majority Setting
	From General Adversaries to Maximal Adversaries for MVZK
	Our Information-Theoretic NIMVZK Protocol

	Strong NIMVZK Proof in the Honest-Majority Setting
	Strong NIMVZK with Lower Communication from PSS
	Strong NIMVZK based on Packed Secret Sharing
	Strong NIMVZK Proof for Packed Inner-Product Tuples

	More Preliminaries
	Security Model
	Two Instantiations of Linear Secret Sharings
	Coin-Tossing Functionality

	Proof of Lemma 1
	Information-Theoretic NIMVZK Proof in the Honest-Majority Setting
	Proof of Theorem 1
	Information-Theoretic Verification of Inner-Product Tuples
	Prover-Aided Inner-Product Protocol
	Prover-Aided Verification for Inner-Product Tuples

	Proof of Theorem 2
	Preprocess Circuits
	Proof of Theorem 3
	Proof of Theorem 4

