
A Framework for the Design of Secure and Efficient Proofs of
Retrievability

Françoise Levy-dit-Vehel1 and Maxime Roméas2

1LIX, ENSTA Paris, INRIA, Institut Polytechnique de Paris, 91120 Palaiseau, France
levy@ensta.fr

2LIX, École polytechnique, INRIA, Institut Polytechnique de Paris, 91120 Palaiseau,
France

romeas@lix.polytechnique.fr

Abstract

Proofs of Retrievability (PoR) protocols ensure that a client can fully retrieve a large outsourced file
from an untrusted server. Good PoRs should have low communication complexity, small storage overhead
and clear security guarantees with tight security bounds. The focus of this work is to design good PoR
schemes with simple security proofs. To this end, we use the Constructive Cryptography (CC) setting by
Maurer [13]. We propose a framework for the design of secure and efficient PoR schemes based on Locally
Correctable Codes (LCC). We give a first instantiation of our framework using the high rate lifted codes
introduced by Guo et al. [5]. This yields an infinite family of good PoRs. We assert their security by
solving a finite geometry problem, giving an explicit formula for the probability of an adversary to fool
the client. Using the local correctability properties of Tanner codes, we get another instantiation of our
framework and derive an analogous formula for the success probability of the audit.

1 Introduction

1.1 Context and state-of-the-art
With the continuous increase in data creation, individuals and business entities call upon remote storage
providers to outsource their data. This new dependency raises some issues, as the storage provider can try
to read and/or modify the client’s data. Besides, when a client does not often access his data, the service
provider can delete it to make room for another client’s data. In this context, it appears important to deploy
client side protections designed to bring security guarantees like confidentiality and integrity. In this work,
we focus on the following problem : given a client who stored a file on a server and erased its local copy,
how can he check if he is able to retrieve his file from the server in full ? Addressing this issue is the goal of
a class of cryptographic protocols called Proofs of Retrievability (PoRs).

The first PoR scheme was proposed in 2007 by Juels and Kaliski [9] and was based on checking the
integrity of some sentinel symbols secretly placed by the client before uploading its file. This scheme has low
communication but its drawback is that it is bounded-use only, as the number of possible verifications depends
on the number of sentinels. Shacham and Waters [17] proposed to correct this drawback by appending some
authenticator symbols to the file. Verification consists in checking random linear combinations of file symbols
and authenticators. Then comes a few PoR schemes based on codes. Bowers et al. [2] proposed a double-
layer encoding with the use of an inner code to recover information symbols and an outer code to correct the
remaining erasures. Dodis et al. [4] formalize the verification process as a request to a code which models
the space of possible answers to a challenge. They use Reed-Solomon codes to design their PoR scheme. In

1

2013, Paterson et al. [16] laid the foundation for studying PoR schemes using a coding theoretic framework.
Following these ideas, Lavauzelle and Levy-dit-Vehel [12] (2016) used the local structure of the lifted codes
introduced by Guo et al. [5] to build a PoR scheme, that compares favourably to those presented above
w.r.t. storage overhead.

Unfortunately, PoR schemes have a few issues. Indeed, their security definitions are often unclear,
making it hard to understand what they really achieve. Moreover, when a client wants to retrieve his data,
the security guarantees brought by the use of the PoR scheme only holds under the condition that both client
and server unveil some private information (client’s secret material and server’s state). We give a detailed
explanation of this in sec. 2.2. In 2018, Badertscher and Maurer [1] used the Constructive Cryptography (CC)
framework introduced by Maurer [13] to propose a new PoR definition, that avoids the aforementioned flaws.
They also designed a PoR scheme based on generic erasure codes. Generalizing [1] and [12], we introduce a
framework for designing secure, composable and efficient PoR protocols based on locally correctable codes.

We formulate our framework using the terminology of the CC model. This approach allows us to design
and study the security of PoR schemes in a modular fashion, that achieves stronger security and clearer
security guarantees than previous schemes (whose security was based on so-called ε adversaries or related
notions). Using another definitional model such as the Universal Composability one by Canetti [3] would
probably give closely related results. We chose to use CC because it makes the resources available to the
parties (namely, untrusted server storage, local memories, communication channels) explicit. It also makes
the switching between computational, statistical and information-theoretic security notions easy. Finally,
using CC, we give exact or tight security bounds for our schemes as opposed to the asymptotic bounds of
other models.

In our new framework, we design secure and efficient PoR schemes from a family of codes : the locally
correctable codes (LCCs) formally introduced by Katz and Trevisan [10] in 2000. Reed-Muller codes are
well known to be locally correctable, but with poor rate as their length grows. The year 2011 has seen a
breakthrough in the theory of codes with locality, with the construction by Kopparty et al. [11] of a class
of high-rate LCCs - the multiplicity codes - generalizing the Reed-Muller class. Other high rates LCCs are
notably the lifted codes introduced by Guo et al. [5], and the expander codes of Hemenway et al. [6]. The
high rate of these codes permits to minimize the server storage overhead, making them best suited for the
outsourced storage context. We give an instantiation of our framework using the lifted codes of Guo et al.
. In a nutshell, we exploit the geometric properties of lifted codes and the CC security model for PoRs to
give simple security proofs with tight bounds. This is a key difference between our approach and the one of
Lavauzelle and Levy-dit-Vehel [12], which is also based on lifted codes and can in fact be seen as a different
instantiation of our framework.
We also sketch another instantiation of our framework using the graph codes of Tanner [18].

1.2 Contributions
Given a locally correctable code, we propose a canvas for deriving a PoR scheme. We get efficiency by
taking advantage of the local correctability of the code to design an audit with low communication complex-
ity. Using the CC security model for PoRs of Badertscher and Maurer [1], we give clear and composable
security guarantees for our PoR construction. We are also able to give tight security bounds derived from
geometric/combinatorial proofs.

As in many protocols, the client first encodes its file and uploads it to the server. Retrieving the file, i.e.
decoding, is done by iterating the local correction algorithm of the code 1. With such a decoding process
in mind, we identify the adversarial configurations of corruptions that would prevent the extraction of the
file. This analysis of adversarial impact permits us to phrase the security of the audit - which heavily relies
on the local correction step - as a problem about the structure of the code. For example, if the code uses
geometric properties of Fmq , we reduce the security of the audit to a finite geometry problem. If the code is
a graph code, we reduce the security to a graph theoretic problem.

1This is needed to ensure that extraction is indistinguishable from a sequence of audits. Indeed, if a malicious server could
distinguish audits from extraction, it could adapt its behaviour accordingly.

2

Instantiating our framework with the lifted Reed-Solomon codes : we characterize all the configurations
of corruptions that are impossible to correct using the local correctability of those codes. More precisely,
we show that these configurations of corruptions correspond to sets of points verifying a geometric property
inside a vector space over a finite field. Then, we show that these sets of points belong to a large number of
affine lines. From this we derive an explicit formula for the probability of the adversary to fool the client.
Wrapping this analysis in our PoR framework, we get :

Theorem (Lifted Reed-Solomon Codes PoR). Let d,m ∈ N, Fq be a finite field. The protocol audit :=
(initaudit, auditlcc, . . ., auditlcc) (with k copies of auditlcc) for the lifted Reed-Solomon code Liftm(RSq[q, d]) of
dimension ` constructs the auditable and authentic SMR, say aSMRk,audit

Σ,` , from aSMRk
Σ,qm , with respect

to the simulator simaudit and the pair (honSrv, honSrv). More precisely, for all distinguisher D making at
most r audits, we have

∆D(honSrvSauditP aSMRk
Σ,qm , honSrv

S aSMRk,audit
Σ,`) = 0

and ∆D(auditP aSMRk
Σ,qm , sim

S
audit aSMRk,audit

Σ,`) ≤ r ·
(

1− 1

qm−1

)(
1− d− 1

q − 1

)q−d+1

Thus, we get a family of PoR schemes with precise security guarantees. Efficiency of this construction is
shown in figures 5 and 4 of sec. 6, where we also give a comparison between our parameters and those of the
PoR scheme of Lavauzelle and Levy-dit-Vehel [12].

Instantiating our framework with Tanner codes: we proceed analogously as in the lifted Reed-Solomon
codes case to first design a global decoder, and then to characterize the configuration of erased edges that
are unrecoverable by the decoding algorithm. This way, we derive a bound on the failure probability of the
audit, yielding the following :

Theorem (Tanner Codes PoR). Let G = (V,E) be a q-regular graph with |V | := n and let C0 ⊆ Fq be a linear
code with minimal distance d and rate R. Let s be the minimal size, number of vertices, of a subgraph of G
with minimal degree d. The protocol audit := (initaudit, auditgraph, . . ., auditgraph) (with k copies of auditgraph)
for a Tanner code C(G, C0) of length nq/2 and rate at least 2R − 1 constructs the auditable and authentic
SMR, say aSMRk,audit

F,(2R−1)nq/2, from aSMRk
F,nq/2, with respect to the simulator simaudit and the pair (honSrv,

honSrv). More precisely, for all distinguisher D making at most r audits, we have

∆D(honSrvSauditP aSMRk
F,nq/2, honSrv

S aSMRk,audit
F,(2R−1)nq/2) = 0

and ∆D(auditP aSMRk
F,nq/2, sim

S
audit aSMRk,audit

F,(2R−1)nq/2) ≤ r ·
(

1− s

n

)
In order to design our framework, we constructed a protocol to authenticate outsourced data (aSMR, for

Authentic Server Memory Resource2) that is tailored for PoR purposes (see sec. 4). Our aSMR is different
from the one of [1] in several aspects, notably, when dealing with encoded data, we halve the extra storage
needed in comparison to [1]. Further details are to be found in sec. 4. This new construction might be
useful in other code based cryptographic protocols for outsourced storage. It can also be used to improve
the efficiency of the generic PoR of [1].

2 Background

2.1 The Constructive Cryptography model
The CC model, introduced by Maurer [14] in 2011, and augmented since then [13, 15, 8, 7] aims at asserting
the real security of cryptographic primitives. To do so, it redefines them in terms of so-called resources and

2Following the terminology of [1].

3

converters. In this model, starting from a basic resource (e.g. communication channel, shared key, memory
server...), a converter (a cryptographic protocol) aims at constructing an enhanced resource, i.e., one with
better security guarantees. The starting resource, lacking the desired security guarantees, is often called the
real resource and the obtained one is often called the ideal resource, since it does not exist as is in the real
world. An example of such an ideal resource is a confidential server, where the data stored by a client is
readable by this client only. The only information that leaks to other parties is its length. This resource
does not exist, but it can be emulated by an insecure server on which the client uses an encryption protocol
where the encryption scheme is IND − CPA secure. We say that this construction of the confidential server
is secure if the real world - namely, the insecure server together with the protocol - is just as good as the
ideal world - namely, the confidential server. This means that, whatever the adversary can do in the real
world, it could as well do in the ideal world. We use the fact that the ideal world is by definition secure and
contraposition to conclude. This construction notion is illustrated in fig. 1.

The CC model follows a top-down approach, allowing to get rid of useless hypotheses made in other
models. A particularity of this model is its composability, in the sense that a protocol obtained by composition
of a number of secure constructions is itself secure.

We give the required material to understand how we use CC in app. A. We follow the presentation of [7].

Server-Memory Resources We recall the constructions of [1] that we will use or improve in this work.
The first resource is the basic server-memory resource (SMR) denoted by SMRk

Σ,n where k is the number
of clients, Σ the alphabet and n the number of data blocks. The resource allows cooperating clients to read
and write data blocks that are encoded as elements of a finite alphabet Σ via their interfaces C1, . . . ,Ck. The
interface C0 is the initialization interface used to set up the initial state of the resource. The server can be
“honest but curious” by obtaining the entire history of accesses made by the clients (a log file) and reading
their data at interface SH . The server can also be intrusive and overwrite data using its interface SI when
the resource is set into a special write mode. This write mode can be toggled by the distinguisher at the
world interface W. The specification of the resource SMRk

Σ,n is given in fig. 6 in app. B.
We recall the figure 1 given in [1] to illustrate the CC construction notion on SMRs. The SMR security

guarantees can be augmented to provide authenticity by using a suitable protocol in this construction notion.
This new server-memory resource is called authentic SMR, denoted by aSMRk

Σ,n, and is constructed in [1].
In the aSMR, the behavior of the server at its interface SI is weakened as the server cannot modify the
content of data blocks but is limited to either delete or restore previously deleted data blocks at this interface.
A deleted data block is indicated by the special symbol ε. In this work, we use a different aSMR specification
that the one used in [1]. We modify the restore behavior to only restore data blocks that were deleted
after the last client update of the database. We introduce a version number that tracks the number of said
updates in the history of the aSMR and clients are now allowed to overwrite corrupted data blocks. These
changes decrease the storage overhead along with the communication complexity of read operations while
the communication complexity of write operations is increased in comparison to the specification of [1]. Our
changes to the aSMR yield substantial improvements for the parameters of our code-based PoR schemes.
Our take on the aSMR resource is described in fig. 2 and our changes are precised in sec. 4.

2.2 Proofs of Retrievability
Proofs of Retrievability (PoR) are cryptographic protocols whose goal is to guarantee that a file stored by a
client on a server remains retrievable in full. PoRs thus involve two parties : a client who owns a file F and
a server, here modeled as a SMR, on which F is stored. We recall the commonly used definitions for PoR
security as presented in [12]. A PoR system is composed of three main procedures:

• An initialization phase. The client encodes his file F with an initialization function Init(F) =
(F̃ , data). He keeps data (e.g. keys, etc.) for himself, then he sends F̃ to the server and erases
F .

• A verification phase. The client produces a challenge c with a randomized Chall function and sends
it to the server. The latter creates a response r = Resp(F̃ , c) and sends it back to the client. The

4

Real
SMR

W

S

SH

SI

init

prot

prot

C0

C1

...

Ck

Ideal
SMR

W

S

SH

SI

C0

C1

...

Ck

≈ sim

Figure 1: Illustration of the construction notion for SMRs. On the left, we have a real SMR with a protocol
for each client. On the right, we have an ideal SMR with stronger security guarantees. The construction is
secure if there exists a simulator that makes these two resources indistinguishable.

Resource aSMRk
Σ,n

The aSMR definition is identical to SMR except for the influence of an adversary at interface SI
and the addition of a version number ctr.

Interface Interface Ct, t ∈ {1, . . . , k}
Input: (read, i) ∈ [1, n]
if Active and not Intrusion then

Hist← Hist || (t, R, i)
return M[i]

Input: (write, i, x) ∈ [1, n]× Σ
if Active and not Intrusion then

ctr ← ctr + 1
Hist← Hist || (t, W, i, x, ctr)
M[i]← x

Interface Interface SI

Input: (delete, i) ∈ [1, n]
if Intrusion then

M[i]← ε

Input: (restore, i) ∈ [1, n]
if Intrusion then

if ∃k, x, t : Hist[k] = (t, W, i, x, ctr) then
M[i]← x

Figure 2: Our new authentic SMR (only the differences with SMR are shown)

client checks if r is correct by running Verif(c, r), which also access data, and outputs accept if r is
considered correct and reject otherwise.

• An extraction phase. If the client has been convinced by the verification phase, he can use his Extract
algorithm to recover his whole file with high probability.

The security of PoR schemes is usually defined with ε-adversaries. In a PoR scheme, the client wants
to use the Verif procedure to be sure that he will be able to retrieve his file in full by using the Extract
procedure. The following definition models the fact that, if the server’s answers to client’s challenges make
him look like he owns the file, then the client must be able to recover it entirely.

Definition 1 (ε-adversary). Let P be a PoR system and X be the space of challenges generated by Chall.
An ε-adversary A for P is an algorithm such that, for all files F ,

Pr
x∈X

[Verif(x,A(x)) = false] ≤ ε

5

The client models the server as an ε-adversary and uses his verification process to maintain an approx-
imation of ε. Depending on this estimate, the client can decide whether his file is retrievable or not. The
security of PoRs is thus usually measured as follows :

Definition 2 (PoR security). Let ε, ρ ∈ [0, 1]. A PoR system is said to be (ε, ρ)-sound if, for all ε-adversaries
A and for all files F , we have:

Pr
[
ExtractA = F

]
≥ ρ

where the probability is taken over the internal randomness of ExtractA.

As pointed out by Badertscher and Maurer in [1], this model has a major drawback concerning client-side
security guarantees. The most important thing for the client, the availability of his data, is conditioned to
the execution of the Extract algorithm which needs to access the client’s private data and the server’s
strategy (as indicated in def. 2). In practice, no server would reveal its entire state to a client. This problem
is addressed in [1], where the authors used the CC framework to propose a definition of PoRs that fixes this
drawback. In their work, they introduced an ideal abstraction of PoRs in the form of an ideal SMR that
sees the clients’ interfaces augmented with an audit mechanism. On an audit request, the resource checks
whether the current memory content is indeed the newest version that the client wrote to the storage. If a
single data block has changed, the ideal audit will detect this and output reject to the client. In case of a
successful audit (returning accept), this guarantee holds until the server gains write-access to the storage, in
which case a new audit has to reveal whether modifications have been made. We present the specification of
the auditable and authentic SMR aSMRk,audit

Σ,n in fig. 7 of app. C. In addition to the advantages we discussed,
we believe that this CC based security model is simpler and more intuitive than the one of ε-adversaries.

2.3 Locally Correctable Codes
In [1], Badertscher and Maurer give a protocol based on generic erasure codes to construct the auditable
aSMR. Due to the use of classical codes, a client who wants to read a single data block needs to read
the entire memory in order for him to run the decoding algorithm of the code to recover (or not) the data
block. In this work, we show how one can use LCCs, so that one has to read only a small number of memory
positions to recover one data block, while keeping the auditable property of the constructed resource. We
now briefly present LCCs, which were formally introduced by Katz and Trevisan [10] in 2000.

Definition 3 (Locally correctable code). Let r ∈ N, δ ∈ [0, 1] and ε : [0, 1] 7→ [0, 1]. A code C ⊆ Fnq is said
to be (r, δ, ε)-locally correctable if there exists a probabilistic decoding algorithm A such that,

1. For all c ∈ C, for all i ∈ J1, nK and for all vectors y ∈ Fnq with relative Hamming distance ∆(c,y) ≤ δ,
we have Pr[Ay(i) = ci] ≥ 1− ε(δ), where the probability is taken over the internal randomness of Ay.

2. The algorithm A makes at most r queries to the vector y.

3 Our framework
We describe our framework which derives PoR schemes from a given LCC C. In all our PoRs, the client’s file
is encoded as a codeword of C and uploaded to the server. We want to protect the client from an adversary
able to introduce corruptions on the outsourced file. To do so, we need to describe an audit that probes a few
symbols of the outsourced file and accepts if it thinks that the corruptions can all be corrected. Recall that,
in the CC definition, an audit is considered secure if it only succeeds when the outsourced file is retrievable
in full, without modifications. If we want to derive PoR schemes from an LCC C in CC, we thus need to do
the following three things :

1. Give an extraction procedure that aims at retrieving the outsourced file while correcting any corruption
encountered.

6

2. Characterize the configurations of corruptions that are uncorrectable by this extraction procedure.

3. Give an audit procedure that is able to detect those configurations of uncorrectable corruptions on the
outsourced file.

It is essential that the extraction procedure be indistinguishable from a sequence of audits. Otherwise, a
malicious server could answer audits with uncorrupted symbols to make it accept. Then, this malicious server
could only send corrupted data during the extraction process to make it fail. Since a good PoR scheme must
have low communication complexity, we want to exploit the locality of LCCs to design our audit procedure.
The remark above means that our extraction procedure must be an iteration of the local correction algorithm
of the LCC. This means that our schemes will try to locally correct any corruption encountered during the
extraction. Thus, we need a way to identify those corruptions. Using the composability of the CC framework,
we will place ourselves in a setting where adversaries can only introduce erasures on the outsourced file. We
can design our PoR schemes with this assumption and we will need to construct an authenticated server to
realize it later on. Our blueprint becomes :

1. Give an extraction procedure that aims at correcting erasures by using the local correctability of C.

2. Characterize the configurations of erasures that are uncorrectable by this extraction procedure.

3. Our audit is the following : try to locally correct a random position of the outsourced file, if the
correction is impossible return reject, else return accept.

In step 2, we identify the configurations of erasures that are unrecoverable when iterating the local
correction of C. We find a lower bound on the number of local correction queries that would fail if such a
configuration of erasures existed. When instantiating our framework in sec. 5, we shall see that this problem
is much easier than giving a lower bound on the minimal size of such a configuration of unrecoverable
erasures. In the CC model of security for PoRs, the advantage of the adversary in breaking the security of
the scheme is the probability that the audit accepts when the file is not retrievable. In our case, our audit
consists in checking if a random local correction query succeeds. Our file is not retrievable if there exists a
configuration of unrecoverable erasures. Thus, the lower bound we computed above is all we need to assess
the security of the PoR. We give a complete proof when instantiating our framework, see th. 2 of sec. 5.

4 Our authentication protocol
In the rest of this work, we focus on schemes based on erasure capabilities of error correcting codes. Thus,
we need a setting where the actions of adversaries only lead to introducing erasures, instead of errors, in
the outsourced data. This is exactly what an authentic server-memory resource (aSMR) achieves since the
adversary can only delete data or restore previously deleted data. Thus, we need a protocol that constructs
an aSMR from a basic SMR.

In [1], Badertscher and Maurer present a protocol that constructs an aSMR using a MAC function,
timestamps and a tree structure on the outsourced data. Their construction of the aSMR has the following
features :

1. The aSMR of size n with alphabet Σ is constructed from an SMR of size 2n−1, alphabet Σ×Zq×T
and a local memory of constant size for the clients. T is the tag space of the MAC function used.

2. To read or write one memory cell on the aSMR, the protocol of [1] produces O(log n) read and write
queries to the SMR.

Our work focuses on PoR schemes where clients upload a very large encoded file to an outsourced server.
In this context, the logarithm of the size of the alphabet Σ is an order of magnitude smaller than the length
of the MAC tags. The aSMR construction of [1] is not suited for this kind of application. Its issues are
threefold. First, since the file size is huge, a factor of 2 in the storage overhead is a big problem. Second,

7

the O(log n) communication complexity for write operations is of no use to us since we will be working on
encoded data and updating a codeword requires anyway to read a linear number of symbols. Third, the
verification phase of PoRs often consists in probing as few symbols as possible to ensure that the outsourced
file is retrievable in full. Having a O(log n) read communication complexity is a problem in this context.

With these observations, we now present a different protocol that constructs an aSMR with good features
for our context :

1. The aSMR of size n with alphabet Σ is constructed using an SMR of size n, alphabet Σ× T and a
local memory of constant size for the clients.

2. A write request on our aSMR produces at most 2n− 1 read and write requests on the SMR.

3. A read request to the aSMR produces one read request to the SMR.

This way, we minimize the storage overhead and the communication complexity of read requests on the
one hand. On the other hand, the increased communication complexity for write requests does not matter
since we will be using codes to build our PoR scheme. Our new construction is described in theorem 1.

Theorem 1. Let k, n ∈ N and let Σ1 := Σ × T for some alphabet Σ. The protocol auth := (initauth,
authRW , . . ., authRW) (with k copies of authRW) described in fig. 8 and 9 constructs the authentic SMR,
say aSMRk

Σ,n, from SMRk
Σ1,n and a local memory L of constant size with respect to the simulator simauth

described in fig. 10 and the pair (honSrv, honSrv). More precisely, for all distinguisher D, we have

∆D(honSrvSauthP [L,SMRk
Σ1,n], honSrvS aSMRk

Σ,n) = 0

and ∆D(authP [L,SMRk
Σ1,n], simS

auth aSMRk
Σ,n) ≤ ΓDC(GMAC)

Proof. A description of the converters, simulator and a full proof can be found in app. E.

5 Instantiation with high rate LCCs

5.1 Lifted Reed-Solomon Codes
We introduce a very interesting class of LCCs, namely the high rate lifted Reed-Solomon codes of Guo et al.
[5]. We recall their construction in app. F.

In the following, let Fq be the finite field with q elements and m be a positive integer. The set of affine
lines in Fmq is denoted by Lm := {(at + b)t∈Fq

| a, b ∈ Fmq }. RSq[q, d] is the q-ary Reed-Solomon code of
length q and minimum distance d = q − k + 1.

Definition 4 (Lifted Reed-Solomon Code [5]). Let Fq be a finite field. Let d,m ∈ N∗. The m-lift of RSq[q, d]
is Liftm(RSq[q, d]) := {w ∈ Fmq | ∀ line ` ⊆ Fmq , w|` ∈ RSq[q, d]}.

As we are using an aSMR, codewords can only be affected by potential erasures. A codeword of the
base Reed-Solomon code RSq[q, d] is the vector of evaluations of a polynomial f of degree strictly less than
k = n − d + 1. Thus, if there are at most d − 1 erasures, we can always recover the codeword i.e. the
polynomial f by interpolating on k > deg f points. Therefore, if we want to correct a coordinate x ∈ Fmq
of the code Liftm(RSq[q, d]) we can pick a random line going through x and run the aforementioned local
decoding algorithm.

5.2 The lifted RS PoR scheme
In this section, we use our PoR framework to design a secure and efficient PoR scheme using lifted Reed-
Solomon erasure codes. We call this scheme lifted RS PoR scheme for short. We build our PoR for an
aSMR and then use the composability of CC. Since this server is authenticated, we only have to deal with
potential erasures instead of errors.

Using the blueprint of sec. 3, we need to do the following three things :

8

1. Give a global decoding algorithm for lifted Reed-Solomon codes using their local correctability.

2. Characterize the configurations of erasures that are unrecoverable by this algorithm.

3. Give an audit procedure that looks like a local correction and is able to detect those configurations of
uncorrectable corruptions on the outsourced file.

Let us start with the global decoding algorithm. For the lifted Reed-Solomon code Liftm(RSq[q,m]), our
global decoder works as follows. For each erasure, the decoding algorithm corrects it by finding, if it exists, a
line going through the erasure and containing less than d−1 other erasures (using interpolation as presented
in sec. 5.1). If one or more erasures have been corrected during this step, the algorithm tries to correct the
remaining erasures using the same method. Indeed, since some erasures where corrected, there exists lines
with less erasures than before. If, during one iteration, no erasures have been corrected, the algorithm stops
and returns the vector. We give a pseudo-code description of this algorithm in fig. 3.

Input: The encoded file V with potential erasures
Output: The encoded file F̃ .
repeat

E := ∅
for an erased position x ∈ Fmq do

if there exists a line ` ⊆ Fmq going through x with strictly less than d erasures. then
Use the global decoder of RSq[q, d] on the restriction of the file to `.
We have corrected all the erasures on that line, x included.
E = E ∪ {x}
Modify V accordingly.

until E = ∅
return V

Figure 3: Our global decoding algorithm for lifted Reed-Solomon codes.

We now study the fail cases of the global decoding algorithm. Let Liftm(RSq[q, d]) be a lifted Reed-
Solomon code. For an erased position s ∈ Fmq to be unrecoverable, it is necessary that each line going
through s possesses at least d erasures. However, it is not sufficient. Indeed, suppose that there exists a line
` going through s with exactly d erasures. If there exists an erasure position s′ on the line ` and a line `′
going through s′ with at most d − 1 erasures then the symbol erased at position s′ can be recovered using
the RSq[q, d] decoder. Since, s′ lies on `, this means that ` now contains only d− 1 erasures and they all can
be corrected, the one at s included.

In order to capture a set of unrecoverable erasures for our global decoding algorithm, we introduce the
following property :

Definition 5. Let Fq be a finite field and m, d be positive integers. We say that a set S ⊆ Fmq is a d-cover
set if S verifies the following property :

∀s ∈ S,∀ line ` ⊆ Fmq going through s, |S ∩ `| ≥ d

Or equivalently, for all line ` ⊆ Fmq , |S ∩ `| = 0 or |S ∩ `| >= d

Since the d-cover subsets of Fmq represent the unrecoverable erasure patterns, we want to find an audit
procedure that can detect their existence with high probability and low communication complexity. Our
audit procedure is the following :

1. The client randomly chooses a line ` ⊆ Fmq .

2. The client retrieves the restriction of the outsourced file on the chosen line.

9

3. If it contains d or more erasures, reject, if not, accept.

The next step is to determine the probability that this audit detects a set of unrecoverable erasures if one
exists. Let S ⊆ Fmq be a non-empty d-cover set. Then there exists s ∈ S and for each line ` going through
s, |` ∩ S| >= d. We also know that for any line ` ⊆ Fmq , either |` ∩ S| = 0 or |` ∩ S| >= d.

Recall that L := (qm− 1)/(q− 1) is the the number of lines going through a point in Fmq and that qm−1L
is the total number of lines in Fmq . Let ` be the randomly chosen line for the audit and s be an element of
S. We have :

Pr[|` ∩ S| 6= 0] =
L

qm−1L
· 1 +

(
1− 1

qm−1

)
· Pr[|` ∩ S| 6= 0 | s /∈ `]

Let E be the event {|` ∩ S| 6= 0 | s /∈ `}. For each point x ∈ `, there is a unique line (xs) going through
x and s. Since s ∈ S, this line contains at least d erased points in S, one being s. Since lines in Fmq have q
points, the probability that x ∈ S is at least (d− 1)/(q− 1). Moreover, if at least q− d+ 1 points of ` do not
belong to S we immediately know that ` ∩ S = ∅ since, by definition of S, either |` ∩ S| = 0 or |` ∩ S| ≥ d.
Thus,

Pr[E] ≥ 1−
(

1− d− 1

q − 1

)q−d+1

Therefore, Pr[|` ∩ S| 6= 0] ≥ 1−
(

1− 1

qm−1

)(
1− d− 1

q − 1

)q−d+1
(1)

The calculation we just made is essential. Indeed, since we supposed S 6= ∅, the event ¬{|`∩S| 6= 0} can
be interpreted as ‘the audit accepts although the file is not retrievable‘. In the CC security model for PoR,
this is exactly the advantage of the distinguisher, i.e. the security of the scheme. In other words, we just
upper-bounded the security of our PoR scheme. We now formally prove the security of our PoR in the CC
framework.

We quickly describe the converters initaudit and auditlcc. Both use the encoder and global decoder for lifted
Reed-Solomon codes. On input (read, i), both converters retrieve the whole memory using read requests,
then they call the global decoder on the obtained word (corrupted values ε are replaced with erasures) and
return the i-th symbol of the output if decoding succeeds. On input (write, i, x), both converters retrieve
the whole memory with read requests and decode it like before. If decoding succeeds, they replace the i-th
symbol by x, encode the whole word and store it on the SMR using write requests.

On input audit, auditlcc chooses a random line ` ⊆ Fmq and retrieves the restriction of the outsourced
file to this line through read requests. If the restriction contains d or more erasures, the converter returns
reject. If not, it returns accept. This behavior is depicted in app. G.

Theorem 2. Let d,m ∈ N, Fq be a finite field. The protocol audit := (initaudit, auditlcc, . . ., auditlcc) (with k
copies of auditlcc) for the lifted Reed-Solomon code Liftm(RSq[q, d]) of dimension ` constructs the auditable
and authentic SMR, say aSMRk,audit

Σ,` , from aSMRk
Σ,qm , with respect to the simulator simaudit and the pair

(honSrv, honSrv). More precisely, for all distinguisher D making at most r audits, we have

∆D(honSrvSauditP aSMRk
Σ,qm , honSrv

S aSMRk,audit
Σ,`) = 0

and ∆D(auditP aSMRk
Σ,qm , sim

S
audit aSMRk,audit

Σ,`) ≤ r ·
(

1− 1

qm−1

)(
1− d− 1

q − 1

)q−d+1

Proof. A proof is given in app. H.

5.3 The graph code PoR scheme
We give another instantiation of our framework using the graph codes of Tanner [18]. We briefly recall how
these codes are constructed.

10

Let G = (V,E) be a q-regular graph on n vertices. For a vertex v ∈ V , let Γ(v) be the set of vertices
adjacent to v. Let F be a finite field and let C0 ⊆ Fq be a linear code, called the inner code. Fix an arbitrary
order on the edges incident to each vertex of G and let Γi(v) be the i-th neighbor of v. A Tanner code is
defined as the set of all labelings of the edges of G that respect the inner code C0. Formally,

Definition 6 (Tanner code). Let G = (V,E) be a q-regular graph on n vertices and let C0 ⊆ Fq be a linear
code. The Tanner code C(G, C0) ⊆ FE is a linear code of length nq/2, so that for c ∈ FE , c ∈ C(G, C0) if and
only if, for all v ∈ V , (

c(v,Γ1(v)), . . . , c(v,Γq(v))

)
∈ C0

One can easily check, by counting constraints, that if C0 has rate R, then C(G, C0) has rate at least 2R−1.
These codes possess some sort of local correction. Indeed, if one wants to correct an edge e incident to a
vertex v, one can retrieve the vector (c(v,Γ1(v)), . . . , c(v,Γq(v))) of labels of edges incident to v and correct it
using the decoder of C0.

In the following, let d be the minimal distance of the inner code. Again, using the composability of the
CC framework, we only have to deal with potential erasures. Following our framework of sec. 3, we start by
sketching our global decoder. In the following, we say that an edge is erased when the label of that edge is
erased. Similarly, we say that we correct an edge if we correct the label of that edge.

Assume that we want to correct an erasure on an edge e incident to a vertex v. If v is incident to less than
d− 1 erased edges, we can use the erasure decoding of C0 to correct all the edges incident to v, e included.
Otherwise, v is incident to k > d − 1 erased edges. Pick an erased edge incident to v. This edge is also
incident to a vertex v′ 6= v. If v′ is incident to less than d− 1 erased edges, we can correct them all and v is
now incident to k − 1 erased edges. If k − 1 ≤ d− 1 we can correct the edge e. Else, we iterate the process
on v and its neighbors.

Now, we have to characterize the configurations of erased edges that are unrecoverable for our decoding
algorithm. We claim that these unrecoverable configurations correspond to subgraphs of G of minimal degree
d. Indeed, these are the graph analogues of the d-cover sets for lifted Reed-Solomon codes. We prove our
claim : suppose that the subgraph formed by the unrecoverable edges possesses a vertex v incident to less
than d − 1 unrecoverable edges. Then, by iterating the local decoding algorithm, we can recover the other
edges incident to v so that only these unrecoverable edges remain erased. This being done, since there are
less than d − 1 erased edges incident to v and since the minimal distance of the inner code is d, we can
correct all the edges incident to v using the decoder of the inner code. This is in contradiction with these
edges being unrecoverable.

Finally, the audit consists in randomly choosing a vertex v and retrieve the vector w := (c(v,Γ1(v)), . . . , c(v,Γq(v)))
of labeling of edges incident to v. If w contains d or more erasures, the audit rejects. Else, it accepts.

The security of the audit depends on the graph G and the minimal distance d of the inner code C0. The
bigger the minimal subgraphs of G with minimal degree d are, the better the security of the PoR will be.
Indeed, let s be the minimal size (number of vertices) of a subgraph of G with minimal degree d. For a
configuration of unrecoverable erasures to exist, we thus need at least s vertices of G with at least d erased
edges. Recall that our audit chooses a random vertex of G and accepts if and only if this vertex is incident to
less than d−1 erased edges. Thus, the probability that our audit accepts when there exists an unrecoverable
set of erased edges is less than 1 − s/|V |. In our framework, this is exactly the advantage of the adversary
in breaking the security of our PoR. A similar proof to the one of th. 2 yields the following theorem :

Theorem 3. Let G = (V,E) be a q-regular graph with |V | := n and let C0 ⊆ Fq be a linear code with minimal
distance d and rate R. Let s be the minimal size, number of vertices, of a subgraph of G with minimal degree
d. The protocol audit := (initaudit, auditgraph, . . ., auditgraph) (with k copies of auditgraph) for a Tanner code
C(G, C0) of length nq/2 and rate at least 2R− 1 that :

1. Starts by encoding the file and uploads it to the server.

2. On an audit request, chooses a random vertex v ∈ V and accepts if and only if v is incident to less
than d− 1 erased edges.

11

3. Extracts the file using the algorithm sketched above.

constructs the auditable and authentic SMR, say aSMRk,audit
F,(2R−1)nq/2, from aSMRk

F,nq/2, with respect to the
simulator simaudit and the pair (honSrv, honSrv). More precisely, for all distinguisher D making at most r
audits, we have

∆D(honSrvSauditP aSMRk
F,nq/2, honSrv

S aSMRk,audit
F,(2R−1)nq/2) = 0

and ∆D(auditP aSMRk
F,nq/2, sim

S
audit aSMRk,audit

F,(2R−1)nq/2) ≤ r ·
(

1− s

n

)
6 Parameters
The impact of the choices of various lifted Reed-Solomon codes on the parameters of our lifted RS PoR
scheme are highlighted in fig. 5. The grey line gives a choice of parameters with a storage overhead of
13.9% and total communication of 0.01% of the file size. Increasing the length q of the base code decreases
the storage overhead and increasing the lifting parameter m vastly increases the size of the file stored. A
summary of the exact values of the parameters of our PoR scheme can be found in fig. 4.

We now give a comparison between our parameters and the ones of Lavauzelle and Levy-dit-Vehel [12].
First, in both schemes, the client’s file is encoded using a lifted Reed-Solomon code and the audit consists
in probing the restriction of this codeword to a random affine line. In our case, we authenticate the data
using our MAC based authentication protocol (see sec. 4) whereas [12] binds data to a specific location by
using an encryption scheme. Let κ be the computational security parameter of both scheme and Σ be the
alphabet of the code. Our scheme stores a code symbol along with a MAC tag, that is κ + log |Σ| bits, in
each memory location of the server whereas [12] stores a ciphertext, that is κ bits, in each memory location.
Since log |Σ| � κ (we have κ = 128 and |Σ| = q in fig. 5), our scheme and the one of [12] have very close
storage overhead and communication complexity.

A major advantage of our scheme is that our audit produces way less “false positives” than the audit of
[12]. In the case of PoRs, a false positive occurs when an audit rejects while the file is still retrievable. In
other words, the client thinks that he lost his file forever, but it is still retrievable in full. The number of
false positive audits has no influence on the security of the PoR but, in practice, it is a situation that we
absolutely wish to avoid. The audit of [12] rejects if the restriction of the file to an affine line does not belong
to the base Reed-Solomon code. In other words, if there is at least one corruption on the line probed by the
audit, it deems the file unretrievable. If the adversary introduces at least one erasure on every line of the
space, the audit would always reject independently of the correction capability (i.e. the minimal distance)
of the code. Using our framework and our authentication protocol, we are able to fix this problem. Indeed,
our audit deems the file unretrievable only if the probed line contains at least d erasures, where d is the
minimal distance of the base Reed-Solomon code. This means that we decrease the number of false positive
audits to a minimum, making our scheme much more reliable and usable in practice.

One natural line of work is now to evaluate the efficiency of Tanner codes PoR according to different
choices of inner codes and graphs.

Exact value Asymptotics
C. storage overhead κ O(1)
S. storage overhead (1

R − 1)|F |+ qmκ O(|F |)
C. → S. 2m log q O(|F |)
S. → C. q(κ+ log q) O(|F |1/m)

Figure 4: The exact parameters of our scheme. |F | denotes the file size in bits, κ the security parameter of
the MAC, q the field size and m ≥ 2 the lifting parameter. We have Rqm log q = |F |.

12

PoR param. Results

m q d
|F | 1

R − 1
comm. C.→ S. comm. S.→ C. comm./|F | Statistical

(bits) (bits) (bits) Security

2

256

32

255003 1.056 32 2048 0.0081 2−42

512 1446533 0.631 36 4608 0.0032 2−43

1024 7441987 0.409 40 10240 0.0013 2−44

2048 36072982 0.279 44 22528 0.0006 2−44

4096 168474135 0.195 48 49152 0.0003 2−44

8192 765948403 0.139 52 106496 0.0001 2−44

1024

64

6389859 0.641 40 10240 0.0016 2−88

2048 32605896 0.415 44 22528 0.0007 2−89

4096 157041023 0.282 48 49152 0.0003 2−90

8192 728834780 0.197 52 106496 0.0001 2−90

Figure 5: Different choices of lifted Reed-Solomon codes for our PoR scheme.

References
[1] Christian Badertscher and Ueli Maurer. Composable and robust outsourced storage. In Topics in

Cryptology - CT-RSA 2018 - The Cryptographers’ Track at the RSA Conference 2018, San Francisco,
CA, USA, April 16-20, 2018, Proceedings, pages 354–373, 2018. doi:10.1007/978-3-319-76953-0\
_19.

[2] Kevin D. Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability: Theory and implementation. In
Proceedings of the 2009 ACM Workshop on Cloud Computing Security, CCSW ’09, pages 43–54, New
York, NY, USA, 2009. ACM. doi:10.1145/1655008.1655015.

[3] R. Canetti. Universally composable security: a new paradigm for cryptographic protocols. In Proceedings
42nd IEEE Symposium on Foundations of Computer Science, page nil, - 2001. URL: https://doi.
org/10.1109/sfcs.2001.959888.

[4] Yevgeniy Dodis, Salil Vadhan, and Daniel Wichs. Proofs of retrievability via hardness amplification. In
Proceedings of the 6th Theory of Cryptography Conference on Theory of Cryptography, TCC ’09, pages
109–127, Berlin, Heidelberg, 2009. Springer-Verlag. doi:10.1007/978-3-642-00457-5_8.

[5] Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes from lifting. In Proceedings
of the 4th Conference on Innovations in Theoretical Computer Science, ITCS ’13, pages 529–540, New
York, NY, USA, 2013. ACM. doi:10.1145/2422436.2422494.

[6] Brett Hemenway, Rafail Ostrovsky, and Mary Wootters. Local correctability of expander codes. In
Fedor V. Fomin, Rūsin, š Freivalds, Marta Kwiatkowska, and David Peleg, editors, Automata, Languages,
and Programming, pages 540–551, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[7] Daniel Jost and Ueli Maurer. Overcoming Impossibility Results in Composable Security Using Interval-
Wise Guarantees, pages 33–62. Advances in Cryptology - CRYPTO 2020. Springer International Pub-
lishing, 2020.

[8] Daniel Jost, Ueli Maurer, and Marta Mularczyk. A Unified and Composable Take on Ratcheting, pages
180–210. Theory of Cryptography. Springer International Publishing, 2019.

[9] Ari Juels and Burton S. Kaliski, Jr. Pors: Proofs of retrievability for large files. In Proceedings of the
14th ACM Conference on Computer and Communications Security, CCS ’07, pages 584–597, New York,
NY, USA, 2007. ACM. doi:10.1145/1315245.1315317.

13

https://doi.org/10.1007/978-3-319-76953-0_19
https://doi.org/10.1007/978-3-319-76953-0_19
https://doi.org/10.1145/1655008.1655015
https://doi.org/10.1109/sfcs.2001.959888
https://doi.org/10.1109/sfcs.2001.959888
https://doi.org/10.1007/978-3-642-00457-5_8
https://doi.org/10.1145/2422436.2422494
https://doi.org/10.1145/1315245.1315317

[10] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-correcting
codes. In Proceedings of the Thirty-second Annual ACM Symposium on Theory of Computing, STOC
’00, pages 80–86, New York, NY, USA, 2000. ACM. doi:10.1145/335305.335315.

[11] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with sublinear-time decod-
ing. In Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing, STOC ’11,
pages 167–176, New York, NY, USA, 2011. ACM. doi:10.1145/1993636.1993660.

[12] Julien Lavauzelle and Françoise Levy-Dit-Vehel. New proofs of retrievability using locally decodable
codes. In International Symposium on Information Theory ISIT 2016, pages 1809 – 1813, Barcelona,
Spain, 2016. doi:10.1109/ISIT.2016.7541611.

[13] Ueli Maurer. Constructive Cryptography - A New Paradigm for Security Definitions and Proofs, pages
33–56. Theory of Security and Applications. Springer Berlin Heidelberg, 2012.

[14] Ueli Maurer and Renato Renner. Abstract cryptography. In In Innovations In Computer Science.
Tsinghua University Press, 2011.

[15] Ueli Maurer and Renato Renner. From indifferentiability to constructive cryptography and back. In
Proceedings, Part I, of the 14th International Conference on Theory of Cryptography - Volume 9985,
page 3–24, Berlin, Heidelberg, 2016. Springer-Verlag.

[16] Maura B. Paterson, Douglas R. Stinson, and Jalaj Upadhyay. A coding theory foundation for the
analysis of general unconditionally secure proof-of-retrievability schemes for cloud storage. Journal
of Mathematical Cryptology, 7(3):183–216, 2013. URL: https://doi.org/10.1515/jmc-2013-5002,
doi:doi:10.1515/jmc-2013-5002.

[17] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In Josef Pieprzyk, editor, Advances
in Cryptology - ASIACRYPT 2008, pages 90–107, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[18] R. Tanner. A recursive approach to low complexity codes. IEEE Transactions on Information Theory,
27(5):533–547, 1981. doi:10.1109/TIT.1981.1056404.

A Background on Constructive Cryptography

A.1 Resources, Converters and Distinguishers
A resource R is a system that interacts, in a black-box manner, at one or more of its interfaces, by receiving
an input at a given interface and subsequently sending an output at the same interface. Do note that a
resource only defines the observable behavior of a system and not how it is defined internally. We use the
notation [R1, . . . ,Rk] to denote the parallel composition of resources. It corresponds to a new resource and,
if R1, . . . ,Rk have disjoint interfaces sets, the interface set of the composed resource is the union of those.

In CC, converters are used to link resources and reprogram interfaces, thus expressing the local compu-
tations of the parties involved. A converter is plugged on a set of interfaces at the inside and provides a set
of interfaces at the outside. When it receives an input at its outside interface, the converter uses a bounded
number of queries to the inside interface before computing a value and outputting it at its outside interface.

A converter π connected to the interface set I of a resource R yields a new resource R′ := πIR. The
interfaces of R′ inside the set I are the interfaces emulated by π. A protocol can be modelled as a tuple of
converters with pairwise disjoint interface sets.

A distinguisher D is an environment that connects to all interfaces of a resource R and sends queries to
them. At any point, the distinguisher can end its interaction by outputting a bit. Its advantage is defined
as ∆D(R,S) := |Pr[D(R) = 1]− Pr[D(S) = 1]|.

In this work, we make statements about resources with interface sets of the form I := P ∪ {S,W},
where P := {C0, . . . ,Ck} is the set of honest client interfaces. A protocol is a vector of converters π :=

14

https://doi.org/10.1145/335305.335315
https://doi.org/10.1145/1993636.1993660
https://doi.org/10.1109/ISIT.2016.7541611
https://doi.org/10.1515/jmc-2013-5002
https://doi.org/doi:10.1515/jmc-2013-5002
https://doi.org/10.1109/TIT.1981.1056404

(πI1 , . . . , πI|P|) that specifies one converter for each interface I ∈ P. The goal of this protocol is to construct
a so-called ideal resource from an available real resource in presence of a potentially dishonest server S. The
world interface W models the direct influence of a distinguisher on a resource.

A.2 Specifications and Relaxations
An important concept of CC is the one of specifications. Systems are grouped according to desired or assumed
properties that are relevant to the user, while other properties are ignored on purpose. A specification S is
a set of resources that have the same interface set and share some properties, for example confidentiality. In
order to construct this set of confidential resources, one can use a specification of assumed resources R and a
protocol π, and show that the specification πR satisfies confidentiality. Proving security is thus proving that
πR ⊆ S, sometimes written as R π−→ S, and we say that the protocol π constructs the specification S from
the specification R. The composition property of the framework comes from the transitivity of inclusion.
Formally, for specifications R,S and T and protocols π for R and π′ for S, we have R π−→ S ∧ S π′

−→ T ⇒
R π′◦π−−−→ T .

We use the real-world/ideal-world paradigm, and often refer to πR and S as the real and ideal-world
specifications respectively, to understand security statements. Those statements say that the real-world is
"just as good" as the ideal one, meaning that it does not matter whether parties interact with an arbitrary
element of πR or one of S. This means that the guarantees of the ideal specification S also apply in the real
world where an assumed resource is used together with the protocol.

In this work, we use simulators, i.e., converters that translate behaviors of the real world to the ideal
world, to make the achieved security guarantees obvious. For example, one can model confidential servers
as a specification S that only leaks the data length, combined with an arbitrary simulator σ, and show that
πR ⊆ σS. It is then clear that the adversary cannot learn anything more that the data length.

In order to talk about computational assumptions, post-compromise security or other security notions,
the CC framework relies on relaxations which are mappings from specifications to larger, and thus weaker,
relaxed specifications. The idea of relaxation is that, if we are happy with constructing specification S in
some context, then we are also happy with constructing its relaxed variant. One common example of this is
computational security. Let ε be a function that maps distinguishers D to the winning probability, in [0, 1],
of a modified distinguisher D′ (the reduction) on the underlying computational problem. Formally,

Definition 7. Let ε be a function that maps distinguishers to a value in [0, 1]. Then, for a resource R, the
reduction relaxation Rε is defined as Rε := {S | ∀D,∆D(R,S) ≤ ε(D)}. This (in fact any) relaxation can
be extended to a specification R by defining Rε := ∪R∈RRε.

B Basic Server Memory Resource
The basic SMR is described in fig. 6.

C The auditable and authentic SMR
The auditable and authentic SMR of [1] is described in fig. 7.

D Message Authentication Codes in CC
Our protocols will use message authentication codes (MAC). Thus, we recall the notation along with a
description of the security condition for MAC given in [1]. We consider MAC functions f with message space
M, tag space T and key space K with its associated distribution. The security condition for MAC function
f states that no efficient adversary can win the following game GMAC better than with negligible probability.
In CC, games are represented as resources. In our case, the game GMAC chooses a secret key sk � K. Then,

15

Resource SMRk
Σ,n

Initialization Initialization
Init,Active, Intrusion← false
Hist← []

Interface Interface C0

Input: init
if not Init then

for i = 1 to n do
M[i]← λ

Hist← Hist || (0, init)
Init← true

Input: (read, i) ∈ [1, n]
if Init and not Active then

Hist← Hist || (0, R, i)
return M[i]

Input: (write, i, x) ∈ [1, n]× Σ
if Init and not Active then

Hist← Hist || (0, W, i, x)
M[i]← x

Input: initComplete
Active← true

Interface Interface SH
Input: getHist
return Hist

Input: (read, i) ∈ [1, n]
return M[i]

Interface Interface SI
Input: (write, i, x) ∈ [1, n]× Σ
if Intrusion then

return M[i]← x

Interface Interface W
Input: startWriteMode
if Active then

Intrusion← true

Input: stopWriteMode
if Active then

Intrusion← false
Interface Interface Ct, t ∈ {1, . . . , k}
Input: (read, i) ∈ [1, n]
if Active and not Intrusion then

Hist← Hist || (t, R, i)
return M[i]

Input: (write, i, x) ∈ [1, n]× Σ
if Active and not Intrusion then

Hist← Hist || (t, W, i, x)
M[i]← x

Figure 6: Description of the basic server-memory resource

16

Resource aSMRk,audit
Σ,n

Interfaces Interface Cr, r ∈ 1, . . . , k

Input: (write, i, x) ∈ [n]× Σ
Defined as in aSMR except the version number ctr
has been removed.

Input: audit
if Active and not Intrusion then

output auditReq to SH
Let d ∈ {allow, abort} be the result
if d = allow then

M′ ← []
for i = 1 to n do

if ∃k, x, t : Hist[k] = (t, W, i, x) then
k0 ← max{k | ∃t, x : Hist[k] =

(t, W, i, x)}
Parse Hist[k0] as (t, W, i, x0)

M′[i]← x0

else
M′[i]← λ

if M′ = M then
return accept

else
return reject

else
return reject

Interfaces Interface SI
Input: (restore, i) ∈ [n]
if Intrusion then

if ∃k, x, t : Hist[k] = (t, W, i, x) then
k0 ← max{k | ∃t, x : Hist[k] = (t, W, i, x)}
Parse Hist[k0] as (t, W, i, x0)
M[i]← x0

else
M[i]← λ

Figure 7: Description of the auditable and authentic SMR of [1] (only the differences with our aSMR are
shown)

17

it acts as a signing oracle by receiving messages m ∈M at its interface and responding with fsk(m). At any
point, the adversary can make a forging attempt by providing a message m′ and a tag t′ to the game. The
game is won if and only if fsk(m′) = t′ and m′ has never been signed by the game before. The probability
of adversary A to win the game is denoted by ΓA(GMAC).

E Protocol and proof for our aSMR construction
In the following, let n be the size of the SMR, fsk(·) be a MAC function with tag space T and Σ be a finite
alphabet. We recall how to model MAC in CC in app. D. The clients will also have read and write access to
a local memory resource denoted by L. The protocol starts with the clients choosing a secret key sk for the
MAC function, setting a version number ctr to 0 and storing both of them in their local memory L. The
main idea is the following : if the i-th cell is supposed to store the data x ∈ Σ, the protocol will store the
tuple (x, fsk(x, ctr, i)) ∈ Σ×T instead. Do note that the version number ctr is incremented with every write
request. This also means that every valid tag needs to be updated with every write request. Intuitively, this
protocol prevents the adversary from :

1. Replacing the data x with y 6= x since this would make the tag invalid.

2. Moving the data stored in location i to location j 6= i since this would make the tag invalid.

3. Replaying an older value since the version numbers would not match and the tag would thus be invalid.

The protocol is formally depicted in figure 9, as a converter authRW to be plugged at the clients interface.
The generation of cryptographic keys and the initialization of the local and outsourced memories are presented
in the initialization converter initauth, in figure 8.

Converter initauth

Interface Interface out
Input: init
sk � K, ctr ← 0
output (write, 1, sk) at interface in of L
output (write, 2, ctr) at interface in of L
output init at interface C0 of SMR
for i = 1 to n do

v ← (λ, fsk(λ, i, ctr))
output (write, i, v) at interface C0 of SMR

Input: (read, i) or (write, i, x)
Defined in the same way as for authRW in figure 9

Input: initComplete
output initComplete at interface C0 of SMR

Figure 8: The initialization protocol initauth for the construction of our aSMR.

Proof. We adapt the proof of [1] to our protocol and aSMR resource.
The first condition, called availability, makes sure that the protocol correctly implements the required

functionality even when the adversary is not present. This rules out absurd constructions : for example,

18

Converter authRW for interface Ct

Interface Interface out
Input: (read, i) ∈ [1, n]
output (read, 1) at interface in of L
Let sk be the result
output (read, 2) at interface in of L
Let ctr be the result
output (read, i) at interface Ct of SMR
Let (x, tag) be the result
if fsk(x, i, ctr) == tag then

return x
else

return ε

Input: (write, i, x) ∈ [1, n]× Σ
output (read, 1) at interface in of L
Let sk be the result
output (read, 2) at interface in of L
Let ctr be the result
ctr ← ctr + 1
v ← (x, fsk(x, i, ctr))
output (write, i, v) at interface Ct of SMR

for j = 1, . . . , i− 1, i+ 1, . . . , n do
output (read, j) at interface Ct of SMR

Let (y, tag) be the result
if fsk(y, j, ctr − 1) == tag then

v ← (y, fsk(y, j, ctr))
output (write, j, v) at interface Ct of SMR

output (write, 2, ctr) at interface in of L

Figure 9: The protocol authRW for the construction of our aSMR.

in the outsourced storage setting, one could provide confidentiality to outsourced files by never outsourcing
them in the first place. The protocol would be secure since the server would not be able to learn anything
about the file but it would not meet the availability condition. To prove the availability of our protocol,
we introduce the special converter honSrv which, when plugged in interface S, prevents the server from
interfering with the client protocol and generating queries at its interface.

We briefly recall the second condition, called security, illustrated in figure 1. Recall that we use the real
world-ideal world paradigm and prove that whatever the adversary can do on the real resource equipped
with the protocol, it could as well do on the ideal resource using a simulator. Since the ideal resource is
secure by definition, there are no successful attacks possible on the real resource equipped with the protocol.

The correctness condition is obvious for the auth protocol so we only prove the security condition. We
analyze the behavior of the real and the ideal systems on every possible input at their interfaces.

Upon init, initComplete at interface C0: Upon the init query, the real system authP [L,SMRk
Σ1,n]

samples a new MAC key and initializes the version number ctr with the value 0. Then, it writes the value
(λ, fsk(λ, i, ctr)) at location i, for i ∈ [1, n] and λ a fixed value in Σ. This adds n+ 1 entries to the history
which reads (0, init) || (0, W, 1, fsk(λ, 1, 0)) || . . . (0, W, n, fsk(λ, n, 0)).
In the ideal system simS

auth aSMRk
Σ,n, the query initializes the memory with the value λ. The simulator

samples a MAC key sk and initializes the version number ctr to 0. Then, it initializes its simulated history
Hsim with n+ 1 entries just like above.

Finally, on entry initComplete both systems deactivate interface C0 and the other client interfaces
become available.

Upon (read, i) at interface Ck: On this query, both protocols initauth (if k = 0) and authRW (if k > 0)
read the i-th memory cell. The history is thus increased by the value (k, R, i). Then, the protocols check
the validity of the tag. If they succeed, the last value written to this location xi is returned. Otherwise, ε is
returned.
In the ideal system, the aSMR directly returns the last value written in location i if this cell’s content has
not been deleted. Otherwise, ε is returned. The simulator emulates this view by simulating the memory of

19

Simulator simauth

Initialization Initialization
sk � K, ctr ← 0
Msim ← (λ, fsk(λ, 1, ctr)) || . . . || (λ, fsk(λ, n, ctr))
Hsim ← (0, init) || (0, W, 1, (λ, fsk(λ, 1, ctr))) || . . . || (0, W, n, (λ, fsk(λ, n, ctr)))
pos← |Hsim|+ 1

Interface Interface SH
Input: getHist

UpdateLog
return Hsim

Input: (read, i) ∈ [1, n]
UpdateLog
return Msim[i]

Interface Interface SI (Intrusion = true)
Input: (write, i, (v, tag)) ∈ [1, n]× (Σ× T)

UpdateLog
Msim[i]← (v, tag)
Determine the last entry in Hsim that wrote value (v′, tag′) to location i.
if v == v′ and tag == tag′ then

output (restore, i) at interface SI of aSMR
else

output (delete, i) at interface SI of aSMR

procedure UpdateLog
output getHist at interface in of aSMR
Let Hist be the returned value
for j = pos to |Hist| do

if Hist[j] = (k, R, i) then
Hsim ← Hsim || (k, R, i)

else if Hist[j] = (k, W, i, x, ctr′) then
if ctr′ > ctr then

ctr ← ctr′

Msim[i]← (x, fsk(x, i, ctr))
Hsim ← Hsim || (k, W, i, (x, fsk(x, i, ctr)))
for ` = 1 to n, ` 6= i do

Hsim ← Hsim || (k, R, `)
y, tag ←Msim[`]
if tag == fsk(y, `, ctr − 1) then

Msim[`]← (y, fsk(y, `, ctr))
Hsim ← Hsim || (k, W, `, (y, fsk(y, `, ctr)))

pos← |Hist|+ 1

Figure 10: The simulator of the construction of our aSMR.

20

the real world and sending delete (resp. restore) requests when the adversary writes values that would
fail (resp. pass) the real world check. If this simulation is perfect, the behavior of the ideal system will
be the same as the ideal one. We will discuss this when we analyze the write requests at interface SI .
Additionally, the next time the simulator is activated, it will update its simulated history Hsim using its
procedure UpdateLog. If the read request (k, R, i) is the next entry in the history Hist of the aSMR,
the simulator increases its simulated history with the value (k, R, i) which perfectly matches the real world
behavior.

Upon (write, i, x) at interface Ck: On a write request, the protocols start by incrementing the version
number ctr and writing the value x, together with its tag t, to location i. The value (write, i, (x, t)) is
thus appended to the history. Then, they read the content of each other location (in ascending order) and
check their tag. If it is correct, a new tag is computed to account for the version number increase, and the
value is written back together with the new tag. For j = 1, . . . , i− 1, i+ 1, . . . , n, the history is increased by
(k, R, j) || (k, W, j, (xj , tagj)) if the check succeeds and by (k, R, j) if the check fails.
In the ideal world, on a (write, i, x) request, the i-th memory cell is updated with the value x and
(k, W, i, x, ctr) is appended to the history of aSMR, where ctr is the current version number. On the
entry (k, W, i, x, ctr) of the history, UpdateLog will increase the simulated history and update its simulated
memory with the values listed above, using the version number ctr and its simulated key sk to check and
produce the appropriate tags. Thus, the simulated history and memory perfectly match the ones of the real
world.

Upon getHist at interface SH : In the real system, the output is the history of SMR. By the above
analysis, an inductive argument shows that in the ideal system, the simulated history Hsim, which is returned
upon this query, perfectly emulates the real-world one.

Upon (write, i, (x, tag)) at interface SI : In the real world, an adversarial write request is a simple
replacement of the memory cell i of SMR. If (x, tag) corresponds to the last honest value written to this cell,
then this cell might become valid again3. This is perfectly simulated in the ideal-world since the simulator
can update its simulated memory and parse the history to check if (x, tag) is indeed the last honest value
written to cell i. If it is the case, the simulator sends a (restore, i) request to aSMR which makes the cell
valid again if it should be.
Now, let’s study the case where the pair (x, tag) is not the same as the last honest one written to this cell.
In the real world, the content of the memory cell i is just replaced. In the ideal world, the simulator sends a
(delete, i) request to aSMR and assigns the value (x, tag) to the i-th cell of its simulated memory. If the
pair (x, tag) fails the tag check, the simulation is perfect since the content of the i-th cell is deemed invalid
in both worlds, making subsequent read requests return ε. However the bad event, denoted by BAD, occurs
if the pair (x, tag) passes the verification (recall that this pair differs from the last honest value written to
cell i). Indeed, in the real world, the check would succeed and the value x would be returned on subsequent
read requests. Meanwhile, in the ideal world, the value of cell i would be deleted and ε would be returned
on subsequent read requests. Hence, the real and ideal systems are identical until event BAD occurs.

Upon (read, i) at interface SH : In the real system, this query returns the value at location i of SMR.
In the ideal system, the value at location i of the simulated memory is returned instead. The simulator
updates its simulated memory on each activation. As we discussed above, the simulated memory perfectly
emulates the real one in all cases. The behavior of both worlds are thus identical.

We conclude that the real and ideal systems are identical until the BAD event occurs. The occurrence
of BAD implies a successful forgery against the MAC function fsk. We use the same reduction C as in [1]
from a distinguisher D to an adversary A := DC against the game4 GMAC. C simulates the real system,
but evaluates the MAC function using oracle queries to GMAC. If D issues a write query at interface SI that
provokes event BAD, C issues this value as a forgery to the game. Hence, we conclude by noting that

3if the version number has not increased
4defined in app.D

21

∆D(authP [L,SMRk
Σ1,n], simauthS aSMRk

Σ,n) ≤ PrD(authP [L,SMRk
Σ1,n])[BAD]

≤ ΓDC(GMAC)

F Lifted Reed-Solomon Codes
Let Fq be the finite field with q elements and S be any finite set. A function f : S → Fq can be given by
its vector of evaluations (f(x))x∈S . With this notation, we see that {f : Fq → Fq | deg f < k} is the q-ary
Reed-Solomon code of length n = q and minimum distance d = q − k + 1, denoted by RSq[q, d].

Definition 8 (Affine-invariant code). Let FQ be an extension of Fq. A code C ⊆ {f : FtQ → Fq} is said to
be affine-invariant if, for all affine permutations T : FtQ → FtQ, we have f ◦ T ∈ C.

Guo et al. [5] then build a LCC in the following way :

Definition 9 (Affine Lifting [5]). Let C ⊆ {f : FQ → Fq} be an affine-invariant code. The m-th affine lift
of C is the affine-invariant code :

Liftm(C) = {g : FmQ → Fq | ∀ affine injections T : FQ → FmQ , g ◦ T ∈ C}

We will denote the set of affine lines in Fmq by Lm := {(at+ b)t∈Fq | a, b ∈ Fmq }.
In our case, we can choose a Reed-Solomon code C := RSq[q, d] and then lift it to a subset Liftm(C) of

{g : Fmq → Fq}, such that each restriction of functions in Liftm(C) to an affine line in Lm belongs to RSq[q, d].
It is clear that this lifted code is locally correctable : to locally correct a codeword c ∈ Liftm(RSq[q, d]), one
just restricts c to an affine line of Lm and uses the decoding algorithm of the base Reed-Solomon code to
recover some symbols. Formally, we consider the following code :

Definition 10 (Lifted Reed-Solomon Code [5]). Let Fq be a finite field. Let d,m ∈ N∗. The m-lift of the
Reed-Solomon code RSq[q, d] is the following code :

Liftm(RSq[q, d]) := {w ∈ Fmq | ∀ line ` ⊆ Fmq , w|` ∈ RSq[q, d]}

G Audit protocol of the auditable SMR
The audit protocol of the auditable aSMR is depicted in fig. 11.

H Proof of theorem 2
Proof. We prove the security condition. We only compare the behaviors of the audit of the real system (the
aSMR with the protocol) and of the ideal one (the aSMRaudit with the simulator). The reader can refer
to [1] for a full proof. We describe the simulator simauth. It maintains a simulated memory, emulating the
real world memory, using the history of the ideal resource. On (delete, i), the simulator replaces the i-th
entry of its simulated memory by ε. On (restore, i), the simulator restores the content of the i-th entry of
its simulated memory to the last value written here. The simulator maintains a simulated history using the
ideal history of the aSMRaudit.

If, after a delete request, the set of corrupted locations of the simulated memory contains a d-cover subset
of Fmq , the simulator deletes the whole ideal memory by sending delete requests to aSMRaudit. Similarly, if
after a restore request, the set of corrupted locations of the simulated memory does not contain a d-cover
subset of Fmq , the simulator restores the whole ideal memory by sending restore requests to aSMRaudit.

22

auditLCC converter

Chooses a random line ` ⊆ Fmq

aSMR

(read, i)

i ∈ `

i ∈ `

M[i]

or

ε for less than d− 1 locations i

ε for more than d locations i

accept

audit

reject

Client

Figure 11: The audit mechanism for lifted Reed-Solomon codes (in the allow case)

On an audit request, the simulator chooses a random line ` ⊆ Fmq , adds the entries (read, i) for i ∈ ` to
its simulated history. Then, if the restriction of its simulated memory to this line contains strictly less than
d corrupted cells, the simulator sends accept to aSMRaudit. Else, it sends reject.

Upon auditReq at interface SH : Recall that d-cover sets are the sets of unrecoverable erasures for our
global decoder of lifted Reed-Solomon codes. Suppose that a subset of the corrupted cells forms a d-cover
set. In order to run the audit, the converter chooses a random line ` ⊆ Fmq , retrieves the restriction of the
memory to this line through read requests and adds the corresponding entries to its simulated history. We
showed, see equation 1, that the probability that this restriction contains strictly less than d erasures, i.e.,
that the audit is successful, is less than(

1− 1

qm−1

)(
1− d− 1

q − 1

)q−d+1

The simulation is perfect unless the following BAD event occurs : having simulated a real audit, the
simulator answers allow (audit should succeed) whereas a d-cover subset of corrupted cells exists. In that
case, the simulator has chosen a restriction of the memory a line ` that contains strictly less than d corrupted
cells, and has written the corresponding read requests to its simulated history. Note the the distinguisher
has access to the simulated history. Then, the simulator outputs allow to the ideal resource, that runs the
ideal audit. Since there exists a d-cover set of corrupted memory cells, the file is unretrievable so the ideal
audit fails and the client receives reject. The distinguisher thus observes the following incoherence : reject
is output while the (simulated) history contains the trace of a valid audit. The simulator concludes that it
is interacting with the ideal system. We give a detailed explanation of the BAD event in app. I.

To sum up, the only observable difference from a distinguisher point of view lies in the audit procedure.
The overall distinguishing probability is thus the one of distinguishing a real audit from a simulated one. As
we saw, if the distinguisher runs r audits, this probability is less than r·(1−1/qm−1)·(1−(d−1)/(q−1))q−d+1,
yielding the aforementioned result.

I Detailed description of the BAD event
We here detail the interactions between the audit requests, the simulator, the distinguisher and the ideal
resource, during an audit. It is very important to notice that the simulator is only connected to the interfaces

23

SI and SH of the server, and has no interaction with the clients. As audit is a functionality available at
clients’ interfaces, it follows that an audit request is not directly treated by the simulator. As described in
fig.7, the following steps are done when the ideal resource aSMR_LCCaudit receives an audit request at
one of its client interfaces Cj :

1. the resource sends auditReq at interface SH .

2. via its interface SH , the simulator either responds allow or abort.

3. if allow, the audit is run and the resource sends back to the client either accept or reject, depending
on whether the ideal audit has succeeded or failed.

4. if abort, the ideal resource always sends reject back to the client.

Thus, in the proof, the simulator cannot directly control the outcome of the audit, in the sense that it
cannot decide whether the ideal resource would send accept or reject back to the client. On the other
hand, as it receives the auditReq request at interface SH , the simulator can choose to answer abort or allow
to the ideal resource. Let us now examine how the simulator behaves in both cases :

1. The simulator answers abort :
It has received an audit request via auditReq. It then runs a simulation of a real audit (the one
of the protocol) on its simulated memory: it chooses a set of t addresses, adds the corresponding
read requests to its simulated history, and tests whether the values stored at those addresses (in its
simulated memory) are valid (6= ε) and up-to-date. In this case, this test fails : at least one value is
invalid, and the simulator is convinced that the real audit has to fail. It thus decides to answer the
ideal resource abort. Consequently, the ideal resource does not run an ideal audit, but rather answers
the client reject. The client is in fact controlled by the distinguisher in the ideal setting. Looking at
the simulated history, it (the distinguisher) believes to interact with the real resource.

2. The simulator answers allow:
It has received an audit request via auditReq. It then runs a simulation of a real audit (the one of
the protocol) on its simulated memory: it chooses a set of t addresses, adds the corresponding read
requests to its simulated history, and tests whether the values stored at those addresses (in its simulated
memory) are valid (6= ε) and up-to-date. In this case, this test succeeds, all values are valid, and the
simulator is convinced of the success of the real audit, as it simulated it with success. It thus sends
allow to the ideal resource. The subtlety lies here : the ideal resource receives allow but it does not
imply that it will send accept back to the client. It will run its ideal audit, and send the outcome of
this audit to the client. The point is, when the simulator sends its answer (here allow) to the ideal
resource, it already has simulated the real audit (here with success), and written the corresponding
entries in its simulated history. Being not connected to the client’s interface, the simulator does not
“see” the result of the ideal audit (accept or reject) sent by the ideal resource to the client. Thus it
cannot a posteriori modify its audit simulation to comply with the response of the ideal resource. The
distinguisher, being connected to server and client’s interfaces, has access to the ideal audit response
and, by comparing it to the simulated history, can see the incoherence; (the trace of the audit in the
simulated history corresponds to one which should fail). This incoherence never happens in the real
resource, thus the distinguisher has distinguished between the two systems. Using equation 1, with
probability ≤ (1− 1/qm−1) · (1− (d− 1)/(q − 1))q−d+1 the simulator makes a wrong simulation.

24

	Introduction
	Context and state-of-the-art
	Contributions

	Background
	The Constructive Cryptography model
	Proofs of Retrievability
	Locally Correctable Codes

	Our framework
	Our authentication protocol
	Instantiation with high rate LCCs
	Lifted Reed-Solomon Codes
	The lifted RS PoR scheme
	The graph code PoR scheme

	Parameters
	Background on Constructive Cryptography
	Resources, Converters and Distinguishers
	Specifications and Relaxations

	Basic Server Memory Resource
	The auditable and authentic SMR
	Message Authentication Codes in CC
	Protocol and proof for our `39`42`"613A``45`47`"603AaSMR construction
	Lifted Reed-Solomon Codes
	Audit protocol of the auditable SMR
	Proof of theorem 2
	Detailed description of the BAD event

