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Abstract. The task of combining cryptographic keys, some of which may be maliciously formed, into
one key, which is (pseudo)random is a central task in cryptographic systems. For example, it is a crucial
component in the widely used TLS and Signal protocols. From an analytical standpoint, current security
proofs model such key combiners as dual-PRFs – a function which is a PRF when keyed by either of
its two inputs – guaranteeing pseudo-randomness if one of the keys is compromised or even maliciously
chosen by an adversary.
However, in practice, implementations of key combiners significantly depart from the “dual-PRF” stan-
dard set by provable schemes. Specifically, existing implementations typically use heuristic approaches
and rely on strong assumptions that are only known to be satisfied in ideal models (such as modelling
underlying hash functions as random oracles), or which are not justified at all by known security re-
sults. We describe several cases of deployed protocols where this is the case, focussing on the use of
HKDF as a dual-PRF. Unfortunately, such strong assumptions on cryptographic hash functions tend
not to withstand the test of time, often leading to deployed systems that eventually become completely
insecure; experience also shows that upgrading already-deployed cryptography from deprecated hash
functions to newer ones is a slow process that can take many years. Finally, we consider it sub-optimal
that the new hybrid key exchange protocols combining classical and post-quantum key exchanges and
that are in the process of development risk more deeply embedding the improper use of key combiners.
In this work, we narrow the gap between theory and practice for key combiners. In particular, we give a
construction of a dual-PRF that can be used as a drop-in replacement for current heuristic key combiners
in a range of protocols. Our construction follows a theoretical construction by Bellare and Lysyanskaya,
and is based on concrete hardness assumptions, phrased in the spirit of one-wayness. Therefore, our
construction provides security unless extremely strong attacks against the underlying cryptographic
hash function are discovered. Moreover, since these assumptions are considered post-quantum secure,
our constructions can safely be used in new hybrid protocols. From a practical perspective, our dual-
PRF construction is highly efficient, adding only a negligible overhead of a few microseconds compared
to currently used (heuristic) approaches. We believe that our approach exemplifies a perfect middle-
ground for practically efficient constructions that are supported by realistic hardness assumptions.
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1 Introduction

In modern cryptographic protocols, a paradigm has been established: users jointly execute a key exchange
protocol and use the output shared secret keys in some arbitrary symmetric key protocol in order to achieve
some cryptographic goal (e.g. building a secure channel). In practice, key exchange is usually based on Diffie-
Hellman key agreement, and this is the basis of commonly used key exchange protocols on the Internet, such
as TLS 1.3 and the Signal Double Ratchet protocols.

Significant work is now underway to elevate these important protocols to achieve post-quantum security,
i.e., to protect against attackers with quantum computers, by including post-quantum cryptographic primi-
tives. When extending these protocols, it is common to consider a hybrid approach, combining keys output



from classical key agreement protocols with post-quantum key agreement protocols and using these keys
in symmetric-key primitives. Draft standards exist supporting this approach [38, 10] and there is a growing
body of theoretical work on it [7, 14, 37]. Large-scale experiments have already been conducted to study the
performance impact of taking such a hybrid approach in TLS [27, 26]. Similarly, ratcheted key exchange
protocols, such as Signal, continuously derive new keying material, and combine with existing secret state
to achieve strong notions such as forward secrecy and post-compromise security. In both settings – hybrid
protocols and ratcheted key exchange – combining multiple secrets is done through the use of key derivation
functions (KDFs).

In addition, key agreement primitives like Diffie-Hellman do not necessarily output uniformly random
keys, which is required of the most common symmetric-key primitives. If the keying material output by the
key agreement primitive is not uniformly random, first extraction must occur. This is the approach taken by
HKDF [24], a hash-based KDF that is modularly divided into extract and expand phases, where the extract
phase acts as a computational extractor, and the expand phase successively generates new keying material
from the extracted entropy. HKDF is very widely used, including in TLS and Signal.

However, the use of a computational extractor as a key combiner is not necessarily a clean fit. In partic-
ular, we highlight that TLS, Signal, and recent ETSI6 Hybrid Key Exchange protocols use computational
extractors like HKDF.extract in heuristic ways that do not fit the threat model that it was analyzed under.
New proposals for hybrid key exchange are currently being considered for standardization, and experience
shows that once standardized, constructions are often used for decades. Therefore, it is of utmost importance
that we fully understand the security guarantees of primitives like HKDF, and whether they are being used
correctly (and indeed actually suitable for use at all) in the new standards that are under development,
especially complex ones involving hybrid approaches. This brings us to the central questions that we address
in this paper:

What are the security definitions required by key-combiners as they are currently used in practice, and
do they satisfy them? Can we design an efficient and practical key-combiner that satisfies these security
definitions under standard assumptions and that can be used as a drop-in replacement for the current heuristic
approaches?

1.1 Our Contributions

To answer the first question, we being with a survey of several works that provide security proofs for TLS,
Signal, and ETSI protocols. We show that these protocols use HKDF.extract as a key-combiner, and their
security proofs require it to be modeled as a dual-PRF. However, to the best of our knowledge, HKDF.extract
was never proven as a dual-PRF under standard assumptions. We also examine the proposal of [38]. This
proposal does not come with formal proofs, but we use our previous protocol studies to infer what would
be needed to prove its security. We highlight that it has several unanticipated weaknesses arising from the
possibility of an attacker being able to control classical inputs to the key derivation steps in a post-quantum
setting, specifically in situations where the collision-resistance of HKDF.extract is assumed to be broken.

Given this problematic picture, we then propose a concrete construction of a dual-PRF based on concrete
hardness assumptions which are phrased in the spirit of one-wayness. The proposed construction follows a
theoretical one from Bellare and Lysyanskaya [5], but requires significantly weaker assumptions. Further, we
give a concrete construction, with concrete choices for underlying cryptographic components, along with a
reference implementation. Since we use only assumptions and primitives that are considered quantum-secure,
our results lift to a quantum setting.

Starting from the theoretical side, our core construction makes use of the following components: g is an
injective one way function; F is a computational-extractor with respect to g; PRF is a standard PRF; H is
an ε-regular function (all notions are defined in the main body). Then, the following procedure defines the
operation of our dual-PRF on a pair of inputs K1,K2:

6 ETSI is an independent, not-for-profit, standardization organization in the field of information and communications
(see https://www.etsi.org).
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1. k1 ← F (K1), k2 ← F (K2).
2. u1 ← g(K1), u2 ← g(K2).
3. Y ← H(PRF(k1, 2||u2)⊕ PRF(k2, 1||u1)).
4. Output Y .

Here, the intuition is that even if K2 is adversarially chosen, the output of PRF(k1, 2||u2) will still be
uniformly random as long as u2 is unique. The same goes for adversarially chosen K1 and PRF(k1, 2||u2).
As g is injective it is not possible to find two inputs that will collide on u1 or on u2.

We then show how this theoretical construction can be efficiently instantiated using the same crypto-
graphic primitives as are used in the current heuristic HKDF.extract based solutions. We complete the paper
by showing how our efficient dual-PRF can be used as a drop-in replacement key-combiner in TLS 1.3.

To summarize, our main contributions are:

– A study of existing security proofs for a range of key exchange protocols, highlighting how the assumptions
they make concerning HKDF.extract are not fully supported by proven properties of HKDF.extract.

– The development of a suitable dual-PRF, proven secure under mild assumptions on its cryptographic
components.

– An analysis of the implementation efficiency of this dual-PRF, showing that it comes with only small
overhead compared to HKDF.extract.

– An explanation of how the proposed dual-PRF can be smoothly integrated into the TLS 1.3 handshake,
focussing on its use to safely combine secrets coming from classical and post-quantum key exchanges.

Paper organization. In Section 2 we describe HKDF and HMAC, survey existing analysis in the literature, and
point to problematic uses of these functions in deployed protocols. In Section 3 we give two constructions of
injective one-way functions from realistic assumptions. This building block is then used in Section 4, where
we present and formally analyze our suggested dual-PRF. In Section 5 we explain how to best instantiate
the dual-PRF construction in practice, and provide implementation benchmarks. In Section 6 we show how
to use the new construction in the TLS 1.3 key schedule. And lastly, in Section 7 we survey related work.

2 HKDF And Its Uses

Here, we describe HKDF, first by explaining its construction from underlying cryptographic primitives, and
then surveying literature analyzing the HKDF and HMAC primitives. We then turn to the use of HKDF
in real-world protocols, such as TLS 1.3 and the Signal protocol. We highlight the assumptions are made
of HKDF when analysing these protocols, and how they do not match the existing literature. Finally, we
examine in detail a recent IETF draft [38] that provides a construction for hybrid key exchange in the TLS
1.3 protocol, discussing various scenarios that are barriers for an analysis of this construction, including
strong assumptions necessary to prove the construction’s security.

2.1 HKDF – Construction and Analyses

HKDF is separated into two phases, HKDF.Extract and HKDF.Expand.
HKDF.Extract takes two inputs (salt, ikm) and outputs a pseudorandom key prk. Here, salt is either

a uniformly random (but not secret) value or a constant, ikm is (secret) input keying material that has
sufficient entropy (but not necessarily uniformly random) and prk is a secret, pseudorandom key that is
indistinguishable from a uniformly random value (under certain assumptions, discussed below in detail).

In the expand phase, HKDF.Expand takes three inputs (prk, info, L) and outputs keying material okm.
Here prk is a pseudorandom key, info is an optional context string, L is the length of the output keying
material, and okm is some pseudorandom keying material of length L that is indistinguishable from a
uniformly random value of the same length (again, under certain assumptions).

In this work, we focus on the extraction phase of HKDF, its use as a key combiner and computational
extractor, and the assumptions made of the underlying cryptographic primitives. HKDF.Extract is built upon
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HMAC; specifically, HKDF.Extract(salt, ikm) := HMAC(salt, ikm). Notice how the value salt here is used as
a key to HMAC.

Since HKDF.Extract is essentially equivalent to HMAC, we now briefly focus the discussion on HMAC
before returning to HKDF.

HMAC. HMAC is a pseudorandom function (PRF) family with:

HMAC(K,m) := HASH((K ′ ⊕ opad)‖HASH((K ′ ⊕ ipad)‖m)),

where HASH is a cryptographic hash function with block size L, m is some message, K ′ = HASH(K) if
|K| > L and K ′ = K otherwise, opad is the byte-string 0x5CL, and ipad is the byte-string 0x36L. Thus,
HKDF.Extract is constructed as:

HKDF.Extract(salt, ikm) := HASH((salt′ ⊕ opad)‖HASH((salt′ ⊕ ipad)‖ikm)).

The original proof of HMAC (due to Bellare, Canetti, and Krawczyk [4]) relied on the assumption that
the hash function HASH was weakly collision-resistant (and also that the underlying compression function
was a secure PRF). But, as Bellare highlighted [3], attacks on MD5 and SHA-1 demonstrated that these
hash functions were not collision resistant. Widespread implementation of MD5 and SHA-1 meant that
deprecating these primitives is a long, slow process that is still ongoing. Bellare improved upon the original
security results for HMAC by providing a second proof of HMAC as a PRF, which only requires that the inner
compression function h of the underlying hash function meet some PRF-like conditions. Specifically, the proof
requires that h be a standard PRF, and its dual function h(message block, IV ) = h(IV,message block) be a
PRF under related-key attack, for a small and specific class of related keys. These assumptions are considered
mild, to the extent that even broken hash functions like MD5 likely meet them. Therefore, HMAC is likely
a PRF even when instantiated using MD5; indeed, no concrete attack has been published against HMAC
using MD5. Notice, however, that this result applies for HMAC when used with a random key (whereas, as
we already highlighted above, HKDF.Extract uses a salt as this input).

Modeling HMAC or HKDF as a dual-PRF. Generally speaking, HMAC is not provably a dual-PRF.
Bellare [4] does assume that the inner compression function h of the hash function is a dual-PRF, but HMAC
itself was not shown or assumed to be a dual-PRF in his work. We are not aware of any published proof
that claims that HMAC as a whole is a dual-PRF under standard assumptions. Obviously, the same applies
to HKDF.Extract.

Despite this, as we describe below, several works model HMAC, or equivalently HKDF.Extract, as a dual
PRF.

Use and Analysis of HKDF in deployed protocols. In the remainder of this section, we describe the
use of HKDF in practice and how it deviates from the proposed usage analysed by Krawczyk [25] in various
real-world cryptographic protocols. In addition, we also highlight how various analyses of these protocols
model HKDF: in particular, we look at the TLS 1.3 handshake protocol and its analysis by Dowling et al. [13],
and the Signal Double Ratchet protocol and its analysis by Cohn-Gordon et al. [11]. Further, we look at
the “Hybrid Key Exchange in TLS 1.3” proposed standard, likely to be deployed soon, and describe several
attacks against it which arise in situations where the adversary is able to control some of the inputs to
HKDF (for example, a classical Diffie-Hellman shared key which may be known to a quantum adversary).
For each protocol, we give an overview of the exact assumptions used, leaving some details for Appendix A.
Additionally in Appendix A, we examine the ETSI Hybrid Key Exchange protocols and their analysis by
Campagna and Petcher [10].

2.2 HKDF in TLS 1.3

We begin by describing the TLS 1.3 key schedule, taken verbatim from Dowling [13] in Figure 2.2. Note
that we focus here on the “cryptographic backbone” of the TLS key schedule - all other values (for instance,
traffic keys) can be derived from the ES, HS or MS values by a party that knows the protocol transcript.
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0 Ext

PSK

ES Exp3 dES Ext

DHE

HS Exp3 dHS Ext

0

MS

H0 H0

Fig. 1. The TLS 1.3 key schedule backbone. Input secrets PSK and DHE denote the preshared key and the Diffie-
Hellman secret output, respectively - if they are not included in a given handshake variant, they are instead replaced
with a zero-string. Ext denotes HKDF.Extract(salt, ikm), where the left-hand input is the salt and the top input is
the input keying material ikm. Exp denotes HKDF.Expand(k, Label‖H0), where the Label is a unique string for each
derived value and H0 is a hash of the zero-string.

HKDF as Modelled in Analyses of TLS 1.3 When analysing the full handshake, Dowling et al. describe
a specific game hop where they replace the computation of HS ← HKDF.Extract(dHS,DHE) in the proof
with a value HS′, sampled uniformly at random from the output distribution of HKDF.Extract. Then, they
argue that they can turn any algorithm capable of distinguishing this change into an adversary against the
dual-snPRF-ODH security of the HKDF.Extract function, functionally modelling HKDF.Extract as a dual PRF.
However, as we mentioned previously, this does not match any known proof of HKDF.Extract that can be
found publicly. Full details of the assumption used in the analysis of TLS 1.3 Handshake protocol can be
found in Appendix A.

In addition, Brendel et al. [9] demonstrate via algebraic reductions that it is unlikely that any variant of
the PRF-ODH assumption can be proved under standard model assumptions, instead relying on modelling
the PRF as a random oracle: this implies that proving HKDF.Extract can function as the underlying PRF in
the dual-PRF-ODH assumption requires a random oracle assumption, which our construction avoids entirely.

HKDF as Used in TLS 1.3 The specification of TLS 1.3 [34] describes HKDF.Extract as a PRF, but is used
throughout the protocol execution as a secret combiner or dual PRF, sometimes taking secret input from the
salt input, or sometimes taking secret input from the ikm input. Recall that HKDF.Extract(salt, ikm) → k
takes a uniformly random salt (that does not need to be secret) and some secret keying material ikm (that
may not be uniformly random) and outputs a uniformly random value prk. We highlight that combining the
PSK and the DHE may not be safe if PSK is a value that has been generated by the adversary. This property
is expected from the ikm input (which PSK is used as) in the analysis of HKDF.Extract when proving it as a
computational extractor [25]. We note that by the TLS 1.3 standard [34], PSK can be established either in
a previous TLS 1.3 connection, or in some out-of-band mechanism. The TLS 1.3 standard notes that “while
using an out-of-band provisioned pre-shared secret, a critical consideration is using sufficient entropy during
key generation,” which implies non-uniform but sufficient entropy PSKs would be acceptable. Further, this
assertion is made explicitly in the Guidance for External PSK Usage in TLS Internet Draft [20]: “... if a
high entropy PSK is used, then PSK-only key establishment modes provide expected security properties for
TLS...”.

This matches the usage of PSK in generating the early secret ES (if the attacker did not control PSK,
since ikm may be non-uniform with sufficient entropy), but misses a crucial point: if an adversary generates
PSK, then it also controls the derivation of dES = HKDF.Expand(HKDF.Extract(0,PSK), Label‖H(0)). The
analysis of HKDF requires that salt is not controlled by an attacker, and thus the derivation of the handshake
secret HS = HKDF.Extract(dES,DHE) does not match the requirements of the salt expected in the analysis
of HKDF.Extract.

To address these concerns, in Section 4 we describe a dual PRF construction, and then in Section 6 we
then propose a modified TLS 1.3 key schedule that achieves security even in these strong settings.

2.3 HKDF in Signal’s Double Ratchet Protocol

We begin by describing the use of HKDF in the analysis of Signal’s Double Ratchet protocol, and how
it deviates from the proposed usage analysed by Krawczyk [25]. On a high-level, in Signal’s asymmetric
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ratchet users share some secret state (known as the root key rki), and the responder has a Diffie-Hellman
public keyshare that the initiator knows the secret exponent of, which is used to initialise the protocol. The
users then exchange Diffie-Hellman public keyshares (in a ping-pong fashion, see Figure 2.3) to successively
generate new Diffie-Hellman secret values, which are combined with the previous root key rki to derive the
new root key rki+1.

Alice rki−1, Y Bob rki−1, yi−1

xi−1
$←− Zq, X ← gxi−1

X

DHE← Y xi−1 DHE← Xyi−1

rki ← HKDF(rki−1,DHE) rki ← HKDF(rki−1,DHE)
yi $←− Zq, Y

′ ← gyi

Y ′

DHE′ ← Y ′
xi−1 DHE′ ← Xyi

rki+1 ← HKDF(rki,DHE
′) rki+1 ← HKDF(rki,DHE

′)

xi $←− Zq, X
′ ← gxi

X ′

DHE∗ ← Y ′
xi DHE∗ ← X ′

yi

rki+1 ← HKDF(rki,DHE
∗) rki+1 ← HKDF(rki,DHE

∗)

Fig. 2. A simplified depiction of the Signal Asymmetric Ratchet. Note that we have omitted details of further chain
and message key derivation, focusing on the derivation of the root keys rki. Input secrets rki−1, yi−1 and Y denote the
previous root key, Bob’s previous Diffie-Hellman secret exponent and Bob’s previous Diffie-Hellman public keyshare.
HKDF denotes the full execution of HKDF, i.e. HKDF.Expand(HKDF.Extract(rki,DHE), const), where const is some
constant value.

The Double Ratchet protocol specification [31] recommends the use of HKDF as a key derivation function,
so when deriving a new root key rki from the previous root key rki−1 and a new Diffie-Hellman secret
computation Y xi−1 , the first step would be tmp← HKDF.Extract(rki−1, Y

xi−1), the output of which is used
as the keying input to HKDF.Expand. It can be seen that Signal, like TLS 1.3. is implicitly using HKDF.Extract
as a secret combiner, or dual PRF.

HKDF as Modelled in Analyses of Signal Here we present the assumptions used to model HKDF in the
recent computational analysis [11] of the Signal protocol. Similarly to the analysis of TLS 1.3, Cohn-Gordon
et al. demonstrate that under certain assumptions of the underlying cryptographic primitives (including
HKDF), that Signal’s key exchange achieves key-indistinguishability. During the proof, the authors use a
range of PRF-ODH assumptions to achieve an analysis of Signal in the standard model (see Appendix A
for an example of a PRF-ODH assumption). This approach, much like the analysis of TLS 1.3’s handshake
protocol, implicitly models HKDF as a dual PRF. It is worth noting here that their previous analysis of the
Signal protocols eschewed this approach, preferring to model HKDF as a random oracle, a much stronger
assumption.

HKDF as Used in Signal Note that the specification assumes that both parties have been established
with some preshared secret root key rk1. The DR section “Security Considerations” [31] states that the DR
protocol “is designed to recover security against a passive eavesdropper who observes encrypted messages
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after compromising one (or both) of the parties to a session.” Thus, an attacker that establishes a non-uniform
root key is outside the proposed threat model.

Regardless, it is clear to see that the Signal asymmetric ratchet protocol is not robust against an at-
tacker that can cause the initial root secret to be non-uniform if using HKDF, since the KDF guarantees of
HKDF.Extract do not cover this scenario. A problem that is more relevant to the proposed threat model and
the guarantees of HKDF.Extract is the dependence of secret values into the HKDF.Extract input. From the
Krawczyk analysis of HKDF [25]:

“More significantly, however, is the need for independence between the source Σ and the salt value
used by the KDF. Allowing the attacker to influence Σ after seeing the salt may result in a completely
insecure KDF.”

After an attacker compromises the root key rki, it is able to inject Diffie-Hellman public values between
the two parties, and thus the guarantees of the KDF no longer hold. It may be possible for the attacker to
cause the next update to the root key rki+1 to become non-uniform, and thus break the guarantees for the
KDF chain in the future, after the attacker has become passive once again.

2.4 HKDF in Hybrid Key Exchange in TLS 1.3

In this section we apply our observations to case of the IETF informational standard “Hybrid Key Exchange
in TLS 1.3” [38]. The draft is concerned primarily on combining secrets derived from standard TLS 1.3
Diffie-Hellman key exchange with post-quantum key exchange mechanisms. We begin with a description of
the proposed draft, and depict the proposed key schedule. Note that for ease of understanding, we have
depicted HKDF Extract operations down into its component HMAC calls.

0 Ext

PSK

ES Exp3 dES Ext

DHE‖PQS

HS Exp3 dHS Ext

0

MS

H0 H0

Fig. 3. The proposed Hybrid TLS 1.3 key schedule backbone. Input secrets PSK, PQS and DHE denote the preshared
key, the post-quantum secret and the Diffie-Hellman secret output, respectively - if they are not included in a given
handshake variant, they are instead replaced with a zero-string. Ext denotes HKDF.Extract(salt, ikm), where the left-
hand input is the salt and the top input is the input keying material ikm. Exp denotes HKDF.Expand(k, Label‖H0),
where the Label is a unique string for each derived value and H0 is a hash of the zero-string.

Again, we focus on the cryptographic backbone of the proposed key schedule. We note that as opposed
to including PQS as a key input in the final HKDF.Extract step, PQS is instead concatenated with DHE and
given as keyed input to the second HKDF.Extract step. Since PQS may be the output of a KEM, it may
be that an attacker may not know the output of DHE, but can control the output of PQS. In particular,
HKDF.Extract is not proven to provide security in this setting under standard assumptions - we theorise that
it would be necessary to model HKDF.Extract as a random oracle to achieve security as a result. Finally,
much like standard TLS 1.3, we believe that even if we assume that the attacker does not control PQS or
DHE, a dual PRF assumption would be required to prove security in the proposed key schedule, which again
is not proven for HKDF.Extract.

To address these problems, after we describe a dual PRF construction in Section 4, we then propose a
Hybrid TLS 1.3 key schedule (see Section 6) that achieves security even in these strong settings, and under
weaker assumptions, completing the circle on the use of dual PRFs in TLS 1.3 and Hybrid TLS 1.3.

Making an extractor robust against an attacker’s ability to influence the source of randomness Σ is known
as ε-resilient extractors. In particular, it is not an aspect of HKDF Extract that is proven.
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Data: PSK,DHE
Result: MS

ES = HMAC(0,PSK);
dES = HMAC(ES, LabeldES‖HASH(0));
HS = HMAC(dES,DHE);
dHS = HMAC(HS, LabeldHS‖HASH(0));
MS = HMAC(dHS, 0);

Data: PSK,DHE,PQS
Result: MS

ES = HMAC(0,PSK);
dES = HMAC(ES, LabeldES‖HASH(0));
HS = HMAC(dES,DHE‖PQS;
dHS = HMAC(HS, LabeldHS‖HASH(0));
MS = HMAC(dHS, 0);

Fig. 4. On the left we depict the “standard” TLS 1.3 key schedule, and on the right we depict the proposed Hybrid
TLS 1.3 key schedule. Note that we use 0 to denote a zero-string of LH bits, where LH is the output length of the
underlying hash function.

3 Two Forms of One-Wayness and Injectivity

We present two types of assumptions, closer in spirit to one-wayness, and prove that they imply functions
with desired properties: one-wayness and injectivity. One notion that we consider is that of exponentially
strong one-way functions. Here, we consider one-way functions where the guessing chance of any attacker is
exponentially small (i.e., almost the best possible). We observe that such functions can be efficiently converted
into one-way functions (which are still exponentially secure) that are also injective. The construction has the
following form:

injF (x) = F (h(x)),

where F is strong enough one-way function and h is a simple combinatorial hash function (i.e., 2 universal).
The downside of this construction is that the security reduction is rather costly in practice, and therefore
the resulting parameters are not that great. (We provide numerical examples below.)

This motivates our second approach. This approach asserts that one-wayness holds even if multiple
evaluations (on the same input) are given, i.e., several applications of one-way functions on identical inputs
behaves like a one-way function. At the same time, we need the corresponding family of functions to be
2-universal (namely any two distinct inputs do not collide on a randomly chosen function from the family).
We show how to turn such a family (satisfying both properties), to a one way function which is injective
with high probability. The construction has the following form:

injF (x) = F1(x)‖ . . . ‖Fk(x),

where the Fi’s come from a family of functions which are one-way given same-input evaluations of other
functions in the family and at the same time they satisfy a simple combinatorial property (i.e., being 2
universal). The advantage of this approach is that there is essentially no loss in parameters, although the
assumptions are somewhat less standard. Still, we believe that it serves as a reasonable trade-off between
assumptions and practicality.

We start by presenting the more practically-efficient approach (i.e., the second approach) and then present
the one based on more standard assumptions but less efficient (i.e., the first approach).

3.1 A practically-efficient approach

We first give the necessary definitions and then state the result.

Definition 1 (2-universal). Let F = {f : {0, 1}n → {0, 1}m} be a family of functions. We say that F is
ε-2-universal if for every distinct x1, x2 ∈ {0, 1}n, it holds that Prf←F [f(x1) = f(x2)] ≤ ε.

Definition 2 (Same-input one-way). Let F = {f : {0, 1}n → {0, 1}m} be a family of functions. We say
that F is (s, δ)-same-input one-way if for every size-s circuit A, it holds that

Pr[∀i ∈ [k] : fi(x
′) = fi(x)] ≤ δ(λ),
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where the probability is over the choice of f1, . . . , fk ← F and over x← {0, 1}n, and where x′ is the output
of A given (f1(x), . . . , fk(x), f1, . . . , fk).

The above definition, when k = 1, is just the usual definition of (s, δ)-one-way functions. Note that this
definition is very related to previously defined notions, e.g., [35, 18]. In particular, Hemenway, Lu, Ostro-
vsky [18] show that Definition 2 is existentially equivalent to the existence of one-way functions. However,
the novel aspect of our work is that we will need the same family of functions to be 2-universal (Definition 1)
at the same time.

We prove that for a natural range of parameters the function that just concatenates the outputs of
sufficiently many randomly sampled f ’s must be injective.

Lemma 1. Assume that there is a family F = {f : {0, 1}n → {0, 1}m} which is both ε-2-universal and (s, δ)-
same-input one-way. Then, the function family that contains functions of the form h : {0, 1}n → {0, 1}mk
such that h(x) = f1(x)‖ . . . ‖fk(x) is an injective (s, δ)-one-way function with probability 1−22n · ε(n)k (over
the choice of f1, . . . , fk ← F).

Proof. First, observe that the (s, δ)-one-wayness of h follows directly from the same-input product one-
wayness of F . Therefore, we only need to prove that h is injective with high probability.

Let N be a random variable corresponding to the number of distinct pairs (x1, x2) that collide relative
to h. By Markov’s inequality,

Pr
f1,...,fk←F

[h is not injective] = Pr
f1,...,fk←F

[N ≥ 1] ≤ E
f1,...,fk←F

[N ].

By definition of h,

E
f1,...,fk←F

[N ] =
∑

x1,x2∈{0,1}n
E

f1,...,fk←F
[∀i ∈ [k] : fi(x1) = fi(x2)].

Since the fi’s are chosen independently and they are coming from a pairwise family, for every x1, x2 ∈ {0, 1}n,
it holds that

E
f1,...,fk←F

[∀i ∈ [k] : fi(x1) = fi(x2)] ≤
(

Pr
f←F

[f(x1) = f(x2)]

)k
≤ ε(n)k.

Therefore,

Pr
f1,...,fk←F

[h is not injective] ≤ 22n · ε(n)k.

3.2 A foundational approach

In this section we show that an extreme setting of parameters can be used to turn any one-way function into
an injective one.

Lemma 2. Assume that f : {0, 1}λ → {0, 1}m is (s, δ)-one-way function and G = {g : {0, 1}n → {0, 1}λ} is
a pairwise hash function. The function

h(·) = f(g(·))

is an injective (s′, δ′)-one-way function with probability 1 − 22nδ(λ) (over the choice of g ← G). Further,
s′ = s−O(λ) and δ′(n) = 2λ−nδ(λ) + 22n−λ.

9



Setting of parameters. We want to get a function which is both injective with very high probability and also
(strong) one-way. Set λ = 7n/2 and δ(λ) = 2−6λ/7 = 2−3n. Start with an (s, δ)-one-way function f , we get
that the function h is injective with probability 1−2−n and it is (s′, δ′)-one-way for s′ ≈ s and δ′(n) = 2−n/2.

Proof (of Lemma 2). We first show that h is injective with high probability, following the high level idea of
Lemma 1. For every x1 6= x2, the pairwise independence of g implies that

E
g←G

[f(g(x1)) = f(g(x2))] = Pr
w1,w2←{0,1}λ

[f(w1) = f(w2)].

Let N be a random variable corresponding to the number of distinct pairs (x1, x2) that collide relative
to h. By Markov’s inequality,

Pr
g←G

[h is not injective] = Pr
g←G

[N ≥ 1] ≤ E
g←G

[N ]

=

(
2n

2

)
Pr

w1,w2←{0,1}λ
[f(w1) = f(w2)].

Since f is strong one-way, it holds that PrX←{0,1}λ [f(X ′) = f(X)] ≤ δ(λ). In particular, it must be that
Prw1,w2←{0,1}λ [f(w1) = f(w2)] ≤ δ(λ) (otherwise there is a non trivial way to invert). Thus,

Pr
g←G

[h is not injective] ≤
(

2n

n

)
δ(λ).

We proceed with the proof of one-wayness of h. First, note that by a similar calculation,

Pr
g←G

[g is not injective] ≤ 22n−λ.

Now, assume that there is a size s′ = s′(λ) inverter A for h that succeeds with probability δ′(λ). The
procedure A gets as input y and g such that g is sampled from the pairwise hash function family and y is
computed by first sampling x ∈ {0, 1}n, then computing w = g(x), and finally y = f(w). We define B that
inverts f and works as follows. It gets y as input, sampled by choosing w ∈ {0, 1}λ and then computing f(w),
then it sampled g ← G and submits to A the pair y, g. Upon reply x′ from A, it computes w = g(x′) and
outputs this value. The running time of B is bounded by the running time of A plus sampling and evaluating
g exactly once which can be done in time O(λ).

Conditioned on g being injective, the inverter B succeeds in inverting f at least when f−1(x)∩ Im(g) 6= ∅
and A succeeds. Since g is injective its image size is 2n but its range is 2λ, and so the aforementioned
intersection is non-empty with probability least 2n/2λ. This means that the probability that B succeeds in
inverting f is at least 2λ−n · δ(λ) + 22n−λ.

Remark 1. The construction and proof above can be viewed as a variant of a step in the result of [19]
showing how to use a strong variant of one-wayness to get collision resistance. Here, we only require injective
one-wayness and we achieve it from a weaker variant of one-wayness than [19].

4 Our dual-PRF Construction

In this section, we describe our new theoretical dual-PRF construction and prove its security.

4.1 Preliminary Definitions

We recall the standard definition of pseudorandom functions [17] and dual pseudorandom functions [3, 5].
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Definition 3 (Pseudorandom function (PRF)). Let F = {fλ : Kλ×Xλ → Yλ}λ∈N be a function family
ensemble and let G = {Gλ}λ∈N = {gλ : Xλ → Yλ}λ∈N be the set of all functions mapping Xλ to Yλ. We say
that F is a (t, ε)-pseudorandom function family (PRF) if no t-size adversary can distinguish fλ(k, ·) from
gλ(·) for k chosen uniformly from the set Kλ and where gλ is chosen uniformly from Gλ with probability
better than ε. More precisely, for an adversary A = {Aλ}λ∈N, we define

Advprff,A(λ) = Pr
k←Kλ

[A
fλ(k,·)
λ (1λ) = 1]− Pr

gλ←Gλ
[A
gλ(·)
λ (1λ) = 1].

The family F is a (t, ε)-PRF if for every size-s adversary A it holds that Advprff,A(λ) ≤ ε(λ).

A dual PRF is a two-input function which is a PRF when either one of them is viewed as the key [3, 5].

Definition 4 (Dual PRF). Let F = {fλ : X0
λ ×X1

λ → Yλ}λ∈N be an ensemble of functions. Let F̄ = {f̄λ :
X1
λ ×X0

λ → Yλ}λ∈N be the ensemble of dual functions such that each f̄ ∈ F̄ is defined as f̄(y, x) = f(x, y).
We say F is a (t, ε)-dual PRF if both F and F̄ are (t, ε)-PRFs.

Our construction uses a PRF that is secure even when the adversary is given an image of a one-way
function of the key.

Definition 5 (Computational extractor). We say that a function F : {0, 1}λ → {0, 1}λ is a (t, ε)-
computational-extractor with respect to a function g : {0, 1}λ → {0, 1}m if for any circuit A of size at most
t it holds that

|Pr
K

[A(g(K), F (K))]− Pr
K,R

[A(g(K), R)]| ≤ ε ,

where R and K are sampled uniformly over {0, 1}λ.

Definition 6 (Statistical Distance). The statistical distance between two random variables X,Y is defined
by

∆(X,Y ) :=
1

2
·
∑
x

|Pr[X = x]− Pr[Y = x]|

Definition 7 (ε-Regular). Let U` be the uniform distribution over n bits. A function H : {0, 1}n → {0, 1}m
is ε-regular if ∆(H(Un), Um) ≤ ε, where ∆ is the statistical distance measure.

4.2 Our construction

Theorem 1. Assume that g is an injective (t, ε)-one way function, that F is a (t, ε)-computational-extractor
with respect to g, that PRF is a standard (t, ε)-PRF, and that H is ε-regular.

Then, the following construction is a (t, 3ε)-dual PRF. On input K1,K2 compute the following
1. k1 ← F (K1), k2 ← F (K2).
2. u1 ← g(K1), u2 ← g(K2).
3. Y ← H(PRF(k1, 2||u2)⊕ PRF(k2, 1||u1)).
4. Output Y .

Proof. The proof of security works the same for both directions of showing dual PRF (when K1 is uniform
and K2 is malicious and vice versa). Thus, we assume that K1 is chosen uniformly at random and the
adversary performs queries while choosing values for K2. We give four additional hybrid constructions and
then claim their indistinguishability (Construction 1 through Construction 4 below). For each construction
we mark in red the difference from the previous construction. Fix some adversary A that runs in time t.
Let ε0 be its advantage in the original construction. Similarly, let εi be the advantage of A when given
construction i. We bound the difference between ε0 and ε4 and prove that ε4 = 0.

We use the notation x← U to denote the uniform distribution over x (the length of x will be clear from
the context).
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Construction 1 :
1. k1 ← U , k2 ← F (K2).
2. u1 ← g(K1), u2 ← g(K2).
3. Y ← H(PRF(k1, 2||u2)⊕ PRF(k2, 1||u1)).
4. Output Y .

Claim. |ε0 − ε1| ≤ ε.

Proof. This follows directly from the definition of (t, ε)-computational extractor with respect to the function
g. An adversary for g gets as input u1 ← g(K1), and k1, where k1 is either random or k1 ← F (K1). Thus, it
can simulate the rest of the construction:
1. sample K2.
2. compute k2 ← F (K2), and u2 ← g(K2).
3. computes K ← H(PRF(k1, 1||u2)⊕ PRF(k2, 1||u1)).
This is a perfect simulation, and thus the probability of distinguishing in the PRF game is the same as the
probability of distinguishing between construction 0 and construction 1, which is at most ε.

Construction 2 :
1. k1 ← U , k2 ← F (K2).
2. u1 ← g(K1), u2 ← g(K2).
3. Y ← H(U ⊕ PRF(k2, 1||u1)).
4. Output Y .

Claim. |ε1 − ε2| ≤ ε.

Proof. Assume, without loss of generality, that A performs unique queries, q1, . . . , qt. Since g is injective, we
have that y1 = g(q1), . . . , yt = g(qt) are distinct. Thus, the claim follows directly from the security of PRF.
Since k1 is a uniform key that is used solely in the PRF F , and since it is always queried by distinct inputs,
we have that its output is pseudorandom (with error ε).

Construction 3 :
1. k1 ← U , k2 ← F (K2).
2. u1 ← g(K1), u2 ← g(K2).
3. Y ← H(U).
4. Output Y .

Claim. |ε2 − ε3| = 0.

Proof. Since U is completely uniform (for each query of the adversary), we have that U is exactly distributed
as U ⊕ PRF(k2, 1||u1).

Construction 4 :
1. k1 ← U , k2 ← F (K2).
2. u1 ← g(K1), u2 ← g(K2).
3. Y ← U .
4. Output Y .

Claim. |ε3 − ε4| ≤ ε.

Proof. This follows directly from the fact that H is an ε-regular.

Claim. ε4 = 0

Proof. This follows since this construction is in fact a completely random oracle.

Taking into account all the errors from the hybrids, we get that the advantage of A is at most ε0 ≤ 3ε.
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Data: Expansion factor exp, input x
Result: u

x1, x2...xn ← SplitToBlocks(x);
u← Empty ;
for i from 1 to n do

for j from 0 to exp− 1 do
u← u||Hj(xi)

end

end

Fig. 5. Instantiation of the one-way injective function g(k, x)

5 From Theory to Practice

In this section, we show how we can instantiate the theoretical dual-PRF construction described in Sections 3
and 4 to provide a practical, efficient, and provably secure key combiner. As we have discussed in Section 2.1,
HKDF.extract function [25] is sometimes misused for combining two keys. Our combiner can be used as a
drop-in replacement to the HKDF.extract function using only the same efficient underlying primitive, i.e., a
standard hash function.

5.1 Practical One Way Injection Function

Our dual-PRF construction requires an injective one-way function g. We instantiate this function using only
a standard hash function. We take the practical approach from Section 3.1. Similar to HMAC construction,
we define a family of hash functions H1, H2, . . ., by replacing the function’s fixed IV. The IV is replaced by
simply prepending a separate fixed public value to the input:

Hi(x) = HASH(Bi||x)

Where Bi are fixed public values, and |Bi| = BlockSize. BlockSize is the hash function’s block size (e.g., 512
bits for SHA256 and SHA512).

We now define the function g′(exp, x), where exp is the expansion factor exp defined in Section 3.1, and
x is the input. We assume |x| ≤ BlockSize:

g′(k, x) = H1(x)||H2(x)||...||Hexp−1(x)

The pseudocode for our instantiation of function g(k, x) is given in Fig. 5. If |x| is larger than the block
size of the hash function, we simply split x to blocks x1, x2, .., xn of length BlockSize each (with the last block
possibly shorter). We then apply the function g′ on each block separately and concatenate the outputs.

Reiterating Section 3.1, for our construction to be secure, we only need to make the following two
assumptions on our hash function:

1. The resulting family of keyed hash functions is 2-universal. That is, we merely require that there is no
single block collision on the inner compression function that will hold on a large fraction of the possible
IVs.

2. The resulting family of keyed hash functions is same-input one-way, which means that it is hard to find
a preimage even given multiple images of the compression function on the same input value but with
different IVs.

We argue that these assumptions are much weaker than collision resistance for suitable values of the expansion
factor exp. Moreover, we believe that they hold even for weak hash functions that are known to have single
block collisions such as MD5 [39].
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Data: Keys K1,K2 and optional salt with default value of all zero bytes
Result: K

k1 ← HMAC(salt,K1), u1 ← g(K1);
k2 ← HMAC(salt,K2), u2 ← g(K2);
K ← HASH(HMAC(k1, 2||u2)⊕ HMAC(k2, 1||u1));

Fig. 6. Instantiation of KeyCombine (K1,K2, salt)

For a modern hash function such as SHA256, taking k = 3 causes the function to be expanding, from 512
bits to 756. We argue that such a choice will very likely mean that our function is computationally injective
even given an efficient algorithm for finding collisions in SHA256: Since breaking injectivity under these
parameters is so far outside the capabilities of current cryptanalysis, we analyze past cryptanalysis of weaker
functions to arrive at this conclusion. That is, we assume that through future developments, cryptanalysis
against SHA-256 achieves the same capabilities as the current state of MD5 cryptanalysis. Even in such an
unlikely event, breaking injectivity would be outside of cryptographic knowledge. Taking even larger values
for exp, e.g. exp = 5 will mean our construction is injective with overwhelming probability, while preserving
its efficiency.

5.2 Practical dual-PRF

We recall the dual-PRF construction from Section 4:
1. k1 ← F (K1), u1 ← g(K1), k2 ← F (K2), u2 ← g(K2).
2. K ← H(F ′(k1, 1||u2)⊕ F ′(k2, 2||u1)).
3. Output K.

We have described how to practically instantiate the one-way injective function g(x) in Section 5.1 (here
we omit the expansion factor exp for brevity). We will now describe instantiating the functions F, F ′, and
H(k).

F(K) is an extractor. We propose to follow the approach taken in HKDF.extract, and instantiate it with
the HMAC function using an optional salt value, using the salt as key, and the input K as the message:

F (K, salt) = HMAC(salt,K)

As in HKDF.extract we can set the default value of salt to all zero bytes. The approach taken by HKDF.extract,
of using HMAC as a computational extractor, is well-established, and enjoys a security proof: If the com-
pression function underlying the hash function is a good extractor, then HMAC is a good extractor [12].

F ′(K,U) is a PRF that can be simply instantiated with HMAC, and H(U) can be implemented using
the hash function:

F ′(K,U) = HMAC(K,U)

H(U) =HASH(U)

The pseudocode for our instantiation of KeyCombine from a dual-PRF is given in Fig. 6.Our combiner
receives two keys K1,K2, and an optional salt value and returns a combined key K that is indistinguishable
from random, even if one of the keys was chosen maliciously.

Security Analysis As discussed in Section 1.1, the goal of our KeyCombine construction is to output a key
K that is indistinguishable from random. This requirement should be fulfilled even if one of the input keys
was adversarially chosen, as long as the other key has sufficiently high min-entropy. We have already proved
that g(K) is a one-way injective function, and we can safely assume that HASH is an ε-Regular function as
defined in Section 4.

14



Data: Keys K1,K2, ...,KN and optional salt with default value of all zero bytes
Result: K
for i from 1 to n do

ki ← HMAC(salt,Ki), ui ← g(Ki);
end
K′ ← 0;
for i from 1 to n do

input← i;
for j from 1 to n do

if i 6= j then
input← input||uj

end

end
K′ ← K′ ⊕ HMAC(ki, input)

end
K ← HASH(K′));

Fig. 7. Instantiation of multi-key KeyCombine (K1,K2, ..,KN , salt)

It therefore remains to show that HMAC(salt,K1) is a computational extractor with respect to our
instantiation of the function g. Krawczyk [25] showed that HMAC(salt,K) with a random public salt is
a computational extractor with respect to K chosen from a non-uniform distribution with high enough
min-entropy. In our definition, if we model the advantage gained by the attacker due to learning g(K) as
defining a non-uniform distribution, we can use the same argument to show that HMAC(salt,K) is also a
computational extractor with respect to g(x). Using this construction also allows us to handle non-uniform
keys as in HKDF.extract.

We note that as in HKDF.extract, using a random salt is preferable but might not always be possible.
For example, in TLS 1.3, the default salt value of all zero bytes is used, as there is no authenticated source
of randomness. Moreover, if the salt or part of it is chosen adversarially, we cannot prove the security of the
resulting construction.

5.3 Multi-Key Variant

Our construction can be easily extended to combine any number of keys. The pseudocode for a multi-key
KeyCombine is given in Fig. 7.

The same hybrid argument given in Section 4 can be used to show that the resulting key is indistinguish-
able from random even if all keys but one are adversarially chosen.

5.4 Benchmarks

We now provide benchmarks for our construction. Our aim is to measure the computational cost of the
construction, especially compared to the cost of a full hybrid key exchange protocol. As we show, the con-
struction introduces modest overhead, of several microseconds of computation time. Moreover, this overhead
is negligible from the perspective of connection latency, where the median of approximately 50 milliseconds
is 4 orders of magnitude greater than our overhead [26].

We have implemented our key combiner in C, using the OpenSSL cryptographic library 7. Our code runs
both our key combiner and HKDF.Extract in a loop, for a duration of over a second, while counting the
number of completed calls to each function. The average time per call is then the number of completed
calls divided by the total duration. We focus on the case where both keys to be combined are 256 bits long.
This is the expected case for hybrid key exchange (see below). For our key combiner, we combine the two

7 Please find the reference implementation here: https://github.com/nimia/kdf_reference_implementation
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keys with a salt consisting of all zeroes, of length 256 bits. For HKDF.Extract, we concatenate the keys and
feed them to the function, with the same choice of salt. In these conditions, our construction requires on
average 7.13 microseconds per call, whereas HKDF.Extract requires on average 1.35 microseconds per call.
(All experiments in this section were performed on a workstation with an Intel i7 CPU, at a 3.60GHz clock
frequency.) Hence our construction adds an overhead of 5.78 microseconds.

The benchmarks presented here for our new construction are conservative, since our implementation
forgoes straightforward optimizations such as pre-generation and reuse of hash states for Hash(Bi).

As a reference point, we examine an actual deployment of hybrid key exchange in TLS, the CECPQ2
experiment by Google and Cloudflare [26, 27]. This experiment paired ECDH over the x25519 curve with
NTRU-HRSS [22] 8. In addition to the key exchange algorithms, TLS handshakes require signature generation
and verification. Using ECDSA over the secp256r1 curve is a popular choice for the signature algorithm, used
e.g. when connecting from an up-to-date browser to Google’s servers.

Table 1 summarizes the cost of running the hybrid protocol using the above choices for algorithms. As
can be seen, our construction induces but a small part of the computational requirements, dwarved by the
overall connection establishment time.

Primitive Operation Time (µsec) Source

Our Construction Key Combination 7.13 Our benchmarks

HKDF.Extract Equivalent Key Processing 1.35 Our benchmarks

ECDH over x25519 Exponentiation 44.71 openssl speed

NTRU-HRSS Encapsulation 11.24 Our benchmarks

NTRU-HRSS Decapsulation 17.63 Our benchmarks

ECDSA over secp256r1 Sign 24.62 openssl speed

ECDSA over secp256r1 Verify 79.04 openssl speed

CECPQ2 Handshake duration 54,000 (median) [26]

Table 1. Running times for the primitives used in the CECPQ2 experiment, as well as our construction. The “Time“
column gives average times, except for the last row, which gives the median connection establishment time for the
entire protocol, from the server’s point of view. For NTRU-HRSS, we benchmarked the published software 10.

6 Application to TLS

In this section we explain how to apply our KeyCombine construction to the key schedule of TLS 1.3. We
introduce two variants of the key schedule in TLS 1.3:

1. The first preserves the existing structure of the TLS 1.3 key schedule (for completeness, we have included
this as the top layer of Figure 6), which we denote structure-preserving TLS 1.3. This allows us to use our
KeyCombine construction as a drop-in replacement for HKDF.Extract as it is currently used. Structure-
Preserving TLS 1.3 can be found on the middle layer in Figure 6.

2. The second deviates from the existing structure of the TLS 1.3 key schedule, which we denote break-
the-chain TLS 1.3. This approach re-includes all secret values input to the key schedule directly in the
derivations of ES, HS and MS when available. This modification is less of a drop-in replacement for
HKDF.Extract as it is currently used, but allows us to achieve better guarantees of the key schedule as a
result. Break-the-Chain TLS 1.3 can be found on the bottom layer in Figure 6.

8 We focus on the “CECPQ2” flavor of the experiment; an additional flavor, “CECPQ2b”, paired ECDH over x25519
with SIKE. That flavor requires more computational effort, so we focus on the faster flavor.

9 https://ntru-hrss.org/software.shtml
10 https://ntru-hrss.org/software.shtml

16



Note that our variants include a post-quantum secret PQS in the key schedule – this value can be replaced
with a zero-string when it is not available.

Our Structure-Preserving TLS 1.3 key schedule replaces the execution of HKDF.Extract(0,PSK), HKDF.Extract(dES,DHE)
and HKDF.Extract(dHS, 0) with KeyCombine(PSK, 0, 0), KeyCombine(DHE, dES, 0), KeyCombine(PQS, dHS, 0).
Our Break-the-Chain TLS 1.3 replaces the execution of HKDF.Extract(0,PSK),
HKDF.Extract(dES,DHE) and HKDF.Extract(dHS, 0) with KeyCombine(PSK, 0, 0), KeyCombine(DHE,PSK, 0),
KeyCombine3(PQS,DHE,PSK, 0, where
KeyCombine3(PQS,DHE,PSK, 0) is our multi-key variant, taking three keyed inputs and a single salt input.

0 Ext

PSK

ES Exp3 dES Ext

DHE

HS Exp3 dHS Ext

0

MS

H0 H0

0 KeyC

PSK

0

ES Exp3 0 KeyC

DHE

dES

HS Exp3 0 KeyC

dHS

PQS

MS

H0 H0

0 KeyC

PSK

0

ES 0 KeyC

DHE

PSK

HS 0 KeyC

PSK

DHE PQS

MS

Fig. 8. The original TLS 1.3 key schedule (above), a modified TLS 1.3 (hybrid) key schedule backbone using our
new KeyCombine construction that preserves the structure of original TLS 1.3 (middle), and a modified TLS 1.3
(hybrid) key schedule backbone that deviates from the structure of original TLS 1.3 (below). Note that KeyC is our
KeyCombine construction, taking keying inputs from the top and bottom, and salt value from the left-hand side.

In the case of Structure-Preserving TLS 1.3, this change has little impact on the analysis of the TLS 1.3
handshake protocol that we discuss in Section 2.2 [13]. In the analysis of the different TLS 1.3 handshakes,
we substitute game-hops in the analysis that replace the execution of HKDF.Extract with various KeyCombine
executions, that we describe below.

This change affects Game B.2, Game B.5 of the proof of Theorem 5.2 (Multi-Stage security of
TLS1.3-full-1RTT), which replaces:

– HKDF.Extract(dES,DHE) with the execution of KeyCombine(DHE, dES, 0), requiring no change to the
dual-sn-PRF-ODH assumption.

– HKDF.Extract(dHS, 0) with the execution of KeyCombine(0, dHS, nonces), requiring no change to the PRF
assumption.

This also affects Game 4, Game 6, and Game 9 of the proof of Theorem 6.2 (Multi-Stage security of
TLS1.3-PSK-0RTT), which replaces:

– HKDF.Extract(0,PSK) with the execution of KeyCombine(PSK, 0, 0), requiring no change to the dual-PRF
assumption.

– HKDF.Extract(dES, 0) with the execution of KeyCombine(0, dES, 0), requiring no change to the PRF as-
sumption.
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– HKDF.Extract(dHS, 0) with the execution of KeyCombine(0, dHS, nonces), requiring no change to the PRF
assumption.

Finally, this affects Game A.4, Game A.6, Game B.3, Game C.2, and Game C.5 of the proof of
Theorem 6.4 (Multi-Stage security of
TLS1.3-PSK-(EC)DHE-0RTT), which replaces:

– HKDF.Extract(0,PSK) with the execution of KeyCombine(PSK, 0, 0), requiring no change to the dual-PRF
assumption.

– HKDF.Extract(dES,DHE) with the execution of KeyCombine(DHE, dES, 0), requiring no change to the PRF
assumption.

– HKDF.Extract(0,PSK) with the execution of KeyCombine(PSK, 0, 0), requiring no change to the dual-PRF
assumption.

– HKDF.Extract(dES,DHE) with the execution of KeyCombine(DHE, dES, 0), requiring no change to the
dual-sn-PRF-ODH assumption.

– HKDF.Extract(dHS, 0) with the execution of KeyCombine(0, dHS, nonces), requiring no change to the PRF
assumption.

Thus, our KeyCombine construction can act as a drop-in replacement for the use of HKDF.Extract of TLS
1.3, with little additional computational overhead, with a minor adaption of existing proofs of the protocol,
but now modeled with assumptions that accurately match the existing analysis.

Breaking the Chain: Next, on the bottom layer of Figure 6 we introduce our Break-the-Chain TLS variant.
This change provides stronger guarantees for the derivation of secret values throughout the key schedule. To
give some intuition as to why this is the case, consider an attacker that is capable of choosing distinct PSK,
PSK′ values for a client in two different sessions. When deriving ES (in all key schedules depicted in Figure
6), since the attacker has generated the only keying inputs PSK (PSK′ for the second session, respectively),
and all other values are constant: thus, HKDF.Extract and KeyCombine provide no guarantees on the security
of the output ES (resp. ES). Thus, it is possible that ES = ES′, even if PSK 6= PSK. Now, if the client re-uses
the Diffie-Hellman secret value DHE in both sessions, in the original and structure-preserving key schedules,
then HS will collide with HS′, even if the attacker does not know DHE. However, HS will not collide with
HS′ in the Break-the-Chain variant of the key schedule.

On the choice of salts: Since (like HKDF.Extract) our construction cannot be proven secure if the salt is
chosen by the attacker, we instead use a constant zero-string for salting our KeyCombine construction in
the key combination steps, similar to the first HKDF.Extract operation deriving the ES in the original TLS
1.3 key schedule.

7 Related Work

Bellare and Lysyanskaya [5] proved it is possible to build dual-PRFs from standard assumptions. Their theo-
retical constructions are based either on collision-resistant hash functions or one-way permutations. However,
they leave the construction of a dual-PRF from the much weaker assumption of any one-way function as an
open problem. We partly answer this open problem by providing a construction based on assumptions that
are close in spirit to one-wayness; our construction therefore shares a similar structure to theirs. Further,
their work is entirely theoretical, focusing on proving that dual PRFs exist, and (reasonably) disregard-
ing the question of how one would instantiate such a dual PRF from standard, widely-used cryptographic
components. However, the purpose of this work is to provide a readily implementable such construction.

Brendel et al. [8] have analyzed the resilience of hybrid protocols to a breakdown of one of the key
exchange algorithms. Their proposed solution requires running two full instances of the protocol in parallel,
essentially doubling the communication requirements.

In [16], Giacon et al. have introduced several KEM combiners. Their work investigates a higher-level prim-
itive - KEMs and how to combine them - whereas we would like to combine keys in general, not necessarily

18



encapsulated keys. For example, their KEM combiner does not readily allow combining a preshared key.
Moreover, using their KEM combiner for hybrid key exchange in TLS 1.3 would involve feeding ciphertexts
as input to the key-mixing component of the key schedule, which would require intrusive re-engineering for
most TLS implementations.

The work by Bindel et al. [7] examines hybrid key encapsulation mechanisms and AKE protocols. Their
point of focus is therefore also much higher-level than key combiners. Moreover, two of their constructions
assume a dual-PRF, for which we provide an efficient and practical instantiation.

Huguenin-Dumittan and Vaudenay [21] have recently proposed a novel KEM combiner for quantum-
resistant KEMs. Their work therefore deals with a much higher-level primitive than ours. Further, their
scheme is only proven secure under the much stronger assumptions of (Quantum) Random Oracle Model
(QROM and ROM models).
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Supplementary Materials

A Detailed Assumptions on HKDF

Here we present the assumptions used to model HKDF and HMAC in the computational analyses of various
cryptographic protocols.

A.1 TLS 1.3

We begin with the analysis [13] of the TLS 1.3 handshake protocol. On a high-level, the handshake protocol is
a key exchange protocol, establishing secure symmetric keys between the client and the server executing the
handshake protocol together. Dowling et al. demonstrate that under certain assumptions of the underlying
cryptographic primitives (including HMAC and HKDF.Extract), the TLS 1.3 handshake protocol achieves
a standard key exchange property known as key-indistinguishability - this captures the notion that the
session key derived by both parties is indistinguishable from a uniformly random key drawn from the same
distribution. During the proof, the authors use a dual-PRF-ODH assumption to model the use of Diffie-
Hellman in the HKDF.Extract function.

The PRF-ODH assumption family was introduced by Jager et al. [23] for the analysis of TLS 1.2. The
authors explain that it is an extension of the ODH assumption introduced by Abdalla et al. [1], and has been
used in the analysis of many modern cryptographic protocols. We give a definition for the snPRF-ODH and
dual-snPRF-ODH assumptions (the specific assumptions used in the analysis of TLS 1.3) below, formalised
as a game played between a challenger and an adversary A.

Definition 8 (snPRF-ODH and dual-snPRF-ODH assumptions).
Let λ ∈ N, G be a cyclic group of prime order q with generator g and PRF : G × {0, 1}∗ → {0, 1}λ be a

pseudo-random function. We define the snPRF-ODH security game as follows:

1. The challenger samples b $←− {0, 1}, u, v $←− Zq, and provides G, g, gu, and gv to A, who responds with a
challenge label x.

2. The challenger computes y0 = PRF(guv, x) and samples y1
$←− {0, 1}λ uniformly at random, providing yb

to A.
3. A may query a pair (S, x), on which the challenger first ensures that S ∈ G and (S, x) 6= (gv, x) and, if

so, returns y ← PRF(Su, x).
4. Eventually, A stops and outputs a guess b′ ∈ {0, 1}.

We define the snPRF-ODH advantage function as AdvsnPRF-ODH
PRF,G,A := 2 · Pr[b′ = b] − 1. We define the dual

variant of the assumption, dual-snPRF-ODH, as the snPRF-ODH assumption for a function PRF : {0, 1}∗ ×
G→ {0, 1}λ with swapped inputs, keyed with a group element in the second input and taking the label as first
input.

When analysing the full handshake, Dowling et al. describe a specific game hop where they replace the
computation of HS← HKDF.Extract(dHS,DHE) in the proof with a value HS′, sampled uniformly at random
from the output distribution of HKDF.Extract. Then, they argue that they can turn any algorithm capable
of distinguishing this change into an adversary against the dual-snPRF-ODH security of the HKDF.Extract
function, functionally modelling HKDF.Extract as a dual PRF. However, as we mentioned previously this
does not match any known proof of HKDF.Extract that can be found publicly.

A.2 The Signal Key Exchange Protocol

We now present the assumptions used to model HKDF in the computational analyses [31] of the Signal key
exchange protocol. As in the TLS 1.3 analysis, Cohn-Gordon et al. describe a particular game hop where
they replace the computation of the root key rki ← HKDF(rki−1,DHE, const) in the proof with a value rk′i,
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init:

k $←− K
σ ← P-Init(k)
corr← false
prng, prf ← false
sample random function F
b $←− {0, 1}

corr:

req ¬prf
return σ

process(I):

if I = ⊥ then
I $←− I
corr← false

end if
(σ,R)← P-Up(σ, I)
return R

chall-
prf(I):

req ¬corr ∧ ¬prf
prf ← true
(σ,R0)← P-Up(σ, I)
R1

$←− F(I)
return (′σ,Rb)

chall-prng(I):

if I = ⊥ then
I $←− I
corr← false

end if
req ¬corr ∧ ¬prf
prnf ← true
(σ,R0)← P-Up(σ, I)
R1

$←− R
return Rb

Fig. 9. The PRF-PRNG game used by Alwen et al. to model the security of a HKDF chain.

sampled uniformly at random from the output distribution of HKDF. Specifically, they argue that they can
turn any algorithm capable of distinguishing this change into an adversary against the dual-lrPRF-ODH se-
curity of the HKDF.Extract function, formally modelling HKDF.Extract as a dual PRF. Unlike the analysis of
TLS 1.3, however, the authors require not a single PRF-ODH assumption, but a range of PRF-ODH assump-
tions that are parameterized by how many times the challenger will generate PRF(guv

′
, x) and PRF(gu

′v, x)
values upon being queried for a “left” or “right” (thus dual-lrPRF-ODH) oracle (gv

′
, x) or (gu

′
, x) (where gu

′

and gv
′

are not one of the DH challenge values (gu, gv) given by the challenger). Since some game hops in
the analysis require that the root key rki−1 act as the secret value, and some game hops require that the
Diffie-Hellman output DHE act as the secret value, and it is the HKDF.Extract phase in HKDF that combines
these secrets, functionally this means modelling HKDF.Extract as a dual PRF. However, as we mentioned
previously this does not match any known proof of HKDF.Extract that can be found publicly.

In a work capturing the security of the Signal protocol, Alwen et al. [2] re-create the Signal protocol
from generic cryptographic primitives. In particular, they note that Signalinstantiate the HKDF chain used
by Signal as a PRF-PRNG. As they describe: “A PRF-PRNG resembles both a pseudo-random function
(PRF) and a pseudorandom number generator with input (PRNG)... On the one hand, as a PRNG would,
a PRF-PRNG (1) repeatedly accepts inputs I and uses them to refresh its state σ and (2) occasionally uses
the state, provided it has sufficient entropy, to derive a pseudo-random pair of otuput R and new state.” We
give the PRF-PRNG security game described by Alwen of the PRF-PRNG in Figure A.2.

Commenting on whether HKDF could be used to instantiate a PRF-PRNG, Alwen et al. merely state:
“Being a PRF-PRNG is a property the HKDF function used by Signal is assumed to have... This paper
therefore merely reduces to the security of the presented schemes to the PRF-PRNG security of whatever
function is used to instantiate it.”

A.3 The ETSI Hybrid Key Exchange Drafts

Recently, ETSI proposed two constructions for combining secrets from hybrid key exchange protocols: con-
catenate KDF (CatKDF, see Figure 10) and cascade KDF (CasKDF). We describe the CatKDF mechanism
below, and then discuss the assumptions made of the underlying cryptographic primitives used in the analysis
of this construction. We note that CatKDF specifically uses HKDF as its underlying key derivation function.

We note that the assumptions for the ETSI proofs do not consider the setting we have proposed, but
are significantly stronger. Recall that we assume the adversary gets to control some part of the secret
concatenation (e.g. when KEMs are used), and that honest parties may re-use secrets (e.g. when static
ECDH is used). In the analysis of the ETSI CatKDF draft, the adversary only gets to receive the secrets
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Data: PSK, k1, . . . , kn,MA,MB, lbl, ctxt
Result: k

s← PSK‖k1‖ . . . ‖kn;
fval = H(ctxt‖MA‖MB);
k ← HKDF(s, lbl, fval, len);

Fig. 10. The CatKDF construction proposed by ETSI.

associated with all but a single KEM, but is not able to inject KEM ciphertexts or secrets. This type of
passive adversary is signficantly weaker that the threat model we consider.

In addition, the analysis of the CatKDF construction models HKDF either as a random oracle, or as a
weakly secure KDF. In either case, we argue that this is not an appropriate threat model in our setting where
an adversary can inject KEM ciphertexts and control the encapsulated secret, nor where the underlying hash
function is not collision-resistant:

1. HKDF is modelled as a random oracle, which is inherently collision-resistant. Specifically, each random
oracle takes a query tuple (k, salt, ctxt), where k is keying material, salt is salt and ctxt is context values,
and returns a random bit string if the query is not entirely equal to a previous query value. The HKDF
paper does not claim security in the presence of attacker-controlled entropy [25], so this assumption seems
rather strong.

2. HKDF is modelled as a weakly secure KDF. In this assumption, both the secret value k and the salt salt
are randomly selected, and (salt, σ) is given to the adversary, where σ is a description of the secret space
that k is drawn from. The adversary is allowed to specify a context value ctxt and an output length, and
has to distinguish the output from the KDF from a random string of the same length. The adversary is
not allowed to query the KDF more than once. Note that for the purposes of CatKDF, the secret value k
is the concatenation of all secrets output from the hybrid KEM, and they seem to assume one of which
is IND-CPA secure.
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