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Abstract. We present the first truly explicit constructions of non-malleable codes against tampering
by bounded polynomial size circuits. These objects imply unproven circuit lower bounds and our con-
struction is secure provided E requires exponential size nondeterministic circuits, an assumption from
the derandomization literature.
Prior works on NMC for polysize circuits, either required an untamperable CRS [Cheraghchi, Gu-
ruswami ITCS’14; Faust, Mukherjee, Venturi, Wichs EUROCRYPT’14] or very strong cryptographic
assumptions [Ball, Dachman-Soled, Kulkarni, Lin, Malkin EUROCRYPT’18; Dachman-Soled, Komar-
godski, Pass CRYPTO’21]. Both of works in the latter category only achieve non-malleability with
respect to efficient distinguishers and, more importantly, utilize cryptographic objects for which no
provably secure instantiations are known outside the random oracle model. In this sense, none of the
prior yields fully explicit codes from non-heuristic assumptions. Our assumption is not known to imply
the existence of one-way functions, which suggests that cryptography is unnecessary for non-malleability
against this class.
Technically, security is shown by non-deterministically reducing polynomial size tampering to split-
state tampering. The technique is general enough that it allows us to to construct the first seedless
non-malleable extractors [Cheraghchi, Guruswami TCC’14] for sources sampled by polynomial size
circuits [Trevisan, Vadhan FOCS’00] (resp. recognized by polynomial size circuits [Shaltiel CC’11]) and
tampered by polynomial size circuits. Our construction is secure assuming E requires exponential size
Σ4-circuits (resp. Σ3-circuits), this assumption is the state-of-the-art for extracting randomness from
such sources (without non-malleability).
We additionally observe that non-malleable codes and non-malleable secret sharing [Goyal, Kumar
STOC’18] are essentially equivalent with respect to polynomial size tampering. In more detail, assuming
E is hard for exponential size nondeterministic circuits, any efficient secret sharing scheme can be made
non-malleable against polynomial size circuit tampering.
Unfortunately, all of our constructions only achieve inverse polynomial (statistical) security. Extending
a result from [Applebaum, Artemenko, Shaltiel, Yang CC’16] we show it is impossible to do better using
black-box reductions. However, we extend the notion of relative error from [Applebaum, Artemenko,
Shaltiel, Yang CC’16] to non-malleable extractors and show that they can be constructed from similar
assumptions. We additionally observe that relative-error non-malleable extractors can be utilized to
render a broad class of cryptographic primitives tamper and leakage resilient, while preserving negligible
security guarantees.
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1 Introduction

This work focuses on mitigating polynomial size circuit tampering attacks via constructing two kinds of fun-
damental objects: non-malleable codes (NMC) and seedless non-malleable extractors (NME) . In the coding
setting, non-malleability (roughly) guarantees that the output of the decoding algorithm on a codeword is
independent of the output of the decoding algorithm on a tampered version of the codeword. Similarly in the
seedless extractor setting, non-malleability guarantees that the output of the extractor on a sample drawn
from a high min-entropy source remains uniform random, even conditioned on the output of the extractor
on a tampered version of the sample.

A recent thrust of research has focused on constructing explicit (efficient) NMC and NME for broad
and natural classes of tampering. Perhaps the most natural class of tampering functions, is tampering by
polynomial size circuits. Unfortunately, a simple argument shows that any (seedless) non-malleable code
(resp. extractor) resilient to arbitrary polynomial size circuit tampering cannot be decoded (resp. evaluated)



in polynomial time. The next best thing would be a non-malleable code (resp. seedless extractor) that can
be encoded/decoded (resp. evaluated) in polynomial time that is resilient to bounded polynomial size circuit
tampering—tampering by circuits of size at most nc where c is a constant fixed a priori. In this work, we
are interested in constructing explicit (i.e. computable by polynomial time Turing machines) objects that
are resilient to such tampering attacks.

This tampering class has been studied extensively in the non-malleable code literature and prior work
constructing NMC for bounded polynomial size circuit tampering can be collected into two categories, both
of which fail to provide explicit constructions:

1. Unconditionally secure constructions via the probabilistic method. [CG14a, FMVW14] show that effi-
ciently computable non-malleable codes for bounded polynomial size circuit tampering exist. These
constructions can alternately be cast as explicit codes in an (untamperable) common reference string
(CRS) model, or as codes with efficient Monte Carlo style constructions.

Computational assumptions are needed for any explicit construction (without a CRS) since security
of the non-malleable code implies circuit lower bounds—existence of an explicit hard-on-average problem
for circuits of size nc—a question that is still wide open in the complexity literature.

Unfortunately even under strong assumptions, it is unclear how to derandomize these constructions
completely. (See beginning of Section 1.3 for further discussion.)

2. Computationally secure constructions via strong cryptographic assumptions. [BDK+19, DKP20, DSKP21] lever-
age a variety of non-standard cryptographic assumptions to construct non-malleable codes for bounded
polynomial size circuit tampering (no CRS) with computational security guarantees.

While some assumptions are necessary (as mentioned above), these works utilize very powerful compu-
tational assumptions. Most importantly, these works (among other assumptions4) require the existence of
objects that we currently only know how to provably instantiate with random oracles (e.g. [BDK+19] uses
P -certificates and [DKP20, DSKP21] uses keyless multi-collision resistant hash functions).

Consequently, these works only yield explicit constructions of non-malleable codes under heuristic
assumptions.5 Additionally, these works fall short of providing statistical security guarantees.

In summary, none of the prior constructions are fully explicit.
In this work, we employ an assumption from the derandomization literature to construct explicit non-

malleable codes and seedless non-malleable extractors resilient to bounded polynomial tampering. Our non-
malleable codes in particular are secure under a hardness conjecture introduced in the context of deran-
domizing AM: there is a language that can be computed in exponential deterministic time that requires
exponential size nondeterministic circuits.

In Section 1.1, we describe the hardness assumptions we use to construct our codes and extractors. In
Section 1.2, we discuss our main results, barriers to improving them, and applications. Finally in Section 1.3,
we illustrate our primary technique through a simple yet illuminating example and describe how the ideas
can be extended to prove our main results.

1.1 Hardness assumptions for nondeterministic and Σi-circuits

We begin with a formal definition of nondeterministic circuits and then introduce the corresponding assump-
tion about their limitations.

Definition 1.1 (Nondeterministic circuit). A nondeterministic circuit C is a circuit with “non-deterministic”
inputs, in addition to the usual inputs. We say C evaluates to 1 on x if and only if there exists an assign-
ment, w, to the non-deterministic input wires such that the circuit, evaluated deterministically on input
(x,w) outputs 1.

4 In addition to a variety of subexponentially secure variants of standard cryptographic assumptions, the work of
[DKP20, DSKP21] also crucially requires a specific number-theoretic assumption (the non-uniform subexponential
hardness of the repeated squaring assumption), while the work of [BDK+19] needs the same derandomization
assumption in this work.

5 E.g. [BKP18] suggests possibly instantiating keyless multi-collision resistant hash with an unstructured hash, such
as SHA-2 (extended to arbitrarily large keys), with keys chosen according to digits of π. Establishing the security
of any such candidate is well beyond our current techniques, as we cannot even base the security of (extended)
SHA-2 with randomly chosen keys to a natural computational problem.

3



Assumption 1 (E requires exponential size nondeterministic circuits). There is a language L ∈ E =
DTIME(2O(n)) and a constant γ such that for sufficiently large n nondeterministic circuits of size 2γn fail to
decide L on inputs of length n.

Informally, the above assumption says that non-uniformity and non-determinism do not always imply
significant speed-ups of uniform deterministic computations. For some of the results in this work, we require
assumptions that hold even for (non-deterministic) NP circuits or Σi circuits. Before we state the assumption,
we provide a formal definition of these objects.

Definition 1.2. An oracle circuit C(·) is a circuit which in addition to the standard gates uses an additional
gate (which may have large fan in). When instantiated with a specific boolean function A, CA is the circuit in
which the additional gate is A. Given a boolean function A(x), an A-circuit is a circuit that is allowed to use
A gates (in addition to the standard gates). An NP-circuit is a SAT-circuit (where SAT is the satisfiability
function) a Σi-circuit is an A-circuit where A is the canonical ΣP

i -complete language. We take the size of a
circuit to be the total number of wires and gates.6

We now state the corresponding set of assumptions:

Assumption 2 (E requires exponential size NP (resp.Σi) circuits). There is a language L ∈ E = DTIME(2O(n))
and a constant γ such that for sufficiently large n, NP (resp. Σi) circuits of size 2γn fail to compute the
characteristic function of L on inputs of length n.

Hardness assumptions against nondeterministic/NP/Σi circuits appear in the literature in various con-
texts of complexity theory and derandomization [BOV03, Dru13, FL97, GW02, GST03, KvM02, MV05,
SU05, SU06, SU09, TV00]. As noted in [AASY16], such assumptions can be seen as the nonuniform and
scaled-up versions of assumptions of the form EXP 6= NP or EXP 6= ΣP

2 . While very strong, falsification
of one of these assumptions would yield surprising implications on the relationship between standard com-
plexity classes, thus creating a win-win situation: Either the construction based on these assumptions is
secure, or a breakthrough result has been achieved that changes our current understanding of the power
of nonuniformity and nondeterminism. Further, since assumptions of the above type on the strength of E
are worst-case assumptions, we can directly instantiate constructions based on these assumptions with any
E-complete problem.

Finally, we highlight that, so far as we know, this assumption is orthogonal to standard cryptographic
assumptions such as one-way functions and, consequently, may hold even if cryptography does not exist.

1.2 Our Results

In this section, we summarize the main results of this paper. We present our results for non-malleable codes
(Section 1.2) and non-malleable extractors before elaborating on various aspects of the results: necessary
assumptions for such constructions, and barriers to achieving negligible security guarantees. We then discuss
how to circumvent these barriers in a manner that ultimately has applications to tamper and leakage resilient
cryptography (with negligible security guarantees). Finally, we state an equivalence between non-malleable
codes and non-malleable secret sharing in the context of polynomial size circuit tampering.

Non-Malleable Codes We begin by stating our results for non-malleable codes:

Theorem 1.3 (Informal (See Lemma 4.1 and Theorem 4.2 for formal versions)). If E requires
exponential size nondeterministic circuits, then for every constant c, and for sufficiently large k, there is
an explicit, efficient, n−c-secure non-malleable code for k-bit messages, with codeword length n = poly(k),
resilient to tampering by nc-size circuits.

We construct our codes by “fooling” non-malleable codes for split-state tampering (with special proper-
ties).

Split-state tampering functions may manipulate the left and right halves of a codeword arbitrarily, but
independently (i.e. functions such that (cL, cR) 7→ (fL(cL), fR(cR)) for some fL, fR). Leakage-resilient split-
state tampering allows each tampered codeword half to depend on bounded leakage from the opposite

6 Note that an NP-circuit is different than a nondeterministic circuit. The former is a nonuniform analogue of PNP

(which contains coNP) while the latter is an analogue of NP.
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codeword half. In addition to split-state NMC, we also use a pseudorandom generator (PRG) for nondeter-
ministic circuits, where c′ > c is a constant. In particular, we require that the PRG, G, is secure even when
given the seed (seed extending), i.e. no nondeterministic circuit of bounded polynomial size can distinguish
G(s) from uniform and s is a prefix of G(s).

Given a (leakage-resilient) split-state non-malleable code, with necessary properties and a a seed-extending
pseudorandom PRG for nondeterministic circuits, G, we encode a message x by sampling the following:

(s, cR) such that (G(s), cR)is a split-state encoding of x.

While we refer the reader to the technical overview (Section 1.3) for a more detailed sketch, we provide
here some intuition for security:

1. We assume towards contradiction that (s, cR) is malleable and fix the corresponding poly-size tampering
function g which is not split-state and violates non-malleability.

2. We transform g into a split-state tampering function fL, fR on (cL, cR), where (1) fL is unbounded, relies
on |s| bits of leakage from cR and returns some c′L, (2) fR is efficient, relies on |s| bits of leakage from cL
and returns c′R. Crucially, split-state tampering function (fL, fR) is guaranteed to break non-malleability
when cL = (s||y) = G(s).

3. Since (cL, cR) is a leakage-resilient split-state non-malleable code when cL is uniform random, then
when cL is random, every tampering functon (f ′L, fR) fails to break non-malleability, even when f ′L is
unbounded and chooses its output c′L in the “optimal” way.

4. We construct an Arthur-Merlin protocol (with bounded poly-size Arthur), that distinguishes between in-
put cL being random or pseudorandom. Such a protocol can then be transformed into a non-deterministic
polynomial bounded circuit.

5. Intuitively, Arthur can efficiently compute all the values needed to simulate the tampering experiment
except for c′L, which is obtained from Merlin. Specifically, on input cL, Arthur samples cR, and computes
c′R = fR(cR), as well as the leakage on cR. Arthur sends cL and the leakage on cR to Merlin who responds
with c′L. If cL is pseudorandom, then an honest Merlin will return c′L = fL(cL), and, with Merlin’s help,
Arthur can check that non-malleability is violated with this c′L. If cL is random, then despite any response
c′L = f ′L(cL) from Merlin, non-malleability will not be violated, and a dishonest Merlin cannot convince
Arthur otherwise.

Non-Malleable Extractors We next shift our focus to the case of seedless non-malleable extractors for
computational sources with sufficient min-entropy7 and for tampering with bounded polynomial size circuits.
We consider two types of computational sources:

– Samplable sources: These are distributions that can be generated by bounded polynomial size circuits
that are given uniform random coins as input. Specifically, the source distribution X is equivalent to
C(Ur), the distribution generated by some circuit C of size nc on input uniform randomness of length r
bits.

Extracting from this class of sources was first considered by Trevisan and Vadhan [TV00]. In 1986,
Levin [Lev86] argued that this class reasonably captures sources arising in nature.8

A non-malleable extractor for this class yields non-malleable cryptography resilient tampering attacks
on the very entropy sources used for key generation.

As an alternate motivation, one can consider a natural, albeit restricted, online extraction setting:
imagine a natural source over a time interval as (X1, X2) where X1 is efficiently (and randomly) trans-
formed to X2 with the promise that X1 and X2 have entropy independent of the other. Then any non-
malleable extractor for samplable sources with respect to polynomial size tampering, Ext, can extract
from such as source online, i.e. Ext(X1),Ext(X2) is approximately uniform.9

7 Min-entropy measures the unpredictability of a random variable. In particular, X has min-entropy k if x in the
support of X, Pr[X = x] ≤ 2−k.

8 Sources sampled by polynomial size quantum circuits seem a more appropriate model for physical sources of
randomness. Nonetheless, (classical) sampable sources are an interesting and important subclass.

9 Note that with a random seed it is easy to extract from say X1 conditioned on X2.
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– Recognizable sources: These are uniform distributions over the set of inputs accepted by some poly-
nomial sized circuit. Specifically, the source distribution X is uniform over {x : C(x) = 1}, where C is a
circuit of size nc.

Extracting from this class of sources was first considered by Shaltiel [Sha11] in the context of de-
randomization. This class corresponds with sources about which some efficiently computable leakage is
known.

As we will see, non-malleable extractors for recognizable sources and polynomial size tampering
provide a natural, generic means constructing non-malleable, leakage-resilient cryptography.

Theorem 1.4 (Informal (See Theorem 3.5 for formal version)). If E requires exponential size Σ4-
circuits, then for every constant c, there is an explicit n−c-secure seedless non-malleable extractor for sources

X ∈ {0, 1}n samplable by nc size circuits with linear min-entropy, that outputs Ω(n log log(n)
log(n) ) bits and is

resilient to tampering by nc-size circuits.

Similarly to our non-malleable codes, we construct our non-malleable extractors by “fooling” (seedless)
two-source non-malleable extractors.

Roughly, a two-source non-malleable extractor, 2NMExt, can extract randomness from two-independent
sources (with sufficient min-entropy) even after seeing the output of the extractor invoked on input generated
by independently (and arbitrarily) tampering each source.

Our construction of a non-malleable extractor for samplable sources and polynomial size tampering
follows. Let Extsamp be an extractor for samplable sources, 2NMExt an (efficient) two-source non-malleable
extractor, and G a PRG for nondeterministic NP-circuits, then given a samplable source X. The idea is to
extract a seed with the samplable extractor and then use the seed to “fool” the two-source non-malleable
extractor in a similar manner to the non-malleable code construction above.

– Extract a seed s = Extsamp(X).

– Output 2NMExt(G(s), X).

The high-level idea of the proof is similar to the outline for the non-malleable code proof. An added
difficulty here over our non-malleable code analysis (responsible for the stronger assumption on the PRG)
is that Arthur again receives either pseudorandom (s||y) = G(s) or random (s||y) as input, but now must
sample a source, X, that is consistent with its input, i.e. sample X such that Extsamp(X) = s. Arthur can
do this with a bounded poly-size circuit, given an added level of non-determinism.

The above result is obtained by first constructing “relaxed” seedless non-malleable extractors for nc
′

samplable sources and nc tampering (by “relaxed” we mean restricting the tampering function to have no
fixed points) in Section 3.1, and then presenting a generic transformation from relaxed seedless non-malleable
extractors for nc

′
samplable sources and nc tampering to seedless non-malleable extractors for nc samplable

sources and nc tampering in Section 3.3.

We obtain a similar result for recognizable sources:

Theorem 1.5 (Informal (See Theorem 3.6 for formal version)). If E requires exponential size Σ3-
circuits, then for every constant c, there is an explicit n−c-secure seedless non-malleable extractor for sources

X ∈ {0, 1}n recognizable by nc size circuits with linear min-entropy, that outputs Ω(n log log(n)
log(n) ) bits and is

resilient to tampering by nc-size circuits.

We note that the assumption that E requires exponential size Σ4-circuits (resp. E requires exponential size
Σ3-circuits) is inherited from the seedless extractor for samplable (resp. recognizable) sources of [AASY16]
that is used as a building block in our construction. Assuming the existence of a seedless extractor for
samplable (resp. recognizable) sources, our construction requires only the weaker assumption that E requires
exponential size nondeterministic NP circuits.

Before presenting a technical overview of the main ideas of our constructions, we discuss the relationship
between our positive results and known negative results from the literature.
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On the feasibility of explicit codes from minimal assumptions. It is known that explicit non-malleable codes
for circuits of size O(nc) imply explicit languages that are hard on average for circuits of size O(nc).10 Due
to the limitations in current techniques for proving unconditional circuit lower bounds, it is therefore unlikely
to construct explicit codes for such a tampering class, unconditionally. Yet, one might still hope to construct
codes by assuming minimal circuit lower bounds (i.e. assuming there exists a language computable in time
nd, for some d > c, that is hard on average for O(nc)-size circuits). Unfortunately, Ball et al. [BDKM20]
showed a barrier to proving such a theorem. In particular, they ruled out constructions of non-malleable
codes where the security proof –which is a reduction from breaking the above assumption to breaking the
non-malleable code— makes black box usage of the tampering adversary. This implies that either radically
different proof approaches are necessary (that make use of non-black box methods) or stronger assumptions
(beyond the minimal one discussed above) are needed.

Our present result skirts this lower bound by taking the second approach of stronger assumptions. Specif-
ically, the techniques of [BDKM20] rule out non-black box reductions when the constructed non-malleable
code is resilient against some class C and the underlying assumption is hard for the same class C of circuits.
In this work, our tampering class consists of small deterministic circuits, but our assumption is stronger and
requires hardness for small nondeterministic circuits.

On the necessity of 1/poly-indistinguishability. One could hope to construct non-malleable extractors and
non-malleable codes with negligible error from the types of assumptions we consider in this work–i.e. that E
requires exponential size Σi-circuits. Unfortunately, for the case of non-malleable extractors for samplable or
recognizable distributions, barriers to achieving such a result were already shown in the work of Applebaum
et al. [AASY16]. Specifically, they rule out certain types of black-box reductions from functions that are
(1/2 + δ)-hard (where δ is a small constant) for nd-size Σi-circuits to extractors for distributions that are
samplable or recognizable by size nc circuits (where c ≤ d are constants), and that achieve negligible error.
As a consequence, their results rule out reductions from the assumption that E requires exponential size
Σi-circuits In Appendix B, we extend the results of Applebaum et al. [AASY16] to rule out black-box
reductions from any function f that is (1/2 + δ)-hard for nd-size Σi-circuits to efficient, 1-bit non-malleable
codes resilient to tampering by by size nc circuits (where c ≤ d are constants), and that achieve negligible
error.11 Since f as above can be constructed from the scaled down and padded characteristic function of
some (average case hard) language in E, it means that if one can compute the characteristic function of an
E-complete language on all inputs (i.e. break the worst-case hardness of an E-complete language), then one
can compute f on average (with probability 1/2 + δ). Thus, our results also rule out reductions from the
assumption that E is (worst-case) hard for exponential size Σi-circuits.

We note that there are differences in the class of reductions ruled out by our result in Theorem B.2 and
Corollary B.3 and the corresponding results of Applebaum et al. [AASY16]: Our result allows function-specific
and non-security parameter-preserving reductions. On the other hand, our results require the assumption that
there is a function that is hard for nd-size Σi-circuits and rule out only efficient constructions of non-malleable
codes (where encode/decode are polynomial time), while the results of Applebaum et al. [AASY16] are
unconditional and rule out even inefficient constructions. Please see Remarks 1, and 2 for further discussion.

Taken together, the results of Applebaum et al. [AASY16] together with our new results for non-malleable
codes in Appendix B, indicate that significantly new proof techniques are necessary to construct non-
malleable extractors and non-malleable codes with negligible error from the assumption that E requires
exponential size Σi-circuits.

Partially bypassing the impossibility via “relative error.” The above results indicate that it is inherently
difficult to construct non-malleable extractors with negligible error under non-deterministic reductions, where
error is measured in terms of statistical distance. Another measure of closeness between distributions is known
as relative error. Specifically, relative error α between a pair of distributions D1, D2 requires that for every
element x in the support of D1,

(1− α)PrD2 [x] ≤ PrD1 [x] ≤ (1 + α)PrD2 [x].

10 In particular, the Decode function is hard with respect to the distribution formed by encoding a random bit. If this
wasn’t the case, one could attack by computing the encoded value and outputting a fixed encoding of the opposite
bit.

11 Note that ruling out reductions to 1-bit non-malleable codes also rules out reductions to k-bit non-malleable codes.
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In this case, even if α is non-negligible, the above guarantee is still useful for achieving negligible security.

Applebaum et al. [AASY16] introduced a notion of relative-error extractors, observing that if the output
of the extractor is 1/poly-close to uniform with relative error, then every event occurs w.r.t. the output dis-
tribution with probability at most (1+1/poly) times the probability it occurs w.r.t. the uniform distribution.
In particular, events that are negligible under the uniform distributions cannot become noticeable under the
distribution outputted by the extractor. This was then sufficient for obtaining leakage resilient cryptosystems
with negligible security guarantees.

In this work, we consider applying the relative error notion to the setting of seedless, non-malleable
extractors. Our notion differs in two ways: First, we need to extend the notion to the case where neither
the real nor simulated distribution is uniform. This is because the guarantee of the non-malleable extractor
holds with respect to a pair of output values (a, b), where a should be uniform random, but b can come from
an arbitrary distribution. Second, due to the above, we slightly relax the notion and incorporate a small
additive term, β � 2−2m, where m is the output length of the extractor.

We now parametrize the relative extractor notion by α and β and require that the probability of any
untampered/tampered output pair (a, b) under the real distribution is at most (1 + α)pI(a, b) + β, where
pI(a, b) denotes the probability of output pair (a, b) under the ideal distribution.

Applications to leakage and tamper resilience with negligible security. A non-malleable extractor E : {0, 1}n →
{0, 1}m with relative error (α, β) for a class of recognizable sources X and tampering family T , can be used
to obtain leakage and tamper resilient cryptosystems with negligible security guarantees. To achieve this,
one can store a uniformly random R on a device and use a = E(R) as the secret key for a symmetric key
cryptosystem Π. The attacker is allowed (1) leakage on R with leakage function ` from the class of bounded
polynomial-size circuits with bounded output length;12 (2) tampering on R with tampering function t from
the class of bounded polynomial-size circuits; (3) oracle access to both Πa, and Πb, where b = E(t(R)) is
the tampered version of the key (Πa, Πb denote fixing the secret key of Π to a or b respectively). We show
that in several cases, we can still guarantee the negligible security of the cryptosystem with respect to the
original key a, despite this stronger adversarial model.

We consider two types of applications. First, for cryptosystems Π that have an associated unpredictability
game (such as MAC’s), negligible security in the leakage and tampering game described above can be proved
from the properties of the relative error non-malleable extractor, assuming the original cryptosystem Π sat-
isfies the standard security notion. Second, for cryptosystems Π that have an associated indistinguishability
game (such as CPA secure symmetric key encryption), negligible security in the leakage and tampering game
described above can be proved in the case that the original cryptosystem Π satisfies a type of “square-
security” notion (see for example [BDK+11, DY13], for a discussion of the square-security notion). We note
that there are natural examples of cryptosystems that achieve this required notion. For example CPA-secure
symmetric key encryption satisfies the “square-security” notion needed for our result.

We emphasize that, for both the unpredictability and indistinguishability applications discussed above, by
using relative error non-malleable extractors, we are able to prove that the attacker’s advantage is negligible
in the leakage and tampering game. See Appendix C.4 for further details.

Non-malleable secret sharing and non-malleable codes are equivalent under polysize circuit tampering. Secret
sharing schemes allow a user with a secret to send “shares” to a set of parties such that any “authorized”
subset of parties can recover the secret from their collective shares, but “unauthorized” subsets of parties
learn nothing about the secret from their collective shares. This relatively simple object, about which many
foundational questions remain unanswered, is a critical tool in modern cryptography.

In 2018, Goyal and Kumar [GK18a] introduced the notion of non-malleable secret sharing. To understand
what it means for a secret sharing scheme to be non-malleable, consider the following experiment: share a
secret, jointly tamper all the shares, reconstruct the tampered shares of some authorized subset of parties.
Loosely, a secret sharing scheme is non-malleable if the outcome of this experiment returns the original secret
or some value independent of the original secret (and which case occurs should also be independent of the
original secret).

Goyal and Kumar constructed non-malleable threshold secret sharing schemes (where any t parties are
authorized and can recover the secret) for tampering that is independent on each share. They also constructed

12 In fact, the precise leakage class we can handle is more broad and is discussed in Section C.4.
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a scheme resilient to joint tampering on small sets of < t shares (shares are partitioned into small sets and
each set of shares is tampered independently).13

Subsequent work has constructed schemes for similar settings with improved parameters [BS19, GSZ21],
schemes with additional features such as leakage resilience [ADN+19], schemes for more exotic access struc-
tures (the predicate specifying authorized sets of parties) [GK18b, BS19, ADN+19], schemes that can tolerate
joint tampering of all the shares by “simple” tampering such as affine tampering or tampering by low degree
polynomials [LCG+19a, BCL+20], and more.

In Appendix D, we construct non-malleable secret sharing schemes that are resilient to joint tampering
of the shares by polynomial size circuits for a wide variety of access structures, any access structure for which
an explicit (efficiently computable) secret sharing scheme exists.

In fact, we observe that non-malleable secret sharing and non-malleable codes for polynomial size circuit
tampering are effectively equivalent. This is a testament to the richness of this tampering class. More precisely,
to construct such a non-malleable secret sharing scheme from a non-malleable code, one simply encodes the
secret with the non-malleable code and shares the codeword according to a polysize computable secret
sharing scheme (to reconstruct the secret, simply reconstruct the codeword and decode). This is safe because
composing sharing, tampering, and reconstructing can in turn be performed by a polynomial size circuit,
because the secret sharing scheme is efficient. (The reverse direction is immediate.)

We go on to construct adaptive non-malleable secret sharing schemes resilient to polynomial size circuit
tampering for a wide variety of access structures, including any access structure admitting an efficient linear
secret sharing scheme. In adaptive non-malleable secret sharing, the tampering function can be chosen
arbitrarily as a function of any unauthorized set of shares.

1.3 Technical Overview

We begin by discussing difficulties in a strawman approach: directly derandomizing probabilistic method
constructions. Then, we demonstrate our technique, which avoids the strawman’s issues, by presenting a
construction and proofsketch for a simplified case: Constructing ”relaxed” non-malleable extractors (where
the tampering function is guaranteed to have no fixed points) for uniformly random sources and bounded
polynomial tampering (i.e. size nc circuits for some constant c). While this is a simplified case, it will already
give most of the key ideas of our main results. We conclude the section by discussing how to extend this
example and its analysis to achieve our main results.

Aside: On Derandomizing Randomized Constructions [CG14a, FMVW14] (A reader only inter-
ested in how are solution works can safely skip this aside.)

Given the existence of Monte Carlo style14 constructions of efficient non-malleable codes for polynomial-
size tampering, intuitively one might try to derandomize these constructions to arrive at a single, explicit
non-malleable code. Unfortunately, while it is straightforward to arrive at an enumerable family of candidate
code, nearly all of which are non-malleable (but not all), it is unclear how to combine these candidate codes
(unlike when solving a decision problem, one cannot simply try them all and take the majority).

Indeed, it may be instructive to walk through this argument for encoding just a single bit. There is a
particularly simple monte carlo style construction of a non-malleable code for single bit messages [Bal21].
Let H to be an t(n) = Õ(nc)-wise independent hash family.15 Then sample h← H and set Dh ≡ h and take

Eh(b) to simply sample a uniformly random x such that Dh(x) = b. This gives us a large, 2Õ(nc), family of
candidate codes {(Eh,Dh)}h∈H, most of which are non-malleable against nc-size tampering.

Next, we remark that one-bit non-malleability admits a (relatively) simple test. In particular, there is
a nondeterministic circuit of size t(n)O(1) that outputs 1 if and only if the input, two circuits (E,D) (with
inputs for randomness) of size t(n), represents a non-malleable code against nc-size tampering [Bal21].16

13 Note that there is no hope achieve non-malleability if the tampering function can recover the secret and output
based on that.

14 By Monte Carlo, we mean their is an efficient randomized algorithm that outputs succinct description of (E,D)
such that with high probability (E,D) represent a non-malleable code.

15 Recall, H = {h : {0, 1}n → {0, 1}} is t-wise independent if for any distinct strings x1, . . . , xt ∈ {0, 1}n,
h(x1), . . . , h(xt) is a uniformly random string when h← H.

16 Recall that for single bit messages, (E,D) is ε-non-malleable if and only if for every tampering function f
Prr,b[D(f(E(b); r)) = 1 − b] ≤ 1/2 + ε. Now consider the MA-style proof that a E,D is not 1/nc-non-malleable:
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Because we can test non-malleability for nc-size tampering with a polysize nondeterministic circuit, it
follows that (Eh,Dh) should be non-malleable with high probability when h is sampled pseudorandomly. In
particular, if G is a pseudorandom generator for nondeterministic circuits, then {(EG(s),DG(s)}s is a small
family of candidate codes that are mostly non-malleable. Moreover, if G has exponential stretch (which
follows from our assumption “E is hard for exponential size nondeterministic circuits”), then this family can
be enumerated in polynomial time.

Unfortunately, at this point we are stuck. It is unclear how to combine {(EG(s),DG(s)}s to arrive at a
single non-malleable code. While we have yet to rule out the existence of generic combiners (black box pro-
cedures that construct non-malleable codes from families of candidate codes where most are non-malleable)
entirely, most intuitive constructions admit counterexamples.17 While this particular family has some specific
structure (beyond the promise that most candidate codes are non-malleable), it is not obvious how to exploit
this.

It may be helpful to compare the situation to that of error correcting codes. It is well known that a random
matrix generates a linear code on the Gilbert-Varshamov (GV) bound with high probability. Because minimal
distance can be tested by small nondeterministic circuits, we can even efficiently enumerate a set of mostly
good candidate codes [CSW06]. If we could combine such an ensemble, we would have an explicit construction
a code on the GV bound.

However, after 70 years, explicitly constructing a code with this distance, even under appropriate hardness
assumptions, remains an open problem. In contrast, while it remains unclear how to directly derandomize
ensembles of non-malleable codes for polysize circuit tampering, we can use the same assumption used to
partially derandomize such an ensemble to indirectly arrive at an explicit construction.

A Simple Example: (Relaxed) Seedless Non-Malleable “Extractor” for Uniform Sources First,
recall that a relaxed seedless non-malleable extractor (Def. 2.9) for sources of the form (S,X) is a deterministic
function NMExt such that for any nc size circuit, C without fixed points we have

(NMExt(S,X),NMExt(C(S,X))) ≈ (U ,NMExt(C(S,X))).

We reiterate that here we simplify by assuming that the source (S,X) is uniform random. While this
trivializes the task of randomness extraction, the question of non-malleable extraction remains interesting
for such sources, e.g. it already implies the existence of non-malleable codes for 1-bit messages. 18

Before describing our construction, we give a brief overview of the necessary building blocks:

Strong relaxed two-source non-malleable extractor. Loosely speaking, a function NMExt : {0, 1}n×{0, 1}n →
{0, 1}m is a relaxed two-source non-malleable extractor for sources (X,Y ) if for every split-state tampering
function (τL, τR) for which either τL or τR has no fixed points, we have

(NMExt(X,Y ),NMExt(τL(X), τR(Y )))
s
≈ (Um,NMExt(τL(X), τR(Y ))).

We say NMExt is a strong two-source non-malleable extractor for no-fixed points tampering if we further
have that

(X,NMExt(X,Y ),NMExt(τL(X), τR(Y )))
s
≈ (X,Um,NMExt(τL(X), τR(Y ))).

Merlin sends a nc-size circuit, f , (the witness/proof) and Arthur accepts if D(f(E(b) = 1− b for random b. If E,D
is not 1/nc non-malleable, then there exists an f to make Arthur accept with probability ≥ 1/2 + 1/nc. On the
other hand, if E,D is 1/2nc-non-malleable, then for every f Arthur accepts with probability ≤ 1/2 + 1/2nc. This
can be derandomized with nonuniform advice using standard techniques.

17 In more detail, the main issue is that a “bad” candidate code can behave maliciously. For example, imagine
candidate codes which output codewords with long “dummy” prefixes. “Good” codes can simply the prefix entirely,
but a tampering function could conspire with “bad” decoders by feeding all the other non-dummy codeword parts
with some instructions to the bad decoders. So long as the bad decoder has some influence on the output, which
seems necessary, tampering is possible.

18 To see this, recall the characterization of non-malleability for a single bit (see previous footnote ). Note that for any
tampering function f of size nc, one can define a function f ′ of size nc+O(n) that has no fixed points and behaves
identically to f on every x that is not a fixed point of f . Because, Pr[D(f(E(b) = 1− b] ≤ Pr[D(f ′(E(b)) = 1− b]
we can deduce that E,D is non-malleable with respect to circuits of size nc − O(n), where D is NMExt and E
simply performs rejection sampling to find a random (s, x) such that NMExt(s, x) = b. Note that the resulting
non-malleable code will not have perfect correctness because the rejection sampling procedure might fail.
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Two source non-malleable extractors are well-studied in the literature with the current state-of-the-art being
extractors for sources (X,Y ) ∈ {0, 1}n × {0, 1}n with min-entropy (1 − γ)n for some constant γ and error
2−Ω(n log log(n)/ log(n)) [Li19]. Further, [Li16a] showed that every two source non-malleable extractor is also a
strong two source non-malleable extractor for sources with some loss in parameters.

Recalling the notion of a nondeterministic circuit from the introduction, we now introduce a type of
pseudorandom generator (PRG) with security against non-deterministic circuits of bounded polynomial size.

Seed-extending pseudorandom generators. A pseudorandom generator (PRG) for nondeterministic circuits
of size nd, G : {0, 1}` → {0, 1}n, allows one to extend a short random seed into a long string that is
indistinguishable from random to nondeterministic circuits of size nd (for constant d). More precisely, for
every nondeterministic circuit, C, of size at most nd,

|Pr[C(G(U`)) = 1]− Pr[C(Un) = 1]| ≤ 1

nd
,

where Um denotes a random variable uniformly distributed over {0, 1}m.
The above type of PRG are different from cryptographic PRG’s since the computation time of the

PRG is larger than the size of the adversary. Specifically, these PRG’s are secure against nondeterministic
circuits of size nd, but take larger polynomial time to compute. Cryptographic PRG’s are computable in
some fixed polynomial time but secure against adversaries of arbitrary polynomial size. In the case of seed-
extending pseudorandom generators, this gap between honest and adversarial computational resources allows
for unintuitive behavior, where the seed of the PRG itself is included as part of the output and the output
remains pseudorandom, which is impossible in the cryptographic case.

Indeed, we are interested in exactly such PRGs that remain secure even when given the seed, referred to
as “seed-extending” PRGs.19 A PRG, G : {0, 1}` → {0, 1}n, is said to be seed-extending if G(s) = (s,G′(s))
(where G′ is the function corresponding to the n − ` bit suffix). This particular name was introduced by
Kinne et al. in the context of derandomizing randomized algorithms on random inputs. [KvMS12, LZ19]
They observed that PRG constructions based on Nisan and Wigderson’s seminal construction [KvMS12] can
be made seed-extending. Consequently, many constructions of PRGs for nondeterministic circuits can be
made seed extending.

Theorem 1.6 ([KvMS12, IW97, KvM02, SU05, SU06, AASY16]). If E requires exponential size
nondeterministic circuits, then for every constant c > 1 there exists a constant α > 1 such that for every
sufficiently large n, and every ` such that α log n ≤ ` ≤ n there is a seed-extending PRG, G : {0, 1}` → {0, 1}n,
for nondeterministic circuits of size nc.

We are now ready to present our construction for our simplified setting.

Construction of a Seedless Relaxed Non-Malleable Extractor. Our construction of a (relaxed) seedless non-
malleable extractor for uniform sources and nc-size circuit tampering is exceedingly simple. Let 2NMExt be
a relaxed, two-source non-malleable extractor (NME). Our seedless relaxed non-malleable extractor, NMExt,
is defined as

NMExt : (s, x) 7→ 2NMExt(G(s), x)

where G is a seed-extending PRG for nondeterministic circuits of size nd for some constant d > c.

Sketch of the Security Proof. To prove security of the construction, we need to show that the existence of a
size nc tampering function with no fixed points that breaks the security of the NME, implies the existence
of a nondeterministic circuit of size nd that distinguishes outputs of G from random.

Suppose for the sake of contradiction that there exists a successful tampering function, τ : (s, x) 7→ (s̃, x̃)
of circuit size nc with no fixed points. We will define f to denote the function that computes (s, x) 7→ x̃
according to τ , and g to denote the function that computes (s, x) 7→ s̃ according to τ . In other words,
τ(s, x) = (g(s, x), f(s, x)) and moreover, for each (s, x) either g(s, x) 6= s or f(s, x) 6= x. Note that there is
no split-state assumption on the tampering function τ(s, x) = (g(s, x), f(s, x)), as both f and g can depend
on the entire input (s, x).

19 We refer the reader to [KvM02] for further discussion.
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Now, our assumption on τ (and hence f, g) breaking the NME can be restated as

∆((2NMExt(G(S), X), 2NMExt(G(g(S,X)), f(S,X))); (Um, 2NMExt(G(g(S,X)), f(S,X)))) ≥ ε. (1)

We will use this assumption to “distinguish” the seed-extending PRG, G, from the uniform distribution
via a private constant round interactive proof (i.e. Arthur Merlin protocol). In particular, (private-coin)
Arthur will accept pseudorandom inputs (completeness) with polynomially higher probability than he ac-
cepts random inputs, regardless of how Merlin behaves (soundness). Then, we can deduce from standard
transformations (IP[k] ⊆ AM ⊆ NP/poly [BM88, GS86]) that a small non-deterministic distinguisher exists.20

Looking ahead, (1) which asserts the malleability of the constructed extractor when provided pseudo-
random inputs will enable us to prove the protocol is complete, i.e. Arthur accepts pseudorandom inputs
with high probability. Soundness, i.e. Arthur rejects random inputs with high probability, will ultimately
follow from security of the 2-source non-malleable extractor. Furthermore, what ultimately will enable our
soundness argument to go through is the fact that to achieve completeness Arthur communicates very little
about random variable X and thus X remains entropic, even after conditioning on this communication. We
use a standard private coin technique, where Arthur forces Merlin to guess between two samplable distribu-
tions [GMW91] to handle the fact that our extractor has relatively long outputs (even though our hardness
assumption only holds for boolean distinguishers in a relatively high error regime).

Arthur Merlin Protocol. We next describe the interactive proof for distinguishing G from uniformly random
bits. Both Arthur and Merlin receive (s, y) as input. Our protocol aims to accept strings from G(U`)
when Merlin plays according to below (completeness) and reject strings from Un regardless of the strategy
Merlin utilizes (soundness). Because we can amplify by repetition, it suffices for there to be small gap between
the two.

Arthur Sample x← Un. Send Merlin s̃ = g(s, x).
Merlin If (s, y) = G(s), respond ỹ such that (s̃, ỹ) = G(s̃). Otherwise, respond arbitrary ỹ.
Arthur Sample a random coin b← U and set z̃ = 2NMExt((s̃, ỹ), x̃) where x̃ = f(s, x).

– If b = 0: Sample z ← Um and send z, z̃.
– Else if b = 1: Sample z ← 2NMExt((s, y), x) and send z, z̃.

Merlin Guess Arthur’s bit by guessing whether (z, z̃) was drawn from the first or second distribution.
Arthur Accept if b = b′, and reject otherwise.

Completeness: accepting pseudorandom inputs. We first argue that Arthur, when playing with Merlin as
specified above, accepts pseudorandom inputs, drawn from G(S), with probability significantly greater than
1/2. Indeed, if the protocol above is given inputs from G(S) (i.e. legitimate outputs of G), then if Arthur
chooses b = 1, his final message is sampled as:

(z, z̃) ∼ (2NMExt(G(S), X), 2NMExt(G(g(S,X)), f(S,X))).

On the other hand, if b = 0, Arthur’s final message is sampled according to:

(z, z̃) ∼ (Um, 2NMExt(G(g(S,X)), f(S,X))).

By our malleability assumption towards contradiction (1), these two distributions are ε-far from each other.

Soundness: rejecting random inputs. We must now show that when given uniformly random inputs, Arthur
accepts with significantly lower probability than the case above. This case is harder than the previous case,
since here Merlin can behave arbitrarily, and we must show that Arthur still rejects w.h.p.

At a high-level, we get around this by observing that although Merlin is computationally unbounded,
the fact that the information sent to him by Arthur is limited, essentially constrains Merlin to split-state
strategies. Specifically, let G∗ : (s, y, s̃) 7→ ỹ be the function that given Merlin’s input (s, y) and the transcript
thus far, outputs Merlin’s first message. Conditioned on s, s̃, we have that G∗(s, y, s̃) = ỹ is independent of x
(as is s̃). And similarly, x̃ = f(s, x) is independent of (s, y). So conditioned on s, s̃ we can define a split-state
tampering function as follows:

20 In actuality, this is too naive because these transformations only hold for worst-case notions of soundness and
completeness. Thus in the body, we will instead show that there exists a constant round interactive proof for a
promise problem (ΠY , ΠN ) such that ΠY is dense in the pseudorandom distribution and ΠN is dense in the uniform
distribution, and not vice-versa.
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– τ s̃L : (s, y) 7→ (s̃, ỹ) where ỹ = G∗(s, y, s̃)
– τsR : x 7→ x̃ where x̃ = f(s, x)

Note that because τ has no fixed points, either f(s, x) 6= x or g(s, x) 6= s. So, either τ s̃L or τsR contains no
fixed points. Thus, conditioned on s, s̃ and Arthur’s coin b = 0, Merlin’s view is simply

T s,s̃0 ≡
(
(s, y),U , 2NMExt(τ s̃L(s, y), τsR(x))

)
.

On the other hand, if Arthur’s coin is b = 1, Merlin’s view is

T s,s̃1 ≡
(
(s, y), 2NMExt((s, y), x), 2NMExt(τ s̃L(s, y), τsR(x))

)
.

Recall that the input (s, y) (left source) and x (right source) are both uniform. Thus, after conditioning
on the transcript (or equivalently s, s̃) nearly all the entropy remains in each source (in fact, we can take s, s̃
short enough that the entropy deficiencly is just O(log(n))). Then because 2NMExt is a strong two-source
non-malleable extractor for sources with linear min-entropy, it follows from the security property that:

T s,s̃0

s
≈ T s,s̃1 .

Obtaining our Main Results We extend the above technique in several ways to obtain our main results.

Non-malleable extractors for samplable/recognizable sources. First, we combine the above construction with a
seedless extractor for polynomially samplable (resp. recognizable) sources [TV00, AASY16] to obtain a relaxed
seedless non-malleable extractor for polynomially samplable (resp. recognizable) sources and polynomially
bounded tampering.

In brief, we use a seedless extractor to sample the uniform seed, s, for the PRG in the simple con-
struction above. The main difference relative to the proof above, is that now Arthur must sample the
samplable/recognizable source to be consistent with the pseudorandom challenge, i.e. conditioned on the
seedless extractor outputting s. This is resolved in both cases by equipping Arthur with an NP-oracle, so he
can efficiently sample random satisfying assignments to small circuits [BGP00, JVV86].

The full details of our constructions and their analysis can be found in Section 3. Similar to above, we
first construct an extractor secure against tampering functions without fixed points (this out by Cheraghchi
and Guruswami [CG14b] and first construct an extractor secure against tampering functions without fixed
points. Then in Section 3.3, we show how to remove the requirement of no fixed-points in the tampering
functions to obtain seedless non-malleable extractor for polynomially samplable sources and polynomially
bounded tampering.21

Non-malleable code. The above non-malleable extractors suggest an natural path to non-malleable codes.
Cheraghchi and Guruswami [CG14b] show that invertable non-malleable extractors for a tampering class
C imply non-malleable codes for that C. However, there are two obstacles to applying their approach here.
First, it is unclear how to efficiently invert our extractors. Secondly, this transformation has 2k security loss,
where k is the bit length of the messages to be encoded. Given the polynomial security, this means the
resulting construction would have exponential length codewords and would not actually be explicit.

We therefore take the route of directly constructing non-malleable codes, with the added benefit that
we reduce our hardness assumptions from “E requires exponential size Σ3-circuits” (required for our non-
malleable extractors) to “E requires exponential size nondeterministic circuits.”

Our result is obtained by replacing the two-source non-malleable extractor in the simple example above
with a split-state non-malleable code: to encode a message m, sample a split-split state encoding of the form
(G(S), y) and output s, y. To make a similar Arthur Merlin distinguisher work for this construction, we need
the split-state code to have some special properties:

– Special Encoding: We need to be able to sample pseudorandom split-state code words efficiently in
order to encode efficiently at all. To do this we introduce a notion of special encoding :
There is an alternate encoding algorithm that receives the value of the first split state along with a

message m and samples the second split-state so that the resulting encoding decodes to m. Critically,
if the value of the first split-state is sampled uniformly at random, then the outputted encoding is
distributed identically to a random encoding of m.

21 Cheraghchi and Guruswami [CG14b] showed a similar lemma for the case of split-state tampering.
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– Leakage Resilience: The soundness argument above relied on the fact that two-source extractors
remain secure even if there is small amount of leakage on the states (corresponding to the transcript).
Note that this leakage is both to the independent components of the split-state tampering function and
the (possibly inefficient) distinguisher of the non-malleability game. If this is the case, we say a such
split-state code is leakage-resilient.22

– “Augmented” NMC: Finally, our soundness argument above additionally required that Merlin could
not distinguish the real and ideal experiments even when given the left source in its entirety. For this we
relied on the fact that 2NMExt was a strong two-source non-malleable extractor. The corresponding no-
tion for split-state non-malleable codes is the augmented property: security of the NMC holds even when
one half of the codeword is revealed at the end of the experiment to a (possibly inefficient) distinguisher.

An NMC with the necessary properties is constructed by (1) observing that the NMC of Aggarwal et
al. [ADL18] satisfies both the augmented NMC and special encoding properties and (2) applying the leakage
resilience transformation of Ball et al. [BGW19] and proving that it preserves the augmented NMC and
special encoding properties. See Appendix A for more details.

The details of our construction of a non-malleable code for polysize tampering and its analysis can be
found in Section 4. Note that the rate of our code inherits the rate of the NMC of Aggarwal et al. [ADL18],
which means that to encode a message of length k (for sufficiently long k), one needs a codeword length
of n = O(k7). A better split-state NMC with the above properties will yield a better NMC for polysize
tampering, but rate is not our focus here.

1.4 Related Work

Non-malleable extractors and codes. There is by now a large body of work on non-malleable extractors and
non-malleable codes resilient against various classes of tampering [DPW10, DKO13, Li17, Li19, ADL18,
ADKO15, CL17, BDG+18, BDKM16, BGW19, BCL+20, AGM+15a, AO20, KOS17]. In the non-malleable
codes case, some constructions not included in the list above rely on cryptographic assumptions [BDKM18,
AGM+15b], while others require an untamperable common reference string (CRS) [LL12, BDKM18]. There
has also been much work on variants of non-malleable extractors and non-malleable codes [CGL16, FMNV14,
DLSZ15, KOS18], as well as a relatively new line of work on a related primitive called non-malleable se-
cret sharing [GK18a, GK18b]. We restrict our attention to constructions most relevant to the current work,
namely, the prior constructions of non-malleable codes (in the CRS and standard models) resilient to bounded
polynomial tampering, where “bounded polynomial” can refer to a restriction on (1) circuit size, (2) uni-
form computation time, (3) circuit depth. Existence of non-malleable codes under all of the above types of
tampering was initially shown via the probabilistic method in [DPW18] and they can also be constructed
efficiently in the random oracle model [DPW18]. In the following, we additionally restrict our attention to
explicit, efficient constructions without random oracles. We also mention a somewhat related line of work
on variants of non-malleable codes resilient to polynomially space-bounded tampering in the random oracle
model [FHMV17, CCHM19].

NMC against bounded polynomial sized circuits in the CRS model. Faust et al. [FMVW14] presented efficient
information theoretically secure NMC with negligible error in the CRS model, resilient against tampering
function classes F which can be represented as circuits of size poly(n). We note that the CRS in their
construction is a seed s for a p(n)-wise independent hash function, where p(n) is a polynomial that is larger
than the bound on the tampering circuit size.

NMC against uniform, bounded polynomial time in the standard model. Ball et al. [BDK+19] presented
efficient non-malleable codes resilient against tampering by functions computable in uniform bounded poly-
nomial time. Their construction is in the standard, no-CRS model and achieves error of 1/poly. They require
a similar assumption as those used in the current work (that E requires exponential size NP circuits), as
well as cryptographic assumptions of the existence of sub-exponentially hard trapdoor permutations and
the existence of P-certificates with sub-exponential soundness. We note that the only known instantiation
of P-certificates requires assuming soundness of a non-trivial argument system (Micalis CS proofs [Mic94]),
which is true in the Random Oracle model. Due to the use of cryptographic techniques in the construction
and proof, the final non-malleable code achieves computational indistinguishability.

22 In the literature, leakage-resilient has been alternately used to refer to codes that handle leakage only to the
distinguisher as well as code that handle leakage only between the tampering of each state.
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NMC against bounded polynomial depth circuits (unbounded polynomial size) in the standard model. Dachman-
Soled et al. [DKP20, DSKP21] constructed non-malleable codes resilient to all polynomial size tampering
functions that have bounded polynomial depth. This tampering class contains all bounded polynomial size
functions and contains non-uniform NC. Their construction is in the standard, no-CRS model and achieves
negligible error. They require the cryptographic assumptions of the existence of keyless multi-collision resis-
tant hash function, injective one-way function, and non-interactive witness-indistinguishable proofs, as well
as the repeated squaring assumption. Keyless multi-collision resistant hash function are known to exist in
the auxiliary input random oracle model. Due to the use of cryptographic techniques in the construction and
proof, the final non-malleable code achieves computational indistinguishability.

Seedless extractors for samplable and recognizable sources. Trevisan and Vadhan [TV00] considered seedless
extractors for the class of distributions samplable by bounded polynomial sized circuits. Under the assump-
tion that E requires exponential size Σ4 circuits, they presented constructions of seedless extractors for linear
min-entropy, samplable sources over n bits, that output Ω(n) bits that are 1/poly-close to uniform. Apple-
baum et al. [] showed that the 1/poly error is at least somewhat inherent by ruling out black-box reductions
in this setting. They therefore introduced a notion of relative-error extractors and showed that if the output
of the extractor is 1/poly-close to uniform with relative error, then every event occurs w.r.t. the output dis-
tribution with probability at most (1+1/poly) times the probability it occurs w.r.t. the uniform distribution.
In particular, events that are negligible under the uniform distributions cannot become noticeable under the
distribution outputted by the extractor. Under the assumption that E requires exponential size Σ4 circuits,
they constructed relative-error seedless extractors whose outputs are 1/poly-close to uniform with relative
error for linear min-entropy, samplable sources. Under the assumption that E requires exponential size Σ3

circuits, they constructed relative-error seedless extractors whose outputs are 1/poly-close to uniform with
relative error for linear min-entropy, recognizable sources.

1.5 Organization

In Section 2 we present notation and preliminaries. All other sections and appendices are self-contained and
can be read in any order.
In Section 3 we present our construction of seedless non-malleable extractors for samplable and recognizable
sources. Specifically, in Sections 3.1 and 3.2, we present constructions of relaxed seedless non-malleable
extractors for samplable and recognizable sources, where relaxed means that the tampering function is
guaranteed to have no fixed points. In Section 3.3 we show how to remove the “relaxed” assumption. In
Section 3.4 we combine the results to obtain our final theorem statements.
In Section 4 we present our construction of the non-malleable code, based on a construction of a new,
enhanced type of split-state non-malleable code which we call, NMC with “augmented leakage-resilient split-
state and special encoding,” which can be found in Appendix A.
In Appendix B, we present our new lower bound, which rules out black-box reductions from assumptions of
the form “E requires exponential size Σi-circuits” to non-malleable codes resilient against bounded polyno-
mial tampering.
In Appendix C, we present our construction of relative error non-malleable extractors for recognizable
sources, and we discuss cryptographic applications of such extractors, which achieve negligible security,
in Appendix C.4.
In Appendix D, we present our results on non-malleable secret sharing.
Finally, Appendix E contains some additional proofs.

2 Preliminaries

For S ⊆ N , where S = {i1, . . . , i` : i1 < · · · < i`} and any n-ary string of values x1, . . . , xn, let xS denote
the string (xi1 , . . . , xi`).

For any two random variables X,Y , we write ∆(X;Y ) ≤ ε or X ≈ε Y if the total variation distance
between their distributions is at most ε.

2.1 Complexity classes and assumptions

We take E to denote DTIME[2O(n)] the class of languages decidable by deterministic Turing machines in
2cn-time for some constant c.
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In this work, we take circuits to denote circuits over the standard basis {∨,∧, 6}. For any language O, an
O-oracle aided circuit is a circuit that has special gates that decide O, in addition to the standard-basis.

For any circuit, we say it has size s if it contains at most s gates. We say it has depth d if the longest
path from any input to any output gate is of size d. A circuit family, {Cn}n∈N, is a collection of circuits such
that Cn takes inputs of length n.

We take the SIZE[s(n)] to denote the function families computable by a circuit family {Cn}n∈N such that
Cn has size at most s(n), for large enough n. Similarly, we take SIZEO[s(n)] to denote the function families
computable by an O-oracle aided circuit family {Cn}n∈N such that Cn has size at most s(n), for large enough
n.

2.2 Non-malleable codes and seedless non-malleable extractors

Definition 2.1 (Coding schemes). A pair of functions (Enc,Dec), where Enc : {0, 1}k → {0, 1}n is a
randomized function and Dec : {0, 1}n → {0, 1}k ∪ {⊥} is a deterministic function, is defined to be a coding
scheme with block length n and message length k if for all z ∈ {0, 1}k, Pr[Dec(Enc(s)) = s] = 1.

Definition 2.2 (Tampering functions). For any n > 0, let Hn denote the set of all functions h : {0, 1}n →
{0, 1}n. Any subset G ⊆ Hn is a family of tampering functions.

For any class of boolean functions F = {f : {0, 1}n → {0, 1}}, we take Fn denote to denote the class
of n-output functions where each output is computed by some function in F , i.e. Fn = {fi1,...,in : x 7→
fi1(x), . . . , fin(x) | fi1 , . . . , fin ∈ F}.

Two particular classes of tampering functions we consider in this work:

– Tampering where each output is computable by an s(n)-size circuit, SIZEn[s(n)].
– Split-state tampering where two halves of an input are tampered independently and arbitrarily: {(τL, τR) :
x1, . . . , x2n 7→ τL(x1, . . . , xn), τR(xn+1, . . . , x2n)|τL, τR ∈ Hn}.

We define a function that will be useful in defining non-malleable codes:

Copy(x, y) =

{
x if x 6= same

y if x = same.

Definition 2.3 (Non-malleable codes). A coding scheme (Enc,Dec) on alphabet {0, 1} with block length n
and message length k is a ε-non-malleable code with respect to a tampering family F ⊂ Hn if for every f ∈ F
there is a random variable Df supported on {0, 1}k ∪ {same} that is independent of the randomness in Enc,
and for any message z ∈ {0, 1}k, we have

∆ (Dec(f(Enc(z))); Copy(Df , z)) ≤ ε.

We refer to the parameter ε as the “error” of the non-malleable code.

We define the rate of a non-malleable code C to be the quantity k
n .

Dziembowski, Pietrzak, and Wichs [DPW10] also provided the following alternate definition of Non-
Malleable Codes and proved it to be equivalent, so long as the message domain is large enough. Roughly,
this definition simply requires that the outcome of the tampering experiment with m0 cannot be distinguished
from the outcome of the tampering experiment with m1, unless the outcome is either m0 or m1.

Definition 2.4 (Alternative-Non-Malleability [DPW10]). Let F be a family of tampering functions. We say
that a coding scheme (Enc,Dec) is ε-alternative-non-malleable with respect to F if for any m0,m1 ∈ {0, 1}k
and any f ∈ F , we have:

AltNMf,Enc,Dec
m0,m1

(0) ≈ε AltNMf,Enc,Dec
m0,m1

(1)

where we define the two experiments by

AltNMf,Enc,Dec
m0,m1

(b) :=

{
c← Enc(mb), c̃← f(c), m̃ = Dec(c̃)

Output same if m̃ ∈ {m0,m1}, and m̃ otherwise.

}
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Lemma 2.5 ([DPW10]). If (Enc,Dec) is ε-alternatively-non-malleable with respect to F for k-bit inputs,
then (Enc,Dec) is (ε+ 2−k)-non-malleable with respect to F . If (Enc,Dec) is ε-non-malleable with respect to
F for k-bit inputs, then (Enc,Dec) is 2ε-alternatively-non-malleable with respect to F .

Definition 2.6 (Strong Seeded Extractors). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-
strong extractor if for every source X over {0, 1}n with min entropy at least k and uniform Y over {0, 1}d,
(Y,Ext(X,Y )) ≈ε (Y,Um), where Um is uniformly distributed over {0, 1}m. Moreover, we require Ext to be
computable in polynomial time.

Definition 2.7 (Strong Two-Source Extractors). A function 2Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-
extractor if for every pair of sources X,Y over {0, 1}n with combined min entropy at least k, (Y, 2Ext(X,Y )) ≈ε
(Y, Um), and (X, 2Ext(X,Y )) ≈ε (X,Um) where Um is uniformly distributed over {0, 1}m. Moreover, we re-
quire Ext to be computable in polynomial time.

Definition 2.8 (Seedless non-malleable extractors). Let G be a class of tampering functions {0, 1}n →
{0, 1}n and X be a class of distributions over {0, 1}n. A function NMExt : {0, 1}n → {0, 1}m is called an
ε-seedless non-malleable extractor for source X with respect to tampering class G if for every distribution
X ∈ X and every tampering function g ∈ G, there exists a random variable Dg on {0, 1}m ∪ {same} that is
independent of X, such that

∆ ((NMExt(X),NMExt(g(X))); (Um,Copy(Dg,Um))) ≤ ε.

We refer to the parameter ε as the “error” of the seedless non-malleable extractor.
Moreover, if G is the class of split-state functions, we say NMExt is an ε-strong two-source non-malleable

extractor for independent sources X,Y if for every pair of split-state tampering function τL, τR, there exists
a random variable DτL,τR on {0, 1}m ∪ {same} that is independent of X,Y , such that

∆((X,NMExt(X,Y ),NMExt(f(X), g(Y ))); (X,Um,Copy(DτL,τR ,Um))) ≤ ε.

Definition 2.9 (Relaxed Seedless non-malleable extractor). Let X be a family of sources on {0, 1}n and F
be a class of tampering functions acting on {0, 1}n. Further assume that all f ∈ F does not have any fixed
points. A function NMExt : {0, 1}n → {0, 1}m is defined to be an ε-relaxed non-malleable extractor with
respect to X and F if the following hold: for any X ∈ X and f ∈ F , we have

∆(NMExt(X),NMExt(f(X));Um,NMExt(f(X))) ≤ ε.

Theorem 2.10 ([Li16b],[Li19]). There exists a constant 0 < γ < 1 and a strong non-malleable two-source

extractor for (n, (1− γ)n) sources with error 2−Ω(
n log log(n)

log(n)
) and output length Ω(n log log(n)

log(n) ).

The above is obtained by combining Theorem 1.1 in [Li18] (this is the ePrint version of [Li19] and the
theorem states the existence of a non-malleable two source extractor for linear min-entropy sources and error

2−Ω(
n log log(n)

log(n)
)) with Theorem 8.1 in [Li16a] (this is the ECCC version of [Li16b] and the theorem states that

a non-malleable two-source extractor is itself a strong non-malleable two-source extractor with some loss in
entropy and error).

2.3 Seed-extending pseudorandom generators

Definition 2.11 ([KvMS12]). A function G : {0, 1}` → {0, 1}n is said to be an ε-pseudorandom generator
for a class C, if for all C ∈ C,

∆(C(G(U`));C(Un)) ≤ ε

A pseudorandom generator, G, is said to be seed-extending if the prefix of its output is its input,
i.e. G(s) = s,G′(s) for some function G′ : {0, 1}` → {0, 1}n−`.

In this work, we are principally concerned with seed-extending PRGs against various types of circuits of
a given size: non-deterministic circuits, non-deterministic NP-circuits, etc. Throughout this paper, we take
a PRG for a class of circuits of size s to mean a 1/s-PRG for that class of circuits.
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Note that because we are interested in both seed-extending PRGs, as well as PRGs for non-deterministic
circuits, so-called “cryptographic” PRGs which can be easily evaluated by the classes they are constructed
to fool do not suffice: a distinguisher given the seed, or nondeterminism, can easily determine if a string is
in the PRG’s image.

Thankfully, as observed by Kinne et al. [KvMS12], Nisan and Wigderson’s seminal construction yields a
seed extending PRG, provided one starts with an appropriately hard function. We conclude with the formal
theorem statement.

Theorem 2.12 ([KvMS12, IW97, KvM02, SU05, SU06, AASY16]). If E requires exponential size
circuits of type X ∈ {deterministic,nondeterministic,NP, Σi}, then for every constant c > 1 there exists a
constant α > 1 such that for every sufficiently large n, and every r such that α log n ≤ ` ≤ n there is a seed-
extending PRG, G : {0, 1}` → {0, 1}n, for size nc circuits of type X ∈ {deterministic,nondeterministic,NP, Σi}.

2.4 Samplable and Recognizable Distributions

Definition 2.13 (Samplable distribution [TV00, AASY16].). We say that a distribution X on n bits is
samplable by a class C of functions C : {0, 1}r → {0, 1}n if there exists a function C in the class such that
X is distributed as C(Ur).

Definition 2.14 (Recognizable distribution [AASY16].). We say that a distribution X on n bits is recog-
nizable by a class C of functions C : {0, 1}n → {0, 1} if there exists a function C in the class such that X is
uniform over {x : C(x) = 1}.

2.5 Seedless Extractors and Witness Sampling

Applebaum et al. [AASY16], building on work by Trevisan and Vadhan [TV00], construct extractors for
samplable and recognizable sources from derandomization-type assumptions.

Theorem 2.15 ([AASY16]). If E requires exponential size Σ3-circuits, then there exists a constant α > 0
such that for every constant c > 1 and sufficiently large n, and there is a ((1 − α)n, n−c)-extractor Ext :
{0, 1}n → {0, 1}αn for SIZE[nc]-recognizable sources. Moreover, Ext is computable in time poly(nc).

Theorem 2.16 ([AASY16]). If E requires exponential size Σ4-circuits, then there exists a constant α > 0
such that for every constant c > 1 and sufficiently large n, and there is a ((1 − α)n, n−c)-extractor Ext :
{0, 1}n → {0, 1}αn for SIZE[nc]-sample sources. Moreover, Ext is computable in time poly(nc).

We note that the following lemma due to Li and Zuckerman [LZ19] gives extractors for sources recognized
by small circuits in the very high min entropy regime from better assumptions.

Lemma 2.17 ([LZ19]). Let C be a flip-invariant family of boolean functions over n bits. For any ∆ =
∆(n) > 0 If G is a seed-extending ε-pseudorandom generator G : {0, 1}d → {0, 1}n for C, then there exists
an (n−∆, 2∆ε)-extractor Ext : {0, 1}n → {0, 1}n−d for C-recognizable sources.

The following is an immediate corollary of Lemma 2.17 and Theorem 2.12.

Corollary 2.18. If E requires exponential size circuits, then for any constant c, there exists an (n −
c log n, n−c)-extractor for SIZE[nc]-recognizable sources.

We also require the following classical results on approximate counting and sampling NP-witnesses.

Theorem 2.19 (Approximate Counting with an NP-oracle [JVV86]). For every i ≥ 0, every suf-
ficiently large s and every ε > 0, there is a Σi+1-circuit A of size poly(s/ε) that given a Σi-circuit C :

{0, 1}n → {0, 1} of size s outputs a value M̂ such that

M̂ ∈ (1± ε)|{x : C(x) = 1}|

Theorem 2.20 (Sampling Witnesses with an NP-oracle [BGP00, JVV86]). For every i ≥ 0, every
sufficiently large s and every δ > 0, there is a randomized Σi+1-circuit A of size poly(s/ log(1/δ)) that given
a Σi-circuit C : {0, 1}n → {0, 1} of size s outputs a value in {0, 1}n∪⊥ such that for every size s Σi-circuit,
Pr[A(C) = ⊥] ≤ δ and the distribution (A(C)|A(C) 6= ⊥) is uniform over {x : C(x) = 1}.
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Proposition 1. Let X be a random variable and f a function. Define Y = f(X). For any ε and any random
variable Y ′,

∆(X; (X|f(X) = Y ′)) = ∆(Y ;Y ′).

The proof of Proposition 1 can be found in Appendix E.1.

2.6 Other useful facts

Proposition 2 (Implicit in Lemma 3.8.1 in [Vad99]). Let X0, X1 be random variables such that
∆(X0;X1) = ε.Consider the following game:

– Arthur samples a coin b← U and gives Merlin x← Xb.
– Merlin responds with b′. If b′ = b, Merlin wins. Otherwise, Merlin loses.

Merlin wins with probability 1+ε
2 by outputting b′ such that Pr[Xb′ = x] ≥ Pr[X1−b′ = x]. Moreover, this

strategy is optimal.

Promise problems generalize the concept of languages that give a better handle on semantic complexity
classes. A promise problem, Π, consists of a set of Yes instances, ΠY , and a disjoint set of No instances,
ΠN . A machine is considered to decide Π if on input x promised to be in ΠY ∪ ΠN it accepts x if and
only if x ∈ ΠY . In other words, the machine should accept ΠY and reject ΠN , but can behave arbitrarily
elsewhere.

Lemma 2.21 ([GS86, Bab85, BM88, AASY16]). For any polynomial s(n)there exists a polynomial s′(n)
such that the following holds.

For any n ∈ N, if Π = (ΠY , ΠN ) is a promise problem with a constant-round private coin interactive
proof where the verifier is an O-oracle-aided machine that runs in deterministic time s(n) with s(n) bits of
non-uniform advice with a gap between soundness and completeness of 1/s(n) on inputs of length n, then Π
is decided by a nondeterministic O-oracle-aided circuit23 of size s′(n) on inputs of length n.

We also use the following simple combinatorial propositions.

Proposition 3. Let c > 1. Let (XY ), (XZ) be two joint random variables supported on any space ΣX ×Σ
such that ∆(X,Y ;X,Z) ≤ ε, then there exists an event S ⊆ ΣX such that

1. Pr[X ∈ S] ≥ 1− 1/c
2. ∀x ∈ S,∆(XY |X = x;XZ|X = x) ≤ cε, where (XY |X = x) denotes the random variable XY condi-

tioned on X = x and, similarly, (XZ|X = x) denotes the random variable XZ conditioned on X = x.

Proof. Let A the variable distributed according to the procedure where x ← X and then ∆(XY |X =
x;XZ|X = x) is output. By definition, E[A] ≤ ε.24 Thus, by Markov’s inequality we have

Pr[A ≥ cε] ≤ E[A]

cε
≤ 1

c

It follows that there exists a set S with the desired properties. In particular, S is the set of x such that
A conditioned on X = x is not greater than cε.

Proposition 4. Let β ∈ (0, 1) Let (XY ), (XZ) be two joint random variables supported on any space ΣX×Σ
such that ∆(X,Y ;X,Z) > ε, then exists an event S ⊆ ΣX such that

1. Pr[X ∈ S] ≥ ε− β
23 [AASY16] observed this lemma and made use of it in a related context. The lemma is a result of composing a

variety of classical transformations. [GS86] show that any constant round IP can be transformed into a constant
round public coin interactive proof (or, a constant round arthur merlin proof system). [Bab85, BM88] show that any
constant round public coin interactive proof can be transformed into an AM protocol. Finally, applying Adleman’s
trick [Adl78] to the AM protocol yields a non-uniform, non-deterministic circuit at most polynomially larger than
Arthur’s complexity. Here, we additionally observe that all of these transformations relativize.

24 E[A] =
∑
x∈ΣX

Pr[X = x]∆(XY |X = x;XZ|X = x) = ∆(XY ;XZ).
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2. ∀x ∈ S,∆(XY |X = x;XZ|X = x) ≥ β, where (XY |X = x) denotes the random variable XY conditioned
on X = x and, similarly, (XZ|X = x) denotes the random variable XZ conditioned on X = x.

Proof. Let A the variable distributed according to the procedure where x ← X and then ∆(XY |X =
x;XZ|X = x) is output. Let A′ = 1−A. By definition, E[A′] < 1− ε. Thus, by Markov’s inequality we have,

Pr[A′ ≥ 1− β] <
1− ε
1− β

.

So, it follows that Pr[A ≤ β] < 1−ε
1−β . Thus

Pr[A > β] ≥ 1− 1− ε
1− β

=
ε− β
1− β

≥ ε− β.

It follows that there exists a set S with the desired properties. In particular, S is the set of x such that A
conditioned on X = x is greater than β.

3 Non-Malleable Extractors for Samplable and Recognizable Sources

In this section, we present our seedless non-malleable extractors for samplable and recognizable sources
resistant to tampering by polynomial size circuits. In Sections 3.1 and 3.2, we will prove they are relaxed
seedless non-malleable extractors (where we only consider the case of tampering functions with no fixed
points). We conclude by observing a connection first articulated by Cheraghchi and Guruswami [CG14b] for
both the case of (a) sources recognizable by and tampered by nc-size circuits and (b) sources samplable by
and tampered by nc-size circuits, relaxed seedless non-malleable extractors are strong seedless non-malleable
extractors, albeit with a small hit to entropy tolerance (see Section 3.3). Finally, in Section 3.4 we combine
the results from Sections 3.1, 3.2, and 3.3 to obtain our main theorem statements.

The starting point of our construction is the non-malleable “extractor” for uniform sources and nc

tampering sketched in the introduction: Ext(s, x) 7→ 2NMExt(G(s), x) where 2NMExt is a two-source non-
malleable extractor and G is a seed-extending PRG for nondeterministic circuits of size nd, for some constant
d ≥ c. One may hope that this construction yields a non-malleable extractor for a richer class of sources25,
however it seems critical for any reduction to the security of a seed-extending PRG that the seed s is at least
somewhat random (which is may not be the case if we only promise linear min-entropy in the entire (s, x)
string).

Instead, to build non-malleable extractors for sources recognizable by nc-size circuits or samplable nc-
size circuits, we show it suffices to simply extract the seed using an appropriate “computational” extractor
(not non-malleable). A caveat though, is we now require a stronger PRG that guarantees pseudorandom-
ness against nondeterministic NP-circuits of polynomial size. This is because in our reduction breaking the
pseudorandomness of the PRG, Arthur needs to sample from an arbitrary samplable or recognizable source
X, with the additional condition that the output of the underlying computational extractor on this source
is equal to some fixed seed σ that Arthur receives as input. To do this conditional sampling, we rely on a
classical result of Bellare et al. [BGP00] that shows how to efficiently sample uniform witnesses given an
NP-oracle, and we give Arthur access to an NP-oracle. Thus, Arthur is now a bounded polynomial size NP-
circuit and, ultimately, after collapsing the AM protocol down, our PRG distinguisher is a nondeterministic
NP-circuit of bounded polynomial size.

25 Indeed, the argument sketched in the intro should extend to sources of the form S,X where S is uniform and
independent of X, any source with min entropy (1− γ)n for some small constant γ.
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3.1 Relaxed Non-Malleable Extractors for Samplable Sources

Figure 3.1: Non-Malleable Extractor for Samplable Sources

Let k(n), s(n), s′(n), γ be as in Lemma 3.1. Let Extsamp be an extractor with error γ(n) for n-bit
sources samplable by size s(n) circuits, computable in time poly(s(n)). Let 2NMExt be a strong two-
source non-malleable extractor with error δ(n) for independent sources of length n where the left has
min-entropy at least n− `(n) and the right has min-entropy at least k(n)− 2`(n)− 2 log(s(n))− 10,
computable in time poly(s). Let G be a seed-extending PRG for nondeterministic NP circuits of size
s′(n).

NMExtsamp : x 7→ 2NMExt(G(Extsamp(x)), x)

Lemma 3.1. For any polynomial s(n) and function k(n) such that 0 ≤ k(n) ≤ n, there exists polynomial
s′(n) = Ω(s(n)) such that the following is true.

If

– G : {0, 1}`(n) → {0, 1}n is a seed-extending PRG for nondeterministic NP-circuits of size s′(n) with seed
length `(n).

– Extsamp : {0, 1}n → {0, 1}`(n) is a γ-extractor for (n, k) sources samplable by s(n)-size circuits com-
putable in time poly(s(n)), where γ ≤ 1/6s(n).

– 2NMExt : {0, 1}2n → {0, 1}m is a strong two-source non-malleable extractor with error δ(n) < 1/1000(s(n))2

for two independent n-bit sources where the left source has min-entropy at least n − `(n) and the right
has min-entropy at least k(n) − 2`(n) − 2 log(s(n)) − 10). Moreover, 2NMExt should be computable in
time poly(s(n)).

then the construction, NMExt : {0, 1}n → {0, 1}m, in Figure 3.1 is a relaxed seedless non-malleable extractor
for n-bit sources with k(n)-min entropy samplable by size s(n) circuits with respect to SIZE[s(n)]-tampering
and error 1/s(n).

Proof. Let ε = 1/s(n).
Suppose for the sake of contradiction that there exists a s(n)-samplable (n, k)-source X and a tampering

function, τ : x 7→ x̃ in SIZE[s(n)] with no fixed points, that breaks the non-malleability guarantee.
Now, our assumption on τ can be restated as

∆(2NMExt(G(Extsamp(X)), X), 2NMExt(G(Extsamp(τ(X))), τ(X));Um, 2NMExt(G(Extsamp(τ(X))), τ(X)) ≥ ε.
(2)

We will use this assumption to distinguish the seed-extending PRG, G, from the uniform distribution
via an interactive proof. In more detail, recall that the guarantee of G : {0, 1}` → {0, 1}n says that for any
non-deterministic NP circuit, C, of size s′(n),

∆(C(G(U`));C(Un)) < 1/s′(n).

We show that there exists a circuit C of size at most s′(n) that does not obey this inequality. We do
this by following the approach of [AASY16] and constructing a private coin, constant round interactive
proof protocol (see Figure 3.2) where Arthur is an NP-circuit of size at most poly(s(n)) for a promise
problem, Π = (ΠY , ΠN ) where ΠY is dense under G and ΠN is dense under the uniform distribution. By
standard transformations [BM88, GS86] (Lemma 2.21), this results in a nondeterministic NP-circuit of size
s′(n) = poly(s(n)) that decides the same problem, and hence breaks the PRG.

Looking ahead, Assumption (2) above on malleability of the resulting extractor when provided pseudo-
random inputs will enable us to prove the protocol is complete, i.e. Arthur accepts pseudorandom inputs
with high probability. Soundness, i.e. Arthur rejects random inputs with high probability, will ultimately
follow from security of the 2-source non-malleable extractor.

To do this, Arthur will run the non-malleability experiment himself, using Merlin to evaluate the PRG.
In order to render the experiment consistent with the PRG seed in the PRG security game, s, Arthur uses his
NP-oracle to efficiently sample X conditioned on the samplable-source extractor outputting s. Furthermore,
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what ultimately will enable our soundness argument to go through is the fact that to achieve completeness
Arthur needs to communicate very little about each sample X and thus X remains entropic, even after
conditioning on this communication.

We then conclude by using a standard private coin technique [GMW91], to distinguish between the real
and ideal relaxed non-malleable extractor experiments, if and only if the inputs are pseudorandom.

However, giving our interactive proof we need the following claim.

Claim 3.1. For any α, if X is samplable in time s(n) and Extsamp is computable in time poly(s(n)), then for
any σ, the there is a poly(s(n), log(1/α)) time procedure that uses an NP oracle that with probability 1− α
outputs identically to (X|Extsamp(X) = σ) and otherwise outputs ⊥.

Proof of Claim 3.1. Because X is samplable there exists a size s(n) circuit CX such that CX(U) ≡ X.
Consider the circuit C ′ that outputs 1 on an input u if and only if Extsamp(CX(u)) = σ. Let R denote the
uniform distribution on {u : C ′(u) = 1}. Note that CX(R) ≡ (X|Extsamp(X) = σ). Thus, Theorem 2.19 says
we can sample R with probability 1− α (and ⊥ otherwise) in time poly(s(n)) using an NP-oracle. Thus, we
can simply output CX(R) if the procedure from Theorem 2.19 does not output ⊥ (with an additional s(n)
complexity), and output ⊥ otherwise.

Figure 3.2: Interactive Proof for distinguishing G from uniformly random bits

Let Extsamp be an extractor with error γ(n) for n-bit sources samplable by size s(n) circuits, com-
putable in time poly(s(n)). Let 2NMExt be a strong two-source non-malleable extractor with error
δ(n) for independent sources of length n where the left has min-entropy at least n − `(n) and the
right has min-entropy at least k − 2`(n)− 2 log(s(n))− 10, computable in time poly(s(n)). Let G be
a seed-extending PRG for nondeterministic NP circuits of size s(n).
Recall that X is the s(n)-samplable source and τ the tampering attack from our assumption.
Our protocol aims to accept strings from G(U`) when Merlin plays according to below (completeness)
and reject strings from Un regardless of the strategy Merlin utilizes (soundness).

On input (σ, y),

Arthur Sample x ← (X|Extsamp(X) = σ) with probability at least 1 − ᾱ, where ᾱ = 1/2, using
procedure from Claim 3.1). If procedure outputs ⊥, immediately accept or reject at random.
Otherwise, set x̃ = τ(x) and send Merlin σ̃ = Extsamp(x̃).

Merlin If (σ, y) = G(σ), respond ỹ such that (σ̃, ỹ) = G(σ̃). Otherwise, respond arbitrary ỹ.
Arthur Sample a random coin b← U and set z̃ = 2NMExt((σ̃, ỹ), x̃).

– If b = 0: Sample z ← Um and send z, z̃.
– Else if b = 1: Sample z ← 2NMExt((σ, y), x) and send z, z̃.

Merlin (Guess Arthur’s bit.) If

Pr
Um,X

[(Um, 2NMExt((σ̃, ỹ), τ(X))) = (z, z̃)|Extsamp(X) = σ,Extsamp(τ(X)) = σ̃]

is upper bounded by

Pr
X

[(2NMExt((σ, y), X), 2NMExt((s̃, ỹ), τ(X))) = (z, z̃)|Extsamp(X) = σ,Extsamp(τ(X)) = σ̃],

set b′ = 1. Otherwise, set b′ = 0. Respond b′.
Arthur Accept if b = b′, and reject otherwise.

Claim 3.2. For any β ∈ (0, 1), there exists a set Πβ
Y such that

1. ΠY is noticeably dense in G: Pr
σ
u←{0,1}` [G(σ) ∈ Πβ

Y ] ≥ ε− γ − β
2. Arthur accepts inputs in Πβ

Y with probability > 1+(1−ᾱ)β
2 when playing with (honest) Merlin (as pre-

scribed in Figure 3.2).
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Proof. We begin by considering how the protocol behaves on random inputs distributed according to
(Σ,G(Σ)) where Σ is uniform (Σ ≡ U`).

In particular, by the guarantee of Extsamp, we have that Extsamp(X) ≈γ U` ≡ Σ. It follows from Propo-
sition 1 that

(Σ,X|Extsamp(X) = Σ) ≈γ (Extsamp(X), X).

Therefore, if we let X ′ denote (X|Extsamp(X) = Σ) (recall that Extsamp(X ′) ≡ Σ) it follows from postpro-
cessing that

2NMExt(G(Extsamp(X)), X), 2NMExt(G(Extsamp(τ(X))), τ(X)) ≈γ
2NMExt(G(Extsamp(X ′)), X ′), 2NMExt(G(Extsamp(τ(X ′))), τ(X ′))

Thus if we temporarily condition on Arthur’s initial sampling procedure not outputting ⊥, observe that
if Arthur chooses b = 1, it follows from the above that Arthur’s last message is γ-close to

2NMExt(G(Ext(X)), X), 2NMExt(G(τ(X)), τ(X)) ≡ NMExtsamp(X),NMExtsamp(τ(X)).

On the other hand (still conditioning on successful sampling), if b = 0, Arthur’s last message is γ-close to

Um, 2NMExt(G(τ(X)), τ(X)) ≡ Um,NMExtsamp(τ(X)).

By our assumption, these two distributions are ε-far from each other.
By Proposition 4 and triangle inequality, this implies there exists a set Πβ

Y such that for any (σ, y) ∈ Πβ
Y

the distributions of Arthur’s last message in the case that b = 1 is β-far from the distribution when b = 0,
and moreover Pr[G(Σ) ∈ Πβ

Y ] ≥ ε− γ − β.

So by Proposition 2.6, for any G(σ) ∈ Πβ
Y , Merlin guesses correctly with probability ≥ 1+β

2 .
Thus relaxing the condition on Arthur’s sampling (which fails with probability at most ᾱ), we can bound

Arthur’s acceptance probability as follows. The 3rd inequality follows because the line above is minimized
when Pr[sampling fails] = ᾱ.

∀(s, y) ∈ Πβ
Y ,Pr[Arthur accepts(s, y)] ≥ Pr[sampling fails]

1

2
+ Pr[sampling succeeds]

β

2

≥ ᾱ1

2
+ (1− ᾱ)

1 + β

2

=
1 + (1− ᾱ)β

2
.

Claim 3.3. For any c > 1 and ζ(n) ∈ (0, 1) such that k′(n) ≤ k(n)− 2`(n)− log(1/ζ(n)) (where k′(n) is the
min-entropy requirement of the right source for 2NMExt), there exists a set Πc

N such that

1. Πc
N is large: Pr

(σ,y)
u←{0,1}n [(σ, y) ∈ Πc

N ] ≥ 1− 1/c

2. Arthur accepts inputs in Πc
N with probability ≤ 1+c(δ+ζ)

2 when playing with any (cheating) Merlin (as
prescribed in Figure 3.2).

Proof. As in Claim 3.2, we will analyze the view of Merlin (up to guessing) on a random input and deduce
that their exists a large ΠN which Arthur rejects with probability close to 1/2. The important difference is
that, here, Merlin can behave arbitrarily.

Observe that, that if we condition on success in Arthur’s initial sampling, Arthur accepts if and only
if Merlin guesses his bit, b, correctly (b′ = b). It follows by Proposition 2.6 that there is an optimal (for
any specific input, not just with respect to uniform inputs) Merlin strategy, M∗, that chooses messages to
maximize the distance between his view when Arthur chooses b = 0 versus his view when b = 1. By the
optimality of such a strategy, it suffices to consider just this M∗.

So, suppose the protocol in Figure 3.2 is given uniformly random inputs (σ, y) ← Un. Fix an optimal
strategy, M∗. In particular, let G∗ : (σ, y, σ̃) 7→ ỹ be the function that given the transcript thus far, outputs
Merlin’s first message.
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Now, note that if we condition on σ, σ̃, then G∗(σ, y, σ̃) = ỹ is independent of x, the string sampled by
Arthur initially. And similarly, after conditioning on σ, σ̃, x̃ = τ is independent of (σ, y). In other words, we
can sample (σ, y, x, σ̃, ỹ, x̃) identically as follows:

1. Sample σ uniformly at random and σ̃ ← Extsamp(τ(Xσ)), where Xσ ≡ X|Extsamp(X) = σ. (This is

identically distributed to Figure 3.2.) Let Σ, Σ̃ denote these random variables.

2. Sample y uniformly at random, and sample x from Xσ|Extsamp(τ(Xσ)) = σ̃. Note that conditioned on
σ, σ̃, x and y are independent. Let Y , Xσ,σ̃ denote the random variables corresponding to how y and x
are sampled here, respectively.

3. Apply the tampering:

– τσ,σ̃L : (σ, y) 7→ σ̃, ỹ where ỹ = G∗(σ, y, σ̃)

– τσ,σ̃R : x 7→ x̃ = τ(x)

Thus, conditioned on σ, σ̃, (τσ,σ̃L , τσ,σ̃R ) is a split-state tampering. Moreover, because τ has no fixed points

τσ,σ̃R doesn’t either.

Thus, for any (valid) fixed choice of σ, σ̃, Y,Xσ,σ̃ are independent, and (τσ,σ̃L , τσ,σ̃R ) is a split-state tam-
pering function with no fixed points. Clearly, Y is always uniformly distributed, so Y has min-entropy n− `
for any fixed choice of s. Intuitively, Xσ,σ̃ should have not lost much min-entropy on average relative to X
because σ, σ̃ are short. We next formalize this intuition.

For any ζ ∈ (0, 1), let Tζ denote the set of (σ, σ̃) that occur with probability at least ζ · 2−2`. Note that

Pr[(Σ, Σ̃) ∈ T ] ≥ 1− ζ, because

Pr[(Σ, Σ̃) /∈ T ] ≤
∑
(σ,σ̃)

ζ2−2` = 22`ζ2−2` = ζ.

Now, for any (σ, σ̃) ∈ Tζ and any x ∈ {0, 1}n, we have

Pr[Xσ,σ̃ = x] = Pr[X = x|(Σ, Σ̃) = (σ, σ̃)]

≤ Pr[X = x ∧ (Σ, Σ̃) = (σ, σ̃)]

Pr[(Σ, Σ̃) = (σ, σ̃)]

≤ Pr[X = x]

Pr[(Σ, Σ̃) = (σ, σ̃)]

≤ 2−k

ζ2−2`

Thus, for any (σ, σ̃) ∈ Tζ (which happens with probability at least 1− ζ), H∞(Xσ,σ̃) ≥ k− 2`− log(1/ζ).

Thus, conditioned on σ, σ̃ ∈ Tζ and Arthur’s coin b = 0, Merlin’s view is simply

Dσ,σ̃
0 ≡ (σ, y),Um, 2NMExt(τσ,σ̃L (σ, y), τσ,σ̃R (x)).

On the other hand, if Arthur’s coin is b = 1, Merlin’s view is

Dσ,σ̃
1 ≡ (σ, y), 2NMExt((σ, y), x), 2NMExt(τσ,σ̃L (σ, y), τσ,σ̃R (x)).

Because 2NMExt is a strong two-source non-malleable extractor with error δ for independent sources
where the left has min entropy at least n − ` and the right has min entropy at least k − 2` + log(1/ζ), we
have that for any (worst-case) choice of σ, σ̃ ∈ T ,

∆(Dσ,σ̃
0 ;Dσ,σ̃

1 ) ≤ δ.
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From the fact that Pr[(Σ, Σ̃) ∈ T ] ≥ 1−δ, it follows that Merlin’s views are at most ζ+δ distinguishable:

∆(DΣ,Σ̃
0 ;DΣ,Σ̃

1 ) =
∑
σ,σ̃

Pr[(Σ, Σ̃) = (σ, σ̃)]∆(Dσ,σ̃
0 ;Dσ,σ̃

1 )

=
∑

σ,σ̃ /∈Tζ

Pr[(Σ, Σ̃) = (σ, σ̃)]∆(Dσ,σ̃
0 ;Dσ,σ̃

1 ) +
∑

σ,σ̃∈Tζ

Pr[(Σ, Σ̃) = (σ, σ̃)]∆(Dσ,σ̃
0 ;Dσ,σ̃

1 )

≤ ζ +
∑

(σ,σ̃)∈Tζ

Pr[(Σ, Σ̃) = (σ, σ̃)]δ

≤ ζ + δ

Thus, by Proposition 3 there exists a set Πc
N such that Pr

(σ,y)
u←{0,1}n [(σ, y) ∈ Πc

N ] ≥ 1− 1/c and for any

(σ, y) ∈ Πc
N , Merlin’s views are at most c(δ + ζ) distinguishable.

It follows from Proposition 2.6 that for any strategy of Merlin and any input (σ, y) ∈ ΠN , Pr[b′ = b] ≤
1+c(δ+ζ)

2 .

So if we relax the condition on Arthur’s sampling (if sampling fails, Arthur accepts with probability
1
2 ≤

1+c(δ+ζ)
2 ) we can bound Arthur’s acceptance probability as follows. The second inequality follows

because the line above is maximized when α = 0 (because 1/2 + c(δ + ζ)/2 > 1/2).

∀(σ, y) ∈ Πc
N , Pr[Arthur accepts (σ, y)] ≤ Pr[sampling succeeds]

1

2
+ Pr[sampling fails]

1 + c(δ + ζ)

2

≤ 1 + c(δ + ζ)

2
.

We conclude from Claim 3.2 and Claim 3.3, that for any c > 1, β ∈ (0, 1), and ζ ∈ (0, 1) such that
d − 2` ≥ log(1/ζ) there is a constant round IP protocol where Arthur can be represented by NP-circuit of

size poly(s(n)) that recognizes Π = (Πβ
Y , Π

c
N ) with completeness/soundness gap

|1 + (1− ᾱ)β

2
− 1 + c(δ + ζ)

2
= | (1− ᾱ)β − c(δ + ζ)

2
|

Now we choose ᾱ = 1/2, β = ε/6, c = 6/ε, and ζ = ε2/1000 (and δ ≤ ε2/1000). By our choice of ζ and
our assumption on 2NMExt, we have d − 2` ≥ log(1/ζ) ≥ 10 + 2 log(s(n)) so that we can lower bound the
completeness/soundness gap by

(1− ᾱ)β − c(δ + ζ)

2
≥ ε

24
− 3(δ + ζ)

ε
≥ ε

24
− 3ε

500
>

ε

100
=

1

100s(n)

Thus by Lemma 2.21, this implies the existence of an s′(n)-size nondeterministic NP circuit, C, (where

s′(n) = poly(s(n)) ≥ s(n)) that decides the promise problem, Π. Because Π
ε/6
Y is 5ε/6 − γ-dense under G

(i.e. Prs[G(s) ∈ Πε/6
Y ] ≥ 5ε/6 − γ) and Π

6/ε
N is 1 − ε/6-dense under the uniform distribution (i.e. Prz[z /∈

Π
6/ε
N ] ≤ ε/6), the nondeterministic NP circuit C can distinguish with advantage at least (by our assumption

that γ ≤ ε/6)

|(5ε/6− γ)− ε/6| ≥ ε/2 ≥ 1/s′(n).

The first inequality follows from our assumption that γ ≤ ε/6 and the second follows from the fact that
2/ε = 2s(n) ≤ s′(n). In conclusion, our initial assumption towards contradiction must be false.
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3.2 Relaxed Non-Malleable Extractors for Recognizable Sources

Figure 3.3: Non-Malleable Extractor for Recognizable Sources

Let k(n), s(n), s′(n), γ be as in Lemma 3.1. Let Extrec be an extractor with error γ(n) for n-bit sources
samplable by size s(n) circuits, computable in time poly(s(n)). Let 2NMExt be a strong two-source
non-malleable extractor with error δ(n) for independent sources of length n where the left has min-
entropy at least n − `(n) and the right has min-entropy at least k(n) − 2`(n) − 2 log(s(n)) − 10,
computable in time poly(s). Let G be a seed-extending PRG for nondeterministic NP circuits of size
s′(n).

NMExtrec : x 7→ 2NMExt(G(Extrec(x)), x)

Lemma 3.2. For any polynomial s(n) and function k(n) such that 0 ≤ k(n) ≤ n, there exists polynomial
s′(n) = Ω(s(n)) such that the following is true.

If

– G : {0, 1}`(n) → {0, 1}n is a seed-extending PRG for nondeterministic NP-circuits of size s′(n) with seed
length `(n).

– Extrec : {0, 1}n → {0, 1}`(n) is a γ-extractor for (n, k) sources recognized by s(n)-size circuits that is
computable in time poly(s(n)), where γ ≤ 1/6s(n).

– 2NMExt : {0, 1}2n → {0, 1}m is a strong two-source non-malleable extractor with error δ(n) < 1/1000(s(n))2

for two independent n-bit sources where the left source has min-entropy at least n − `(n) and the right
has min-entropy at least k(n) − 2`(n) − 2 log(s(n)) − 10). Moreover, 2NMExt should be computable in
time poly(s(n)).

then the construction, NMExt : {0, 1}n → {0, 1}m, in Figure 3.1 is a relaxed seedless non-malleable extractor
for n-bit sources with k(n) min-entropy recognized by size s(n) circuits that is resilient to SIZE[s(n)]-tampering
with error 1/s(n).

The proof of this Lemma is nearly identical to that of Lemma 3.1. The only significant difference is
that, here, in the Arthur Merlin Protocol we need to sample the recognizable source X conditioned on
Extrec(X) = σ (compare to Claim 3.1). We provide the entire modified Arthur Merlin Proof System as well,
for reference.

Claim 3.4. For any α, if X is recognizable by a size s(n) circuit and Extrec is computable in time poly(s(n)),
then for any σ, the there is a poly(s(n), log(1/α)) time procedure that uses an NP oracle that with probability
1− α outputs identically to (X|Extrec(X) = σ) and otherwise outputs ⊥.

Proof of Claim 3.4. Because X is rec there exists a size s(n) circuit CX such that X is uniform on the set
{x ∈ {0, 1}n : CX(x) = 1}. Consider the circuit C ′ of size poly(s(n)) that outputs 1 on input x if and only
if CX(x) = 1 and Extrec(x) = σ. Clearly (X|Extrec(X) = σ) is uniform on the set of satisfying assignments
for C ′, {x : C ′(X) = 1}. There we can sample this set using procedure from Theorem 2.19 with probability
1− α in time poly(s(n), 1/α) using an NP oracle.
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Figure 3.4: Interactive Proof for distinguishing G from uniformly random bits

Let Extrec be an extractor with error γ(n) for n-bit sources recognizable by size s(n) circuits, com-
putable in time poly(s(n)). Let 2NMExt be a strong two-source non-malleable extractor with error
δ(n) for independent sources of length n where the left has min-entropy at least n − `(n) and the
right has min-entropy at least k − 2`(n)− 2 log(s(n))− 10, computable in time poly(s(n)). Let G be
a seed-extending PRG for nondeterministic NP circuits of size s(n).
Recall that X is the s(n)-size recognizable source and τ the tampering attack from our assumption.

On input (σ, y),

Arthur Sample x ← (X|Extrec(X) = σ) with probability at least 1 − ᾱ, where ᾱ = 1/2, using
procedure from Claim 3.4). If procedure outputs ⊥, immediately accept or reject at random.
Otherwise, set x̃ = τ(x) and send Merlin σ̃ = Extrec(x̃).

Merlin If (σ, y) = G(σ), respond ỹ such that (σ̃, ỹ) = G(σ̃). Otherwise, respond arbitrary ỹ.
Arthur Sample a random coin b← U and set z̃ = 2NMExt((σ̃, ỹ), x̃).

– If b = 0: Sample z ← Um and send z, z̃.
– Else if b = 1: Sample z ← 2NMExt((σ, y), x) and send z, z̃.

Merlin (Guess Arthur’s bit.) If

Pr
Um,X

[(Um, 2NMExt((σ̃, ỹ), τ(X))) = (z, z̃)|Extrec(X) = σ,Extrec(τ(X)) = σ̃]

is upper bounded by

Pr
X

[(2NMExt((σ, y), X), 2NMExt((s̃, ỹ), τ(X))) = (z, z̃)|Extrec(X) = σ,Extrec(τ(X)) = σ̃],

set b′ = 1. Otherwise, set b′ = 0. Respond b′.
Arthur Accept if b = b′, and reject otherwise.

3.3 Removing the No-Fixed Points Assumption

Theorem 3.3. Define X [k, s(n)] be the family of k-min-entropy sources on {0, 1}n that are samplable by
the class SIZEn[s(n)]. Assume NMExt : {0, 1}n → {0, 1}m is a relaxed, seedless ε-non-malleable extractor
with respect to sources in X [k, ss(n)] and tampering functions in SIZEn[st(n)]. Then NMExt is an ε′-seedless
non-malleable extractor with respect to sources in X [k′, s′s(n)] and tampering functions in SIZEn[st(n)], where

– k′ := k + log(1/ε) + 1

– s′s(n) := ε
k′ ln(2) · ss(n)− st(n)− c · n for some constant c.

– ε′ := 3ε.

Proof. Fix tampering function f ∈ SIZEn[st(n)] and X ∈ X [k′, s′s(n)]. Let α := Prx∼X [f(x) = x]. Note that
WLOG ε ≥ 1/2k > 1/2k

′
. We consider two cases.

Case 1: α ≥ 1 − ε. Since f ∈ SIZEn[st(n)] and X ∈ X [k′, s′s(n)] ⊆ X [k, ss(n)], and since NMExt is also an
ε-seedless extractor with respect to sources in X [k, ss(n)] and tampering functions in SIZEn[st(n)] we have
that

∆ ((NMExt(X),NMExt(f(X))); (Um,Um)) ≤ 2ε.

Case 2: α ≤ 1− ε. Note that X is equivalent to a convex combination of distributions that draws from X1

with probability α and X2 with probability 1−α, where X1 is the distribution X conditioned on f(X) = X
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and X2 is the distribution X conditioned on f(X) 6= X. By the assumption on α, X2 has min-entropy at
least k′ − log(1/ε), and is 1/2k

′
-close to the following distribution X ′.

Algorithm 1: Samplable distribution X ′ with no fixed points w.r.t. f

A draw from X ′ given randomness r1|| · · · ||rz, where z := k′ ln(2)
ε is performed as follows:;

for i ∈ [z] do
Use randomness ri to sample xi from X using the SIZEn[s′s(n)] circuit;
if f(xi) 6= xi then

Output xi and terminate
end

end
if f(xi) = xi∀i ∈ [z] then

Output a fixed value xf in the support of X for which f(xf ) 6= xf
end

The distribution X ′ is 1/2k
′
-close to X2 since

Pr[∀i ∈ [z], f(xi) = xi] ≤ (1− ε)z ≤ exp(−ε · z) = 2−k
′
,

where the final equality follows from the definition of z.
Further, by inspection of the sampling algorithm given for X ′, the fact that X2 has min-entropy k′ −

log(1/ε) for ε ≤ 1, and the fact that X ′ and X2 are 1/2k
′
-close, we have that X ′ ∈ X [k′ − log(1/ε) − 1, z ·

(s′s(n) + st(n) + c · n)] for some constant c. By definition of k′, s′s(n) we conclude that X ′ ∈ X [k, ss(n)].
Finally, note that by inspection of the sampling algorithm given for X ′, it can be seen that f has no fixed
points with respect to X ′.

Let Df be the distribution that outputs same with probability α and outputs NMExt(f(X2)) with
probability 1− α.

Then we have

∆ ((NMExt(X),NMExt(f(X))); (Um,Copy(Df ,Um)))

≤ α∆ ((NMExt(X1),NMExt(f(X1))); (Um,Um))

+ (1− α)∆ ((NMExt(X2),NMExt(f(X2))); (Um,NMExt(f(X2)))) (3)

≤ α∆ ((NMExt(X1),NMExt(f(X1))); (Um,Um))

+ (1− α)∆ ((NMExt(X ′),NMExt(f(X ′))); (Um,NMExt(f(X ′))))

+∆ ((NMExt(X2),NMExt(f(X2))); (NMExt(X ′),NMExt(f(X ′))))

+∆ ((Um,NMExt(f(X ′))); (Um,NMExt(f(X2)))) (4)

≤ α · ε+ (1− α)3ε (5)

≤ 3ε = ε′,

where (3) and (4) follow from the triangle inequality, and (5) follows from the fact that X2 and X ′ are
1/2k

′
-close (with 1/2k

′ ≤ ε) and the assumed properties of NMExt with respect to X ′ ∈ X [k, ss(n)] and
f ∈ SIZEn[st(n)] with no fixed points.

Theorem 3.4. Define X [k, s(n)] be the family of k-min-entropy sources on {0, 1}n that are recognizable by
the class SIZEn[s(n)]. Assume NMExt : {0, 1}n → {0, 1}m is a relaxed, seedless ε-non-malleable extractor
with respect to sources in X [k, ss(n)] and tampering functions in SIZEn[st(n)]. Then NMExt is an ε′-seedless
non-malleable extractor with respect to sources in X [k′, s′s(n)] and tampering functions in SIZEn[st(n)], where

– k′ := k + log(1/ε)
– s′s(n) := ss(n)− st(n)− c · n, for some constant c.
– ε′ := 2ε.

Sketch. The proof proceeds identically to the previous case, with the exception that it is actually easy to
show that the source X2 is recognizable by the class SIZEn[s(n) = s′s(n) + st(n) + c · n]. Specifically, X is
recognizable by some C ∈ SIZEn[s′(n)] which means that X is uniform over {x : C(x) = 1}. Let C ′ be the
circuit that on input x outputs 1 iff C(x) = 1 ∧ f(x) 6= x. Then X2 is uniform over {x : C ′(x) = 1}, where
C ′ ∈ SIZEn[s(n) = s′s(n) + st(n) + c · n]. Thus, X2 is recognizable by the class SIZEn[s(n)].
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3.4 Combining the Results

Non-malleable extractors for samplable sources. Combining Lemma 3.1 and Theorem 3.3, together with
the computational extractor for samplable sources referenced in Theorem 2.16, and the strong two-source
non-malleable extractor referenced in Theorem 2.10, we obtain the following:

Theorem 3.5. If E requires exponential size Σ4-circuits, then for any polynomial s(n) there exists a con-
struction NMExt : {0, 1}n → {0, 1}m of a non-malleable seedless extractor for n-bit sources with c · n min-
entropy (for some constant c < 1) samplable by size s(n) circuits, that is resilient to SIZE[s(n)]-tampering

with error 1/s(n). Further, the number of extracted bits is m ∈ Ω(n log log(n)
log(n) ), and the extractor runs in time

s′(n) ∈ poly(s(n)).

Non-malleable extractors for recognizable sources. Combining Lemma 3.2 and Theorem 3.4, together with
the computational extractor for recognizable sources referenced in Theorem 2.15, and the strong two-source
non-malleable extractor referenced in Theorem 2.10, we obtain the following:

Theorem 3.6. For any polynomial s(n) there exists a construction NMExt : {0, 1}n → {0, 1}m of a non-
malleable seedless extractor for n-bit sources with c ·n min-entropy (for some constant c < 1) recognizable by
size s(n) circuits, that is resilient to SIZE[s(n)]-tampering with error 1/s(n). Further, the number of extracted

bits is m ∈ Ω(n log log(n)
log(n) ) and the extractor runs in time s′(n) ∈ poly(s(n)).

4 A Non-Malleable Code for Small Circuit Tampering

Lemma 4.1. For any polynomial s(n), there exists a polynomial s′(n) > s(n) such that the following is true.
Let `(n) = O(log n) be the function from Theorem 1.6 for G : {0, 1}`(n) → {0, 1}n. If alrssEnc : {0, 1}k′ →
{0, 1}2n, alrssDec : {0, 1}2n → {0, 1}k′ is an augmented α-leakage-resilient split-state δ-non-malleable code
with special encoding, computable in time o(s(n)), and G : {0, 1}`(n) → {0, 1}n is a seed-extending PRG for
nondeterministic circuits of size O(s(n)c) such that `(n) ≤ α(n) and δ < (s′(n))2/32, then the construction,
(E,D) in Figure 4.1 is a 4/s′(n)-alternate-non-malleable code for k′-bit messages with codeword length O(n),
resilient to SIZE[s(n)]-tampering with error 4/s′(n).

Instantiating the above lemma with the alrssEnc presented in Section A (which in turn uses the NMC of
[ADL18] along with the leakage compiler of [BGW19]), and with G given in Theorem 2.12, and using the
fact that a 4/s′(n)-alternate-non-malleable code for k′-bit messages is a 4/s′(n) + 2−k

′
-non-malleable code

for k′-bit messages (see Lemma 2.5) we obtain the following corollary:

Theorem 4.2. If E requires exponential size nondeterministic circuits then for any polynomial s(n), and for
sufficiently large k, there exists a 1/s(n)-non-malleable code for k-bit messages with codeword length O(k7)
that is resilient to SIZE[s(n)]-tampering.

We note that the rate of the code is polynomial but quite large. This rate is inherited from the NMC
construction of [ADL18].

Figure 4.1: Non-Malleable Code

Let (alrssEnc, alrssDec) be an augmented α(n)-leakage-resilient δ-split-state non-malleable code with
special encoding. Recall that special encoding means that there exists an efficient algorithm alrssEnc∗

that takes a pattern p := y||∗n as input, in addition to the message m, and outputs alrssEnc∗(m, p) =
(y,X) with the property that (alrssEnc∗(·,U), alrssDec) is an augmented leakage-resilient split-state
non-malleable code.
Let G be a PRG for nondeterministic circuits of size O(s(n)).

Encoding (E) : On input m, do the following
Sample s← U`. Sample (G(s), x)← alrssEnc∗(m; p = G(s)||∗n).
Output E(m) = (s, x).

Decoding (D) : On input (s̃, x̃), do the following
Compute m̃ = alrssDec(G(s̃), x̃).
Output D(s̃, x̃) = m̃.
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We now present the proof of Lemma 4.1.

Proof of Lemma 4.1. Let ε(n) = 4/s′(n) (the target error of our non-malleable code). Recall that 1/s′(n) is
the advantage bound of the PRG, G. And (alrssEnc, alrssDec) is δ-non-malleable (with additional properties).

For the sake contradiction, assume (E,D) does not satisfy ε-alternate-non-malleability: namely, there
exists m0,m1 ∈ {0, 1}k and tampering function τ of size s(n) such that

AltNMτ,E,D
m0,m1

(0) 6≈4/ε AltNMτ,E,D
m0,m1

(1)

As before, we will use this fact (as well as the security of the underlying leakage-resilient augmented-
split-state non-malleable code) to break the pseudorandomness guarantee of G by designing a constant-round
private coin interactive proof that distinguishes with some non-trivial soundness/completeness gap.

Fix any τ : (s, x) 7→ (s̃, x̃) in SIZEΣk [s(n)]. Define f to denote the function that computes (s, x) 7→ x̃
according to τ , and g to denote the function that computes (s, x) 7→ s̃ according to τ . In other words,
τ(s, x) = (g(s, x), f(s, x)).

Figure 4.2: Interactive Proof for distinguishing G from uniformly random bits

Recall that (alrssEnc, alrssDec) is an augmented leakage-resilient split-state non-malleable code with
special encoding, alrssEnc∗. Define alrssEnc∗R to be the alrssEnc∗ that just outputs the right state,
i.e. if alrssEnc∗(m, p = y||∗n; r) 7→ (y, x) then alrssEnc∗R : (m, p = y||∗n; r) 7→ x.
Recall that G is a PRG for nondeterministic circuits of size O(s(n)). Finally, recall that f, g correspond
to the tampering attack.
Our protocol aims to accept strings from U`, G(U`) when Merlin plays according to below (complete-
ness) and reject strings from U`+n regardless of the strategy Merlin utilizes (soundness). Because we
can amplify by repetition, it suffices for there to be small gap between the two.
Hardcoded into Arthur as non-uniform advice are f, g and m0,m1.

On input s, y:

Arthur Sample coin b ← U . Sample encoding (y, x) ← alrssEnc∗(mb, p = y||∗n). Send Merlin s̃ =
g(s, x).

Merlin If (s, y) = G(s), respond ỹ such that (s̃, ỹ) = G(s̃). Otherwise, respond arbitrary ỹ.
Arthur Set z′ = alrssDec(ỹ, x̃) where x̃ = f(s, x). If z′ ∈ {m0,m1}, set z = same. Otherwise, set

z = z′. Send z to merlin.
Merlin (Guess Arthur’s bit.) If

Pr[alrssDec(ỹ, f(s, alrssEnc∗R(m0, y))) = z|g(s, alrssEnc∗R(m0, y)) = s̃]

is upper bounded by

Pr[alrssDec(ỹ, f(s, alrssEnc∗R(m1, y))) = z|g(s, alrssEnc∗R(m1, y)) = s̃]

set b′ = 1. Otherwise, set b′ = 0. Respond b′.
Arthur Accept if b = b′, and reject otherwise.

Claim 4.1. There exists a set ΠY such that

1. ΠY is noticeably dense in G: Pr
s
u←{0,1}` [G(s) ∈ ΠY ] ≥ ε/2

2. Arthur accepts inputs in ΠY with probability > 1+ε/2
2 when playing with (honest) Merlin (as prescribed

in Figure 4.2).

Proof. If the protocol in Figure 4.2 is given inputs from G(S) = (S,G′(S)) (where S ≡ U`), then upon the
choice of b = 1, Arthur’s final message is exactly that of the alternate-non-malleability game :

z ∼ AltNMτ
m0,m1

(1).
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Similarly, if b = 0, Arthur’s final message is sampled according to:

(z, z̃) ∼ AltNMτ
m0,m1

(0).

By our assumption, these two distributions are ε-far from each other.

By Proposition 4, this implies there exists a set ΠY such that for any (s, y) ∈ ΠY these distributions are
ε/2-far, and moreover Pr[G(S) ∈ ΠY ] ≥ ε/2.

By Proposition 2.6, for any (s, y) ∈ ΠY Merlin guesses b correctly and Arthur accepts with probability

≥ 1+ε/2
2 .

Claim 4.2. There exists a set ΠN such that

1. ΠN is large: Pr
(s,y)

u←{0,1}`+n [(s, y) ∈ ΠN ] ≥ 1− 8δ/ε

2. Arthur accepts inputs in ΠN with probability ≤ 1+ε/4
2 when playing with any (cheating) Merlin (as

prescribed in Figure 4.2).

Proof. Soundness follows from first observing that any Merlin strategy corresponds to some α-leaky split-
state tampering on the augmented-leakage resilient split state-code. We conclude soundness because Merlin’s
view is that of the alternate leakage-resilient augmented-split-state game. As with we the case of the non-
malleable extractor (see argument in the proof of Claim 3.3), we use the existence the optimality of some
optimal strategy M∗ (who, for any input (s, y), chooses messages to maximize the distance of his view when
Arthur chooses b = 0 versus his view when Arthur chooses b = 1) to apply the Markov argument to a single
distribution.

Fix an optimal Merlin strategy M∗ as described above and assume s, y are uniformly distributed. We
make some observations about the protocol in this case:

1. Well-formed augmented leakage-resilient split-state encodings.

Uniform y ∼ U means our leakage-resilient augmented-split-state codewords are properly distributed,
namely for b = 0, 1 it is the case that alrssEnc∗(mb, p = U||∗n) ≡ alrssEnc(mb). Moreover, s is independent
of the split-state codeword (x, y) sampled by Arthur at the beginning.

2. `-leaky split-state tampering.

Arthur’s first message to Merlin, corresponding to the random variable s̃ = g(s, x), can be viewed as
`-bits of leakage from the right codeword state (to the left tampering function).

Thus, we have x̃ = f(s, x) and ỹ = M∗(s, y, g(s, x)) which for any fixed choice of s is an `-leaky split-state
tampering, Πs. Thus when s is random, Πs is a distribution over `-leaky split-state tampering functions.

3. Merlin’s view is identical to augmented alternate-non-malleable game.

Recall that Merlin’s view corresponds to the variables (s, y, s̃, z) = ViewM
∗
(b), where b is Arthur’s initial

coin. Observe that (y, s̃, z) is sampled identically to AltANMΠs,alrssEnc,alrssDec(b), where b is Arthur’s
initial coin toss. And s is independent of the initial encoding in the AltANM game, which has worst case
guarantees that apply to Πs for any choice of s.

Putting these observations together, we have by that, because (alrssEnc, alrssDec) is an `-leakage-resilient
δ-augmented-split-state non-malleable code, and since, by Lemma A.9, this implies that it is also a 2δ-
augmented-split-state alternate non-malleable code,

ViewM
∗
(0) ≈2δ View

M∗(1).

Observe that if there existed a strategy M ′ and input (s, y) such that the distance between the view
of M ′ on b = 0 vs b = 1 was greater than that of M∗, this would contradict the optimality of M∗. Thus,
by Proposition 3 there exists a set, ΠN such that Pr

(s,y)
u←{0,1}`+n [(s, y) ∈ ΠN ] ≥ 1 − 8δ/ε and for each

(s, y) ∈ ΠN and any Merlin strategy M ′, the view when b = 0 is ε/4-far from the view when b = 1. Thus,
by Proposition 2.6, this means for any (s, y) ∈ ΠN , any Merlin strategy outputs b′ such that b′ = b with

probability at most 1+ε/4
2 .
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We conclude from Claim 4.1 and Claim 4.2, that there is a constant round IP protocol where Arthur
can be represented by circuit of size O(s(n)) that recognizes Π = (ΠY , ΠN ) with completeness/soundness
gap ε/2. By Lemma 2.21, this implies the existence of an s′(n)-size nondeterministic circuit,C, that decides
the promise problem, Π. Because ΠY is ε/2-dense under G (i.e. Prs[G(s) ∈ ΠY ]) and ΠN is 1− 8δ/ε dense
under the uniform distribution (i.e. Prz[z ∈ ΠY ] ≤ 4δ/ε). The nondeterministic circuit C can distinguish
with advantage |ε/2− 8δ/ε| ≥ ε/4 = 1/s′(n). So, our initial assumption must be false.
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BM88. László Babai and Shlomo Moran. Arthur-merlin games: A randomized proof system, and a hierarchy of
complexity classes. J. Comput. Syst. Sci., 36(2):254–276, 1988.

BOV03. Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in cryptography. In Dan Boneh,
editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science,
pages 299–315, Santa Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany.

BS19. Saikrishna Badrinarayanan and Akshayaram Srinivasan. Revisiting non-malleable secret sharing. In
Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, Part I, volume
11476 of Lecture Notes in Computer Science, pages 593–622, Darmstadt, Germany, May 19–23, 2019.
Springer, Heidelberg, Germany.
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A Augmented Leakage-Resilient Split-State and Special Encoding

Ball, Guo, and Wichs [BGW19] presented a construction of a “one-time information-theoretic leakage-resilient
encryption” scheme (see Definition A.1) and showed that it could be composed with a split-state non-
malleable code to achieve a non-malleable code against “leaky split-state tampering.” In this section we
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observe that the leakage-resilient compiler of Ball, Guo, and Wichs [BGW19] discussed above preserves the
following two two properties of the underlying split-state non-malleable code that are of interest to us:

– Augmented split-state non-malleability: there exists a simulator which can simulate the joint dis-
tribution of the left (or right) codeword states in addition to the outcome of non-malleability experiment.
Because in the leaky split-state tampering setting the tampered left (or right) codeword additionally
depends on the leakage, we require the simulator to output this as well.

– Special encoding: there exists a special encoding procedure that given a desired left (or right) codeword
state and message, outputs a valid encoding of the message. Importantly, if the special encoder is given
uniform left codeword states, its output is identically distributed to real encodings of the message.

In the following, we denote by (cL̃, cR̃, trans)← 〈f(cL), g(cR)〉 an interactive protocol where the left side
gets input cL, the right side gets input cR, the left and right side communicate by generating a transcript
trans of bounded length. Finally, the left side outputs cL̃, the right side outputs cR̃. Formally, the properties
are defined as follows:

Definition A.1 ((2n, k, ε)-Augmented Non-Malleable Code Resilient to Leaky Spit-State Tampering). Let
Enc : {0, 1}k → {0, 1}2n and Dec : {0, 1}2n → {0, 1}k ∪ {⊥} be a coding scheme. For any pair of α-leaky
split state tampering functions (f, g) (each acting on n bits of the codeword) and m ∈ {0, 1}k, define the
augmented tampering experiment

ANMf,g,Enc,Dec
m :=

{
(cL, cR)← Enc(m), (cL̃, cR̃, trans)← 〈f(cL), g(cR)〉 , m̃ = Dec(cL̃, cR̃)

Output: (cL, trans, m̃),

}
where trans has length α ·n. We say that (Enc,Dec) is a (2n, k, ε)-augmented non-malleable code resilient to
α-leaky split state tampering if there exists a simulator Sim = (Sim1,Sim2) s.t. for all f, g as above and all
m ∈ {0, 1}k, (Sim1(f, g),Copy(Sim2(f, g),m)) ≈ε ANMf,g,Enc,Dec

m .

We observe that the definition and equivalence of alternative-non-malleability (Definition 2.4 and Lemma 2.5)
extends to augmented non-malleability.

Definition A.2 (Special Encoding). Let Enc : {0, 1}k → {0, 1}2n and Dec : {0, 1}2n → {0, 1}k ∪ {⊥} be a
(2n, k, ε)-non-malleable code. We say that (Enc,Dec) has a special encoding if there is an efficient algorithm
Enc∗ that takes as input a message m and a pattern string p ∈ {0, 1, ∗}2n. It outputs an encoding x of m
such that x matches p in all positions not set to ∗.

A.1 Leakage-resilient split-state compiler of [BGW19]

Ball, Guo, and Wichs [BGW19] introduced a novel notion of one-time information-theoretic leakage-resilient
encryption. We recall their definition and construction next:

Definition A.3 (Leakage-Resilient Encryption [BGW19]). Consider a (randomized) encryption scheme
(Encrypt,Decrypt) which encrypts message x of length |x| = k using a key of size |key| = m. For some
message x ∈ {0, 1}k consider the following randomized experiment GameLRENC(x):

– Choose key← {0, 1}m, ct← Encrypt(key, x).
– Alice gets ct and Bob gets key. They can run an arbitrary protocol with each other subject to the total

communication being at most `1 bits. Let trans ∈ {0, 1}`1 be the transcript.
– At the end of the protocol, Alice also outputs an additional value aux ∈ {0, 1}`2 .
– The output of the game is key, trans, aux.

We say that an encryption scheme is (`1, `2, ε)-leakage-resilient if for any adversarial strategy of Alice and
Bob and for any x0, x1 the outputs of GameLRENC(x0) and GameLRENC(x1) have statistical distance at most
ε.

Let Ext : {0, 1}r×{0, 1}d → {0, 1}k be a strong seeded extractor and let 2Ext : {0, 1}m×{0, 1}m → {0, 1}d
be a strong two-source extractor. Define the scheme (Encrypt,Decrypt) as follows:

– Encrypt(key, x): Choose u← {0, 1}r, y ← {0, 1}m, s = 2Ext(key, y), z = Ext(u; s)⊕ x.
Output ct = (u, y, z).
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– Decrypt(key, ct = (u, y, z)) to compute s = 2Ext(key, y) and output z ⊕ Ext(u; s).

Lemma A.4 ([BGW19]). For any α ∈ (0, 1/4), ε ∈ exp(−Ω(k)) there exist explicit extractors such that the
following holds. The scheme (Encrypt,Decrypt) is (α · n,m, ε/2)-leakage-resilient, where n = r+ 2m+ k and
n ∈ Θ(k).

Leakage-resilient split-state non-malleability. Let E = (Encrypt,Decrypt) be a leakage-resilient encryption
with message size k and key length m. Ball, Guo, and Wich’s encoding (Enc,Dec) is below:

– Enc(xL, xR): Sample keyL ← {0, 1}m, ctL ← Encrypt(xL), keyR ← {0, 1}m, ctR ← Encrypt(xR). Output
(cL, cR) where cL = (ctL, keyR), cR = (ctR, keyL).

– Dec(cL, cR) Parse cL = (ctL, keyR), cR = (ctR, keyL) and output xL = Decrypt(keyL, ctL) and xR =
Decrypt(keyR, ctR).

We can immediately observe that this reduction preserves special encoding when the leakage-resilient
encryption scheme above is used.

Proposition 5. For any constant α ∈ (0, 1/4) there exists a setting of parameters such that the following
holds.

If (E′,D′) is an efficient split-state non-malleable code with special encoding for the pattern string p that is
set to any constant on the left hand side and set to ∗ on the right hand side and each side is of length k, then
(Enc◦E′,D′◦Dec) is an efficient α-leakage-resilient split-state non-malleable code with special encoding for the
pattern string p that is set to any constant on the left hand side and set to ∗ on the right hand side and each
side is of length n, when (Enc,Dec) is instantiated with the leakage-resilient encryption (Encrypt,Decrypt).

Let E∗ denote the special encoder for (E′,D′). Then, we can define a special encoder Enc∗ for the
composed code as follows. On input p = (uL, yL, zL, keyR)||∗n, x, where m ∈ {0, 1}k′ is the message and
(uL, yL, zL, keyR) ∈ {0, 1}n, where n = r + 2m+ k is the desired left codeword state, do the following:

1. Sample keyL uniformly at random.
2. Compute sL = 2Ext(keyL, yL) and set xL = Ext(uL; sL)⊕ zL.
3. Invoke E∗(p = xL||∗k,m) to get the split-state encoding of m, (xL, xR).
4. Sample uR, yR ∈ {0, 1}r+m uniformly at random.
5. Compute sR = 2Ext(keyR, yR) and set zR = Ext(uR; sR)⊕ xR.
6. Output (uL, yL, zL, keyR), (uR, yR, zR, keyL)

Notice that if (uL, yL, zL, keyR) is uniform, the output of the above is identically distributed to Enc ◦ E′(m).

A.2 Augmenting the construction of [BGW19]

Here we sketch how to prove that the construction above preserves augmented non-malleability. In particular,
we show how to extend the analysis of [BGW19].

Lemma A.5. For any α ∈ (0, 1/4), if (E′,D′) is an efficient ε-augmented-split-state non-malleable code,
then (Enc ◦ E′,D′ ◦Dec) is an efficient α-leakage-resilient 2ε-augmented split-state non-malleable code, when
(Enc,Dec) is instantiated with the leakage-resilient encryption (Encrypt,Decrypt), with an appropriate setting
of parameters that achieves (α · n,m, ε/2)-leakage-resilience, and n = r + 2m+ k.

Sketch. We adapt the proof strategy from [BGW19]. Fix some (possibly interactive) split-state tampering

functions f, g, some messagem, and consider an outcome (cL, trans, m̃) of the experiment ANMf,g,Enc◦E′,D′◦Dec
m .

We show a sequence of hybrids which lead from ANMf,g,Enc◦E′,D′◦Dec
m to a game in which an interactive tam-

pering can be reduced to a non-interactive, split-state one.
More formally, in the following, recall that codewords outputted by Enc have the form cL = (keyR, ctL)

and cR = (keyL, ctR). We consider the distribution of z = (keyL, keyR, trans,
˜keyL,

˜keyR) in Hybrids H0, H1,
H2 and show that it is indistinguishable in each consecutive pair of hybrids.

Hybrid H0: This is the original game ANMf,g,Enc◦E′,D′◦Dec
m .

Hybrid H1: In this game, we form x as first running x ← E′(m) and then setting the first k bits of x to
zero. For readability, we refer to the resulting string as x0. We show that H1 is statistically ε-close to H0.
This follows directly from the ε-leakage resilience property of (Enc,Dec). We now show that the resulting
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distributions of z in these two hybrids (with x and x0 fixed) can be seen as being induced by corresponding
variables in games GameLRENC(x) or GameLRENC(x0), respectively.

To this end, suppose that in game GameLRENC(x) or GameLRENC(x0), respectively, the game correctly
samples keyL, cL and hands Alice cL = Enc(x) (or Enc(x0), respectively), and Bob keyL. Alice and Bob can
now pick now pick (as part of their strategy in these games), values keyR, cR according to any worst case
distribution, and have Alice output aux = ˜keyR (the tampered outcome in the output location of keyR) at
the end of the game. This is a valid output of Alice, since | ˜keyR| = m. By the ε/2-leakage resilience property
of (Enc,Dec), we have that the outputs of GameLRENC(x) or GameLRENC(x0) are statistically ε/2-close for
any x, x0 as above. This implies that the distribution of the tuple (keyL, trans,

˜keyR) is ε/2-close in the
above two experiments. Note that ˜keyL is fully determined by the outcomes of cR, keyL, and trans, and that
keyR, cR are fixed to the worst case choice. Hence, for worst-case choice of keyR, cR, the distribution of the
tuple z = (keyL, keyR, trans,

˜keyL,
˜keyR) is also ε/2-close in the above two experiments. Reintroducing the

randomness over the sampling of these values yields the claim.

Hybrid H2: In this game, we encode 02k rather than m0. By a symmetric argument as above, H1 is
statistically ε/2-close to H2.

Consider the tuple of random variables z = (keyL, keyR, trans,
˜keyL,

˜keyR) in H2. Suppose that we sample
cL, cR, and m̃ according to their proper distributions in H2 conditioned on z and then output cL and m̃.
Further, conditioned on z, the output of the tampering function on cL is independent of the output of the
tampering function on cR. We will use this fact to construct a (possibly inefficient) split-state tampering
function fz,ρ, gz,ρ with the corresponding values hardcoded. Denote Sim′ = (Sim′1,Sim

′
2) the simulator for

the underlying split-state encoding (E′,D′). We use the above observation to construct a simulator Sim =
(Sim1,Sim2) as follows.

1. Sim1 samples z = (keyL, keyR, trans,
˜keyL,

˜keyR) according to its distribution in H2 and random coins ρ
and derives the resulting split-state tampering functions fz,ρ, gz,ρ, defined as follows:

On input xL (resp. xR), fz,ρ(xL) (resp. gz,ρ) samples ctL (resp. ctR) uniformly at random conditioned
on z and xL (resp. xR) using random coins ρ. This fixes cL = (keyR, ctL) (resp. cR = (keyL, ctR)). It
then executes the role of the left (resp. right) player in the leaky split-state protocol (which we assume
WLOG is deterministic given input cL (resp. cR) and transcript trans) and outputs cL̃ (resp. cR̃) It then

applies Decrypt( ˜keyL, cL̃) (resp. Decrypt( ˜keyR, cR̃)) and outputs x̃L (resp. x̃R).

2. Invoke Sim′ on split-state functions fz,ρ, gz,ρ, as above. This gives (xL, s) ← Sim′(fz,ρ, gz,ρ) (where
s ∈ {0, 1}k ∪ {same}).

3. Sample ctL uniformly at random conditioned on z and xL, using the same random coins ρ that are
hardwired into fz,ρ.

4. Output cL = (keyR, ctL), trans, s.

Now, we conclude by recalling that the construction of [ADL18] is an augmented split-state non-malleable
code with special encoding.26

Lemma A.6 ([ADL18]). There exist efficient n−ω(1)-augmented-split-state non-malleable codes with special
encoding.

Our main theorem of this section is a corollary of Lemma A.5, Lemma A.6 and Proposition 5.

Theorem A.7. For any constant α ∈ (0, 1/4), there exist efficient α-leakage-resilient n−ω(1)-augmented-
split-state non-malleable codes with special encoding.

26 The special encoding is not noted explicitly in either [ADL18] but easy to observe because to encode a message x,
first it is encoded as y ∈ Fp (via an affine evasive encoding scheme), and then the encoder simply chooses A,B in
Fnp uniformly at random such that 〈A,B〉 = y.
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A.3 Augmenting alternate-non-malleability

In this section, we observe that the alternative definition of non-malleability of [DPW10] (Def. A.8) can be
extended to handle this notion of augmented non-malleability. As before these definitions are equivalent up
to an additive factor of 2−k in the security parameter.

We give a definition for the specific setting of leakage-resilient split-state.

Definition A.8 (Alternate Definition of Augmented Non-Malleability). Let Enc : {0, 1}k → {0, 1}2n and
Dec : {0, 1}2n → {0, 1}k∪{⊥} be a coding scheme. We say that (Enc,Dec) is an α-leakage-resilient augmented-
split-state ε-alternative-non-malleable if for any m0,m1 ∈ {0, 1}k and any pair of α-leaky split-state tamper-
ing functions f, g, we have:

AltANMf
m0,m1

(0) ≈ε AltANMf
m0,m1

(1)

where we define the two experiments by

AltANMf
m0,m1

(b) :=

{
cL, cR ← Enc(mb), (c̃L, c̃R, trans)← 〈f(cL), g(cR)〉 , m̃ = Dec(c̃)

Output (cL, trans, same) if m̃ ∈ {m0,m1}, and (cL, trans, m̃) otherwise.

}
Lemma A.9. If (Enc,Dec) is an α-leakage-resilient augmented-split-state (2n, k, ε)-non-malleable code, then
it is an α-leakage-resilient augmented-split-state (2n, k, 2ε)-alternate-non-malleable code. If (Enc,Dec) is
an α-leakage-resilient augmented-split-state (2n, k, ε)-alternate-non-malleable code, then it is an α-leakage-
resilient augmented-split-state (2n, k, ε+ 2−k)-non-malleable code.

See Appendix E.2 for the proof.

B Impossibility of Negligible Error via Non-Deterministic Reductions

In this section, we rule out black-box reductions from any function f that is (1/2 + δ)-hard (where δ is
a small constant) for nd-size i-nondeterministic circuits to an efficiently computable function F that is
(1/2 + ε)-hard relative to some distribution Y for non-uniform circuits of size nc for constant c < d and
negligible ε (see Theorem B.2). We then show that this implies that there is no black-box reduction from
any function f that is (1/2 + δ)-hard (where δ is a small constant) for nd-size i-nondeterministic circuits
to efficient non-malleable codes with negligible error that are resilient to tampering by non-uniform circuits
of size nc for constant c < d (see Corollary B.3). Since f as above can be constructed from the scaled
down and padded characteristic function of some (average case hard) language in E, it means that if one
can compute the characteristic function of an E-complete language on all inputs (i.e. break the worst-case
hardness of an E-complete language), then one can compute f on average (with probability 1/2 + δ). Thus,
the above results also rule out reductions from the assumption that E is (worst-case) hard for exponential
size i-nondeterministic circuits.

We begin with a definition of a black-box reduction:

Definition B.1. A black-box reduction Red from a function f : {0, 1}k → {0, 1} that is (1/2 + δ)-hard
over the uniform distribution for nd-size i-nondeterministic circuits to a function F : {0, 1}n → {0, 1} that
is (1/2 + ε)-hard over a distribution Y for non-uniform circuits of size nc for constant c has the following
properties:

– The reduction Red must be an i-nondeterministic circuit that makes oracle queries, represented by “oracle
gates”. Let q(n) < nd be the number of oracle gates in the circuit that represents Red. Then Red can have
size at most (nd− q(n) ·nc). This captures the fact that Red is only useful in obtaining a contradiction to

the hardness of f if the composition of Red and C (denoted RedC(·)) is contained in the class of circuits
for which f is assumed to be hard, whenever C has size at most nc.

– There exists a constant c̃ such that for any adversary C (even inefficient) such that

Pr[C(Y) = F (Y)] ≥ 1/2 + ε,

we have that
Pr

x
u←{0,1}k

[RedC(·)(x) = f(x)] ≥ 1/2 + δ + 1/nc̃.

This captures the fact that Red must break the underlying assumption in the case that it interacts with an
adversary breaking F . We call an adversary C for which Pr[C(Y) = F (Y)] ≥ 1/2 + ε, a valid adversary.
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The following theorem is similar in spirit to Theorem 6.5 in [AASY16], which ruled out certain types
of black-box hardness amplification that employ reductions that are i-nondeterministic circuits. The key
difference in terms of the types of constructed functions F that are ruled out by the respective results is that
Theorem 6.5 in [AASY16] ruled out only functions F that are hard with respect to the uniform distribution,
whereas we rule out functions F that are hard with respect to an arbitrary distribution Y. Ruling out such
F is necessary for us to obtain Corollary B.3 below, which rules out black-box reductions from f as above to
non-malleable codes. There are several further differences between our theorem and that of [AASY16]. We
discuss those in Remarks 1 and 2 following the theorem statement.

Theorem B.2. Assume there exists a function f : {0, 1}k → {0, 1} that is 1/2 + δ-hard over the uniform
distribution for nd-size i-nondeterministic circuits, where n := n(k), d is constant and δ ∈ Ω(1) is constant.
Then there is no black-box reduction Red from f to a function F : {0, 1}n → {0, 1} with the following
properties:

– F is computable using polynomial size circuits of size na for constant a.

– F is 1/2 + ε-hard over a distribution Y for non-uniform circuits of size nc for constant c and negligible
ε ∈ n−ω(1).

Remark 1. While Theorem 6.5 of [AASY16] is unconditional, we require f : {0, 1}k → {0, 1} that is 1/2 + δ-
hard over the uniform distribution for nd-size i-nondeterministic circuits. Further, our notion of black-box
reduction requires that Red succeed in computing f(x) with probability 1/2+δ+1/poly(n) in the case that it
interacts with a valid adversary. However, unlike Theorem 6.5 of [AASY16], we allow Red to depend on f in an
arbitrary way, whereas [AASY16] required a universal reduction that succeeds on every function f . Personal
communication with R. Shaltiel [Sha21] indicated that the authors were aware of the limitation in their
result of Red being independent of f and had sketched a proof for the case where Red could depend on f , but
extending the proof in this way required a similar assumption to ours that the function f : {0, 1}k → {0, 1}
is 1/2 + δ − 1/poly(n)-hard over the uniform distribution for nd-size i-nondeterministic circuits.

Remark 2. The above theorem requires that the function F be computable with poly size circuits, unlike
Theorem 6.5 of [AASY16]. However, our result rules out reductions Red that are not security-parameter
preserving, meaning that if the reduction receives as input x ∈ {0, 1}k, it is not restricted to query its oracle
on input length n := n(k), but may query its oracle on any input length n′. We note that the fact that the
reduction is security-parameter preserving (i.e. on input x ∈ {0, 1}k it may only query its oracle on inputs
of length n := n(k)) was assumed in the prior work of [AASY16] although they did not explicitly state it, a
1/2+ε-hard F exists unconditionally for circuits of size nc. Further, for applications, such as for construction
of non-malleable codes discussed below, F must be explicit and poly-time computable in order to be useful,
since e.g. F essentially corresponds to the “decode” algorithm of the NMC. Thus, ruling out efficient F is
the case of interest.

Remark 3. While we do not place restrictions on the function n(k), note that since the size of Red is at most
nd (by Property 1 of Definition B.1) and since x ∈ {0, 1}k is the input to the circuit Red, we must have that
k ∈ O(nd).

Before proving the theorem, we present the following corollary to rule out black-box reductions for NMC.

Corollary B.3. Let δ ∈ Ω(1) and let ε ∈ n−ω(1). Assume there exists a function f : {0, 1}k → {0, 1} that
is 1/2 + δ-hard over the uniform distribution for nd-size i-nondeterministic circuits, where n = poly(k) and
d is constant. Then there is no black-box reduction Red from f to a 1-bit non-malleable code (Enc,Dec) with
codeword length n against circuits of size nc

′
for constant c′, with ε error.

To obtain Corollary B.3 from Theorem B.2, consider the task of constructing a 1-bit NMC with codeword
length n and negligible error ε = n−ω(1) for SIZE[nc

′
], where c′ is a constant, from a function f over domain

x ∈ {0, 1}k (where n ∈ poly(k)) that is 1/2 + δ-hard for nd-size i-nondeterministic circuits.

Recall that the following is an equivalent security definition for ε-non-malleable codes that encode a single
bit:
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Definition B.4. An encoding scheme (Enc,Dec) for one bit messages is ε-non-malleable against a tampering
class SIZE[nc

′
], if for all g ∈ SIZE[nc

′
]:

Pr
b
u←{0,1}

[Dec(g(Enc(b))) = 1− b] ≤ 1

2
+ ε

where the randomness is over E, in addition to the uniform message b.

The above definition implies that for any 1-bit ε-NMC against nc
′
-size circuits, and any C ∈ SIZE[nc] for

constant c such that SIZE[nc] ⊆ SIZE[nc
′ − c1 · n], for some constant c1,

Pr
b
u←{0,1}

[Dec(Enc(b)) = C(Enc(b))] ≤ 1

2
+ ε,

since otherwise there is a simple tampering attack with a circuit C ′ ∈ SIZE[nc
′
]. Specifically, on input Y =

Enc(b), b
u← {0, 1}, C ′ runs C(Y), outputs a hardcoded encoding of 0 if C outputs 1 and outputs a hardcoded

encoding of 1 if C outputs 0. It is straightforward to see that Pr
b
u←{0,1}[Dec(C

′(Enc(b))) = 1− b] > 1
2 + ε and

so C ′ breaks ε-non malleability. Note that the size of C ′ is at most the size of C plus a linear in n circuit of
size c1 · n for constant c1. So C ′ ∈ SIZE[nc + c1 · n] ⊆ SIZE[nc

′ − c1 · n+ c1 · n] = SIZE[nc
′
].

Thus, if we have a black-box reduction RedC
′

from f to (Enc,Dec) with ε error, where Red has size

nd − q(n) · nc′ , then we can re-write it as RedC
′C

. Setting Red′ = RedC
′
, we obtain a black-box reduction

of size at most nd − q(n) · nc′ + q · c1 · n ≤ nd − q · nc from f to F = Dec : {0, 1}n → {0, 1}, which is

ε-hard for circuits of size nc with respect to the distribution Y ← Enc(b), b
u← {0, 1}. However, this yields a

contradiction to Theorem B.2 and so a black-box reduction RedC
′

from f to (Enc,Dec) with ε error cannot
exist.

We now proceed to prove Theorem B.2.

Proof of Theorem B.2. We will first give a proof overview and present the full proof for the case that Red is
security parameter preserving. We then discuss how to extend the result to non-security parameter preserving
reductions.

Proof overview. Our high level structure is similar to the structure of the proof of Applebaum et al. [AASY16].
Our goal is to create two adversaries C,C ′ against F . Both adversaries get some input y in the support of Y
and will output an answer by doing a lookup on a large string (N or N ′) indexed by Hs(y), where Hs is an
nd-wise independent hash function. Note that this differs at a high level from Applebaum et al. [AASY16]
due to our use of the hash function. More specifically, C (resp. C ′) will respond to input y with the output
F (y) ⊕N [Hs(y)] (resp. F (y) ⊕N ′[Hs(y)]). The idea will be to sample each index of N from a distribution
over {0, 1} that is negligibly biased towards 0, and sample each index of N ′ from the uniform distribution
over {0, 1}. We will then argue that:

1. C is a valid adversary w.h.p. over choice of N . This implies that w.h.p. over choice of N , RedC(·) agrees
with f with probability at least 1/2 + δ + 1/poly(n), since this is one of the requirements of a black-box
reduction Red.

2. C ′ is a useless adversary w.h.p. over choice of N . I.e. w.h.p. over choice of s, the view of RedC(·) over
random choice of N ′ can be simulated by returning 0 or 1 uniformly at random in response to each query
(specifically, this is a good simulation as long as no collisions occur). Further, this simulation can be
achieved via sampling from a distribution Z over size nd circuits, where the random responses of C are
sampled and then hardcoded into a circuit that runs Red. Thus, the success probability of RedC(·) over
choice of s,N must be negligibly close to 1/2 + δ, since otherwise there must be a particular circuit in
the support of the distribution Z that agrees with f with probability more than 1/2 + δ (a contradiction
to the assumption on the hardness of f).

To argue (1), we note that Y must have min-entropy at least log(1/ε). We choose the parameters of Hs

(i.e. output length) appropriately to ensure that w.h.p. over choice of s, Hs(Y) is close to uniform random.
This implies that as long as N has a sufficiently high (but still 1/2 + negl(n)) fraction of 0’s, then Pr[C(Y) =
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F (Y)] = Pr[N(Hs(Y)) = 0] ≈ number of 0’s in N

length of N
is at least 1/2 + ε. Using standard Chernoff/Hoeffding

bounds, we can show that w.h.p. over choice of N , N has a sufficiently high fraction of 0’s.
Now, given that (1) and (2) hold, we construct a constant depth circuit that distinguishes between the

two distributions that N and N ′ are drawn from. This circuit will be of size 2poly(n) and will proceed by
running the reduction on each input x to f and all possible non-uniform and non-deterministic advice strings.
The reduction will then approximately count the number of inputs x for which the output of the reduction
agrees with f . This can be done with constant depth, since the reduction need only distinguish between
agreement of 1/2 + δ versus 1/2 + δ + 1/poly(n). This will contradict the fact that to distinguish strings

N,N ′ drawn from the distributions above, constant depth circuits require size 2n
ω(1)

. We now proceed with
the formal proof.

Formal proof for security parameter preserving reductions. Let Y be the assumed hard distribution for F .
Note that Y must have min-entropy at least log(1/ε), since otherwise there is some y∗ that occurs with
probability greater than ε and C can agree with F with probability at least 1/2 + ε by simply hardcoding
b∗ = F (y∗), and b′ = argmaxb∈{0,1}ρ(b), where ρ(b) := Pr[F (Y) = b | Y 6= y∗], outputting b∗ if Y = y∗ and

outputting b′ otherwise. Further, let Hs be an nd-wise independent hash with input length n and output
length `H := log(1/ε)/3 and seed s chosen uniformly at random from set S. We also define LH := 2`H and
` := 8n · n2c̃.

Fact B.5. Hs is a strong extractor for sources of min-entropy log(1/ε) and statistical distance 2− log(1/ε)/3 =
ε1/3 from uniform. This implies that, with probability 1− 1/(2`) over choice of s ∼ S, Hs(Y) has negligible
statistical distance at most 2`ε1/3 from the uniform distribution over {0, 1}`H .

We also define the following distribution:

Definition B.6. For 0 ≤ p ≤ 1 and a natural number t, we use N t
p to denote the distribution of t i.i.d. bits

where each of them has probability p to evaluate to 1.

We will consider two distributions: The first consists of ` independent draws from NLH

1/2−3ε1/8
, which is

equivalent to a single draw from N `·LH

1/2−3ε1/8
. The second consists of ` independent draws from NLH

1/2, which

is equivalent to a single draw from N `·LH

1/2 .

For j ∈ [`] and Nj ∼ NLH

1/2−3ε1/8
, let Csj ,Nj be the adversary that on input Y, outputs F (Y)⊕Nj [Hsj (Y)].

Let Isj ,Nj ,x be the indicator variable that is set to 1 when RedCsj,Nj (·)(x) = f(x) and is set to 0 otherwise.

Lemma B.7. With probability at least 1/2 over choice of s1, . . . , s` ∼ S, we have that with all but negligible
probability over N1, . . . , N` drawn independently from NLH

1/2−3ε1/8
,∑

j∈`,x∈{0,1}k [Isj ,Nj ,x]

` · 2k
≥ 1/2 + δ + 1/nc̃.

Proof. First, note that if Nj of length LH has at most 1/2 − 2ε1/8 number of 1’s, and at least 1/2 + 2ε1/8

number of 0’s then
Pr[Nj [U`H ] = 0] ≥ 1/2 + 2ε1/8,

where U`H is a uniform random string of length `H .
Since by Fact B.5, we have that with probability 1 − 1/(2`) over choice of sj , Hsj (Y) is statistically

2` · ε1/3-close to uniform random, we therefore have that if Nj of length LH has at most 1/2− 2ε1/8 number
of 1’s, and at least 1/2 + 2ε1/8 number of 0’s then

Pr[F (Y) = Csj ,Nj (Y)] = Pr[Nj [Hs(Y)] = 0] ≥ 1/2 + ε1/8 > 1/2 + ε,

for sufficiently large n, since ε ∈ o(2` · ε1/3) ∈ o(ε1/8). Thus, with probability 1 − 1/(2`) over choice of sj ,
we have (by standard Chernoff/Hoeffding bounds) that with probability at least 1 − exp(−LH · (ε1/8)2) =
1 − exp(−(1/ε)1/12) (which is 1 − negl(n)) over choice of Nj , Csj ,Nj is a valid adversary. Moreover, by a
union bound, with probability 1/2 over choice of s1, . . . , s`, we have that with probability 1 − negl(n) over
choice of N1, . . . , N`, all Csj ,Nj are valid adversaries.
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Recall Isj ,Nj ,x is the indicator variable that is set to 1 when RedCsj,Nj (·)(x) = f(x) and is set to 0
otherwise. Then, by Property 2 of Definition B.1 (which says Red succeeds when given oracle access to a
valid adversary), with probability 1/2 over choice of s1, . . . , s`, we have that with all but negligible probability
over N1, . . . , N` drawn independently from NLH

1/2−3ε1/8
,∑

j∈`,x∈{0,1}k [Isj ,Nj ,x]

` · 2k
≥ 1/2 + δ + 1/nc̃.

For N ′j ∼ N1/2, we now consider an adversary C ′sj ,N ′j
that on input Y, outputs F (Y) ⊕N ′j [Hsj (Y)]. Let

I ′sj ,N ′j ,x
be the indicator variable that is set to 1 when Red

C′
sj,N

′
j
(·)

(x) = f(x) and is set to 0 otherwise.

Lemma B.8. With all but negligible probability over choice of s1, . . . , sj ∼ S, we have that with all but

negligible probability over N ′1, . . . , N
′
` drawn independently from NLH

1/2,∑
j∈`,x∈{0,1}k [I ′sj ,N ′j ,x

]

` · 2k
≤ 1/2 + δ + 1/(2nc̃).

Proof. Note that C ′sj ,N ′j
simply outputs an independent, random 0/1 bit for each query Y from Red, unless

a hash collision occurs on Y.
Since Hsj is nd-wise independent and Red makes at most nd queries per run, the probability over random

choice of sj ∼ S that a collision occurs in a single run of Red on random input x and random N ′j is:

Pr
sj∼S,N ′j∼N1/2,x∼Uk

[Hsj (yu) = Hs(yw) for two distinct queries of Red] ≤ n2d

LH
= n2d · ε1/3.

Let Ev be the event that a collision occurs during a run of Red. Conditioned on Ev, the output of Red
C′
sj,N

′
j

is identically distributed to the output of a circuit drawn from the following distribution Z:

– Draw a string r of length q(n) < nd, where q(n) is an upperbound on the number of distinct queries
made by Red on any input x ∈ {0, 1}k (recall that we assume WLOG that Red never queries on the same
string twice).

– Construct the circuit Zr that hardwires r and whose computation proceeds on input x by running Red
on input x and responding to the i-th query of Red with r[i]. Zr then returns whatever Red returns.

Since Red has size at most nd− q(n) ·nc, the circuits in the above distribution Z all have size O(nd), and
so by our assumption on nd-hardness of f we have that

Pr
Zr∼Z,x∼Uk

[Zr(x) = f(x)] ≤ 1/2 + δ,

since otherwise there must exist a particular r such that

Pr
x∼Uk

[Zr(x) = f(x)] > 1/2 + δ,

a contradiction to the 1/2 + δ-hardness of f . Further,

Pr
sj∼S,N ′j∼N1/2,x∼Uk

[Red
C′
sj,N

′
j
(·)

(x) = f(x) | Ev] = Pr
Zr∼Z,x∼Uk

[Zr(x) = f(x) | Ev],

which implies that

Pr
sj∼S,N ′j∼N1/2,x∼Uk

[Red
C′
sj,N

′
j
(·)

(x) = f(x)] ≤ 1/2 + δ + 2 Pr
sj∼S,N ′j∼N1/2,x∼Uk

[Ev] ≤ 1/2 + δ + 2n2d · ε1/3.
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Recall I ′sj ,N ′j ,x
is the indicator variable that is set to 1 when Red

Csj,N′j
(·)

(x) = f(x) and is set to 0 otherwise.

Then the above can be re-written as

Esj∼S,N ′j∼N1/2

[∑
j∈`,x∈{0,1}k [I ′sj ,N ′j ,x

]

` · 2k

]
≤ 1/2 + δ + 2n2d · ε1/3.

Now consider ` := 8n · n2c̃ independent runs, where in the j-th run we execute Red with independently
chosen N ′j , sj on all inputs x. Then by standard Chernoff/Hoeffding bounds, with probability at least 1 −
exp(−2`/(16n2c̃)) = 1− exp(−n)) (which is 1−negl(n)) over s1, . . . , s` drawn from S, and N ′1, . . . , N

′
` drawn

from NLH

1/2, ∑
j∈`,x∈{0,1}k [I ′sj ,N ′j ,x

]

` · 2k
≤ 1/2 + δ + 1/(2nc̃).

By Markov’s inequality, with all but negligible probability over s1, . . . , s` drawn from S, we have that with
all but negligible probability over N ′1, . . . , N

′
` drawn from NLH

1/2,∑
j∈`,x∈{0,1}k [I ′sj ,N ′j ,x

]

` · 2k
≤ 1/2 + δ + 1/(2nc̃),

which completes the proof of the lemma.

Combining Lemmas B.7 and B.8, there must exist seeds s∗1, . . . , s
∗
j ∈ S such that both:

1. With all but negligible probability over N1, . . . , N` drawn independently from NLH

1/2−3ε1/8
,∑

j∈`,x∈{0,1}k [Is∗j ,Nj ,x]

` · 2k
≥ 1/2 + δ + 1/nc̃.

2. With all but negligible probability over N ′1, . . . , N
′
` drawn independently from NLH

1/2,∑
j∈`,x∈{0,1}k [I ′s∗j ,N ′j ,x

]

` · 2k
≤ 1/2 + δ + 1/(2nc̃).

Recall that Red is a non-uniform Σi circuit of size nd with oracle gates. We instantiate the oracle with
F (·) ⊕ Ñj(Hs∗j

(·)), where Ñj is drawn from either N1/2−3ε1/8 or N1/2. For each j ∈ [`], let Bx,α,z1,...,zi(Ñj)

denote the output of Red
F (·)⊕Ñj(Hs∗

j
(·))

for a fixed input x, non-uniform advice string α and non-deterministic
inputs z1, . . . , zi. Note that the input to Bx,α,z1,...,zi is the length LH string Ñj . Since for a fixed input x,

non-uniform advice string α and non-deterministic inputs z1, . . . , zi, Red
F (·)⊕Ñj(Hs∗

j
(·))

can be viewed as a
depth nd decision tree that makes queries to F (·) ⊕ Ñj(Hs∗j

(·)), Bx,α,z1,...,zi(Ñj) can be implemented by a

depth-2 circuit of size 2O(nd).
We now consider the function Bx,α(Ñj) defined to be one iff ∃z1∀z2 . . . Qzi : Bx,α,z1,...,zi(Ñj) = 1. Note

that this function can be implemented by a circuit of depth i + 2 and size 2O(nd) times the size of a circuit

Bx,α,z1,...,zi . Overall, we get a depth i+ 2, size 2O(nd) circuit.

Thus, we can construct the following circuit Af of size 2O(nd) and depth i + O(1), that gets as input

either Ñ1, . . . , Ñ` that is drawn from either [NLH

1/2−3ε1/8
]` or [NLH

1/2]` and distinguishes the two with advantage

more than 0.99. Af has the characteristic vector of f hardwired—i.e. a vector vf such that vf [x] = f(x)
for all x ∈ {0, 1}k. Af does the following: In parallel, for every α ∈ {0, 1}α, j ∈ [`], x ∈ {0, 1}k evaluate
Bα,x(N ′j) in depth 2. Obtain an output vector vα,j of size 2k such that vj,α[x] = Bα,x(N ′j). Note that 2k · 2α

must be contained in 2O(nd) since the input and non-uniform advice to Red must be smaller than the total
size of the circuit, nd. For every α ∈ {0, 1}α, Af now approximately counts the number of positions x
such that the vector vα,1|| . . . ||vα,` agrees with vf || . . . ||vf (i.e. ` concatenations of vf ). If for some α, the
fraction of positions is at least 1/2 + δ + 1/nc̃, Af outputs 1. If for all α, the fraction of positions is at
most 1/2 + δ + 1/(2nc̃), Af outputs 0. Since the difference is 1/(2nc̃), which is 1/poly(n), given outputs
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vα,1, . . . , vα,` from the previous stage and the hardcoded vf , the approximate counting can be done by a
constant depth circuit of size 2poly(n). Thus, in total Af has constant depth and size 2poly(n). However, since
3ε1/8 ∈ n−ω(1) is negligible, setting ε′ = 3ε1/8 and t = ` · LH = ` · (1/ε)1/3 ∈ 2poly(n) in the following theorem
implies that circuits of constant depth and size 2poly(n) cannot distinguish between [NLH

1/2−3ε1/8
]` = N `·LH

1/2−3ε1/8

or [NLH

1/2]` = N `·LH

1/2 with advantage 0.99.

Theorem B.9 ([Vio06, SV10]). There exists a constant a > 1, such that for every sufficiently small

ε′ > 0, circuits of depth k and size s = exp((1/ε′)
1

k+a ) cannot distinguish N t
1/2−ε′ and N t

1/2 with advantage
0.99 for any t ≤ s.

We thus obtain a contradiction to the existence of a black-box reduction Red from a function f : {0, 1}k →
{0, 1} that is (1/2+δ)-hard over the uniform distribution for nd-size i-nondeterministic circuits to a function
F : {0, 1}n → {0, 1} that is (1/2 + ε)-hard over a distribution Y for non-uniform circuits of size nc for
constant c.

Extending the proof to non-security parameter preserving reductions. Here, we crucially rely on the fact that
the construction F is efficiently computable by circuits of size na for constant a. We begin by explaining
how to modify the adversaries Csj ,Nj (·) and C ′sj ,N ′j

(·) for the non-security parameter preserving setting.

For any fixed input length k, Red may now query its oracle on arbitrary input lengths n′. Further, we now
view ε(·) as a negligible function of its input, n′. We therefore index the strings Nj and N ′j by input length

n′ ∈ {1, . . . , nd}, so Nj = N1
j || · · · ||Nnd

j (resp. N ′j = N ′
1
j || · · · ||N ′

nd

j ), where Nn′

j (resp.N ′
n′

j ) has length

ε(n′)1/3. Note that Red cannot query its oracle on input length larger than nd since Red has size at most
nd, so we must have n′ ∈ {1, . . . , nd}. The adversaries Csj ,Nj (·) (resp. C ′sj ,N ′j

(·)) will, similarly to before,

return F (y)⊕N |y|j (Hsj (y)) on input y, where Hsj now corresponds to a set of nd-wise independent hashes,

one for each possible input length n′ ∈ {1, . . . , nd}. The only difference will be in how we sample Nj and N ′j .

Specifically, For n′ such that (n′)a ≤ nc, Nn′

j (resp. N ′
n′

j ) are now set to the all 0 string. This represents that
the adversaries Csj ,Nj , C

′
sj ,N ′j

always return the correct answer of F evaluated on their input. For n′ such

that (n′)a > nc, N ′
n′

j is sampled exactly as before, while Nn′

j is now sampled as in the security preserving

case described above but with bias 3ε(n′)1/8 < 3ε(nc/a)1/8, Since c and a are both constants, ε(nc/a) (and
hence also 3ε(nc/a)1/8) is still negligible in n. By defining the adversaries in this way, we preserve all the
properties needed for the proof above to go through. Specifically, with probability 1/2 over s1, . . . , s`, all
Csj ,Nj are still valid adversaries with all but negligible probability, since for n′ such that (n′)a ≤ nc they
always returns the correct answer and for n′ such that (n′)a > nc, ε(n′) is still negligible in n, which was the
only property of ε needed for Lemma B.7 to go through. Further, on input length n′ such that (n′)a ≤ nc, F
can be evaluated in size (n′)a ≤ nc, whereas on input length n′ such that (n′)a > nc, the response is random.

So Red
C′
sj,N

′
j can still be evaluated in size at most nd and again ε(n′) is still negligible in n, which was the

only property of ε needed for Lemma B.8 to go through. Finally, the strings Nj and N ′j differ by a negligible
fraction, and so the final construction of the distinguishing adversary Af still leads to contradiction.

C A Non-Malleable Extractor for Recognizable Sources with Relative Error

Applebaum et al. [AASY16] introduced the notion of a relative error extractor to circumvent some of the
shortcomings of 1/poly error that is inherent using current techniques. While these extractors fail to achieve
negligible error, they do effectively preserve the probability of low preserve the probability of low probability
events.

Definition C.1 (Relative Error Extractor [AASY16]). We say that E : {0, 1}n → {0, 1}m is an extractor
for a class of sources X with relative error α if for all X ∈ X and any event A ⊆ {0, 1}m

Pr
X

[E(X) ∈ A] ∈ (1± α) Pr
U

[U ∈ A],

where U is the uniform distribution over {0, 1}m.

45



In particular, consider constant α = 1/2. This does not give meaningful bounds on the total variation
distance of the output of the extractor from uniform. However, it does guarantee that if some event A
occurs with negligible probability under the uniform distribution (e.g. the event of an adversary breaking a
cryptographic scheme), then A still occurs with negligible probability in the output of the extractor.

In this section, we extend this notion to the non-malleable setting. Consequently, our relative error
extractors give a generic means of achieving tamper and leakage resilient cryptography (with strong security
guarantees).

Definition C.2 (Relative Error Non-Malleable Extractor). We say E : {0, 1}n → {0, 1}m is a non-malleable
extractor with relative error (α, β) for a class of sources X and tampering family T , if for all X ∈ X and all
t ∈ T there exists a simulator SimX,t (supported on {0, 1}m ∪{same}) such that for any event A ⊆ {0, 1}2m,

(1− α) Pr[UCopy(SX,t, U) ∈ A]− β ≤ Pr[E(X)E(t(X)) ∈ A] ≤ (1 + α) Pr[UCopy(SX,t, U) ∈ A] + β,

where SX,t denotes the random variable representing the output of SimX,t.

To handle small errors on zero probability events in the ideal model, we introduce the additive error
term β. We encourage the reader to think of α as “large,” 1/poly, and β as “small,” 2−Ω(m), as this is the
parameter range we are aiming for.

C.1 Non-Malleable Extractor Construction

Our construction builds on the conceptual approach of Applebaum et al. [AASY16]. So before delving into
our construction we recall their approach.

Theorem C.3 (Relative Error Extractors for Recognizable Sources [AASY16]). If E is hard for
exponential size Σ3-circuits then there exists a constant α > 0 such that for every constant c > 1 and
sufficiently large n, and every m ≤ αn there is an extractor E : {0, 1}n → {0, 1}m for sources with min-
entropy (1−α)n that are recognizable by size nc circuits with relative error n−c. Furthermore, E is computable
in time poly(nc).

Their starting point is an ε-incomputable function, f : {0, 1}` → {0, 1}n with long output, where ε bounds
any small circuits advantage over random guessing in computing f on uniformly random inputs. Because
the output is long, it is feasible to construct such function from strong derandomization assumptions where
ε is negligible, in fact ε = 2−Ω(n) [TV00].

Definition C.4 (Incomputable Functions [AASY16]). We say a function f : {0, 1}` → {0, 1}n is ε-
incomputable by a class C, if for all C ∈ C, Prx←U` [C(x) = f(x)] ≤ 1

2n + ε.

Theorem C.5 (Incomputable Functions [AASY16]). For all natural numbers i, if E is hard for expo-
nential size Σ3+i-circuits then there exists a constant α > 0 such that for every constant c > 1 and sufficiently
large `, and every n ≤ α` there is a function f : {0, 1}` → {0, 1}n that is `−c2−n-incomputable by Σi-circuits
of size `c. Furthermore, f is computable in time poly(`c).

Given such an f , their construction, reExt : {0, 1}`+n → {0, 1}m views parses a source recognizable by an
nc size circuit, R = (R1, R2), and outputs

reExt(X) := 2Ext(f(R1), R2)

where 2Ext is an explicit 2-source extractor and f is ε = 2−Ω(n)-incomputable by σ2-circuits of size nd, for
some constant d > c.

They then reduce the relative error property to the incomputability of f . In particular, they observe that
if there exists some z such that Pr[reExt(f(R1), R2) = z] > (1+Ω(ε))2−m, then there must be many “useful”
inputs x to the incomputable function f such that conditioning on R1 = x both preserves the high likelihood
of z, Pr[reExt(f(R1), R2) = z|R1 = x] > (1 + Ω(ε))2−m, and R2|R1 = x maintains high min-entropy. They
then observe that 2-source extractors have the following list-decoding-like guarantee: there aren’t too many
inputs y that can “explain” the probability of z relative to (X2|X1 = x), i.e. for any particular “useful” x
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there cannot be not too many y such that Pr[2Ext(y, (X2|X1 = x)) = z] > (1 + Ω(ε))2−m.27 Note that,
since x is useful, f(x) = y∗ is necessarily in this set. So their circuit to compute f(x) simply hopes the input
to f , x, is useful, “list-decodes” possible y’s that could “explain” z relative to (X2|X1 = x), and uniformly
samples a y from the list. If x is indeed useful, than f(x) will be in this list and the list will be sufficiently
small that f(x) is sampled with high enough probability to break the incomputability of f .

That said, even in this good case the list is still of exponential size, so there is not space in circuit to
write down this list. Thankfully, due to the fact that R is recognizable and two-source extractor is efficient,
membership in this list can be decided by a small NP-circuit (the NP-oracle is used to approximate the
conditional probability z occurs for any fixed y, see Theorem 2.20). Thus, again by classical techniques (see
Theorem 2.19), members of this list can be sampled uniformly with a Σ2 circuit.

This paradigm is our starting point, but tampering introduces some new hurdles. One might hope that
it suffices to replace the 2-source extractor in the construction of [AASY16] with a non-malleable 2-source
extractor. While 2-source non-malleable extractors enjoy a similar list-decoding-like property, it is unclear
how to perform a similar reduction without compressing the source before feeding it to f and the 2-source
non-malleable extractor in order to reduce the tampering to a split-state tampering.28 In more detail, we will
condition on “useful” inputs x as well as “helpful” tampered inputs x̃. If these inputs are too long, no entropy
will remain in the source after conditioning on such inputs and we won’t be able to utilize the list-decoding
property. Moreover, due to the strict accounting required here, it is important that any compressions of the
source have high min-entropy, and are not merely close to high min-entropy variables (especially if close just
means 1/poly!). For this reason, we compress using relative-error extractors for samplable sources.

Figure C.1: Non-Malleable Extractor with Relative Error for (N, (1 − γ)N)-Sources Recognized by
and Tampered by Size N c circuits

Ingredients:

– Ext1samp : {0, 1}N → {0, 1}` an extractor for sources with min-entropy (1−γ)N recognized by size
N c circuits with 1 relative error, computable in time N c1 for some constant c1 > c.

– Ext2samp : {0, 1}N → {0, 1}n an extractor for sources with min-entropy (1−γ)N−2`−3− log(1/β)
recognized by size c′N c1 circuits with 1 relative error, computable in time N c2 for some constants
c2 > c1 and c′.

– f : {0, 1}` → {0, 1}n a function that is ε-incomputable by Σ3-circuits of size c′′N c3

– 2NMExt : {0, 1}2n → {0, 1}n′ a 2-source non-malleable extractor with error β/12 for independent
(n, (1− γ)n)-source and (n, n− 1)-source that is computable in size N c1 .

– Truncm : {0, 1}n′ → {0, 1}m truncates an n′-bit input to m bits, x1, . . . , xn′ 7→ x1, . . . , xm.

Construction:
E(R) := Truncm(2NMExt(f(Ext1samp(R)),Ext2samp(R)))

Theorem C.6. The construction, E, in Figure C.1 is a non-malleable extractor for sources recognized by
N c size circuits with min-entropy (1− γ)N and tampered by N c circuits with (1/N c, 22m · β)-relative error.

If we instantiate the ingredients in Figure C.1 with Theorem C.3, Theorem C.5, and Theorem 2.10, then
we can take n = O(`), ` = O(N), and m = O(N log logN/ logN) to derive the following corollary:

Corollary C.7. If E is hard for exponential size Σ6-circuits, then for every constant d > 1 there exists
constants γ, ζ > 0 such that for all constants c > 1 and sufficiently large n and m ≤ ζn log log n/ log n there
is a non-malleable extractor for sources recognized by nc size circuits with min-entropy (1−γ)n and tampered
by nc circuits with (1/nc, 2−dm)-relative error.

27 For those familiar, this is similar to the fact that every two source extractor is “strong,” up to a loss in parameters.
28 Additionally, at this time, constructions of 2-source non-malleable extractors in the literature could only handle

sources with comparatively high min-entropy, relative to standard 2-source extractors.
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C.2 Canonical Simulation for Non-Malleable Extractors

Before proving the main technical lemma in this section, we need the following observation that a non-
malleable extractor always admits a canonical simulator.

Critically for us, if sampling the source, tampering the source, and evaluating the extractor can be done
efficiently (according to some notion of efficiency) then the canonical simulator is also efficient.

Lemma C.8. Let E′ : {0, 1}n → {0, 1}n′ be an ε-non-malleable seedless extractor for source class X and
tampering family T . Then, then for any X ∈ X and t ∈ T , the following is a “canonical” simulator with
error at most 2ε+ 2−(n′+1).

(We define, SX,t, the random variable corresponding to its output.)

SX,t :=

Sample Xand compute(z′, z̃′) = E′(X),E′(t(X))
if z′ = z̃′, output same

otherwise, output z̃′

 .

In other words,

∀X ∈ X ,∀t ∈ T , ∆(E′(X),E′(t(X));Un′ ,Copy(SX,t, Un′)) ≤ 2ε+ 2−(n′+1),

where Un′ is a uniformly distributed random variable over n′ bits.

Proof. First, because E′ is ε-non-malleable, for any X ∈ X and t ∈ T , there exists SE
′

X,t such that

∆(E′(X),E′(t(X);Un′ ,Copy(SE
′

X,t, Un′) ≤ ε.

From this it follows that

2ε ≥ 2∆(E′(X),E′(t(X);Un′ ,Copy(SE
′

X,t, Un′)

=
∑
z′

|Pr[E′(X) = E′(t(X)) = z′]− 2−n
′
Pr[SE

′

X,t = same]− 2−n
′
Pr[SE

′

X,t = z′]|

+
∑
z′ 6=z̃′

|Pr[E′(X)E′(t(X)) = z′z̃′]− 1

2n′ − 1
Pr[SE

′

X,t = z̃′]|

≥
∑
z′

|Pr[E′(X) = E′(t(X)) = z′]− 2−n
′
Pr[SE

′

X,t = same]| −
∑
z′

2−n
′
Pr[SEX,t = z′]

+
∑
z′ 6=z̃′

|Pr[E′(X)E′(t(X)) = z′z̃′]− 1

2n′ − 1
Pr[SE

′

X,t = z̃′]|

≥
∑
z′

|Pr[E′(X) = E′(t(X)) = z′]− 2−n
′
Pr[SE

′

X,t = same]|

+
∑
z′ 6=z̃′

|Pr[E′(X)E′(t(X)) = z′z̃′]− 1

2n′ − 1
Pr[SE

′

X,t = z̃′]| − 2−n
′
.

Or, in other words:

2ε+
1

2n′
≥
∑
z′

|Pr[E′(X) = E′(t(X)) = z′]−2−n
′
Pr[SE

′

X,t = same]|+
∑
z′ 6=z̃′

|Pr[E′(X)E′(t(X)) = z′z̃′]− 1

2n′ − 1
Pr[SE

′

X,t = z̃′]|
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Next, observe that we can bound the distance between our simulators as follows:

2∆(SX,t;S
E′

X,t) = |Pr[SX,t = same]− Pr[SE
′

X,t = same]|+
∑
z̃′

|Pr[SX,t = z̃′]− Pr[SE
′

X,t = z̃′]|

= |Pr[E′(X) = E′(t(X))]− Pr[SE
′

X,t = same]|

+
∑
z̃′

|Pr[E′(X) 6= E′(t(X)) ∧ E′(t(X)) = z̃′]− Pr[SE
′

X,t = z̃′]|

= |
∑
z′

Pr[E′(X) = E′(t(X)) = z′]−
∑
z′

2−n
′
Pr[SE

′

X,t = same]|

+
∑
z̃′

|
∑
z′ 6=z̃′

Pr[E′(X)E′(t(X)) = z′z̃′]−
∑
z′ 6=z̃′

1

2n′ − 1
Pr[SE

′

X,t = z̃′]|

≤
∑
z′

|Pr[E′(X) = E′(t(X)) = z′]− 2−n
′
Pr[SE

′

X,t = same]|

∑
z′ 6=z̃′

|Pr[E′(X)E′(t(X)) = z′z̃′]− 1

2n′ − 1
Pr[SE

′

X,t = z̃′]|

≤ 2ε+
1

2n′
.

Thus, we can conclude by post-processing that

∆(E′(X)E′(t(X));Un′Copy(SX,t, Un′)) ≤ ∆(E′(X)E′(t(X));Un′Copy(SE
′

X,t, Un′))

+∆(Un′Copy(SE
′

X,t, Un′);Un′Copy(SX,t, Un′))

≤ ∆(E′(X)E′(t(X));Un′Copy(SE
′

X,t, Un′)) +∆(SE
′

X,t;SX,t)

≤ ε+ (ε+
1

2n′+1
)

Note that since post-processing cannot increase statistical distance, Lemma C.8 implies that

∀X ∈ X ,∀t ∈ T , ∆(Truncm(E′(X)),Truncm(E′(t(X)));Truncm(Un′),Truncm(Copy(SX,t, Un′)) ≤ 2ε+2−(n′+1),

In particular, we will use the fact that for any z, z̃ ∈ {0, 1}m

|Pr[Truncm(E′(X)),Truncm(E′(t(X))) = zz̃]− Pr[Truncm(Un′),Truncm(Copy(SX,t, Un′)) = zz̃]| ≤ 4ε+2−(n′).
(6)

C.3 Analysis

Lemma C.9. For all size N c recognizable N bit sources, R, with min-entropy k ≥ (1− γ)N and all size N c

tampering functions t, there exists a simulator S such that for all z, z̃

(1−N−c) Pr[UmCopy(S,Um)]−2−2m−dm ≤ Pr[E(X)E(t(X)) = zz̃] ≤ (1+N c) Pr[UmCopy(S,Um)]+2−2m−dm.

Theorem C.6 is an immediate corollary of this Lemma.
The simulator S is quite simple. Let E′ be the same as E except without truncation, namely E′(R) :=

2NMExt(f(Ext1samp(R)),Ext2samp(R)). S is simply the canonical simulator for E′ (see Lemma C.8) except
with any non-same output truncated to m bits. In other words,

S :=

Sample R and compute(z′, z̃′) = E′(R),E′(t(R))
if z′ = z̃′, output same

otherwise, output z̃ = Truncm(z̃′)

 .

Note that even though S cannot necessarily be sampled by a polysize circuit (because R is a recognizable
source), it can be sampled by a polysize NP-circuit.
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Proof. Assume for the sake of contradiction that there exists R, t, z, z̃ such that

Pr[E(R)E(t(R) = zz̃] > (1 + α) Pr[UmCopy(S,Um) = zz̃] + β,

where α = N−c and β = 2−2m−dm. Let C be some circuit of size at most N c such that R is uniform on
{r : C(r) = 1}.

The case that the lower bound is violated follows in the same manner as presented below. Our goal is to
construct a Σ3-circuit of size O(N c3) that has > ε advantage over random guessing in computing f .

Before we continue, introduce some notation for the intermediate random variables involved in evaluating
the extractor on the source and the tampered source.

– R is the source and R̃ := t(R), the tampered source.
– X := Ext1samp(R), X̃ := Ext1samp(R).

– W := Ext2samp(R), W̃ := Ext2samp(R).

– Wx := W |X = x, W̃x := W̃ |X = x
– Wx,x̃ := W |X = x ∧ X̃ = x̃, W̃x,x̃ := W |X = x ∧ X̃ = x̃

– Rx := R|X = x, R̃x := R|X = x
– Rx,x̃ := R|X = x, X̃ = x, R̃x,x̃ := R|X = x, X̃ = x
–

Sx :=

 Sample (z′, z̃′)← E′(Rx),E′(R̃x)
if z′ = z̃′, output same

otherwise, output z̃ = Truncm(z̃′)

 Sx,x̃ :=

Sample (z′, z̃′)← E′(Rx,x̃),E′(R̃x,x̃)
if z′ = z̃′, output same

otherwise, output z̃ = Truncm(z̃′)

 .

We begin by proving a sequence of simple claims. Loosely, these claims say that there are many inputs,
x, to the incomputable function, f , such that conditioning on x in the non-malleable extractor experiment
preserves the violation of the relative error guarantee in addition to some other properties. The primary
technical work of the proof, the small circuit that computes f and its analysis, can be found after these
elementary claims.

We say x ∈ {0, 1}` is useful if

Pr[E(Rx)E(R̃x) = zz̃] > (1 + α) Pr[UmCopy(Sx, Um) = zz̃] + β/2

We will show that useful x’s are not too sparse. We do so by observing that useful x’s are not too sparse
relative to X (which is close to uniform in relative error).

Claim. Pr[X is useful] ≥ β/2

β < Pr[E(R)E(R̃) = zz̃]− (1 + α) Pr[UmCopy(S,Um) = zz̃]

=
∑
x

Pr[X = x](Pr[E(Rx)E(R̃x = zz̃]− Pr[UmCopy(Sx, Um) = zx̃])

=
∑

x useful

Pr[X = x](Pr[E(Rx)E(R̃x) = zz̃]− Pr[UmCopy(Sx, Um) = zz̃])

+
∑

x not useful

Pr[X = x](Pr[E(Rx)E(R̃x) = zz̃]− Pr[UmCopy(Sx, Um) = zz̃])

≤ Pr[X is useful] + β/2

The claim follows.

Claim. Pr[U` is useful] > β/4

Because Ext1samp(R) is a samplable source extractor for size N c recognizable sources with relative error
α, we have

Pr[X is useful] ≤ (1 + α) Pr[U` is useful].

Claim follows by our choice of α < 1 and Pr[X is useful] ≥ β/2.
Now, we observe that conditioning on x doesn’t effect the entropy of of R too much.
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Claim. For all x ∈ {0, 1}`, H∞(R|X = x) ≥ k − (`+ 1).

Notice that for each r ∈ Supp(R|X = x), we have

Pr[R = r|X = x] ≤ Pr[R = r]

Pr[X = x]
≤ 2−(1−γ)N

(1 + α)2−`
< 2`+1−k.

We say x̃ is helpful for x if

1. Pr[E(R)E(R̃) = zz̃|X = x ∧ X̃ = x̃] ≥ (1 + α) Pr[UmCopy(Sx,x̃, Um) = zz̃] + β/8

2. H∞(R|X = x ∧ X̃ = x̃) ≥ k − 2`− 3− log(1/β)

Claim. Pr[X̃ is helpful for x|X = x is useful] ≥ β/8.

Fix any x that is useful and let H = {x̃ : Pr[X̃ = x̃|X = x] > β/2`+2}. Then we have Pr[X̃ /∈ H|X =
x] ≤ 2` · β/2`+3 = β/4, and moreover for any x̃ ∈ H,

Pr[R = r|X = x ∧ X̃ = x̃] ≤ Pr[R = r|X = x]

Pr[X̃ = x̃|X = x]
≤ 2`+1−k

β/2`+2
= 2−(k−2`−3−log(1/β))

Next, let G = {x̃ : Pr[E(Rx,x̃)E(R̃x,x̃) = zz̃] > (1 + α) Pr[UmCopy(Sx,x̃, Um) = zz̃] + β/4}. Notice that, we
can bound

β/2 > Pr[E(Rx)E(R̃x) = zz̃]− (1 + α) Pr[UmCopy(Sx, Um) = zz̃]

=
∑
x̃∈G

Pr[X̃ = x|X = x](Pr[E(Rx,x̃)E(R̃x,x̃) = zz̃]− (1 + α) Pr[UCopy(Sx,x̃, Um) = zz̃])

+
∑
x̃/∈G

Pr[X̃ = x|X = x](Pr[E′(Rx,x̃)E′(R̃x,x̃) = zz̃]− (1 + α) Pr[UmCopy(Sx,x̃, Um) = zz̃])

≥ Pr[X̃ ∈ G|X = x] + β/4

Therefore, Pr[X̃ ∈ G|X = x] > β/4. Finally, the claim follows from

Pr[X̃ ∈ G ∩H|X = x] ≥ Pr[X̃ ∈ G|X = x]− Pr[X̃ /∈ H|X = x] ≥ β/4− β/8.

Next we deduce that the “right” input to the 2-source non-malleable extractor maintains high entropy,
even after conditioning on any useful “left” inputs and helpful “left” tampered inputs. Looking ahead, this
(and the fact that useful and helpful inputs bias the 2-source non-malleable extractor) will allow us to apply
the list-decoding guarantee of the 2-source non-malleable extractor.

Claim. For all useful x and x̃ helpful for x, H∞(Wx,x̃) ≥ n− 1.

Recall that Wx,x̃ := (Ext2samp(R)|X = x ∧ X̃ = x̃). Or equivalently, Wx,x̃ ≡ Ext2samp(Rx,x̃), where

Rx,x̃ := U |C(U) = 1∧Ext1samp(U) = x∧Ext1samp(t(U)) = x̃. In particular, this means Rx,x̃ is recognizable by a
circuit of size c′N c1) for some constant c′. By our previous claims we have thatH∞(Rx,x̃) ≥ k−2`−3 log(1/β).
By our choice of parameters, this means H∞(Rx,x̃) ≥ (1−γ2)N and it follows from the relative error property
that for any w ∈ {0, 1}n

Pr[Ext2samp(Rx,x̃) = w] ≤ (1 + α)2−n < 2−n+1.

We are finally ready to describe a (randomized) circuit A that attempts to compute f(x), given x:

1. Using NP-oracle sample x̃ ← X̃|X = x. (If the sampler outputs ⊥, which happens with probability at
most 1/4, output y∗ = argmaxy Pr[f(Un) = y].)

2. Construct the following nondeterministic NP-circuit, Cx,x̃, to recognize y’s that “explain” z, z̃ well:

– Input: y
– Witness: ỹ
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– Computation: use NP oracle to δ-approximate the following quantities

ME = |{r : C(r) = 1,Ext1samp(r) = x,Ext1samp(t(r)) = x̃,

Truncm(2NMExt(y,Ext2samp(r))) = z,Truncm(2NMExt(ỹ,Ext2samp(t(r)))) = z̃}|

M 6=S = |{r : C(r) = 1,Ext1samp(r) = x,Ext1samp(t(r)) = x̃,

2NMExt(y,Ext2samp(r)) 6= 2NMExt(ỹ,Ext2samp(t(r))),Truncm(2NMExt(ỹ,Ext2samp(t(r)))) = z̃}|
M=
S = |{r : C(r) = 1,Ext1samp(r) = x,Ext1samp(t(r)) = x̃, 2NMExt(y,Ext2samp(r)) = 2NMExt(ỹ,Ext2samp(t(r)))}|
Q = |{r : C(r) = 1,Ext1samp(r) = x,Ext1samp(t(r)) = x̃}|

– Output: Let M̂E , M̂
6=
S , M̂

=
S , Q̂ denote the approximations of ME ,M

6=
S ,M

=
S , Q (respectively).

• If z 6= z̃, accept if and only if

M̂E

Q̂
≥ (1 + 5δ)2−m

M̂ 6=S

Q̂
+ β/10

• If z = z̃, accept if and only if

M̂E

Q̂
≥ (1 + 5δ)2−m

M̂ 6=S + M̂=
S

Q̂
+ β/10

3. Use a Σ3-oracle to sample y
u← {y : Cx,x̃(y) = 1}. (If the sampler outputs ⊥, which happens with

probability at most 1/4, output y∗ = argmaxy Pr[f(Un) = y].)

Claim. If x is useful and x̃ is helpful for x, then Cx,x̃(f(x)) = 1 and |{y : Cx,x̃(y) = 1}| ≤ 2(1−γ)n.

Before proving this claim, we show it implies our desired contradiction with the incomputability of f :
Pr[A(x) = f(x)] > −n−c · 2−n. By Theorem 2.20 and Theorem 2.19, A can be written as a Σ3-circuit of size
poly(`/δ) ≤ c′′N c3 for some constants c′′, c3.

Pr
x←U`

[A(x) = f(x)] ≥ Pr[sampling doesn’t fail] · Pr[U` is useful] · Pr[X̃ is helpful for x|X = x] · 2−(1−γ)n

≥ 1/2 · β/4 · β/8 · 2−(1−γ)n

= 2−(1−γ)n−6−2 log(1/β)

By our choice of 6 + 2 log(1/β) < γn/2, it follows that Pr[A(x) = f(x)] > 2(1−γ/2)n.
We now prove the claim.

1. We begin by observing that because M̂E , M̂
6=
S , M̂

=
S , Q̂ are δ-approximations of ME ,M

6=
S ,M

=
S , Q (respec-

tively),

M̂E

Q̂
∈ (1± 2δ) Pr[2NMExt(y,Wx,x̃)2NMExt(ỹ, W̃x,x̃) = zz̃].

Let S′x,y,x̃ỹ denote the random variable distributed according to the following:

S′x,y,x̃ỹ =

Sample Wx,x̃, W̃x,x̃ and compute(z′, z̃′) = 2NMExt(y,Wx,x̃), 2NMExt(ỹ, W̃x,x̃)
if z′ = z̃′, output same

otherwise, output z̃ = Truncm(z̃′)

 .

Then similarly,

z 6= z̃ =⇒ 2−m
M̂ 6=S

Q̂
∈ (1± 2δ) Pr[UmCopy(S′x,y,x̃,ỹ, Um) = zz̃]

z = z̃ =⇒ 2−m
M̂ 6=S + M̂=

S

Q̂
∈ (1± 2δ) Pr[UmCopy(S′x,y,x̃,ỹ, Um) = zz̃]
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So, Cx,x̃(y) = 1 if there exists ỹ such that

(1− 2δ) Pr[Truncm(2NMExt(y,Wx,x̃))Truncm(2NMExt(ỹ, W̃x,x̃)) = zz̃]

≥ (1 + 5δ)(1 + 2δ) Pr[UmCopy(S′x,y,x̃,ỹ, Um) = zz̃] + β/10

Or in other words,

Pr[Truncm(2NMExt(y,Wx,x̃))Truncm(2NMExt(ỹ, W̃x,x̃)) = zz̃]

≥ (1 + 5δ)(1 + 2δ)

1− 2δ
Pr[UmCopy(S′x,y,x̃,ỹ, Um) = zz̃] +

β

10(1− 2δ)

Then, for δ < 1/10 we have (1+2δ)(1+5δ)
1−2δ ≤ 1 + 10δ29 and β

10(1−2δ) ≤
β
8 . It follows that if there exists ỹ

such that

Pr[Truncm(2NMExt(y,Wx,x̃))Truncm(2NMExt(ỹ, W̃x,x̃)) = zz̃] ≥ (1+10δ) Pr[UmCopy(S′x,y,x̃,ỹ, Um) = zz̃]+
β

8

then Cx,x̃(y) = 1.
In the other direction,Cx,x̃(y) = 0 if for all ỹ,

(1 + 2δ) Pr[Truncm(2NMExt(y,Wx,x̃))Truncm(2NMExt(ỹ, W̃x,x̃)) = zz̃]

< (1 + 5δ)(1− 2δ) Pr[UmCopy(S′x,y,x̃,ỹ, Um) = zz̃] + β/8

Because (1+5δ)(1−2δ)
1+2δ ≥ 1 for δ < 1/1030 and β

10(1+2δ) ≥ β/12, we can deduce that if for all ỹ it is the

case that

Pr[Truncm(2NMExt(y,Wx,x̃))Truncm(2NMExt(ỹ, W̃x,x̃)) = zz̃] < Pr[UCopy(S′x,y,x̃,ỹ, U) = zz̃] +
β

12
,

then Cx,x̃(y) = 0.
2. Now, we show that Cx,x̃(y) = 1. Because x is useful and x̃ is helpful for x, we have

Pr[E(R)E(R̃) = zz̃|X = x ∧ X̃ = x̃] ≥ (1 + α) Pr[UmCopy(Sx,x̃, Um) = zz̃] + β/8.

Thus,

Pr[Truncm(2NMExt(f(x),Wx,x̃))Truncm(2NMExt(f(x̃), W̃x,x̃)) = zz̃] = Pr[E(R)E(R̃) = zz̃|X = x ∧ X̃ = x̃]

≥ (1 + α) Pr[UmCopy(Sx,x̃, Um) = zz̃] + β/8

= (1 + 10δ) Pr[UmCopy(S′x,f(x),x̃,f(x̃), Um) = zz̃] +
β

8
.

3. Finally, we show that |T | ≤ 2(1−γ)n where T = {y : Cx,x̃(y) = 1}. Suppose this isn’t true for the sake of
contradiction. Note that by the above we have that for any such y ∈ T there must be some ỹ such that

Pr[Truncm(2NMExt(y,Wx,x̃))Truncm(2NMExt(ỹ, W̃x,x̃)) = zz̃] ≥ Pr[UmCopy(S′x,y,x̃,ỹ, Um) = zz̃] +
β

12
,

Let τL be the function that maps y to y∗ that maximizes

Pr[Truncm(2NMExt(y,Wx,x̃))Truncm(2NMExt(y∗, W̃x,x̃)) = zz̃]− Pr[UmCopy(S′x,y,x̃,y∗ , Um) = zz̃].

Let τR be the (randomized) function that maps w toW ∗ ≡ (W̃x,x̃|Wx,x̃ = w). Note that the distribution of
(τL, τR) can be written as a convex combination of split-state functions (τL, τ

i
R), where i is the randomness

29 (1 + 2δ)(1 + 5δ) < (1 + 10δ)(1− 2δ) ⇐⇒ 1 + 7δ + 10δ2 < 1 + 8δ − 20δ2 ⇐⇒ 0 < δ − 10δ2 = δ(1− 10δ).
30 (1− 2δ)(1 + 5δ) ≥ 1 + 2δ ⇐⇒ 1 + 3δ − 10δ2 ≥ 1 + 2δ ⇐⇒ 0 ≤ δ − 10δ2 = δ(1− 10δ)
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used for sampling W ∗. Let I be the random variable representing this randomness, i.e. (τL, τR) ≡ (τL, τ
I
R).

Moreover, for any y ∈ T , our guarantee above translates to

Pr[Truncm(2NMExt(y,Wx,x̃))Truncm(2NMExt(τL(y), τR(Wx,x̃))) = zz̃] ≥ Pr[UmCopy(S′x,y,x̃,τL(y), Um) = zz̃]+
β

12
.

Then let S′x,Y,x̃,τL(Y ),i denote S′x,y,x̃,ỹ where W̃x,x̃ is sampled using the randomness i and y is sampled
from Y , taken to be uniform over T . We have

β/12 ≤ Pr[Truncm(2NMExt(Y,Wx,x̃))Truncm(2NMExt(τL(Y ), τR(Wx,x̃))) = zz̃]− Pr[UmCopy(S′x,Y,x̃,τL(Y ), Um) = zz̃]

= Pr[I = i](Pr[Truncm(2NMExt(Y,Wx,x̃))Truncm(2NMExt(τL(Y ), τ i
∗

R (Wx,x̃))) = zz̃]

− Pr[UmCopy(S′x,Y,x̃,τL(Y ),i, Um) = zz̃])

By an averaging argument, there must some choice of randomness i∗ such that

Pr[Truncm(2NMExt(Y,Wx,x̃))Truncm(2NMExt(τL(Y ), τ i
∗

R (Wx,x̃))) = zz̃]

≥ Pr[UmCopy(S′x,Y,x̃,τL(Y ),i∗ , Um) = zz̃] + β/12.

However, we can observe that

(UmCopy(S′x,Y,x̃,τL(Y ),i∗ , Um) ≡ (Truncm(Un′)Truncm(Copy(S′′x,Y,x̃,τL(Y ),i∗ , Un′)),

where S′′x,Y,x̃,τL(Y ),i∗ is the canonical simulator for (Y,Wx,x̃) with respect to (τL, τ
i∗

R ) tampering:

S′′x,Y,x̃τL(Y )),i∗ =


Sample y ← Y,w ←Wx,x̃

Compute(z′, z̃′) = 2NMExt(y, w), 2NMExt(τL(y), τ i
∗

R (w))
If z′ = z̃′, output same
Otherwise, output z̃′

 .

However, because x is useful and x̃ is helpful we have that H∞(Wx,x̃) ≥ n − 1. Additionally, because
Y is a random variable that is uniformly distributed over T , we have that H∞(Y ) ≥ (1 − γ)n. Thus,
we have contradicted the guarantee of 2NMExt which says, via Lemma C.8 and via (6), that for any
z, z̃ ∈ {0, 1}m,

|Pr[Truncm(2NMExt(Y,Wx,x̃))Truncm(2NMExt(τL(Y ), τ i
∗

R (Wx,x̃))) = zz̃]

− Pr[(Truncm(Un′)Truncm(Copy(S′′x,Y,x̃,τL(Y ),i∗ , Un′)) = zz̃]|

≤ 2 · β/30 + 2−n
′
< β/12.

C.4 Applications of Relative Error Non-Malleable Extractors

We consider using a non-malleable extractor E : {0, 1}n → {0, 1}m with relative error (α, β) for a class of
recognizable sources X and tampering family T , to obtain leakage and tamper resilient cryptosystems with
negligible security guarantees.

The high level idea is to store a uniformly random R on a device and use a = E(R) as the secret key
for some symmetric key cryptosystem Π. The attacker is allowed (1) leakage on R with leakage function `,
for which the source X | `(X) = v is contained in X , with overwhelming probability over choice of v;31 (2)
tampering on R with tampering function t ∈ T ; (3) oracle access to both Πa, and Πb, where b = E(t(R)) is
the tampered version of the key (Πa, Πb denote fixing the secret key of Π to a or b respectively). The goal
is to still guarantee security of the cryptosystem with respect to the original key a, despite this stronger
adversarial model.

31 In particular, the class of leakage functions can be circuits of bounded polynomial size with bounded output length.
In this case, the source X | `(X) = v is recognizable by polynomial size circuits and, further, the min-entropy
requirement is satisfied with overwhelming probability over choice of v.
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More formally, for a particular cryptosystem Π, define Game(a,b) to be the security game for Π, with
an added interface that allows the attacker to make oracle queries to Π under both secret keys a and b. For
unpredictability games, we define f(a, b) to be the probability the adversary wins Game(a,b) on input (a, b).
For indistinguishability games, we define f(a, b) to be probability the adversary wins Game(a,b) minus 1/2
(so f(a, b) can be negative).
We consider a two-phase experiment with an adversary A = (A1, A2):
Phase 1:

– R is chosen uniformly at random
– The attacker A1 chooses leakage function ` and receives back v = `(R).
– A1 chooses a tampering function t.
– A1 outputs some additional state st.
– The output of Phase 1 is (`, t, v, st).

Phase 2:

– Phase 2 takes as input (`, t, v, st) from Phase 1.
– In the Ideal execution, the experiment samples (a, b) ∼ Ideal`,t,v. In the Real execution, the experiment

samples (a, b) ∼ Real`,t,v.
– The attacker A2 takes as input st and participates in security game Game(a,b)

– If the attacker wins in Game(a,b), Phase 2 outputs 1. Otherwise, Phase 2 outputs 0.

The distributions Ideal and Real are defined as follows:
Real`,t,v: Sample R uniformly at random conditioned on `(R) = v. Output (a = E(R), b = E(t(R))). For any
pair (a, b), let pR(a, b) denote the probability of (a, b) under distribution Real.
Ideal`,t,v: Let R(v) denote the distribution R|`(R) = v. Let SR(v),t be the random variable corresponding
to the output of the simulator SimR(v),t for E, which may depend on R(v) and t. Sample a uniformly at
random. Output (a,Copy(SR(v),t, a)). For any pair (a, b), let pI(a, b) denote the probability of (a, b) under
distribution Ideal.

Claim. AsumeΠ is secure against non-uniform, ppt adversaries (i.e. the standard security notion) then for ev-
ery (non-uniform) ppt (A1, A2) and for every fixed (`, t, v, st) outputted in Phase 1, |E(a,b)∼Ideal`,t,v [fA2(st)(a, b)]| ≤
negl(m).

Proof Sketch. Assume towards contradiction that there is some (`, t, v, st) outputted in Phase 1 such that

|E(a,b)∼Ideal`,t,v [fA2(st)(a, b)]|

is non-negligible. Then we will define an adversary A′ and a distribution D over non-uniform advice ζ, such
that the expected advantage of A′[ζ] in the security game is non-negligible, where the expectation is taken
over a random draw from the distribution, random choice of secret key a, and the random coins of the
adversary.

The non-uniform advice is ζ = (st, b̂), where b̂ is sampled from the distribution SR(v),t.

A′[ζ = (st, b̂)] behaves as follows:

– Begin the execution of A2(st).
– If A2 queries its first oracle (corresponding to Πa), forward the query to the external challenger and

return the response to A2.
– If A2 queries its second oracle (corresponding to Πb), then if b̂ = same, forward the query externally and

return the response to A2. Otherwise, evaluate Πb̂ on the query and return the response to A2.
– Output whatever A2 outputs.

Existence of a distribution as above implies that there is a particular setting of the non-uniform advice ζ
such that |Ea∼Um [fA

′[ζ](a)]| ≥ |Ea∼Um,ζ∼D[fA
′[ζ](a)]|, which is, in turn, non-negligible. This contradicts the

security of Π against non-uniform adversaries.

We would now like to switch to the Real distribution and show that for all ppt A1, A2, with all but
negligible probability over (`, t, v, st) outputted in Phase 1, |E(a,b)∼Real`,t,v [fA2(st)(a, b)]| ≤ negl(m). Since with
all but negligible probability over the coins of Phase 1, R has high min-entropy conditioned on `(R) = v, it is
sufficient to show that for any (`, t, v, st) outputted in Phase 1 for which R has high min-entropy conditioned
on `(R) = v, it is the case that |E(a,b)∼Real[f

A2(st)(a, b)]| is negligible.
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Unpredictability Games: For unpredictability games (such as MAC’s), security in the Real game follows
immediately from the properties of the relative error non-malleable extractor given in Definition C.2, by
defining the Event A as the event that the adversary wins Game(a,b).

Indistinguishability Games: For indistinguishability games we can only show that |E(a,b)∼Real[f
A2(st)(a, b)]|

is negligible in the case that the cryptosystem Π satisfies a stronger property. Specifically, we require a type
of “square-security” notion [BDK+11, DY13] that says that E(a,b)∼Ideal[(f

A2(st)(a, b))2] is negligible.

We note that there are natural cryptosystems that achieve this notion, such as CPA-secure symmetric
key encryption.

Claim. Asume Π is a CPA-secure symmetric key encryption scheme that is secure against non-uniform, ppt
adversaries (i.e. the standard security notion) then for every (non-uniform) ppt (A1, A2) and for every fixed
(`, t, v, st) outputted in Phase 1, E(a,b)∼Ideal`,t,v [(fA2(st)(a, b))2] ≤ negl(m).

We provide a proof sketch below. See e.g. [DY13] for more details.

Proof Sketch. Towards contradiction, assume that for a fixed setting of (`, t, v, st), outputted in Phase 1,

E(a,b)∼Ideal`,t,v [(fA2(st)(a, b))2] is non-negligible. We can redefine A′[ζ = (st, b̂)] from the proof of the previous
claim to run the CPA experiment with A2(st) twice with independent random coins, once with a challenge
ciphertext for which A′ knows the corresponding message (which it can construct by querying its external
encryption oracle) and once on the real challenge (which it received from its external challenger). If A2 answers
correctly in the first run, A′ returns its answer in the second run to its external challenger. Otherwise, A′

returns the complement of A2’s answer in the second run to its external challenger. The expected advantage
of A′ is equal to twice the expected squared advantage of A2. Thus, the advantage of A′ is non-negligible,
which contradicts the security of Π.

From now on, we replace the notation fA2(st)(a, b) with f(a, b), Ideal`,t,v with Ideal, and Real`,t,v with
Real. In the following, we upperbound |E(a,b)∼Real[f(a, b)]| by an expression that involves E(a,b)∼Ideal[f

2(a, b)]:
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∣∣E(a,b)∼Real[f(a, b)]
∣∣ ≤

∣∣∣∣∣∣
∑

(a,b):pI(a,b)<β

pR(a, b) · f(a, b)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

(a,b):pI(a,b)≥β

pR(a, b) · f(a, b)

∣∣∣∣∣∣ (7)

≤
∑

(a,b):pI(a,b)<β

|pR(a, b) · f(a, b)|+

∣∣∣∣∣∣
∑

(a,b):pI(a,b)≥β

pR(a, b) · f(a, b)

∣∣∣∣∣∣ (8)

≤
∑

(a,b):pI(a,b)<β

pR(a, b) +

∣∣∣∣∣∣
∑

(a,b):pI(a,b)≥β

pR(a, b) · f(a, b)

∣∣∣∣∣∣
≤

∑
(a,b):pI(a,b)<β

((1 + α)pI(a, b) + β) +

∣∣∣∣∣∣
∑

(a,b):pI(a,b)≥β

pR(a, b) · f(a, b)

∣∣∣∣∣∣ (9)

≤ 22m · (2 + α)β +

∣∣∣∣∣∣
∑

(a,b):pI(a,b)≥β

pR(a, b) · f(a, b)

∣∣∣∣∣∣
≤ 22m · (2 + α)β +

∣∣∣∣∣∣
∑

(a,b):pI(a,b)≥β

(
pR(a, b)√
pI(a, b)

) · (
√
pI(a, b) · f(a, b))

∣∣∣∣∣∣
≤ 22m · (2 + α)β +

√√√√ ∑
(a,b):pI(a,b)≥β

p2
R(a, b)

pI(a, b)
·
√ ∑

(a,b):pI(a,b)≥β

pI(a, b) · f2(a, b) (10)

≤ 22m · (2 + α)β +

√√√√ ∑
(a,b):pI(a,b)≥β

(1 + α)2p2
I(a, b) + 2β(1 + α)pI(a, b) + β2

pI(a, b)
·
√ ∑

(a,b):pI(a,b)≥β

pI(a, b) · f2(a, b)

(11)

≤ 22m · (2 + α)β +
√

(1 + α)2 + 22m+1β(1 + α) + 2m · β
√
E(a,b)∼Ideal[f2(a, b)],

where (7) and (8) follow from the triangle inequality, (10) follows from Cauchy-Schwartz, (9) and (11) follow
from the properties of the relative error non-malleable extractor and non-negativity of pI(a, b) and pR(a, b).
Finally, setting α = 1/poly, β to be sufficiently small, and under the “square-security” assumption that
E(a,b)∼Ideal[f

2(a, b)] is negligible, we achieve the desired result.

D Non-Malleable Secret Sharing

In 2018, Goyal and Kumar introduced non-malleable secret-sharing. Recall that a secret sharing scheme for
an access structure A, allows one to share a secret to n parties such that any “authorized” set of parties
(according to A) can recover the secret, and any unauthorized set of parties learns nothing. To understand
what it means for a secret sharing scheme to be non-malleable, consider the following experiment: share
a secret, jointly tamper all the shares, reconstruct from the tampered shares of some authorized subset of
parties. Loosely speaking, a secret sharing scheme is said to be non-malleable if for any secret, any tampering
function, and any authorized set of parties: the output of this tampering experiment should either return
the original secret or a value unrelated to the original secret (and which of these two cases occurs should
also be independent of the original secret). (See Definition D.3 for details.)

In this section, we observe non-malleable codes for polynomial size circuit tampering imply non-malleable
secret sharing for polynomial size circuit tampering for a wide variety of access structures: any access structure
that an efficient secret sharing scheme. We additionally show that this connection holds even when the
tampering attack and reconstructing parties in the above experiment can be chosen as an arbitrary function
(not necessarily efficiently computable) of unauthorized shares, provided the efficient secret sharing scheme
satisfies an additional property which holds for any linear secret sharing scheme.
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D.1 Secret Sharing and Non-Malleable Secret Sharing

We recall the definition of secret sharing and establish some notation for this section. For more details on
secret sharing, see the classic survey due to Amos Beimel [Bei11].

Definition D.1 (Access Structure). Let [n] be a set of parties. An access structure is a monotone collection
A ⊆ 2[n] of non-empty subsets of [n]. We say sets in A are authorized and sets not in A are unauthorized.

Definition D.2 (Secret Sharing). Let K be a finite set of secrets, [n] a set of parties, and R1, . . . , Rn sets
of possible shares. A secret sharing scheme for an access structure A is a pair of algorithms (Share,Rec)
such that Share : K → R1 × · · · ×Rn is a randomized algorithm that maps secrets to n-tuples of shares and
Rec : A×R∗ 7→ K maps authorized sets of shares to secrets.

– Correctness: For any authorized set B = {i1, . . . , i`} ∈ A and any secret k ∈ K,

Pr[Rec(B, si1 , . . . , si`) = k; (s1, . . . , sn)← Share(k)] = 1

– Perfect Privacy: For any unauthorized set T = {i1, . . . , i`} /∈ A and any two secrets a, b ∈ K the
following two distributions are identical:

{(si1 , . . . , si`) : (s1, . . . , sn)← Share(a)} ≡ {(si1 , . . . , si`) : (s1, . . . , sn)← Share(b)}

We say a secret sharing scheme has complexity s(n), if both Share and Rec can be computed by (random-
ized) circuits of size s(n).

Let F be a finite field. A secret sharing scheme is said to be F-linear if K = F, Ri’s are F-vector spaces
and Share can be expressed as a F-linear function that takes as input (k, r) where k is the secret and r is a
uniformly random vector of field elements from F.

Definition D.3 (Non-Malleable Secret Sharing [GK18a]). A secret sharing scheme for an access structure
A is said to be ε-non-malleable with respect to a tamper class F ⊆ {Rn → Rn} if for every f ∈ F and every
authorized set B ∈ A, there is a distribution, SSimf,T over K ∪ {same} such that for any secret k ∈ K and
every authorized set B = i1, . . . , i` ∈ A the two distributions are ε-close:

(s1, . . . , sn)← Share(k)
(s̃1, . . . , s̃n) = f(s1, . . . , sn)

Rec(B, si1 , . . . , si`) = k̃

output k̃

 ≈ε
 x← SSimf,B

if x = same output k,
otherwise output x


D.2 Non-Malleable secret sharing from non-malleable codes

We begin by observing that, in contrast to many tampering classes studied in the literature, non-malleable
codes and non-malleable secret sharing schemes for poly-size circuit tampering are effectively equivalent.
In particular, if an access structure admits a secret sharing scheme such that sharing and reconstruction
are computable by size nc circuits, then non-malleable codes for size O(nc) circuit tampering imply non-
malleable secret sharing for size O(nc) circuit tampering! (Conversely, non-malleable secret sharing trivially
implies non-malleable codes.) The idea is that if the secret sharing scheme is efficient, then the non-malleable
code for this expressive tampering class can in fact handle “tampering attacks” that share, tamper, and then
reconstruct. Thus we can simply compose the non-malleable code with the secret sharing scheme to inherit
the security properties of the secret sharing scheme and the non-malleable code (Theorem D.4). Because
efficient secret sharing schemes are known for a wide array of access structures (in particular, any access
structure that can be represented by a monotone formula of size nc), efficient non-malleable secret sharing
schemes resilient to polynomial size circuit tampering for all such access structures follow as an immediate
corollary.

Theorem D.4. If (Enc,Dec) is an ε-non-malleable code for s(n)+2s′(n)-size circuit tampering, and (Share,Rec)
is a secret sharing scheme for access structure A where Share and Rec have complexity at most s′(n), then
(Share ◦ Enc,Dec ◦ Rec) is an ε-non-malleable secret sharing scheme for access structure A with respect to
s(n)-size circuit tampering.
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Sketch. Privacy follows immediately from the privacy of (Share,Rec). Correctness follows from the correctness
of (Share,Rec) and (Enc,Dec).

To see non-malleability, fix any size s(n) tampering attack on the non-malleable code and authorized
set B = i1, . . . , i` ∈ A. Now consider the function φf,B(c; r) that on input c with random coins r, (1)
computes shares (s1, . . . , sn) = Share(c; r), (2) tampers the shares (s̃1, . . . , s̃n) = f(s1, . . . , sn), and (3)
outputs c̃ = Rec(B, si1 , . . . , si`).

Because Share,Rec admit size s′(n) representations and f admits a size s(n) representation, for any coins
r, φf,B(·; r) can be computed by circuits of size s(n) + 2s′(n). Moreover, by inspection the non-malleable
secret sharing experiment with respect to f,B is identically distributed to the non-malleable code experiment
with respect to φf,B(·; r) where r is chosen uniformly at random.

Because the non-malleable code experiment with respect to φf,B(·; r) for any coins r can be simulated up
to distance ε with some distribution Dr. It follows that the convex combination of such experiments can be
simulated via D′, the convex combination of distributions Dr. And hence the non-malleable secret sharing
scheme can be simulated by D′ up to distance ε as well.

The following is an immediate corollary of the above and Theorem 4.2.

Corollary D.5. Assuming E is hard nondeterministic circuits of exponential size, for any polynomial p(n)
and any class of access structures A admitting an efficiently computable family of secret sharing schemes,
there exists an explicit 1/p(n)-non-malleable secret sharing scheme for access structures A robust against
tampering by p(n)-size circuits.

D.3 Adaptive Non-Malleable Secret Sharing

We go on to show that by asking slightly more of the underlying secret sharing scheme, this simple con-
struction satisfies a stronger definition of adaptive non-malleability [LCG+19b, BCL+20]. In adaptive non-
malleability, a computationally unbounded adversary may choose the tampering attack and reconstructing
parties as an arbitrary function of the shares of some unauthorized set of parties. (See Definition D.6 for
details.) We show that so long the secret sharing scheme admits an efficient procedure for “completing” adver-
sarial views (sampling a secret sharing that is consistent with any specific values for some unauthorized set of
shares). Note that any linear secret sharing scheme indeed admits such an efficient “completion” procedure.
Therefore, as an immediate corollary we get adaptive non-malleable secret schemes resilient to polynomial
size circuit tampering for any access structure with an efficient linear secret scheme (which includes any
access structure that can be represented by a monotone formula of size nc).

We begin by formalizing the definition of non-malleable secret sharing for adversaries that may choose a
tampering attack and reconstruction set arbitrarily as a function of some unauthorized set of shares. (Note
that this allows such an adversary to tamper the unauthorized shares arbitrarily.)

Definition D.6 (Non-Malleable Secret Sharing for Adaptive Adversaries [LCG+19b, BCL+20]). A secret
sharing scheme (Share,Rec) for access structure A is ε-non-malleable with respect to adaptive F tampering
if for any unauthorized set T = {i1, . . . , i`} /∈ A and any function α : Ri1 × · · · ×Ri` → F ×A, there exists
a distribution SSimT,α such that

(s1, . . . , sn)← Share(k)
(f,B)← α(si1 , . . . , si`)

(s̃1, . . . , s̃n) = f(s1, . . . , sn)

Rec(B, si1 , . . . , si`) = k̃

output k̃

 ≈ε
 x← SSimT,α

if x = same output k,
otherwise output x


Before stating our main lemma we need to define an additional property need from the underlying secret

sharing scheme: an efficient procedure for sampling a sharing of a secret consistent with any valid setting of
unauthorized shares.

Definition D.7. A secret sharing scheme (Share,Rec) for access structure A is said to admit completion with
complexity s(n) if for every unauthorized set of shares B = {i1, . . . , i`} /∈ A and any values s′i1 , . . . , s

′
i`

= s′B
consistent with the support of Share (there exists s′j for each j /∈ B and k ∈ K such that s′1, . . . , s

′
n ∈
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Supp(Share(k))), there is a distribution Cs′B over circuits of size at most s(n) such that for every k ∈ K that
identically samples sharing of k consistent with the unauthorized values:

Cs′B (k) ≡ {(s1, . . . , sn)← Share(k)|∀i ∈ B, si = s′i}

We observe the following naive bound on the complexity of completion for any linear secret sharing
scheme.

Proposition 6. Any F-linear secret sharing scheme admits completion with complexity O(N2poly log(|F|)),
where N is the total share size of the scheme (measured in number of field elements).

Sketch. Recall that due to linearity, Share can be written as Mx where x = (k, r1, . . . , rm)> for some m× n
matrix, M , where r1, . . . , rm are independently and uniformly drawn from F.

Thus, any set of unauthorized shares yields an underdetermined linear system. To sample a random
consistent sharing, it suffices to find a solution x to this system and then add a random vector from the null
space of M .

By preprocessing the linear system into reduced row eschelon form, we can, given any secret k, compute
a solution, x = (k, r)>, to this system with at most N non-zero entries with at most O(N2) arithmetic oper-
ations. Because x is N -sparse (with non-zero locations determined at preprocessing time), we can compute
y = Mx in time O(N2).

Finally, we simply output y + z where z is uniform vector from the nullspace of M (sampled during
preprocessing phase). The addition takes O(N) operations.

This gives us a distribution over circuits of size O(N2poly log(F)), C. Such that for any k, the random
variable C(k) formed by sampling a circuit C ← C and outputting C(k) is identically distributed to Share(k)
conditioned on the values of the specified unauthorized shares.

Now we are ready to prove the main theorem in this section.

Theorem D.8. If (Enc,Dec) is an ε-non-malleable code for s(n)+2s′(n)-size circuit tampering, and (Share,Rec)
is a secret sharing scheme for access structure A that admits completion with complexity s′(n) and addition-
ally (Share,Rec) have complexity at most s′(n), then (Share ◦ Enc,Dec ◦ Rec) is an ε-non-malleable secret
sharing scheme for access structure A with respect to s(n)-size circuit tampering.

Before proving we observe the following immediate Corollary of this Theorem, Proposition 6, and Theo-
rem 4.2.

Corollary D.9. Assuming E is hard nondeterministic circuits of exponential size, for any polynomial p(n)
and any class of access structures A admitting an efficiently computable family of linear secret sharing
schemes, there exists an explicit 1/p(n)-non-malleable secret sharing scheme for access structures A robust
against tampering by p(n)-size circuits.

Proof. Correctness and Privacy follow from Theorem D.4. It suffices to show adaptive non-malleability.
Fix any unauthorized set T = {i1, . . . , i`} ⊂ [n] and corresponding adversarial strategy α : Ri1 × · · · ×

Ri` → F ×A.
By perfect secrecy, we know that the residual distribution of the shares in T , for every secret, is identically

distributed to some fixed distribution DT . So, for any secret k, the output of Share(k) is identically distributed
to first sampling DT (independently of k) to get share values sT and only then completing the shares using
k by sampling s1, . . . , sn ← CsT (k).

Thus, the non-malleability experiment (sample shares, give unauthorized shares to adversary, α, to select
reconstruction set and tampering, then perform perform specied tampering and reconstruction) is identical
to the experiment where this alternative sharing procedure is used. Critically this alternative sharing, allows
us to sample the adversaries view (when choosing a tamepring and reconstruction set) indepedently of
the secret. We will use this fact to generate a distribution over tampering small circuit tampering attacks
independently of the non-malleable code experiment.

In particular consider the simulator S′ that works as follows (where Simτ is the simulator for the NMC
(Enc,Dec) with respect to tampering function τ):

– Sample sT ← DT
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– Sample C ← CsT
– Let f,B = α(sT )
– Define τ : x 7→ RecB(f(C(x)))
– Sample and output y ← Simτ .

Because RecB and C(x) can always be computed by size s′(n) circuits and f can be computed by a size s(n)
circuit, τ can be computed by a circuit of size 2s′(n) + s(n) and hence the Simτ is well-defined.

We are now prepared to define a sequence of hybrid experiments:

– Real Experiment H0:

(s1, . . . , sn)← Share(Enc(k))

α((sT ) = (f,B)

s̃1, . . . , s̃n = f(s1, . . . , sn)

k̃ = Dec(RecB(s̃B))

– Hybrid H1:

sT ← DT

C ← CsT
(s1, . . . , sn) = C(Enc(k))

α((sT ) = (f,B)

s̃1, . . . , s̃n = f(s1, . . . , sn)

k̃ = Dec(RecB(s̃B))

– Hybrid H2:

sT ← DT

α((sT ) = (f,B)

C ← CsT
(s1, . . . , sn) = C(Enc(k))

s̃1, . . . , s̃n = f(s1, . . . , sn)

k̃ = Dec(RecB(s̃B))

– Hybrid H3:

sT ← DT

α((sT ) = (f,B)
C ← CsT
τ(x)

def
= RecB(f(C(x))B)

Presampling τ

c← Enc(k)
c̃ = τ(c)

k̃ = Dec(c̃)

NMC Experiment w.r.t. τ

– Hybrid H4:

sT ← DT

α((sT ) = (f,B)
C ← CsT
τ(x)

def
= RecB(f(C(x))B)

Presampling τ

Copy(k,Simτ )
}

NMC Simulation w.r.t. τ
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– Simulation H5:

Copy(k, S′)

As argued above, H0 ≡ H1 ≡ H2. Similarly, one can observe H4 ≡ H5 (from the definition of S′). The
security of the NMC says that if we condition on the presampling of any specific τ∗ (and any message k),
Copy(k,Simτ∗) is ε-close to Dec(τ∗(Enc(k))). It follows from the triangle inequality that

H3 ≈ε H4.

This completes the proof.

E Missing Proofs

E.1 Proof of Proposition 1

We restate the proposition for completeness and then present the proof.

Proposition 2. Let X be a random variable and f a function. Define Y = f(X). For any ε and any random
variable Y ′,

∆(X; (X|f(X) = Y ′)) = ∆(Y ;Y ′).

Proof. Let X ′ ≡ (X|f(X) = Y ′).

∆(X;X ′) = ∆(XY ;X ′Y ′) =
1

2

∑
x,y

|Pr[Y = y] Pr[X = x|Y = y]− Pr[Y ′ = y] Pr[X ′ = x|Y ′ = y]|

=
1

2

∑
x,y

|Pr[Y = y] Pr[X = x|f(X) = y]− Pr[Y ′ = y] Pr[X ′ = x|f(X ′) = y]|

=
1

2

∑
x,y

|Pr[Y = y] Pr[X = x|f(X) = y]− Pr[Y ′ = y] Pr[X ′ = x|f(X) = y]|

=
1

2

∑
x,y

|Pr[Y = y]− Pr[Y ′ = y]|Pr[X = x|f(X) = y]

=
1

2

∑
y

|Pr[Y = y]− Pr[Y ′ = y]|
∑
x

Pr[X = x|f(X) = y]

=
1

2

∑
y

|Pr[Y = y]− Pr[Y ′ = y]|

= ∆(Y ;Y ′)

E.2 Proof of Lemma A.9

We restate the lemma for completeness and then present the proof.

Lemma 4.9. If (Enc,Dec) is an α-leakage-resilient augmented-split-state (2n, k, ε)-non-malleable code, then
it is an α-leakage-resilient augmented-split-state (2n, k, 2ε)-alternate-non-malleable code. If (Enc,Dec) is
an α-leakage-resilient augmented-split-state (2n, k, ε)-alternate-non-malleable code, then it is an α-leakage-
resilient augmented-split-state (2n, k, ε+ 2−k)-non-malleable code.

Proof. Our proof follows closely along the lines of the proof given in the work of Dziembowski et al. [DPW10].
We prove the statements in the presented sequence. Thus, assume that (Enc,Dec) is an α-leakage-resilient
augmented-split-state (2n, k, ε)-non-malleable code. By definition, there exists a simulator Sim = (Sim1,Sim2)
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s.t. for all α-leaky split-state tampering functions f, g and allm ∈ {0, 1}k, (Sim1(f, g),Copy(Sim2(f, g),m)) ≈ε
ANMf,g,Enc,Dec

m , where ANMf,g,Enc,Dec
m is defined in Definition A.1. Hence,

AltANMf,g
m0,m1

(0) ≡
{

cL, cR ← Enc(m0), (c̃L, c̃R, trans)← 〈f(cL), g(cR)〉 , m̃ = Dec(c̃)
Output (cL, trans, same) if m̃ ∈ {m0,m1}, and (cL, trans, m̃) otherwise.

}
≈ε
{

(cL, trans, m̃)← Sim(f, g)
Output (cL, trans, same) if m̃ ∈ {m0,m1, same}, and (cL, trans, m̃) otherwise.

}
≈ε
{

cL, cR ← Enc(m1), (c̃L, c̃R, trans)← 〈f(cL), g(cR)〉 , m̃ = Dec(c̃)
Output (cL, trans, same) if m̃ ∈ {m0,m1}, and (cL, trans, m̃) otherwise.

}
≡ AltANMf,g

m0,m1
(1).

Overall, we get that AltANMf
m0,m1

(0) ≈2ε AltANMf
m0,m1

(1), as required. This proves the first part of
the statement. For the second part, assume that (Enc,Dec) is an α-leakage-resilient augmented-split-state
(2n, k, ε)-alternate-non-malleable code. We construct a simulator Sim = (Sim1,Sim2) s.t.

(Sim1(f, g),Copy(Sim2(f, g),m)) ≈ε+2−k ANMf,g,Enc,Dec
m .

Sim works as follows:

– It samples m∗ ∈ {0, 1}k uniformly at random.
– It computes cL, cR ← Enc(m∗), (c̃L, c̃R, trans)← 〈f(cL), g(cR)〉, and m̃ = Dec(c̃L, c̃R)
– It outputs (cL, trans, same) if m̃ = m∗ and (trans, m̃) otherwise. (Here, same or m̃, respectively, corre-

sponds to the output of Sim2 and trans to the output of Sim1).

For all m, we have that

(Sim1(f, g),Copy(Sim2(f, g),m)) ≡

{
Sim1(f, g),Sim2(f, g) if Sim2(f, g) 6= same

Sim1(f, g),m if Sim2(f, g) = same.

≡
{

m∗ ∈ {0, 1}k, (cL, trans, m̃)← AltANMf,g
m,m∗(1)

Output (cL, trans,m) if m̃ = same, and (cL, trans, m̃) otherwise.

}
≈ε
{

m∗ ∈ {0, 1}k, (cL, trans, m̃)← AltANMf,g
m,m∗(0)

Output (cL, trans,m) if m̃ = same, and (cL, trans, m̃) otherwise.

}
≈2−k

{
(cL, cR)← Enc(m), (c̃L, c̃R, trans)← 〈f(cL), g(cR)〉 , m̃ = Dec(c̃L, c̃R)

Output (cL, trans, m̃).

}
≡ ANMf,g,Enc,Dec

m .

The ≈2−k is true because the two experiments in this case are equivalent unless m̃ = m∗, where m∗ ∈ {0, 1}k
is chosen uniformly at random.
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