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Abstract

Public-key encryption with keyword search (PEKS) does not provide trapdoor privacy, i.e.,
keyword information is leaked through trapdoors. To prevent this information leakage, public
key authenticated encryption with keyword search (PAEKS) has been proposed, where a sender’s
secret key is required for encryption, and a trapdoor is associated with not only a keyword but
also the sender. Liu et al. (ASIACCS 2022) proposed a generic construction of PAEKS based
on word-independent smooth projective hash functions (SPHFs) and PEKS. In this paper,
we propose a new generic construction of PAEKS. The basic construction methodology is the
same as that of the Liu et al. construction, where each keyword is converted into an extended
keyword using SPHFs, and PEKS is used for extended keywords. Nevertheless, our construction
is more efficient than Liu et al.’s in the sense that we only use one SPHF, but Liu et al.
used two SPHFs. In addition, for consistency we considered a security model that is stronger
than Liu et al.’s. Briefly, Liu et al. considered only keywords even though a trapdoor is
associated with not only a keyword but also a sender. Thus, a trapdoor associated with a
sender should not work against ciphertexts generated by the secret key of another sender, even
if the same keyword is associated. Our consistency definition considers a multi-sender setting
and captures this case. In addition, for indistinguishability against chosen keyword attack
(IND-CKA) and indistinguishability against inside keyword guessing attack (IND-IKGA), we
use a stronger security model defined by Qin et al. (ProvSec 2021), where an adversary is
allowed to query challenge keywords to the encryption and trapdoor oracles. We also highlight
several issues associated with the Liu et al. construction in terms of hash functions, e.g., their
construction does not satisfy the consistency that they claimed to hold.

1 Introduction

For providing a search functionality against encrypted keyword, public key encryption with key-
word search (PEKS) has been proposed by Boneh et al. [7]. As a feasibility result, PEKS can
be generically constructed from anonymous identity-based encryption (IBE) [1]. PEKS is briefly
explained as follows. A sender encrypts a keyword using a receiver public key. A receiver generates
a token to search for a keyword, called trapdoor, using the receiver’s secret key. Then, based on
the test algorithm, anyone can determine whether a ciphertext is an encryption of a keyword using

∗An extended abstract appeared at ACM APKC 2022.
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a trapdoor. The test algorithm outputs 1 if the two keywords used for encryption and trapdoor
generation are the same. In addition to this correctness, consistency is required, with the test
algorithm outputting 0 if the two keywords used for encryption and trapdoor generation differ.
Moreover, it is required that no information of keyword is leaked from ciphertexts. Unfortunately,
PEKS does not provide trapdoor privacy, that is, information of keyword is leaked from trapdoors.
More concretely, one can freely generate a ciphertext of an arbitrary-chosen keyword using the
receiver’s public key. Thus, when one obtains a trapdoor, one can check whether the trapdoor is
associated to the keyword via the test algorithm.1 One way to prevent the keyword guessing attack
is to restrict searching, and another way is to restrict encryption.

The former approach is called designated-tester PEKS [3,16–19,31–33].2 A server, who runs the
test algorithm, also has a public key and a secret key pair. A sender, who generates a ciphertext,
encrypts a keyword using both a receiver public key and the server public key. Then, the server
secret key is required for running the test algorithm, in addition to a trapdoor. The latter approach
is called public key authenticated encryption with keyword search (PAEKS) [11, 12, 20, 23, 24, 26,
28–30], and we focus on PAEKS in this paper. A sender, who generates a ciphertext, has a public
key and a secret key pair. The sender encrypts a keyword using both a receiver’s public key and
the sender’s secret key. A trapdoor is associated with both a keyword and a sender’s public key.
That is, the trapdoor only works against ciphertexts generated by the corresponding sender’s secret
key. Currently, two generic constructions of PAEKS have been proposed [23, 24]. Liu et al. [24]
claimed that the construction proposed in [23] does not follow the syntax of PAEKS because it
requires a trusted authority to assist users in generating their private keys. More precisely, the
setup algorithm outputs a master secret key, and other sender/receiver key generations require the
master secret key. Thus, we mainly consider the Liu et al. generic construction [24] in this paper.
They employed word-independent smooth projective hash functions (SPHFs) [5,21]. Each keyword
is converted into an extended keyword using SPHF, and they employed PEKS for these extended
keywords. We revisit their construction methodology in Section 4.

Our Contribution. In this paper, we propose a new generic construction of PAEKS from public
key encryption (PKE), word-independent SPHF, pseudorandom function (PRF), and PEKS. The
basic construction methodology is the same as that of the Liu et al. construction. Nevertheless,
our construction is more efficient than the Liu et al. construction in the sense that we just employ
one SPHF but Liu et al. employed two SPHFs. Moreover, for consistency we consider a stronger
security model than that of Liu et al. Briefly, they just considered keywords while a trapdoor is
associated with not only a keyword but also a sender. So, a trapdoor associated to a sender should
not work against ciphertexts generated by a secret key of other sender, even if the same keyword
is associated. Our definition considers a multi-sender setting, and captures this case. In addition,
for indistinguishability against chosen keyword attack (IND-CKA) and indistinguishability against
inside keyword guessing attack (IND-IKGA) (defined in Section 3.2), we employ a stronger security
model defined by Qin et al. [30] where an adversary is allowed to query challenge keywords to the
encryption and trapdoor oracles (though we modify it in accordance with our syntax).

1Boneh, Raghunathan, and Segev proposed function-private IBE [9]. They showed that function-private IBE (with
anonymity) can be used for constructing PEKS schemes that are provably keyword private. Concretely, a trapdoor
enables to identify encryptions of an underlying keyword, while not revealing any additional information about the
keyword beyond the minimum necessary, as long as the keyword is sufficiently unpredictable. Owing to the search
functionality of PEKS, it is inevitable to leak information of keyword as mentioned.

2In PEKS, a receiver needs to send a trapdoor to the server via a secure channel since anyone who has a trapdoor
can run the test algorithm. On the other hand, the server secret key is required to run the test algorithm in designated-
tester PEKS, and thus no secure channel between the server and the receiver is required. Therefore, designated-tester
PEKS is alternatively called secure channel free PEKS (SCF-PEKS).
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We also point out there are several issues in the Liu et al. proposal regarding their construction
and security models (See Section 4.2 in detail). The main issue is related to hash functions they
employed. First, their construction does not satisfy the consistency requirement that they claimed
to hold. Second, they assume that a hash value does not leak input information, but it is not
guaranteed by the one-wayness of hash functions. These issues may be solved by introducing other
consistency definitions and by assuming that the underlying hash functions are modeled as random
oracles. Besides these issues, they considered a weak security model, as previously mentioned.

We introduce a designated-receiver setting, where the sender key generation algorithm takes as
input a receiver’s public key. The setting allows us to remove a trusted setup assumption (In other
words, if we assume a trusted setup, we do not have to introduce the designated-receiver setting).
See Section 3.1 in detail.

Disclaimer. We checked the ePrint version of Liu et al. paper (Version 3, posted on 23-Nov-
2021) [24] that is the same as their AsiaCCS 2022 version as they declared.

2 Preliminaries

Notations. For a positive integer n ∈ N, we write [1, n] = {1, 2, . . . , n}. If A is a probabilistic
algorithm, y ← A(x; r) denotes the operation of running A on an input x and a randomness r, and

letting y be the output. We omit r when it is not necessary to specify. x
$←− S denotes choosing

an element x from a finite set S uniformly at random. For a security parameter λ, negl(λ) is a
negligible function where for any c > 0, there exists an integer I such that negl(λ) < 1/λc for all
λ > I.

2.1 Pseudorandom Functions (PRFs)

Let m and ℓ be polynomial and λ be a security parameter. A pseudorandom function (PRF) is a
family of functions PRF = {FK : {0, 1}m(λ) → {0, 1}ℓ(λ)} where K ∈ {0, 1}λ.

Definition 1 (Pseudo-randomness). We say that PRF is pseudo-random if for all probabilistic

polynomial-time (PPT) adversaries A, Advpseudo-randomPRF,A (λ) := |Pr[K $←− {0, 1}λ : AFK(·)(1λ) =

1] − Pr[R
$←− RF : AR(·)(1λ) = 1]| is negligible in the security parameter λ where RF is a set of

random functions mapping m(λ) bits to ℓ(λ) bits.

2.2 Public Key Encryption (PKE)

A PKE scheme PKE consists of three algorithms (PKE.KeyGen,PKE.Enc,PKE.Dec). The key gen-
eration algorithm PKE.KeyGen takes a security parameter λ as input, and outputs a public key
pkPKE and a secret key dkPKE. The encryption algorithm takes pkPKE and a plaintext M ∈MS as
input, whereMS is a message space, and outputs a ciphertext ctPKE. When we need to explicitly
treat the randomness ρ for encryption, we denote ctPKE ← PKE.Enc(pkPKE,M ; ρ). The decryption
algorithm PKE.Dec takes dkPKE and ctPKE as input, and outputs M . For correctness, it is re-
quired that for any security parameter λ, any (pkPKE, dkPKE)← PKE.KeyGen(1λ) and any plaintext
M ∈ MS, Pr[PKE.Dec(dkPKE,PKE.Enc(pkPKE,M)) = M ] = 1 − negl(λ) holds. We also require
that the standard indistinguishability against chosen plaintext attack (IND-CPA) holds. Let state
be state information that A can preserve any information, and state is used for transferring state
information to the other stage.
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Definition 2 (IND-CPA). For all PPT adversaries A, we define the following experiment:

ExpIND-CPA
PKE,A (λ) :

(pkPKE, dkPKE)← PKE.KeyGen(1λ)

(M∗
0 ,M

∗
1 , state)← A(pkPKE)

s.t. M∗
0 ,M

∗
1 ∈MS ∧M∗

0 ̸= M∗
1 ∧ |M∗

0 | = |M∗
1 |

b
$←− {0, 1}; ct∗PKE ← PKE.Enc(pkPKE,M

∗
b )

b′ ← A(ct∗PKE, state)
If b = b′ then output 1 and 0 otherwise.

We say that a PKE scheme PKE is IND-CPA secure if the advantage AdvIND-CPA
PKE,A (λ) := Pr[ExpIND-CPA

PKE,A (λ) =
1] = negl(λ).

2.3 Word-independent Smooth Projective Hash Functions (SPHFs)

Cramer and Shoup proposed hash proof systems (HPSs) [13], which are special kind of non-
interactive zero-knowledge proof systems for a language, for constructing PKE. Later, several
applications of HPSs have been considered such as password-based authenticated key exchange
(PAKE) (e.g., [5, 21]). In this paper, we employ word-independent smooth projective hash func-
tions (SPHFs) (which are also called KV-SPHF [5] in reference to [21]). We introduce the definition
given by Benhamouda et al. [6].

Definition 3 (Languages). Let Setup.lpar be a PPT algorithm that takes a security parameter λ
as input, and outputs (lpar, ltrap) where lpar is a parameter and ltrap is a trapdoor. Llpar,ltrap is a

language indexed by (lpar, ltrap) together with an NP language indexed by lpar L̃lpar, with witness

relation R̃lpar such that L̃lpar = {χ ∈ Xlpar | ∃w s.t. R̃lpar(χ,w) = 1} ⊆ Llpar,ltrap ⊆ Xlpar. We

denote (L̃lpar,Llpar,ltrap,Xlpar)lpar,ltrap as a family of languages.

Next, we define languages of ciphertexts. Benhamouda et al. [6] introduced languages of cipher-
texts for a labeled PKE scheme. More precisely, Benhamouda et al. defined the languages for
a IND-CCA2 secure labeled PKE scheme that is converted from (a simplified variant of) the
tag-IND-CCA2 secure Micciancio-Peikert PKE scheme [25] using the Dolev-Dwork-Naor (DDN)
transformation [14]. Then, they also showed that the tag PKE scheme is IND-CPA secure when
the tag of the ciphertext is known in advance or is constant, and proposed a word-independent
SPHF for IND-CPA ciphertexts. Since we need to employ the word-independent SPHF, we focus
on their languages of IND-CPA ciphertexts. Since the tag/label can be a constant value, it can
be included in pkPKE in advance, and then we do not have to consider tag/label anymore. Thus,
we define languages of ciphertexts for a standard PKE scheme (defined in Section 2.2). Moreover,
Benhamouda et al. focused on the languages of ciphertexts of 0, we also consider such ciphertexts
as follows.

Definition 4 (Languages of Ciphertexts [6]). Let PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) be a
PKE scheme. The Setup.lpar algorithm is set as PKE.KeyGen, and (lpar, ltrap) = (pkPKE, dkPKE).

Then, languages of ciphertexts are defined as L̃pkPKE = {ctPKE | ∃ρ s.t. ctPKE = PKE.Enc(pkPKE, 0; ρ)}
⊆ LpkPKE,dkPKE = {ctPKE | PKE.Dec(dkPKE, ctPKE) = 0} where XpkPKE is a set of valid ciphertexts

generated by pkPKE. Here, R̃lpar(ctPKE, ρ) = 1 iff ctPKE = PKE.Enc(pkPKE, 0; ρ).
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In the actual Benhamouda et al. construction, dual-Regev ciphertexts of 0 is considered: c =
As+ e ∈ Zm

q where A ∈ Zm×n
q is a public matrix, s ∈ Zn

q and e ∈ Zm
q are the randomness. If e is

supposed to be small, then c is close to the q-ary lattice Λ generated by A. On the other hand, if c
is an encryption of 1, then c is far from the q-ary lattice Λ generated by A. Thus, whether a word
c belongs to L̃pkPKE (i.e., a ciphertext of 0) or XpkPKE \LpkPKE (i.e., a ciphertext whose decryption
result is 1) is indistinguishable owing to the IND-CPA security of PKE. Obviously, the membership
in LpkPKE,dkPKE can be checked in polynomial time by dkPKE.

Next, we define the syntax of word-independent SPHF. Here, the term “word independent”
means that the ProjKG algorithm does not take a word χ ∈ Xlpar as an input, and the smoothness
(defined below) holds even if the word is chosen adaptively after seeing the projection key (thus,
the smoothness is called adaptive smoothness).

Definition 5 (Syntax of Word-independent SPHF [6]). Let (L̃lpar,Llpar,ltrap,Xlpar)lpar,ltrap be a
family of languages. A word-independent SPHF WI-SPHF for these languages consists of four
algorithms (HashKG,ProjKG,Hash,ProjHash) defined as follows. Let λ be a security parameter used
for running the Setup.lpar algorithm.

HashKG: The hash key generation algorithm takes lpar as input, and outputs a hashing key hk.

ProjKG: The projection key derivation algorithm takes hk and lpar as input, and outputs a projection
key hp.

Hash: The hash algorithm takes hk, lpar, and a word χ ∈ Xlpar as input, and outputs a hash value
H ∈ {0, 1}ν for some positive integer ν = Ω(λ).

ProjHash: The projected hash algorithm takes hp, lpar, χ, and the witness w for the word χ ∈ L̃lpar

as input, and outputs a projected hash value pH ∈ {0, 1}ν .

Definition 6 (Correctness [6]). For any security parameter λ, let (lpar, ltrap) ← Setup.lpar(1λ).

With overwhelming probability over the randomness of Setup.lpar, for any χ ∈ L̃lpar and associated
witness w, H ← Hash(hk, lpar, χ) is approximately determined by hp ← ProjKG(hk, lpar) relative to
the Hamming distance HD where Pr[HD(Hash(hk, lpar, χ),ProjHash(hp, lpar, χ, w) > ϵ · ν] = negl(λ).
Here, the probability is taken over the choice of hk← HashKG(lpar) and the randomness of Hash and
ProjHash.3 Then, we say that WI-SPHF is approximately ϵ-correct. Moreover, we say that WI-SPHF
is statistically correct if it is 0-correct.

We remark that Benhamouda et al. first constructed a word-independent bit-PHF for languages
of IND-CPA ciphertexts, where the hash value is just a bit (i.e., ν = 1). Next they showed that a
word-independent SPHF, with the output length {0, 1}ν where ν = Ω(λ), can be constructed from
a word-independent bit-PHF generically (Lemma B.4 [6]). Here, the original word-independent
bit-PHF is supposed to be statistically correct (if it is approximate ϵ-correct, then the converted
SPHF is not word-independent due to additional error correcting codes, even the underlying bit-
PHF is word-independent). Thus, we employ correctness rather than approximate correctness.
Benhamouda et al. showed how to construct a bit-PHF with statistical correctness (Lemma 4.1 [6]).4

Definition 7 (Adaptive Smoothness [6]). For any security parameter λ, let (lpar, ltrap)← Setup.lpar(1λ).
With overwhelming probability over the randomness of Setup.lpar, for all function f onto Xlpar\Llpar,

3As mentioned by Benhamouda et al., they considered probabilistic Hash and ProjHash algorithms.
4Li and Wang [22] proposed a word-independent approximate SPHF without employing error correcting codes.

While this may be employed in our construction, however, we prefer correctness because it is more desirable.
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the following two distributions have statistical distance negligible in λ:

{(lpar, f(hp), hp,H)|hk← HashKG(lpar), hp← ProjKG(hk, lpar),H← Hash(hk, lpar, f(hp))}

and
{(lpar, f(hp), hp,H)|hk← HashKG(lpar), hp← ProjKG(hk, lpar),H

$←− {0, 1}ν}

2.4 Public-key Encryption with Keyword Search (PEKS)

In this section, we introduce the definitions of PEKS given in [1].

Definition 8 (Syntax of PEKS [1]). A PEKS scheme PEKS consists of four algorithms (PEKS.KG,
PEKS.Enc,PEKS.Trapdoor,PEKS.Test) defined as follows.

PEKS.KG: The key generation algorithm takes a security parameter λ as input, and outputs a public
key pkPEKS and a secret key skPEKS. We assume that pkPEKS implicitly contains the keyword
space KS.

PEKS.Enc: The keyword encryption algorithm takes pkPEKS and a keyword kw ∈ KS as input, and
outputs a ciphertext ctPEKS.

PEKS.Trapdoor: The trapdoor algorithm takes pkPEKS, skPEKS, and a keyword kw ∈ KS as input,
and outputs a trapdoor tdkw.

PEKS.Test: The test algorithm takes ctPEKS and tdkw as input, and outputs 1 or 0.

In accordance with the definition given in [1], correctness and consistency are separately defined.
Briefly, for a ciphertext of a keyword kw and a trapdoor of a keyword kw′, the former guarantees
that the PEKS.Test algorithm outputs 1 if kw = kw′, and the latter guarantees that the PEKS.Test
algorithm outputs 0 if kw ̸= kw′. We emphasize that we employ computational consistency, i.e.,
consistency holds against computationally bounded adversaries.

Definition 9 (Correctness [1]). For any security parameter λ, any key pairs (pkPEKS, skPEKS) ←
PEKS.KG(1λ) and any keyword kw ∈ KS, let ctPEKS ← PEKS.Enc(pkPEKS, kw) and tdkw ←
PEKS.Trapdoor(pkPEKS, skPEKS, kw). Then Pr[PEKS.Test(ctPEKS, tdkw) = 1] = 1− negl(λ) holds.

Definition 10 (Computational Consistency [1]). For all PPT adversaries A, we define the fol-
lowing experiment:

ExpconsistPEKS,A(λ) :

(pkPEKS, skPEKS)← PEKS.KG(1λ)

(kw, kw′)← A(pkPEKS) s.t. kw, kw′ ∈ KS ∧ kw ̸= kw′

ctPEKS ← PEKS.Enc(pkPEKS, kw)

tdkw′ ← PEKS.Trapdoor(pkPEKS, skPEKS, kw
′)

If PEKS.Test(ctPEKS, tdkw′) = 1

then output 1 and 0 otherwise.

We say that a PEKS scheme PEKS is consistent if the advantage AdvconsistPEKS,A(λ) := Pr[ExpconsistPEKS,A(λ) =
1] is negligible in the security parameter λ.
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Next, we define ciphertext indistinguishability against chosen keyword attack (IND-CKA)5 which
guarantees that no information of keyword is leaked from ciphertexts.

Definition 11 (IND-CKA [1]). For all PPT adversaries A, we define the following experiment:

ExpIND-CKA
PEKS,A (λ, n) :

(pkPEKS, skPEKS)← PEKS.KG(1λ)

(kw∗
0, kw

∗
1, state)← AOT (pkPEKS,skPEKS,·)(pkPEKS)

s.t. kw∗
0, kw

∗
1 ∈ KS ∧ kw∗

0 ̸= kw∗
1

b
$←− {0, 1}; ct∗PEKS ← PEKS.Enc(pkPEKS, kw

∗
b )

b′ ← AOT (pkPEKS,skPEKS,·)(state, ct∗PEKS)

If b = b′ then output 1 and 0 otherwise.

OT takes kw ∈ KS as input, and returns tdkw ← PEKS.Trapdoor(pkPEKS, skPEKS, kw). Here
kw ̸∈ {kw∗

0, kw
∗
1}. We say that a PEKS scheme PEKS is IND-CKA secure if the advantage

AdvIND-CKA
PEKS,A (λ, n) := Pr[ExpIND-CKA

PEKS,A (λ, n) = 1] is negligible in the security parameter λ.

We emphasize that PEKS does not provide trapdoor privacy, i.e., information of kw is leaked from
tdkw. Actually, for some trapdoor tdkw, anyone can compute ctPEKS ← PEKS.Enc(pkPEKS, kw

′) for
any kw′ ∈ KS, and then anyone can check whether kw = kw′ or not by running PEKS.Test(ctPEKS, tdkw).

3 Definitions of Designated-Receiver Multi-Sender PAEKS

3.1 Designated-Receiver Setting

In the previous definition [11,12,20,24,26,28–30], a setup algorithm is defined that takes a security
parameter as input, and outputs a public parameter pp. Then, two key generation algorithms,
PAEKS.KGR and PAEKS.KGS, are defined which take as input pp, and output a key pair, respectively.
In our definition, the sender key generation algorithm PAEKS.KGS takes a receiver public key pkR
as input, i.e., our definition captures a designated-receiver setting.

One may think that this setting restricts the flexibility of key generations. However, a sender
needs to designate a receiver before the sender encrypts a keyword. Then, due to the functionality of
PAEKS, the sender needs to use its own secret key skS. Since the sender has designated the receiver,
the designated-receiver key generation does not restrict encryption. Of course, the designated-
receiver setting restricts the order of searching, i.e., no trapdoor can be generated before the
corresponding sender’s public key is generated. Beyond this restriction, there is a merit of the
designated-receiver setting that can avoid introducing a trusted setup. It is required in the Liu
et al. construction [24] that no one knows a decryption key dkPKE of the underlying PKE scheme
because dkPKE = ltrap can be used to break the underlying membership problem. Thus, the setup
algorithm outputs pkPKE only. Liu et al. introduced a hash function that generates pkPKE (it seems
to guarantee that there is no corresponding decryption key). However, how to construct such a
hash function is unclear (we will discuss it in detail in Section 4.2). In the designated-receiver
setting, the PAEKS.KGR algorithm simply runs (pkPKE, dkPKE) ← PKE.KeyGen(1λ) and dkPKE can
be regarded as a secret key of the receiver. Then, we do not have to consider how to erase dkPKE
anymore (we will show that giving dkPKE to a receiver does not affect security). In other words, if
we assume a trusted setup, where a setup algorithm runs (pkPKE, dkPKE)← PKE.KeyGen(1λ), erase

5In [1], this security notion is called PEKS-IND-CPA.
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dkPKE and outputs pkPKE only as a public parameter, we do not have to introduce the designated-
receiver setting. However, it would be better to clarify who can know dkPKE. In this sense, our
setting is more desirable.

3.2 Definitions of PAEKS

Owing to the functionality of PAEKS, a trapdoor is associated with not only a keyword kw but
also a sender by indicating the sender’s public key pkS. Thus, we explicitly denote a trapdoor
tdS,kw. Because we consider multiple senders, the PAEKS.KGS algorithm is run by each sender.
For simplicity, we assume that there are n senders, and we denote the i-th sender’s key pair as
(pkS[i], skS[i]) where i ∈ [1, n] is the sender index, and denote tdS[i],kw as a trapdoor generated by
indicating pkS[i] and kw. We use (pkS, skS) and tdS,kw when no sender index is explicitly appeared.

Definition 12 (Syntax of Designated-Receiver Multi-Sender PAEKS). A PAEKS scheme PAEKS
consists of five algorithms (PAEKS.KGR,PAEKS.KGS,PAEKS.Enc,PAEKS.Trapdoor,PEKS.Test) de-
fined as follows.

PAEKS.KGR: The receiver key generation algorithm takes a security parameter λ as input, and
outputs a public key pkR and a secret key skR. We assume that pkR implicitly contains the
keyword space KS.

PAEKS.KGS: The sender key generation algorithm takes pkR as input, and outputs a public key pkS
and a secret key skS.

PAEKS.Enc: The keyword encryption algorithm takes pkR, pkS, skS, and a keyword kw ∈ KS as
input, and outputs a ciphertext ctPAEKS.

PAEKS.Trapdoor: The trapdoor algorithm takes pkR, pkS, skR, and a keyword kw ∈ KS as input,
and outputs a trapdoor tdS,kw.

PAEKS.Test: The test algorithm takes ctPAEKS and tdS,kw as input, and outputs 1 or 0.

Definition 13 (Correctness). For any security parameter λ, any key pairs (pkR, skR)← PAEKS.KGR(1
λ)

and (pkS, skS)← PAEKS.KGS(pkR), and any keyword kw ∈ KS, let ctPAEKS ← PAEKS.Enc(pkR, pkS,
skS, kw) and tdS,kw ← PAEKS.Trapdoor(pkR, pkS, skR, kw). Then Pr[PAEKS.Test(ctPAEKS, tdS,kw) =
1] = 1− negl(λ) holds.

Next, we define consistency. Previous works employ the following definition: as in the same setting
of the correctness, except for two keywords kw, kw′ ∈ KS,

Pr[PAEKS.Test(ctPAEKS, tdS,kw′) = 0] = 1− negl(λ)

holds where ctPAEKS is a ciphertext of kw, tdS,kw′ is a trapdoor of kw′, and kw ̸= kw′. Before giving
our definition, we point out two problems of this previous definition.

1. It captures statistical consistency where it requires to hold even against computationally
unbounded adversaries. However, the previous schemes do not satisfy this definition because
they used a collision-resistant hash function for providing consistency (i.e., if kw ̸= kw′, then
its hash values are supposed to be different). That is, there “exists” kw and kw′ such that its
hash values are the same but kw ̸= kw′ and computationally unbounded adversaries can find
them. Thus, we need to consider computationally bounded adversaries. Of course, there is a
room for providing statistical consistency as in a PEKS scheme given by Abdalla et al. [1].
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We remark that the construction methodology of the statistically consistent Abdalla et al.
PEKS scheme completely contradicts trapdoor privacy because a keyword itself is contained
in a trapdoor (this setting does not contradict to provide IND-CKA). Thus it seems difficult
to construct a statistically consistent PAEKS scheme with trapdoor privacy (though we do
not exclude the possibility). Thus, in this paper we define computational consistency that
considers PPT adversaries.

2. The previous definitions only considered keywords, however, a trapdoor is associated with
not only a keyword kw but also a sender by indicating the sender’s public key pkS. Thus, for
ctPAEKS ← PAEKS.Enc(pkR, pkS[0], skS[0], kw) and tdS[1],kw′ ← PAEKS.Trapdoor(pkR, pkS[1], skR,
kw′), PAEKS.Test(ctPAEKS, tdS[1],kw′) = 0 should be hold even if kw = kw′. This case is not
captured in the previous definition. We consider this case by setting (kw, i) ̸= (kw′, j) in the
experiment.

Definition 14 (Computational Consistency). For all PPT adversaries A, we define the following
experiment:

ExpconsistPAEKS,A(λ) :

(pkR, skR)← PAEKS.KGR(1
λ)

(pkS[0], skS[0])← PAEKS.KGS(pkR)

(pkS[1], skS[1])← PAEKS.KGS(pkR)

(kw, kw′, i, j)← A(pkR, pkS[0], pkS[1])
s.t. kw, kw′ ∈ KS ∧ i, j ∈ {0, 1} ∧ (kw, i) ̸= (kw′, j)

ctPAEKS ← PAEKS.Enc(pkR, pkS[i], skS[i], kw)

tdS[j],kw′ ← PAEKS.Trapdoor(pkR, pkS[j], skR, kw
′)

If PAEKS.Test(ctPAEKS, tdS[j],kw′) = 1

then output 1 and 0 otherwise.

We say that a PAEKS scheme PAEKS is consistent if the advantage AdvconsistPAEKS,A(λ) := Pr[ExpconsistPAEKS,A(λ) =
1] is negligible in the security parameter λ.

Next, we define two indistinguishability notions. First, we define ciphertext privacy by formalizing
indistinguishability against chosen keyword attack (IND-CKA) which guarantees that no informa-
tion of keyword is leaked from ciphertexts (as in PEKS). In the previous IND-CKA definition, two
oracles are defined, an encryption oracle OC and a trapdoor oracle OT . Then, two keywords, kw∗

0

and kw∗
1 are chosen by the adversary A, and the challenge ciphertext ct∗PAEKS is computed by either

kw∗
0 or kw∗

1. Here, we need to consider what values can be input to these oracles. To exclude the
trivial case, we need to restrict A to obtaining a ciphertext that can be used for distinguishing
between kw∗

0 and kw∗
1. In other words, A should be allowed to obtain any trapdoor excluding the

above case, e.g., tdS,kw∗
0
← PAEKS.Trapdoor(pkR, pkS, skR, kw

∗
0) if skS is not used for generating the

challenge ciphertext. In almost previous definition, A is not allowed to input kw∗
0 and kw∗

1 to OC

and OT . Qin et al. [30] have improved this restriction where kw∗
0 and kw∗

1 can be inputs. For OT ,
the receiver is fixed and it matches the multi-sender setting. For OC , the sender is fixed, and it
does not consider the multi-sender setting. Thus, we modify the definition of OC following the
multi-sender setting.
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Definition 15 (IND-CKA). For all PPT adversaries A, we define the following experiment:

ExpIND-CKA
PAEKS,A(λ, n) :

(pkR, skR)← PAEKS.KGR(1
λ)

For i ∈ [1, n], (pkS[i], skS[i])← PAEKS.KGS(pkR)

(kw∗
0, kw

∗
1, i

∗, state)← AOC(pkR,·,·),OT (pkR,·,skR,·)(pkR, {pkS[i]}i∈[1,n])
s.t. kw∗

0, kw
∗
1 ∈ KS ∧ kw∗

0 ̸= kw∗
1 ∧ i∗ ∈ [1, n]

b
$←− {0, 1}; ct∗PAEKS ← PAEKS.Enc(pkR, pkS[i∗], skS[i∗], kw

∗
b )

b′ ← AOC(pkR,·,·),OT (pkR,·,skR,·)(state, ct∗PAEKS)

If b = b′ then output 1 and 0 otherwise.

OC takes kw ∈ KS and i ∈ [1, n] as input, and returns PAEKS.Enc(pkR, pkS[i], skS[i], kw). Here, there
is no restriction. OT takes kw ∈ KS and i ∈ [1, n] as input, and returns PAEKS.Trapdoor(pkR,
pkS[i], skR, kw). Here (kw, i) ̸∈ {(kw∗

0, i
∗), (kw∗

1, i
∗)}. We say that a PAEKS scheme PAEKS is

IND-CKA secure if the advantage AdvIND-CKA
PAEKS,A(λ, n) := Pr[ExpIND-CKA

PAEKS,A(λ, n) = 1] is negligible in the
security parameter λ.

Next, we define trapdoor privacy by formalizing indistinguishability against inside keyword guessing
attack (IND-IKGA) which guarantees that no information of keyword is leaked from trapdoors. To
exclude the trivial case, we need to restrict that A obtains a ciphertext that can be used for
distinguishing kw∗

0 or kw∗
1. Again we revisit Qin et al.’s definition [30]. For OT , the receiver is

fixed, and it matches the multi-sender setting. For OC the sender is fixed and it does not capture
the multi-sender setting. So, we modify the definition of OC in accordance with the multi-sender
setting.

Definition 16 (IND-IKGA). For all PPT adversaries A, we define the following experiment:

ExpIND-IKGA
PAEKS,A (λ, n) :

(pkR, skR)← PAEKS.KGR(1
λ)

For i ∈ [1, n], (pkS[i], skS[i])← PAEKS.KGS(pkR)

(kw∗
0, kw

∗
1, i

∗, state)← AOC(pkR,·,·),OT (pkR,·,skR,·)(pkR, {pkS[i]}i∈[1,n])
s.t. kw∗

0, kw
∗
1 ∈ KS ∧ kw∗

0 ̸= kw∗
1 ∧ i∗ ∈ [1, n]

b
$←− {0, 1}; td∗S[i∗],kw∗

b
← PAEKS.Trapdoor(pkR, pkS[i∗], skR, kw

∗
b )

b′ ← AOC(pkR,·,·),OT (pkR,·,skR,·)(state, td∗S[i∗],kw∗
b
)

If b = b′ then output 1 and 0 otherwise.

OC takes kw ∈ KS and i ∈ [1, n] as input, and returns PAEKS.Enc(pkR, pkS[i], skS[i], kw). Here,
(kw, i) ̸∈ {(kw∗

0, i
∗), (kw∗

1, i
∗)}. OT takes kw ∈ KS and i ∈ [1, n] as input, and returns PAEKS.Trapdoor(pkR,

pkS[i], skR, kw). Here (kw, i) ̸∈ {(kw∗
0, i

∗), (kw∗
1, i

∗)}. We say that a PAEKS scheme PAEKS is

IND-IKGA secure if the advantage AdvIND-IKGA
PAEKS,A (λ, n) := Pr[ExpIND-IKGA

PAEKS,A (λ, n) = 1] is negligible in
the security parameter λ.

Relation between Our Definitions and Multi-Ciphertext/Trapdoor Indistinguishabil-
ity. Qin et al. [29] considered multi-ciphertext indistinguishability (MCI) where in the IND-CKA
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experiment A declares two keyword vectors (kw∗
0,1, . . . , kw

∗
0,N ) and (kw∗

1,1, . . . , kw
∗
1,N ) for some N ,

and the challenger returns the challenge ciphertexts of kw∗
b,i for i ∈ [1, N ]. As mentioned in [30],

if the encryption oracle OC has no restriction (i.e., any input is allowed), then IND-CKA implies
MCI. Thus, our IND-CKA definition provides MCI security.

Similarly, Pan and Li [28] considered multi-trapdoor indistinguishability (MTI) where in the
IND-IKGA experiment A declares two keyword vectors (kw∗

0,1, . . . , kw
∗
0,N ) and (kw∗

1,1, . . . , kw
∗
1,N )

for some N , and the challenger returns the challenge trapdoors of kw∗
b,i for i ∈ [1, N ]. Unfortu-

nately, our IND-IKGA definition does not directly imply MTI. That is, if A is allowed to send
either (kw∗

0, i
∗) or (kw∗

1, i
∗) to the trapdoor oracle, two trapdoors may be linked, i.e., whether these

trapdoors are for the same keyword can be checked. As mentioned by Qin et al. [29], a trapdoor
generation algorithm must be probabilistic to provide MTI. Because Benhamouda et al. [6] intro-
duced a probabilistic rounding function, our construction could provide MTI. However, adaptive
smoothness guarantees that when (lpar, χ, hp) is fixed, H ← Hash(hk, lpar, f(hp)) is statistically
close to uniform over {0, 1}ν , but it does not directly guarantee unlinkability of two hash values,
i.e., information whether two hash values are computed by the same input or not might be leaked.
We leave how to provide MTI as a future work.

4 Analysis of Liu et al. Generic Construction

In this section, we analyze the Liu et al. generic construction [24] from the viewpoint of security,
security models, efficiency, and instantiability of the generic construction.

4.1 Core Idea of Liu et al. Construction

First, we revisit the Liu et al. construction methodology as follows. Basically, they employed
the Katz-Vaikuntanathan password-based authenticated key exchange (PAKE) construction [21]
which is explained as follows. Let pkPKE be a common public key where no one knows the
corresponding dkPKE. A client (a sender in the PAEKS context) setups hkc ← HashKG(pkPKE)
and hpc ← ProjKG(hkc, pkPKE), and a server (a receiver in the PAEKS context) setups hks ←
HashKG(pkPKE) and hps ← ProjKG(hks, pkPKE), respectively. Here, hpc and hps are public keys
and hkc and hks are secret keys, respectively. The client generates an encryption C of the pass-
word pw using pkPKE, and the server also generates an encryption C ′ of the password pw using
pkPKE. Then, the shared key is shard-key := Hash(hkc, pkPKE, C

′) ⊕ ProjHash(hps, pkPKE, C, pw) =
Hash(hks, pkPKE, C)⊕ ProjHash(hpc, pkPKE, C

′, pw). The left-side of the equation can be computed
by the client using its secret key hkc and the witness pw, and the right-side of the equation can be
computed by the server using its secret key hks and the witness pw. The equation holds owing to
the correctness of SPHF. Moreover, thanks to the word-independency, projected keys, hpc and hps,
can be public keys before seeing words (ciphertexts).

The basic idea of the Liu et al. PAEKS construction is to prepare an extended keyword
der-kw from a keyword kw by der-kw ← HF(kw, shard-key) where HF is a secure hash function (we
intentionally use “secure hash function” in accordance with the Liu et al. description). Then, a
ciphertext of der-kw is computed by the PEKS.Enc algorithm, and a trapdoor of der-kw is computed
by the PEKS.Trapdoor algorithm.

4.2 Issues of the Liu et al. Construction

Security. Here, we highlight two issues regarding the underlying hash function to derive an
extended keyword der-kw ← HF(kw, shard-key). We note that they claimed that their construction
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is secure in the standard model. That is, HF is not modeled as a random oracle. Liu et al. required
that if kw ̸= kw′, then der-kw ̸= der-kw′. Thus, they implicitly assumed that HF is collision
resistant. However, there “exists” kw and kw′ such that kw ̸= kw′ and der-kw = der-kw′. Of
course we can assume that no PPT adversary can find them, but obviously the construction does
not provide statistical consistency. The first issue can be easily fixed by introducing computational
consistency. However, the second issue is more important. Since a PAEKS trapdoor for kw is
a PEKS trapdoor for der-kw, information of der-kw is leaked from the trapdoor (because PEKS
does not provide trapdoor privacy). They required that if shard-key is random, then der-kw is also
random, and assumed that a hash value does not leak input information. However, since HF is
not modeled as a random oracle, this claim does not hold even if HF provides one-wayness. These
issues seem to be fixed by assuming that HF is a random oracle.

Regarding a hash function, we highlight that their setup algorithm is also problematic. The
setup algorithm runs (pkPKE, dkPKE) ← PKE.KeyGen(1λ), chooses a plaintext MPKE ∈ MS, and
generates a common public key mpk← HF(pkPKE,MPKE) where HF is a secure hash function (here
we omit label from the input). Then, mpk is set as lpar of the underlying SPHF, and it is required
that no one knows the corresponding decryption key. First, since Setup.lpar = PKE.KeyGen, it is not
directly guaranteed that mpk works as lpar. Even if mpk is identical from a public key generated by
the PKE.KeyGen algorithm, second, how to switch a ciphertext (a word in the SPHF context) from

L̃lpar to Xlpar \Llpar in the security proof is unclear. This step is mandatory to utilize smoothness.6

Owing to the IND-CPA security of PKE, this can be switched (as in our security proof); however,
to do so, mpk must be generated by the challenger of the PKE scheme and set as the common
public key. Since mpk is a hash value in the Liu et al. construction, how to set mpk as the hash
value must be considered. This issue can be solved by assuming that HF is a random oracle (i.e.,
using the programmability of the random oracle). Alternatively, specifying pkPKE as a common
public key is sufficient (even though the corresponding decryption key needs to be erased, which
requires a trusted setup).

Security Model. In the definition of consistency (besides statistical or computational), they did
not consider the case “kw = kw′ and senders are different”, which is considered in our consistency
definition. Since a trapdoor is associated with not only a keyword but also a sender, considering
this case is important. In addition, regarding IND-CKA and IND-IKGA, they used a weak model,
where an adversary A is not allowed to send challenge keywords to two oracles: an encryption
oracle OC and a trapdoor oracle OT .

Liu et al. also claimed that their construction provides multi-trapdoor indistinguishability
(MTI) if the trapdoor algorithm of the underlying PEKS scheme is probabilistic (Theorem 5.3. [24]).
Besides the probabilistic algorithm, they implicitly assumed that two trapdoors are unlinkable, i.e.,
it hides whether two trapdoors are generated for the same keyword or not. Then, for simulating
MTI game in the proof of Theorem 3.3. [24], a simulator just responses random values as the
challenge trapdoors. However, even if the trapdoor algorithm is probabilistic, it does not directly
guarantee the unlinkability.

Efficiency. They employed two SPHFs as in the Katz-Vaikuntanathan PAKE construction. In
PAKE, this is mandatory because both a client and a server need to show the possession of witness
(password). However, this is not the case in PAEKS: a receiver does not have to prove the possession
of witness. In our construction, a sender is required to show the possession of witness (randomness

6Precisely, Liu et al. did not directly employ smoothness. They assumed that a hash value H of SPHF for a word
χ ∈ L̃lpar is random (they called it pseudo-randomness), and they switched H to be random without switching the

word from L̃lpar to Xlpar \ Llpar. Even if this argument is correct, still mpk = lpar needs to be set as a hash value
mpk← HF(pkPKE,MPKE).
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of a ciphertext), and a receiver just uses a hash key for computing the hash value. This improves
the efficiency of the construction.

Instantiability. Finally, we discuss the instantiability of the Liu et al. generic construction (be-
sides hash functions discussed above). They employed a labeled IND-CCA2 PKE scheme that
defines languages of ciphertexts of SPHF. However, Benhamouda et al. [6] proposed a word-
independent SPHF for a IND-CPA PKE scheme, and mentioned that their SPHF construction
for the IND-CCA2 PKE scheme is not word-independent. Moreover, Liu et al. employed an IND-
CCA1 PKE scheme in their implementation. Although the Liu et al. construction may work well
since IND-CCA2 implies IND-CPA, however, it is not clear whether the underlying SPHF is word-
independent (at least in their implementation). In the next section, we show that the underlying
PKE is required to be IND-CPA secure, and no CCA2/CCA1 security is required.

We also remark that one of the main goals of Liu et al. was to construct a post-quantum PAEKS
scheme by instantiating their generic construction from lattices. Thus, even if the above-mentioned
issues regarding hash functions can be solved by introducing random oracles, it would be better to
determine whether these issues can be solved, even in the quantum random oracle model.

5 Our PAEKS Construction

In this section, we propose a generic construction of PAEKS.

5.1 Proposed Generic Construction

High-level Description. We also employ the methodology of Katz-Vaikuntanathan PAKE con-
struction. As an important difference from the Liu et al. construction, we introduce one SPHF
where a receiver publishes a projected key hp, and a sender generates a ciphertext ctPKE of 0 and
sets it as a public key pkS = ctPKE. Its randomness ρS is set as a secret key skS. For running
the ProjHash algorithm in the PAEKS.Enc algorithm, skS = ρS is used as the witness. That is, for
generating a ciphertext of a keyword, a secret key skS = ρS is required, whereas for generating a
trapdoor, a public key pkS = ctPKE is enough in addition to skR. This setting matches the syntax
of PAEKS. Since a word ctPKE is generated after seeing hp, the underlying SPHF needs to be
word-independent. Here, the public key of PKE pkPKE is generated by the receiver, and the sender
needs to know pkPKE for running the PAEKS.KGS algorithm. Thus, our construction employs a
designated-receiver setting. For deriving an extended keyword der-kw, we employ a PRF where a
PRF key is a hash value of SPHF. Intuitively, after utilizing adaptive smoothness, a hash value
of SPHF is random. Then, owing to the pseudo-randomness of PRF, der-kw is also random. For
extended keywords, we employ a PEKS scheme. As in the usual PEKS setting, the receiver runs
(pkPEKS, skPEKS)← PEKS.KG(1λ), and skPEKS is used for generating a trapdoor for der-kw.

Let PRF = {FK : KS → KS} be a family of PRFs where K ∈ {0, 1}ν , PEKS = (PEKS.KG,
PEKS.Enc,PEKS.Trapdoor,PEKS.Test) be a PEKS scheme with a keyword space KS, PKE =
(PKE.KeyGen,PKE.Enc,PKE.Dec) be a PKE scheme, andWI-SPHF = (HashKG,ProjKG,Hash,ProjHash)
be a word-independent SPHF with the output length {0, 1}ν . We remark that, because we employ
a hash value of SPHF as a PRF key, we assume that K ∈ {0, 1}ν , and because a PRF takes a
keyword as input and outputs an extended keyword, we assume that FK : KS → KS. We also
assume that 2−ν is negligible in the security parameter λ to guarantee that for randomly chosen

two values H,H′ $←− {0, 1}ν , H ̸= H′ holds with overwhelming probability.
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Proposed Generic Construction

PAEKS.KGR(1
λ): Run (pkPKE, dkPKE)← PKE.KeyGen(1λ), hk← HashKG(pkPKE), hp← ProjKG(hk,

pkPKE), and (pkPEKS, skPEKS) ← PEKS.KG(1λ). Set pkR = (hp, pkPKE, pkPEKS) and skR =
(hk, dkPKE, skPEKS), and output (pkR, skR).

PAEKS.KGS(pkR): Parse pkR = (hp, pkPKE, pkPEKS). Run ctPKE = PKE.Enc(pkPKE, 0; ρS), set pkS =
ctPKE and skS = ρS , and output (pkS, sks). If we explicitly describe the sender index i, then

we denote pkS[i] = ct
(i)
PKE and skS[i] = ρ

(i)
S .

PAEKS.Enc(pkR, pkS, skS, kw): Parse pkR = (hp, pkPKE, pkPEKS), pkS = ctPKE, and skS = ρS . Com-
pute pH ← ProjHash(hp, pkPKE, ctPKE, ρS) and run der-kw ← FpH(kw). Compute ctPEKS ←
PEKS.Enc(pkPEKS, der-kw), set ctPAEKS = ctPEKS, and output ctPAEKS.

PAEKS.Trapdoor(pkR, pkS, skR, kw): Parse pkR = (hp, pkPKE, pkPEKS), pkS = ctPKE, and skR =
(hk, dkPKE, skPEKS). Compute H ← Hash(hk, pkPKE, ctPKE) and run der-kw ← FH(kw). Com-
pute tdder-kw ← PEKS.Trapdoor(pkPEKS, skPEKS, der-kw), set tdS,kw = tdder-kw, and output
tdS,kw.

PAEKS.Test(ctPAEKS, tdS,kw): Parse ctPAEKS = ctPEKS and tdS,kw = tdder-kw. Output the result of
PEKS.Test(ctPEKS, tdkw).

If PKE is correct, then ctPKE ∈ L̃pkPKE where ctPKE = PKE.Enc(pkPKE, 0; ρS). Moreover, if WI-SPHF
is correct, then pH = H holds with overwhelming probability where pH← ProjHash(hp, pkPKE, ctPKE,
ρS) and H← Hash(hk, pkPKE, ctPKE). Moreover, if PEKS is correct, then PAEKS.Test(ctPAEKS, tdS,kw)
= 1 where ctPAEKS = ctPEKS. Thus, the proposed construction provides correctness if these building
blocks provide correctness.

Feasibility of our Generic Construction. In our construction, we employ WI-SPHF, PKE,
PRF, and PEKS as building blocks. Any PRF can be employed, e.g., HMAC-SHA-256. Since
Benhamouda et al. [6] proposed a WI-SPHF for a lattice-based IND-CPA PKE scheme, our con-
struction is feasible. Since PEKS can be generically constructed from anonymous IBE [1], and
lattice-based IBE is basically anonymous, our generic construction yields post-quantum PAEKS.
Behnia et al. [4] gave implementations of lattice-based PEKS schemes when Agrawal-Boneh-Boyen
IBE [2] or Ducas-Lyubashevsky-Prest IBE [15] are employed as the underlying anonymous IBE
scheme. These PEKS schemes may be attractive in terms of efficiency.

Non Designated-Receiver Setting. As previously mentioned, if we assume a trusted setup,
then we do not have to introduce the designated-receiver setting. Concretely, a setup algorithm
takes a security parameter λ as input, runs (pkPKE, dkPKE) ← PKE.KeyGen(1λ), erases dkPKE, and
outputs pkPKE only as a public parameter. However, it would be better to clarify who can know
dkPKE since dkPKE = ltrap can be used for breaking the underlying membership problem. In this
sense, our setting is more desirable.

5.2 Security Analysis

Theorem 1. Our construction is computationally consistent if PEKS is computationally consistent,
PKE is IND-CPA secure, WI-SPHF provides correctness and adaptive smoothness, and PRF is
pseudo-random.

Proof Overview. Since the underlying PEKS scheme PEKS is computationally consistent, what
we need to show is as follows: for der-kw ← FpH(i)(kw) (computed in the PAEKS.Enc algorithm
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in the experiment) and der-kw′ ← FH(j)(kw′) (computed in the PAEKS.Trapdoor algorithm in the ex-

periment), der-kw ̸= der-kw′ holds if (kw, i) ̸= (kw′, j), where pH(i) ← ProjHash(hp, pkPKE, ct
(i)
PKE, ρ

(i)
S )

and H(j) ← Hash(hk, pkPKE, ct
(j)
PKE). Our proof strategy is explained as follows. First, the computa-

tion of der-kw ← FpH(i)(kw) is switched to der-kw ← FH(i)(kw) where H(i) ← Hash(hk, pkPKE, ct
(i)
PKE).

Owing to the correctness of WI-SPHF, this modification is indistinguishable. Next, pkS[i] =

ct
(i)
PKE ← PKE.Enc(pkPKE, 0; ρ

(i)
S ) computed in the PAEKS.KGS algorithm is switched to ct

(i)
PKE ←

PKE.Enc(pkPKE, 1; ρ
(i)
S ). In the SPHF-context, a word ct

(i)
PKE ∈ L̃pkPKE is switched to ct

(i)
PKE ∈

XpkPKE \ LpkPKE . Owing to the IND-CPA security of PKE, this modification is indistinguishable.
Then we can utilize adaptive smoothness, i.e., for computing der-kw ← FH(i)(kw), H(i) is randomly

chosen from {0, 1}ν . pkS[j] = ct
(j)
PKE is also switched as well, and for der-kw′ ← FH(j)(kw′), H(j)

is randomly chosen from {0, 1}ν (if i = j, then two values are the same). Then, PRF keys H(i)

and H(j) are random. Thus, we can replace FH(i) and FH(j) with random functions owing to the
pseudo-randomness of PRF. If i = j, then kw ̸= kw′. Then, der-kw and der-kw′ are randomly
chosen, respectively, and der-kw ̸= der-kw′ holds with overwhelming probability. If kw = kw′, then
i ̸= j. Then, FH(i) and FH(j) are different random functions. Thus der-kw and der-kw′ are randomly
chosen, respectively (even the input is the same), and der-kw ≠ der-kw′ holds with overwhelming
probability. Finally, owing to the computational consistency of PEKS, our construction provides
computational consistency.

Proof. We prove the theorem via sequences of games Game0, . . . ,Game8. Let Wk denote an event
that A wins in Gamek (k ∈ {0, 1, . . . , 8}). Without loss of generality, (i, j) ∈ {0, 1} × {0, 1} is
determined before generating (pkR, pkS[0], pkS[1]) with the probability 1/4.

Game0: This game is the same as the original computational consistency game in Definition 14.

Game1: This game is the same as Game0 except that the computation of ctPAEKS ← PAEKS.Enc(pkR,
pkS[i], skS[i], kw) is changed as follows. Let skR = (hk, dkPKE, skPEKS). Instead of comput-

ing pH(i) ← ProjHash(hp, pkPKE, ct
(i)
PKE, ρ

(i)
S ), compute H(i) ← Hash(hk, pkPKE, ct

(i)
PKE) and run

der-kw ← FH(i)(kw). B computes ctPAEKS ← PEKS.Enc(pkPEKS, der-kw). If WI-SPHF provides
correctness, then pH(i) = H(i) holds with overwhelming probability. Thus, |Pr[W0]− Pr[W1]|
is negligible in the security parameter λ.

Game2: This game is the same as Game1 except that (pkS[i], skS[i])← PAEKS.KGS(pkR) is changed as

pkS[i] = ct
(i)
PKE ← PKE.Enc(pkPKE, 1; ρ

(i)
S ). We show that |Pr[W1]−Pr[W2]| is negligible if PKE

is IND-CPA secure as follows. Let C be the challenger of the IND-CPA game. We construct
an algorithm B as follows. C runs (pkPKE, dkPKE)← PKE.KeyGen(1λ) and sends pkPKE to B. B
runs hk ← HashKG(pkPKE), hp ← ProjKG(hk, pkPKE), and (pkPEKS, skPEKS) ← PEKS.KG(1λ),
and sets pkR = (hp, pkPKE, pkPEKS). For running (pkS[i], skS[i]) ← PAEKS.KGS(pkR), B sends

(M∗
0 ,M

∗
1 ) = (0, 1) to C. C chooses b

$←− {0, 1}, computes ct∗PKE ← PKE.Enc(pkPKE,M
∗
b ), and

sends ct∗PKE to B. B runs (pkS[̄i], skS[̄i])← PAEKS.KGS(pkR) as usual, where ī = 0 if i = 1 and

ī = 1 if i = 0, and sends (pkR, pkS[0], pkS[1]) to A. We note that ρ
(i)
S is not used for running the

PAEKS.Enc algorithm due to the modification in Game1. If b = 0, then B simulates Game1
and if b = 1, B simulates Game2. Thus, |Pr[W1]− Pr[W2]| ≤ AdvIND-CPA

PKE,B (λ) holds.

Game3: This game is the same as Game2 except that H(i) $←− {0, 1}ν . Since ct
(i)
PKE ∈ XpkPKE \LpkPKE ,

|Pr[W2]− Pr[W3]| is negligible if WI-SPHF provides adaptive smoothness.
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Game4: This game is the same as Game3 except that (pkS[j], skS[j])← PAEKS.KGS(pkR) is changed

as pkS[j] = ct
(j)
PKE ← PKE.Enc(pkPKE, 1; ρ

(j)
S ). As in Game2, |Pr[W3] − Pr[W4]| is negligible if

PKE is IND-CPA secure. If i = j, then skip this game.

Game5: This game is the same as Game4 except that H
(j) $←− {0, 1}ν . As in Game4, |Pr[W4]−Pr[W5]|

is negligible if WI-SPHF provides adaptive smoothness. If i = j, then skip this game.

Game6: This game is the same as Game5 except that der-kw
$←− KS. We show that |Pr[W5]−Pr[W6]|

is negligible if PRF is pseudo-random as follows. Let C be the challenger of PRF. We construct
an algorithm B as follows. B prepares all keys as in Game5. When B prepares der-kw, B
sends kw to C. Then, C returns either FK(kw) or a random R. In the former case, B
simulates Game5 (implicitly set K = H(i)), and in the latter case, B simulates Game6. Thus,

|Pr[W5]− Pr[W6]| ≤ Advpseudo-randomPRF,B (λ) holds.

Game7: This game is the same as Game6 except that der-kw
′ $←− KS. As in Game6, |Pr[W6]−Pr[W7]|

is negligible if PRF is pseudo-random.

Game8: We show that the probability that A wins in this game is negligible as follows. Let C be the
challenger of computational consistency of PEKS. We construct an algorithm B as follows. C
runs (pkPEKS, skPEKS)← PEKS.KG(1λ) and sends pkPEKS to B. B prepares (pkR, pkS[i], pkS[j])
in accordance with the previous game, except that B contains pkPEKS to pkR. When A sends

(kw, kw′, i.j) to B, B randomly chooses der-kw, der-kw′ $←− KS, and sends (der-kw, der-kw′)
to C. Here, the probability of der-kw = der-kw′ is 2−ν , and is negligible. C runs ctPEKS ←
PEKS.Enc(pkPEKS, der-kw) and tdder-kw′ ← PEKS.Trapdoor(pkPEKS, skPEKS, der-kw

′). Since
PEKS provides computational consistency, the probability that PEKS.Test(ctPEKS, tdder-kw′) =
1 holds is negligible. This concludes the proof.

Theorem 2. Our construction is IND-CKA secure if PEKS is IND-CKA secure, PKE is IND-CPA
secure, WI-SPHF provides correctness and adaptive smoothness, and PRF is pseudo-random.

Proof Overview. Basically, the theorem holds if PEKS is IND-CKA secure since a PAEKS
ciphertext is a PEKS ciphertext in our construction. What we need to care is: OT in the PAEKS
experiment needs to be simulated by OT in the PEKS experiment. We remark that if A sends kw
to OT in the PAEKS experiment, the keyword to be input to OT in the PEKS experiment is not
kw, is der-kw. That is, if there exists kw ̸∈ {kw∗

0, kw
∗
1} such that its extended keyword der-kw ∈

{der-kw∗
0, der-kw

∗
1} where der-kw∗

0 and der-kw∗
1 are extended keywords of kw∗

0 and kw∗
1, respectively,

then the simulation fails (because the challenge ciphertext is computed by der-kw∗
b for b

$←− {0, 1}).
To exclude this case, we show that all extended keywords are random using the same strategy of
the proof of computational consistency. First, pH(i) is switched to H(i) owing to the correctness of

WI-SPHF. Second, ct
(i)
PKE is switched to a ciphertext of 1 owing to the IND-CPA security of PKE.

Third, H(i) is switched to a random value owing to the adaptive smoothness of WI-SPHF. For all
i ∈ [1, n], run the above procedures. Then, all extended keywords are randomly chosen because
of the pseudo-randomness of PRF. Here, the maximum number of extended keywords is at most
qC + qT + 2 where qC is the number of encryption queries, qT is the number of trapdoor queries,
and 2 is for generating the challenge ciphertext, i.e,, for (kw∗

0, kw
∗
1, i

∗) that A declares, and two
extended keywords der-kw∗

0 and der-kw∗
1 are defined. Finally, owing to the IND-CKA security of

PEKS, our construction is IND-CKA secure. We remark that OC in the PAEKS experiment can
be simulated during extended keyword randomization phases as in the same strategy of the proof
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of computational consistency that also prepares a ciphertext. To simulate OT during extended
keyword randomization phases, the simulator runs (pkPEKS, skPEKS) ← PEKS.KG(1λ), and uses
skPEKS to compute a trapdoor.

Proof. We prove the theorem via sequences of games Game0, . . . ,Game5. Let Wk denote an event
that A wins in Gamek (k ∈ {0, 1, . . . , 5}).

Game0: This game is the same as the original IND-CKA game in Definition 15.

Next, we introduce subgames Game1,1,Game2,1,Game3,1,Game1,2,Game2,2,Game3,2, . . . ,Game1,n,
Game2,n,Game3,n.

Game1,i: Set Game3,0 = Game0. We describe Game1,i (i ∈ [1, n]) as follows. This game is the

same as Game3,i−1 except that compute H(i) ← Hash(hk, pkPKE, ct
(i)
PKE) instead of computing

pH(i) ← ProjHash(hp, pkPKE, ct
(i)
PKE, ρ

(i)
S ). If WI-SPHF provides correctness, then pH(i) = H(i)

holds with overwhelming probability. Thus, |Pr[W3,i−1]−Pr[W1,i]| is negligible in the security
parameter λ.

Game2,i: We describe Game2,i (i ∈ [1, n]) as follows. This game is the same as Game1,i except that

(pkS[i], skS[i])← PAEKS.KGS(pkR) is changed as pkS[i] = ct
(i)
PKE ← PKE.Enc(pkPKE, 1; ρ

(i)
S ). We

show that |Pr[W1,i] − Pr[W2,i]| is negligible if PKE is IND-CPA secure as follows. Let C
be the challenger of the IND-CPA game. We construct an algorithm B as follows. C runs
(pkPKE, dkPKE)← PKE.KeyGen(1λ) and sends pkPKE to B. B runs hk← HashKG(pkPKE), hp←
ProjKG(hk, pkPKE), and (pkPEKS, skPEKS)← PEKS.KG(1λ), and sets pkR = (hp, pkPKE, pkPEKS).
B generates (pkS[1], skS[1]), . . . , (pkS[i−1], skS[i−1]) as in Game1,i. For running (pkS[i], skS[i]) ←

PAEKS.KGS(pkR), B sends (M∗
0 ,M

∗
1 ) = (0, 1) to C. C chooses b

$←− {0, 1}, computes ct∗PKE ←
PKE.Enc(pkPKE,M

∗
b ), and sends ct∗PKE to B. B generates (pkS[i+1], skS[i+1]), . . . , (pkS[n], skS[n])

as usual and sends pkR, {pkS[i]}i∈[1,n] to A. For an encryption query (kw, i), B uses H(i)

and it does not require ρ
(i)
S . So, even if pkS[i] = ct

(i)
PKE is switched to a ciphertext of 1, B

can answer the query. For a trapdoor query (kw, i), B generates a trapdoor tdS[i],kw using
skPEKS. If b = 0, then B simulates Game1,i and if b = 1, B simulates Game2,i. Thus,
|Pr[W1,i]− Pr[W2,i]| ≤ AdvIND-CPA

PKE,B (λ) holds.

Game3,i: We describe Game3,i (i ∈ [1, n]) as follows. This game is the same as Game2,i except that

H(i) $←− {0, 1}ν . |Pr[W2,i]− Pr[W3,i]| is negligible if WI-SPHF provides adaptive smoothness.

Next, we introduce subgames Game4,0, . . . ,Game4,N where N ≤ qC + qT + 2 is the number of
extended keywords appeared in the game. Here, qC is the number of encryption queries and qT is
the number of trapdoor queries.

Game4,i: Set Game4,0 = Game3,n. Let {der-kw1, . . . , der-kwN} be the set of distinct extended key-

words. This game is the same as Game4,i−1 except that der-kwi
$←− KS. We show that

|Pr[W4,i−1]−Pr[W4,i]| is negligible if PRF is pseudo-random. Let C be the challenger of PRF.
We construct an algorithm B as follows. When B prepares der-kwi for the i-th query (kw, j)7

for some j ∈ [1, n], B sends kw to C. Then, C returns either FK(kw) or a random value. In
the former case, B simulates Game4,i−1 (implicitly set K = H(j)), and in the latter case, B
simulates Game4,i. Thus, |Pr[W4,i−1]− Pr[W4,i]| ≤ Advpseudo-randomPRF,B (λ) holds.

7It may be an encryption query, a trapdoor query, or the challenge query. In the challenge query, j = i∗.
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Game5: Set Game4,N = Game5. We show that the probability that A wins in this game is negligible
if PEKS is IND-CKA secure. Let C be the challenger of the IND-CKA game of PEKS. We
construct an algorithm B as follows. C runs (pkPEKS, skPEKS) ← PEKS.KG(1λ) and sends
pkPEKS to B. B prepares (pkR, pkS[i], pkS[j]) in accordance with the previous game, except
that B contains pkPEKS to pkR. When A sends an encryption query (kw, i) to B, if (kw, i)
has been queried as either an encryption query or a trapdoor query, then B uses der-kw

that was previously generated. Otherwise, B randomly chooses der-kw
$←− KS, preserves

(der-kw, kw, i), runs ctPEKS ← PEKS.Enc(pkPEKS, der-kw), and returns ctPEKS to A. When
A sends a trapdoor query (kw, i) to B, if (kw, i) has been queried as either an encryption
query or a trapdoor query, then B uses der-kw that was previously generated. Otherwise,

B randomly chooses der-kw
$←− KS, preserves (der-kw, kw, i), and sends der-kw to C as a

trapdoor query. C runs tdder-kw ← PEKS.Trapdoor(pkPEKS, skPEKS, der-kw) and sends tdder-kw
to B. B returns tdder-kw to A. In the challenge phase, A sends (kw∗

0, kw
∗
1, i

∗) to B. If
(kw∗

0, i
∗) (resp. (kw∗

1, i
∗)) has appeared in an encryption query, then B uses der-kw∗

0 (resp.

der-kw∗
1) that was previously generated. Otherwise, B randomly chooses der-kw∗

0
$←− KS (resp.

der-kw∗
1

$←− KS). B sends (der-kw∗
0, der-kw

∗
1) to C as the challenge query. We remark that the

probability that either der-kw∗
0 or der-kw∗

1 has been appeared as a trapdoor query is negligible

since all extended keywords are randomly chosen from {0, 1}ν . C randomly selects b
$←− {0, 1},

runs ct∗PEKS ← PEKS.Enc(pkPEKS, der-kw
∗
b ), and returns ct∗PEKS to B. B returns ct∗PEKS to A.

B simulates OC and OT as in the previous stage, Finally, A outputs b′. B also outputs the
same b′. Then, B can break IND-CKA security of PEKS with the same advantage of A. That
is, Pr[W5] ≤ AdvIND-CKA

PEKS,A (λ, n) holds. This concludes the proof.

Theorem 3. Our construction is IND-IKGA secure if PKE is IND-CPA secure, WI-SPHF provides
correctness and adaptive smoothness, and PRF is pseudo-random.

Proof Overview. The underlying PEKS scheme does not provide trapdoor privacy, i.e., from
tdder-kw ← PEKS.Trapdoor(pkPEKS, skPEKS, der-kw), information of der-kw is leaked. So, the PEKS.Trapdoor
algorithm is meaningless for hiding information of der-kw. More concretely, from the challenge trap-
door td∗S[i∗],kw∗

b
= tdder-kw∗

b
where der-kw∗

b is the extended keyword for kw∗
b , information of der-kw∗

b

is leaked. Thus, for providing IND-IKGA security, we need to guarantee that information of kw is
not leaked from the corresponding extended keyword der-kw. Fortunately, we have already showed
that der-kw∗

b is indistinguishable from random. More concretely, in Game5 of the proof of Theo-
rem 2, the distribution of der-kw∗

b is identical when b = 0 and b = 1, respectively. This is sufficient
to provide IND-IKGA security and we omit the proof. We remark that adaptive smoothness does
not directly guarantee unlinkability that hides information whether two hash values are computed
by the same input or not. Thus, the adversary A may distinguish b = 0 or b = 1 if A obtains a
trapdoor for (kw∗

0, i
∗) (or (kw∗

1, i
∗)), and obtains (information of) der-kw∗

0 (or der-kw∗
1). Thus, we

have restricted that A is allowed to issue a trapdoor query (kw, i) ̸∈ {(kw∗
0, i

∗), (kw∗
1, i

∗)} in the
security definition.

6 Conclusion and Future Work

In this paper, we proposed a generic construction of PAEKS from WI-SPHF, PKE, PRF, and PEKS.
We employ the Katz-Vaikuntanathan methodology that allows two entities can share a key non-
interactively by employing word-independent SPHF. Our construction is not only more efficient
than the Liu et al. construction but also provides stronger security than that of Liu et al.
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As mentioned in the introduction, PAEKS is one option for providing trapdoor privacy, and
designated-tester PEKS is another option. As in Abdalla et al. generic construction of PEKS [1],
designated-tester PEKS can be generically constructed from anonymous IBE [16, 31]. While some
schemes claimed that they provide trapdoor privacy, these generic constructions do not provide
trapdoor privacy owing to their construction methodology. That is, as in the Abdalla et al. generic
construction of PEKS, a trapdoor is a secret key of anonymous IBE (a keyword is regarded as
identity). Since the secret key generation of IBE can be regarded as a signing algorithm (Naor
transformation [8]), a trapdoor leaks information of keyword.8 Noroozi and Eslami [27] also pro-
posed a generic transformation of designated-tester PEKS which is claimed to be secure against
online keyword guessing attacks, from re-randomizable PKE and designated-tester PEKS secure
against offline keyword guessing attacks. Here, the offline keyword guessing attack is the attack
that we explained in the introduction.9 That is, they assumed that the underlying designated-tester
PEKS provides trapdoor privacy. Thus, still no generic construction of designated-tester PEKS with
trapdoor privacy has been proposed so far. Thus, considering whether the Katz-Vaikuntanathan
methodology can be employed for constructing trapdoor private designated-tester PEKS or not is
an interesting future work.
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