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Abstract. A forward-secure public-key encryption (PKE) scheme pre-
vents eavesdroppers from decrypting past ciphertexts in order to miti-
gate the damage caused by a potential secret key compromise. In prior
works, forward security in a non-interactive setting, such as forward-
secure PKE, is achieved by constantly updating (secret) keys. In this
paper, we formalize the notion of blockchain-based forward-secure PKE
and show the feasibility of constructing a forward-secure PKE scheme
without key update (i.e. both the public key and the secret key are im-
mutable), assuming the existence of a proof-of-stake blockchain with the
distinguishable forking property introduced by Goyal et al. (TCC 2017).
Our construction uses the proof-of-stake blockchain as an immutable de-
cryption log and witness encryption by Garg et al. (STOC 2013) to ensure
that the same ciphertext cannot be decrypted twice, thereby rendering
a compromised secret key useless with respect to decryption of past ci-
phertext the legitimate user has already decrypted.

Keywords: Public-Key Encryption · Forward Security · Blockchain

1 Introduction

Forward security for public-key encryption is a security notion that ensures that
a secret key compromise does not affect the confidentiality of past ciphertexts.
More specifically, even if Alice’s long-term secret key skA is compromised by an
eavesdropper Eve, who observed and recorded ciphertexts sent to Alice in the
past, forward security guarantees that Eve does not learn the secrets required
for decrypting these past ciphertexts (i.e. skA is insufficient to decrypt).

While forward security in an interactive setting (e.g. key exchange protocols),
can be achieved relatively easily by generating ephemeral secrets that are erased
when no longer needed, this is harder in a non-interactive setting. However, one
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strategy for achieving forward security in a non-interactive setting, is to con-
stantly update or erasing long term secrets. For example, a näıve approach to
obtaining forward-secure PKE is generating a series of one-time public/secret
key pairs; once a key pair has been used, erase the secret key as soon as possible
to ensure that an adversary cannot learn this key in a potential future compro-
mise. The disadvantage of this approach is that a sender needs to update Alice’s
public key if all of the key pairs have been used, and furthermore needs to be
aware of which keys Alice has already used and erased. This makes the näıve
approach impractical, but more practical approaches to forward security have
been developed, which we will briefly outline below.

Canetti et al. [CHK03] formally introduced forward-secure PKE by extending
the definition of PKE with a key update algorithm. In their scheme, the encryp-
tion algorithm takes as input a time period along with the receiver’s public key
and a message. The ciphertext is associated with the specified time period. The
key update algorithm takes as input a secret key sk and outputs an updated
secret key sk′ (the public key pk remains the same). Even if an adversary com-
promises sk′, they cannot decrypt ciphertexts in the prior periods (and thus
provides forward security).

Green et al. [GM15] presented a fine-grained forward-secure (aka. absolute
forward security [BG20]) encryption scheme called puncturable encryption. It
introduces a key update algorithm similar to [CHK03], but allows revoking a
specific ciphertext, that is, the key update algorithm outputs an updated secret
key which can be used to decrypt ciphertexts except the ciphertext given to the
algorithm.

While interactive by definition, the recent work [GHJL17,DJSS18,AGJ19] on
ensuring forward security of 0-RTT key exchange involves techniques that can be
used to implement forward security for non-interactive primitives such as PKE.
The idea behind 0-RTT key exchange, introduced in such as TLS 1.3 [Res],
is to enable clients to send encrypted data in their first message using pre-
shared secrets. This essentially corresponds to a non-interactive encryption for
the server, and to provide forward security of this data, is almost equivalent
to constructing a forward-secure PKE (e.g. see the bloom filter encryption in
[DJSS18]).

To the best of our knowledge, forward security in a non-interactive setting
such as PKE, has only been achieved by introducing key update [CHK03,GM15,
DJSS18,AGJ19,GHJL17,PS14]. This seems natural, since in an ordinary PKE,
if an eavesdropper Eve compromises the secret key sk, she can decrypt any
ciphertext c by simply running the decryption algorithm Dec to obtain m ←
Dec(sk, c). Hence, in order to achieve forward security, it is natural to prevent
Eve from compromising an unmodified secret key. In the key update approach, we
update or partially break the secret key sk(i) to derive a new secret key sk(i+1)

which cannot be used for decrypting past (or already decrypted) ciphertexts,
and then erase the old key sk(i).
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1.1 Our Contribution

In this paper, we give a feasibility result of a forward-secure encryption scheme
without key update, i.e. both the public key and the secret key remain unchanged
like ordinary (non-forward-secure) PKE. To achieve this, we allow the PKE
scheme to make use of a blockchain for encryption and decryption of messages.

Firstly, we note that the standard definitions of correctness and (forward)
security are insufficient for capturing a setting in which the PKE scheme de-
pends on a blockchain. This is due to the ability of an adversary to observe any
information posted to the blockchain when encrypting or decrypting messages,
and the ability to post maliciously crafted blocks to the blockchain, which might
prevent an honest user from correctly decrypting a ciphertext. Hence, we ap-
propriately extend these definitions. Our forward security notions are obtained
by extending the standard IND-CPA security notion for ordinary PKE with two
additional oracles. The first oracle, Leak, captures secret key leakage that hap-
pens after the honest user decrypts the challenge ciphertext. The second oracle,
HonestDec, captures the information leakage an adversary can observe on the
blockchain when an honest user decrypts a ciphertext. For the full details of our
security definition, see Section 4.

Our construction of a forward-secure PKE without key update, assumes
the existence of a proof-of-stake blockchain which satisfies properties described
in [GG17]. We combine this with witness encryption, which in general allows a
plaintext to be encrypted under an NP statement instead of a public encryption
key, and anyone in possession of a witness for the statement, will be able to
decrypt. In our construction, we use witness encryption to tie a ciphertext to
information posted by the decryptor to the blockchain, and thereby turn the
blockchain into an immutable decryption log that only allows a ciphertext to be
decrypted once. In other words, like puncturable encryption [GM15], our con-
struction implements fine-grained forward security which removes the ability to
decrypt on a ciphertext-by-ciphertext basis, as opposed to the (standard) more
coarse approach of revoking the ability to decrypt any ciphertext constructed
in the time period between key updates (we discuss security further in Sec-
tion 4). Note that while encryptor and decryptor are required to interact with
the blockchain protocol to obtain an updated view of the blockchain, the com-
munication between the two remains non-interactive: once the encryptor has
created a ciphertext based on his current view of the blockchain, no further
communication is required on his part and he can go offline without affecting
the decryptor’s ability to decrypt.

Specifically, the pair of public key and secret key in our construction is sim-
ply that of a digital signature scheme. The encryption algorithm uses witness
encryption to encrypt a message for an NP statement capturing that a certain
type of message signed by the receiver has been posted to the blockchain. The
decryption algorithm generates an ephemeral secret esk, posts a signed message
associated with esk to the blockchain, which will allow the decryption of the
ciphertext using the relevant sequence of blocks on the blockchain and esk as
a witness (decryption key). Immediately after decryptions, the decryption algo-
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rithm erases esk which ensures that an adversary compromising the secret key,
will not be able to decrypt as they don’t know esk.

Since our construction uses a simple key pair of a digital signature scheme and
these are immutable, the size of the keys is obviously independent of the num-
ber of time periods or decryptions unlike existing forward-secure PKE schemes
[CHK03,GM15]. Fixed immutable keys are furthermore an interesting property
from an application point of view. For example, it is undesirable to use a fine-
grained forward-secure PKE scheme with key updates in a scenario where the
decryption key is used by multiple devices, such as laptops and smartphones, as
keys would have to be synchronized to maintain fine-grained forward security.
This concern is alleviated by fixed immutable secret keys. Lastly, we note that our
construction enjoys some interesting security properties in addition to forward
security, such as secret key leakage detection and a variant of post-compromise
security [CCG16]. We will discuss these benefits in detail in Section 5.

2 Preliminaries

In this section, we introduce building blocks and their security definitions. Be-
sides the primitives defined below, we make use of an EUF-CMA secure sig-
nature scheme Sig = (Sig.KGen,Sig.Sign,Sig.Ver), and a one-way hash function
H : {0, 1}n → {0, 1}m. Due to space limitations, we do not include the standard
definitions of these, but defer these to the full version of the paper.

2.1 Witness Encryption

Witness Encryption is a type of encryption introduced by Garg et al. [GGSW13].
Instead of a pair of public and private keys, in witness encryption, a plaintext
is encrypted with respect to an NP statement x and the ciphertext can be
decrypted with the corresponding witness w.

Definition 1 (Witness Encryption [GGSW13]). A witness encryption scheme
WE for NP language L (with witness relation R) is a tuple of algorithms (WE.Enc,
WE.Dec).

– c ← WE.Enc(1λ, x,m): The encryption algorithm WE.Enc takes as input a
string x, and a message m, and outputs a ciphertext c.

– m/⊥ ← WE.Dec(c, w): The decryption algorithm WE.Dec takes as input a
ciphertext c, and a string w, and outputs a message m or the symbol ⊥.

A witness encryption scheme WE is required to satisfy correctness: for all security
parameters λ, all strings x and w for which R(x,w) holds, for all m, it holds
that WE.Dec(WE.Enc(1λ, x,m), w) = m.

For a witness encryption scheme, we will use the security notion extractability,
first proposed in [GKP+13], which informally requires that, for all adversaries
able to distinguish between encryptions of different messages for a statement x,
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there exists an extractor that can extract a witness w from the adversary, such
that R(x,w) holds. We use the adaptive definition by Bellare et al. [BH15] in
which A is allowed to specify x.

Definition 2 (Extractability). A witness encryption scheme with witness re-
lation R is extractable if for every security parameter λ, every PPT adversary
A = (A1,A2) with a random tape r, there exists a corresponding PPT algorithm
E (the extractor) such that:∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


b′ = b ∧ ¬R(x,w)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(x,m0,m1, st)← A1(1λ; r);

b
$←− {0, 1};

c←WE.Enc(1λ, x,mb);

b′ ← A2(st, c);

w ← E(1λ, r);


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ neg(λ)

The above definition ensures that if an adversary A with non-negligible ad-
vantage ε(λ) in distinguishing the ciphertexts of two messages exists, an extrac-
tor E with success probability ε(λ)− neg(λ) must also exist.

Instantiating Witness Encryption. Witness encryption is a strong crypto-
graphic primitive and efficiently instantiating this remains a work in progress.
Recent interesting results include constructions by Barta et al. [BIOW20] based
on the generic group model, and Bartusek et al. [BIJ+20] based on affine de-
terminant programs, with the latter claimed to be the first construction suf-
ficiently efficient to be implementable. However, these works do not consider
extractability, and it is unclear whether efficient extractors can be obtained for
these construction.

Goldwasser et al. [GKP+13] proposed a candidate extractable witness en-
cryption scheme but without a formal security reduction. Liu et al. [LJKW18]
proposed a construction based on multi-linear maps, which can be instantiated
from indistinguishability obfuscation (iO) [AFH+20], which in turn can be ob-
tained from well-founded assumptions [JLS21], leading to a theoretical instan-
tiation. A different approach was taken by Goyal et al. [GKM+20] who show
how the functionality of extractable witness encryption can be implemented ef-
ficiently on a blockchain. This approach is especially appealing in relation to
our work due to the obtained efficiency and that our construction already makes
use of a blockchain. Note that [GKM+20] requires the miners maintaining the
blockchain to implement additional functionality i.e. smaller changes would have
to be made to existing blockchain protocols to achieve the desired functionality,
and to maintain forward security, the communication between miners and the
decryptor must be forward secure (e.g. by using TLS 1.3 [Res]). Furthermore,
due to the dependency on a blockchain, [GKM+20] does not follow the standard
definition of witness encryption. However, in this work, we will make use of the
standard definitions above.
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2.2 Blockchain Protocol

In general, a blockchain protocol is a multi-party distributed protocol that main-
tains an ordered sequence of blocks (blockchain) without a trusted third party.
The blockchain is continuously extended by parties called miners under a con-
sensus algorithm and forging sufficiently old blocks is considered difficult based
on underlying hardness assumptions. A Proof-of-Stake blockchain uses a consen-
sus algorithm in which a party with more stake (e.g. number of coins) is more
likely to succeed in mining a new block. Below, we recall the abstract definition
of blockchain protocols used in [GG17].

Definition 3 (Blockchain Protocol). A blockchain protocol BLCV with va-
lidity predicate V is a tuple of algorithms (BLCV .UpdateState,BLCV .GetRecords,
BLCV .Broadcast).

– BLCV .UpdateState(1
λ): It is a stateful algorithm that takes as input the se-

curity parameter λ and maintains the local state st. It has no output.
– B ← BLCV .GetRecords(1

λ, st): It takes as input the security parameter λ
and a local state st, and outputs the longest ordered sequence of blocks B
(the blockchain) contained in st.

– BLCV .Broadcast(1
λ,m): It takes as input the security parameter λ and a

message m, and spreads the message m over the blockchain network. It out-
puts nothing.

In the above, V is a predicate which takes a sequence of blocks B and outputs
1 if B is valid. The definition of “validity” varies with the blockchain protocol;
details of how V is defined will not be important for our purpose.

Blockchain Execution. At a high level, the execution of the blockchain proto-
col corresponds to the participants running UpdateState, which will continuously
update their state according to messages broadcast using Broadcast e.g. a miner
might broadcast a new successfully mined block. Each participant can access his
current view of the blockchain via GetRecords. We assume that (honest) min-
ers will include any record broadcast via Broadcast in the blocks they attempt
to mine, which allows all participating parties to have records added to the
blockchain (e.g. in cryptocurrencies, a user might wish to add a transaction).

In [GG17], the execution of a blockchain protocol is formally modeled in the
UC-framework [Can01], and is directed by the environment Z, which initially
activates all participants as either honest or corrupt (as in [GG17], we only
consider static corruptions). All corrupt parties are controlled by an adversary
A. The execution starts by all honest users running UpdateState on an empty
state, and proceeds in rounds. In each round, an honest user might receive a
record from Z which it will attempt to add to the blockchain, as well as messages
from the other parties. The user may then perform any computation, broadcast a
message via Broadcast, and update its local state. A is responsible for delivering
all messages between parties, and may delay or reorder these, but is not allowed
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to modify them. Z can communicate with A and access the local view of the
blockchain obtained via GetRecords of any honest party. For a more detailed
discussion of the blockchain execution, see [GG17].

We will let EXECBLCV [A,Z, 1λ] denote the above execution, and view ←
EXECBLCV [A,Z, 1λ] denote the joint view of all parties in the execution. The
latter fully determines the former.

Blockchain Properties. We will now define several blockchain properties in-
troduced in [GG17], which our construction will be based on. In these definition,
we make use of the unique stake fraction of the last ` blocks of a blockchain B,
which we denote u-stakefrac(B, `), and which is defined to be the combined stake
of all miners who mined at least one of the last ` blocks in B divided by the
total amount of stake for the blockchain. Additionally, we will use the notation
Bd` to denote B with the last ` blocks removed, and B � B̃ to denote that B is
a prefix of B̃.

The blockchain properties are defined based on the following predicates:
blockchain consistency (consistent), which captures that all honest participants in
the blockchain protocol agrees upon all except the last ` blocks; sufficient stake
contribution (suf-stake), which captures that all blockchains of length ` has a
unique stake fraction of at least β; and bounded stake forking (bd-stake-fork),
which captures that all maliciously constructed forks of the blockchain has
unique stake fraction less than α. Formally, these predicates are defined as:

– consistent`(view) = 1 iff for all rounds r ≤ r̃ and honest parties i, j in view
with blockchain B in round r and B̃ in round r̃, respectively, it holds that
Bd` � B̃.

– suf-stake`(view, β) = 1 iff for every round r ≥ `, and each honest party i
with blockchain B at round r, it holds that u-stakefrac(B, `) ≥ β.

– bd-stake-fork(`1,`2)(view, α) = 1 iff for all rounds r ≥ r̃, each honest party i
with blockchain B at round r, each corrupt party j with blockchain B̃ at
round r̃, if there exists `′ ≥ `1 + `2 such that B̃d`

′ � B and for all ˜̀< `′,

B̃d
˜̀ 6� B, then u-stakefrac(B̃, `′ − `1) ≤ α.

Based on the consistency and sufficient stake contribution predicates, we define
the corresponding blockchain properties.

Definition 4 (Chain Consistency). A blockchain protocol BLCV satisfies `0-
consistency for adversary A in environment Z, if for every ` > `0

Pr
[
consistent`(view) | view← EXECBLCV [A,Z, 1λ]

]
≥ 1− neg(λ)

Definition 5 (Sufficient Stake Contribution). A blockchain protocol BLCV
satisfies (`0, β)-sufficient stake contribution for adversary A in environment Z,
if for every ` > `0

Pr
[
suf-stake`(view, β) | view← EXECBLCV [A,Z, 1λ]

]
≥ 1− neg(λ)



8 Seiya Nuta, Jacob C. N. Schuldt, and Takashi Nishide

Lastly, we consider a property called distinguishable forking which requires
that sufficient stake contribution and bounded stake forking properties hold si-
multaneously. Note that when this is the case (and α < β), it is possible to
distinguish an honestly created extension of the blockchain from an adversari-
ally created fork by examining the unique stake fraction shown in the extension
or fork.

Definition 6 (Distinguishable Forking). A blockchain protocol BLCV satis-
fies (α, β, `1, `2)-distinguishable forking for adversary A in environment Z, if for
every ` > `1 and ˜̀≥ `2

Pr

 α+ neg1(λ) < β∧
suf-stake

˜̀
(view, β) = 1∧

bd-stake-fork(`,
˜̀)(view, α+ neg1(λ)) = 1

∣∣∣∣∣∣∣ view← EXECBLCV [A,Z, 1λ]


≥ 1− neg2(λ)

Goyal et al. showed in [GG17] that Snowwhite, a Proof-of-Stake based blockchain
protocol proposed by Daian et al. [DPS19], satisfies all of the above properties.

Proof-of-Work Blockchain. The above properties, which will be used as a ba-
sis for the security of our construction, are all stated with respect to a blockchain
based on Proof-of-Stake. It might be considered whether it would be possible to
instead rely on a blockchain based on Proof-of-Work in which the blockchain is
extended by miners solving computational puzzles (i.e. relying on the compu-
tational power of the miners). This, however, seems difficult. More specifically,
in the typical Proof-of-Work setting, an adversary can locally compute a valid
fork in realistic time by solving the required puzzles and ignoring input from
honest miners. This would break the distinguishable forking property which our
construction crucially depends on. In contrast, this property can be achieved in
a Proof-of-Stake blockchain because we assume, as in [GG17], that the adversary
controls only a minority stake and cannot forge digital signatures of other miners
controlling a majority stake.

Additional Blockchain Notation. Each block of a blockchain B contains a
list of records. A record is a set of fields and a field is an arbitrary string. We
denote the i-th block of B as B[i], the number of records in the i-th block as
|B[i]|, the j-th record in the i-th block as B[i][j], and each field in a record r as
r.name. We use the notation r ∈ B if there exists i, j such that B[i][j] = r, and
r 6∈ B when this is not the case.

Also, we overload the consistency predicate, and define consistent`(Bprefix,B)

to hold for two sequences of blocks, Bprefix and B, if and only if B
d`
prefix � B

i.e. Bprefix with the last ` blocks truncated is a prefix of B. Finally, for a
blockchain satisfying (α, β, `1, `2)-distinguishable forking, we introduce a predi-

cate ext-suf-stk(β,`1,`2)(B, i) (short for “extended with sufficient stake”), which
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takes a sequence of blocks B and index i where i ≥ 0, and holds if and only if
the number of blocks after the i-th block is larger than `1 + `2 and at least β
fraction of stake is proved in the last `2 blocks. Intuitively, ext-suf-stk determines
whether the i-th block looks honestly created, assuming stakes of adversaries are
bounded by α (where α < β).

3 Forward-Secure PKE without Key Update

In this section, we give definitions and the construction of our forward-secure
PKE scheme without key update. In contrast to existing forward-secure PKE
schemes [CHK03, GM15], both pk and sk are immutable, and since we don’t
employ key update to achieve forward security, the syntax looks much closer to
the traditional non-forward-secure PKE schemes except we allow the encryption
and decryption algorithm to make use of a blockchain protocol.

Specifically, we assume that both encryptor and decryptor are participants in
a blockchain protocol, and will allow the encryption and decryption algorithms
direct access to the state of the encryptor and decryptor, respectively. Note that
this does not necessarily require that the encryptor or decryptor have any stake
in the blockchain, but that they have the ability to broadcast messages across
the blockchain network, and can extract, from their local state, their current
view of the blockchain. It is assumed that both encryptor and decryptor will
maintain their state by running UpdateState of the blockchain protocol, and
that the encryption and decryption algorithms will have access to the most
recent state when extracting the current view of the blockchain via GetRecords.
In other words, we treat the input state st to the encryption and decryption
algorithms as a reference to the most current state (as opposed to the value of
the state at the time the algorithms are called), which will allow, for example,
the algorithms to broadcast a message, and wait for this message to be included
in the blockchain, before continuing execution.

The syntax of our forward-secure PKE scheme is as follows:

Definition 7 (FSPKE). A forward-secure public-key encryption scheme with-
out key update under the existence of a blockchain protocol BLCV is a tuple of
algorithms (FSPKE.KGen,FSPKE.Enc,FSPKE.Dec).

– (pk, sk) ← FSPKE.KGen(1λ): The key generation algorithm FSPKE.KGen
takes as input the security parameter λ. It outputs a key pair (pk, sk).

– c ← FSPKE.Enc(st, pk,m): The encryption algorithm FSPKE.Enc takes as
input a reference to a blockchain state st, a public key pk and a message m.
It outputs a ciphertext c.

– m/⊥ ← FSPKE.Dec(st, sk, c): The decryption algorithm FSPKE.Dec takes as
input a reference to a blockchain state st, a secret key sk and a ciphertext c.
It outputs a message m or the symbol ⊥.
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GCorr
A,Z,FSPKE,m,i,j :

(pk, sk)← FSPKE.KGen(1λ);

EXECBLCV [AEnc,Dec(pk),Z, 1λ];
output m′ = m

Enc() :

c∗ ← FSPKE.Enc(sti, pk,m);
return c∗

Dec() :

m′ ← FSPKE.Dec(stj , sk, c
∗);

return m′

Fig. 1. Game defining correctness.

3.1 Correctness

Unlike ordinary (forward-secure) PKE, the correctness of a PKE scheme depen-
dent on a blockchain is non-trivial. Specifically, when decryption is dependent on
information obtained from or posted to the blockchain, we need to consider po-
tential adversarial interference from other entities with access to the blockchain.
Firstly, malicious miners can potentially prevent correct decryption by simply
not including any information required for decryption in the blockchain. Sec-
ondly, since the basic premise of the use of the blockchain is that anyone can
post a block, and by doing so, any malicious user might be able to interfere with
the decryption by honest users. We capture this aspect of the use of a blockchain,
by considering a correctness definition similar to a security game, in which the
adversary attempts to prevent decryption of an honestly constructed ciphertext.
Note that besides controlling corrupt parties, the adversary in our definition can
make honestly mined blocks contain maliciously generated messages by simply
broadcasting these, since we assume that all honest miners will include messages
received via the broadcast functionality of the blockchain.

We define correctness via the security game shown in Figure 1 in which the
adversary can instruct two honest users to encrypt and decrypt any time dur-
ing the execution of the blockchain protocol via the Enc and Dec oracles. Note
that for the correctness definition to be meaningful, we will only consider adver-
saries that query these oracles once in that order. We refer to such adversaries
as correctness-admissible. Furthermore, note that additional restrictions on the
adversary and the execution of the blockchain are likely to be required for cor-
rectness to hold for any scheme that makes meaningful use of the blockchain. In
particular, the delay an adversary might introduce for messages sent to honest
parties might have to be limited, and the execution of the blockchain protocol
might be required to extend the blockchain. However, we will not include such
restrictions or guarantees in the definition below, but introduce appropriate as-
sumptions when showing correctness of our concrete scheme.

Definition 8 (Correctness). We say that FSPKE with access to blockchain
protocol BLCV satisfies correctness for adversary A in environment Z if for
every plaintext m, every pair of honest users i and j in Z, there exists a negligible



Forward-Secure PKE without Key Update from Blockchain 11

function ε(·) such that the following holds:

Pr
[
GCorr
A,Z,FSPKE,m,i,j = 1

]
≥ 1− ε(λ)

3.2 Security

We will now define a security notion capturing forward security for a PKE scheme
FSPKE based on a blockchain. Like in the case of correctness, the definition
is non-standard due to the ability of an adversary to observe and manipulate
the blockchain. Our security notion, which we denote fs-IND-CPA security, is
based on the standard IND-CPA security notion for ordinary PKE, in which
the adversary is challenged to distinguish between the encryption c∗ of two
adversarially chosen messages, m0 and m1. However, we allow the adversary to
access two new oracles: Leak and HonestDec. The first oracle, Leak, captures the
notion of a key compromise. When it’s invoked, it will return the secret key to the
adversary, but before doing so, it ensures that the challenge ciphertext has been
decrypted by running m∗ ← FSPKE.Dec(st, sk, c∗). In previous forward security
notions, this oracle would correspond to an oracle that updates the secret key
and returns the new (updated) key to the adversary.

The second oracle, HonestDec(c), captures potential information leakage from
records posted on the blockchain by honest users in the decryption process4.
Specifically, in the blockchain setting, an honest user might be required to post
information related to a ciphertext c or their secret key sk, in order to be able
to decrypt c. Since the blockchain is public, an adversary will be able to obtain
this information just by monitoring the blockchain. To capture this, the oracle
HonestDec allows the adversary to submit any ciphertext c, which the oracle will
decrypt as m ← FSPKE.Dec(st, sk, c). However, as we consider a CPA security
notion, the decryption result m will not be returned to the adversary (he will only
be able to observe any information posted to the blockchain in the decryption
process). Our definition can be extended to a CCA notion, simply by returning
m and restricting the adversary from submitting c∗. Note that in our definition
below, no restrictions are placed on c submitted to HonestDec.

Finally, note that the fs-IND-CPA definition itself is generic: it does not
place any assumptions on the adversary in terms of adversarial control of the
blockchain (e.g. the amount of stake held by the adversary). For our concrete
scheme, which will be presented in Section 3.3, we will show that fs-IND-CPA
security holds, assuming the stake controlled by the adversary is sufficiently
small as in [GG17].

Security is defined via the game shown in Figure 2. We say that an adversary
fs-IND-CPA A is admissible if A queries the challenge oracle Chal once with
messages m0 and m1 of equal length, and only queries the Leak oracle after Chal
has been queried (without loss of generality, we can assume any A always queries
both oracles).

4 Note that encryption might likewise require information being posted to the
blockchain, but this is already captured by running the encryption algorithm when
constructing the challenge ciphertext c∗.
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Gfs-IND-CPA
A,Z,FSPKE,i,j :

(pk, sk)← FSPKE.KGen(1λ);

b
$←− {0, 1};

EXECBLCV [AHonestDec(·),Chal(·,·),Leak(pk),Z, 1λ];
b′ ← A;
output b′ = b

HonestDec(c) :

m← FSPKE.Dec(stj , sk, c);
return ⊥

Chal(m0,m1) :

c∗ ← FSPKE.Enc(sti, pk,mb);
return c∗

Leak() :

m∗ ← FSPKE.Dec(stj , sk, c
∗);

return sk

Fig. 2. Security game defining fs-IND-CPA security.

Definition 9 (fs-IND-CPA). Let BLCV be a blockchain protocol with the va-
lidity predicate V , and let FSPKE = (FSPKE.KGen,FSPKE.Enc,FSPKE.Dec) be
a public-key encryption scheme with access to BLCV . We define the advantage
Advfs-IND-CPA

A,FSPKE (λ) of an adversary A against the fs-IND-CPA security of FSPKE
as

Advfs-IND-CPA
A,FSPKE (λ) :=

∣∣∣∣Pr
[
Gfs-IND-CPA
A,Z,FSPKE,i,j = 1

]
− 1

2

∣∣∣∣
where the security game Gfs-IND-CPA

A,Z,FSPKE,i,j is defined in Figure 2. We say that FSPKE
is fs-IND-CPA secure against an admissible adversary A in environment Z if
for all honest users i and j in Z, Advfs-IND-CPA

A,FSPKE (λ) is negligible in λ.

Note that similar to puncturable encryption [GM15], the above security no-
tion guarantees fine-grained forward security i.e. the scheme must support re-
moving the ability to decrypt just a single ciphertext. This improves upon the
notion for standard forward-secure schemes based on key update, in which the
ability to decrypt all ciphertexts constructed between two key updates is lost
in the second key update. Note that adjusting the time period between key
updates in this type of scheme is a challenging task; frequent updates implies
that the ability to decrypt any ciphertext the decryptor cannot immediately
access and decrypt will be lost, whereas infrequent updates implies that any
adversary gaining access to the decryption key will have the ability to decrypt a
potentially large number of previous ciphertexts i.e. any ciphertext constructed
within the current time period (as well as future ciphertexts). In contrast, fine-
grained forward security does not require a notion of time, and any ciphertext
not yet decrypted by the decryptor will remain decryptable. In this sense, a
fine-grained forward-secure scheme provides a functionality closer to ordinary
non-forward-secure encryption, while still providing strong security guarantees
in the case of key compromise. It should be noted, however, that standard fine-
grained forward-secure schemes inherently do not protect against a particular
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type of message suppression attack [BG20]. In Section 5, we discuss the details
of this as well as how our particular construction allows this type of attack to
be mitigated.

3.3 Construction

Our construction is inspired by the idea behind the construction of one-time
programs using a proof-of-stake blockchain presented by Goyal et al. [GG17], in
particular, the use of a proof-of-stake blockchain in combination with a witness
encryption scheme5. In our construction, a message is encrypted under an NP
statement requiring that a certain type of record associated to an ephemeral
secret to be signed by the receiver and posted to the blockchain. Here, the
signing key is the receiver’s long-term secret. The decryption algorithm, which
has access to the signing key, constructs and signs such a record, posts this to the
blockchain, and waits until the blockchain has been sufficiently extended. Then,
using the ephemeral secret and the blockchain containing the corresponding
record as a witness, the decryption algorithm is able to decrypt the message.

Note that the ephemeral secret is the only secret required to construct a
valid witness required for decryption as the blockchain is assumed to be public.
Hence, neither the record posted to the blockchain nor a key compromise must
leak this. The former is ensured by using a one-way hash function (and high-
entropy ephemeral secrets), and the latter is ensured by deleting the ephemeral
secret once decryption has been completed. Note also, that an attacker without
access to the long-term signing key will be unable to construct an appropriate
record that can be used for decryption, assuming the signature scheme is secure.

The key to making this construction forward secure is to require the NP
relation to check that the record used in the witness is the first record in the
blockchain that allows decryption. This will prevent an attacker from creating a
valid witness for a given ciphertext once this has been decrypted by the receiver,
even if the attacker gains access to the long-term signing key.

The above assumes that the attacker cannot manipulate the blockchain it-
self. To ensure the security extends to attackers with a minority stake in the
blockchain, we rely on the distinguishable forking property (Definition 6). More
specifically, the distinguishable forking property guarantees that honestly cre-
ated blockchain extensions can be distinguished from adversarially constructed
forks by examining the unique stake in blockchain. Hence, by letting the NP
relation additionally check that blockchain used in the witness is of sufficient

5 As a one-time program is a powerful primitive, it might be considered to base the
construction of a forward-secure encryption scheme directly on this (besides addi-
tional appropriate primitives). However, we note that it is not clear whether such
a construction will be able to meet our security notions (e.g. [GG17] does not con-
sider correctness against malicious adversaries whereas we do), and any potential
construction will be much more complicated due to the generality of one-time pro-
grams based on garbled circuits. Hence, we focus on a direct construction based on
a proof-of-stake blockchain.
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A pair of NP instance x = (B ‖ id ‖ pk) and a witness w = (B′ ‖ esk) satisfies
RFSPKE if and only if the following properties are satisfied:

RFSPKE(B ‖ id ‖ pk, B′ ‖ esk) := RValidBlocks(B,B
′) ∧RValidEsk(pk, id,B′, esk)

∧ consistent`c(B,B′)

where

RValidBlocks(B,B
′) := V (B) = 1 ∧ V (B′) = 1

RValidEsk(pk, id,B′, esk) := ∃i∗, ∃j∗,

ext-suf-stk(β,`1,`2)(B′, i∗)

∧RDecAttempt(id, pk,B
′
[i∗][j∗])

∧RNotYetDecrypted(B′, i∗, j∗, id, pk)

∧RKnowsEsk(B′, i∗, j∗, esk)

RDecAttempt(id, pk, r) := (r.id = id) ∧ (Sig.Ver(pk, r.id ‖ r.σ, r.cert) = 1)

RNotYetDecrypted(B′, i∗, j∗, id, pk) := (∀0 ≤ j < j∗,¬RDecAttempt(id, pk,B
′
[i∗][j]))

∧ (∀0 ≤ i < i∗, ∀0 ≤ j < |B′[i]|,
¬RDecAttempt(id, pk,B

′
[i][j]))

RKnowsEsk(B′, i∗, j∗, esk) := H(esk) = B′[i∗][j∗].σ

Fig. 3. An NP relation RFSPKE based on the blockchain protocol BLCV with validity
predicate V and parameters par = (β, `c, `1, `2), Sig is a public key signature scheme,
and H is a one-way hash function.

length and has sufficient stake, we can ensure that the attacker cannot decrypt
by constructing a fork of the blockchain.

Let WE be a witness encryption scheme for the NP relation RFSPKE (defined
in Figure 3), BLCV a blockchain protocol with the validity predicate V , Sig a
public key signature scheme, and H a one-way hash function. We present our
construction, FSPKE, of a forward-secure public-key encryption scheme without
key update in Figure 4. Note that the scheme depends on a set of parameters
par = (β, `c, `1, `2) which should be set according to the properties of the under-
lying blockchain protocol.

On the Relation RFSPKE. The relation RFSPKE used in WE and defined in
Figure 3 makes use of several sub-relations. We discuss the intuition of these in
the following.RValidBlocks ensures that both sequences of blocks satisfy blockchain-
protocol-specific requirements i.e. it denies malformed inputs. RValidEsk ensures
that the ciphertext has not yet been decrypted. It requires that the given esk is
valid for the first record on the blockchain which satisfies RDecAttempt. ext-suf-stk
used in RValidEsk ensures the i∗-th block is honestly created with all but negligible



Forward-Secure PKE without Key Update from Blockchain 15

(pk, sk)← FSPKE.KGen(1λ)

1. (pk, sk)← Sig.KGen(1λ).
2. Output (pk, sk).

c← FSPKE.Enc(st, pk,m)

1. B← BLCV .GetRecords(1
λ, st).

2. id
$←− {0, 1}λ.

3. x := (B ‖ id ‖ pk).
4. CT ←WE.Enc(1λ, x,m).
5. Output c := (id, CT ).

m← FSPKE.Dec(st, sk, c)

1. Parse c as (id, CT ).

2. esk
$←− {0, 1}λ.

3. σ ← H(esk).
4. cert← Sig.Sign(sk, id ‖σ).
5. r := (id ‖σ ‖ cert).
6. BLCV .Broadcast(1

λ, r).
7. B← BLCV .GetRecords(1

λ, st).
8. While r 6∈ Bd(`1+`2):
9. B← BLCV .GetRecords(1

λ, st).
10. w := (B ‖ esk).
11. m←WE.Dec(CT,w).
12. Erase esk and then output m.

Fig. 4. A construction of FSPKE where WE is a witness encryption scheme for the NP
relation RFSPKE (defined in Figure 3), BLCV is a blockchain protocol with the validity
predicate V and parameters par = (β, `c, `1, `2), Sig is a public key signature scheme,
and H is a one-way hash function.

probability. RDecAttempt is true if the given record r contains a decryption attempt
for the ciphertext associated with id. RNotYetDecrypted ensures that before the j∗-
th record in the i∗-th block in B′, there’re no valid decryption attempts for the
ciphertext associated with id. This relation guarantees that the ciphertext can
be decrypted only once. RKnowsEsk ensures that the party who is trying to decrypt
knows the ephemeral secret key esk for the first decryption attempt.

3.4 Proof of Correctness

Before showing correctness of our scheme, we will introduce mild assumptions
regarding the execution of the blockchain. Firstly, we will restrict our attention
to blockchain executions that lead to a sufficient growth of the blockchain. More
specifically, we will refer to a blockchain execution as `-growth respecting if the
blockchain of all honest parties is extended with at least ` blocks following a
broadcast by an honest party. Finally, we restrict the delay in terms of growth
of the blockchain, an adversary might introduce for messages broadcast by honest
parties. Specifically, we refer to a blockchain execution as ˜̀-delay respecting, if
the blockchain of any honest users is extended with at most ˜̀ blocks between
an honest user broadcasting a message and this is delivered to all other honest
users.

Theorem 1. Assume the signature scheme Sig is EUF-CMA secure and that the
blockchain protocol BLCV provides `c-consistency, and (`2, β)-sufficient stake for



16 Seiya Nuta, Jacob C. N. Schuldt, and Takashi Nishide

all PPT adversaries with stake at most α′ in environment Z. Then the construc-
tion described in Figure 4 with parameters par = (β, `c, `1, `2) satisfies correct-
ness for any PPT correctness-admissible adversary A in Z with stake at most
α < min(α′, β) in blockchain executions that are ˜̀-delay and (˜̀+`1+2`2)-growth
respecting.

Proof (Theorem 1). Firstly note that the definition of `c-consistency directly im-
plies that for blockchain B used in the encryption performed in the Enc oracle and
the blockchain B′ used in the decryption in the Dec oracle, consistent`c(B,B′)
holds with overwhelming probability.

Secondly, since the execution is (˜̀+`1+2`2)-growth respecting, the blockchain
B′ contained in stj used in the decryption must be extended with ˜̀+ `1 + 2`2
blocks after the broadcast of r in line 6 of the decryption algorithm. Since the
execution is also ˜̀-delay respecting, r must have been delivered to all honest
miners before B′ has been extended with ˜̀blocks, and due to the (`2, β)-sufficient
stake property and α < β, the next `2 blocks must contain an honestly mined
block (which must include r unless r has already been posted) with overwhelming
probability. Hence, there must be at least `1+`2 blocks after the block containing
r, and again due to the (`2, β)-sufficient stake property, the `2 last blocks of these

will have stake at least β. This implies that ext-suf-stk(β,`1,`2)(B′, i∗) is satisfied,
where i∗ is the index of the block containing r.

Combined with the observation that r is honestly constructed, the above
implies that the witness B′ ‖ esk constructed in the decryption is a valid wit-
ness unless RNotYetDecrypted does not hold. This happens only if B′ contains a
block with index less than i∗ with a record r′ for which r′.σ 6= r.σ but which
satisfies RDecAttempt(id, pk, r

′) for the id used in the encryption. This in turn im-
plies that r′.cert is a valid signature on r′.id ‖ r′.σ. However, if A can cause
such a record to be added to B′, we can construct a PPT algorithm B which
breaks the EUF-CMA of the digital signature scheme. B simply plays the cor-
rectness game with A simulating all honest parties, and using his signing oracle
to obtain r.cert corresponding to a signature on r.id ‖ r.σ. After the game fin-
ishes, it searches B′ ← GetRecords(1λ, stj) for a valid record r′ (posted by A)
such that Sig.Ver(pk, r′.id ‖ r′.σ, r′.cert) = 1 holds. Lastly, it outputs the pair
(r′.id ‖ r′.σ, r′.cert) in the EUF-CMA security game.

Since the signature scheme is assumed to be secure, we conclude that B will
only succeed with negligible probability, and hence, that RNotYetDecrypted will hold
with overwhelming probability. Thus the theorem holds. (Theorem 1) ut

Note that in the above, we assume that WE does not impose a length bound
on the used witness. If the maximum witness length of the witness encryption is
bounded, we additionally need to assume that the number of records posted to
the blockchain by A for a certain period is bounded for correctness to hold. In
other words, we would require the honest user is able to decrypt before A posts
so many blocks to the blockchain such that it cannot be used as a witness due
to the length bound being exceeded. A similar assumption is necessary in the
framework of [GG17].
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Lastly, we note that correctness would still hold even if the encryptor bases
his encryption on a previously obtained version of the blockchain as opposed
to the most recent up-to-date version. This is because our construction (Fig-
ure 3) only requires the blockchain B used in encryption to be a prefix of and
be consistent (w.r.t. consistent` as defined in Section 2.2) with the decryptor’s
blockchain B′. However, note again that if the witness encryption only supports
witnesses of bounded size, the difference in terms of blocks between the versions
of the blockchain used by encryptor and decryptor cannot exceed this bound, as
decryption would otherwise fail6.

3.5 Efficiency

The efficiency of our construction essentially follows from the efficiency of the
underlying signature scheme, witness encryption scheme, and blockchain. We
emphasize that neither encryptor nor decryptor are required to participate in
the blockchain protocol itself, but are only required to be able to access an up-
to-date version of the blockchain, and in case of the decryptor, be able to post
a message to the blockchain e.g. by requesting a miner to do so. Depending on
the premise of the blockchain protocol execution, the latter might involve an
additional cost to the decryptor (e.g. paying a fee to the miner).

In more detail, key generation and public/private key size correspond to
that of the signature scheme, and the computational encryption cost and the
ciphertext size correspond to that of the witness encryption scheme, assuming
accessing the blockchain does not involve any computational requirements. De-
cryption firstly requires the decryptor to post a signed message to the blockchain.
Note that he will not be able to immediately decrypt once this has been posted,
but must wait for the blockchain to grow sufficiently to satisfy distinguishable
forking (Definition 6). Once this happens, he will invoke the decryption of the
witness encryption scheme, which will most likely dominate the computational
decryption cost (compared to signing). We refer the reader to Section 2.1 for a
discussion of potential witness encryption instantiations.

Finally, we note that the relation in Figure 3, which is required to be im-
plemented by the witness encryption, is relatively complex, which could be an
efficiency concern as ciphertext size and encryption/decryption cost typically
scale with the size and complexity of the encryption statement and witness78.
However, as noted in [LJKW18], this can be addressed by the use of succinct

6 For ease of notation, as in [GG17], we use the entire blockchain B′ as part of the wit-
ness w. However, we note that essentially only the blocks appended to the blockchain
after encryption suffice as part of the witness w.

7 Note that in our construction, the lower bound of the witness size would be `1+`2+`d
blocks where `1 and `2 are blockchain-specific parameters from the distinguishable
forking property (see Section 2.2), and `d is the difference in the number of blocks
between the blockchain obtained by encryptor and decryptor.

8 We note the approach by Goyal et al. [GKM+20] allows efficient encryption and
only requires the decryptor to perform a potentially heavy computation related to
the relevant statement and witness.
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non-interactive arguments of knowledge (SNARKs) (e.g. see [Gro16]). In our
construction, the decryptor could include a SNARK common reference string in
his public key9, allowing the relation in Figure 3 to be proved using the SNARK
and the witness encryption to only rely on the verification and succinct witness
from the SNARK. This would alleviate concerns regarding encryption cost and
ciphertext size.

4 Security Analysis

The following theorem establishes the security of our construction.

Theorem 2. Assume WE is an extractable witness encryption scheme for the
NP relation RFSPKE, Sig is an EUF-CMA-secure signature scheme, H is a one-
way hash function, and BLCV is a blockchain protocol satisfying (α, β, `1, `2)-
distinguishable forking property for any PPT adversary with stake fraction at
most α in environment Z. Then the construction described in Figure 4 is fs-
IND-CPA secure for any admissible PPT adversary A in Z with at most α
stake fraction.

4.1 Proof of Theorem 2

Simulation of the blockchain. Theorem 2 is with respect to an adversary A
who controls at most an α stake fraction of the blockchain. With the exception
of Claim 3, our security reduction will simulate the parties holding the remaining
stake fraction for A, by honestly executing the blockchain protocol BLCV . We
do not include an explicit simulation of this in the following proof.

Proof (Theorem 2). Let FORGE be the event that A causes honest user j to add
a maliciously constructed record r∗ to the blockchain contained in stj that can be
used to decrypt the challenge ciphertext c∗. More precisely, FORGE denotes that
r∗ is the first record in sequence of blocks B ← GetRecords(1λ, stj) satisfying
Sig.Ver(pk, r∗.id ‖ r∗.σ, r∗.cert) = 1. Note that since the Leak oracle will add a
valid record to the blockchain contained in stj for decryption of c∗, A needs to
compute r∗.cert and post r∗ before Leak does so (i.e. without sk) for FORGE to
occur. That is, intuitively speaking, posting r∗ means that A can forge a valid
signature r∗.cert. In the following lemma, we formalize this intuition.

Lemma 1. Assume that Sig is an EUF-CMA secure signature scheme. Then
Pr[FORGE] < neg(λ).

Proof (Lemma 1). If FORGE occurs, we can construct an adversary BSig which
breaks EUF-CMA security of Sig. BSig simulates the role of a challenger in the
fs-IND-CPA game for A, and is defined as follows:

9 To maintain forward security, the randomness and trapdoor for this common refer-
ence string must be securely erased by the key pair holder after key generation.
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1. Upon receiving pk in the EUF-CMA game, BSig forwards pk to A. When
running, BSig simulates all honest parties in the blockchain and executes the
blockchain protocols honestly. If HonestDec(c) is called where c = (id, CT ),
BSig performs the decryption operations as described in Figure 4 except it
computes cert using the signing oracle of the EUF-CMA game. Lastly, BSig

adds (id ‖σ) to a set Σ. When A calls Leak, BSig aborts A after decryption
of c∗, before the secret key sk is returned.

2. When A finishes its execution (or is terminated by BSig due to a call to Leak),
BSig searches the blockchain B ← GetRecords(1λ, stj) for a valid record r∗

such that (r∗.id ‖ r∗.σ) /∈ Σ, and outputs (r∗.id ‖ r∗.σ, r∗.cert) if such a record
is found.

From the above description, it should be clear that BSig provides a perfect sim-
ulation for A up until abortion, and that, assuming FORGE occurs, BSig returns
a valid forgery. (Lemma 1) ut

Let S be the event that the adversary A wins the fs-IND-CPA game. In the
following lemma, we consider the case A wins the game without causing a valid
maliciously constructed record to the blockchain of honest user j that can be
used for decrypting the challenge ciphertext, i.e. without FORGE occurring.

Lemma 2. Assume WE is an extractable witness encryption scheme, H is a
one-way hash function, and the blockchain protocol BLCV satisfies (α, β, `1, `2)-
distinguishable forking property in Z. Then

∣∣Pr[S|¬FORGE]− 1
2

∣∣ ≤ neg(λ)

Proof (Lemma 2). Assume there exists an fs-IND-CPA attacker A with non-
negligible advantage ε =

∣∣Pr[S|¬FORGE]− 1
2

∣∣. From A, we construct an attacker
AWE against WE as follows. Firstly, we choose random esk ← {0, 1}n, and com-
pute y ← H(esk). The value y will be hardcoded into AWE, and we use the
notation AWE

y to denote this. Hardcoding y into AWE is needed, as below, we
will consider a value y given by an external one-way challenger for H, and hence,
AWE cannot generate y internally.
AWE
y will simulate the fs-IND-CPA game for A = (A1,A2) as follows:

1. AWE
y generates a FSPKE key pair as (pk, sk)← FSPKE.KGen(1λ).

2. AWE
y sends pk to A1 and forwards its output m0,m1 and x = (B ‖ id ‖ pk)

as the challenge instance in the extractability game, where B and id are

computed as B← BLCV .GetRecords(1
λ, sti) and id

$←− {0, 1}λ respectively.
3. Upon receiving the challenge ciphertext c∗, AWE

y forwards c∗ to A2.

– If HonestDec oracle is called by A, AWE
y executes step 1 to 5 of the

decryption algorithm for the given ciphertext c, as defined in the con-
struction, except it replaces σ with the hardcoded value y if c is the
challenge ciphertext10.

10 Note that AWE
y cannot fully decrypt the challenge ciphertext c∗, as it does not know

the preimage of the hardcoded value y, which is required to construct a witness for
decryption.
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– If the Leak oracle is called by A, AWE
y responds in the same way as in

HonestDec, and then returns sk.

4. Lastly, A2 outputs b, and AWE
y forwards this as its own response in the

extractability game.

From the above description, it should be clear that the view of A is identical to
the fs-IND-CPA game, and that if A successfully distinguishes the encryption
of m0 and m1, so will AWE

y in the extractable witness encryption game. Since

WE is extractable, there exists a PPT extractor E for AWE
y , and assuming we

can show that AWE
y successfully distinguishes with a non-negligible advantage, E

will likewise be able to compute a valid witness with non-negligible advantage.
However, here a subtle issue arises: from the assumption that the advantage of A
is ε, it only follows that AWE

y has advantage ε when the choice of y is considered
part of the probability space defining the advantage. For a fixed value of y, even
if this is correctly distributed, we can no longer draw the conclusion that AWE

y

has advantage ε. Nevertheless, the following claim shows that, with probability
ε/2 over the choice of y, AWE

y will have an advantage larger than ε/2.

Claim 1 Let b′ denote the bit output by AWE
y , let b denote the challenge bit in the

extractability game, and let Goody denote the event that Pr[b = b′] ≥ ε/2 + 1/2.
Then, Pr[Goody] ≥ ε/2, where the probability is taken over a random choice of
esk ← {0, 1}n and y ← H(esk).

Proof (Claim 1). Let Succ denote the event b′ = b when esk ← {0, 1}n is picked
at random and y ← H(esk). From the construction of AWE

y and the assumption
that the advantage of A is ε, we have that Pr[Succ] = ε+ 1/2. Hence,

ε+
1

2
= Pr[Succ|Goody] Pr[Goody] + Pr[Succ|¬Goody] Pr[¬Goody]

≤ Pr[Goody] + Pr[Succ|¬Goody]

≤ Pr[Goody] +
ε

2
+

1

2

where the last inequality follows by the definition of ¬Goody. Rearranging the
terms, we obtain Pr[Goody] ≥ ε/2. (Claim 1) ut

The above claim allows us to conclude that we can extract a valid witness for
x specified by AWE

y (including its internal fs-IND-CPA attacker A) with non-

negligible probability, despite invoking the extractor E with AWE
y for a fixed

(but randomly chosen) y. This can be seen as follows. Let w denote the witness
extracted by E from AWE

y . Then we have that

Pr[RFSPKE(x,w)] ≥ Pr[b = b′ ∧RFSPKE(x,w)]

≥ Pr[Goody] · Pr[b = b′ ∧RFSPKE(x,w)|Goody]

≥ ε/2 · Pr[b = b′ ∧RFSPKE(x,w)|Goody]. (1)
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By definition, Goody ensures that the advantage of AWE
y is greater than ε/2, and

we obtain that

ε/2 ≤ Pr[b = b′|Goody]− 1

2

≤ Pr[b = b′ ∧RFSPKE(x,w)|Goody] + Pr[b = b′ ∧ ¬RFSPKE(x,w)|Goody]− 1

2
≤ Pr[b = b′ ∧RFSPKE(x,w)|Goody] + neg(λ)

where the last inequality follows from the extractability of WE (note that
extractability requires a successful extractor exists for all successful adversaries,
including any adversary AWE

y for values of y such that Goody is satisfied). Rear-
ranging the terms yields that

Pr [b = b′ ∧RFSPKE(x,w)|Goody] ≥ ε

2
− neg(λ)

and combining this with (1) we obtain that

Pr [RFSPKE(x,w)] ≥ ε

2
· (ε

2
− neg(λ)).

Note that if ε is non-negligible, then so is Pr[RFSPKE(x,w)]. In other words, with
non-negligible probability, we obtain a valid witness w for x specified by AWE

y

via the extractor E .
In the following, we will show that if a valid witness can be extracted, we

can either break the onewayness of the hash function H, or the distinguishable
forking property of BLCV .

Let HONEST be the event that E outputs a sequence of blocks B′ containing
the record r∗ honestly constructed in the first decryption query of the challenge
ciphertext c∗ (either a query to Dec or Leak) as the first valid record that allows
decryption of c∗. We have that

Pr[RFSPKE(x,w)] = Pr[RFSPKE(x,w)|HONEST] · Pr[HONEST]

+ Pr[RFSPKE(x,w)|¬HONEST] · Pr[¬HONEST]

≤ Pr[RFSPKE(x,w)|HONEST]

+ Pr[RFSPKE(x,w)|¬HONEST] (2)

Claim 2 If Pr[RFSPKE(x,w)|HONEST] is non-negligible, there exists an adver-
sary BOW against the onewayness of H with non-negligible advantage.

Proof (Claim 2). BOW is constructed as follows. Given a challenge y∗, BOW sim-
ply constructs AWE

y∗ as described above, but using y∗ as the embedded y value.
Note that as BOW’s challenge is constructed as y∗ = H(esk∗) for a randomly
chosen esk∗, the construction of AWE

y∗ is identical to the above description. BOW
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then runs E for AWE
y∗ to obtain a witness w, and forwards w.esk as the solution

in the onewayness game. Since HONEST occurs, E outputs a witness w corre-
sponding to the honestly created record r∗ for the challenge ciphertext c∗ i.e.
r∗ must have been posted by the HonestDec or the Leak oracle. Furthermore, it
must hold that H(w.esk) = r∗.σ, and due to the construction of AWE

y∗ , r∗.σ = y∗.
Thus the obtained value w.esk satisfies w.esk = H−1(y∗), and BOW therefore
successfully wins the onewayness game. (Claim 2) ut

Claim 3 If Pr[RFSPKE(x,w)|¬HONEST] is non-negligible, there exists an ad-
versary BBLC breaking the (α, β, `1, `2)-distinguishable forking property of the
blockchain with non-negligible advantage.

Proof (Claim 3). The construction of BBLC is straightforward: BBLC simply runs
E , and returns its output B′. Note, however, that BBLC plays the role of an adver-
sary against the distinguishable forking property of the blockchain, and therefore
must abide by the rules for this type of adversary. In particular, BBLC cannot
control the honest parties participating in the blockchain protocol. Neverthe-
less, the simulation remains straightforward: BBLC simply corrupts the parties
required by the underlying adversary A, who will have a total stake fraction at
most α, and forwards any messages to honest parties over the blockchain network
as dictated by A.

Since HONEST is assumed not to occur, the first valid record r′ in B′ allowing
decryption of c∗ does not correspond to the honestly generated record r∗ in a
Dec or Leak upon submission of c∗ (recall that B′ from a valid witness is required
to contain a valid record allowing decryption of c∗). Furthermore, since FORGE
is also assumed not to occur, r′ cannot occur before r∗ in the honest blockchain
B′′ ← GetRecords(1λ, stj) held by the honest user j. This implies that from
the block in B′ in which r′ occurs, B′ cannot be a prefix of B′′. Additionally,
witness correctness implies that there are at least `′ = `1 + `2 blocks after the
block in which r′ occurs, and that the last `′ − `1 blocks of these contain a
combined stake fraction more than β. Hence, B′ contradicts the (α, β, `1, `2)-
distinguishable forking property, which requires these blocks to contain a stake
fraction less than α < β. (Claim 3) ut

Combining the above observations, we conclude that the existence of an
adversary A with non-negligible advantage implies Pr[RFSPKE(x,w)] being non-
negligible, which in turn implies that either the onewayness of H or the distin-
guishable forking property of BLCV can be broken with non-negligible advantage
due to (2) in combination with Claim 2 and Claim 3. This contradicts the as-
sumption that H and BLCV are secure, and we hence conclude that all A must
have negligible advantage. Hence, Lemma 2 follows. (Lemma 2) ut
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Putting Lemma 1 and Lemma 2 together, we obtain:

Advfs-IND-CPA
A,FSPKE (λ) =

∣∣∣∣Pr[S]− 1

2

∣∣∣∣
=

∣∣∣∣Pr[S|FORGE] Pr[FORGE] + Pr[S|¬FORGE] Pr[¬FORGE]− 1

2

∣∣∣∣
≤
∣∣∣∣Pr[S|¬FORGE] Pr[¬FORGE]− 1

2

∣∣∣∣+ Pr[FORGE]

≤
∣∣∣∣Pr[S|¬FORGE](1− Pr[FORGE])− 1

2

∣∣∣∣+ Pr [FORGE]

≤ neg(λ) + neg(λ) = neg(λ)

Hence, Theorem 2 follows. (Theorem 2) ut

5 Discussion

Besides forward security, our construction provides several interesting properties
which lead to advantages compared to existing approaches as well as additional
security guarantees, but also impacts aspects such as decryption privacy. In the
following, we discuss these in further detail.

Fixed Immutable Secret Keys. The unique feature of our construction is that
forward security is achieved without key updates, and secret keys are short and
immutable. This property provides several advantages.

Firstly, while the size of secret keys in most previous works [CHK03,GM15]
depends on the number of key updates, our construction achieves a constant size
secret key and furthermore does not impose a predetermined maximum number
of possible key updates (such as Bloom filter encryption [DJSS18]).

Secondly, fixed immutable keys are interesting from an application point
of view. For example, a fixed secret key can be embedded in secure read-only
memory, which would provide an additional hardware-based defense against key
compromise. Note that in our construction, the secret key is only required for sig-
nature generation, which is a standard functionality supported by most trusted
platform modules (TPMs), and that the remaining part of decryption can be
done without direct access to the secret key. In contrast, providing similar pro-
tection for a dynamically changing secret key of non-constant size is a harder
task requiring a more advanced trusted execution environment, which in turn is
more difficult and expensive to implement securely.

Lastly, a fixed secret key allows the key to be distributed among several
independent devices or servers without introducing security concerns due to a
potential lack of synchronization. Key distribution might be desirable e.g. if the
same user uses several different devices or several servers are used to implement
load balancing (here the servers look like one server from the outside). In this
case, security concerns might arise for schemes implementing fine-grained for-
ward security based on key update. For example, if a device decrypts a ciphertext
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c, the local key of that device will be rendered useless for future decryptions of c
to ensure forward security. However, unless the keys stored by all other devices
are updated with respect to c, an adversary will still be able to decrypt c by
compromising a device with a key that has not yet been updated. Hence, this
creates a potentially significant synchronization problem. On the other hand,
this problem is completely eliminated by a scheme with fixed secret keys, as
there is no need to update keys to ensure security.

Decryption Privacy and Key Compromise Detection. Our construction requires
the decryptor to post an appropriate message to the blockchain to decrypt a
ciphertext. Specifically, Alice (holding the key pair pkA and skA) is required
to post a record r to the blockchain such that Sig.Ver(pkA, r.id ‖ r.σ, r.cert) = 1
holds to be able to decrypt a ciphertext c = (id, CT ).

Note that as r.cert is publicly verifiable with respect to Alice’s public key pkA
and id uniquely identifies c, anyone monitoring the blockchain, which is assumed
to be publicly accessible, will be able to tell when Alice decrypts a specific
ciphertext i.e. the construction does not provide Alice with privacy regarding
decryption.

On the other hand, this gives the construction a unique security property
not provided by existing schemes. More precisely, by monitoring the blockchain,
Alice can detect if someone else is trying to decrypt a ciphertext using her private
key. Hence, it is possible for Alice to detect a key compromise if the compromised
key is ever attempted to be used for decryption. This property is not achievable
if decryption can be done without any information being made public.

One-Time Decryption. In existing fine-grained encryption schemes without in-
teraction [GHJL17, DJSS18, GM15], a ciphertext can be decrypted only once
even by a legitimate user because an updated secret key cannot be used for de-
crypting past ciphertexts; the same limitation applies to our construction. Note
that one-time decryption is an inherent property of fine-grained forward security.

Message Suppression Attacks and Mitigation. As we mentioned in Section 3.2, a
standard fine-grained forward-secure scheme with perfect correctness inherently
does not protect against message suppression attacks [BG20]. A message sup-
pression attack is a man-in-the-middle attack where the attacker is assumed to
control the communication between encryptor and decryptor and simply does
not deliver a given ciphertext c. Then, if the attacker is allowed to compromise
the secret key, he will be able to decrypt c due to the perfect correctness of the
scheme and the fact that c has not been attempted to decrypt by the decryptor11.

To mitigate the attack in our construction, we can introduce decryption ex-
piration (similar to eventual forward security [BG20]) by checking in the witness

11 In a scheme based on periodical key updates, this type of attack does not work assum-
ing the key has been updated after the ciphertext was constructed and the attacker
compromises this updated key. However, schemes based on periodical key updates
only achieve coarse-grained forward security (eventual forward security [BG20]) and
are still vulnerable to the attack until the key is updated.
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relation RFSPKE(x,w) that the number of blocks in w.B′ extended from x.B is
less than a predefined expiration threshold. This ensures that if the adversary
does not compromise the secret key before the extension of the blockchain passes
the threshold, he will not be able to decrypt the intercepted ciphertext. How-
ever, this will also require the legitimate decryptor to decrypt the ciphertext
before the expiration, as he would otherwise lose the ability to do so. Finally
note that this change does not interfere with the property that once the decryp-
tor has decrypted a ciphertext, this can no longer be decrypted by an adversary
compromising the decryption key i.e. fine-grained forward security is maintained.
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