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Abstract. The NTRU problem is a promising candidate to build efficient Fully Homomorphic Encryp-
tion (FHE). However, all the existing proposals (e.g. LTV, YASHE) need so-called ‘overstretched’ pa-
rameters of NTRU to enable homomorphic operations. It was shown by Albrecht et al. (CRYPTO 2016)
that these parameters are vulnerable against subfield lattice attacks.
Based on a recent, more detailed analysis of the overstretched NTRU assumption by Ducas and van
Woerden (ASIACRYPT 2021), we construct two FHE schemes whose NTRU parameters lie outside
the overstretched range. The first scheme is based solely on NTRU and demonstrates competitive
performance against the state-of-the-art FHE schemes including TFHE. Our second scheme, which is
based on both the NTRU and LWE assumptions, outperforms TFHE with a 28% faster bootstrapping
and 45% smaller bootstrapping and key-switching keys.

1 Introduction

In the last ten years fully homomorphic encryption based on lattice problems has been a vibrant
field of research, with schemes being proposed, sometimes broken and sometimes improved. The
initial work of Gentry [Gen09] was truly groundbreaking in that it established not only (what we
now call) a compact somewhat homomorphic encryption (SHE) scheme based on lattices, but it also
presented a method to bootstrap the compact SHE scheme into a fully homomorphic encryption
(FHE) scheme. Gentry’s original scheme was based on properties of lattices of ideals of algebraic
number fields, which are now considered insecure, but in the intervening years numerous authors
have presented FHE schemes based on LWE [BV11a], Ring-LWE [BV11b], NTRU [LTV12] and the
approximate integer GCD problem [vGHV10].

NTRU-based schemes seem the most efficient as their ciphertexts can be represented by a single
polynomial in comparison to a pair of polynomials in RLWE-based schemes. Hence, these schemes
have the potential of halving both the memory requirements and the running time.

In particular, an early FHE scheme based on the NTRU problem, called YASHE [BLLN13], was
very efficient when compared to similar schemes. However, it was subsequently shown to be insecure
due to the parameters being chosen in the so-called ‘overstretched’ NTRU regime [ABD16]. More
specifically, YASHE required the integer modulus q to be exponentially large in n, the degree of the
polynomial used as the modulus of the polynomial ring. Howerver, it was discovered [ABD16] that
as we “stretch” the parameters by increasing q for a fixed n, the NTRU problem becomes easier,
because it becomes possible to exploit a dense sublattice of the NTRU lattice to mount an attack.
Therefore, constructing FHE schemes based on the NTRU problem is challenging.

In the initial version of the attack, the subfields of the NTRU field were exploited in order to
reduce the dimension of the lattice in which one searches for the secret key. Latter analysis [KF17]
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showed that the attack is enabled simply by the existence of a dense sublattice within the NTRU
lattice. Thus, this attack stems from the structure of the NTRU lattice and, therefore, cannot be
addressed by switching to another polynomial ring. However, it was still difficult to estimate the
impact of these sublattice attacks on the security of NTRU and, therefore, it was hard to obtain
correct estimates of the security level of NTRU-based schemes. For example, the recent leveled
homomorphic encryption scheme for automata [GGH+19], which is based in the matrix NTRU
problem, used q polynomial in n. Nevertheless, it was quickly shown [LW20] that this scheme is
vulnerable to sublattice attacks.

However, we now have a much better understanding about how the security of the NTRU prob-
lem degrades as we increase q. In particular, the recent work of Ducas and van Woerden [DvW21]
allows us to estimate the concrete cost of breaking the NTRU problem for any given q. Thus, we
now have much more solid ground to try to construct NTRU-based FHE schemes.

Ducas and van Woerden showed that to avoid the aforementioned sublattice attacks one should
set q ∈ O(n2.484). This already seems to rule out NTRU-based schemes which follow the blueprint
used in RLWE-based schemes such as BGV [BGV12] or FV [FV12]. Therefore, as a starting point,
we take the bootstrapping blueprint of [DM15] (which is the basis of the FHEW scheme) and its
extension to TFHE [CGGI16].

These schemes have a base homomorphic encryption scheme, in both cases based on LWE, which
can easily evaluate NAND gates. To bootstrap, one transforms the ciphertext in the base scheme
into a GSW-like scheme [GSW13] based on the RLWE problem. The bootstrapping procedure is
then implemented using the homomorphic multiplications of the GSW-like scheme, and in the final
step the GSW-like ciphertext is transformed back into a ciphertext with respect to the base scheme.
The advantage of GSW-like schemes is that noise growth is quasi additive when evaluating long
chains of multiplications, thus, the final noise in the refreshed ciphertext can be as small as Õ(n1.5),
which fits the above bound of Ducas and van Woerden.

In this paper, we investigate the construction of FHE schemes based on the NTRU problem
using the above blueprint. We show that it is possible to adapt the framework of [DM15] to the
NTRU setting, by using a matrix version of the NTRU problem to construct the base scheme and
the standard NTRU problem to construct a GSW-like scheme. We note that we use two different
forms of ciphertexts to keep small noise growth for those two schemes. The resulting scheme has
a fast bootstrapping algorithm with running times similar to those of the most efficient scheme of
this type – TFHE [CGGI16]. As the encryption parameters of our scheme can be selected outside
of the overstretched regime of NTRU, this allows us to construct competitive FHE based solely on
the NTRU assumption.

In addition, we show that the combination of an LWE-based base scheme and our NTRU-based
GSW-like bootstrapping scheme has a faster bootstrapping algorithm than TFHE and requires
much less key material, which improves the state-of-the-art in FHE constructions.

1.1 Our techniques and results

Homomorphic scheme based on the matrix NTRU problem. The bootstrapping framework
of [DM15] assumes that the decryption of the base scheme is simple. This is the case for LWE-
based schemes, because the main step of the decryption is a simple inner product between the
ciphertext and the secret key. However, if we want to replace the underlying LWE-based base scheme
with one based on NTRU then complications arise. The NTRU decryption involves a polynomial
multiplication, which is much more complicated than the inner product.
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One way of simplifying the decryption function is by assuming that each NTRU ciphertext
encrypts an integer m0 instead of a polynomial of degree N − 1. Let Rq be a polynomial ring. We
can encrypt m0 as c = g/f + ∆ ·m0 ∈ Rq where g is a random element of Rq, f is the secret key
and ∆ ' q/4. To decrypt, we compute the inner product of the coefficient vector of c, denoted by
φ(c), and the first column of the anti-circulant matrix of f which we will denote as Φ(f). Given
that the secret key of the NTRU scheme will be defined as f = 1 + 4 · f ′, one can notice that in Rq
c · f = g + 4 · f ′ · ε+∆ ·m0, for some small ε, which implies that

φ(c) ·Φ(f) = φ(g) + 4 · ε · φ(f ′) +∆ · (m0, 0, . . . , 0).

Hence, φ(c) · col0(Φ(f)) = g0 + 4 · ε · f ′0 +∆ ·m0, which is enough to recover m0.
Similarly to [DM15], one can use NTRU defined over power-of-two cyclotomic rings. However,

these rings provide little flexibility to achieve a certain security level. For example, if the ring
dimension N = 600 satisfies the desired security level, one has to choose N = 210, the smallest
power of 2 larger than 600. This problem can be solved by using cyclotomic rings of other orders,
but in this case, the matrix Φ(f) loses its anti-circulant property, which, as we will see in Section
5, helps to significantly speed-up the bootstrapping and reduce encryption parameters.

Driven by the above limitations, we resort to the matrix NTRU problem (MNTRU) instead of
its ring-based version. Our MNTRU base scheme is described as follows. We replace the polynomial
ratio g/f by the matrix product G ·F−1, where both G and F are unstructured random matrices.
Hence, a ciphertext of some plaintext matrix M has the form C = G · F−1 + ∆ ·M ∈ Zn×nq or
C = (G+∆ ·M) ·F−1 ∈ Zn×nq . A single integer m ∈ {0, 1} is encrypted by a ciphertext of the form

c := (g +∆ ·m) · F−1 ∈ Znq

where g is a random vector from Znq and m := (m, 0, . . . , 0) ∈ Zn. This guarantees that the
decryption can be done by the inner product of c and the first column of the secret matrix F.
Therefore, it is simple enough for the bootstrapping algorithm to handle it efficiently. Furthermore,
it is easy to adapt the homomorphic NAND gate from [DM15] to our scheme.

Notice that we are dividing both the noise term (g) and the message (∆ ·m) by F, because this
reduces the impact of the noise growth due to the multiplication by F during the decryption, as
explained in Section 3.

GSW-like scheme based on the NTRU problem. The bootstrapping framework of FHEW [DM15]
uses a GSW-like scheme based on the RLWE problem to evaluate the decryption function of the
base scheme efficiently and with low noise growth. Thus, to follow this blueprint, we propose an
NTRU-based GSW-like scheme, which we call NGS. As the GSW-like scheme of [Per21], NGS can
encrypt a polynomial m ∈ R := Z[X]/〈XN + 1〉 in two ciphertext formats:

– Scalar : it is a standard NTRU ciphertext encrypting m as g/f +∆m ∈ RQ.
– Vector : we encrypt m as c = g/f + g ·m ∈ R`Q, where g is a gadget vector and ` ≈ log(Q).

As in TFHE [CGGI16], we define an external product between these two ciphertexts types, which
outputs another scalar ciphertext. Notice that we need only ` ring elements per vector ciphertext.
Thus, our external product is computed with ` products in RQ, while the ciphertexts of the TGSW
scheme used in TFHE are composed by 4 ·`′ ring elements. Therefore, they need 4 ·`′ multiplications
per external product. Thus, the NGS scheme can achieve better running times and memory usage
for similar parameters.
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Fast bootstrapping with non-overstretched parameters. We show that MNTRU ciphertexts
can be homomorphically decrypted, or bootstrapped, using the NGS scheme with a similar running
time as in TFHE.

Given a ciphertext c ∈ Znq of the base scheme, we use the NGS scheme to multiply it homo-
morphically by the vector f0 := col0(F) ∈ Zn, i.e., the first column of the MNTRU secret key. This
generates a scalar ciphertext which is then transformed back to an MNTRU ciphertext.

In TFHE’s bootstrapping, the LWE secret s is binary, since this allows one to compute an
encryption of Xaisi using the fact that Xai·si = 1 + (Xai − 1) · si when si ∈ {0, 1}. This operation
is called a CMux gate. Since NTRU has ternary secret keys, adapting the CMux would require two
consecutive external products, as it was noticed in [MP21]. Thus, we propose a ternary CMux

gate, which can be executed with a single external product. We notice that this ternary CMux is
of independent interest, as it can also be applied to other bootstrapping procedures, e.g., if one
instantiates TFHE with ternary secrets.

We also prove that the final noise accumulated by the bootstrapping is Õ(n), which allows us
to choose q as a very low degree polynomial in n, e.g., q = Õ(n), thus, below the ‘fatigue’ point
that characterizes the overstretched regime of NTRU. Namely, it was shown [KF17,DvW21] that
the dense sublattice attacks against NTRU start to be more efficient than the classic key-recovering
attacks when q = n2.484+o(1).

Faster bootstrapping by combining LWE and NTRU. Comparing the external product of
TFHE with ours, we see that we need less multiplications in RQ, thus, less fast Fourier transforms
(FFT), which is the most expensive building block in the entire bootstrapping. Hence, we would
expect our bootstrapping to be faster than theirs by a constant factor. However, the total number
of external products is n, the dimension of the base scheme, which is defined by the hardness of
the MNTRU problem. Thus, we have to choose n larger than in TFHE and we end up with a
bootstrapping that requires essentially the same number of FFTs as in TFHE.

To obtain a smaller value of n, we propose to replace our MNTRU-based scheme by an LWE-
based and use the NGS scheme to bootstrap it. Thus, the decryption function of an LWE-based
scheme is evaluated by the NGS scheme, which returns an NGS scalar ciphertext. We show that it
is possible to adapt existing key-switching procedures to transform this NTRU ciphertext back to
an LWE ciphertext, thus completing the bootstrapping.

Therewith, we need essentially the same number of external products as in TFHE, but each
external product requires less FFTs, thus leading to a smaller total number of FFTs in our boot-
strapping. In addition, our scheme requires much less key material.

Practical results and C++ implementation: We implemented our bootstrapping algorithms
and compared it with that of TFHE. As a result, the bootstrapping of MNTRU ciphertexts is about
40% slower than TFHE’s bootstrapping and it requires 9% more key material. However, when the
LWE problem is used to construct the base scheme, our running time is about 28% faster than
TFHE. As a concrete example, running on a single core of a 3.1 GHz processor, TFHE takes 66
ms while ours takes 48 ms. Furthermore, our LWE/NGS scheme almost halves the total size of
bootstrapping and key-switching keys: from 71 MB in TFHE to 39.3 MB.

Our code is publicly available. More details can be found in Section 7.
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2 Preliminaries

2.1 Vectors, polynomials, and norms

We use lower-case bold letters for vectors and upper-case bold letters for matrices. A zero vector is
denoted by 0. We denote the i+ 1-th column (resp. row) of a matrix A by coli(A) (resp. rowi(A)).
The inner product of two vectors a and b is denoted by a · b. For any vector u, ‖u‖ denotes the
infinity norm. Let [B] denote a set {1, . . . , B} for an integer B.

Throughout the paper, N is always a power of two and R := Z[X]/〈XN + 1〉 is the (2N)-th
cyclotomic ring. Any element f of R can be always seen as the unique polynomial of degree smaller
than N belonging to the coset f + 〈XN + 1〉. Hence, writing f =

∑N−1
i=0 fi · Xi is unambiguous

and we can then define the coefficient vector of f as φ(f) := (f0, . . . , fN−1) ∈ ZN . Therefore, we
can define the infinity norm of f as ‖f‖ := ‖φ(f)‖. We also define the anti-circulant matrix of f
as Φ(f) ∈ ZN×N such that rowi(Φ(f)) = φ(f · Xi) for 0 ≤ i ≤ N − 1. Notice that ∀(k, f, g) ∈
Z×R×R, φ(k · f · g) = k · φ(f) ·Φ(g). For any Q ∈ Z, let RQ := R/QR = ZQ[X]/〈XN + 1〉.

Finally, we define M := {±b · Xk : b ∈ {0, 1} and k ∈ N}, which will be used as the plaintext
space of the vector ciphertexts defined in Section 4.

2.2 Distributions

Discrete Gaussian distribution. We first describe the discrete Gaussian distribution where our
secret elements are sampled from. Typically, a discrete Gaussian distribution is defined as a distri-
bution over Z, where every element in Z is sampled with probability proportional to its probability
mass function value under a Gaussian distribution over R. We first define the Gaussian function
as ρσ,c(x) = exp(− |x−c|

2

2·σ2 ) for σ, c ∈ R > 0. Hence, ρσ,c(Z) =
∑∞

i=−∞ ρσ,c(i). The discrete Gaussian
distribution with standard deviation σ and mean c is a distribution on Z with the probability of
x ∈ Z given by ρσ,c(x)/ρσ,c(Z). If c = 0, we denote this distribution by χσ.

Subgaussian distribution. For the analysis of encryption parameters, we need subgaussian ran-
dom variables over R.

Definition 1. A random variable V over R is α-subgaussian if its moment generating function
satisfies

E[exp(t · V )] ≤ 1

2
exp(α2 · t2)

for all t ∈ R.

From the definition, we can prove that the variance of V , denoted by Var(V ) is bounded by α2,
i.e. Var(V ) ≤ α2. Informally, the tails of V are dominated by a Gaussian function with standard
deviation α. The following lemma is adapted from [GMP19] to our definition.

Lemma 1. If x is a discrete random vector over Rn such that each component xi of x is αi-
subgaussian, then the vector x is a β-subgaussian vector where β = maxi∈[n] αi.

Subgaussian random variables have an important property called Pythagorean additivity. Given
two random variables, α-subgaussian X and β-subgaussian Y , and a, b ∈ Z, the random variable
a ·X + b · Y is

√
a2 · α2 + b2 · β2-subgaussian. It implies that

Var(a ·X) + Var(b · Y ) ≤ a2 · Var(X) + b2 · Var(Y ) ≤ a2 · α2 + b2 · β2.
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For a ∈ R (resp. x ∈ Zn), we denote by Var(a) (resp. Var(x)) the maximum variance of each
coefficient (resp. component) of a (resp. x). The variance of the product of two polynomials a, b ∈ R
is Var(a · b) = n · Var(a) · Var(b). Similarly, we denote by Var(X) the maximum variance of each
column of a matrix X.

2.3 Decompositions

For fixed integers q and B, we set ` := dlogB qe and define gq,B := (B0, . . . , B`−1). When q and
B are clear from the context, we write g. Then, for any k ∈ Zq, we represent k by an integer
in [−q/2, q/2) and define its signed decomposition in base B as g−1(k) = (k0, . . . , k`−1) for each
integer |ki| ≤ B/2 for i ∈ [`]. It is easy to see that g−1(k) · g = k. For any f ∈ RQ, we define

g−1(f) :=
∑N−1

i=0 g−1(fi)X
i. It is clear that

g−1(f) · g =
N−1∑
i=0

g−1(fi) · g ·Xi =
N−1∑
i=0

fi ·Xi = f.

The digit decomposition g−1 can be deterministic or randomized [GMP19,JLP21].

2.4 NTRU problems

It is usual to instantiate the NTRU problem with ternary secrets. In our constructions, we generate
the secrets from a distribution on {−1, 0, 1} such that zero occurs with probability 1/2, and 1 and
−1 occur with probability 1/4. This approximates a discrete Gaussian with standard deviation
σ = 1/

√
2.

Following [DvW21], we can define the anti-circulant and the matrix versions of the NTRU
problem. Each version has a computational and a decisional variant.

Definition 2 (NTRU). Let N > 0, Q > 1 be integers and R := Z[X]/〈XN + 1〉. Let σ > 0 be a
real number, g, f ← χNσ and f be invertible in RQ.

The (computational) (N,Q, σ)-NTRU problem is to recover f and g given h := g · f−1 mod
Q. The (N,Q, σ)-decisional-NTRU problem is to distinguish between h and a uniformly random
polynomial sampled from RQ.

Definition 3 (Matrix NTRU). Let n > 0, q > 1 be integers and σ > 0 is a real number. Let
G,F← χn×nσ and F be invertible modulo q.

The (computational) (n, q, σ)-matrix-NTRU problem is to recover F and G given H := G ·
F−1 mod q. The (n, q, σ)-decisional-matrix-NTRU problem is to distinguish between H and a uni-
formly random matrix from Zn×nq .

3 Matrix-NTRU base encryption scheme

Our base encryption scheme is based on the matrix NTRU (MNTRU) problem. It encrypts a bit
m ∈ {0, 1} as if it were an element of Z4; i.e. we multiply m by ∆ := bq/4e.

As such we can evaluate a NAND gate by adding two ciphertexts encrypting a bit and con-
sidering the result modulo 4. The result is m = 2 if NAND(m0,m1) = 0 and m ∈ {0, 1} if
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NAND(m0,m1) = 1. We can transform this ciphertext with the result modulo 4 back to an en-
cryption of NAND(m0,m1) with a simple affine transformation, as shown below. This ensures that
after one homomorphic NAND gate, we obtain a message defined in Z2, i.e. multiplied by bq/2e.
Since the message is only one bit, we can define its ciphertext as a vector in Znq as shown in
Introduction.

A standard MNTRU ciphertext would have the form g·F−1+∆·m, i.e., with only the noise term
being divided by secret key F, however, this would introduce a new noise term in the decrypting,
when we multiply the ciphertext by col0(F). In more detail, the key switching procedure presented
in Section 4.5, which transforms a ciphertext from NGS to MNTRU, would output a ciphertext of
the form c′ = g ·F−1+e+∆ ·m, where ‖e‖ = Ω(n). Then, the decryption would produce e ·col0(F),
whose norm would be Ω(n2). Thus, to avoid such large noise, we define a MNTRU ciphertext with
the form (g +∆ ·m) · F−1.

Hence, the MNTRU scheme is defined by the following four algorithms. Note that the decryption
procedure below is valid for the ciphertexts produced by a NAND gate.

– MNTRU.ParamGen(1λ): Receives the security parameter and outputs (n, q, σ).
– MNTRU.KeyGen: Sample F ← χn×nσ until F−1 exists in Zn×nq . Define sk := F. Create a public

evaluation key as evk := (g + b5 · q/8e · (1,0)) · F−1 ∈ Znq , where g← χnσ. Output (evk, sk).
– MNTRU.Enc(m, sk): Given m ∈ {0, 1}, sample g← χnσ. Let ∆ := bq/4e and output

c = (g +∆ · (m,0)) · F−1 ∈ Znq .

We call it a fresh MNTRU ciphertext.
– MNTRU.Dec(c, sk): Given the secret key sk = F and a ciphertext c ∈ Znq , which is of the form

(g + bq/2e · (m,0)) · F−1 ∈ Znq , this algorithm computes r = c · col0(F) mod q and outputs⌊
2 · r
q

⌉
mod 2.

– MNTRU.Nand(c0, c1, evk) : Given the evaluation key evk and two ciphertexts of the form (gi +
bq/4e · (mi,0)) · F−1 ∈ Znq , where mi ∈ {0, 1} output

cNAND := evk− c0 − c1.

This homomorphic NAND gate is basically the same as the one presented in [DM15]. Thus, its

output is cNAND =
(
g − g0 − g1 + (e ± q/8) · (1,0) + q

2 · (m,0)
)
· F−1 where |e| ≤ 3

2 and m =

NAND(m0,m1) = 1−m0 ·m1. One can see this through the following computation.
Let f := col0(F), g0 be the first element of g, g0,0 be the first element of g0 and g1,0 be the first

element of g1 then

cNAND · f − (1−m0 ·m1)
q

2
= (evk− c0 − c1) · f − (1−m0 ·m1)

q

2

= g0 − g0,0 − g1,0 +

⌊
5q

8

⌉
−
⌊q

4

⌉
m0 −

⌊q
4

⌉
m1

− q

2
+
q

2
m0 ·m1

= g0 − g0,0 − g1,0 +
q

8
+ ε− q

4
(m0 +m1 − 2m0 ·m1)
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+ ε0 ·m0 + ε1 ·m1

= g0 − g0,0 − g1,0 +
q

8
+ ε− q

4
(m0 −m1)

2

+ ε0 ·m0 + ε1 ·m1,

where ε, ε0, ε1 are round-off errors whose absolute value is less or equal to 1/2. If we set e =
ε+ ε0 ·m0 + ε1 ·m1, we have |e| ≤ 3

2 .
We now show that decrypting the output of a NAND gate gives the correct answer, as long as

the sum of three input noises g − g0 − g1 is not too large. For simplicity, we consider the ternary
noise for the following lemma since we instantiate our scheme with ternary secrets as we mentioned
above. Therefore, the noise of evaluation key always satisfies that ‖g‖ = 1. The noise contained in
a fresh ciphertext or an evaluation key is called fresh.

Lemma 2 (Correctness of decryption). For 0 ≤ i ≤ 1, let ci := (gi + bq/4e · (mi,0)) ·
F−1 ∈ Znq be an encryption of mi ∈ {0, 1}. Consider that evk is generated with a ternary g and
let c := MNTRU.Nand(c0, c1, evk). If ‖g0 + g1‖ < (q − 20)/8, then MNTRU.Dec(c, sk) outputs
NAND(m0,m1).

Proof. From the above analysis, we know that

c =
(
g − g0 − g1 + e(1,0)± q/8 · (1,0) + (q/2) · (m,0)

)
· F−1 ∈ Znq

where m := NAND(m0,m1).
Let f := col0(F). To decrypt c, we compute r := c · f mod q. Notice that for some u ∈ Z, we

have

r = g − g0 − g1 + e± q/8 + (q/2) ·m− u · q,

where g, g0 and g1 are the first components of g,g0 and g1, respectively. Thus, the second step of
the decryption operation gives us⌊

2 · r
q

⌉
=

⌊
2 · (g − g0 − g1)

q
+

2 · e
q
± 1

4

⌉
+m− 2 · u

which is equal to m modulo 2 as long as |2 · (g− g0− g1)/q+ 3/q± 1/4| < 1/2. Thus, the inequality
simply implies that

‖g − g0 − g1‖ <
(

1

2
− 1

4
− 3

q

)
· q

2
=
q − 12

8
.

Since the noise of evaluation key is always fresh and sampled from ternary elements, ‖g‖ = 1. It
implies that if ‖g0 + g1‖ < (q − 12)/8− 1 = (q − 20)/8, then the result holds.

ut

4 NGS: NTRU-based GSW-like scheme

In this section, we present a (ring-based) NTRU-based scheme that has two encryption functions.
The first one encrypts a plaintext m which is a ternary polynomial as an element of RQ, whilst the
second one encrypts it as a vector over RQ using “gadget vectors”. To simplify the noise analysis,
we assume that all the messages encrypted by the vector ciphertexts belong to the following set of
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monomials: M = {±b · Xk : b ∈ {0, 1} and k ∈ N}. We notice that this assumption holds for our
bootstrapping procedures.

Our scheme has quasi-additive noise-growth as the GSW scheme [GSW13]. In fact, it is inspired
by the simplified variant of GSW proposed in [DM15]. We call this scheme NGS, which stands for
NTRU-GSW-like encryption Scheme. In Section 5, the NGS scheme is used as the accumulator
to homomorphically evaluate the decryption of another, much simpler scheme based on the ma-
trix NTRU problem. Following the idea of [CGGI16] to speed-up the bootstrapping, we define an
external product that multiplies scalar NTRU ciphertexts, i.e. elements of RQ, and vector NTRU
ciphertexts, i.e. vectors over RQ. This is the framework used to obtain a fast bootstrapping in
FHEW [DM15] and TFHE [CGGI16].

Usually NTRU schemes are defined as asymmetric ciphers by publishing a public key h :=
g/f mod Q. Since such public keys are not involved in bootstrapping, we present a symmetric
version of this scheme. Notice that any encryption of zero could be used as a public key. Moreover,
since the NGS ciphertexts are never decrypted in the bootstrapping pipeline, we omit the decryption
procedure.

4.1 Basic procedures

The NTRU-based encryption scheme is defined as follows.

– NGS.ParamGen(1λ): Receives the security parameter and outputs the tuple (N,Q, ς, B, `), where
B is a base used to decompose the ciphertexts and ` := dlogB(Q)e.

– NGS.KeyGen: Sample f ′ ← χNς and set f := 1 + 4 · f ′ until f−1 exists in RQ. Output sk := f .
– NGS.EncS(sk,m): Given a ternary polynomial m , sample g ← χNς , define ∆ := bQ/4e, and

output c = g/f +∆ ·m ∈ RQ. We call c a scalar encryption of m.
– NGS.EncVec(sk,m): Given m ∈M, sample gi ← χNς for 0 ≤ i ≤ `− 1. Define g := (g0, . . . , g`−1)

and g = (B0, B1, . . . , B`−1). Output c = g/f + g ·m ∈ R`Q. We call c a vector encryption of m.

4.2 External product

Having defined two types of encryptions, scalar and vector ciphertexts, we can define the “external
product” between them as proposed in TFHE [CGGI16]. The external product is cheaper than the
NGS homomorphic multiplication (i.e. the convolution of two vector ciphertexts).

Suppose we have a scalar encryption c := g/f +∆ · u ∈ RQ of a ternary polynomial u and a
vector encryption c := g/f + g · v ∈ R`Q of a message v ∈ M. Then, the external product of c and
c is defined as follows

c� c := g−1(c) · c ∈ RQ.

Since g−1(c) · g = c, it is clear that cmult = c� c is equal to

cmult := (g−1(c) · g)/f + (g−1(c) · g · v) = (g−1(c) · g + g · v)︸ ︷︷ ︸
gmult

/f +∆ · u · v.

Hence, cmult is a valid scalar encryption of the product u · v as long as the noise term gmult is small
enough. We formalize this notion in the next section. Notice that it is important that ‖u · v‖ < 4,
otherwise, multiplying it by ∆ introduces a round-off error and produces an ill-formed ciphertext.
Since we are assuming that v ∈M, we have ‖u · v‖ ≤ ‖u‖ < 2.
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4.3 Noise analysis

Instead of performing a worst-case analysis of the noise growth, which boils down to bounding
every element by its infinity norm, we provide a more realistic average-case noise analysis. To do
so, we can instantiate g−1 with a randomized gadget decomposition algorithm [GMP19,JLP21], or
we can use a deterministic decomposition and heuristically assume that all the coefficients of the
errors of MNTRU and NGS samples are independent and concentrated; thus, they are subgaussian
random variables. The first approach is used in FHEW [DM15], while the latter is present in
TFHE [CGGI16,CDKS19]. Both methods return a subgaussian random variable. Therefore, our
analysis assumes that for all a ∈ RQ, g−1q,Bksk

(a) is a γ-subgaussian for some γ = O(B).

Definition 4 (Noise of a scalar ciphertext). Let c = g/f + ∆ ·m ∈ RQ. We define the noise
of c as err(c) := c · f −∆ ·m ∈ RQ and interpret it as a polynomial over Z[X] with coefficients in
[−Q/2, Q/2].

We also define the noise of a vector ciphertext below for our noise analysis.

Definition 5 (Noise of a vector ciphertext). Let c = g/f + g ·m ∈ R`Q. We define the noise
of c as err(c) := c · f − g ·m · f ∈ RQ and interpret it as a vector of polynomials over Z[X] with
coefficients in [−Q/2, Q/2].

We first bound the noise of ciphertexts of a special form, namely fresh ones that encrypt
monomials. This includes the important special case of m ∈ {0, 1}.

Lemma 3 (Bound on the noise of a (fresh) scalar ciphertext). Let c = g/f +∆ ·m ∈ RQ
be a ciphertext of m. If m is a monomial of the form ±b ·Xk for some b ∈ {0, 1}, then

Var(err(c)) ≤ Var(g) + 4 · ς2.

If m is a ternary polynomial with degree at most N − 1, then

Var(err(c)) ≤ Var(g) + 4 ·N · ς2.

Moreover, if c is a fresh ciphertext, then Var(err(c)) ≤ 5 · ς2 for a monomial m and the variance is
bounded by (4 ·N + 1) · ς2 for a ternary polynomial m.

Proof. Let ∆ = Q/4 + ε for some ε ∈ R such that |ε| ≤ 1/2. Since in RQ it holds that

c · f = g + (1 + 4 · f ′) · (Q/4 + ε) ·m = g + 4 · f ′ · ε ·m+∆ ·m,

we have err(c) := c · f −∆ ·m = g + 4 · f ′ · ε ·m. Notice that, if m ∈ {0,±1,±X, . . . ,±XN−1}, we
have Var(f ′ ·m) ≤ Var(f ′), thus

Var(err(c)) ≤ Var(g) + (4 · ε)2 · Var(f ′) ≤ Var(g) + 4 · ς2.

If m is a ternary polynomial of degree at most N − 1,

Var(err(c)) ≤ Var(g) + (4 · ε)2 · ‖m‖22 · Var(f ′) ≤ Var(g) + 4 ·N · ς2.

If c is a fresh ciphertext, then Var(g) = ς2 and the rest of the lemma follows. ut
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We now analyze how the external product increases the noise.

Lemma 4 (Noise growth of external product). Let c := g/f+∆·u ∈ RQ and c := g/f+g·v ∈
R`Q. Define cmult := c� c as above. Then

Var(err(cmult)) ≤ N · ` · γ2 · Var(g) + ‖v‖22 · Var(g) + 4 · ς2.

If v ∈M := {±b ·Xk : b ∈ {0, 1} and k ∈ N}, then

Var(err(cmult)) ≤ N · ` · γ2 · Var(err(c)) + Var(err(c))

Proof. From the analysis in Section 4.2, we know that cmult = gmult/f + ∆ · m, where gmult :=
g−1(c) · g + g · v and m := v · u. Thus, by Lemma 3, we have Var(err(cmult)) ≤ Var(gmult) + 4 · ς2.
Since

Var(gmult) ≤ Var(〈g−1(c),g〉) + Var(g · v) ≤ N · ` · γ2 · Var(g) + ‖v‖22 · Var(g),

the result follows. If v ∈ M, then ‖v‖22 ≤ 1, and the value Var(gmult) + 4 · ς2 is bounded by
N · ` · γ2 · Var(g) + Var(g) + 4 · ς2, which is N · ` · γ2 · Var(err(c)) + Var(err(c)) by Definition 5 and
Lemma 3. ut

Our goal now is to analyze the noise growth caused by a sequence of k such external products, i.e.,
c′ = c �k

i=1 ci = (. . . ((c � c1) � c2) . . . � ck). Since in our bootstrapping the messages encrypted
by vector ciphertexts are of the form ±b ·Xm for some bit b, we simplify the analysis by supposing
that the messages encrypted by c1, . . . , ck belong to M. This allows us to ignore the term ‖v‖22 in
Lemma 4 as it is bounded by 1.

Lemma 5 (Noise of a sequence of external products). For 1 ≤ i ≤ k, let ci := gi/f+g·mi ∈
R`Q with mi ∈ M. Let c0 = g0/f + ∆ ·m0 ∈ RQ with a ternary polynomial m0. If c′ := c �k

i=1 ci,
then

Var(err(c′)) ≤ N · ` · γ2 ·
k∑
i=1

Var(gi) + Var(g0) + 4 · ς2.

Proof. Let ci := ci−1 � ci = gi/f +∆ ·m′i for 1 ≤ i ≤ k. It is clear that c′ = ck. Using the fact that
v1, . . . , vk ∈M, we apply Lemma 4 k times and obtain

Var(err(ck)) ≤ N · ` · γ2 · Var(err(ck)) + Var(err(ck−1))

≤ N · ` · γ2 · Var(err(ck)) +N · ` · γ2 · Var(err(ck−1)) + Var(err(ck−2))

...

≤ N · ` · γ2 ·
k∑
i=1

Var(err(ci)) + Var(err(c0))

= N · ` · γ2 ·
k∑
i=1

Var(gi) + Var(g0) + 4 · ς2.

ut

Corollary 1. Using the notation of Lemma 5, if all the ciphertexts are fresh, then

Var(err(c′)) ≤ (4 + (k + 1) ·N · ` · γ2) · ς2.
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4.4 Modulus-switching

In this section, we show that the modulus-switching technique for (R)LWE-based schemes can be
adapted to NTRU-based schemes. Given a ciphertext c = g/f + ∆ · µ ∈ RQ for some message
µ which is a ternary polynomial, we can multiply c by q/Q and round it to obtain a ciphertext
defined modulo q. Since bye = y + ε, the modulus switching essentially scales the ciphertext and
adds a small rounding error, which is then multiplied by the secret key f during decryption. As in
the analysis of [DM15], we define the following randomized rounding function.

Definition 6. Let Q, q ∈ Z and 1 < q < Q. The randomized rounding function [·]Q:q : ZQ → Zq
is defined as [z]Q:q := bq · z/Qc+ B where B ∈ {0, 1} is a Bernoulli random variable with Pr[B =
1] = (q · z/Q)− bq · z/Qc ∈ [0, 1].

Notice that the the rounding error ε := [z]Q:q− (q · z/Q) is 1-subgaussian. We extend the definition
to polynomials, vectors, and matrices by applying the rounding entry-wise. Thus, the modulus
switching is defined as

ModSwitch(c) =
N−1∑
i=0

[ci]Q:q ·Xi ∈ Rq.

Lemma 6. Let c = g/f + bQ/4e · µ ∈ RQ. Then, ModSwitch(c) is a scalar encryption of µ in Rq.
Moreover,

Var(err(ModSwitch(c))) ≤ (q/Q)2 · Var(err(c)) + 1 + 16 ·N · ς2.

Proof. Just notice that ModSwitch(c) = (q · g/Q)/f + ε+∆ · µ ∈ Rq, where ∆ = bq/4c and ε is a
polynomial with infinite norm bounded by 1, therefore, err(ModSwitch(c)) = q · err(c)/Q + ε · f =
q · err(c)/Q+ ε · (1 + 4f ′). Then the variance of the noise is as follows:

Var(err(ModSwitch(c))) = Var(q · err(c)/Q+ ε+ 4 · ε · f ′)
= Var(q · err(c)/Q) + Var(ε) + 16 · Var(ε · f ′)
≤ (q/Q)2 · Var(err(c)) + Var(ε) + 16 ·N · Var(ε) · Var(f ′)
≤ (q/Q)2 · Var(err(c)) + 1 + 16 ·N · Var(f ′).

The last inequality holds since ε is 1-subgaussian.

4.5 Key-switching from NGS to the base scheme

As we will see in Section 5, our bootstrapping procedure starts with a ciphertext (g +∆ · (m,0)) ·
F−1 ∈ Znq of the base scheme. After modulus-switching, it produces an NTRU encryption c =
g/f + ε + ∆ · µ ∈ Rq, where µ is a polynomial whose constant term is equal to m ∈ {0, 1} and
∆ := bq/4e. To finish the bootstrapping, we want to obtain again a base scheme ciphertext of
the form c′ = (g′ + ∆ · (m,0)) · F−1 ∈ Znq . To achieve this, we define the following key-switching
operation.

– Key-switching key generation: The input of this procedure is composed by the secret keys f ∈ R
and F ∈ Zn×n, and the parameters σksk, q, and Bksk.
Let L =

⌈
logBksk

(q)
⌉
. Define P ∈ Z(N ·L)×N as the gadget matrix IN ⊗gq,Bksk

, i.e. each “diagonal
element” of P is equal to gq,Bksk

∈ ZL. Also, let E ∈ ZN×n be the matrix whose entries are
zeros except for E0,0 = 1.

12



Then, sample G← χ
(N ·L)×n
σksk and output

ksk := (G + P ·Φ(f) ·E) · F−1 ∈ Z(N ·L)×n
q ,

where Φ(f) is the anti-circulant matrix of f .
– Key-Switching algorithm: Given an output of modulus-switching, c = g/f + ε+∆ ·µ ∈ Rq, and

a key-switching key ksk, let

KeySwitch(c, ksk) := y · ksk ∈ Znq

where y := (g−1q,Bksk
(c0), . . . ,g

−1
q,Bksk

(cN−1)) ∈ ZN ·L.

Lemma 7 (Correctness of key-switching). Let c = g/f+ε+∆·µ ∈ Rq be a scalar encryption of
a ternary polynomial µ, with ∆ = bq/4e, and ksk a key-switching key from f = 1+4·f ′ to F ∈ Zn×n.
Then, KeySwitch(c, ksk) outputs a base scheme ciphertext c′ = (g +∆ · (µ0,0)) ·F−1 ∈ Zn×nq , where
µ0 is the constant term of µ. Moreover, its time complexity is O(N · n · log q) operations on Zq.

Proof. Let |ε′| ≤ 1/2 such that ∆ = q/4 + ε′. Since

y ·P = φ(c) = φ(g) ·Φ(f)−1 + φ(ε) +∆ · φ(µ),

it is clear that

y ·P ·Φ(f) = φ(g) + φ(ε) ·Φ(f) + ε′ · φ(µ) · 4 ·Φ(f ′) +∆ · φ(µ) ∈ ZNq .

Therefore, by defining g′ := φ(ε) ·Φ(f) + ε′ ·φ(µ) · 4 ·Φ(f ′), the following equality holds modulo q:

c′ =
(
y ·G +

(
φ(g) + g′ +∆ · φ(µ)

)
·E
)
· F−1.

And because v ·E = (v0,0) ∈ Zn for any v ∈ ZN , we finally obtain

c′ = (y ·G + (g0,0) + (g′0,0) +∆ · (µ0,0)) · F−1 ∈ Znq .

If we set g = y ·G + (g0,0) + (g′0,0), the result holds. Moreover, since the procedure consists in
multiplying y ∈ ZN ·L by each of the n columns of ksk, it is clear that it costs O(N · n · log q)
operations on Zq. ut

Noise analysis on the matrix key switching procedure. We first see that the noise of c which
is an output of modulus-switching equals to g+ ε+ 4 · ε · f ′ + 4 · f ′ · ε′ · µ by Definition 4. Then the
variance of the noise is following by Lemma 3:

Var(err(c)) ≤ Var(g) + Var(ε) + 16 ·N · Var(ε) · Var(f ′) + 4 · ‖µ‖22 · Var(f ′)
≤ Var(g) + 1 + 16 ·N · Var(f ′) + 4 ·N · Var(f ′)
= Var(g) + 1 + 20 ·N · ς2

The noise contained in c′ is y ·G + (g0,0) + (g′0,0). In fact, G is the noise of the key switching key
ksk, and g0 + g′0 is very close to the noise originally contained in c, before key-switching. Notice
that

Var(g′0) ≤ Var(φ(ε) ·Φ(f)) + (4ε′)2 · Var(φ(µ) ·Φ(f ′))
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Algorithm 1: Bootstrapping key generation.

Input: F ∈ Zn×n
q – the secret key of the base scheme.

Output: bsk – the bootstrapping key.
1 (f0, . . . fn−1)← col0(F)
2 for i← 0 to n− 1 do
3 Compute bski,0 and bski,1 accordingly to Equation 1.

4 Return bsk := {(bski,0, bski,1) : 0 ≤ i ≤ n− 1}.

≤ Var(ε) + 16 ·N · Var(ε) · Var(Φ(f ′)) + 4 · ‖φ(µ)‖22 · Var(Φ(f ′))

≤ 1 + 16 ·N · Var(Φ(f ′)) + 4 ·N · Var(Φ(f ′))

≤ 1 + 20 ·N · ς2.

Thus, assuming the outputs of decomposition g−1(·) is γ-subgaussian, the variance of err(c′) is
following:

Var(err(c′)) = Var(y ·G) + Var(g0,0)) + Var((g′0,0))

≤ N · L · Var(g−1(φ(c))) · Var(G) + Var(φ(g)) + 1 + 20 ·N · ς2

≤ N · L · γ2 · Var(err(ksk)) + Var(g) + 1 + 20 ·N · ς2

= N · L · γ2 · Var(err(ksk)) + Var(err(c)).

5 Bootstrapping

As explained in the introduction, to cope with the ternary secrets inherent in NTRU we utilize
a ternary CMux gate. Our ternary CMux gate is defined as follows: For a given fi ∈ {−1, 0, 1}, we
define two keys bski,0 and bski,1:

fi = −1 =⇒ bski,0 := NGS.EncVec(0) ∧ bski,1 := NGS.EncVec(1)

fi = 0 =⇒ bski,0 := NGS.EncVec(0) ∧ bski,1 := NGS.EncVec(0)

fi = 1 =⇒ bski,0 := NGS.EncVec(1) ∧ bski,1 := NGS.EncVec(0)

(1)

Then, our CMux gate is defined as

CMuxi(ci) := 1 + (Xci − 1) · bski,0 + (X−ci − 1) · bski,1,

where 1 is a trivial, noiseless, encryption of one, i.e. simply g. It is easy to see that CMuxi(ci) =
NGS.EncVec(Xci·fi). In particular, the message encrypted by CMuxi(ci) belongs to M as required by
our external product from Section 4.2.

Recall that our base-scheme ciphertext c = (g + ∆ · (m,0)) · F−1 ∈ Znq can be decrypted by
multiplying it by the first column of F, Thus, our bootstrapping keys are generated using Equation 1
for each entry fi from the first column of F, see Algorithm 1.

By using the CMux gate n times and multiplying all the resulting ciphertexts, we obtain an
encryption of Xc·col0(F) = Xg+(N/2)·m. We can then multiply this by the (plaintext) “test vector”
T (X) := XN/2 ·

∑N−1
i=0 Xi (mod XN + 1) to produce a scalar encryption of m. Note, we actually

put the test vector in the left most position of the product so that each multiplication is an

14



Algorithm 2: Bootstrapping algorithm.
Input:
ct ∈ Zn

q – a base scheme ciphertext encrypting m ∈ {0, 1}
{bski,j}0≤i≤n−1,0≤j≤1 – bootstrapping keys, where each bski,j ∈ R`

Q,N

ksk – a key-switching key from the NGS secret key f ∈ R to the base scheme secret key F ∈ Zn×n.
Output: ct′ ∈ Zn

q – a base-scheme ciphertext encrypting the same m.

1 (c0, . . . , cn−1)←
⌊

2·N·ct
q

⌉
2 ACC←

⌊
Q
8

⌉
·XN/2 ·

∑N−1
i=0 Xi

3 for i← 0 to n− 1 do
4 cMux ← CMuxi(ci)
5 ACC← ACC � cMux

6 ACC← ACC +
⌊
Q
8

⌉
·
∑N−1

i=0 Xi

7 ACC← ModSwitch(ACC)
8 ct′ ← KeySwitch(ACC, ksk)
9 Return ct′.

external product instead of a regular “vector-vector” homomorphic multiplication, i.e. we compute
bQ/8e · T (X) · �n−1

i=0 CMuxi(ci), which produces NGS.EncS(2 · m − 1), but with ∆ = bQ/8e. Then
we add NGS.EncS(1) to obtain NGS.EncS(2 · m). The factor two is multiplied by bQ/8e and so
we obtain NGS.EncS(m) with ∆ = bQ/4e, as desired. Finally, we use the key-switching procedure
defined in Section 4 to transform this NTRU ciphertext into a matrix NTRU ciphertext of the base
scheme. Our bootstrapping is shown in detail in Algorithm 2.

5.1 Bootstrapping noise

Firstly, we analyze the noise growth of our CMux gate. Let cMux := CMuxi(ci) for any 0 ≤ i ≤ n− 1.
Then, the following holds:

Var(err(cMux)) ≤ ‖Xci − 1‖22 · Var(err(bski,0)) + ‖X−ci − 1‖22 · Var(err(bski,1))
≤ 4 · Var(err(bsk)),

where bski,0 and bski,1 are the corresponding bootstrapping keys, which are NGS ciphertexts with
noise variance Var(err(bsk)).

Now we consider the whole bootstrapping algorithm. In the first line, we scale down the input
ciphertext to modulus 2 ·N . We denote the resulting vector by ct2·N . Then we have∣∣∣ct · col0(F)− q

2 ·N
· ct2·N · col0(F)

∣∣∣ ≤ q

4 ·N
· |ct · col0(F)|, (2)

where col0(F) is the first column of the secret key of ct.
From the line 3 to 5 of Algorithm 2, the output ACC is obtained by utilizing n external products

with cMux whose noise variance is Var(err(cMux)). The variance of the final err(ACC) based on Lemma 5
is the following:

Var(err(ACC)) ≤ n ·N · ` · γ2 · Var(err(cMux)) + 4 · ‖msg(ACC)‖22 · ς2,

where msg(ACC) is XN/2 ·
∑N−1

i=0 Xi. After line 6, the accumulator ACC contains a message as a
ternary polynomial (say M(X)) whose constant term is m. The error term will be changed into

Var(err(ACC)) ≤ n ·N · ` · γ2 · Var(err(cMux)) + 4 · ‖M(X)‖22 · ς2
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≤ n ·N · ` · γ2 · Var(err(cMux)) + 4 ·N · ς2

After this step, modulus switching is performed, which results in the noise, by Lemma 6, being

Var(err(ACC)) ≤ (q/Q)2 · n ·N · ` · γ2 · Var(err(cMux)) + (q/Q)2 · 4 ·N · ς + 1 + 16 ·N · ς

After the external product with a key switching key ksk in line 8, the noise in the resulting ct′ has
a variance

Var(err(ct′)) ≤ N · L · γ2 · Var(err(ksk)) + Var(err(ACC))

≤ N · L · γ2 · Var(err(ksk)) + (q/Q)2 · n ·N · ` · γ2 · Var(err(cMux)) + (q/Q)2 · 4 ·N · ς2

+ 1 + 16 ·N · ς2

where L is the dimension of the key switching key.

After the for loop from line 3 to 5, the message of the resulting ACC, msg(ACC), is
⌊
Q
8

⌉
·

Xct2·N ·col0(F) ·XN/2 ·
∑N−1

i=0 Xi. If we have |ct · col0(F)| < q/4, then the ciphertext ct is encrypting
the value zero. This follows from the fact that then −N/2 < |ct2·N · col0(F)| ≤ N/2 and thus the
constant term of the msg(ACC) is −bQ/8e, i.e. the constant term of msg(ACC) in line 6 is zero. If,
however, |ct · col0(F)| < 3 · q/4 then the ciphertext ct is encrypting the value one. In this case
N/2 < |ct2·N · col0(F)| ≤ 3N/2, hence the msg(ACC) is bQ/8e. Therefore, the constant term of
msg(ACC) in line 6 is bQ/4e.

We now have the following heuristic for the output noise in average case.

Heuristic. Given ct encrypting a bit m, Algorithm 2 outputs an MNTRU ciphertext ct′ encrypt-
ing the same bit. In addition, under the central limit heuristic, the noise contained in the output
behaves as a Gaussian distribution, hence, with overwhelming probability, it satisfies the following
bound∥∥err(ct′)∥∥ ≤ (3)

6 ·
√
N · L · γ2 · Eksk + 4 · (q/Q)2 · n ·N · ` · γ2 · Ebsk + (q/Q)2 · 4 ·N · ς2 + 1 + 16 ·N · ς2

where Eksk = O(Var(err(ksk))) and Ebsk = O(Var(err(bsk)))
The following theorem states that our scheme requires a modulus q that is asymptotically less

than the fatigue point as stated in [DvW21].

Theorem 1. If the output of Algorithm 2 satisfies (3) except with negligible probability and q =
Õ(n), the output of Algorithm 2 can be correctly decrypted except with negligible probability.

Proof. Since N ∈ Θ(n), q/Q, Ebsk, Eksk ∈ O(1), and `, L ∈ O(logQ) = O(logN) and (3) is satis-
fied, the final noise after bootstrapping is Õ(n) except with negligible probability. For correctness,
Lemma 2 imposes that the sum of two input fresh/refreshed ciphertexts noises should be smaller
than (q − 20)/8. Thus the bound of each refreshed noise needs to be less than (q − 20)/16, which
implies we need ‖err(ct′)‖ < (q − 20)/16 = q/16 − 5/4 to recover the correct message. Therefore,
it is sufficient to choose q ∈ Õ(n).

We will discuss the concrete value q based on the above heuristic and theorem in Section 6.
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5.2 Bootstrapping an LWE-based scheme

As mentioned our external product costs only ` multiplications on RQ versus 4 · `′ in TFHE. In
general, our base scheme constructed on top of the matrix NTRU problem requires a larger dimen-
sion n than in an LWE-based scheme to achieve the same security level. Since the bootstrapping
procedure uses n external products, we can obtain a faster FHE scheme by replacing our base
scheme by the LWE-based one used in FHEW and TFHE, and using NGS to bootstrap it. This
minimizes the number of external products and also makes each one of them cheaper.

Hence, we propose to use our NGS scheme as the accumulator to refresh LWE ciphertexts as
opposed to MNTRU ciphertexts. The decryption function is essentially the same, i.e. the inner
product between the ciphertext and the secret key. Since the LWE secret key can be binary, we can
use binary homomorphic CMux gates instead of the ternary ones. However, at the end of the main
loop of the refreshing procedure, we obtain an NTRU ciphertext of the form c = g/f+ε+∆·m ∈ RQ,
where ε is the rounding error after modulus switching. Then we need to transform it again into an
LWE ciphertext. So, we adapt our key-switching from Section 4 to also switch the underlying hard
problem from NTRU to LWE.

NTRU to LWE key-switching: The goal of the following algorithm is to switch the form of a
ciphertext from an NGS ciphertext to an LWE ciphertext encrypting the same message. Let (A,b)
be an LWE sample with a secret key s. Let c = g/f + ε+∆ ·m be a scalar NGS ciphertext with a
secret key f , where ε is the rounding error after modulus swtiching. Define the key-switching key
as the following vector of LWE samples:

kskNTRU→LWE := (A,b := A · s + e + P · f0)

with A ∈ Z(N ·L)×n
q , e ← χN ·Lσe , f0 := col0(Φ(f)) ∈ ZN , and P = IN ⊗ gq,Bksk

. Then, given a
ciphertext c = g/f + ε+∆ ·m ∈ Rq, the key-switching from NTRU to LWE is defined as follows:

– KeySwitchNTRU→LWE(c, kskNTRU→LWE) :

1. Parse kskNTRU→LWE as (A,b)

2. a← KeySwitch(c,A)

3. b← KeySwitch(c,b)

4. Output c′ := (a, b)

That is, we decompose the coefficient vector of c and multiply by both components of kskNTRU→LWE.
Thus, we define y := g−1(φ(c)) ∈ ZN ·L and compute

c′ := (a, b) = (y ·A, y · b) ∈ Zn+1
q .

Then, we can see that

b = a · s + y · e + φ(c) · f0 = a · s + y · e + g0 + ε · ((1,0) + 4 · φ(f ′)) + 4 · ε′ · φ(m) · φ(f ′) +∆ ·m0

where ε ∈ (−1/2, 1/2] and m0 is the constant term of m. In other words, (a, b) is a valid LWE
ciphertext of m0.
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Noise analysis. We see that the noise of the resulting LWE encryption equals to y · e + g0 + ε+
ε · 4 · φ(f ′) + 4 · ε′ · φ(m) · φ(f ′) as defined in [CGGI16], with the variance of the noise satisfying:

Var(err(c′)) = Var(y · e) + Var(g0) + Var(ε0) + 16 · Var(ε · φ(f ′)) + 4 · Var(φ(m) · φ(f ′))

≤ N · L · Var(y) · Var(e) + Var(g) + 1 + 16 ·N · Var(ε) · Var(f ′) + 4 · ‖m‖22 · ς2

≤ N · L · Var(y) · Var(e) + Var(g) + 1 + 16 ·N · ς2 + 4 · ‖m‖22 · ς2

≤ N · L · Var(y) · Var(e) + Var(g) + 1 + 20 ·N · ς2

≤ N · L · γ2 · σ2e + Var(err(c))

6 Security analysis and parameter selection

The CPA-security of our NGS scheme follows directly from the decisional NTRU problem via a
standard hybrid argument. Assuming G/F +M is a secure encryption as the MNTRU assumption
states that G/F is uniform mod q, we use a circular security assumption to assume it is safe
to encrypt M/F under the matrix NTRU problem, resulting in the format that we used in our
base scheme. Finally, the security of the bootstrapping follows from the (weak) circular security
assumption that the NGS scheme can be used to encrypt the key of the base scheme, which in
turn, encrypts the key of the NGS scheme. All these circular security assumptions are standard
and are used extensively, e.g., [GGH+19,Per21]. In particular, it is not known how to construct
FHE without the weak circular security used here.

Concrete security: Research on the security of the NTRU problem revealed a significant im-
provement of the performance of lattice reduction attacks on NTRU lattices with large moduli
q, which are now known as the overstretched NTRU regime. Several works [ABD16,CJL16,KF17]
showed the susceptibility of the overstretched regimes to attacks. The work of Kirchner and Fouque
shows however that the attack is possible due to the choice of parameters and not due to the struc-
ture of the fields underlying the NTRU problem. The observation that the choice of parameters
causes the attack, started a quest to determine the value of the ciphertext modulus q for which
the overstretched regime of NTRU begins and hence the security issue occurs. This turning point
is called the fatigue point. Kirchner and Fouque make a first attempt to estimate the fatigue point
and their efforts result in an asymptotic upper bound, but it is only the recent work of Ducas and
van Woerden [DvW21] that achieves at finding a concrete value for the fatigue point for ternary
NTRU.

To determine the fatigue point Ducas and van Woerden identified two events that distinguish
the standard regime from the overstretched regime:

– Secret Key Recovery (SKR): The event in which a vector as short as a secret key vector is
inserted in the basis of the lattice.

– Dense Sublattice Discovery (DSD): The event in which a vector of the dense sublattice generated
by the secret key is inserted in the basis of the lattice. This vector is strictly longer than the
secret key, but nevertheless this event leads to a successful attack as either the SKR event
follows quickly after the DSD event, the DSD events cascade and generate the dense sublattice
from which the secret key can be recovered or the discovered dense sublattice vector is in itself
sufficient to decrypt fresh ciphertexts.
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Table 1. The parameters used in both bootstrappings, depending on whether the underlying problem of the base
scheme is the matrix NTRU or the LWE. The columns N and Q refer to the NGS scheme. For each basis Bi we have
a different dimension `i :=

⌈
logBi

(Q)
⌉

for ni bootstrapping keys.

Base scheme n q N Q (B1, n1) (B2, n2) Bksk `1 `2

MNTRU 800 131071 ≈ 217 210 912829 ≈ 219.8 (8, 750) (16, 50) 3 7 5

LWE 610 92683 ≈ 216.5 210 912829 ≈ 219.8 (8, 140) (16, 470) 3 7 5

Based on an exploration of the occurrence of one of these events, Ducas and van Woerden
present an analysis that discovers the fatigue point, which is determined by the value for q for
which the DSD attack starts to be more efficient than the SKR attack. To get then an idea of how
secure the NTRU problem with this q value still is, they also determine the precise cost of the
attacks in the overstretched regime. Their analysis uses the BKZ lattice reduction algorithm and
does not focus on a single position but predicts the most relevant positions in which the vector of
the SKR or DSD event can occur and takes all these positions into account. This refined analysis
leads to the following asymptotic result; the fatigue point of NTRU with ternary secrets happens
at q = n2.484+o(1). As well as the determination of this asymptotic result, they perform an average
case analysis based on the volume of the relevant lattices and sublattices to arrive at a concrete
prediction of the fatigue point instead of a worst-case bound. This concrete prediction puts the
fatigue point at q ≈ 0.004 · n2.484+o(1) for n > 100. This average case analysis differentiates the
circulant version of NTRU from its matrix version, as there are minor deviations in the volumes of
the relevant sublattices. Our work uses the anti-circulant and matrix versions of NTRU as defined
in Section 2.4. We argue that the change from the circulant to the anti-circulant version of NTRU
does not reduce the security of our NTRU instance, since by using XN + 1 instead of XN − 1, we
avoid any weaknesses caused by evaluation at one, which the circulant variant could suffer from.
In addition, it does not invalidate the analysis made by Ducas and van Woerden, as that is based
on the expected volume of the dense sublattice, which remains the same when XN − 1 is replaced
by XN + 1.

Parameter selection: Using the analysis by Ducas and van Woerden [DvW21], given the dimen-
sion, the modulus q, the variance σ2, and taking into account the distribution of the secret key, we
are able to find the block size β needed by BKZ to break the (matrix) NTRU problem. To convert
β to the security level, we used the same (classical) cost model used by TFHE, namely, the number
of operations of BKZ-β in dimension d was estimated as T (d, β) := 20.292·β+16.4+log2(8·d), where
d = 2 · n for the NTRU in dimension n. Thus, a security level of λ bits means that T (d, β) ≥ 2λ.

Hence, to choose the parameters of the NGS scheme, we fixed N = 1024 and ternary secrets,
then found the maximum value of logQ that gives us λ = 128. For the scheme based on the matrix
NTRU problem, we fixed n = 800 and also used ternary secrets. We chose the parameters for the
LWE problem using the LWE estimator [APS15]. The decomposition bases used in the external
product and in the key-switching were then chosen to guarantee correctness. We remark that instead
of using a single basis B for all external products, we used B1 for the first n1 products and B2

for the last n2 (thus, n = n1 + n2), as this allowed us to reduce the total number of polynomial
products computed during the bootstrapping.

The average-case noise bounds determined in the previous section then allows us to compute
concrete parameters for our scheme. All the parameters are shown in Table 1.
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7 Practical results

Among the three schemes that use the framework of fast bootstrapping with a base scheme and
an accumulator [DM15,CGGI20,Per21], the most efficient one is TFHE. Therefore, we compare
our practical results only with TFHE. Similar to the gate bootstrapping in TFHE, we are able to
compute a binary gate through a bootstrapping. Therefore we use the bootstrapping as benchmark,
as any speedup on the bootstrapping translates directly to the same speedup on any binary circuit.
Like for TFHE, the encryption parameters of our schemes stay fixed for any binary circuit. We
implemented a proof-of-concept of our bootstrapping procedures in C++. The code is publicly
available3.

We compiled TFHE with the same FFT library we used in our implementation, namely,
FFTW [FJ05]. Moreover, we also compiled our code with the same optimization flags already
used by the ‘optimal’ mode of TFHE. Both TFHE and our implementation use a deterministic de-
composition for the external product and also a deterministic rounding for the modulus switching,
relying thus on the heuristic assumption that the noise terms obtained during the homomorphic
evaluations follow independent subgaussian distributions. All the experiments were conducted on
a single core of a machine with 8 GB of RAM and a 3.1 GHz Dual-Core Intel Core i5.

As the fast Fourier transforms (FFT) and element-wise Hadamard vector products dominate
the running time of bootstrapping, we used the following formulas to compute ACC � CMux(ci) in
the bootstrapping algorithm (Algorithm 2)

((Xci − 1) · ACC) � (bski,0 − bski,1 ·X−ci) + ACC (MNTRU),

((Xci − 1) · ACC) � bski + ACC (LWE).

The LWE formula is actually used in the TFHE library. Notice that no polynomial multiplication
is needed to compute (Xci − 1) · ACC; it can be done by one negacyclic shift of the coefficients
of ACC and N subtractions in ZQ. Assuming that the bootstrapping keys are FFT transformed in
advance, the external product requires `i+1 FFTs and `i Hadamard vector products where `j is the
length of bski, bski,0 or bski,1. In addition, MNTRU requires extra `j Hadamard vector products
to compute (bski,0 − bski,1 ·X−ci).

In TFHE, the bootstrapping key is composed of n′ := 630 GSW ciphertexts, where n′ is the
dimension of the LWE problem used in their base scheme. Moreover, for the GSW ciphertext, they
used the ring Rq′ := Zq′ [X]/〈XN ′ + 1〉, where q′ := 232 and N ′ = 1024, but they could set a
larger decomposition base than the ones we could use, and they can also ignore the least significant
bits during the decomposition, since in the RLWE problem, these bits are noisy, thus, they obtain
`′ := 3. However, each GSW ciphertext is composed of 4 · `′ elements of Rq′ , on the other hand
our NGS ciphertexts only have ` ring elements. Thus, the size of the bootstrapping key in TFHE
is 4 · n′ · `′ ·N ′ · log(q′) = 31 MB.

Since each external product costs 4·`′ products in Rq′ for TFHE, their total cost is 4·n′ ·`′ = 7560
ring multiplications. However, the slowest operations of the bootstrapping are forward and backward
FFTs. Since the FFTs of the bootstrapping key are precomputed, the ‘for’ loop of the bootstrapping
has to decompose only the RLWE sample that is accumulating the result, obtaining thus 2 · `′ ring
elements. Then, it computes the FFT of these elements, performs the external product to obtain
a new RLWE sample in the FFT domain and finally apply two inverse FFTs. Hence, TFHE needs
2 · n′ · (`′ + 2) = 6300 FFTs per bootstrapping.

3 https://github.com/KULeuven-COSIC/FINAL
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Table 2. Practical results of TFHE and of our bootstrapping procedures considering the two base schemes.

Key switching key Bootstrapping key Mult. on RQ FFTs Run. time

TFHE [CGGI20] 40 MB 31 MB 7560 6300 66 ms

MNTRU 34.4 MB 43 MB 11000 6300 92 ms
LWE 26.3 MB 13 MB 3330 3940 48 ms

In our case, the bootstrapping key is composed by 2 ·n NGS ciphertexts when the base scheme
is based on the MNTRU problem and n when the LWE is used. Our ` is a little bigger than the
`′ = 3 used in TFHE, but we do not have the factor four in the dimension of the NGS ciphertexts.

The size of each ciphertext, the number of ring multiplications, and the amount of FFTs we
have to perform when the LWE problem is used in the base scheme ends up being smaller than what
is needed by TFHE. In particular, considering the parameters presented in Table 1, the number of
FFTs per bootstrapping is n1 · (`1 +1)+n2 · (`2 +1), where `i :=

⌈
logBi

(Q)
⌉
. A detailed comparison

is presented in Table 2. Since every integer in our implementation is represented by the int type,
we assume every coordinate or coefficient of our keys occupies 32 bits of memory.

The number of FFTs and multiplications shown in Table 2 are computed using the parameters
of each scheme as described in the abovementioned explanation. For the running times, we measured
the average time of the NAND gate plus bootstrapping over 1000 runs.

As shown in Table 2, our bootstrapping algorithm for LWE ciphertexts is 28% faster than
TFHE. Furthermore, our method nearly halves the total size of key-switching and bootstrapping
keys. Namely, TFHE needs 71 MB of key material whereas our approach generates less than 39.3
MB.

Our bootstrapping algorithm for MNTRU ciphertexts is less efficient than TFHE. The first
reason is that MNTRU requires a bigger dimension n than LWE to achieve the same security
level given that the ciphertext modulus is fixed. In our experiments (see Table 1), n = 800 for
MNTRU whereas n′ = 630 in TFHE. The second reason is that the secret key of the MNTRU
scheme is ternary. To handle ternary coefficients of the secret key, the CMux operation performs
more multiplications in the FFT domain, namely 2 · (`1 · n1 + `2 · n2).

However, the efficiency downgrade of our bootstrapping method for MNTRU ciphertexts is not
critical in practice. The bootstrapping takes less than 0.1 seconds on an average commodity laptop
with only 9% increase of the key material size. Hence, if one needs an FHE scheme based solely on
NTRU, our scheme is a practical candidate for that.

8 Conclusion and future work

We showed that it is possible to construct an efficient FHE scheme based on the NTRU assumption
and to instantiate it by setting parameters that are below the “fatigue point” where the sublattice
attacks start to apply. This shows that with the current knowledge on the security of NTRU,
it seems possible to construct competitive FHE based solely on the NTRU assumption, which
motivates further research on NTRU-based FHE schemes. Moreover, we showed that by combining
the LWE and the NTRU problems, we can construct an FHE scheme that runs faster and requires
less key material than TFHE, which currently has the fastest bootstrapping procedure.

We notice that it would be possible to use better parameters for our scheme, and thus, increase
the difference between our running time and TFHE’s if we sampled the NTRU secrets f and g
with different variances. Namely, the final noise introduced by the bootstrapping depends more on
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the norm of g than on the norm of f , thus, we could increase the variance of f without having too
much impact on the final noise. Intuitively, the NTRU problem should only become harder as the
variance of one of its secret increases, thus, this would allow us to increase q. Finally, having a larger
value of q for (almost) the same final noise means that we can choose larger decomposition bases,
hence, reduce the number of FFTs and Hadamard vector products per external product. However,
since there is no formal analysis of the concrete hardness of NTRU with different variances of the
secrets, we prefer to leave this as an interesting future work.

As another possible line of work, one could consider the circuit bootstrapping from TFHE,
which takes an LWE ciphertext c ∈ Zn′+1

q encrypting a message m and outputs a GSW ciphertext

C ∈ R2`′×`′
q encrypting m with noise independent of the noise of c. In other words, the circuit

bootstrapping refreshes c and transforms it into a GSW ciphertext. This is done by executing `′

bootstrappings and 2`′ key switchings, and requires two key-switching keys. However, in our case
we would produce an NGS ciphertext c ∈ R`q, so just ` key switchings are needed instead of 2`′,
and also only one key-switching key instead of two. Thus, both the running time and the memory
usage can be reduced if we are able to use ` < 2`′ in our scheme.
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