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Abstract—The problem of reliable function computation is
extended by imposing privacy, secrecy, and storage constraints
on a remote source whose noisy measurements are observed by
multiple parties. The main additions to the classic function com-
putation problem include 1) privacy leakage to an eavesdropper
is measured with respect to the remote source rather than the
transmitting terminals’ observed sequences; 2) the information
leakage to a fusion center with respect to the remote source is
considered as another privacy leakage metric; 3) two transmitting
node observations are used to compute a function. Inner and
outer bounds on the rate regions are derived for lossless single-
function computation with two transmitting nodes, which recover
previous results in the literature, and for special cases that
consider invertible functions simplified bounds are established.

I. INTRODUCTION

We consider function computation scenarios in a network
with multiple nodes involved. Each node observes a random
sequence and all observed random sequences are modeled
to be correlated. Recent advancements in network function
virtualization [1] and distributed machine learning applications
[2] make function computation in a wireless network via
software defined networking an important practical problem
that should be tackled to improve the performance of future
communication systems. In a classic function computation
scenario, the nodes exchange messages through authenticated,
noiseless, and public communication links, which results in
undesired information leakage about the function computed
[3]-[5]. Furthermore, it is possible to reduce the amount of
public communications [6], [7], e.g., by using distributed
lossless source coding (or Slepian-Wolf coding) techniques
[8]; see [9]-[13] for several extensions. A decrease in public
communications is important also to limit the information
about the computed function leaked to an eavesdropper in the
same network, i.e., secrecy leakage. In addition to the public
messages, an eavesdropper has generally access to a random
sequence correlated with other sequences; see [14]-[16] for
various secure function computation extensions.

An important addition to the secure function computation
model is a privacy constraint that measures the amount
of information about the observed sequence leaked to an
eavesdropper [17]. Providing privacy is necessary to ensure
confidentiality of a private sequence that can be re-used for
future function computations [18], [19]. An extension of the

results in [17] are given in [20], where two privacy constraints
are considered on a remote source whose different noisy
measurements are observed by multiple nodes in the same
network. The extension in [20] is different from the previous
secure and private function computation models due to the
posit that there exists a remote source that is the main reason
for the correlation between the random sequences observed
by the nodes in the network. It is illustrated via practical
examples that considering a remote source hinders unexpected
decrease in reliability and unnoticed secrecy leakage [19].
Similarly, such a hidden source model is proposed, e.g., in
[21] for biometric secrecy and in [22], [23] for user or device
authentication problems. It is shown in [20] that with such a
hidden source model two different privacy leakage rate values
should be limited, unlike a single constraint considered in [17].

We consider a private remote source whose noisy versions
are used for secure function computation. The main additions
to the problem are to compute one function we consider
that two nodes transmit public indices to a fusion center. In
[20], for each function computation one node sends a public
index to a fusion center. In [17], cases with two transmitting
nodes for function computation are considered for a visible
source model, whose results are improved in this work for
a remote source model with an additional privacy leakage
constraint. We provide inner and outer bounds for the single
function computation model with two transmitting nodes under
one secrecy, two privacy, two storage, and one reliability
constraint. We use the output statistics of random binning
(OSRB) method [24] to simplify the proofs, as in [20], and
further simplify the bounds for invertible functions.

II. SYSTEM MODEL

We consider the function computation model with two trans-
mitting nodes illustrated in Fig. 1. Noisy measurements X'
and X3 of an independent and identically distributed (i.i.d.)
remote source X™ ~ Py through memoryless channels Pg X
and Pg, X0 respectively, are observed by two legitimate nodes
in a network. Similarly, other noisy measurements Y" and
Z™ of the same remote source are observed by, respectively,
the fusion center and eavesdropper (Eve) through another
memoryless channel Py 7| x. Encoders Ency () and Ency(-) of
the legitimate nodes send indices W3 and W, respectively, to
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Fig. 1. Single-function computation with two transmitting nodes.

the fusion center over public communication links with storage
rate constraints. The fusion center decoder Dec(-) then uses its
observed noisy sequence Y and the public indices W3 and
W5 to reliably estimate a function f™ (X7, X3, Y™) such that
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The source and measurement alphabets are finite sets.

A natural secrecy leakage constraint is to minimize the in-
formation leakage about the function output f™ (X7}, X2 Y™)
to Eve. However, its analysis depends on the specific function
f(-,-,-) computed, so we impose another secrecy leakage
constraint that does not depend on the function used and that
provides an upper bound for secrecy leakage for all functions,
as considered in [17], [20]. We impose two privacy leakage
constraints to minimize the information leakage about X™ to
the fusion center and Eve as well as public storage constraints
that minimize the rate of storage for transmitting nodes.

Definition 1. A tuple (R, Rw.1, Rw2, Repecs Ropve) 1s
achievable if, for any § > 0, there exist n > 1, two encoders,
and one decoder such that

Pr [f"()??, XY™ £ | <6 (reliability)  (2)
(X7, X3, Y™ Wy, Wa|Z™) < n(R, + 6) (secrecy) 3)
log ’W1| <n(Ry1+9) (storage 1)  (4)
log ’Wg‘ < n(Rys +90) (storage 2)  (5)
I(X™ Wy, Wa|Y™) < n(Rypec + 0) (privacyDec) (6)
I(X"™ W1, Wa|Z™) < n(Rygve + 9) (privacyEve). (7)

The region R is the closure of the set of all achievable tuples.

ITII. INNER AND OUTER BOUNDS

We first extend the notion of admissibility for a random
variable defined in [6] for a single auxiliary random variable
to two auxiliary random variables, used in the inner and outer
bounds below; see also [17, Theorem 3].

Definition 2. A pair of (vector) random _variables
(U1,Us) is admissible for a function f(Xi,X5,Y) if

H(f(X1,X2,Y)|U1,Us,Y) = 0 and both U; — X; — (X,Y)
and Uz — X5 — (X1,Y) form Markov chains.

Given any a € R, define [a]~ = min{a, 0}. We next provide
inner and outer bounds for the region R; see Section IV for
a proof sketch.

Theorem 1. (Inner Bound): An achievable region is the union

over all PQ, PV1|Q’ PV2|Qr PU1\V1’ PU2|V2’ P)’EI‘UI, and

P)?Qle of the rate tuples (R, Ry, 1, Ry 2, Ri pecy Re gve) Such

that (Uy, Us) pair is admissible for the function f()N(l, Xo,Y)
and

Ry = [1(U1, U 21Vi, V2, Q) = I(U1, Uss Y V2, V2, Q)]

+ I(Uy, Us; Xy, Xo|Z) (8)
Ry1 > I(Vi; X1 |Va,Y) + I(Ur; X1|V1, U, Y) &)
Ryo > I(Va; Xo| V1, Y) 4 [(Uy; Xo|Uy, Vo, Y) (10)

Ry1+ Ryz > I(Us; Xo|Ur, Vo, Y) + I(Ur; X1 |V, V2, Y)
+1(Va; Xo|V3,Y) + I(Va; X1]Y) (11)
RZ,Dec 2 I(U17U27X|Y) (12)
R 2 [1(U1,Uz; Z1VA, V2, Q) = 1(U1, Usi Y|V, V2, Q)]
+ 1(Ur,Uz; X|Z) (13)

where PQV1V2U1U2)?1)?2XYZ is equal to

PQ\V1V2PV1\UlPUl‘XlP)?l|XPV2|U2PU2|)}2P)}2‘XPXPYZ|X~
(14)

(Outer Bound): An outer bound for the region R is the union
of the rate tuples in (8), (11)-(13), and

Ry12> IV X1 |V, Y) + I(Uy; X1 V1, U, Y)

— I(Vi; Vel X1,Y) — I(Uy; Un| X1, Y, V1) (15)
Ry > I1(Va; Xo|Vi,Y) + I(Us; Xo|Uy, Va, Y)
— I(Vo; V1| X3, Y) = I(Us; Uy | X5, Y, Vo) (16)
over all PQ, PV1|Qr PV2|Q» PUl\Vp PU2|V2: PXl‘Ul’ and

Pg. 0, juch that (Uy,Us) pair is admissible for the function

f(Xl,X27Y) and

a7)
(18)

(Q Vi) —Up — X; — X — (Xu,Y, Z)
(Q, Vo) —Us — Xy — X — (X1,Y, Z)

form Markov chains. One can limit the cardinalities to
Q| < 2, V1| < [X1[+6, Va| < [Xo|+6, [Uh] < (| X1]+6)2,
U] < (| X2 +6)%

We remark that if the joint probability distribution in (14)
is imposed on the outer bound, (15) and (16) recover (9) and
(10), respectively, because then (Vi,U;) — X1 — (Y, Uz, V)
and (Va,Us) — X — (Y, Uy, V1) form Markov chains for (14).
However, the outer bound that satisfies (17) and (18) defines a
rate region that is in general larger than the rate region defined
by the inner bound that satisfies (14). Thus, inner and outer
bounds generally differ. The results in Theorem 1 recovers



previous results including [17, Theorem 3] and, naturally, also
other results that are recovered by these previous results such
as the Slepian-Wolf coding problem.

Suppose now we impose the condition that
the  function ~f(X1,X2,Y) is invertible, ie.,
H(Xp, Xo|f(X1,X2,Y),Y) = 0 as discussed in [10],
[25]. We provide in Corollary 1 below an achievable rate
region for the single-function computation problem with
two transmitting nodes when the function f(X;,X5,Y) is
invertible. The proof of Corollary 1 follows from Theorem 1
by assigning U; = X3, Us = Xo, and constant V7 and V5.
Note that choosing V; and V5 constant results generally in
suboptimal rate regions.

Corollary 1. The region R when f(Xl’X27Y) is
an invertible function includes the set of all tuples
(R_v» Rw,la RW,27 RZ,Deca RZ,EVE) Satisﬁ/ing

Ry > [I(X1, X2; Z2|Q) — I(X1, X2;Y|Q)] ™

+ H(X1, X2|2) (19)
Ry > H(X1|X2,Y) (20)
Ry > H(X2|X,,Y) 21)
Ry1+ Ryp > H(X1, X5|Y) (22)
Ry pec > I(X1, X2; X|Y) (23)
Rypve > [I(X1, X2 21Q) — I(X1, X2;Y|Q)] ™

+ (X1, X5, X|2) (24)

where Q — (X1, X2) — X — (Y, Z) form a Markov chain. One
can limit the cardinality to |Q| < 2.

IV. PROOF OF THEOREM 1
A. Inner Bound Proof Sketch

Proof. The OSRB method [24] is used by
applying the steps given in [26, Section 1.6]. Let
(Vv U, U3, X9, X3, X Y™, Z™) be iid. according

to Pvlvg Uy Us X Ko XY 7 that can be obtained from (14) with
fixed P 5, Pviju,s Py, x,» and Py,jy, such that the

pair (Uy,Us) is admissible for a function f()?l,)?g,Y), SO
(U7, U%) is also admissible due to i.i.d. random variables.

To each v assign two random bin indices (Fy,, Wy, ) such
that Fy,, € [1:2"%1] and Wy, € [1 : 2" ]. Furthermore,
to each u} assign two random indices (Fy,,W,,) such that
F,, € [1: 2] and W, € [1 : 2"Fw]. Similarly, random
indices (Fy,,W,,) and (F,,,W,,) are assigned to each v¥
and uf, respectively. The indices Fy = (F,,, Fy,), and F5 =
(F\,, F.,) represent the public choice of two encoders and one
decoder, whereas Wy = (W,,,W,,) and Wy = (W,,, W,,)
are the public messages sent by the encoders Enci(-) and
Ency(+), respectively, to the fusion center.

We consider the following decoding order: 1) observing
(Y™, Fy,, Wy, ), the decoder Dec(-) estimates Vi* as Vi
2) observing (Y, V{", Fy,, Wy,), the decoder estimates V3’
as V3'; 3) observing (Y, V", V3¥, Fy,, Wy, ), the decoder es-
timates U7 as U7"; 4) observing (Y™, V", Va*, U, F,, W, ),

the decoder estimates U3 as 17; By swapping indices 1 and
2 in the decoding order another corner point in the achievable
rate region is obtained, so we analyze the given decoding order
but also provide the results for the other corner point.

Consider Step 1 in the decoding order given above. Using a
Slepian-Wolf (SW) [8] decoder, one can reliably estimate V"
from (Y™, F\,, W,,) such that the expected value of the error
probability taken over the random bin assignments vanishes
when n — oo, if we have [24, Lemma 1]

Ry, + Ry, > HW|Y). (25)

Similarly, Step 2, 3, and 4 estimations are reliable if we have

Ry, + Ry, > H(V3|V4,Y)
Eul +RU1 > H(Ul‘vlav%y)

(26)
27

= (a)

Ry, + Ru, > H(Ua|Vi, Vo, Uy, Y) = H(Uy| Vo, Up, Y) (28)
where (a) follows from the Markov chain V3 — U; —
(Uz, Vo, Y). Therefore, (2) is satisfied if (25)-(28) are satisfied.

The public index F,, is ~almclst independent of X7, so it
is almost independent of (X7*, X', X™ Y™ Z"), if we have
[24, Theorem 1]

Ry, < H(Vi|X1) (29)
because then the expected value, which is taken over the
random bin assignments, of the variational distance between
the joint probability distributions Unif[l : 27 ] . Pz, and

1
P, . to vanish when n — oo. Furthermore, the public

Vil ~
index [y, is almost independent of (V{", XT'), so it is almost
independent of (V{*, X7, X2 X" Y™ Z"), if we have

Ry, < H(Uy|V4, X4). (30)

Similarly, £, is almost independent of )?51 if we have
Ry, < H(V3|X,) 31)

and F,, is almost independent of (Vy*, X3) if we have
Ry, < H(Us|Va, X5). (32)

To satisfy (25)-(32), for any € > 0 we fix

Ry, = H(Vi| X)) — ¢ (33)
Ry, = I(Vi; X1) — I(V3;Y) + 2¢ (34)
Ry, = H(V3|X5) — ¢ (35)
Ry, = I(Va: X5) — I(Va; V1, Y) + 2¢ (36)
Ry, = H(U1|Vi, X1) — € (37)
Ry, = I(Uy; X1|V3) — I(Uy; Vo, Y Vi) +2¢  (38)
Ry, = H(Us|V3, X3) — € (39)
Ruz :I(UQ;XQH/Q)—I(UQ;U17Y|‘/2)+26. (40)



Public Message (Storage) Rates: (34) and (38) result in a
public message (storage) rate R,,, of

Ry, = Ry, + Ry,

W (Vi Xu|Y) + H(UL |V, Va, V) — H(UL VA, X7 ) + de

®)

2 (Vi Xq|Y) 4 I(Uy; X1 | Vi, Vo, Y) + 4e 1)

where (a) follows because V; — X; — Y form a Markov
chain and (b) follows because Uy — (V1, X1) — (V2,Y) form a
Markov chain. Furthermore, (36) and (40) result in a storage
rate Ry, of

RW2 = RVQ + RU2

@ I(Va; Xo|V1,Y) + H(Us|Uy, Vi, Y) — H(Us|Va, Xo) + 4e

®

=2 [(Va; Xo| Vi, Y) + I(Us; Xo|Uy, Va, V) + 4e (42)

where (a) follows from the Markov chain V3 — X, — (1,Y)
and (b) from Uy — (Va, X3) — (U1,Y). We remark that if the
indices 1 and 2 in the decoding order given above are swapped,
the other corner point with

R, = I(Vi; X1 |Va,Y) + I(Uy; X1|Us, V1, Y) + de (43)

Rl = I(Va; Xo|Y) + I(Us; X2|V1, Vo, Y) + de (44)
is achieved.

Privacy Leakage to Decoder: We have

I(Xn, Wl,WQ,Fl,FQD/n)
= I(Xn,Wl, W2|F1,F2,Yn) + I(X"’FI’F2|Y")

,\
INg

H(X"Y™)
- H(Xn|W1a WQ; Fla F27 ‘/lna V2n7 UT‘7 U2n7Yn) + 4€n
© g(x Y™) - HXMUT,UP,Y™) + e,

9D W I(Uy, Us; X|Y) + den

~

(45)

where (a) follows for some ¢,, > 0 with ¢,, — 0 when n — oo
because

I(X™; Fy, Fo|Y™)
=I(X" F, |Y") + (X" By, |Fy,,YT™)
+ I(X™; Fyy |y, By YT)

+ I(X™" Ry |Fyy By By, YY) <den, (46)

since 1) by (29) F,, is almost independent of (X", Y");
2) by (30) Fy, is almost independent of (V", X™ Y™) and
because V]* determines F,,; 3) by (31) F|, is almost in-
dependent of (U}, Vi, X™ Y™) and because (V;*,U7") de-
termine (Fy,,F,,); 4) by (32) F,, is almost independent
of (V3, U, Vi*, X™ Y™) and because (V;",U7,Vy") deter-
mine (Fy,, F,,, F,,), (b) follows because (Vi*, V3", U, UY)
determine (Wi, Wy, Fy, Fy) and from the Markov chains
Vi —UP — (X", Y™, U, V) and V' —U§ — (X", Y™, UP),
and (c) follows because (X™, U, UZ, Y™) are i.i.d.

Privacy Leakage to Eve: We have

I(X"™; Wy, Wa, Fy, F»|Z"™)

= H(Wla W25F13F2|Zn) - H(Wla WQaFlaF2|Xn)

—
=

—~
=
=

H(Wy,Wa, Fi, F5|Z"™)
- H(WulaFulaWung’u,ga‘/ln,‘/Qn|Xn)
+H(Vln‘W17W27F17F27Xn)
+H(‘/Qn‘vln7W17W2aFlaF27Xn)

(¢)
g H(Wh W23F17F2|Zn)
- H(Wu1aFu1?WU27FU27‘/1n?‘/2n|Xn) + 2”6,/”

D H(Wy, Wa, Fi, F2|2") — HUR, UL, VI, VP X™)
+ H(U{L|Wu13Fu13 Wu27Fu27‘/1na Vv2n7Xn)
+ H(U51|Uiﬂ, WU1?FU1? Wu27Fu27‘/1n? ‘/'2'”47Xn) + zne’/n

(e)
S H(le W27 Flv F2|Zn)_H(U{L7 U;’L? V1n7 ‘/2n|Xn)+4nE'/n

(L) H(W17W27F17F2|Zn)

—nH(Uy, Uz, V1, Vo| X) + 4ne), @7)

where (a) follows because (Wp,Ws, Fy,Fy) — X™ — Z"
form a Markov chain, (b) follows since (Vi*,V3") deter-
mine (Fy,, Wy, , Fyy, W), (¢) follows for some €/, > 0
such that €, — 0 when n — oo because (F,,, W, ,X")
can reliably recover V;* by (25), and similarly because
(Fyys W, V', X™) can reliably recover V3" by (26) both due
to the Markov chain (V{*,V5") — X" — Y™, (d) follows be-
cause (U7, Uy) determine (F,,, Wy, , F\, 2, Wy,), (e) follows
because (Fy,, Wy, , V", V3, X™) can reliably recover U7" by
(27) and the inequality H(Uy|V1,V5,Y) > H(Uq|V4, Vo, X)
that follows from

I(UI;V17%7X) _I(Ulavlv‘/va)

ZI(Ulvma‘/QaX)7I(U1,‘/13‘/27Y5X):O (48)

since U; — (V4,V5,X) — Y form a Markov chain. Sim-
ilarly, (Fy,, Way,, V", V3*, U, X™) can reliably recover
U} by (28) and the inequality H(Us|Vi,V2,U1,Y) >
H(U3|V1, Va,Up, X) that can be proved entirely similarly to
(48) by using the Markov chain Us — (V1, V5, Uy, X)—Y, and
(f) follows because (Uy*, Uy, V", Vb, X™) are i.i.d.

In (47), obtaining single letter bounds on the term
H(Wy,Wa, Fy, F5|Z"™) requires analysis of numerous decod-
ability cases, whereas there are only six different decodability
cases analyzed in [20] for secure function computation with a
single transmitting node. To simplify our analysis by applying
the results in [20], we combine the decoding order Steps 1
and 2 given above such that (V7,V5) are treated jointly and,
similarly, we combine Steps 3 and 4 such that (Uy,Us) are
treated jointly. Using the combined steps, we can consider
the six decodability cases analyzed in [20, Section V-A]
by replacing V™ with (V}",V5") and U™ with (U}',U3),
respectively, in the proof. Since in (47) the second term
—nH(Uy,Us, Vi, V5| X) can be obtained by applying the same



replacement to the second term in [20, Eq. (54)], we obtain
from (47) and these decodability analyses that

I(XR;W13W25F13F2|Z’”)
< n([[(Ur,Uz; Z|V1, V2) = I(Ur, U2; Y |V1, Va) + €]
+ I(Uy,Us; X|Z) + 4e), + €)) (49)

for some €]/ > 0 such that €// — 0 when n — cc.
Secrecy Leakage (to Eve): We obtain

I(X], X3 Y™ Wy, Wy, Fy, Fy| Z™)

9 Wy, Wa, By, |27 — H(W1, Wa, Fy, By X7, X2)

Y H Wy, Wa, Fy, |27

- H(Wu17Wuz7Fu17FuzaV1n7‘/2n|X{laX2n)
+ H(V1n|W1vW23F1aF27X{L7X5L)
+H(‘/Qn“/lnaW17W27F17F23X1L7X§L)

()
S H(W17W27F17F2|Zn)
- H(WUUWW,FUI,FUZ,Vfﬂ@"p?{ﬂ)?g) +2n6;z

d
(:) H(W17W23F17F2|Zn)

~ H(UT, U3, V", V3| X7, X3) + 2ne,

+ HUMWa,, Wy, Fuy s Fuy, VI VS X, X3

+ HUPUP Wy, Wy, Fu, Fu, VI VS X, XP)
W, Wa, Py, Fo|27)

— H(UT, U3, V", V3| XT, X3) + 4ne),
(2 H(Wy, Wy, Fy, F5|Z™)

—nH(Uy, Uz, Vi, Vo| X1, Xo) + 4ne,, (50)
where  (a)  follows  from the Markov  chain
(W1, Wa, F1, Fy) — (X7, X3) — (Y™, Z"), (b) follows
since (V]",V3') determine (F,,, W, , Fy,, W, ), (c) follows
because (F,,, W,,, X7, X3') can reliably recover Vi* by
(25), and similarly because (F,, Wy,, V", X7, XT) can
reliably recover V5' by (26) both due to the Markov chain
(Vi vy — (X7, X3) — Y™, (d) follows since (U',US)
determine  (Fy,, Wy, , Fu,, Wy,), (e) follows because
(Fuys Way , V', V3t X1, X3') can reliably recover U by (27)
and the inequality H(U;|V1,Va,Y) > H(Uq|V4, Vo, X1, XT)
that can be proved similarly to (48) due to the
Markov chain U; — (V1,V2, X1, X2) — Y. Similarly,
(Fugy, W, VI*, VIR, U, X7, X3)  can  reliably  recover
U3 by (28) and the inequality H(Us|V1,Va,U1,Y) >
H(Uz|V1, Va,Uy, X1, X3) that can be proved by using the
Markov chain Uy — (V1, V2, Uy, X1, X2) =Y, and (f) follows
because (U7, UY, V", V', XT', X7) are i.i.d.

We remark that the terms in (50) are entirely similar to the
terms in (47). One can show that all steps of the decodability
analysis from [27, Section V-A] that is applied to (47) can

be applied also to (50) by replacing X with (X1, X5), so we
obtain

I(XP, X5, Y™ Wy, Wy, Fy, Fa| 27)
S n[I(U17U21Z|‘/17‘/2) - I(U17U27Y|‘/13‘/2) + 6}_

+nI(Uy,Uy; X1, X5|Z) 4 5nel,. (51)

We consider that the public indices (Fy, F») are generated
uniformly at random and the encoders generate (Vi*,U7")
and (V3*,UJ) according to PVI” UPVRUR | RpFy XD Py obtained
from the binning scheme above. This proceéure induces
a joint probability distribution that is almost equal to
Pv1v2U1U2551)?2XYZ fixed by (14) [26, Section 1.6]. Since
the privacy and secrecy leakage metrics considered above are
expectations over all possible realizations F' = f, applying
the selection lemma [28, Lemma 2.2], these results prove the
achievability for Theorem 1 by choosing an € > 0 such that
e — 0 when n — oco. We remark that the achievable region is
convexified by using a time-sharing random variable () such
that Pov,v, = PqPy,|qPy,|q. required because of the [-]~
operation. [

B. Outer Bound Proof Sketch

Proof. Assume that for some n > 1 and 6, > 0, there
exist two encoders and a decoder such that (2)-(7) are
satisfied for some tuple (Rs, Ry, ,Rw.2, Repec, Regve). Let
Vig & WY, 200, Vo & (Wo, Y1, 2071, Uy =
(Xi_laWhY;‘ﬁ-hZi_l)’ and U2,i = (Xi_17W27Yi7—l&-172i_1)
that satisfy the Markov chains

Vii— Ui — X140 — X — (X0, Y3, Zi) (52)

Vo, — Ui — )N(z,i - X; - ()N(Lzyyéy Z;). (53)
Admissibility of (Uy,Uz): Define

nén = ndy| X1 || Xa||V| + Hy(6,) (54)

where Hy,(0) = —(1 — §)log(l — §) — dlogd is the binary
entropy function such that €, — 0 if §,, — 0. Using Fano’s
inequality and (2), we obtain
nirn (a) n|fn - n
ne, > H(f"|f7) = H(f"f) =Y H(filf:)

i=1

3

n

_
>N H(fif") = ) H(fi[ W, Wa, Y™

1 i=1

.
Il

H(fl|W1a WQaYn7Xi71’ Ziil)

-

s
Il
-

S
[

H(fi|W17W27Y;7-I;-1)Xi_17zi_171/;)

.
Il
_

=
INgE

Il
_

H(fi|\U1,,Us2,,Y5) (55)

where (a) follows from [29, Lemma 2] that proves that when

n — 0o, there exists an i.i.d. random variable f" that satisfies
both H(f"|f™) = H(f™|f™) and the Markov chain f7— f" —



(W1, Wo,Y™), (b) follows from the data processing inequality
because of the Markov chain f™ — (W, W, Y"™) — f™ and
permits randomized decoding, (c) follows from the Markov
chain

Yi_l _(Xi_lvzi_17W17W27}/i7}/;Z:1)_f’i (56)
and (d) follows from the definitions of Uy ; and Us ;.
Public Message (Storage) Rates: We obtain

(@) ~
n(Rw, +0n) = logWi| = HW1|[Y") — H(W1| X7, Y™)

= H(XP[Y") = H(X]|Wy,Y™)

= H(XI|Y™) - zn:H()?l,i\)?i’HWl,Y”)
i=1

® H(X1 [Y™) ZH X12|X1 WL YY)
i=1

H()?HY") — i:H()?1,i|Xi_1,Zi_laWhYﬁeri)

i=1

@ nH(X1|Y) — i:H(XLHULi,E):iI(Ul,i5X1,i|Y;)

i=1

i=1

[I(Vl,i;)?l,i\yi) + (Ui X1,1|Y¢, Vi4)]

=
-

©
I
-

I

{I(Vu; )N(l,u Va,ilYi) — I(Va s V2,z‘|)?1,71, Y;)

=1

I(Un; me UsilYi, Vi)
—I(Uy 43 U2,i|)?1.¢, Y;, Vl,i)}

n
> Z {I(V1,i;X1,i|Yi, Vo) — I(Vh 43 Va,i| X140, Y3)
i=1

I(Uy s 5(1,1‘|Yi7 Vi, Uai)

—I(Uy; U2,i|)?17iayia Vl,i)} (57)

where (a) follows by 4), (b) follows from the Markov chain

YiTl (XU W, YL Y) — X, (58)

(c) follows from the data processing inequality applied to the
Markov chain

(X027 = (X WY, V) = X (59)

(d) follows from the definition of U; ;, and (e) follows by
(52). Similarly, one can show that we have

(RW2 +5 )
> Z 1V KalYis Vig) = 1V Vi il Kz, o)

+ I(Us,; X2,1|Yz‘, Va,i,Uti)

— 1(Us,i5 U4l X0, Vi, Vo) | (60)

Now we consider the sum-rate bound such that

(@)
n(Ry, + 0n) + n(Rw, + 0n) > log(|Wh] - [Wa])
> (WhWQ) ZI(WlaWQ;XlaXQ)i (WlaWQ;Yn)

(b) - i— i— n
:Z[ (Wi Wy Xy, Koo XL XL V)

(W, W Y| X X7 Y|

3
3

C

|: W17W27Xl ! Xl 17}/1117X1zaX2L)

i=1

— I(Wy, Wy, Xi™1, X1 1,3@11;1/)}

> Z |:I(W1,W2,Xz ! ZZ 1,}/;117)(1 27X21)
I, W, XL 20 V)|

(2 Z {I(Ul,ivUZi;)?l,iajZZi) - I(Ul,i, Uz,i;Yz‘)]

s
Il
-

I(Viiy Vais X1 4, Xo4|V3)

3

h SO
w Z [I(Ul,z‘§X1,i7X2,i|Yi7Vl,qu,i)

i1
+ I(Us5; X4, Xo4|Vi, Uri, Vai)
+I(V1,i§)?1,ia)?2,i|yi)
+ I(Vai; X1 4, Xo4|Yi, Vl,i)}

> [I(U17i;)?17i\Yi,V1,i,V2,i)

1

=
+ I(U27i§)?2,i‘Yi,U1,i,V2,i)
+ 1(Vis XalVE) + 1(Vas XoalVi Vi) | (6D)
where (a) follows by (4) and (5), (b) follows from Csiszir’s
sum identity [30], (c) follows because (X', X5, Y™) are i.i.d.,

(d) follows from the data processing inequality applied to the
Markov chains

(X’L'—l Zi—l) _
(Xi_lw)(g_l) -

()2{717 )’23717 W17 W27 Kil) - (jzl,% ASZQ,'L')
(Xi_laZi_laW17W271/;Z-1) _}/’L (62)

(e) follows from the definitions of U; ; and U, (f) and (g)
follow from the Markov chain

V14, Vo) — (Ur,i, U ) — ()~(1,z‘,)~(2,i) -Y; (63)
(h) follows from the Markov chain
Viip— (U1,Y5, Vo) — (UQ,iv)?l,i7)?2,i)~ (64)



Privacy Leakage to Decoder: We have

(a)
n(Rl,Dec + 571) Z H(Wla W2|Yn) - H(Wl? W2|Xn)

-

{I(Wu Wo; Xi| X1 Y1)

=1

— LWy, Wi YifYi, X

3

N2

© {I(Wl,Wg;XﬂXi_l,Zi_l,Yi’ZLrl)

—1

=

— Iy, Wi Vil X0, 2]

@ i: [I(Wl, Wo, X1, 270 Y0 X)

i=1
= I, Wa, Y7, X1, 205 )|
n
© {I(Ul,iyUQ,iQXi) - I(Ul,iaU2,i;Yi)}
i=1
)
= ZI(Ul,i7U2,i§Xi|Yi) (65)
i=1

where (a) follows by (6) and from the Markov chain
(W1, Wa)—X"—Y™, (b) follows from Csiszar’s sum identity,
(c) follows from the Markov chain

77 = (XY ) - (X, YL Wi, W) (66)

(d) follows because (X", Y™, Z™) are i.i.d., (e) follows from
the definitions of Uy ; and Us;, and (f) follows from the
Markov chain (Uy 4, Uz;) — X; — Yi.

Privacy Leakage to Eve: We have

n(RZ,Eve + 671)

(a)
> [H(Wy, Wa|Z™) — H(W1, Wa|Y™)]

+ [H(Wh, Wa|Y™) — H(Wq, Wa|X™)]
b n .
D3 (1w, was vy, 27
=1
— I(W1, W3 2 271, Vi)

+3° [I(Wl,Wz;X,in—l,ml)

i=1

— I(Wa, W3 Yil Y, X0
< > {I(WhWQ;YHYﬂpZi_l)
i=1

— I(Wh, Wa; Zz’|Zi717Y¢11)}

>

i=1

I(WlaWQ;Xi‘Xi717)/7;1172i71)

— I(Wy, Wos Y|V, X0 20T

n
d .
@ 3 [I(Wl,Wg,ml,Zl—l;n)
=1

— I(Wa, Wa, 27 Y3 Z0)|

3

+ I(Wy, Wo, XL Y 2070 X))

i=1

- I(Wla WQaYviﬁ-laXiila Z’Lile*z)

© [I(Vl,ia Va,i Vi) = 1(Vii, Va,is Z3)

n

?

—

+ I(U1,3, U2,V 4, Va3 Xi)
—I(U1,3,Ua,i, Vii, Vais Y;):|

[— I(Uy i, Usis Vaiy Vo is Z3)

|

=1

+ (Ui, Uz, Vii, Vaoi; Xi)
+ 1(Ur,i, Uiy Zi|Va iy Vayi)

— (U1, Uz, Yi|Va 4, Va i)

,\
=

N

Il
_

I(Uy 3, Usi5 X3\ Zs)

1016, Ui ZilVii, Vo)

~ IO Ui YilVi, Vea)| | 6D)

where (a) follows by (7) and from the Markov chain
(Wi, Wy)—X"—2Z™, (b) follows from Csiszar’s sum identity,
(¢) follows from the Markov chain in (66), (d) follows because
(X™, Y™, Z™) are iid., (e) follows from the definitions of
Vi,i, Vo, Ui, and Uz, and (f) follows from the Markov
chain (Vlﬂ', ‘/271) — (Ul,i7 U2,i) - Xz - Zl

Secrecy Leakage (to Eve): We obtain

n(Rs + 0p,)

(a)
> [H(Wy,Wa|Z™) — H(Wy1, Wa|Y™)]

+ [H(Wy, WalY™) — H(Wy, Wa| XT', X3, V™)
u Z {I(Wth;YHYﬁ-p AR
i=1
*I(WhWz;Zi|Zi7173@?.1)+H()~(1,17X2,¢|1ﬁ)
_H()?l,iv)?l”)?i_l)§£_17W1aW27}/i7-7;-17)/:i):|
> Z [I(Wl,Wz,YﬁpZifl;Yi)

=1

—
N

— I(Wy, Wa, Z' 71 Y715 Z3)+ H(X i, Xo,|Y5)
— H(X1,4, Xo| X171, 271 W, Wa, Y1, }/z):|



n

@ Z [I(Vl:ivvlﬁyi) — I(V1 3, Va3 Z;)

i—1
+ 11Uy, Uz,i,Vl,iﬂ/'z,i;)?l,n)zz,i|5ﬁ)}
(2 Z [I(Vl,i7 Va,is Y:) — I(Vl,i7 Vais Zi)
i=1

+ I(Ur,i, Uiy Viiy Vo Xl,h Xzz)
- I(Ul,ia U2,7L7 Vl,i7 Vz,i; Yz)}

I
M=

{ _I(Ul,i7 U2,i7 Vl,i, V2,i; Zi)

i1
+I(Ul,iU2,i7V1,i;‘/2,1'3)?1,1';)?2,1')
+ I(Uy1,i, U243 Zi|Vii, Va.i)
— I(U,3,Ua3; Yil Vi, Vayi)
(£ & ~ o~
> Z I(Un,i, Usyis X146, X2,i] Z5)
i=1

+ [100 V2 V2, Vas)

_I(Ul,iaUZ,i;Yi|V1,iaV2,i) (68)

where () follows by (3), (b) follows because (X7, X3, Y™)
are i.i.d., and from Csiszar’s sum identity and the Markov
chain

Yi_l_()}{_l7)?§_17 Wl) W271/;i]_a }/i)_(jzl,i; )}Zi) (69)

(c) follows because (Y™, Z") are ii.d. and from the data
processing inequality applied to the Markov chain

Xi_lvzi_l)_()?i71722717 Wla WQ»KLZ»I?K)_()’ZLM}?LJ

(
(d) follows from the definitions of Vi ,, Vo, Ui, and Us,,
(e) follows from the Markov chain (Ui, Usy, Vi, Va,i) —
()Zu,)?u) — Y, and (f) follows from the Markov chain
V1.4, Vo) — (Ur,i, Usyi) — (X146, Xoi) — Zs.

Introduce a uniformly distributed time-sharing random vari-
able @~ Unif[1:7n] that is independent of other random vari-
ables, and define X = X, X1 =X, g, Xo=X50, Y =Y,
Z=Zq, V1=V, Va=V2q,U1=(U1,0,Q), Uz=(U2,0,Q).
and f = fg, s0 (Q,V1)— Ui — X1 — X — (X2,Y,Z) and
(Q,Va)—Uy— X3 — X — (X1,Y, Z) form Markov chains. The
proof of the outer bound follows by letting §,, — 0.

Cardinality Bounds: We use the support lemma [30,
Lemma 15.4] to prove the cardinality bounds and apply similar
steps as in [17], [20], so we omit the proof. O
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