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Abstract—We consider that multiple noisy observations of a
remote source are used by different nodes in the same network to
compute a function of the noisy observations under joint secrecy,
joint privacy, and individual storage constraints, as well as a
distortion constraint on the function computed. Suppose that
an eavesdropper has access to one of the noisy observations in
addition to the public messages exchanged between legitimate
nodes. This model extends previous models by 1) considering a
remote source as the source of dependency between the correlated
random variables observed at different nodes; 2) allowing the
function computed to be a distorted version of the target function,
which allows to reduce the storage rate as compared to a
reliable function computation scenario in addition to reducing
secrecy and privacy leakages; 3) introducing a privacy metric
that measures the information leakage about the remote source
to the fusion center in addition to the classic privacy metric
that measures the leakage to an eavesdropper; 4) considering
two transmitting nodes to compute a function rather than one
node. Single-letter inner and outer bounds are provided for the
considered lossy function computation problem, and exact lossy
rate regions are characterized for two special cases in which
either the computed function is partially invertible or the function
is invertible and the measurement channel of the eavesdropper
is physically degraded with respect to the measurement channel
of the fusion center.

I. INTRODUCTION

Function computation in a network is considered, in which
dependent random variables are observed by all nodes. Such
a model fits well to recent applications that are based on, e.g.,
distributed machine learning [1], [2] and network function vir-
tualization [3]. The aim of the nodes is to compute a function
of their observed random variables by exchanging public mes-
sages over authenticated and noiseless communication links
such that a fusion center that observes the public messages
can compute the function output. Messages exchanged over
public communication links cause information leakage to an
eavesdropper about the output of the function computed, which
results in secrecy leakage [4]–[6]. We consider the general
case where an eavesdropper observes both public messages
and random variables that are correlated with other random
variables, as in [7]–[11]. Due to storage constraints on the
communication links, it is also necessary to minimize the
amount of messages exchanged over the public communication
links [12]. The amount of public storage can be reduced by
using, e.g., distributed lossless or lossy source coding methods

[13]–[17], the latter of which allows the function computed to
be a distorted version of the target function and applies Wyner-
Ziv (WZ) coding [18] methods that result in further reductions
compared to the former. Furthermore, the dependency between
the random variables observed by different nodes is posited in
[19] to stem from a remote source whose noisy measurements
are observed by different nodes in the same network. Such a
remote source model has been used for secret key agreement
[20]–[22], device authentication [23], and other information-
theoretic problems [24, p. 118], [25, p. 78]. For function
computation scenarios, we also consider such a remote source.
Thus, every function computation in the same network results
in information leakage to an eavesdropper about the remote
source, which is called privacy leakage [26], since the remote
source is common to all random sequences observed by each
node. Moreover, another privacy leakage metric that measures
the information leakage about the remote source to the fusion
center is also considered in [19], [27].

We consider function computation scenarios with one se-
crecy, two privacy, two storage, and one distortion constraints
to obtain inner and outer bounds for the rate regions that
correspond to the optimal trade-off between all constraints
considered. In our models, two transmitting nodes send public
messages to a fusion center in order for the fusion center
to compute a distorted version of a target function by using
both the public message and its noisy observations of the
remote source. Our function computation model is a strict
extension of previous models considered since 1) in [26] a
visible source model is used, which cannot explain how the
dependency between different random variables observed by
different nodes is established; 2) in [19] only one transmitting
node was considered for function computation; 3) in [27]
lossless function computation was considered, which imposes
the stringent reliability constraint that the function computed
should be equal to the target function and this might require
a larger amount of public storage as compared to a lossy
function computation model considered in this work.

The main contributions of this work are summarized as
follows. The lossy single-function computation model with
two transmitting nodes is considered and an inner bound
for the rate region that characterizes the optimal trade-off
between secrecy, privacy, storage, and distortion constraints is



established by using the output statistics of random binning
(OSRB) method [28]. An outer bound for the same rate
region is also provided. Furthermore, effects of considering
a distortion constraint, rather than a reliability constraint, on
the function computation are discussed. For partially invertible
functions, which define a set that is a proper superset of the
set of invertible functions, we characterize the exact lossy
rate region. We also provide the exact lossy rate region for
invertible functions when the eavesdropper’s measurement
channel is physically degraded with respect to the fusion
center’s channel.

In Section II, the lossy single-function computation model
with two transmitting nodes and under secrecy, privacy, stor-
age, and distortion constraints is introduced. In Section III,
we first provide inner and outer bounds for the lossy single-
function computation problem introduced, and then exact lossy
rate regions for two special cases are given. In Section IV, we
conclude the paper.

A. Notation

Upper case letters represent random variables and lower
case letters their realizations. A superscript denotes a se-
quence of variables, e.g., Xn = X1, X2, . . . , Xi, . . . , Xn,
and a subscript i denotes the position of a variable in a
sequence. A random variable X has probability distribution
PX . Calligraphic letters such as X denote sets and set sizes
are written as |X |. [1 :J ] denotes the set {1, 2, . . . , J} for an
integer J ≥ 1, and X ∼ Unif[1 : J ] is a random variable that
is uniformly distributed over the set [1 : J ].

II. SYSTEM MODEL

We consider an independent and identically distributed
(i.i.d.) remote source Xn ∼ Pn

X that is measured by two
transmitting nodes, a fusion center, and an eavesdropper
(Eve) through noisy memoryless channels PX̃1|X , PX̃2|X , and
PY Z|X , respectively. Thus, we denote the observations of the
transmitting nodes as X̃n

1 and X̃n
2 , and the observations of the

fusion center and eavesdropper as Y n and Zn, respectively.
Suppose the source and measurement alphabets are finite
sets. Transmitting nodes’ encoders Enc1(·) and Enc2(·) send
public indices W1 and W2, respectively, to the fusion center
over authenticated, one-way, and noiseless communication
links. Observing W1, W2, and Y n, the fusion center decoder
Dec(·) estimates a distorted version of the target function
fn(X̃n

1 , X̃
n
2 , Y

n) that is such that

fn(X̃n
1 , X̃

n
2 , Y

n) = {f(X̃1,i, X̃2,i, Yi)}
n

i=1. (1)

The considered function computation model with two trans-
mitting nodes is illustrated in Fig. 1 on the next page. We next
define achievable rate tuples and the secrecy, privacy, storage,
and distortion constraints imposed. We remark that the secrecy
leakage constraint imposed does not depend on the properties
of the function f(·, ·, ·) computed, as in [19], [26], [27].

Definition 1. A lossy tuple (Rs, Rw,1, Rw,2, R`,Dec, R`,Eve, D)
is achievable if, for any δ>0, there exist n≥1, two encoders,
and one decoder such that

1

n
I(X̃n

1 , X̃
n
2 , Y

n;W1,W2|Zn) ≤ Rs + δ (secrecy) (2)

1

n
log
∣∣W1

∣∣ ≤ Rw,1 + δ (storage 1) (3)

1

n
log
∣∣W2

∣∣ ≤ Rw,2 + δ (storage 2) (4)

1

n
I(Xn;W1,W2|Y n) ≤ R`,Dec + δ (privacyDec) (5)

1

n
I(Xn;W1,W2|Zn) ≤ R`,Eve + δ (privacyEve) (6)

E
[
d(fn(X̃n

1 , X̃
n
2 , Y

n), f̂n)
]
≤ D + δ (distortion) (7)

where

d(fn, f̂n) =
1

n

n∑
i=1

d(fi, f̂i) (8)

is a per-letter distortion metric. The lossy region RD is the
closure of the set of all achievable lossy tuples.

III. INNER AND OUTER BOUNDS

Given any a ∈ R, define [a]− = min{a, 0}. We next provide
inner and outer bounds for the lossy region RD; see below for
a proof sketch.

Theorem 1. (Outer Bound): An outer bound for the lossy
region RD is the union over all PQ, PV1|Q, PV2|Q, PU1|V1

,
PU2|V2

, PX̃1|U1
, and PX̃2|U2

of the set of rate tuples
(Rs, Rw,1, Rw,2, R`,Dec, R`,Eve, D) such that

Rs ≥
[
I(U1, U2;Z|V1, V2, Q)− I(U1, U2;Y |V1, V2, Q)

]−
+ I(U1, U2; X̃1, X̃2|Z) (9)

Rw,1 ≥ I(V1; X̃1|V2, Y ) + I(U1; X̃1|V1, U2, Y )

− I(V1;V2|X̃1, Y )− I(U1;U2|X̃1, Y, V1) (10)

Rw,2 ≥ I(V2; X̃2|V1, Y ) + I(U2; X̃2|U1, V2, Y )

− I(V2;V1|X̃2, Y )− I(U2;U1|X̃2, Y, V2) (11)

Rw,1 +Rw,2 ≥ I(U2; X̃2|U1, V2, Y ) + I(U1; X̃1|V1, V2, Y )

+ I(V2; X̃2|V1, Y ) + I(V1; X̃1|Y ) (12)
R`,Dec ≥ I(U1, U2;X|Y ) (13)

R`,Eve ≥
[
I(U1, U2;Z|V1, V2, Q)− I(U1, U2;Y |V1, V2, Q)

]−
+ I(U1, U2;X|Z) (14)

D ≥ E[d(f(X̃1, X̃2, Y ), g(U1, U2, Y ))] (15)

for some function g(·, ·, ·) and where

(Q,V1)− U1 − X̃1 −X − (X̃2, Y, Z) (16)

(Q,V2)− U2 − X̃2 −X − (X̃1, Y, Z) (17)

form Markov chains. One can limit the cardinalities to
|Q| ≤ 2, |V1| ≤ |X̃1|+7, |V2| ≤ |X̃2|+7, |U1| ≤ (|X̃1|+7)2,
and |U2| ≤ (|X̃2|+ 7)2.
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Fig. 1. Lossy single-function computation model that uses two transmitting nodes, where the computed function is allowed to be a distorted version of the
target function.

(Inner Bound): An achievable lossy region is the union over
all PQ, PV1|Q, PV2|Q, PU1|V1

, PU2|V2
, PX̃1|U1

, and PX̃2|U2
of

the rate tuples in (9), (12)-(15), and

Rw,1 ≥ I(V1; X̃1|V2, Y ) + I(U1; X̃1|V1, U2, Y ) (18)

Rw,2 ≥ I(V2; X̃2|V1, Y ) + I(U2; X̃2|U1, V2, Y ) (19)

and where we have

PQV1V2U1U2X̃1X̃2XY Z

= PQ|V1V2
PV1|U1

PU1|X̃1
PX̃1|XPV2|U2

PU2|X̃2
PX̃2|XPXPY Z|X .

(20)

Proof Sketch: The proof of the outer bound applies the
standard properties of the Shannon entropy and follows mainly
from the outer bound proof for the lossless version of the
function computation problem depicted in Fig. 1, for which the
distortion constraint (7) is replaced with a reliability constraint;
see [27, Section IV] for the inner and outer bound proofs
for the lossless function computation problem. However, the
proof for the lossless function computation problem requires
the auxiliary random variables to be admissible as defined in
[12], unlike the lossy function computation problem. Thus,
the outer bound proof for Theorem 1 follows by replacing the
admissibility step in the outer bound proof for the lossless
function computation problem with the steps

n(D + δn)

(a)

≥ E
[ n∑

i=1

d
(
fi(X̃1,i, X̃2,i, Yi), f̂i(W1,W2, Y

n)
) ]

(b)

≥ E
[ n∑
i=1

d
(
fi(X̃1,i, X̃2,i, Yi), gi(W1,W2, Y

n, Xi−1, Zi−1)
)]

(c)
= E
[ n∑
i=1

d
(
fi(X̃1,i, X̃2,i, Yi), gi(W1,W2, Y

n
i , X

i−1, Zi−1)
)]

(d)
= E

[ n∑
i=1

d
(
f(X̃1,i, X̃2,i, Yi), g(U1,i, U2,i, Yi)

) ]
(21)

where (a) follows by (7) and (8), (b) follows since there exists
a function gi(·, ·, ·) that achieves a distortion that is not greater
than the distortion achieved by f̂i(W1,W2, Y

n), where the
distortion is measured with respect to fi(X̃1,i, X̃2,i, Yi), since
gi(·, ·, ·) has additional inputs, (c) follows from the Markov
chain

Y i−1 − (Xi−1, Zi−1,W1,W2, Yi, Y
n
i+1)− fi (22)

and (d) follows from the definitions of

U1,i , (W1, X
i−1, Y n

i+1, Z
i−1) (23)

U2,i , (W2, X
i−1, Y n

i+1, Z
i−1). (24)

We next introduce a uniformly distributed time-sharing ran-
dom variable Q ∼ Unif[1 : n] that is independent of other
random variables. By defining X = XQ, X̃1 = X̃1,Q,
X̃2 = X̃2,Q, Y = YQ, Z = ZQ, V1 = V1,Q, V2 = V2,Q,
U1=(U1,Q,Q), U2=(U2,Q,Q), and f = fQ such that (16) and
(17) form Markov chains, the proof of the outer bound follows.
Furthermore, the proof of the cardinality bounds follows from
[24, Lemma 15.4] since we preserve the same probability and
conditional entropy values as being preserved for the lossless
function computation problem with the addition of preserving
the value of g(U1, U2, Y ) = g(U1, U2, V1, V2, Y ), following
from the Markov chain

(V1, V2)− (U1, U2, Y )− g(U1, U2, Y ). (25)



For the proof of the inner bound, we use the OSRB method
that assigns two random bin indices to each auxiliary sequence
Un
1 = un1 , Un

2 = un2 , V n
1 = vn1 , and V n

2 = vn2 separately. The
first set of random bin indices represents the public choices
of two encoders and one decoder, whereas the second set of
random bin indices the public messages sent to the fusion
center from encoders. The fusion center that observes all
public random bin indices as well as Y n applies the following
successive decoding order:

1) using Y n and public bin indices, the fusion center esti-
mates V n

1 as V̂ n
1 ;

2) using (Y n, V̂ n
1 ) and public bin indices, V n

2 is estimated
as V̂ n

2 ;
3) using (Y n, V̂ n

1 , V̂
n
2 ) and public bin indices, Un

1 is esti-
mated as Ûn

1 ;
4) using (Y n, V̂ n

1 , V̂
n
2 , Û

n
1 ) and public bin indices, Un

2 is
estimated as Ûn

2 .

Furthermore, by swapping the indices 1 and 2 in the decoding
order above the other corner point in the achievable rate region
is obtained, so it suffices to analyze the given decoding order.
We impose conditions on the rates of the first and second
sets of random bin indices to ensure reliable estimations at
the fusion center [28, Lemma 1] as well as to ensure that
the choices of encoders and decoders are independent of
the random sequences observed [28, Theorem 1]. Using the
OSRB method consecutively, various different recoverability
cases that indicate whether it is possible obtain single-letter
terms are analyzed. All cases are bounded by the same
mutual information terms. We remark that the achievability
proof of the lossy function computation problem follows from
the achievability proof of its lossless version by replacing
the admissibility constraint with the constraint that PU1|X̃1

,
PV1|U1

, PU2|X̃2
, and PV2|U2

are chosen such that there exists
a function g(U1, U2, Y ) such that

gn(Un
1 , U

n
2 , Y

n) = {g(U1,i, U2,i, Yi)}ni=1 (26)

E[d(fn(X̃n
1 , X̃

n
2 , Y

n), gn(Un
1 , U

n
2 , Y

n))] ≤ D + εn (27)

where εn > 0 such that εn → 0 when n → ∞. Since
all (x̃n1 , x̃

n
2 , y

n, un1 , u
n
2 ) tuples are in the jointly typical set

with high probability, by the typical average lemma [29, pp.
26], constraint in (7) is satisfied. Furthermore, a time-sharing
random variable Q such that PV1V2Q = PQPV1|QPV2|Q is used
to convexify the rate region.

Remark 1. Since all terms given in the outer bound in
Theorem 1, i.e., lower bounds in (9)-(15), are generally strictly
positive, strong secrecy or strong privacy constraints cannot be
satisfied in general for the lossy function computation problem
depicted in Fig. 1.

One can show that the terms in (10) and (11) recover the
terms in (18) and (19), respectively, if the joint probability
distribution given in (20) is imposed on the outer bound since
the negative terms in (10) and (11) are constant for (20)

because of the Markov chains

(V1, U1)− X̃1 − (Y,U2, V2) (28)

(V2, U2)− X̃2 − (Y,U1, V1). (29)

However, the rate region that is defined by the outer bound
that satisfies (16) and (17) is in general larger than the one
that is defined by the inner bound that satisfies (20), so the
outer and inner bounds do not match in general.

We next impose the condition that the function
f(X̃1, X̃2, Y ) is partially invertible with respect to X̃1,
i.e., we have [13], [30]

H(X̃1|f(X̃1, X̃2, Y ), Y ) = 0. (30)

For such functions, it is straightforward to show that we
have the following exact rate region for the lossy function
computation problem with two transmitting nodes. We remark
that the proof of Corollary 1 follows from Theorem 1 by
assigning U1 = X̃1 and constant V1, and then by applying the
Markov chain (17) to (9). Furthermore, by symmetry the exact
lossy rate region for a function f(X̃1, X̃2, Y ) that is partially
invertible with respect to X̃2 can be obtained by assigning
U2 = X̃2 and constant V2, and then applying (16) to (9).

Corollary 1. The lossy region RD when f(X̃1, X̃2, Y ) is a
partially invertible function with respect to X̃1 is the set of all
tuples (Rs, Rw,1, Rw,2, R`,Dec, R`,Eve, D) satisfying

Rs ≥
[
I(X̃1, U2;Z|V2, Q)− I(X̃1, U2;Y |V2, Q)

]−
+H(X̃1|U2, Z) + I(U2; X̃2|Z) (31)

Rw,1 ≥ H(X̃1|U2, Y ) (32)

Rw,2 ≥ I(V2; X̃2|Y ) + I(U2; X̃2|X̃1, V2, Y ) (33)

Rw,1 +Rw,2 ≥ I(U2; X̃2|X̃1, V2, Y ) +H(X̃1|V2, Y )

+ I(V2; X̃2|Y ) (34)

R`,Dec ≥ I(X̃1, U2;X|Y ) (35)

R`,Eve ≥
[
I(X̃1, U2;Z|V2, Q)− I(X̃1, U2;Y |V2, Q)

]−
+ I(X̃1, U2;X|Z) (36)

D ≥ E[d(f(X̃1, X̃2, Y ), `(X̃1, U2, Y ))] (37)

for some function `(·, ·, ·) such that (17) form a Markov chain.
One can limit the cardinalities to |Q| ≤ 2, |V2| ≤ |X̃2| + 7,
and |U2| ≤ (|X̃2|+ 7)2.

Similar to partially invertible functions, we can characterize
the exact lossy rate region for invertible functions; i.e., we have

H(X̃1, X̃2|f(X̃1, X̃2, Y ), Y ) = 0. (38)

Furthermore, we also impose the condition that the measure-
ment channel PY Z|X is physically degraded such that

PY Z|X = PY |XPZ|Y . (39)

For invertible functions and physically degraded measurement
channels PY Z|X , as defined in (39), we provide the exact



lossy rate region in Corollary 2. The proof of Corollary 2
follows from Theorem 1 by assigning U1 = X̃1, U2 = X̃2,
and constant V1 and V2, and by using the following Markov
chain for this case

(X̃1, X̃2)−X − Y − Z (40)

which follows by (39).

Corollary 2. . When f(X̃1, X̃2, Y ) is an invertible function
and PY Z|X is as given in (39), the lossy region RD is the set
of all tuples (Rs, Rw,1, Rw,2, R`,Dec, R`,Eve, D) satisfying

Rs ≥ H(X̃1, X̃2|Y ) (41)

Rw,1 ≥ H(X̃1|X̃2, Y ) (42)

Rw,2 ≥ H(X̃2|X̃1, Y ) (43)

Rw,1 +Rw,2 ≥ H(X̃1, X̃2|Y ) (44)

R`,Dec ≥ I(X̃1, X̃2;X|Y ) (45)

R`,Eve ≥ I(X̃1, X̃2;X|Y ) (46)

D ≥ E[d(f(X̃1, X̃2, Y ), k(X̃1, X̃2, Y ))] (47)

for some function k(·, ·, ·).

IV. CONCLUSION

We considered the function computation problem, where
three nodes observe correlated random variables and aim to
compute a target function of their observations at the fusion
center node. We modeled the source of the correlation between
these nodes by positing that all three random variables are
noisy observations of a remote random source. Furthermore,
we imposed one secrecy, two privacy, two storage, and one
distortion constraints on this function computation problem
to define a lossy rate region by considering an eavesdropper
with a correlated random variable and by allowing the function
computed to be a distorted version of the target function. We
proposed inner and outer bounds for the lossy rate region. The
secrecy leakage and privacy leakage rates that are measured
with respect to the eavesdropper were shown to be different
due to the remote source considered, unlike in the literature.
Furthermore, we characterized the exact lossy rate region
for functions that are partially invertible with respect to one
of the transmitting node observations and also for invertible
functions when the measurement channel of the fusion center
and eavesdropper is physically degraded.

In future work, we will propose inner and outer bounds for
the lossy multi-function computation problem with multiple
transmitting nodes and characterize the lossy rate regions for
multi-function computations when the function computed is
invertible.
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