
Better Security-Efficiency Trade-Offs in
Permutation-Based Two-Party Computation

Yu Long Chen1 and Stefano Tessaro2

1 imec-COSIC, KU Leuven, Belgium
yulong.chen@kuleuven.be

2 Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle, USA

tessaro@cs.washington.edu

Abstract. We improve upon the security of (tweakable) correlation-
robust hash functions, which are essential components of garbling schemes
and oblivious-transfer extension schemes. We in particular focus on con-
structions from permutations, and improve upon the work by Guo et al.
(IEEE S&P ’20) in terms of security and efficiency.
We present a tweakable one-call construction which matches the security
of the most secure two-call construction – the resulting security bound
takes form O((p+q)q/2n), where q is the number of construction evalua-
tions and p is the number of direct adversarial queries to the underlying
n-bit permutation, which is modeled as random.
Moreover, we present a new two-call construction with much better se-
curity degradation – in particular, for applications of interest, where
only a constant number of evaluations per tweak are made, the secu-
rity degrades as O((

√
qp + q2)/2n). Our security proof relies on on the

sum-capture theorems (Babai ’02; Steinberger ’12, Cogliati and Seurin
’18), as well as on new balls-into-bins combinatorial lemmas for limited
independence ball-throws.
Of independent interest, we also provide a self-contained concrete secu-
rity treatment of oblivious transfer extension.

Keywords: Correlation-robust hashing, two-party computation, prov-
able security

1 Introduction

Secure two-party computation makes intensive use of symmetric-key primitives,
both in garbling [5, 27] and oblivious-transfer (OT) extension [19] schemes. A
common denominator of many such schemes is a special form of hash functions,
known as correlation-robust (crHF) [19], which is pseudorandom when its input
is whitened with a secret key, as well as the stronger notion of a circular crHF [8]
(ccrHF). Recent works by Guo et al. [16, 17] initiated the study of the concrete
security of crHFs and ccrHFs in the ideal-permutation and cipher models. They
also point out that näıve constructions lead to substantial security degradation
with the number of gates (in the case of garbling) and ofOT instances (in the case



of OT extension). In fact, the authors of [16] leverage this to attack particular
instantiations of half-gate garbling [28] with 80-bit security parameters.

Main goals of this paper. This paper presents new (tweakable) crHFs and
ccrHFs from permutations with substantially improved security-efficiency trade-
offs. We give a one-call construction matching the security of the two-call con-
struction from [17], and give a two-call construction with much better security
degradation against a limited class of distinguishers sufficient for applications.
We also revisit OT extension in concrete-security terms, weakening in particular
the security requirements for the underlying crHF.

There are two ways in which our results can be interpreted – one is in terms of
constructions from fixed-key block ciphers, in the spirit of [4,17]. The other, and
perhaps better, interpretation is in terms of constructions from simpler objects,
like block-cipher rounds, which we abstract as random permutations to model
generic attacks – this is in line with the extensive research program on analyzing
symmetric constructions. (We discuss this further below.)

Next, we briefly review the definiton of crHFs, as well as the achievable levels
of security, before giving an overview of our results in greater detail.

Correlation-robust hashing.A tweakable correlation-robust hash function [17,
19] is an efficiently computable two-argument function H : {0, 1}n × {0, 1}t →
{0, 1}n with the property that the oracle

Otcr
R (w, t) = H(w ⊕R, t)

for a random R
$← {0, 1}n is indistinguishable from a random function f :

{0, 1}n × {0, 1}t → {0, 1}n. The second argument is the tweak – it enables do-
main separation (i.e., querying the same w on different tweaks should result in
independent outputs), but also controls security degradation. To see what this
means, note first that if H is a random oracle, then the distinguishing advan-
tage of a q-query distinguisher making p direct queries to H is pq

2n . (The proof
is folklore and follows that of the Even-Mansour construction [12].) However, a
crucial point is that for many applications we can restrict the distinguisher to
make at most B queries per tweak, where B can be very small (even just B = 1)
- in this case the advantage is3

δ(q, p,B) ≤ Bp

2n
. (1)

As we show in Section 3, for OT extension, it is enough to use B = 1. Similarly,
B = 1 is enough for garbling schemes [16, 17]. Moreover, [16] gives a tweakable
crHF construction making one call to an ideal cipher with concrete security

δ(q, p,B) ≤ Bp

2n
+

(B − 1)q

2n
.

In fact, both constructions can be adapted to satisfy circular crHF security,
which is amenable to half-gate garbling [28] and free-XOR [8].

3 The basic idea of the simple proof is that a direct query H(m, t) only helps if m =
w ⊕R for one of the B oracle queries (w, t).

2



The above constructions make however fairly strong assumptions – either a
monolithic random oracle or a monolithic ideal cipher. In the following, we want
to study constructions from simpler primitives.

Why is the problem hard? Before moving on, it is worth pointing out that
the main technical challenge in the design of secure crHFs is that we are aiming
for a secret-key object with no designated secret key input – the secret key is
XORed to the actual input, and we cannot change this. This makes crHFs very
challenging to build. In particular, one cannot obtain crHFs from tweakable
block ciphers directly, since the latter require a designated secret-key input.

Instead, the problem is related to designing related-key secure block ciphers
– indeed, if a cipher E is pseudorandom against related-key attacks [6], it is
not hard to see that H(x, t) = E(x, t) is a good crHF – our warm-up con-
struction below can indeed be thought as the case where E is the (one-key)
Even-Mansour construction with non-linear key schedule from [10]. However, we
prove the stronger notion of circular crHF, here, which does not follow generi-
cally. Also, our main two-call construction below however does not match any
construction from prior works [10, 13]. Tessaro [26] introduces related-key key-
derivation functions which achieve similar security as (non-tweakable) crHFs,
but with the goal of achieving near-optimal security (from random functions),
and the resulting constructions are quite inefficient. Further, we actually do not
know any standard-model construction for such additive (in F2n) attacks, except
under very strong multilinear-map assumptions [1].

The one-call construction.Our first warm-up result is concerned with one-
call constructions from a permutation π : {0, 1}n → {0, 1}n. Here, Guo et al.
(GKWY) [17], proposed a construction – called MMO – which simply outputs

π(m)⊕m. MMO is not tweakable, and they prove a bound of q(q+p)
N . To addition-

ally support a tweak, GKWY propose a two-call construction, called TMMO,

while also achieving a similar security bound of O
(

q(q+p)
N

)
.

Here, we show that a very simple variant of MMO already achieves the same
quantitative security with one single permutation call. Namely,

H(m, t) = π(m⊗ t)⊕ (m⊗ t) ,

where ⊗ stands for multiplication of bit-strings interpreted as elements of F2n .
Clearly, the tweak t = 0n needs to be excluded, but this is usually not a lim-
itation, and all other tweaks are usable. To achieve tweakable ccrHF security,
it is enough to also exclude the tweak t = 0n−11 (i.e., the neutral element of
multiplication).

The analysis inherits ideas from tweakable block ciphers [22], however we need
to take into account that no secret key can be used other than the one injected
implicitly via whitening the input – the core of the security proof (which we
carry out using the H-coefficient method [7,24]) relies on the fact that for given
input-tweak pairs {(wi, ti)}i=1,...,q, the probability that for some i ̸= j we have

ti ⊗ (wi ⊕R) = tj ⊗ (wj ⊕R)

is at most 2−n, over the random choice of R.
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The two-call construction. Our more interesting result looks at two-call
constructions. Ideally, we would like to obtain a construction improving upon
the bound qp/2n, but this is impossible in general [17]. However, we show that
a positive result is possible if we limit the distinguisher’s queries so that (1) the
number of queries per tweak is bounded by B, and (2) the tweaks are chosen
from a nice combinatorial subset T ⊆ {0, 1}t. We already discussed (1) as being
sufficient for applications, but (2) is also not a major restriction – for our in-
stantiation, we need to pick T as a random subset, but we can actually fix this
set once and for all, and re-use it across instances.4

Our construction is called FPTP (this stands for Feed-forward Permutation-
Tweak-Permutation), and on input m ∈ {0, 1}n and tweak t ∈ {0, 1}n, it outputs

FPTP(m, t) = π(t⊕ π(σ(m)))⊕ σ(m) .

Here, σ is linear, and an orthomorphism, i.e., σ(x) ⊕ x is also a permutation.
Removing σ, this construction resembles TMMO from [17], but the main (and
crucial) difference is that we feed the input forward, as opposed to π(m).

Assuming T is a good set for which all non-principal Fourier coefficients5

are sufficiently small (and this is true for a randomly chosen T , as proved e.g.
in [3, 25]), then any distinguisher as above achieves advantage at most of order

δ(q, p,B) ≤
B
√
qp

2n
+

q2

2n
.

against circular crHF security. The first term here is significantly better than
qp/2n for small B <

√
q, and in particular we usually want B = 1.

One restriction for this result is that it only holds for distinguishers for which
inputs to the construction are distinct, even across tweaks. This restriction is
strictly speaking not-necessary (we could input m⊗ t instead of m), but in most
applications, it is not necessary, and thus decide to opt for presenting this more
efficient construction which is only secure under this input restriction. Indeed, in
Section 3 we give a modified version of OT-extension that only requires security
for distinct inputs. Moreover, for garbling applications, it is already known that
it is sufficient to achieve security for random inputs, which are distinct with high
probability (up to the birthday bound).

We also note that if we are only concerned with (non-circular) crHF security,
then we can drop the map σ. We also give an analysis of our construction in the
multi-user setting. We focus on the case of random inputs, which are sufficient
for multi-user garbling, as studied in [16].

OT Extension and Concrete Security.We also revisit the concrete secu-
rity of oblivious-transfer extension [19]. In particular, we follow the angle of [17],
and look specifically at the concrete security of transforming the ∆-random-OT
functionality into an OT functionality using tweakable crHFs. We focus specifi-
cally on malicious security.

4 Heuristically, one could evaluate a hash function on a fixed subset of inputs to obtain
the corresponding tweaks.

5 I.e., of the characteristic function of the set
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In addition to making the treatment concrete, we show that it is enough to
consider a crHF construction which is secure for distinct inputs only by slightly
modifying the classical transformation. Moreover, we also discuss instantiations
from random tweaks (and see that the cost can be kept fairly low if these need to
be generated on the fly, for example by recycling them across instances). Indeed,
interestingly, we see that despite the common belief, tweaks for active security
serve more as a mean of controlling concrete security than to mitigate active
attackers that force inputs to be equal across OT instances.

As a result of this, we obtain OT extension making two permutation calls

per OT instance, and whose security degrades as
√
mp
2n , where m is the number

of OT instances (assuming m < 2n/2). If we have n = 102, then we can for
example have m = 232, and obtain 80-bit security.

Interpreting the results.We see this work as part of the general program
on understanding the security of cryptographic primitives. One way to think of
a random permutation is not as a heuristic property of a complex object, but
instead as a black-box abstraction for a component of the scheme that can be
leveraged by an attack. In that sense, the simpler the component, the better.
So, for example, the permutation could abstract a few rounds of AES (instead
of the full AES) – of course proofs in this model should be backed by additional
cryptanalysis (as it is always the case with any ideal-model proof).

An alternative interpretation (as in [17]) is that our constructions are in-
stantiated from a fixed-key block cipher (like AES). However, it is not clear this
interpretation is the most suitable one – the number of calls need to necessarily
increase to obtain better security, and it is hard to beat the one-call construction
from [16] – while the latter does use re-keying, it has already been shown that
with appropriate implementation care, the costs of re-keying can be mitigated
(as e.g. in [15]).

1.1 Technical Overview

We give an overview of the main ingredients behind the proof of security for
the FPTP construction, which is our main result. To this end, we look at the
two-permutation version (i.e., π1, π2 are independent permutations), namely the
crHF candidate

H(m, t) = π2(t⊕ π1(m))⊕m .

This variant is analyzed in Supplementary Material D. Its analysis is somewhat
cleaner and pedagogical than the (more relevant) one-permutation version, which
however follows similar ideas. Here, we focus also on discussing the proof that the
construction is correlation-robust, i.e., we do not consider the circular version.

The full analysis adopts the H-coefficient method [7,24] – we give some intu-
ition about possible bad interaction transcripts which lead to distinguishing and
why they can only occur with probability consistent with the claimed bound in
the ideal world. (This is only part of the analysis – we also need to show that
the probabilities of a good transcript occurring are similar in the real and ideal
worlds.) Note that the discussion here does not exhaust all the bad events, we
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only discuss the most important ones. Every transcript contains q tweak-input-
output triples (t1, w1, z1), . . . , (tq, wq, zq), where (1) w1, . . . , wq are disjoint and
(2) every tweak ti appears at most B times. Further, we have two sub-transcripts
τ1 and τ2 of queries to π1 and π2, respectively – each containing (at most) p en-
tries of the form (u, v) resulting from either a forward and backward queries to
π1 and π2, respectively. Then, the key R is also included in the transcript – in the

ideal world, in particular, the key R
$← {0, 1}n is chosen last and independently

from the interaction so far (as opposed to the real world, where it is chosen first).

Chains.One natural way of breaking the construction is to produce a so-called
chain. One type of such a chain occurs if for a query (ti, wi, zi), there exists one
query (u, v) ∈ τ1 to π1 and one query (u′, v′) ∈ τ2 to π2 such that

wi = u⊕R , v ⊕ ti = u′ .

Then, in the real world, we necessarily have v′⊕wi⊕R = zi, whereas in the ideal
world this is unlikely to be the case, as the values z1, . . . , zq have been generated
randomly and independently.

Now imagine we can bound the number of query pairs (u, v) ∈ τ1 and
(u′, v′) ∈ τ2 for which v ⊕ u′ ∈ T by some number ϕ ≤ p2. Then, for every
such pair, we have a well-defined tweak t ∈ T such that v ⊕ u′ = t, and the
probability that at least one of the queries for tweak t satisfies w ⊕ R = u is
therefore (by union bound) 2−n, assuming R is chosen last. It turns out that if
T is well chosen, then ϕ can be smaller than p2 – for example, for a randomly
sampled set, we can show that roughly ϕ ≤ √qp+ qp2/2n, using a sum-capture
theorem [3,25]. This gives us the desired bound.

Other types of double-chains. There are other types of chains that can
occur. One accounts to the symmetric case to the above – namely v′ = wi⊕R⊕
zi , v ⊕ ti = v′. This is handled in a similar manner.

However, we also need to handle a third case, namely one where

u = wi ⊕R , v′ = zi ⊕ wi ⊕R . (2)

In particular, the above means that u ⊕ v′ = zi, where zi is the output of a
random function. Because the values z1, . . . , zq are random, we can use a slightly
different sum-capture theorem [11], and by a similar discussion to the above, the
number of relevant pairs is also (with high probability) at most

√
qp + qp2/2n,

and this thus the probability of each pair satisfying additional (2) is at most√
qp/2n + qp2/22n.

Merging chains.A final issue that can happen is that, even though no chains
are completed, we learn that two chains are bound to merge. For example, this
means that for two queries (ti, wi, zi) and (tj , wj , zj), for which wi ̸= wj , we can
find (u1, v1) ∈ τ1, (u2, v2) ∈ τ1, such that

u1 = wi ⊕R , u2 = wj ⊕R , v1 ⊕ ti = v2 ⊕ tj . (3)

Then we know we ought to have zi ⊕ zj = wi ⊕ wj , which is unlikely to be true
in the ideal world. It turns out that upper bounding the probability of chains
merging is the most involved part of our proof.
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To see how this is resolved, fix now a pair of queries (ti, wi, zi) and (tj , wj , zj),
and assume that we have a bound L on the number of pairs of permutation
queries (u1, v1), (u2, v2) such that u1⊕u2 = wi⊕wj and v1⊕v2 = ti⊕tj , then the
random choice R will satisfy (3) additionally with probability at most L/2n. In
fact, if we can show that for any ∆,∆′ the number of pairs (u1, v1), (u2, v2) ∈ τ1
such that u1 ⊕ u2 = ∆ and v1 ⊕ v2 = ∆′ is at most L, then we would get an
upper bound of q2L/2n that any such merge occurs.

It turns out that proving such bound L accounts to a balls-into-bins problem,
where an adaptive adversary interacts with a random permutation by means of
p queries, and then every pair of queries (u1, v1), (u2, v2) results into one of

(
p
2

)
balls being thrown into bin (u1⊕u2, v1⊕ v2). We will prove that the load of the
heaviest bin is, with high probability, small enough (roughly linear in n). This
is actually surprising and non-trivial – the main reason is that the

(
p
2

)
balls are

not-independent, and the result of an adaptive process, yet their behavior is very
similar to the assignment of p2 random balls into 22n bins. We give an analysis
(of a more general setting) in Section 5.2.

2 Preliminaries

For n ∈ N, we denote by {0, 1}n the set of bit strings of length n. For two bit
strings X,Y ∈ {0, 1}n, we denote by X⊕Y their bitwise addition and by X⊗Y
the multiplication of the bit strings interpreted as elements of F2n . For any value
Z, we denote by A ← Z the assignment of Z to the variable A. For any finite

set S, we define by S
$←− S the uniformly random selection of S from S. For any

integers a, b such that 1 ≤ b ≤ a, we denote (a)b = a · (a − 1) . . . (a − b + 1)
and (a)0 = 1. We denote by Perm(n) the set of all permutations on {0, 1}n,
and by Func(m,n) the set of all functions that maps {0, 1}m to {0, 1}n. For
π

$←− Perm(n) and a list Qπ = {(x1, y1), . . . }, we denote by π ⊢ Qπ the event
that permutation π is consistent with the queries-response tuples in Qπ, i.e. that
π(x) = y for all (x, y) ∈ Qπ.

For any subset A ⊆ {0, 1}n such that |A| = q, we denote 1A : {0, 1}n → {0, 1}
the characteristic functions of A, namely 1A(x) = 1 if x ∈ A and 1A(x) = 0
if x /∈ A. Given any function f : {0, 1}n → R and α ∈ {0, 1}n, the Fourier
coefficient of f corresponding to α is

f̂(α) =
1

2n

∑
x∈{0,1}n

f(x)(−1)α·x ,

where α · x denotes inner product. The coefficient corresponding to α = 0n is
called the principal Fourier coefficient, all the other ones are called non-principal

Fourier coefficients. We define Φ(A) = max
{
2n

∣∣∣1̂A(α)∣∣∣ : α ∈ {0, 1}n, α ̸= 0n
}
.
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2.1 Tweakable (Circular) Correlation Robustness Hash Functions

We rely on the multi-instance tweakable correlation robustness (miTCR) and
the multi-instance tweakable circular correlation robustness (miTCCR) notion
introduced by Guo et al. [16, 17].

For n, t ∈ N, we consider a hash function that takes as input a n-bit message,
a t-bit tweak, and returns a n-bit ciphertext. More formally, let H : {0, 1}n ×
{0, 1}t → {0, 1}n be a hash function that is based on r n-bit permutations
π1, . . . , πr, let R be a distribution on the message space {0, 1}n of H, and define

Otcr
R (w, t) = H(w ⊕R, t) ,

Otccr
R (w, t, b) = H(w ⊕R, t)⊕ b ·R ,

for R
$←− R and b ∈ {0, 1}. We will consider both the miTCR and the miTCCR

security of H, where we assume that π1, . . . , πr
$←− Perm(n). For the case of the

miTCR security, the distinguisher D is given access to either (Otcr
R1

, . . . ,Otcr
Ru

, π±1 ,

. . . , π±r ) forR1, . . . , Ru
$←− R, or (f1, . . . , fu, π±1 , . . . , π±r ) for f1, . . . , fu

$←− Func(n+
t, n). Its goal is to determine which oracle it is given access to:

AdvmiTCR
H,R (D) =

∣∣∣Pr [DOtcr
R1

,...,Otcr
Ru

,π±
1 ,...,π±

r = 1
]
− Pr

[
Df1,...,fu,π

±
1 ,...,π±

r = 1
]∣∣∣ .

For the case of the miTCCR security, the distinguisher D is given access to either

(Otccr
R1

, . . . ,Otccr
Ru

, π±1 , . . . , π
±
r ) for R1, . . . , Ru

$←− R, or (f1, . . . , fu, π±1 , . . . , π±r ) for
f1, . . . , fu

$←− Func(n+ t+ 1, n). Its goal is to determine which oracle it is given
access to:

AdvmiTCCR
H,R (D) =

∣∣∣Pr [DOtccr
R1

,...,Otccr
Ru

,π±
1 ,...,π±

r = 1
]
− Pr

[
Df1,...,fu,π

±
1 ,...,π±

r = 1
]∣∣∣ .

In the both cases the superscript ± for the πi’s indicates that the distinguisher
has bi-directional access. For the miTCCR security, we require that D never
queries both (w, t, 0) and (w, t, 1) to the same oracle (for any (w, t) couple).

When u = 1, we consider the single instance security of H with the distri-
bution R, and we simply denote D’s advantage in distinguishing the real world
from random by AdvTCR

H,R (D) for the case of tweakable correlation robustness,

and by AdvTCCR
H,R (D) for the case of tweakable circular correlation robustness.

It is easy to see that the miTCCR (TCCR) notion implies the miTCR (TCR)
notion (when b is always zero). In the remainder of this work, we mainly focus on
the miTCCR (TCCR) notion, and on hash functions with tweak space {0, 1}n.

2.2 Universal Hash Functions

For n ∈ N, let H : Kh × {0, 1}∗ → {0, 1}n such that for Kh ∈ Kh, HKh
(·) =

H(Kh, ·) is called an ϵ-almost XOR universal (ϵ-AXU) hash function [21] if for
all distinct M,M ′ ∈ {0, 1}∗ and all C ∈ {0, 1}n, we have

Pr
[
Kh

$←− Kh : HKh
(M)⊕HKh

(M ′) = C
]
≤ ϵ .
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2.3 Linear Orthomorphism

A function σ : {0, 1}n → {0, 1}n is a linear orthomorphism if σ (1) linear: σ(x⊕
y) = σ(x)⊕σ(y); and (2) an orthomorphism: σ is a permutation, and the function
σ′(x) = σ(x)⊕ x is also a permutation. In this work, we will need the following
result of [17].

Lemma 1. Let σ : {0, 1}n → {0, 1}n be a linear orthomorphism and for a distri-
bution R, set H∞(σ(R) ⊕ R) = − log (maxR∗ PrR←R[σ(R)⊕R = R∗]). Then,
we have H∞(σ(R)⊕R) = H∞(R).

2.4 Patarin’s H-Coefficient Technique

In this work, we use H-coefficient technique by Patarin [24], but we will follow
the modernization of Chen and Steinberger [7].

We consider a deterministic distinguisher D that is given access to either the
real world oracle O or the ideal world oracle P. The distinguisher’s goal is to
determine which oracle it is given access to and we denote by

Adv(D) =
∣∣Pr [DO = 1

]
− Pr

[
DP = 1

]∣∣
its advantage. We define a transcript τ that summarizes all query-response tuples
learned by D during its interaction with its oracle O or P. We denote by XO
(resp. XP) the probability distribution of transcripts when interacting with O
(resp. P). We call a transcript τ ∈ T attainable if Pr[XP = τ ] > 0.

Lemma 2 (H-coefficient Technique). Consider a deterministic distinguisher
D. Define a partition T = Tgood ∪ Tbad, where Tgood is the subset of T which
contains all the “good” transcripts and Tbad is the subset with all the “bad”
transcripts. Let 0 ≤ ϵ ≤ 1 be such that for all τ ∈ Tgood:

Pr[XO = τ ]

Pr[XP = τ ]
≥ 1− ϵ . (4)

Then, we have Adv(D) ≤ ϵ+ Pr[XP ∈ Tbad].

2.5 Babai’s Lemma

Define the following quantity

µ(A,U, V ) = |{(a, u, v) ∈ A× U × V : a = u⊕ v}| .

We consider the following lemma of Babai [3].

Lemma 3 (Babai [3] Theorem 4.1). Let A,U, V ⊆ {0, 1}n. We have

µ(A,U, V ) ≤ |A| |U | |V |
2n

+ Φ(A)
√
|U | |V | ,

As shown in [3, 25], when the set A is a randomly chosen subset of {0, 1}n of
size q, we have Φ(A) ≤ 4

√
2 ln(2n)q, except for probability 4/2n. Cogliati and

Seurin [11] also showed that when A is a multiset where the elements of A are
chosen uniformly at random with replacement, then we have Φ(A) ≤

√
3nq,

except for probability 2/2n.
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Functionality F∆-ROT(m, k):

Initialization: Inputs:

– Player PA: ∆ ∈ {0, 1}k
– Player PB : ⊥.
– Adversary A: If PB ∈ Corr, P : {0, 1}k → {0, 1}. Else set P to be the constant

1 predicate.

Return P (∆) to A. If P (∆) = 0, then return abort to PA, and stop.

Correlation phase. Inputs:

– Player PA: ⊥.
– Player PB : (x1, . . . , xm) ∈ {0, 1}m
– Adversary A: z1, . . . , zm ∈ {0, 1}k.

If PA ∈ Corr, then ai ← zi, bi ← ai ⊕ xi ·∆ for all i ∈ [m].
If PB ∈ Corr, then bi ← zi, ai ← bi ⊕ xi ·∆ for all i ∈ [m].

If Corr = ∅ then bi
$← {0, 1}m, ai ← bi ⊕ xi ·∆ for all i ∈ [m].

Return (a1, . . . ,am) to PA and (b1, . . . ,bm) to PB .

Fig. 1: The ∆-Random-OT functionality F∆-ROT(m, k). The set Corr takes
one of the three values ∅, {PA}, or {PB}.

Functionality FS-OT(m, ℓ):

Inputs:

– Player PA: (m
0
1,m

1
1), . . . , (m

0
m,m1

m), where mb
i ∈ {0, 1}ℓ for all i ∈ [m] and

b ∈ {0, 1}.
– Player PB : (x1, . . . , xm) ∈ {0, 1}m.
– Adversary A: ⊥

Return ⊥ to PA and (mx1
1 , . . . ,mxm

m ) to PB .

Fig. 2: The Standard OT functionality F∆-ROT(m, ℓ).

3 A Concrete Security Treatment of OT Extension

Prior work [16] already gives a concrete treatment of garbling from tweakable
circular crHFs. As further motivation, we revisit the concrete security of OT
extension via correlation-robust hashing, and present a slightly more general
protocol that only assumes the underlying function to be secure against distinct
inputs. We follow the angle of Guo et al. [17], who gave an asymptotic treatment,
and focus on protocols implementing the standard-OT functionality FS-OT (cf.
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Figure 2) from the random-OT functionality F∆-ROT (cf. Figure 1), and discuss
instantiations from the constructions presented below. Protocols to implement
the latter functionality are known, both in the semi-honest and malicious set-
tings [2, 19,20].

Modeling 2PC. We give a concrete security definition of (stand-alone) 2PC
malicious security. This is a fairly straightforward adaptation of the asymptotic
treatment [14], with some notational simplifications that narrow the scope.

Ideal functionalities proceed in rounds of simultaneous inputs, for which they
produce (simultaneously) outputs. A functionality F offers three interfaces –
two are to the players PA and PB , and the third to the adversary A. Here, we
are specifically interested in running a (synchronous) two-party hybrid-model
protocol Π = (ΠA, ΠB) accessing a functionality F and implementing a target
functionality G. In each round, either (1) one party sends a message to the
other party, or (2) they simultaneously interact with the functionality G. We
will distinguish now the real-world from the ideal-world execution. Both of them
are parameterized by a set Corr ⊊ {PA,PB} of corrupted parties controlled
by the adversary A. (The case Corr = {PA,PB} is uninteresting, but the case
Corr = ∅ is needed to define correctness.)

– Real-world execution. Initially, we fix the input(s) xCorr of the uncor-
rupted parties (remember both parties could be uncorrupted). Then, we run
the protocol, and the adversary (1) can choose the messages meant to be
sent by the corrupted player (if any) in the protocol Π, (2) has access to
the player’s interface in F , and (3) it has access to A’s dedicated interface
in F , as well as to all messages sent in the protocol. Finally, the adversary
outputs some value z. We let REALΠ,F

Corr,A(xCorr) = (xCorr, z).
– Ideal-world execution. Here, we instead supply the input(s) xCorr to the

corresponding interfaces of G, and the adversary A interacts with a simulator
S. The latter can use G’s interface for corrupted parties (if any), as well
as the adversarial interface. Again A will produce an output z, and define
IDEALGCorr,A,S(xCorr) = (xCorr, z).

We then define

Adv
(F→G)−mpc
Π,Corr (A,D,S, xCorr) = Pr

[
D(REALΠ,F

Corr,A(xCorr)) = 1
]

− Pr
[
D(IDEALGCorr,A,S(xCorr)) = 1

]
.

Intuitively, we want to show that for any A, there exists some S, such that
Advmpc

F,G,Π,Corr(A,D,S, xCorr) is “negligible.” (Of course, we aim for a concrete
bound, which we aim to optimize.)

A protocol. We present and analyze a protocol implementing FS-OT(m, ℓ)
from F∆-ROT(m, k) using a (tweakable) correlation-robust hash function H :
{0, 1}k×{0, 1}n → {0, 1}ℓ. The protocol differs from the “standard approach” in
that H is only required to be secure for distinct inputs – this will be instrumental
for our instantiation below, as we give high-security constructions which are only

11



secure if the inputs are distinct. The modification is in fact very simple, and relies
on using a ϵ-almost XOR universal hash function AXU : K × [m] → {0, 1}k, for
a small ϵ. Then, in the i-th OT instance, we invoke H as H(x ⊕ AXU(K, i), ti)
on any input x, where ti is a tweak associated with the i-th instance. The key K
is actually publicly generated by the sender, and revealed to the receiver – the
only requirement is that it is chosen after the inputs x to H are determined.

The resulting protocol Πm,k,ℓ
OT is described in Figure 3. The description as-

sumes that there exists a set of usable tweaks T = {t1, . . . , tm} ⊆ {0, 1}n for the
construction – depending on the instantiation, this set T may need to be chosen
carefully.

Security of the protocol. Security against a corrupt sender is trivial and
holds perfectly. The next theorem characterizes the sender security of Protocol
Πm,k,ℓ

OT , i.e., the case Corr = {PB} where the receiver is corrupted. We target
ideal-model security here – i.e., the function H makes calls to an ideal primitive
(e.g., a random permutation), and so do A, D and S. We however assume that P
input to A’s interface in F∆-ROT(m, k) does not make queries to this primitive,
though the choice of P itself may depend adaptively on earlier queries. (This is
sufficient to handle existing F∆-ROT(m, k) protocols.)

To properly handle ideal-model security, the following theorem (proved in
Appendix A) differs from the work of Guo et al. [17], which as far as we can tell,
cannot be used for ideal-model constructions.6 Here, we instead assume indistin-
guishability even if at the end of the ideal-model interaction, the distinguisher
learns the secret shift R (but is otherwise prevented from making any queries,
including those to the ideal primitive) – in the ideal model, this shift is simply
generated independently of the interaction. We refer to this notion as TCR∗ se-
curity, and we note that our proofs (as most H-coefficient proofs) do give bounds
also for TCR∗ security for free, as we include R in the transcripts.

Theorem 1 (Sender-security). Let AXU : K×[m]→ {0, 1}k be ϵ-almost XOR
universal. For every adversary A, every distinguisher D, there exists a simulator
S and an adversary B such that for every x = ((m0

1,m
1
1), . . . , (m

0
m,m1

m)),

Adv
(F→G)−mpc

Πm,k,ℓ
OT ,{PB}

(A,D,S, x) ≤ AdvTCR∗

H,{0,1}k(B) + q2ϵ , (5)

where F = F∆-ROT(m, k) and G = FS-OT(m, ℓ). Here, B makes m distinct
queries, for distinct tweaks. Further, in an ideal model, the number of ideal-
primitive queries pB of B satisfies pB = 2(pA + pD) + pH , where pA and pD are
the number of ideal-primitive queries of A and D’s, respectively, and pH is the
number of ideal-primitive queries in one evaluation of H.

6 Their proof, for a slightly simpler protocol, is in the standard model and tacitly
assumes non-uniform tweakable crHF security. Roughly, their proof needs to build
an adversary B for keys chosen from a set R, but this set needs to be fixed non-
uniformly – this is problematic in ideal models, because the choice ofR itself depends
on the ideal primitive.
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Protocol Πm,k,ℓ
OT :

Inputs:

– Player PA: (m
0
1,m

1
1), . . . , (m

0
m,m1

m), where mb
i ∈ {0, 1}ℓ for all i ∈ [m] and

b ∈ {0, 1}.
– Player PB : (x1, . . . , xm) ∈ {0, 1}m.

Protocol:

(1) Player PA chooses ∆
$← {0, 1}k, and inputs ∆ to F∆-ROT(m, k). Player PB

inputs ⊥ to F∆-ROT(m, k).
(2) Player PA inputs ⊥ to F∆-ROT(m, k) if abort was not output in (1). Player

PB inputs (x1, . . . , xm) to F∆-ROT(m, k). The players receive respectively
{ai}i∈[m] and {bi}i∈[m] such that ai ⊕ bi = ∆ · xi for all i ∈ [m].

(3) Player PA chooses K
$← K, and computes, for all i ∈ [m],

c0i ← H(ai ⊕ AXU(K, i), ti)⊕m0
i ;

c1i ← H(ai ⊕∆⊕ AXU(K, i), ti)⊕m1
i .

It then sends K, c01, c
1
1, . . . , c

0
m, c1m to PB

(4) Player PB then computes

mxi
i ← H(bi ⊕ AXU(K, i), ti)⊕ cxi

i

for all i ∈ [m], and outputs (mx1
1 , . . . ,mxm

m ). Player PA outputs ⊥.

Fig. 3: The OT Protocol.

Instantiation. We give an instantiation of Πn,m,n
OT making two permutation

calls per instance, using the FPTP1 construction below and Theorem 3. To this
end, we also choose a random set of tweaks T of size m, for which Φ(T ) =
O(
√
nm), except with probability O(1/2n) (cf. Section 2.5) – this could be

fixed a-priori, generated heuristically, and/or chosen randomly in the proto-
col (in which case the tweaks ti would be sent along). Moreover, we have effi-
cient constructions of AXU with ϵ = 1/2n, and the bound thus takes the form
O((
√
mp +m2)n/2n), where p is the sum of the numbers of queries to π by A

and D. The construction makes two calls to the permutation per OT instance.

This should be compared with an instantiation using directly a monolithic
random oracle (as we claimed in the introduction), or the ideal-cipher construc-
tion from [16] – this would achieve security of O(p/2n), however under a stronger
assumption. The term m2n/2n in our bounds is not very relevant – we would
never be able to scale to m’s large enough to be a concern. However, it is a great
question to see whether one can improve upon the

√
m degradation without in-

creasing (or at least, without increasing by much) the number of permutation
calls per OT instance.
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π +m⊗ t
u zv

Fig. 4: Hash function H based on one permutation call π and one non-linear
operation ⊗.

Random tweaks extension.The usage of random tweaks can increase band-
width (if the sender chooses them, then they need to be sent over to the receiver).
But note that for our context, tweaks are used only for concrete security, and
since inputs are already guaranteed to be distinct, we can actually re-use tweaks
through a small number r of instances (say r = 64), and this would lead to a
factor r in the bound, but only a 1/r increase in communication complexity.

4 Hash Function Using One Permutation Call

We consider the following hash function, based on one permutation call and one
non-linear operation ⊗. Let n ∈ N, and let π ∈ Perm(n). One can consider a
generic hash function construction H : {0, 1}n × {0, 1}n → {0, 1}n as

H[π](m, t) = π(m⊗ t)⊕m⊗ t , (6)

See also Figure 4. The security is considered against distinguishers making arbi-
trary input messages to the construction oracle. For simplicity, we consider the
single user security (u = 1).

Theorem 2. Let n ∈ N, and consider H : {0, 1}n × {0, 1}n → {0, 1}n based

on permutation π
$←− Perm(n). For any distinguisher D making at most q con-

struction queries, and at most p primitive queries to π±. When the input tweaks
are chosen from {0, 1}n \ {0n} for TCR security, and chosen from {0, 1}n \
{0n, 0n−11} for TCCR security, then we have

AdvTCR
H,R (D), AdvTCCR

H,R (D) ≤ 2qp

|R|
+

q2

2 |R|
+

q2

2n+1
. (7)

Proof. We only look at the TCCR security in the proof. Let R
$←− R, π $←−

Perm(n), and f
$←− Func(2n+1, n). Consider any distinguisher D that has access

to two oracles: (OR, π
±) in the real world with

OR(w, t, b) = H[π](w ⊕R, t)⊕ bR = π((w ⊕R)⊗ t)⊕ (w ⊕R)⊗ t⊕ bR ,

or (f, π±) in the ideal world. We require that D is computational unbounded
and deterministic. The distinguisher makes q construction queries to OR or f
such that t ̸= 0n and t⊕ 0n−11 ̸= 0n, and these are summarized in a transcript
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of the form τ0 = {(w(1), t(1), b(1), z(1)), . . . , (w(q), t(q), b(q), z(q))}. It also makes p
primitive queries to π±, and these are summarized in transcripts τ1. We assume
that τ0 and τ1 do not contain duplicate elements. After D’s interaction with the
oracles, but before it outputs its decision, we disclose the random value R to the
distinguisher. In the real world, this is the randomness for the message input of
construction. In the ideal world, R is a dummy value that is drawn uniformly at
random. The complete view is denoted by τ = (τ0, τ1, R).

Bad Events. We say that τ ∈ Tbad if and only if there exist construction queries
(w(j), t(j), b(j), z(j)), (w(j′), t(j

′), b(j
′), z(j

′)) ∈ τ0 such that j ̸= j′, and primitive
queries (u, v), (u′, v′) ∈ τ1 such that one of the following conditions holds:

bad1 : (w
(j) ⊕R)⊗ t(j) = u ,

bad2 : (w
(j) ⊕R)⊗ t(j) ⊕ z(j) ⊕ b(j)R = v ,

bad3 : (w
(j) ⊕R)⊗ t(j) = (w(j′) ⊕R)⊗ t(j

′) ,

bad4 : (w
(j) ⊕R)⊗ t(j) ⊕ z(j) ⊕ b(j)R = (w(j′) ⊕R)⊗ t(j

′) ⊕ z(j
′) ⊕ b(j

′)R .

Note that for any attainable transcript τ , τ /∈ Tbad implies that τ is a good
transcript.

Pr[XP ∈ Tbad]. We want to bound the probability that an ideal world tran-
script τ satisfies either of bad1-bad4. Therefore, the probability that τ ∈ Tbad is
given by

Pr[τ ∈ Tbad] ≤
4∑

i=1

Pr[badi] .

We first consider the bad event bad1, which we rewrite as

w(j) ⊗ t(j) ⊕ u = R⊗ t(j) .

Since we have t ̸= 0n, and R← R is a dummy value generated independently of
τ0 and τ1, the probability that the above equation holds for fixed j and (u, v) is
1/ |R|. Summed over all q possible j’s and all p possible (u, v)’s, we have

Pr[bad1] ≤
qp

|R|
.

The same reasoning applies for bad2, which we rewrite as

w(j) ⊗ t(j) ⊕ z(j) ⊕ v = (t(j) ⊕ 0n−1b(j))⊗R .

Since we have t ̸= 0n and t⊕0n−11 ̸= 0n, the probability that the above equation
holds for fixed j and (u, v) is 1/ |R| as before. Summed over all q possible j’s
and all p possible (u, v)’s, we have

Pr[bad2] ≤
qp

|R|
.
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Now, we consider the bad event bad3, which we rewrite as

w(j) ⊗ t(j) ⊕ w(j′) ⊗ t(j
′) = (t(j) ⊕ t(j

′))R .

Since we have t ̸= 0n, if t(j) = t(j
′), then we must have w(j) ̸= w(j′), in that

case the above equation never holds. If t(j) ̸= t(j
′), then since R ← R is a

dummy value generated independently of τ0 and τ1, the probability that the
above equation holds for fixed j ̸= j′ is 1/ |R|. Summing over all possible choices
of j ̸= j′, we have

Pr[bad3] ≤
(
q

2

)
1

|R|
.

The same reasoning applies for bad4, which we rewrite as

w(j) ⊗ t(j) ⊕ w(j′) ⊗ t(j
′) ⊕ (t(j) ⊕ t(j

′) ⊕ 0n−1b(j
′) ⊕ 0n−1b(j))R = z(j) ⊕ z(j

′) .

Since the values z(j) and z(j
′) are generated uniform and independent in the

ideal world, the probability that the above equation holds for fixed j ̸= j′ is
1/2n. Summing over all possible choices of j ̸= j′, we have

Pr[bad4] ≤
(
q

2

)
1

2n
.

Summing the these probabilities, we get

Pr[τ ∈ Tbad] ≤
2qp

|R|
+

q2

2 |R|
+

q2

2n+1
. (8)

Pr[XO = τ ]/Pr[XP = τ ]. Consider an attainable transcript τ ∈ Tgood. To
compute Pr[XO = τ ] and Pr[XP = τ ], it suffices to compute the probability
of oracles that could result in view τ . We first consider the ideal world P, and
obtain

Pr[XP = τ ] =
1

|R|
· (2

n − p)!

2n!
· 2

n(22n+1−q)

2n22n+1 =
1

|R|
· 1

(2n)p
· 1

2nq
.

The first term corresponds to the number of randomly drawn R values; the
second term is the ratio of public random permutations π compliant with τ1;
and the last term is the ratio of random functions f ∈ Func(2n+1, n) compliant
with τ0.

Similarly we say that a real world oracle O is compatible with τ if it is
compatible with τ0 and τ1. We have

Pr[XO = τ ] =
1

|R|
· 1

(2n)p
· Pr[π $←− Perm(n) : OR[π] ⊢ τ0 | π ⊢ τ1] .

As before, the first term corresponds to the number of randomly drawn R values;
the second term is the ratio of public random permutations π compliant with τ1;
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and the last term is the ratio of OR[π] compliant with τ0, given that π compliant
with τ1.

Define ρ(τ) = Pr[π
$←− Perm(n) : OR[π] ⊢ τ0 | π ⊢ τ1], we obtain

Pr[XO = τ ]

Pr[XP = τ ]
= 2nqρ(τ) . (9)

Since τ is good, all values σ(w(j) ⊕ R) ⊗ t(j) for (w(j), t(j), b(j), z(j)) ∈ τ0 are
distinct by ¬bad3, and are also distinct from all values u for (u, v) ∈ τ1 by ¬bad1.
Similarly, all values σ(w(j)⊕R)⊗ t(j)⊕ z(j)⊕ b(j)R for (w(j), t(j), b(j), z(j)) ∈ τ0
are distinct by ¬bad4, and are also distinct from all values v for (u, v) ∈ τ1 by
¬bad2. This clearly implies that

ρ(τ) =
1

(2n − p)q
,

Processing further from (9), we have

Pr[XO = τ ]

Pr[XP = τ ]
=

2nq

(2n − p)q
≥ 2nq

2nq
= 1 . ⊓⊔

5 Hash Function Using Two Permutation Calls

We consider the FPTP construction (Feed-forward Permutation- Tweak-Permutation),
based on two permutations. Let n ∈ N, let π1, π2 ∈ Perm(n), and let σ : {0, 1}n →
{0, 1}n be a linear orthomorphism. One can consider a generic hash function con-
struction FPTP: {0, 1}n × {0, 1}n → {0, 1}n as

FPTP[π1, π2](m, t) = π2(π1(σ(m))⊕ t)⊕ σ(m) . (10)

See also Figure 5. We will consider the construction for two variants: FPTP2 for
the case where π1, π2 are independent in Supplementary Material C, and FPTP1
for the case where π1, π2 are identical in Section 5.1. For the both cases, secu-
rity is considered against distinguishers making distinct or uniform independent
input messages to the construction oracle for the case of single user, and against
distinguishers making uniform independent input messages to the construction
oracles for the case of multi-user. The single user security proof of FPTP1 is
given in Section 5.3.

5.1 FPTP based on Two Same Permutations

We prove the security of FPTP1 where π1 = π2. Let n ∈ N, and consider the
given set T of the tweaks such that the size of T is ℓ and ℓ ≤ q (since there are
q different tweaks when B = 1). We present the following result against distin-
guishers making distinct input messages to the construction oracle for u = 1 (sin-

gle user security). Recall that Φ(A) = max
{
2n

∣∣∣1̂A(α)∣∣∣ : α ∈ {0, 1}n, α ̸= 0n
}

(see Section 2.0).
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π1 +

t

π2 +σ(m) u zv x y

Fig. 5: Hash function FPTP.

Theorem 3. Let n ∈ N, and consider FPTP1: {0, 1}n×{0, 1}n → {0, 1}n based

on permutation π
$←− Perm(n), where the input tweaks are chosen from the set

T . For any distinguisher D making at most q construction queries, at most B
construction queries per tweak, and at most p primitive queries to π±.

(a) When D makes q construction queries with distinct input messages, we have

AdvTCCR
FPTP1,R(D) ≤

7

2n
+

(2B + 1)qp2

2n |R|
+

p
√
3nq

|R|
+

2BΦ(T )p

|R|

+
6nq2

|R|
+

9q2

2n+1
+

4q(p+ q)(p+ 2q)

22n
. (11)

(b) When D makes q construction queries with uniform independent input mes-
sages, AdvTCCR

FPTP1,R(D) is the same as the case of distinct input messages,
except that there is an additional q2/2n+1 term.

Note that (11) is dominated by the terms 2BΦ(T )p/ |R|+9q2/2n+1. For |R| = 2n,
and a carefully chosen set T such that Φ(T ) ≤ √q (like the one mentioned in the
introduction), the security bound in (11) matches with the asymptotic bound
given in the abstract and introduction.

Proof. The proof of (a) is given in Section 5.3. The proof of (b) follows straight-
forwardly from Theorem 3 (a), and the fact that two uniform independent values
collide with probability at most q2/2n+1 by the birthday bound. ⊓⊔

Let n ∈ N, and consider the given set T = T1∪· · ·∪Tu ⊆ {0, 1}n of the tweaks
such that the size of T = ℓ and ℓ ≤ q. We present the following result against
distinguishers making uniform independent input messages to the construction
oracles for u > 1 (multi-user security).

Theorem 4. Let n ∈ N, and consider FPTP1: {0, 1}n×{0, 1}n → {0, 1}n based

on permutation π
$←− Perm(n), where the input tweaks of i-th oracle are chosen

from the set Ti. For any distinguisher D making at most q/u construction queries
with uniform independent input messages to each of its u construction oracles, at
most B construction queries per tweak across all oracles, and at most p primitive
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queries to π±, we have

AdvmiTCCR
FPTP1,R(D) ≤

7

2n
+

(2B + 1)qp2

2n |R|
+

p
√
3nq

|R|
+

2BΦ(T1 ∪ · · · ∪ Tu)p

|R|

+
6nq2

|R|
+

10q2

2n+1
+

q2p

|R|2
+

4q(p+ q)(p+ 2q)

22n
. (12)

The proof is given in Supplementary Material F.
We can extend the FPTP construction to process the input w ⊗ t instead

of w. For plain (non-circular) TCR security, this would give us security under
arbitrary inputs. Let call FPTP1∗ the FPTP1 construction using the input w⊗t,
then the TCR security of FPTP1∗ is given in Theorem 5.

Theorem 5. Let n ∈ N, and consider FPTP1∗ : {0, 1}n × {0, 1}n → {0, 1}n

based on permutation π
$←− Perm(n), where the input tweaks are chosen from the

set T . For any distinguisher D making at most q construction queries, at most
B construction queries per tweak, and at most p primitive queries to π±. We
have

AdvTCR
FPTP1∗,R(D) ≤

7

2n
+

(2B + 1)qp2

2n |R|
+

p
√
3nq

|R|
+

2BΦ(T )p

|R|

+
q2(12n+ 1)

2 |R|
+

9q2

2n+1
+

4q(p+ q)(p+ 2q)

22n
. (13)

Proof (Sketch). The proof of Theorem 5 is very similar to the proof of Theorem 3,
but with a few minor differences. First of all, the bad transcripts analysis remains
basically the same, except that w ⊗ t needs to be considered instead of w, and
this can be modified in a straightforward way. However, there is an additional
bad event, namely

∃(w(j), t(j), b(j), z(j)) ̸= (w(j′), t(j
′), b(j

′), z(j
′)) ∈ τ0 : (w

(j) ⊕R)⊗ t(j) = (w(j′) ⊕R)⊗ t(j
′) .

This is the same event as bad3 of the one permutation call construction in (6),
hence this event will lead to an extra term

(
q
2

)
/R in the final bound. Finally, the

ratio analysis remains roughly the same. ⊓⊔

5.2 Balls-into-Bins Lemmas

Before we turn to our proofs, we state and prove some generic balls-into-bins
lemmas for the setting where an adversary queries a random permutation. These
may be of independent interest. We rely below on the following generalized ver-
sion of the Chernoff bound [18,23], which does not need to assume independence,
and instead only requires a weaker direct-product condition.

Theorem 6 (Generalized Chernoff Bound). Let X1, . . . , Xn ∈ {0, 1} be
random variables such that, for some δ ∈ [0, 1], Pr

[∧
i∈S Xi = 1

]
≤ δ|S| for

every S ⊆ [n]. Then, for any γ ∈ [δ, 1], Pr [
∑n

i=1 Xi ≥ γn] ≤ e−nD(γ ∥ δ), where

D(γ ∥ δ) = γ ln
(
γ
δ

)
+ (1− γ) ln

(
1−γ
1−δ

)
is the relative binary entropy function.
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The Input-output Balls-into-bins Lemma.We assume that an adversary

A makes p adaptive queries to a random permutation π
$← Perm(n), which

then defines a transcript τ = ((u1, v1), . . . , (up, vp)) of input-output pairs, i.e., a
pair (ui, vi) indicates that either π(ui) was queried, returning vi or π

−1(vi) was
queried, returning ui. (Without loss of generality, we assume that these queries
are non-redundant, i.e., u1, . . . , up are distinct.) Further, let σ, ρ ∈ Perm(n)
be fixed permutations. We then assign each query (ui, vi) to a bin labeled by
σ(ui) ⊕ ρ(vi). (I.e., there are 2n possible bins.) We also define Lio as the max
load of the bins, and show it is small with high probability. The proof is similar
to that of classical balls-into-bins lemmas, but we use Theorem 6 to deal with
the adversary’s adaptivity and the permutation structure of outputs.

Lemma 4 (Input-output Balls-into-Bins). For every p ≤ 2n−1, let A be
any p-query adversary A querying an n-bit random permutation, and let Lio be
as above. Then, for any ϵ > 0, we have Pr

[
Lio ≥ n ln(2) + ln(1/ϵ) + 2

]
≤ ϵ.

The proof is given in Supplementary Material B.

The XOR Balls-into-bins Lemma.We also consider a more complex setting
where each (ordered) query pair i, j is assigned to one of (2n − 1)2 bins, each
denoted as B∆in,∆out , where ∆in, ∆out ∈ {0, 1}n \ {0n}. In particular, we fix four
permutations σ, σ′, ρ, ρ′ ∈ Perm(n), and the query pair (i, j) is added to the bin
with ∆in = σ(ui) ⊕ σ′(u′i) and ∆out = ρ(vi) ⊕ ρ′(v′i). We define now Lxor as the
max load of one of the bins.

We want to show a bound on the load, similar to Lemma 4. The challenge
here is that the p(p − 1) ball assignments are (1) highly dependent, and (2)
defined by an adaptive process, where A chooses some of the ui’s and of the vi’s.
The following lemma shows that, however, their behavior is similar to p(p − 1)
independent balls thrown into (2n − 1)2 bins.

Lemma 5 (XOR Balls-into-Bins). For every p ≤ 2n−1, let A be any p-query
adversary A querying an n-bit random permutation, and let Lxor be defined as
above. Then, for any ϵ > 0, we have Pr [Lxor ≥ 4n ln(2) + 2 ln(1/ϵ) + 4] ≤ 2ϵ.

Before we turn to the proof, we note that in the symmetric case where σ = σ′

and ρ = ρ′, it is often enough to count unordered pairs {i, j} as ball throws, and
one can then replace 2ϵ by ϵ, and 4n ln(2) by 2n ln(2).

Proof. Let us fix any ∆in, ∆out ∈ {0, 1}n \{0n}, and one assume A generates the
transcript τ = ((u1, v1), . . . , (up, vp)) of non-redundant queries to the random
permutation π. We are interested in the random variable

Z∆in,∆out = |{(i, j) | j < i, σ(ui)⊕ σ′(uj) = ∆in, ρ(vi)⊕ ρ′(vj) = ∆out}| .

Also, define Z∆in,∆out

i as the indicator random variable, which is 1 if there exists
j < i such that σ(ui)⊕σ′(uj) = ∆in and ρ(vi)⊕ρ′(vj) = ∆out. (It is 0 otherwise.)

Then, note that Z∆in,∆out =
∑p

i=1 Z
∆in,∆out

i , because for each query (ui, vi), there
is at most one earlier query (uj , vj) such that σ(ui)⊕ σ′(uj) = ∆in and ρ(vi)⊕
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ρ′(vj) = ∆out. Because p < 2n−1, and the queries are guaranteed not to be
redundant, we have

Pr
[
Z∆in,∆out

i = 1 | Z∆in,∆out

1 = b1, . . . , Z
∆in,∆out

i−1 = bi−1

]
≤ 2

2n
, (14)

for any b1, . . . , bi−1 ∈ {0, 1}. To see this, assume the i-th query is in the forward

direction, for some ui. Then Z∆in,∆out

i = 1 if and only if there exists j < i with
σ′(uj)⊕σ(ui) = ∆in, and (assuming this is the case) we also have ρ′(vj)⊕ρ(vi) =
∆out. The latter happens with probability at most 1/(2n − (i− 1)) ≤ 2/2n. For
a query in the backward direction, the argument is entirely symmetric. Then, in
turn, (14) implies that for any set S ⊆ [p], we have

Pr

[∧
i∈S

Z∆in,∆out

i = 1

]
≤

(
2

2n

)|S|
.

Theorem 6 yields, for any k ≥ 1, Pr
[
Z∆in,∆out ≥ k

]
≤ e−p·D(k/p ∥ 2/2n) . One can

actually show that D(γ ∥ δ) ≥ (γ − δ)2/(2γ),7 and this yields

p ·D(k/p ∥ 2/2n) ≥ p2(k/p− 2/2n)2

k
≥ (k − 1)2

k
> k − 2 ,

because 2/2n ≤ 1/p. Thus, with k = 2n ln(2) + ln(1/ϵ) + 2, we get

Pr
[
∃∆in, ∆out : Z

∆in,∆out ≥ k
]
≤ 22n · 2−2n · ϵ = ϵ .

Similarly, we can define a random variable W∆in,∆out which counts pairs i < j
such that σ(ui) ⊕ σ′(uj) = ∆in and ρ(vi) ⊕ ρ′(vj) = ∆out, and conclude that
Pr

[
W∆in,∆out ≥ k

]
≤ 2−2n · ϵ. By the union bound,

Pr [Lxor ≥ 2k] ≤ Pr
[
∃∆in, ∆out : Z

∆in,∆out ≥ k ∨ W∆in,∆out ≥ k
]

≤ Pr
[
∃∆in, ∆out : Z

∆in,∆out ≥ k
]
+ Pr

[
∃∆in, ∆out : W

∆in,∆out ≥ k
]

≤ 2 · 22n · 2−2nϵ = 2ϵ . ⊓⊔

5.3 Proof of Theorem 3 on FPTP1

Let R
$←− R, π $←− Perm(n), and f

$←− Func(2n+1, n). Consider any distinguisher
D that has access to two oracles: (O1R, π±) in the real world with

O1R(w, t, b) = FPTP1[π](w ⊕R, t)⊕ bR = π(π(σ(w ⊕R))⊕ t)⊕ σ(w ⊕R)⊕ bR ,

or (f, π±) in the ideal world. We require that D is computational unbounded
and deterministic. The distinguisher makes q construction queries to O1R or f ,
and B construction queries per tweak. These are summarized in a transcript

7 For γ ≥ δ, by looking at the Taylor series, one can show that fδ(ϵ) = D((1+ϵ)δ∥δ) ≥
ϵ2δ/2(1 + ϵ). This yields the inequality with ϵδ = (γ − δ) and 1 + ϵ = γ/δ.
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of the form τ0 = {(w(1), t(1), b(1), z(1)), . . . , (w(q), t(q), b(q), z(q))}. It also makes p
primitive queries to π±, and these are summarized in transcripts τ1. We assume
that τ0, and τ1 do not contain duplicate elements. After D’s interaction with
the oracles, but before it outputs its decision, we disclose the random value R
to the distinguisher. In the real world, this is the randomness for the message
input of the construction. In the ideal world, R is a dummy value that is drawn
uniformly at random. The complete view is denoted τ = (τ0, τ1, R).

Bad Events. We say that τ ∈ Tbad if there exist construction queries (w(j), t(j),
b(j), z(j)), (w(j′), t(j

′), b(j
′), z(j

′)) ∈ τ0 such that j ̸= j′, and primitive queries
(u, v), (u′, v′) ∈ τ1 such that one of the following conditions holds:

bad1 : σ(w
(j) ⊕R) = u ∧ σ(w(j) ⊕R)⊕ z(j) ⊕ b(j)R = v′ ,

bad2 : σ(w
(j) ⊕R) = u ∧ t(j) ⊕ v ⊕ u′ = 0 ,

bad3 : t
(j) ⊕ v ⊕ u′ = 0 ∧ σ(w(j) ⊕R)⊕ z(j) ⊕ b(j)R = v′ ,

bad4 : σ(w
(j) ⊕R)⊕ z(j) ⊕ b(i)R = σ(w(j′) ⊕R)⊕ z(j

′) ⊕ b(i
′)R ,

bad5 : σ(w
(j) ⊕R) = u ∧ σ(w(j′) ⊕R) = u′ ∧ v ⊕ t(j) = v′ ⊕ t(j

′) ,

bad6 : σ(w
(j) ⊕R)⊕ z(j) ⊕ b(j)R = v ∧ σ(w(j′) ⊕R)⊕ z(j

′) ⊕ b(j
′)R = v′

∧ u⊕ t(j) = u′ ⊕ t(j
′) ,

bad7 : σ(w
(j) ⊕R) = u ∧ v ⊕ t(j) = σ(w(j′) ⊕R) ,

bad8 : σ(w
(j) ⊕R)⊕ z(j) ⊕ b(j)R = v ∧ u⊕ t(j) = σ(w(j′) ⊕R)⊕ z(j

′) ⊕ b(j
′)R .

Note that for any attainable transcript τ , τ /∈ Tbad implies that τ is a good
transcript.

Pr[XP ∈ Tbad]. We want to bound the probability that an ideal world tran-
script τ satisfies either of bad1-bad8. Therefore, the probability that τ ∈ Tbad is
given by

Pr[τ ∈ Tbad] ≤
8∑

i=1

Pr[badi] .

We denote

U = {u ∈ {0, 1}n : (u, v) ∈ τ1} , V = {v ∈ {0, 1}n : (u, v) ∈ τ1} .

We first consider the bad event bad1. Using the fact that σ is a linear ortho-
morphism, we can rewrite bad1 as

σ(w(j))⊕ u = σ ◦ σ′−1
(
σ(w(j))⊕ z(j) ⊕ v′

)
= σ(R) .

Here we have σ′(x) = σ(x) when b(j) = 0, and σ′(x) = σ(x)⊕ x when b(j) = 1.
We define the sets

A∗ = {(σ(w(1))⊕ σ ◦ σ′−1(σ(w(1))⊕ z(1)), . . . , σ(w(q))⊕ σ ◦ σ′−1(σ(w(q))⊕ z(q))} ,
V ′ = {σ ◦ σ′−1(v′) : v′ ∈ V } ,
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Then, combining Lemma 3 and the result of Cogliati and Seurin [11], there are
µ(A∗, U, V ′) possible combinations of σ(w(j)) ⊕ σ ◦ σ′−1(σ(w(j)) ⊕ z(j)), u and
σ ◦ σ′−1(v′) that satisfy bad1. We denote

Ω1 =
∣∣∣{(j, (u, v), (u′, v′)) ∣∣∣ σ(w(j))⊕ u = σ ◦ σ′−1

(
σ(w(j))⊕ z(j) ⊕ v′

)}∣∣∣ .
It is easy to see that Ω1 = µ(A∗, U, V ′). Note that in the ideal world, Ω1 only
depends on f and π. Ω1 does not depend on the randomness R, which is drawn
uniformly at random at the end of the interaction. Hence, for any C1 > 0, we
have

Pr[bad1] ≤ Pr[µ(A∗, U, V ′) ≥ C1] +
C1

|R|
.

We thus set C1 = qp2

2n + p
√
3nq and obtain

Pr[bad1] ≤
2

2n
+

qp2

2n |R|
+

p
√
3nq

|R|
.

For the second bad event bad2, we first consider the right hand side of the
bad event. Consider the given set T ⊆ {0, 1}n of the tweaks. Then, combining
Lemma 3, there are µ(T,U, V ) possible combinations of t(j), (u, v) and (u′, v′)
that satisfy the second equation of bad2, with

µ(T,U, V ) ≤ qp2

2n
+ Φ(T )p .

We denote

Ω2 =
∣∣∣{(j, (u, v), (u′, v′)) ∣∣∣ t(j) ⊕ u′ ⊕ v = 0

}∣∣∣ .
Since there areB construction queries per tweak, we have thatΩ2 = Bµ(T,U, V ).
We rewrite the first equation of bad2 as

σ(w(j))⊕ u = σ(R) .

By the fact that R ← R is a dummy value generated independently of τ0 and
τ1, the probability that the first equation of bad2 holds for fixed j and (u, v) is
1/ |R|. We have

Pr[bad2] ≤
Bqp2

2n |R|
+

BΦ(T )p

|R|
.

The same reasoning applies for the left hand side of bad3, and we rewrite the
second equation of bad3 as

σ(w(j))⊕ z(j) ⊕ v′ = σ(R)⊕ b(j)R .
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If b(j) = 0, the probability that the second equation of bad3 holds for fixed j
and (u′, v′) is 1/ |R| as before. If b(j) = 1, this probability is at most 1/ |R| (see
Lemma 1). Together, we have

Pr[bad3] ≤
Bqp2

2n |R|
+

BΦ(T )p

|R|
.

Now, we consider the bad event bad4, which we rewrite as

σ(w(j) ⊕ w(j′))⊕ (b(j
′) ⊕ b(j))R = z(j) ⊕ z(j

′) .

Since the values z(j) and z(j
′) are generated uniformly and independent in the

ideal world, the probability that the above equation holds for fixed j ̸= j′ is
1/2n. Summing over all possible choices of j ̸= j′, we have

Pr[bad4] ≤
(
q

2

)
1

2n
.

Next, we consider the bad events bad5 and bad6. The bad event bad5 implies

u⊕ u′ = σ(w(j))⊕ σ(w(j′)) ∧ v ⊕ v′ = t(j) ⊕ t(j
′) .

Now we take ∆in = σ(w(j)) ⊕ σ(w(j′)) and ∆out = t(j) ⊕ t(j
′), and by applying

Lemma 5, we define Lxor as the max load of the bin B∆in,∆out . Hence, for any
C5 > 0, and by the fact that R← R is a dummy value generated independently
of τ0 and τ1, the probability that the first two equations of bad5 hold for a fixed
(j, j′) couple is 1/ |R|. By a union bound over all possible choices of j ̸= j′, we
have

Pr[bad5] ≤ Pr [Lxor ≥ C5] +

(
q

2

)
C5

|R|
,

Thus, with C5 = 2n ln(2) + ln(1/ϵ) ≤ 3n and with ϵ = 1/2n, we have

Pr[bad5] ≤
1

2n
+

(
q

2

)
3n

|R|
.

For bad6, when b(j) ⊕ b(j
′) = 0, the analysis is identical as the one of bad5. We

now consider the case when b(j) = 0 ∧ b(j
′) = 1 (the case b(j) = 1 ∧ b(j

′) = 0 is
entirely symmetric). We first rewrite the first two equations of bad6 as

σ(w(j))⊕ z(j) ⊕ v = σ ◦ σ′−1
(
σ(w(j′))⊕ z(j

′) ⊕ v′
)
= σ(R) ,

with σ′(x) = σ(x)⊕ x. Then bad6 implies

v ⊕ σ ◦ σ′−1(v′) = σ(w(j))⊕ z(j) ⊕ σ ◦ σ′−1
(
σ(w(j′))⊕ z(j

′)
)
∧

u⊕ u′ = t(j) ⊕ t(j
′) .
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Now we take∆in = t(j)⊕t(j′) and∆out = σ(w(j))⊕z(j)⊕σ◦σ′−1
(
σ(w(j′))⊕ z(j

′)
)
,

and by applying Lemma 5 (here we should use the case of 4n ln(2)), we get

Pr[bad6] ≤
2

2n
+

(
q

2

)
5n

|R|
.

Finally, we consider the bad events bad7 and bad8. The bad event bad7
implies

u⊕ v = σ(w(j))⊕ σ(w(j′))⊕ t(j) .

Now we take ∆ = σ(w(j))⊕σ(w(j′))⊕ t(j), and by applying Lemma 4, we define
Lio as the max load of the bin B∆. Hence, for any C7 > 0, and by the fact that
R← R is a dummy value generated independently of τ0 and τ1, the probability
that bad7 holds for a fixed (j, j′) couple is 1/ |R|. By a union bound over all
possible choices of j ̸= j′, we have

Pr[bad7] ≤ Pr
[
Lio ≥ C7

]
+

(
q

2

)
C7

|R|
,

Thus, with C7 = n ln(2) + ln(1/ϵ) ≤ 2n and with ϵ = 1/2n, we have

Pr[bad7] ≤
1

2n
+

(
q

2

)
2n

|R|
.

For bad8, when b(j) ⊕ b(j
′) = 0, the analysis is identical as the one of bad7. We

now consider the case when b(j) = 0 ∧ b(j
′) = 1 (the case b(j) = 1 ∧ b(j

′) = 0 is
entirely symmetric). We first rewrite bad8 as

σ(w(j))⊕ z(j) ⊕ v = σ ◦ σ′−1
(
σ(w(j′))⊕ z(j

′) ⊕ u⊕ t(j
′)
)
= σ(R) ,

with σ′(x) = σ(x)⊕ x. Then bad8 implies

σ ◦ σ′−1(u)⊕ v = σ(w(j))⊕ z(j) ⊕ σ ◦ σ′−1
(
σ(w(j′))⊕ z(j

′) ⊕ t(j
′)
)
.

Now we take ∆ = σ(w(j)) ⊕ z(j) ⊕ σ ◦ σ′−1
(
σ(w(j′))⊕ z(j

′) ⊕ t(j
′)
)
, and by

applying Lemma 4, we get

Pr[bad8] ≤
1

2n
+

(
q

2

)
2n

|R|
.

Summing the these probabilities, we get

Pr[τ ∈ Tbad] ≤
7

2n
+

(2B + 1)qp2

2n |R|
+

p
√
3nq

|R|
+

2BΦ(T )p

|R|
+

6nq2

|R|
+

q2

2n+1
.

Pr[XO = τ ]/Pr[XP = τ ]. Consider an attainable transcript τ ∈ Tgood. To
compute Pr[XO = τ ] and Pr[XP = τ ], it suffices to compute the probability of
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oracles that could result in view τ . As explained in the proof of Theorem 2, we
have

Pr[XO = τ ]

Pr[XP = τ ]
= 2nqρ(τ) . (15)

with ρ(τ) = Pr[π
$←− Perm(n) : O1R[π] ⊢ τ0 | π ⊢ τ1].

In order to bound ρ(τ), we re-group the construction queries in τ0 according
to their collisions with the primitive queries.

QU = {(w(j), t(j), b(j), z(j)) ∈ τ0 : σ(w
(j) ⊕R) ∈ U} ,

QV = {(w(j), t(j), b(j), z(j)) ∈ τ0 : σ(w
(j) ⊕R)⊕ z(j) ⊕ b(j)R ∈ V } ,

Q0 = {(w(j), t(j), b(j), z(j)) ∈ τ0 : σ(w
(j) ⊕R) /∈ U ∧ σ(w(j) ⊕R)⊕ z(j) ⊕ b(j)R /∈ V } .

We define |QU | = α1 and |QV | = α2. Note that we have QU ∩QV = ∅ by ¬bad1,
QU ∩Q0 = ∅ and QV ∩Q0 = ∅ by the definition of QU , QV , and Q0.

We denote respectively E1, E2, and E0 the event that O1R[π] ⊢ QU , QV ,
and Q0 such that ρ(τ) = ρ′(τ)ρ′′(τ), with ρ′(τ) = Pr[E1 ∧ E2 | π ⊢ τ1] and
ρ′′(τ) = Pr[E0 | E1 ∧ E2 ∧ π ⊢ τ1].

Lower Bounding ρ′(τ ). At this moment, π ⊢ τ1 defines exactly p distinct
input-output tuples for π. We know that for each (w(j), t(j), b(j), z(j)) ∈ QU ,
there is a unique (u, v) ∈ τ1 such that σ(w(j)⊕R) = u, and π(σ(w(j)⊕R)) = v.
We define

Ũ2 = {π(σ(w(j) ⊕R))⊕ t(j) : (w(j), t(j), b(j), z(j)) ∈ QU} ,
Ṽ2 = {σ(w(j) ⊕R)⊕ z(j) ⊕ b(j)R : (w(j), t(j), b(j), z(j)) ∈ QU} .

Similarly, for each (w(j), t(j), b(j), z(j)) ∈ QV , there is a unique (u, v) ∈ τ1
such that σ(w(j)⊕R)⊕z(j)⊕b(j)R = v, and π−1(σ(w(j)⊕R)⊕z(j)⊕b(j)R) = u.
Again, define

Ṽ1 = {π−1(σ(w(j) ⊕R)⊕ z(j) ⊕ b(j)R)⊕ t(j) : (w(j), t(j), b(j), z(j)) ∈ QV } ,
Ũ1 = {σ(w(j) ⊕R) : (w(j), t(j), b(j), z(j)) ∈ QV } .

Note that all values in Ũ1 are distinct since w
(j)’s are distinct, all values in Ũ2 are

distinct by ¬bad5, U ∩ Ũ1 = ∅ by ¬bad1, U ∩ Ũ2 = ∅ by ¬bad2, and Ũ1 ∩ Ũ2 = ∅
by ¬bad7; and that all values in Ṽ1 are distinct by ¬bad6, all values in Ṽ2 are
distinct by ¬bad4, V ∩ Ṽ1 = ∅ by ¬bad3, V ∩ Ṽ2 = ∅ by ¬bad1, and Ṽ1 ∩ Ṽ2 = ∅
by ¬bad8.

Hence, the event E1 and E2 define exactly α1 + α2 new and distinct input-
output tuples for π, we have

ρ′(τ) =
1

(2n − p)α1+α2

. (16)
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Lower Bounding ρ′′(τ ). At this moment, π ⊢ τ1, E1 and E2 define exactly
p + α1 + α2 distinct input-output tuples for π. Our goal now is to count the
number of new and distinct evaluations on π, introduced by the event E0. Let

q′ = |Q0| = q − α1 − α2 ,

p′ =
∣∣∣U ∪ Ũ1 ∪ Ũ2

∣∣∣ = ∣∣∣V ∪ Ṽ1 ∪ Ṽ2

∣∣∣ = p+ α2 + α1 .

To ease the subsequent counting, we rewrite the queries in Q0 as

Q0 = {(w1, t1, b1, z1), . . . , (wq′ , tq′ , bq′ , zq′)} .

For i = 1, . . . , q′, let

Ū1 = {ū1,1, . . . , ū1,q′} with ū1,i = σ(wi ⊕R) ,

V̄2 = {v̄2,1, . . . , v̄2,q′} with v̄2,i = σ(wi ⊕R)⊕ zi ⊕ biR ,

Note that by definition of Q0, the ū1,i’s are distinct and outside U ∪ Ũ1, and the

v̄2,i’s are distinct and outside V ∪ Ṽ2. Besides that, we also know that ū1,i’s are

outside Ũ2 by ¬bad7, and that v̄2,i’s are outside Ṽ1 by ¬bad8.
We define by FRESH the event that the underlying permutation calls to π

introduced by the construction queries in Q0 evaluate on distinct inputs, and
we also define ρ′′∗(τ) = Pr[E0 ∧ FRESH | E1 ∧ E2 ∧ π ⊢ τ1]. Note that we have
ρ′′(τ) ≥ ρ′′∗(τ). Hence it is sufficient to focus on ρ′′∗(τ) instead of ρ′′(τ). Let N0

be the number of solutions

{v̄1,1, . . . , v̄1,q′ , ū2,1, . . . , ū2,q′}

where ū2,1, . . . , ū2,q′ /∈ Ū1 and v̄1,1, . . . , v̄1,q′ /∈ V̄2 because of the event FRESH.
N0 satisfies the following conditions.

1. ∀i : v̄1,i ⊕ ti = ū2,i. There are in total 2n different choices for each (v̄1,i, ū2,i)
couple.

2. Conditions for v̄1,i:

(a) ∀i : v̄1,i /∈ (V ∪ Ṽ1 ∪ Ṽ2 ∪ V̄2). This excludes at most p′ + q′ choices for
each (v̄1,i, ū2,i) couple,

(b) ∀(i, i′) and i′ < i : v̄1,i ̸= v̄1,i′ . This excludes at most i − 1 choices for
each (v̄1,i, ū2,i) couple.

3. Conditions for ū2,i:

(a) ∀i : ū2,i /∈ (U ∪ Ũ1 ∪ Ũ2 ∪ Ū1). This excludes at most p′ + q′ choices for
each (v̄1,i, ū2,i) couple,

(b) ∀(i, i′) and i′ < i : ū2,i ̸= ū2,i′ . This excludes at most i − 1 choices for
each (v̄1,i, ū2,i) couple.

Taking into account the conditions (1)-(3), we can bound the number N0 as

N0 ≥
q′∏
i=1

(
2n − 2p′ − 2q′ − 2(i− 1)

)
.
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All in all, we have that for any of the N0 possible choices for the solutions
{v̄1,1, . . . , v̄1,q′ , ū2,1, . . . , ū2,q′} satisfying all conditions, the event E0 is equivalent
to exactly 2q′ new equations on π. Hence, it follows that

ρ′′∗(τ) ≥ N0

(2n − p− α1 − α2)2q′
. (17)

Combining (15), (16) and (17) and using that q − q′ = α1 + α2., we obtain

Pr[XO = τ ]

Pr[XP = τ ]
≥ N0 · 2nq

(2n − p)α1+α2+2q′

=
N02

nq′

(2n − p′)2q′
· 2nq

2nq′(2n − p)α1+α2

≥ N02
nq′

(2n − p′)2q′
· 2n(q−q

′)

2n(α1+α2)

=
N02

nq′

(2n − p′)2q′
. (18)

Processing further from (18), we have

(18) ≥
∏q′

i=1 2
n
(
2n − 2p′ − 2q′ − 2(i− 1)

)
(2n − p′)2q′

=

q′∏
i=1

2n
(
2n − 2p′ − 2q′ − 2(i− 1)

)
(2n − p′ − (i− 1))(2n − p′ − q′ − (i− 1))

(19)

We denote B = p′ + (i− 1) and C = p′ + q′ + (i− 1). The equation (19) can be
written as

(19) =

q′∏
i=1

22n − 2 · 2nC
(2n −B)(2n − C)

=

q′∏
i=1

22n − 2 · 2nC
22n − 2nB − 2nC +BC

=

q′∏
i=1

(
1− 2n(C −B) +BC

22n − 2nB − 2nC +BC

)

≥
q′∏
i=1

(
1− 4(C −B)

2n
− 4BC

22n

)
(20)

where for the last inequality we used B ≤ C = p′ + q′ + (i− 1) ≤ 2n/2.
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Fill in the values of B, C, and C−B = q′, and using union bound, we obtain

(20) =

q′∏
i=1

(
1− 4q′

2n
− 4(p′ + (i− 1))(p′ + q′ + (i− 1))

22n

)
≥ 1− 4q′2

2n
− 4q′(p′ + (i− 1))(p′ + q′ + (i− 1))

22n
. (21)

By definition of p′, and q′, we have

q′ ≤ q ,

p′ + (i− 1) ≤ p′ + q′ = p+ q ,

p′ + q′ + (i− 1) ≤ p′ + 2q′ ≤ p+ 2q .

Then, we conclude from (21) that

Pr[XO = τ ]

Pr[XP = τ ]
≥ 1−

( 8q2

2n+1
+

4q(p+ q)(p+ 2q)

22n

)
=: 1− ϵ .
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Supplementary Material

A Proof of Theorem 1

Recall that in this case, Player PB is corrupted and thus the adversary A controls
PB , as well as the adversarial interface of F∆-ROT(m, k). We start by sketching
the simulator S.

First off, recall that the simulator S, in particular, simulates the F∆-ROT(k,m)
functionality – more specifically, its interfaces for A and PB , as well as the one
protocol message sent from PA to PB . It proceeds as follows:

– The simulator S initially chooses ∆
$← {0, 1}k, and takes an input P :

{0, 1}k → {0, 1} at A’s interface for F∆-ROT(m, k), and returns P (∆) to A
at the same interface. Further, if P (∆) = 0, S stops accepting any further
messages. (Thus, in the following, we assume P (∆) = 1.)

– Upon receiving (x1, . . . , xm) at PB ’s interface for F∆-ROT(m, k), and z1, . . . , zm
at A’s interface, the simulator S inputs (x1, . . . , xm) to PB ’s interface of
FS-OT(m, ℓ), and obtains mx1

1 , . . . ,mxm
m back.

– The simulator S outputs (z1, . . . , zm) at PB ’s interface of F∆-ROT(m, k).

– Finally, S generates K
$← K, and sets

cxi
i ← H(zi ⊕ AXU(K, i), ti)⊕mxi

i , c1−xi
i

$← {0, 1}ℓ .

for all i ∈ [m]. It then outputs K, c01, c
1
1, . . . , c

0
m, c1m as the protocol message

sent to PB .

We note that the distribution of all values in the ideal world is identical to the
real-world, with the exception that in the real world we would have

c1−xi
i ← H(zi ⊕ AXU(K, i)⊕∆, ti)⊕mxi

i .

Now, we proceed to define the adversary B against TCR∗ security. If the adver-
sary A were not able to obtain P (∆) for a chosen predicate, this would be easy.

Indeed, given access to an oracle O implementing either Otcr
∆ (for ∆

$← {0, 1}n)
or a random function f : {0, 1}k × {0, 1}n → {0, 1}ℓ, the adversary B simulates
the above ideal-world execution, outputting D’s final decision bit. The only mod-
ification is that we use

c1−xi
i ← O(zi ⊕ AXU(K, i), ti)⊕mxi

i .

for all i ∈ [m]. Unfortunately, we need to simulate the leakage P (∆) as well, and
if this equals 0, then simulate an abort. Here is where we use the fact that we
reduce to TCR∗: In particular, after A input P , B can pro-actively simulate both
an execution where P (∆) = 0 and, one where P (∆) = 1 (up to the point where
D outputs a decision bit). At the end of the execution, B learns ∆ (this is what
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TCR∗ gives us), and can output the decision bit arising from the simulation with
the correct value of P (∆).

A final issue is that B’s queries could repeat, in which case B aborts with

a random guess. However, note that the key K
$← K is chosen after the values

{zi}i∈[m] are fixed, and the probability that there exists i and j such that zi ⊕
AXU(K, i) = zj ⊕ AXU(K, j) is at most

(
q
2

)
ϵ by the union bound.

B Proof of Lemma 4

Let us fix any ∆ ∈ {0, 1}n. Given the transcript τ = ((u1, v1), . . . , (up, vp)) of
non-redundant queries to the random permutation π, we define Z∆ =

∑p
i=1 Z

∆
i ,

where Z∆
i is 1 if and only if σ(ui)⊕ ρ(vi) = ∆. (It is 0 otherwise.) The random

variables {Z∆
i }i∈[p] are not independent, but because p < 2n−1,

Pr
[
Z∆
i = 1 | Z∆

1 = b1, . . . , Z
∆
i−1 = bi−1

]
=

1

2n − (i− 1)
≤ 2

2n
, (22)

for any b1, . . . , bi−1 ∈ {0, 1} – this is because the i-th query is non-redundant,
and either σ(ui) or ρ(vi) is distributed over a set of 2n − (i− 1) possible values.
This, in turn, implies that for any set S ⊆ [p],

Pr

[∧
i∈S

Z∆
i = 1

]
≤

(
2

2n

)|S|
.

By Theorem 6, for any k ≥ 1,

Pr
[
Z∆ ≥ k

]
≤ e−p·D(k/p ∥ 2/2n) .

We can use the inequality D(γ ∥ δ) ≥ (γ − δ)2/(2γ) to show that

p ·D(k/p ∥ 2/2n) ≥ p2(k/p− 2/2n)2

k
≥ (k − 1)2

k
> k − 2 ,

because 2/2n ≤ 1/p. Thus, for k = n ln(2) + ln(1/ϵ) + 2, we get Pr
[
Z∆ ≥ k

]
≤

2−n · ϵ. By a simple union bound,

Pr
[
Lio ≥ k

]
= Pr

[
∃∆ : Z∆ ≥ k

]
≤ 2n · 2−nϵ = ϵ .

This concludes the proof.

C FPTP Based on Two Independent Permutations

We prove the security of FPTP2 for independent π1, π2. Let n ∈ N, and consider
the given set T ⊆ {0, 1}n of the tweaks such that the size of T is ℓ and ℓ ≤ q
(since there are q different tweaks when B = 1). We present the following result
against distinguishers making distinct input messages to the construction oracle
for u = 1 (single user security).
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Theorem 7. Let n ∈ N, and consider FPTP2: {0, 1}n×{0, 1}n → {0, 1}n based

on two permutations π1, π2
$←− Perm(n), where the input tweaks are chosen from

the set T . For any distinguisher D making at most q construction queries, at
most B construction queries per tweak, at most p primitive queries to π±1 , and
p primitive queries to π±2 . We have ‘

(a) When D makes q construction queries with distinct input messages, we have

AdvTCCR
FPTP2,R(D) ≤

5

2n
+

(2B + 1)qp2

2n |R|
+

p
√
3nq

|R|
+

2BΦ(T )p

|R|

+
4nq2

|R|
+

q2

2n+1
+

4q(p+ q)2

22n
. (23)

(b) When D makes q construction queries with uniform independent input mes-
sages, AdvTCCR

FPTP1,R(D) is the same as the case of distinct input messages,
except that there is an additional q2/2n+1 term.

Note that (23) is dominated by the terms 2BΦ(T )p/ |R|+q2/2n+1. For |R| = 2n,
and a carefully chosen set T such that Φ(T ) ≤ √q (like the one mentioned in the
introduction), the security bound in (23) matches with the asymptotic bound
given in the abstract and introduction.

Proof. The proof of (a) is given in Supplementary Material D. The proof of (b)
follows straightforwardly from Theorem 7 (a), and the fact that two uniform
independent values collide with probability at most q2/2n+1 by the birthday
bound ⊓⊔

Let n ∈ N, and consider the given set T = T1∪· · ·∪Tu ⊆ {0, 1}n of the tweaks
such that the size of T = ℓ and ℓ ≤ q. We present the following result against
distinguishers making uniform independent input messages to the construction
oracles for u > 1 (multi user security).

Theorem 8. Let n ∈ N, and consider FPTP2: {0, 1}n×{0, 1}n → {0, 1}n based

on permutations π1, π2
$←− Perm(n), where the input tweaks of i-th oracle are

chosen from the set Ti. For any distinguisher D making at most q/u construction
queries with uniform independent input messages to each of its u construction
oracles, at most B construction queries per tweak across all oracles, and at most
p primitive queries to π±1 and at most p primitive queries to π±2 , we have

AdvmiTCCR
FPTP1,R(D) ≤

5

2n
+

(2B + 1)qp2

2n |R|
+

p
√
3nq

|R|
+

2BΦ(T1 ∪ · · · ∪ Tu)p

|R|

+
4nq2

|R|
+

2q2

2n+1
+

4q(p+ q)2

22n
. (24)

The proof is given in Supplementary Material E.
We can extend the FPTP construction to process the input w ⊗ t instead

of w. For plain (non-circular) TCR security, this would give us security under
arbitrary inputs. Let call FPTP2∗ the FPTP2 construction using the input w⊗t,
then the TCR security of FPTP2∗ is given in Theorem 9.

34



Theorem 9. Let n ∈ N, and consider FPTP2∗ : {0, 1}n × {0, 1}n → {0, 1}n

based on two permutations π1, π2
$←− Perm(n), where the input tweaks are chosen

from the set T . For any distinguisher D making at most q construction queries,
at most B construction queries per tweak, at most p primitive queries to π±1 ,
and p primitive queries to π±2 . We have

AdvTCR
FPTP2∗,R(D) ≤

5

2n
+

(2B + 1)qp2

2n |R|
+

p
√
3nq

|R|
+

2BΦ(T )p

|R|

+
q2(8n+ 1)

2 |R|
+

q2

2n+1
+

4q(p+ q)2

22n
. (25)

Proof (Sketch). The proof of Theorem 9 is very similar to the proof of Theorem 7,
but with a few minor differences. First of all, the bad transcripts analysis remains
basically the same except that w ⊗ t needs to be considered instead of w, and
this can be modified in a straightforward way. However, there is an additional
bad event, namely

∃(w(j), t(j), b(j), z(j)) ̸= (w(j′), t(j
′), b(j

′), z(j
′)) ∈ τ0 : (w

(j) ⊕R)⊗ t(j) = (w(j′) ⊕R)⊗ t(j
′) .

This is the same event as bad3 of the one permutation call construction in (6),
hence this event will lead to an extra term

(
q
2

)
/R in the final bound. Finally, the

ratio analysis remains roughly the same. ⊓⊔

D Proof of Theorem C on FPTP2

Let R
$←− R, π1, π2

$←− Perm(n), and f
$←− Func(2n + 1, n). Consider any dis-

tinguisher D that has access to three oracles: (O2R, π±1 , π
±
2 ) in the real world

with

O2R(w, t, b) = FPTP2π1,π2(w ⊕R, t)⊕ bR = π2(π1(σ(w ⊕R))⊕ t)⊕ σ(w ⊕R)⊕ bR ,

or (f, π±1 , π
±
2 ) in the ideal world. We require that D is computational unbounded

and deterministic. The distinguisher makes q construction queries to O2R or f ,
and B construction queries per tweak. These are summarized in a transcript of
the form

τ0 = {(w(1), t(1), b(1), z(1)), . . . , (w(q), t(q), b(q), z(q))} .

It also makes p primitive queries to π±1 and p primitive queries to π±2 , and these
are respectively summarized in transcripts τ1 and τ2. We assume that τ0, τ1, and
τ2 do not contain duplicate elements. After D’s interaction with the oracles, but
before it outputs its decision, we disclose the random valueR to the distinguisher.
In the real world, this is the randomness for the message input of construction.
In the ideal world, R is dummy value that is drawn uniformly at random. The
complete view is denoted τ = (τ0, τ1, τ2, R).
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Bad Events. We say that τ ∈ Tbad if and only if there exist construction
queries (w(j), t(j), b(j), z(j)), (w(j′), t(j

′), b(j
′), z(j

′)) ∈ τ0 such that j ̸= j′; prim-
itive queries (u, v), (u′, v′) ∈ τ1 and (x, y), (x′, y′) ∈ τ2 such that one of the
following conditions holds:

bad1 : σ(w
(j) ⊕R) = u ∧ σ(w(j) ⊕R)⊕ z(j) ⊕ b(j)R = y ,

bad2 : σ(w
(j) ⊕R) = u ∧ t(j) ⊕ v ⊕ x = 0 ,

bad3 : t
(j) ⊕ v ⊕ x = 0 ∧ σ(w(j) ⊕R)⊕ z(j) ⊕ b(j)R = y ,

bad4 : σ(w
(j) ⊕R)⊕ z(j) ⊕ b(i)R = σ(w(j′) ⊕R)⊕ z(j

′) ⊕ b(i
′)R ,

bad5 : σ(w
(j) ⊕R) = u ∧ σ(w(j′) ⊕R) = u′ ∧ v ⊕ t(j) = v′ ⊕ t(j

′) ,

bad6 : σ(w
(j) ⊕R)⊕ z(j) ⊕ b(j)R = y ∧ σ(w(j′) ⊕R)⊕ z(j

′) ⊕ b(j
′)R = y′

∧ x⊕ t(j) = x′ ⊕ t(j
′) .

Note that for any attainable transcript τ , τ /∈ Tbad implies that τ is a good
transcript.

Pr[XP ∈ Tbad]. We want to bound the probability that an ideal world tran-
script τ satisfies either of bad1-bad6. Therefore, the probability that τ ∈ Tbad is
given by

Pr[τ ∈ Tbad] ≤
6∑

i=1

Pr[badi] .

We denote

U = {u ∈ {0, 1}n : (u, v) ∈ τ1} , V = {v ∈ {0, 1}n : (u, v) ∈ τ1} ,
X = {x ∈ {0, 1}n : (x, y) ∈ τ2} , Y = {y ∈ {0, 1}n : (x, y) ∈ τ2} .

We first consider the bad event bad1. Using the fact that σ is a linear ortho-
morphism, we can rewrite bad1 as

σ(w(j))⊕ u = σ ◦ σ′−1
(
σ(w(j))⊕ z(j) ⊕ y

)
= σ(R) .

Here we have σ′(x) = σ(x) when b(j) = 0 and σ′(x) = σ(x) ⊕ x when b(j) = 1.
We define the sets

A∗ = {(σ(w(1))⊕ σ ◦ σ′−1(σ(w(1))⊕ z(1)), . . . , σ(w(q))⊕ σ ◦ σ′−1(σ(w(q))⊕ z(q))} ,
Y ′ = {σ ◦ σ′−1(y′) : y′ ∈ Y } ,

Then, combining Lemma 3 and the result of Cogliati and Seurin [11], there are
µ(A∗, U, Y ′) possible combinations of σ(w(j)) ⊕ σ ◦ σ′−1(σ(w(j)) ⊕ z(j)), u and
σ ◦ σ′−1(y′) that satisfy bad1. We denote

Ω1 =
∣∣∣{(j, (u, v), (x, y)) ∣∣∣ σ(w(j))⊕ u = σ ◦ σ′−1

(
σ(w(j))⊕ z(j) ⊕ y

)}∣∣∣ .
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It is easy to see that Ω1 = µ(A∗, U, Y ′). Note that in the ideal world, Ω1 only
depends on f , π1, and π2. Ω1 does not depend on the randomness R, which is
drawn uniformly at random at the end of the interaction. Hence, for any C1 > 0,
we have

Pr[bad1] ≤ Pr[µ(A∗, U, Y ′) ≥ C1] +
C1

|R|
.

We thus set C1 = qp2

2n + p
√
3nq and obtain

Pr[bad1] ≤
2

2n
+

qp2

2n |R|
+

p
√
3nq

|R|
.

For the second bad event bad2, we first consider the right hand side of the
bad event. Consider the given set T ⊆ {0, 1}n of the tweaks. Then, combining
Lemma 3, there are µ(T,X, V ) possible combinations of t(j), (u, v) and (x, y)
that satisfy the second equation of bad2, with

µ(T,X, V ) ≤ qp2

2n
+ Φ(T )p .

We denote

Ω2 =
∣∣∣{(j, (u, v), (x, y)) ∣∣∣ t(j) ⊕ x⊕ v = 0

}∣∣∣ .
Since there areB construction queries per tweak, we have thatΩ2 = Bµ(T,X, V ).
We rewrite the first equation of bad2 as

σ(w(j))⊕ u = σ(R) .

By the fact that R← R is a dummy value generated independently of τ0, τ1 and
τ2, the probability that the first equation of bad2 holds for fixed j and (u, v) is
1/ |R|. We have

Pr[bad2] ≤
Bqp2

2n |R|
+

BΦ(T )p

|R|
.

The same reasoning applies for the left hand side of bad3, and we rewrite the
second equation of bad3 as

σ(w(j))⊕ z(j) ⊕ y = σ(R)⊕ b(j)R .

If b = 0, the probability that the second equation of bad3 holds for fixed j
and (x, y) is 1/ |R| as before. If b = 1, this probability is at most 1/ |R| (see
Lemma 1). Together, we have

Pr[bad3] ≤
Bqp2

2n |R|
+

BΦ(T )p

|R|
.
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Now, we consider the bad event bad4, which we rewrite as

σ(w(j) ⊕ w(j′))⊕ (b(j
′) ⊕ b(j))R = z(j) ⊕ z(j

′) .

Since the values z(j) and z(j
′) are generated uniformly and independent in the

ideal world, the probability that the above equation holds for fixed j ̸= j′ is
1/2n. Summing over all possible choices of j ̸= j′, we have

Pr[bad4] ≤
(
q

2

)
1

2n
.

Finally, we consider the bad events bad5 and bad6. The bad event bad5
implies

u⊕ u′ = σ(w(j))⊕ σ(w(j′)) ∧ v ⊕ v′ = t(j) ⊕ t(j
′) .

Now we take ∆in = σ(w(j)) ⊕ σ(w(j′)) and ∆out = t(j) ⊕ t(j
′), and by applying

Lemma 5, we define Lxor as the max load of the bin B∆in,∆out . Hence, for any
C5 > 0, and by the fact that R← R is a dummy value generated independently
of τ0 and τ1, the probability that the first two equations of bad5 hold for a fixed
(j, j′) couple is 1/ |R|. By a union bound over all possible choices of j ̸= j′, we
have

Pr[bad5] ≤ Pr [Lxor ≥ C5] +

(
q

2

)
C5

|R|
,

Thus, with C5 = 2n ln(2) + ln(1/ϵ) ≤ 3n and with ϵ = 1/2n, we have

Pr[bad5] ≤
1

2n
+

(
q

2

)
3n

|R|
.

For bad6, when b(j) ⊕ b(j
′) = 0, the analysis is identical as the one of bad5. We

now consider the case when b(j) = 0 ∧ b(j
′) = 1 (the case b(j) = 1 ∧ b(j

′) = 0 is
entirely symmetric). We first rewrite the first two equations of bad6 as

σ(w(j))⊕ z(j) ⊕ y = σ ◦ σ′−1
(
σ(w(j′))⊕ z(j

′) ⊕ y′
)
= σ(R) ,

with σ′(x) = σ(x)⊕ x. Then bad6 implies

y ⊕ σ ◦ σ′−1(y′) = σ(w(j))⊕ z(j) ⊕ σ ◦ σ′−1
(
σ(w(j′))⊕ z(j

′)
)
∧

x⊕ x′ = t(j) ⊕ t(j
′) .

Now we take∆in = t(j)⊕t(j′) and∆out = σ(w(j))⊕z(j)⊕σ◦σ′−1
(
σ(w(j′))⊕ z(j

′)
)
,

and by applying Lemma 5 (here we should use the case of 4n ln(2)), we get

Pr[bad6] ≤
2

2n
+

(
q

2

)
5n

|R|
.
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Summing the these probabilities, we get

Pr[τ ∈ Tbad] ≤
5

2n
+

(2B + 1)qp2

2n |R|
+

p
√
3nq

|R|
+

2BΦ(T )p

|R|
+

4nq2

|R|
+

q2

2n+1
. (26)

Pr[XO = τ ]/Pr[XP = τ ]. We need the following technical lemma of [9] for
the study of the good transcripts.

Lemma 6 (CS [9]). Let a, b, c be positive integers such that a+ b ≤ 2n/2 and
a+ c ≤ 2n/2. Then

(2n)a · (2n − b− c)a
(2n − b)a · (2n − c)a

≥ 1− 4abc

22n
.

Consider an attainable transcript τ ∈ Tgood. To compute Pr[XO = τ ] and
Pr[XP = τ ], it suffices to compute the probability of oracles that could result in
view τ . We first consider the ideal world P, and obtain

Pr[XP = τ ] =
1

|R|
· (2

n − p)!2

(2n!)2
· 2

n(22n+1−q)

2n22n+1

=
1

|R|
· 1

(2n)2p
· 1

2nq
.

The first term corresponds to the number of randomly drawn R values; the
second term is the ratio of public random permutations π1 compliant with τ1
and the ratio of public random permutations π2 compliant with τ2; and the last
term is the ratio of random functions f ∈ Func(2n+ 1, n) compliant with τ0.

Similarly we say that a real world oracle O is compatible with τ if it is
compatible with τ0, τ1 and τ2. We have

Pr[XO = τ ] =
1

|R|
· 1

(2n)2p
· Pr[π1, π2

$←− Perm(n) : O2R[π1, π2] ⊢ τ0 | π1 ⊢ τ1 ∧ π2 ⊢ τ2] .

As before, the first term corresponds to the number of randomly drawn R values;
the second term is the ratio of public random permutations π1 compliant with
τ1 and the ratio of public random permutations π2 compliant with τ2; and the
last term is the ratio of O2R[π1, π2] compliant with τ0, given that π1 compliant
with τ1 and π2 compliant with τ2.

Define

ρ(τ) = Pr[π1, π2
$←− Perm(n) : O2R[π1, π2] ⊢ τ0 | π1 ⊢ τ1 ∧ π2 ⊢ τ2] ,

we obtain

Pr[XO = τ ]

Pr[XP = τ ]
= 2nqρ(τ) . (27)
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In order to bound ρ(τ), we re-group the construction queries in τ0 according to
their collisions with the primitive queries.

QU = {(w(j), t(j), b(j), z(j)) ∈ τ0 : σ(w
(j) ⊕R) ∈ U} ,

QY = {(w(j), t(j), b(j), z(j)) ∈ τ0 : σ(w
(j) ⊕R)⊕ z(j) ⊕ b(j)R ∈ Y } ,

Q0 = {(w(j), t(j), b(j), z(j)) ∈ τ0 : σ(w
(j) ⊕R) /∈ U ∧ σ(w(j) ⊕R⊕ z(j) ⊕ b(j)R /∈ Y } .

We denote |QU | = α1 and |QY | = α2. Note that we have QU ∩QY = ∅ by ¬bad1,
QU ∩Q0 = ∅ and QY ∩Q0 = ∅ by the definition of QU , QY , and Q0.

We denote respectively E1, E2, and E0 the event that O2R[π1, π2] ⊢ QU ,
QY , and Q0 such that

ρ(τ) = ρ′(τ)ρ′′(τ) ,

with

ρ′(τ) = Pr[E1 ∧ E2 | π1 ⊢ τ1 ∧ π2 ⊢ τ2] ,

ρ′′(τ) = Pr[E0 | E1 ∧ E2 ∧ π1 ⊢ τ1 ∧ π2 ⊢ τ2] .

Lower Bounding ρ′(τ ). At this moment, π1 ⊢ τ1 ∧ π2 ⊢ τ2 defines exactly
p distinct input-output tuples for both π1 and π2. We know that for each
(w(j), t(j), b(j), z(j)) ∈ QU , there is a unique (u, v) ∈ τ1 such that σ(w(j)⊕R) = u,
and π1(σ(w

(j) ⊕R) = v. We define

X̃ = {π1(σ(w
(j) ⊕R))⊕ t(j) : (w(j), t(j), b(j), z(j)) ∈ QU} ,

Ỹ = {σ(w(j) ⊕R)⊕ z(j) ⊕ b(j)R : (w(j), t(j), b(j), z(j)) ∈ QU} .

Note that all values in Ỹ are distinct by ¬bad4, and that all values in X̃ are
distinct by ¬bad5. Also note that X∩X̃ = ∅ by ¬bad2, and Y ∩ Ỹ = ∅ by ¬bad1.
Hence, the event E1 defines exactly α1 new and distinct input-output tuples for
π2, we have

Pr[E1 | π2 ⊢ τ2] =
1

(2n − p)α1

. (28)

Similarly, for each (w(j), t(j), b(j), z(j)) ∈ QY , there is a unique (x, y) ∈ τ2
such that σ(w(j)⊕R)⊕z(j)⊕b(j)R = y, and π−12 (σ(w(j)⊕R)⊕z(j)⊕b(j)R) = x.
Again, define

Ṽ = {π−12 (σ(w(j) ⊕R)⊕ z(j) ⊕ b(j)R)⊕ t(j) : (w(j), t(j), b(j), z(j)) ∈ QY } ,
Ũ = {σ(w(j) ⊕R) : (w(j), t(j), b(j), z(j)) ∈ QY } .

As above, we have that all values in Ũ are distinct since w(j)’s are distinct, and
that all values in Ṽ are distinct by ¬bad6. We also have V ∩Ṽ = ∅ by ¬bad3, and
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U ∩ Ũ = ∅ by ¬bad1. Hence, the event E2 defines exactly α2 new and distinct
input-output tuples for π1, we have

Pr[E2 | π1 ⊢ τ1] =
1

(2n − p)α2

. (29)

Combining (28) and (29), we obtain

ρ′(τ) =
1

(2n − p)α1
(2n − p)α2

. (30)

Lower Bounding ρ′′(τ ). At this moment, π1 ⊢ τ1 ∧ π2 ⊢ τ2, E1 and E2 define
exactly p+ α2 (resp. p+ α1) distinct input-output tuples for π1 (resp. π2). Our
goal now is to count the number of new and distinct evaluations on both π1 and
π2, introduced by the event E0. Let

q′ = |Q0| = q − α1 − α2 ,

p′1 =
∣∣∣U ∪ Ũ

∣∣∣ = p+ α2 ,

p′2 =
∣∣∣Y ∪ Ỹ

∣∣∣ = p+ α1 .

By definition of Q0, E0 defines exactly q′ new and distinct input-output tuples
for both π1 and π2. To ease the subsequent counting, we rewrite the queries in
Q0 as

Q0 = (w1, t1, b1, z1), . . . , (wq′ , tq′ , bq′ , zq′) .

For i = 1, . . . , q′, let

Ū = {ū1, . . . , ūq′} with ūi = σ(wi ⊕R) ,

Ȳ = {ȳ1, . . . , ȳq′} with ȳi = σ(wi ⊕R)⊕ zi ⊕ biR ,

Note that by definition of Q0, the ūi’s are distinct and outside U ∪ Ũ , and the
ȳi’s are distinct and outside Y ∪ Ỹ .

Let N0 be the number of solutions

{v̄1, . . . , v̄q′ , x̄1, . . . , x̄q′}

satisfying the following conditions:

1. ∀i : v̄i⊕ti = x̄i. There are in total 2n different choices for each (v̄i, x̄i) couple.
2. Conditions for v̄i:

(a) ∀i : v̄i /∈ (V ∪ Ṽ ). This excludes at most p′1 values each (v̄i, x̄i) couple,
(b) ∀(i, i′) and i′ < i : v̄i ̸= v̄i′ . This excludes at most i − 1 values for each

(v̄i, x̄i) couple.
3. Conditions for x̄i:

(a) ∀i : x̄i /∈ (X∪X̃). This excludes at most p′2 values for each (v̄i, x̄i) couple,
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(b) ∀(i, i′) and i′ < i : x̄i ̸= x̄i′ . This excludes at most i − 1 values for each
(v̄i, x̄i) couple.

Hence, one has

N0 ≥
q′∏
i=1

(
2n − p′1 − p′2 − 2(i− 1)

)
.

All in all, we have that for any of the N0 possible choices for the solutions
{v̄1, . . . , v̄q′ , x̄1, . . . , x̄q′} satisfying all conditions, the event E0 is equivalent to
exactly q′ new equations on π1 and exactly q′ new equations on π2. Hence, it
follows that

ρ′′(τ) ≥ N0

(2n − p− α2)q′(2n − p− α1)q′
. (31)

We have

ρ(τ) ≥ N0

(2n − p)α2+q′(2n − p)α1+q′
. (32)

Combining (27) and (32), we obtain

Pr[XO = τ ]

Pr[XP = τ ]
≥ N0 · 2nq

(2n − p)α2+q′(2n − p)α1+q′

=
N02

nq′

(2n − p′1)q′(2
n − p′2)q′

· 2nq

2nq′(2n − p)α2
(2n − p)α1

≥ N02
nq′

(2n − p′1)q′(2
n − p′2)q′

· 2n(q−q
′)

2n(α1+α2)

=
N02

nq′

(2n − p′1)q′(2
n − p′2)q′

. (33)

using that q − q′ = α1 + α2.
Processing further from (33), we have

(33) ≥
∏q′

i=1 2
n(2n − p′1 − p′2 − 2(i− 1))

(2n − p′1)q′(2
n − p′2)q′

=

q′∏
i=1

2n(2n − p′1 − p′2 − 2(i− 1))

(2n − p′1 − (i− 1))(2n − p′2 − (i− 1))

≥
q′∏
i=1

(
1− 4(p′1 + (i− 1))(p′2 + (i− 1))

22n

)
≥ 1− 4q′(p′1 + (i− 1))(p′2 + (i− 1))

22n
, (34)
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using Lemma 6 with a = 1, b = p′1 + (i − 1) and c = p′2 + (i − 1), and union
bound.

By definition of p′1, p
′
2 and q′, we have

q′ ≤ q ,

p′1 + (i− 1) ≤ p′1 + q′ ≤ p+ q ,

p′2 + (i− 1) ≤ p′2 + q′ ≤ p+ q .

Then, we conclude from (34) that

Pr[XO = τ ]

Pr[XP = τ ]
≥ 1− 4q(p+ q)2

22n
=: 1− ϵ .

E Proof of Theorem 8 on FPTP2

Let R1, . . . , Ru
$←− R, π1, π2

$←− Perm(n), and f1, . . . , fu
$←− Func(2n+1, n). Con-

sider any distinguisherD that has access to u+1 oracles: (O2R1
, . . . ,O2Ru

, π±1 , π
±
2 )

in the real world with

O2Ri(w, t, b) = FPTP2[π1, π2](w ⊕Ri, t)⊕ bRi = π2(π1(σ(w ⊕Ri))⊕ t)⊕ σ(w ⊕Ri)⊕ bRi ,

for i = 1, . . . , u, or (f1, . . . , fu, π
±
1 , π

±
2 ) in the ideal world. We require that D is

computational unbounded and deterministic. The distinguisher makes in total q
construction queries to its u construction oracles O1R1

, . . . ,O1Ru
or f1, . . . , fu,

where each of the u oracles is queried exactly q/u times, and B construction
queries per tweak across all oracles. These construction queries are summarized
in a transcript of the form

τ0 = {(w(1)
1 , t

(1)
1 , b

(1)
1 , z

(1)
i ), . . . , (w

(q/u)
1 , t

(q/u)
1 , b

(q/u)
1 , z

(q/u)
1 ), . . . ,

(w(1)
u , t(1)u , b(1)u , z(1)u ), . . . , (w(q/u)

u , t(q/u)u , b(q/u)u , z(q/u)u )} .

It also makes p primitive queries to π±1 and π±2 , and like before, these are summa-
rized in transcripts τ1 and τ2. We assume that τ1 and τ2 do not contain duplicate
elements, and that two different queries in τ0 cannot be the same when they be-
long to the same user. AfterD’s interaction with the oracles, but before it outputs
its decision, we disclose the random values R1, . . . , Ru to the distinguisher. In
the real world, these are the randomness for the message inputs of constructions.
In the ideal world, R1, . . . , Ru are dummy values that are drawn uniformly at
random. The complete view is denoted as τ = (τ0, τ1, τ2, R1, . . . , Ru).

Bad Events.We say that τ ∈ Tbad if and only if there exists construction queries

(w
(j)
i , t

(j)
i , b

(j)
i , z

(j)
i ), (w

(j′)
i′ , t

(j′)
i′ , b

(j′)
i′ , z

(j′)
i′ ) ∈ τ0 with (i, j) ̸= (i′, j′); primitive

queries (u, v) ∈ τ1 and (x, y) ∈ τ2 such that one of the following conditions
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holds:

bad1 : σ(w
(j)
i ⊕Ri) = u ∧ σ(w

(j)
i ⊕Ri)⊕ z

(j)
i ⊕ b

(j)
i Ri = y ,

bad2 : σ(w
(j)
i ⊕Ri) = u ∧ t

(j)
i ⊕ v ⊕ x = 0 ,

bad3 : t
(j)
i ⊕ v ⊕ x = 0 ∧ σ(w

(j)
i ⊕Ri)⊕ z

(j)
i ⊕ b

(j)
i Ri = y ,

bad4 : w
(j)
i ⊕Ri = w

(j′)
i′ ⊕Ri′ ,

bad5 : σ(w
(j)
i ⊕Ri)⊕ z

(j)
i ⊕ b

(i)
i Ri = σ(w

(j′)
i′ ⊕Ri′)⊕ z

(j′)
i′ ⊕ b

(i′)
i′ Ri′ ,

bad6 : σ(w
(j)
i ⊕Ri) = u ∧ σ(w

(j′)
i′ ⊕Ri′) = u′ ∧ v ⊕ t

(j)
i = v′ ⊕ t

(j′)
i′ ,

bad7 : σ(w
(j)
i ⊕Ri)⊕ z

(j)
i ⊕ b

(j)
i Ri = y ∧ σ(w

(j′)
i′ ⊕Ri′)⊕ z

(j′)
i′ ⊕ b

(j′)
i′ Ri′ = y′

∧ x⊕ t
(j)
i = x′ ⊕ t

(j′)
i′ .

Note that for any attainable transcript τ , τ /∈ Tbad implies that τ is a good
transcript.

Pr[XP ∈ Tbad]. We want to bound the probability that an ideal world tran-
script τ satisfies either of bad1-bad7. Therefore, the probability that τ ∈ Tbad is
given by

Pr[τ ∈ Tbad] ≤
7∑

i=1

Pr[badi] .

We first consider the bad event bad4. Since w
(j)
i and w

(j′)
i′ are both generated

uniformly at random, the probability that bad4 holds for fixed (i, j) ̸= (i′, j′) is
1/2n. Summing over all possible choices of (i, j) ̸= (i′, j′), we have

Pr[bad4] ≤
(
q

2

)
1

2n
.

Now, we consider the bad event bad1, it is sufficient to bound the event
bad1 | ¬bad4, and for each fixed choice of Ri (which is sampled uniformly at
random), the analysis is identical to the bad1 analysis in the single user proof.
For bad2 and bad3, consider the given set T = T1 ∪ · · · ∪ Tu ⊆ {0, 1}n of the
tweaks. Then, combining Lemma 3, there are µ(T1 ∪ · · · ∪ Tu, X, V ) possible

combination of t
(j)
i , (u, v) and (x, y) that satisfy

t
(j)
i ⊕ v ⊕ x = 0 .

For each fixed choice of Ri (which is sampled uniformly at random), the analysis
of bad2 and bad3 can be done in the same way as the case of single user proof.
The analysis of the bad events bad5 is identical to that of the single user case.

Finally, we consider the bad events bad6 and bad7. Using the fact that σ is
linear, we rewrite bad6 as

u⊕ u′ = σ(w
(j)
i )⊕ σ(w

(j′)
i′ )⊕ σ(∆R) ∧ v ⊕ v′ = t

(j)
i ⊕ t

(j′)
i′ ,
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with ∆R = Ri ⊕ Ri′ . Now we take ∆in = σ(w
(j)
i ) ⊕ σ(w

(j′)
i′ ) ⊕ σ(∆R) and

∆out = t
(j)
i ⊕ t

(j′)
i′ . Since Ri and Ri′ are chosen uniformly at random, we can

model that Ri and ∆R are also uniform independent. For each fixed choice of
Ri and ∆R, the rest of the analysis is identical to that of the single user case,
we have

Pr[bad6] ≤
1

2n
+

(
q

2

)
3n

|R|
.

For bad7, note that when b
(j)
i = b

(j′)
i′ , then the analysis is identical to the one

of bad6. We now still have to consider the case when b
(j)
i ̸= b

(j′)
i′ , we show it for

b
(j)
i = 0 and b

(j′)
i′ = 1 (the case b

(j)
i = 1 ∧ b

(j′)
i′ = 0 is entirely symmetric). We

first rewrite the first two equations of bad7 as

σ(w
(j)
i )⊕ z

(j)
i ⊕ y = σ ◦ σ′−1

(
σ(w

(j′)
i′ )⊕ z

(j′)
i′ ⊕ y′ ⊕ σ′(∆R)

)
= σ(Ri) ,

with σ′(x) = σ(x)⊕ x and ∆R = Ri ⊕Ri′ . Then we rewrite bad7 as

y ⊕ σ ◦ σ′−1(y′) = σ(w
(j)
i )⊕ z

(j)
i ⊕ σ ◦ σ′−1

(
σ(w

(j′)
i′ )⊕ z

(j′)
i′ ⊕ σ′(∆R)

)
∧

x⊕ x′ = t
(j)
i ⊕ t

(j′)
i′ .

Now we take ∆out = σ(w
(j)
i ) ⊕ z

(j)
i ⊕ σ ◦ σ′−1

(
σ(w

(j′)
i′ )⊕ z

(j′)
i′ ⊕ σ′(∆R)

)
and

∆in = t
(j)
i ⊕t

(j′)
i′ . Since Ri and Ri′ are chosen uniformly at random, we can model

that Ri and ∆R are also uniform independent. For each fixed choice of Ri and
∆R, and by applying Lemma 5, we get

Pr[bad7] ≤
2

2n
+

(
q

2

)
5n

|R|
.

Summing over these probabilities, we get

Pr[τ ∈ Tbad] ≤
5

2n
+

(2B + 1)qp2

2n |R|
+

p
√
3nq

|R|
+

2BΦ(T1 ∪ · · · ∪ Tu)p

|R|
+

4nq2

|R|
+

2q2

2n+1
.

(35)

Pr[XO = τ ]/Pr[XP = τ ]. The analysis of good transcripts of Theorem C
(Section D) is done in a similar way as the one performed in the single user
proof, except that u independent keys and u independent random functions are
consider. Henceforth the proof is omitted.

F Proof of Theorem 4 on FPTP1

Let R1, . . . , Ru
$←− R, π $←− Perm(n), and f1, . . . , fu

$←− Func(2n+1, n). Consider
any distinguisher D that has access to u + 1 oracles: (O1R1

, . . . ,O1Ru
, π±) in

the real world with

O1Ri
(w, t, b) = FPTP1[π](w ⊕Ri, t)⊕ bRi = π(π(σ(w ⊕Ri))⊕ t)⊕ σ(w ⊕Ri)⊕ bRi ,
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for i = 1, . . . , u, or (f1, . . . , fu, π
±) in the ideal world. We require D is com-

putational unbounded and deterministic. The distinguisher makes in total q
construction queries to its u construction oracles O1R1 , . . . ,O1Ru or f1, . . . , fu,
where each of the u oracles is queried exactly q/u times, and B construction
queries per tweak across all oracles. These construction queries are summarized
in a transcript of the form

τ0 = {(w(1)
1 , t

(1)
1 , b

(1)
1 , z

(1)
i ), . . . , (w

(q/u)
1 , t

(q/u)
1 , b

(q/u)
1 , z

(q/u)
1 ), . . . ,

(w(1)
u , t(1)u , b(1)u , z(1)u ), . . . , (w(q/u)

u , t(q/u)u , b(q/u)u , z(q/u)u )} .

It also makes p primitive queries to π±, and like before, these are summarized
in transcripts τ1. We require that that τ1 does not contain duplicate elements,
and that two different queries in τ0 cannot be the same when they belong to
the same user. After D’s interaction with the oracles, but before it outputs its
decision, we disclose the random values R1, . . . , Ru to the distinguisher. In the
real world, these are the randomness for the message inputs of the constructions.
In the ideal world, R1, . . . , Ru are dummy values that are drawn uniformly at
random. The complete view is denoted as τ = (τ0, τ1, R1, . . . , Ru).

Bad Events. We say that τ ∈ Tbad if there exist construction queries (w
(j)
i , t

(j)
i ,

b
(j)
i , z

(j)
i ), (w

(j′)
i′ , t

(j′)
i′ , b

(j′)
i′ , z

(j′)
i′ ) ∈ τ0 such that (i, j) ̸= (i′, j′), and primitive

queries (u, v), (u′, v′) ∈ τ1 such that one of the following conditions holds:

bad1 : σ(w
(j)
i ⊕Ri) = u ∧ σ(w

(j)
i ⊕Ri)⊕ z

(j)
i ⊕ b

(j)
i Ri = v′ ,

bad2 : σ(w
(j)
i ⊕Ri) = u ∧ t

(j)
i ⊕ v ⊕ u′ = 0 ,

bad3 : t
(j)
i ⊕ v ⊕ u′ = 0 ∧ σ(w

(j)
i ⊕Ri)⊕ z

(j)
i ⊕ b

(j)
i Ri = v′ ,

bad4 : w
(j)
i ⊕Ri = w

(j′)
i′ ⊕Ri′ ,

bad5 : σ(w
(j)
i ⊕Ri)⊕ z

(j)
i ⊕ b

(i)
i Ri = σ(w

(j′)
i′ ⊕Ri′)⊕ z

(j′)
i′ ⊕ b

(i′)
i′ Ri′ ,

bad6 : σ(w
(j)
i ⊕Ri) = u ∧ σ(w

(j′)
i′ ⊕Ri′) = u′ ∧ v ⊕ t

(j)
i = v′ ⊕ t

(j′)
i′ ,

bad7 : σ(w
(j)
i ⊕Ri)⊕ z

(j)
i ⊕ b

(j)
i Ri = v ∧ σ(w

(j′)
i′ ⊕Ri′)⊕ z

(j′)
i′ ⊕ b

(j′)
i′ Ri′ = v′

∧ u⊕ t
(j)
i = u′ ⊕ t

(j′)
i′ ,

bad8 : σ(w
(j)
i ⊕Ri) = u ∧ v ⊕ t

(j)
i = σ(w

(j′)
i′ ⊕Ri′) ,

bad9 : σ(w
(j)
i ⊕Ri)⊕ z

(j)
i ⊕ b

(j)
i Ri = v

∧ u⊕ t
(j)
i = σ(w

(j′)
i′ ⊕Ri′)⊕ z

(j′)
i′ ⊕ b

(j′)
i′ Ri′ .

Note that for any attainable transcript τ , τ /∈ Tbad implies that τ is a good
transcript.

Pr[XP ∈ Tbad]. We want to bound the probability that an ideal world tran-
script τ satisfies either of bad1-bad9. Therefore, the probability that τ ∈ Tbad is
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given by

Pr[τ ∈ Tbad] ≤
9∑

i=1

Pr[badi] .

Note that the analysis of the bad events bad1-bad7 are identical to that of two
permutation case in Supplementary Material E.

Finally, we consider the bad events bad8 and bad9. When i = i′, then we have
the single user case, we call the probability of this case Pr[badSU

8 ]. When i ̸= i′,
since Ri, Ri′ ← R are dummy values generated independently of τ0, τ1 and τ2,
the probability that the first equation of bad8 holds for fixed (i, j), (i′, j′) and

(u, v) is 1/ |R|2. Summing over all possible (i, j) ̸= (i′, j′) and (u, v), we have

Pr[bad8] ≤
q2p

2 |R|2
+ Pr[badSU

8 ] .

Same for the case of bad9. When i = i′, then we have the single user case,
we call the probability of this case Pr[badSU

9 ]. When i ̸= i′, since Ri, Ri′ ← R
are dummy values generated independently of τ0, τ1 and τ2. If b

(i)
i = b

(i′)
i′ , the

probability that the both equations of bad9 hold for fixed (i, j), (i′, j′) and

(u, v) is 1/ |R|2 as before. If b
(i)
i ̸= b

(i′)
i′ , this probability is at most 1/ |R|2 (see

Lemma 1). Together, we have

Pr[bad9] ≤
q2p

2 |R|2
+ Pr[badSU

9 ] .

Summing over these probabilities, we get

Pr[τ ∈ Tbad] ≤
7

2n
+

(2B + 1)qp2

2n |R|
+

p
√
3nq

|R|
+

2BΦ(T1 ∪ · · · ∪ Tu)p

|R|

+
6nq2

|R|
+

2q2

2n+1
+

q2p

|R|2
. (36)

Pr[XO = τ ]/Pr[XP = τ ]. The analysis of good transcripts of Theorem 3
(Section 5.3) is done in a similar way as the one performed in the single user
proof, except that u independent keys and u independent random functions are
consider. Henceforth the proof is omitted.
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