
Single-Server Private Information Retrieval
with Sublinear Amortized Time

Henry Corrigan-Gibbs1, Alexandra Henzinger1, and Dmitry Kogan2

1 MIT
2 Stanford

January 20, 2022

Abstract. We construct new private-information-retrieval protocols in
the single-server setting. Our schemes allow a client to privately fetch
a sequence of database records from a server, while the server answers
each query in average time sublinear in the database size. Specifically,
we introduce the first single-server private-information-retrieval schemes
that have sublinear amortized server time, require sublinear additional
storage, and allow the client to make her queries adaptively. Our pro-
tocols rely only on standard cryptographic assumptions (decision Diffie-
Hellman, quadratic residuosity, learning with errors, etc.). They work by
having the client first fetch a small “hint” about the database contents
from the server. Generating this hint requires server time linear in the
database size. Thereafter, the client can use the hint to make a bounded
number of adaptive queries to the server, which the server answers in sub-
linear time—yielding sublinear amortized cost. Finally, we give a lower
bound proving that our most efficient scheme is optimal with respect to
the trade-off it achieves between server online time and client storage.

1 Introduction

A private-information-retrieval protocol [34,35] allows a client to fetch a record
from a database server without revealing which record she has fetched. In the
simplest setting of private information retrieval, the server holds an n-bit database,
the client holds an index i ∈ {1, . . . , n}, and the client’s goal is to recover the
i-th database bit while hiding her index i from the server.

Fast protocols for private information retrieval (PIR) would have an array of
applications. Using PIR, a student could fetch a book from a digital library with-
out revealing to the library which book she fetched. Or, she could stream a movie
without revealing which movie she streamed. Or, she could read an online news
article without revealing which article she read. More broadly, PIR is at the heart
of a number of systems for metadata-hiding messaging [7,32], privacy-preserving
advertising [8,54,64,82], private file-sharing [37], private e-commerce [60], private
media-consumption [56], and privacy-friendly web browsing [66].

Unfortunately, the computational cost of private information retrieval is a
barrier to its use in practice. In particular, to respond to each client’s query,

Beimel, Ishai, and Malkin [14] showed that the running time of a PIR server
must be at least linear in the size of the database. This linear-server-time lower
bound holds even if the client communicates with many non-colluding database
replicas. So, for a client to privately fetch a single book from a digital library,
the library’s servers would have to do work proportional to the total length of
all of the books in the library, which is costly both in theory and in practice.

Towards reducing the server-side cost of PIR, a number of prior works [7,36,
58,62,73] observe that clients in many applications of PIR will make a sequence of
queries to the same database. For example, a student may browse many books in
a library; a web browser makes many domain name system (DNS) queries on each
page load [74]; a mail client may check all incoming URLs against a database of
known phishing websites [16,66]; or, an antivirus software may check the hashes
of executed files against known malware [66]. The lower bound of Beimel, Ishai,
and Malkin [14] only implies that a PIR server will take linear time to respond
to the client’s very first PIR query. This leaves open the possibility of reducing
the server-side cost for subsequent queries. In other words, in the multi-query
setting, we can hope for the amortized server-side time per query to be sublinear
in the database size.

Indeed, there exist an array of techniques for constructing PIR schemes with
sublinear amortized server-side cost. Yet, prior PIR schemes achieving sublin-
ear amortized time come with limitations that make them cumbersome to use
in practice. Schemes that require multiple non-colluding servers [36, 66, 83] de-
mand careful coordination between many business entities, which is a major
practical annoyance [4, 15, 75, 84]. In addition, the security of these schemes is
relatively brittle, since it relies on an adversary not being able to compromise
multiple servers, rather than on cryptographic hardness. Recent offline/online
PIR schemes [36, 66, 83] require, in the single-server setting, the server to per-
form a linear-time preprocessing step for each query. Thus, these schemes cannot
have sublinear amortized time. Batch-PIR schemes [7, 58, 62, 73], which require
the client to make all of her queries at once, in a single non-adaptive batch, do
not apply to many natural applications (e.g., digital library, web browsing), in
which the client decides over time which elements she wants to query.

The world of private-information-retrieval is thus in an undesirable state:
the practical applications are compelling, but existing schemes cannot satisfy
the deployment demands (single server, adaptive queries, small storage, based
on implementable primitives) while avoiding very large server-side costs.

1.1 Our results

This paper aims to advance the state of the art in private information retrieval by
introducing the first PIR schemes that simultaneously offer a number of impor-
tant properties for use in practice: they require only a single database server, they
have sublinear amortized server time, they allow the client to issue its database
queries adaptively, and they require extra storage sublinear in the database size
(Figure 1). Our schemes further rely only on standard cryptographic primitives
and incur no additional server-side (per client) storage, making them attractive

2

Client Server

query

response

Ω(n)
time
per

query

(a) Standard single-server PIR [68].

ClientClient Server
query 1

response 1
...

query Q
response Q

o(n)
avg.
time
per

query

o(n)
client

storage

(b) This work : Single-server, many-query PIR
with sublinear amortized time and storage.

Fig. 1: Comparison of single-server PIR models, on database size n.

even when many clients query a single database. One limitation of our schemes is
that they require more client-side storage and computation than standard PIR
schemes, though we give a lower bound showing that some of these costs are
inherent to achieving sublinear amortized server time. While the schemes in this
paper may not yet be concretely efficient enough to use in practice, they demon-
strate that sublinear-amortized-time single-server PIR is theoretically feasible.
We hope that future work pushes PIR even closer to practice.

Specifically, in this paper we construct two new families of PIR schemes:

Single-server PIR with sublinear amortized time from linearly homomorphic en-
cryption. First, we show in Theorem 4.1 that any one of a variety of standard
assumptions—including quadratic residuosity, decision Diffie-Hellman, decision
composite residuosity, and learning with errors—suffices to construct single-
server PIR schemes with sublinear amortized time. In particular, on database
size n, if the client makes at least n1/4 adaptive queries, our schemes have: amor-
tized server time n3/4, amortized communication complexity n1/2, client storage
n3/4, and amortized client time n1/2. (When describing protocol costs in this
section, we hide both log n factors and polynomials in the security parameter.)
More generally, the existence of linearly homomorphic encryption with suffi-
ciently compact ciphertexts and standard single-server PIR with polylogarithmic
communication together imply the existence of our PIR schemes. Our client-side
costs are much larger than those required for standard stateless PIR—which
needs no client storage and requires client time polylogarithmic in the database
size. Our schemes thus reduce server-side costs at some expense to the client.

Single-server PIR with sublinear amortized time and an optimal storage/online-
time trade-off from fully homomorphic encryption. Next, we show in Theorem 5.1
that under the stronger assumption that fully homomorphic encryption exists,
we can construct PIR schemes with even lower amortized server time and client
storage. In particular, we construct a PIR scheme that on database size n, and
as long as the client makes at least n1/2 queries, has amortized server time n1/2,
amortized communication complexity n1/2, client storage n1/2, and amortized
client time n1/2. (In contrast, from linearly homomorphic encryption, we get
schemes with larger server time and client storage n3/4.)

Lower bound on multi-query PIR. Finally, we give a new lower bound on PIR
schemes in the amortized (i.e., multi-query) setting. In the adaptive setting, we

3

show in Theorem 6.2 that any multi-query PIR scheme on database size n in
which: the client stores S bits between queries, the server stores the database in
its original form, and the server runs in amortized online time T , it must be that
ST ≥ n. This lower bound implies that our fully-homomorphic-encryption-based
PIR scheme achieves the optimal trade-off (up to log n factors and polynomials
in the security parameter) between online server time and client storage, when
the servers store the database in unmodified form.

1.2 Overview of techniques

We construct our new PIR schemes in two steps. First, we construct a new sort of
two-server PIR scheme. Second, we use cryptographic assumptions to “compile”
the two-server scheme into a single-server scheme.

Step 1: Two-server offline/online PIR with a single-server online phase.
In the first step (Section 3), we design a new type of two-server offline/online PIR
scheme [36]. The communication pattern of the two-server schemes we construct
is as follows:

1. Offline phase. In a setup phase, the client sends a setup request to the first
server (the “offline server”). The offline server runs in time at least linear in
the database size and returns to the client a “hint” about the database state.
The hint has size sublinear in the length of the database.

2. Online phases (runs once for each of Q queries). Whenever the client wants
to make a PIR query, it uses its hint to issue a query to the second server
(the “online server”). The online server produces an answer to the query in
time sublinear in the database size and returns its answer to the client. The
total communication in this step is sublinear in the database size.

The client can run the online phase Q times—for some parameter Q deter-
mined by the PIR scheme—using the same hint and without communicating
with the offline server. After Q queries, the client discards its hint and reruns
the offline setup phase from scratch.

Prior offline/online PIR schemes [36] require the client to communicate with
both servers in the online phases, whenever the client makes multiple queries
with the same hint. (If the client only ever makes a single query, the client can
communicate with only one server in the online phase, but then the scheme
cannot achieve sublinear amortized time.) In contrast, our schemes crucially
allow the client to only communicate with a single server (the online server) in
the online phase. Unlike schemes for private stateful information retrieval [77],
the online phase in our scheme runs in sublinear time.

To build our two-server offline/online PIR scheme, we give a generic tech-
nique for “compiling” a two-server PIR scheme that supports a single query
with sublinear online time into one that supports multiple queries with sublin-
ear online time. Plugging the existing single-query offline/online PIR schemes
with sublinear online time [36, 83] into this compiler completes the two-server
construction.

4

Provided that the offline server time is Õ(n) and the number of supported
queries is at least nε, for constant ε > 0, this two-server scheme already allows
adaptive queries and has sublinear total amortized time and sublinear client
storage. The only limitation is that it requires two non-colluding servers.

Step 2: Converting a two-server scheme to a one-server scheme. The
last step (Sections 4 and 5) is to convert the two-server PIR scheme into a one-
server scheme. Following Corrigan-Gibbs and Kogan [36], we have the client en-
crypt the hint request that she sends to the offline server using a fully homomor-
phic encryption scheme. (As we discuss in Section 4, Aiello, Bhatt, Ostrovsky,
and Rajagopalan [2] proposed a similar technique for converting multi-prover
proof systems to single-prover proof systems, formalizing the approach of Biehl,
Meyer, and Wetzel [18].) The offline server can then homomorphically answer
the client’s hint request in the offline phase while learning nothing about it. At
this point, the client can execute both the offline and online phases with the
same server, which completes the construction.

To construct the PIR schemes from weaker assumptions (linearly homo-
morphic encryption), we exploit the linearity of the underlying two-server PIR
scheme. In particular, we show that the hint that the client downloads from
the offline server corresponds to a client-specified linear function applied to the
database. With a careful balancing of parameters and application of linearly ho-
momorphic encryption and standard single-server PIR, we show that the client
can obtain this linear function without revealing it to the database server.

The construction of our most asymptotically efficient PIR scheme, which
appears in Section 5, implicitly follows essentially the same two-step strategy.
The only difference is that achieving the improved efficiency requires us to design
a new two-server offline/online PIR scheme for multiple queries from scratch. The
offline phase of this scheme requires the server to compute non-linear functions
of the client query—and thus requires fully homomorphic encryption—but the
online time of the scheme is lower, which is the source of efficiency improvements.

Lower bound. Our lower bound (Theorem 6.2) relates the number S of bits of
information the client stores between queries and the amortized online time T
of the PIR server, for PIR schemes in which the server stores the database in
unmodified form. In particular, we show that ST = Ω̃(n). To prove this lower
bound, we show that if there is a single-server PIR scheme with client storage S
and amortized online T , there exists a two-server offline/online PIR scheme for
a single query with hint size S and online time T . Then, applying existing lower
bounds on such schemes [36] completes the proof.

1.3 Related work

Multi-server PIR. Chor, Goldreich, Kushilevitz, and Sudan [35] introduced
private information retrieval and gave the first protocols, which were in the
multi-server information-theoretic setting and achieved communication O(n1/3).

5

Table 2: A comparison of single-server, many-query PIR schemes. We present the per-
query, asymptotic costs of each scheme, on a database of size n, where each of m clients,
of which at most m may be corrupted, makes an unbounded sequence of queries. We
omit poly-logarithmic factors in n and m, along with polynomial factors in the security
parameter. For lower bounds, we denote the extra client storage by S. We use ε as an
arbitrarily small, positive constant. We amortize the costs over the number of queries
that minimizes the per-query costs. For each scheme, the table indicates:

– the additional cryptographic assumptions made beyond single-server PIR with poly-
logarithmic communication,

– the number of queries (per client) over which we amortize,

– whether the client makes her queries adaptively or as a batch,

– the amortized number of bits communicated per query,

– the amortized client and server time per query, and

– the additional number of bits stored by the client and the server between queries.

For schemes in the offline/online model, the communication and computation costs are
taken to be the sum of the offline costs, amortized over the number of queries supported
by a single offline phase, and the online costs. The extra server storage does not include
the n-bit database, stored by the server. The extra client storage does not include the
indices queried, even if these indices are queried as a batch.

Per-query time Extra storage

Scheme (extra assumptions) P
er

-c
li
en

t
q
u
er

ie
s

A
d
a
p
ti

v
e?

P
er

-q
u
er

y
co

m
m

.

Client Server Client Server

Batch PIR [6, 58,62] Q × 1 1 n
Q

0 0

Stateful PIR [77] n1/2 X n1/2 n n † n1/2 0
Single-query single-server PIR

Standard [28,68] 1 X 1 1 n 0 0

Offline/online [36] 1 X n2/3 n2/3 n n2/3 0

Offline/online [36] (FHE) 1 X n1/2 n1/2 n n1/2 0
Download entire DB n1−ε X nε nε nε n 0
Doubly-efficient PIR

Secret key (OLDC) [25,29] n1−ε X nε nε nε 1 mn
Public key (OLDC+VBB) [25] 1 ∗ X nε nε nε 0 n

Private anonymous data access
Read-only [57] (FHE) 1 ∗ X m m m m mn1+ε

This work

Theorem 4.1 (LHE) n1/4 X n1/2 n1/2 n3/4 n3/4 0

Theorem 5.1 (FHE) n1/2 X n1/2 n1/2 n1/2 n1/2 0

Lower bounds, for Q queries, on schemes storing the database in its original form
Standard PIR [14] × – – ≥ n

Q
– –

This work (Theorem 6.2) X – – ≥ n
S

S 0
† The number of public-key operations is n1/2.
∗ This number of per-client queries assumes that the total number of clients, m, grows sufficently

large.

6

A sequence of works [5,11,12,21,22,33,40,43,48,88] then improved the communi-
cation complexity of PIR, and today’s PIR schemes can achieve sub-polynomial
communication complexity in the information-theoretic setting [40] and logarith-
mic communication complexity in the computational setting [22]. Multi-server
PIR schemes are more efficient, both in terms of communication and computa-
tion, than single-server schemes. However, the security of multi-server PIR relies
on non-collusion between the servers, which can be hard to guarantee in practice.

Single-server PIR. Kushilevitz and Ostrovsky [68] presented the first single-
server PIR schemes, based on linearly homomorphic encryption. A sequence of
works then improved the communication complexity of single-server PIR, and
showed how to construct PIR schemes with polylogarithmic communication from
a wide range of public-key assumptions, such as the φ-hiding assumption [28,46],
the decisional composite-residuosity assumption [30, 71], the decisional Diffie-
Hellman assumption [39], and the quadratic-residuosity assumption [39].

Recent works [1, 4, 6, 45, 75] have used lattice-based encryption schemes to
improve the concrete efficiency of single-server PIR, in terms of both communi-
cation and computation. The goal is to get the most efficient single-server PIR
schemes subject to the linear-server-time lower bound. These techniques are
complementary to ours, and applying lattice-based optimizations to our setting
could improve the concrete efficiency of our protocols.

Computational overhead of PIR. All early PIR protocols required the servers
to perform work linear in the database size when responding to a query. Beimel,
Ishai, and Malkin [14] showed that this is inherent, giving an Ω(n) lower bound
on the server time. Their lower bound applies to both multi-server and single-
server schemes with either information-theoretic or computational security.

Many lines of work have sought to construct PIR schemes with lower com-
putational costs, which circumvent the above linear lower bound:

– PIR with preprocessing denotes a class of schemes in which the server(s) store
the database in encoded form [13, 14, 87], which allows them to respond to
queries in time sublinear in the database size. The first such schemes tar-
geted the multi-server setting. Recent work [25, 29] applies oblivious locally
decodable codes [19, 23, 24] to construct single-server PIR schemes with sub-
linear server time, after a one-time database preprocessing step. However,
these schemes require extra server-side storage per client that is linear in the
database size. While an idealized form of program obfuscation [9] can be used
to drastically reduce this storage [25], the lack of concretely efficient candidate
constructions for program obfuscation rules out the use of these schemes for
the time being. In contrast, the single-server schemes in this paper require
only standard assumptions.

“Offline/online PIR” schemes use a different type of preprocessing: the client
and server run a one-time linear-complexity offline setup process, during which
the client downloads and stores information about the database. After that,
the client can make queries to the database, and the server can respond in
sublinear time. Previous works [36, 66, 83] mostly focus on the two-server

7

setting, where they achieve sublinear amortized time. In the single-server
setting, previous offline/online PIR schemes [36] allow for only a single online
query after each execution of the offline phase. As a result, in the single-server
setting, the cost of each query is still linear in the database size.

Finally, Lipmaa [72] constructs single-server PIR with slighly sublinear time
by encoding the database as a branching program that is obliviously evaluated
in O(n

logn) operations. The schemes in this work achieve significantly lower
amortized time, yet require the client to make multiple queries.

– Make queries in a non-adaptive batch: When the client knows the entire se-
quence of database queries she will make in advance, the client and server
can use “batch PIR” schemes [6,7,31,55,58,59,62] to achieve sublinear amor-
tized server time. The multi-server scheme of Lueks and Goldberg [73] allows
the servers to simultaneously process a batch of queries from different clients,
and achieves sublinear per-query time. Our schemes require only one server
and achieve sublinear amortized time, even given a single client making her
queries in an adaptive sequence.

– Download and store the entire database: If the client has enough storage space,
she can keep a local copy of the entire database. The server pays a linear
cost to ship the database to the client, but the client can answer subsequent
database queries on her own with no server work. In contrast, the schemes in
this paper avoid having to store the entire database at the client.

– Settle on a sublinear number of public-key operations: Private stateful infor-
mation retrieval [77] schemes improve the concrete efficiency of single-server
PIR by having the server do a sublinear number of public-key operations for
each query. Such schemes [75, 77] still require a linear number of symmetric
key and plaintext operations for each query. In contrast, the schemes in this
paper require sublinear amortized work of any kind, per query.

Communication lower bounds on PIR. A series of works give bounds on
the communication required for multi-server PIR [49,86]. Single-server PIR con-
structions match the trivial log n lower bound (up to polylogarithmic factors).

Lower bounds for PIR with preprocessing. Beimel, Ishai, and Malkin [13]
proved that if a server can store an S-bit hint and run in amortized time T , then
it must hold that ST ≥ n. Persiano and Yeo [78] recently improved this lower
bound to ST ≥ n log n in the single-server case. In this paper, we are interested
in offline/online PIR schemes, in which the client store the hint, and the server
stores the database in unmodified form.

Lower bounds on oblivious RAM. Recent work proves strong limits on the
performance of oblivious-RAM [51] schemes [26, 63, 67, 69, 70]. These schemes
allow the server to maintain per-client state; in our setting of PIR, the server is
stateless. The PIR setting thus requires different lower-bound approaches [13].

8

2 Background

Notation. We write the set of positive integers as N. For an integer n ∈ N,
we write [n] = {1, . . . , n} and we write the empty set as ∅. We ignore issues of
integrality, and treat numbers such as n1/2 and n/k as integers. We use poly(·) to
denote a fixed polynomial in its argument. We use the standard Landau notation
O(·) and Ω(·) for asymptotics. When the big-O contains multiple variables, such
as f(n) = O(n/S), all variables other than n are implicit functions of n (which

is the database size when it is not made explicit). The notation Õ(f(n)) hides

polylogarithmic factors in the parameter n, and Õλ(·) hides poly(log n, λ) factors.
For a finite set X , x←R X denotes an independent and uniformly random draw
from X . When unspecified, we take all logarithms base two.

We work in the RAM model, with word size logarithmic in the input length
(i.e., database size n) and polynomial in the security parameter λ. We give
running times up to poly(log n, λ) factors, which makes our results relatively
independent of the specifics of the computational model. An “efficient algorithm”
is one that runs in probabilistic polynomial time in its inputs and in λ.

2.1 Standard definitions

We begin by defining the standard cryptographic primitives that this work uses.

Pseudorandom permutations. We use the standard notion of pseudorandom
permutations [50]. On security parameter λ ∈ N, a domain size n ∈ N, and a key
space Kλ, we denote a pseudorandom permutation by PRP : Kλ × [n]→ [n].

Definition 2.1 (Linearly homomorphic encryption). Let (Gen,Enc,Dec)
be a public-key encryption scheme. The scheme is linearly homomorphic if, for
every keypair (sk, pk) that Gen outputs,

– the message space is a group (Mpk,+),

– the ciphertext space is a group (Cpk, ·), and

– for every pair of messages m0,m1 ∈Mpk, it holds that

Dec(sk,Enc(pk,m0) · Enc(pk,m1) ∈ Cpk) = Dec(sk,Enc(pk,m0 +m1 ∈Mpk)).

Definition 2.2 (Gate-by-gate fully homomorphic encryption). We use
(FHE.Gen, FHE.Enc, FHE.Dec, FHE.Eval) to denote a symmetric-key fully homo-
morphic encryption scheme [44]. We say a scheme is a gate-by-gate fully homo-
morphic encryption scheme if the homomorphic evaluation routine FHE.Eval on
a circuit of size |C| and security parameter λ runs in time |C| · poly(log |C| , λ).
Standard fully homomorphic encryption schemes are gate-by-gate [27,44,47].

2.2 Definition of offline/online PIR

Throughout, we present our new single-server PIR schemes in an offline/online
model [36,77]. That is, the client first interacts with the server in an offline phase

9

to obtain a succinct “hint” about the database contents. This hint allows the
client to make many queries in a subsequent online phase. Provided that the
server-side cost is low enough in both phases, the server’s total amortized time
(including the cost of both phases) will be sublinear in the database size.

We now give definitions for one- and two-server offline/online PIR schemes
that support many adaptive queries. Our definition of offline/online PIR differs
from that of prior work in one important way [36, 66]. In our definition, in the
two-server setting, the client may only communicate with a single server in the
online phase. Prior two-server offline/online PIR schemes [36,66] allow the client
to communicate with both servers in the online phase.

Definition 2.3 (Offline/online PIR for adaptive queries). An offline/online
PIR scheme for adaptive queries is a tuple of polynomial-time algorithms:

– HintQuery(1λ, n) → (ck, q), a randomized algorithm that takes in a security
parameter λ and a database length n ∈ N, and outputs a client key ck and a
hint request q,

– HintAnswer(D, q) → a, a deterministic algorithm that takes in a database
D ∈ {0, 1}n and a hint request q, and outputs a hint answer a,

– HintReconstruct(ck, a) → h, a deterministic algorithm that takes in a client
key ck and a hint answer a, and outputs a hint h,

– Query(ck, i) → (ck′, st, q), a randomized algorithm that takes in a client key
ck and an index i ∈ [n], and outputs an updated client key ck′, a client query
state st, and a query q,

– AnswerD(q)→ a, a deterministic algorithm that takes in a query q, and gets
access to an oracle that:

• takes as input an index j ∈ [n], and

• returns the j-th bit of the database Dj ∈ {0, 1},
and outputs an answer string a, and

– Reconstruct(st, h, a) → (h′, Di), a deterministic algorithm that takes in a
query state st, a hint h, and an answer string a, and outputs an updated
hint h′ and a database bit Di.

In a deployment, (HintQuery,HintAnswer,HintReconstruct) are executed in the of-
fline phase, while (Query,Answer,Reconstruct) are executed in each online phase.
Furthermore, we say that the PIR scheme supports Q adaptive queries if it sat-
isfies the following notions of (1) correctness and (2) security for Q queries:

Correctness for Q queries. We require that if a client and a server cor-
rectly execute the protocol, the client can recover any Q database records of its
choosing, even if the client chooses these records adaptively. Formally, a multi-
query offline/online PIR scheme Π satisfies correctness for Q queries if for every
λ, n ∈ N, D ∈ {0, 1}n, and every (i1, . . . , iQ) ∈ [n]Q, Experiment 2.1 outputs “1”
with probability 1− negl(λ).

Security for Q queries. We require that an adversarial (malicious) server
“learns nothing” about which sequence of database records the client is fetch-

10

Experiment 2.1 (Correctness).
Parameterized by a PIR scheme Π,
security parameter λ ∈ N, number of
queries Q ∈ N, database size n ∈ N,
database D ∈ {0, 1}n, and query
sequence (i1, . . . , iQ) ∈ [n]Q.

– Compute:

(ck, q)← Π.HintQuery(1λ, n)

a← Π.HintAnswer(D, q)

h← Π.HintReconstruct(ck, a)

– For t = 1, . . . , Q, compute:

(ck, st, q)← Π.Query(ck, it)

a← Π.AnswerD(q)

(h, vi)← Π.Reconstruct(st, h, a)

– Output “1” if vt = Dit for all
t ∈ [Q]. Output “0” otherwise.

Experiment 2.2 (Security). Pa-
rameterized by an adversary A, PIR
scheme Π, number of servers k ∈
{1, 2}, security parameter λ ∈ N, num-
ber of queries Q ∈ N, database size n ∈
N, and bit b ∈ {0, 1}.
– Compute:

(ck, q)← Π.HintQuery(1λ, n)

If k = 1: // Single-server security

st← A(1λ, q)

Else: // Two-server security

st← A(1λ)

– For t = 1, . . . , Q, compute:

(st, i0, i1)← A(st)

(ck, , q)← Π.Query(ck, ib)

st← A(st, q)

– Output b′ ← A(st).

ing, even if the adversary can adaptively choose these indices. In the single-server
setting, where the same server runs both the offline and online phase, the adver-
sary is first given the hint request. In the two-server setting, where a separate
server runs the offline phase, the adversary only sees the online queries. (This
is sufficient, as an adversarial offline server trivially learns nothing about the
client’s queries since the hint request does not depend on these queries.)

Formally, for an adversary A, multi-query offline/online PIR scheme Π, num-
ber of servers k ∈ {1, 2}, security parameter λ ∈ N, database size n ∈ N, and bit
b ∈ {0, 1}, let WA,k,λ,Q,n,b be the event that Experiment 2.2 outputs “1” when
parameterized with these values. We define the Q-query PIR advantage of A:

PIRAdvk[A, Π](λ, n) := |Pr[WA,k,λ,Q,n,0]− Pr[WA,k,λ,Q,n,1]| .

We say that a multi-query offline/online PIR scheme Π is k-server secure if,
for all efficient algorithms A, all polynomially bounded functions n(λ), and all
λ ∈ N, PIRAdvk[A, Π](λ, n(λ)) ≤ negl(λ).

Definition 2.4 (Sublinear amortized time). We say that an offline/online
PIR scheme has sublinear amortized time if the there exists a number of queries
Q ∈ N such that the total server time required to run the offline and online
phases for Q queries on a database of size n is o(Qn). More formally, for every
choice of the security parameter λ ∈ N, database size n ∈ N, and query sequence
(i1, . . . , iQ) ∈ [n]Q, the total running time of HintAnswer (executed once) and
Answer (executed Q times) in Experiment 2.1 must be o(Qn).

11

Remark 2.5 (Handling an unbounded number of queries). A scheme with sub-
linear amortized time for some number of queries Q ∈ N immediately implies
a scheme with sublinear amortized time for any larger number of queries, in-
cluding a number that is a-priori unbounded. One can obtain such a scheme by
“restarting” the scheme every Q queries and rerunning the offline phase from
scratch. The amortized costs remain the same.

Remark 2.6 (Malicious security). In our definition (Definition 2.3), following
prior work [36], the client’s queries do not depend on the server’s answers to prior
queries. In this way, our PIR schemes naturally protect client privacy against
a malicious server—the server learns the same information about the client’s
queries whether or not the server executes the protocol faithfully.

Remark 2.7 (Correctness failures). Our definition does not require that correct-
ness holds if the client makes a sequence of queries that is correlated with the
randomness it used to generate the hint request. A stronger correctness definition
would guarantee correctness in all cases (i.e., with probability one). Strengthen-
ing our PIR schemes to provide this form of correctness represents an interesting
challenge for future work.

Remark 2.8 (Handling database changes). In many natural applications of pri-
vate information retrieval, the database contents change often. Näıvely, when-
ever the database contents change, the client and server would need to rerun
the costly hint-generation process. In the limit—when the entire contents of the
database changes between a client’s queries—rerunning the hint-generation step
is inherently required. When the database changes more slowly, prior work on
offline/online PIR [66], building on much earlier work in dynamic data struc-
tures [17], shows how to update the client’s hint at modest cost. In particular,
when a constant number of database rows change between each pair of client
queries, the scheme’s costs do not change, up to factors in the security parameter
and logarithmic in the database size. These techniques from prior work apply
directly to our setting, so we do not discuss them further.

3 Two-server PIR with a single-server online phase
and sublinear amortized time

In this section, we give a generic construction that converts a two-server of-
fline/online PIR scheme that supports a single query into a two-server offline/online
PIR scheme that supports any number of adaptive queries. The transformation
has three useful properties:

1. If the original PIR scheme has linear offline server time, then the resulting
multi-query scheme has linear offline server time as well.

2. If the original PIR scheme has sublinear online server time, then the resulting
multi-query scheme has sublinear online server time as well.

12

3. During the online phase—when the client is making its sequence of adaptive
queries—the client only communicates with one of the servers. (In contrast,
prior two-server PIR schemes with sublinear amortized time [36, 66] require
the client to communicate with both servers in the online phase.)

After presenting the generic transformation (Lemma 3.1) in this section, we
instantiate this transformation in Section 4 and use it to construct single-server
PIR schemes with sublinear amortized time.

Lemma 3.1 (The Compiler Lemma). Let Π be a two-server offline/online
PIR scheme that supports a single query. Then, for any database size n ∈ N,
security parameter λ ∈ N, and number of queries Q < n, Construction 3.5,
when instantiated with a secure pseudorandom permutation, is a two-server of-
fline/online PIR scheme that supports Q adaptive queries and whose offline and
online phases have communication, computation, and client storage costs domi-
nated by running O(λQ) instances of Π, each on a database of size n/Q.

To prove the lemma, we must show that the scheme of Construction 3.5
satisfies the claimed efficiency properties, along with correctness and security.
Efficiency follows by construction. We give the full correctness and security ar-
guments in Appendix A.

Remark 3.2. In the PIR scheme implied by Lemma 3.1, the online-phase upload
communication (from the client to server) is in fact only as large as the upload
communication required for running a single instance of the underlying PIR
scheme Π on a database of size n/Q.

Before giving the construction that proves Lemma 3.1, we describe the idea
behind our approach. We take inspiration from the work of Ishai, Kushilevitz,
Ostrovsky, and Sahai [62], who construct “batch” PIR schemes, in which the
client can issue a batch of Q queries at once, and the server can respond to all Q
queries in time Õ(n). (In contrast, answering Q queries using a non-batch PIR
scheme requires server time Ω(Qn).) The crucial difference between our PIR
schemes and prior work on batch PIR is that our schemes allow the client to
make its Q queries adaptively, rather than in a single batch all at once.

Our idea is to first permute the database according to a pseudorandom per-
mutation and then partition the n database records into Q chunks, each of size
n/Q. The key observation is that, if the client makes Q adaptive queries, it is
extremely unlikely that the client will ever need to query any chunk more than λ
times. In particular, by a balls-in-bins argument, the probability, taken over the
random key of the pseudorandom permutation, that any chunk receives more
than λ queries is negligible in λ.

Then, given a two-server offline/online PIR scheme Π for a single query, we
construct a two-server offline/online PIR scheme for many queries as follows:

– Offline phase. The client and the offline server run the offline phase of Π on
each of the Q database chunks λ times. For each of the Q database chunks,
the client then holds λ client keys and hints.

13

– Online phase. Whenever the client wants to make a database query, it iden-
tifies the chunk in which its desired database record falls. The client finds
an unused client key for that chunk and runs the online phase of Π for that
chunk to produce a query. The client sends the query to the online server,
who answers that query with respect to each of the Q database chunks. Using
the online server’s answers, the client can reconstruct its database record of
interest. Crucially, the client’s query does not reveal to the server the chunk
in which its desired database record falls. Finally, the client then deletes the
client key and hint that it used for this query.

The formal description of our protocol appears in Construction 3.5.

Remark 3.3. Construction 3.5 uses a pseudorandom permutation (PRP) to per-
mute and partition the database. The client then reveals the PRP key it used for
this partitioning to the server. Crucially, the security of our construction does
not rely on the pseudorandomness of the PRP. The PRP security property only
appears in the correctness argument of our scheme (Appendix A). So, revealing
the PRP key to the server in this way has no effect on the security of the scheme.

Remark 3.4 (Reducing online download). In the online phase of Construction 3.5,
the online server’s answer to the client consists of a vector of Q answers a =
((a)1, . . . , (a)Q). The client uses only one of these answers (a)j∗ . To reduce down-
load cost, the client and server can run a single-server PIR protocol, where the
server’s input is the database a of Q answers and the client’s input is the index
j∗ ∈ [Q] of it’s desired answer. This reduces the client’s online download cost by
a factor of Q, at the cost of requiring the server to perform Oλ(Q) public-key
operations in the online phase.

4 Single-server PIR with sublinear amortized time
from DCR, QR, DDH, or LWE

In this section, we use the general transformation of Section 3 to construct the
first single-server PIR schemes with sublinear amortized total time and sublinear
client storage, relying on only standard cryptographic assumptions.

These constructions work in two steps:

– First, we use the Compiler Lemma (Lemma 3.1) to convert a two-server of-
fline/online PIR scheme for a single query into a two-server offline/online PIR
scheme for multiple adaptive queries, in which the client only communicates
with a single server in the online phase.

– Next, we use linearly homomorphic encryption and single-server PIR to al-
low the client and server to run the offline phase of the two-server scheme
without leaking any information to the server. At this point, we can execute
the functionality of both servers in the two-server scheme using just a single
server. In other words, we have constructed a single-server offline/online PIR
scheme that supports multiple adaptive queries.

14

Construction 3.5 (Two-server offline/online PIR for Q adaptive queries
with a single-server online phase). The scheme uses a single-query two-server
offline/online PIR scheme Π and a pseudorandom permutation PRP : Kλ × [n]→
[n]. The scheme is parameterized by a maximum number of queries Q = Q(n) < n.

I. Offline phase.

HintQuery(1λ, n)→ (ck, q).

1. For j ∈ [Q] and ` ∈ [λ]: ((ĉk)j`, (q̂)j`)← Π.HintQuery(1λ, n/Q).

2. Sample k ←R Kλ, set ck← (k, ĉk, ∅), and set q ← (k, q̂).

3. Return (ck, q).

HintAnswer(D, q)→ a.

1. Parse (k, q̂)← q.

2. // Permute the database according to PRP(k, ·) and divide it into Q chunks.
For j ∈ [Q]: Cj ← (DPRP(k,(j−1)(n/Q)+1)‖ . . . ‖DPRP(k,(j+1)(n/Q))) ∈ {0, 1}n/Q.

3. For j ∈ [Q] and ` ∈ [λ]: (a)j` ← Π.HintAnswer(Ci, (q̂)j`).

4. Return a.

HintReconstruct(ck, a)→ h.

1. For j ∈ [Q] and ` ∈ [λ]: (ĥ)j` ← Π.HintReconstruct((ck)j`, (a)j`).

2. Set cache← {}. // An empty map (associative array) data structure.

3. Return h = (ĥ, cache).

II. Online phase.

Query(ck, i)→ (ck′, st, q).

1. Parse (k, ĉk, queried)← ck.

2. Find (the unique) integers i∗ ∈ [n/Q] and j∗ ∈ [Q] such that PRP(k, i) =
(j∗ − 1)(n/Q) + i∗.

3. Find `∗ ∈ [λ] such that (ck)j∗`∗ 6= ⊥.

– If no such `∗ exists or i ∈ queried, sample i∗ ←R [n/Q] and choose a random
j∗ ∈ [Q] and `∗ ∈ [λ] out of those for which (ck)j∗`∗ 6= ⊥.

4. Let (, st′, q′)← Π.Query((ĉk)j∗`∗ , i
∗).

5. Let (ĉk)j∗`∗ ← ⊥, let st ← (st′, i, j∗, `∗), let q ← (k, q′), and let ck′ ←
(k, ĉk, queried ∪ {i}).

6. Return (ck′, st, q).

AnswerD(q)→ a.

1. Parse (k, q′)← q.

2. For j ∈ [Q]: (a)j ← Π.AnswerOj (q′), where Oj(x) := DPRP(k,(j−1)(n/Q)+x).

3. Return a.

Reconstruct(st, h, a)→ (h′, Di).

1. Parse (st′, i, j∗, `∗)← st and parse (ĥ, cache)← h.

2. If cache[i] is not set, let cache[i]← Π.Reconstruct(st′, (ĥ)j∗`∗ , (a)j∗).

3. Set Di ← cache[i]. Set h′ ← (ĥ, cache).

4. Return (h′, Di).

15

The idea of using homomorphic encryption to run a two-server protocol on a
single server arose first, to our knowledge, in the domain of multi-prover interac-
tive proofs. Aiello, Bhatt, Ostrovsky, and Rajagopalan [2] formalized this general
approach, which was initially proposed by Biehl, Meyer, and Wetzel [18]. Subse-
quent work demonstrated that compiling multi-prover proof systems to single-
prover systems requires care [38,41,42,65,85] (in particular it requires the under-
lying proof system to be sound against “no-signaling” provers [85]). Corrigan-
Gibbs and Kogan [36] used homomorphic encryption to convert a two-server
PIR scheme to a single-server offline/online PIR scheme that supports a single
query in sublinear online time. Our contribution is to construct a single-server
PIR scheme that supports multiple, adaptive queries and that thus achieves
sublinear amortized total time.

We now show that any one of a variety of cryptographic assumptions—the
Decision Composite Residuosity assumption [71, 76], the Quadratic Residuosity
assumption [52], the Decision Diffie-Hellman assumption [20], or the Learning
with Errors assumption [81]—suffices for constructing single-server PIR with
sublinear amortized time:

Theorem 4.1 (Single-server PIR with sublinear amortized time). Un-
der the DCR, LWE, QR, or DDH assumptions, there exists a single-server of-
fline/online PIR scheme that, on database size n, security parameter λ, and as
long as the client makes at least n1/4 adaptive queries, has

– amortized communication Õλ(n1/2),

– amortized server time Õλ(n3/4),

– amortized client time Õλ(n1/2), and

– client storage Õλ(n3/4).

The proof of Theorem 4.1 will make use of the following two-server of-
fline/online PIR scheme which is implicit in prior work.

Lemma 4.2 (Implicit in Theorem 20 of CK20 [36]). There is a two-server
offline/online PIR scheme (with information-theoretic security) that supports a
single query on database size n such that, in the offline phase:

– the client uploads a vector q ∈ {0, 1}n to the offline server,

– the offline server computes the inner product of the database with all n cyclic
shifts of the query vector q (in Õ(n) time using a fast Fourier transform),

– the client downloads Õ(
√
n) bits of the resulting matrix-vector product

and, in the online phase:

– the client uploads Õ(
√
n) bits to the online server,

– the online server runs in time Õ(
√
n), and

– the client downloads one bit.

Proof of Theorem 4.1. The proof works in two main steps. First, we use Lemma 3.1
to “compile” the single-query two-server PIR scheme of Lemma 4.2 into a multi-
query two-server PIR scheme. Second, we use linearly homomorphic encryption—

16

following the work of Corrigan-Gibbs and Kogan [36] in the single-query setting—
to allow a single server to implement the role of both servers.

Step 1: A stepping-stone two-server scheme. Our first step is to construct
a two-server offline/online PIR scheme that: (a) supports multiple queries, (b)
has sublinear online time, and (c) requires only one server in the online phase.
To complete this step, we use the Compiler Lemma (Lemma 3.1) to convert the
two-server PIR scheme of Lemma 4.2 into a two-server PIR scheme that satisfies
these three goals.

In particular, Lemma 3.1 and Lemma 4.2 together imply a two-server of-
fline/online PIR scheme that supports any number of queries Q < n, and whose
offline and online phases consist of running O(λQ) instances of the PIR scheme
of Lemma 4.2 on databases of size n/Q. The resulting scheme then has the
following structure in the offline phase:

– the client uploads Õλ(Q) bit vectors to the offline server, each of size n/Q,

– the offline server applies a length-preserving linear function to each vector (in
quasi-linear time, as in the Lemma 4.2 scheme),

– the client downloads a total of Õλ(
√
Qn) bits from the vectors that the server

computes.

And in the online phase,

– the client uploads Õλ(
√
Qn) bits to the online server,

– the online server runs in time Õλ(
√
Qn), and

– the client downloads Õλ(Q) bits.

This scheme requires the existence of one-way functions.
As desired, this scheme supports multiple queries, has sublinear online time

(whenever Q� n), and requires only one server in the online phase. The offline

upload cost and the client time of the scheme are Ω̃λ(n)—linear in the database
size, but we remove this limitation later on.

Step 2: Using homomorphic encryption to run the two-server scheme
on one server. Next, we show that the client can fetch the information it
needs to complete the offline phase of the Step-1 scheme without revealing any
information to the server. In the Step-1 scheme, the offline server’s work con-
sists of evaluating a client-supplied linear function over the database and can
thus be performed under linearly homomorphic encryption. For this step, we
will need a linearly homomorphic encryption scheme with ciphertexts of size
Õλ(1), along with a single-server PIR scheme with communication cost and

client time Õλ(1). The existence of both primitives follows from the Decision
Composite Residue (DCR) assumptions [71, 76] and the Learning with Errors
(LWE) assumption [81]. Recent work of Döttling, Garg, Ishai, Malavolta, Mour,
and Ostrovsky [39] shows that the Quadratic Residuosity (QR) assumption [52]
and decision Diffie-Hellman (DDH) assumption [20] also imply these primitives.

In particular, the client first samples a random encryption key for a linearly
homomorphic encryption scheme. Then the client executes the offline phase as
follows:

17

– The client encrypts each component of its Õλ(Q) bit vectors using the linearly
homomorphic encryption scheme. The client sends these vectors to the server.

– Under encryption, the server applies the length-preserving linear function to
each encrypted vector. As in the Step-1 scheme, this computation takes Õλ(n)
time using an FFT on the encrypted values.

– The client uses a single-server PIR scheme [68], to fetch a total of Õλ(
√
Qn)

components of the ciphertext vectors that the server has computed. Since
modern single-server PIR schemes have communication cost Õλ(1), this step

requires communication and client time Õλ(
√
Qn). Using batch PIR [7,58,62],

the server can answer this set of queries in time Õλ(n).

Finally, the client decrypts the resulting ciphertexts to recover exactly the same
information that it obtained at the end of the offline phase of the two-server
scheme. At this point, the offline phase has upload Õλ(n), server time Õλ(n),

client time Õλ(n), and download Õλ(
√
Qn) and the online phase has upload

Õλ(
√
Qn) bits, server time Õ(

√
Qn), client time Õλ(

√
Qn + Q), and download

Õλ(Q).

Final rebalancing. We complete the proof by reducing the offline upload cost
using the standard rebalancing idea [34, Section 4.3]. In particular, we divide
the database into k chunks, of size n′ = n/k, for a parameter k chosen later.

Now, the offline phase has upload Õλ(n/k), server time Õλ(n), client time

Õλ(n/k+
√
Qnk), and download k ·Õλ(

√
Qn/k) and the online phase has upload

Õλ(
√
Qn/k) bits, server time k · Õ(

√
Qn/k), client time Õλ(

√
Qn/k+Qk) and

download k · Õλ(Q). We choose Q and k to balance the following costs, ignoring
poly(λ, log n) factors:

– the amortized offline time: n/Q, and

– the online server time:
√
kQn.

To do so, we choose k = n
Q3 and Q ≤ n1/3. This yields a PIR scheme with

amortized server time Õλ(n/Q), amortized client time Õλ(Q2 + n/Q2) and

amortized communication Õλ(Q2 + n/Q2). The client storage is equal to the

(non-amortized) offline download cost, which is Õλ(n/Q).
Finally, to construct the scheme of Theorem 4.1, we chose Q = n1/4 to

minimize the offline upload. This causes the amortized server time and the client
storage to become Õλ(n3/4), while the amortized client time and the amortized

communication are both Õλ(n1/2).

Efficiency. The efficiency claims of Theorem 4.1 follow immediately from the
construction.

Security. The security argument closely follows that of prior work on single-server
offline/online PIR [36]. More formally, the server’s view in an interaction with a
client consists of (1) the client’s encrypted bit vectors sent in the offline phase,
(2) the client’s standard single-server PIR queries sent in the offline phase, (3)
the messages that the client sends in the online phase. To prove security, we can
construct a sequence of hybrid distributions that move from the world in which

18

the client queries a sequence of database indexes I0 = (i0,1, i0,1, . . . , i0,Q) to the
world in which the client queries a different sequence I1 = (i1,1, i1,1, . . . , i1,Q).
The steps of the argument are:

– replace the encrypted bit vectors with encryptions of zeros, using the semantic
security of the encryption scheme,

– replace the client’s standard single-server PIR query with a query to a fixed
database row, using the security of the underlying single-server PIR scheme,

– swap query sequence I0 with query sequence I1, using the security of the
underlying two-server offline/online PIR scheme,

– swap the client’s standard single-server PIR query and encrypted bit vectors
back again, using the security of these primitives.

Remark 4.3 (Single-server PIR with Õλ(n2/3) amortized time and communica-
tion). With an alternate rebalancing (taking Q to be n1/3), we can build a
single-server offline/online PIR scheme that, as long as the client makes at least

n1/3 adaptive queries, has amortized communication Õλ(n2/3), amortized server

time Õλ(n2/3), amortized client time Õλ(n2/3), and client storage Õλ(n2/3). This
PIR scheme has better amortized server time than that of Theorem 4.1, at the
cost of requiring a client upload linear in n in the offline phase. (However, the
amortized communication of this scheme is still sublinear in n.)

5 Single-server PIR with optimal amortized time and
storage from fully homomorphic encryption

In this section, we construct a single-server many-query offline/online PIR scheme
directly, rather than through a generic transformation. Assuming fully homo-
morphic encryption (Definition 2.2), our scheme achieves the optimal tradeoff
between amortized server time and client storage, up to polylogarithmic factors.
This fills a gap left open by the protocols of Section 4 and demonstrates that
the lower bound we give in Section 6 is tight. We prove the following result:

Theorem 5.1 (Single-server PIR with optimal amortized time and
storage from fully homomorphic encryption). Assuming gate-by-gate
fully homomorphic encryption (Definition 2.2), there exists a single-server of-
fline/online PIR scheme that, on security parameter λ ∈ N, database size n ∈ N,
and maximum number of queries Q < n, supports Q adaptive queries with:

– amortized server time Õλ(n/Q),

– client-side storage Õλ(Q),

– amortized communication Õλ(n/Q), and

– amortized client time Õλ(Q+ n/Q).

This new scheme achieves amortized server time better than we could expect
from any protocol derived from the generic compiler of Section 3, given current

19

state-of-the-art offline/online PIR protocols. To answer each query, that compiler
executes the online phase a PIR scheme on Q database chunks, each of size n/Q.
Similar to the compiler of Section 3, the PIR scheme here works by splitting the
database into random chunks, so that the client’s distinct adaptive queries fall
into distinct chunks with high probability. However, the new PIR scheme in this
section keeps the mapping of database rows to chunks secret from the server. (In
contrast, in the scheme of Section 3, the client reveals to the server the mapping
of database rows to chunks.) By keeping the mapping of database rows to chunks
secret, in the online phase of this scheme, the server only has to compute over
the contents a single chunk. In this way, we achieve lower computation than the
schemes of Section 4, which execute an online phase for each database chunk.

In the remainder of this section, we sketch the ideas behind the PIR scheme
that proves Theorem 5.1; a complete proof appears in Appendix B.

Proof idea for Theorem 5.1. At a very high level, the PIR scheme that we con-
struct works as follows:

1. In an offline phase, the client chooses small, random subsets S1, . . . , Sm ⊆ [n].
For each subset, the client privately fetches from the server the parity of the
database bits indexed by the set.

2. When the client wants to fetch database record i in the online phase, it finds
a subset S ∈ {S1, . . . , Sm} such that i ∈ S. Then, the client usually asks
the server for the parity of the database bits indexed by Sr{i}. The parity
of the database bits indexed by S and Sr{i} give the client enough infor-
mation to recover the value of the ith database record, Di. Then, the client
re-randomizes the set S it just used.

In more detail, our PIR scheme operates as follows: in the offline phase, the
client samples (λ + 1) · Q random subsets of [n], each of size n/Q. We call the
first λQ sets the “primary” sets and the remaining Q sets the “backup” sets. For
each set S, the client retrieves the parity of the database bits the set indexes, i.e.,∑
j∈S Dj mod 2, from the server, while keeping the set contents hidden using

encryption. For each backup set S, the client additionally chooses a random
member of the set S and privately retrieves the database value indexed by that
element, via a batch PIR protocol [7, 58,62].

With high probability over the client’s random choice of sets, whenever the
client wants to fetch the i-th database record, the client holds a primary set that
contains i. Again with good probability, the client then asks the server for the
parity of the database bits indexed by the punctured set Sr{i}, with which she
can reconstruct the desired database value Di. Finally, the client must refresh
her state, as using the same S to query for another index i′ could leak (i, i′)
to the server and thus break security. To achieve this, the client discards S and
promotes the next available backup set, Sb, to become a new primary set. If Sb
does not already contain i, the client modifies Sb by deleting the set element
whose database value she knows and inserting i; the client recomputes this new
set’s parity using the value of Di she just retrieved. With this mechanism, the

20

distribution of the client’s primary sets remains random, ensuring that her online
queries are independent.

There are two failure events in this scheme: it is possible that (a) none of
the primary sets contain the index queried, i, or that (b) the client sends the
server a set other than Sr{i}, as decided by a coin flip (to avoid always sending
a query set that does not contain i). We drive down the probability of either
failure event to negl(λ), by repeating the offline and online phases λ times. Then,
by construction, this scheme satisfies correctness for Q queries. Intuitively, the
scheme is secure because (a) the use of encryption and batch PIR in the offline
phase prevents the server from learning the contents of the presampled sets,
and (b) the client’s online queries are indistinguishable from uniformly random
subsets of [n] of size n/Q− 1, as proved in Appendix B.3.

We now discuss the PIR scheme’s efficiency.

Communication and storage. The client can succinctly represent her presam-
pled sets with only logarithmic-size keys by leveraging pseudorandomness. Then,
in the offline phase, she exchanges only Õλ(Q) bits with the server to communi-
cate the descriptions and parities of Oλ(Q) randomly sampled sets. The client
additionally retrieves the database values of Q indices—one from each backup
set—in Õλ(Q) communication with batch PIR. The client stores her presampled

sets and her state between queries in Õλ(Q) bits. In each online phase, the client
must however hide whether she inserted an index into her query set (and, if so,
which index she inserted). Therefore, the client explicitly lists all elements in the
punctured set she is querying for (instead of using pseudoradnomness) and thus

exchanges Õλ(n/Q) bits with the server.

Computation. In the offline phase, the client must retrieve the encrypted par-
ities of the database bits indexed by each of Oλ(Q) encrypted sets of size n/Q.
In Lemma B.2, we present a Boolean circuit that computes the parities of the
database bits of s subsets of [n], each of size `, in Õ(s · `+ n) gates. Our circuit
is inspired by circuits for private set intersection [61, 79, 80] and makes use of
sorting networks [10]. The server can execute the offline phase in Õλ(n) time
by running the above circuit under a gate-by-fate fully homomorphic encryption
scheme. Further, the offline server can respond to the client’s batch PIR query in
Õλ(n) time. In each online phase, the server must complete Oλ(n/Q) work per
query, as it computes the parity of a punctured set containing n/Q−1 elements.

Thus, each query requires Õλ(n/Q) amortized total server time.
As for the client, in the offline phase, she generates Oλ(Q) random sets. Using

pseudorandomness to represent each set, the time to generate these sets without
expanding them is Õλ(Q). Also in the offline phase, the client runs a batch PIR

protocol with the server to recover Q database values, requiring at most Õλ(Q)
client time. In the online phase, the client first has to find a primary set that
contains the index i ∈ [n] she wants to read. By generating each set using a
pseudorandom permutation, she can efficiently test whether each set contains
i by inverting the permutation in time Õλ(1). Testing all Oλ(Q) primary sets

takes the client time Õλ(Q). When she finds a succinctly-represented primary

21

set that contains i, the client expands the set in time Õλ(n/Q) to build her
online query. Finally, promoting a backup set to become a new primary set and,
if necessary, replacing a set element by i takes time Õλ(1). We conclude that the

client’s amortized, per-query time is Õλ(Q+ n/Q).

Remark 5.2 (Two-server offline/online PIR with reduced server time amortized
over many adaptive queries). The PIR scheme of Theorem 5.1 immediately gives

a two-server, many-query PIR scheme with Õλ(n/Q) amortized server time from
one-way functions. When the client makes many queries (i.e., Q �

√
n), this

result improves upon the Õλ(n/Q+
√
n) time achieved by prior work [36]. The

construction that proves the remark works as follows: rather than sending her
offline hint request encrypted to the single server, the client sends her offline hint
request in plaintext to one server and sends her online query to a second server
that does not collude with the first.

6 Lower bound

In this section, we present a lower bound for multi-query offline/online PIR
schemes in which the server stores the database in its original form—that is, the
server does not preprocess or encode the database. (If preprocessing is allowed,
candidate single-server PIR schemes using program obfuscation can circumvent
our lower bound [25].) Our result is a lower bound on the product of the (a) client
storage and (b) online time of any offline/online PIR scheme for many adaptive
queries. Specifically, we show that in any adaptive multi-query offline/online PIR
scheme, where the client stores S bits between queries and the server responds
to each query in amortized time T , it must hold that ST = Ω̃(n). This new
lower bound matches the best adaptive multi-query scheme in the two-server
setting [36, Section 4] and it matches our new scheme (Section 5) in the single-
server setting, up to polylogarithmic factors.

We thus rule out PIR schemes with small client storage and small amortized
server online time in the adaptive setting.

Remark 6.1 (Generalization to multi-server PIR). While we present and prove
this lower bound in the single-server setting, it also holds for protocols with any
constant number of servers. With multiple servers, T bounds the database bits
probed per query by any online server.

Theorem 6.2 (Lower bound for adaptive queries). Consider a com-
putationally secure single-server offline/online PIR scheme for many adaptive
queries, such that, on security parameter λ ∈ N and database size n ∈ N,

– the server stores the database in its original form,

– the client stores at most S bits between consecutive queries, and

– the server probes T database bits per query on average,

Then, for polynomially bounded n = n(λ), holds that (S + 1) · (T + 1) ≥ Ω̃(n).

22

To prove Theorem 6.2, we invoke the following lower bound from prior work
on the offline communication and online server time of single-query PIR schemes.
With a reduction, we then relate the offline communication of a single-query
scheme to the client storage of a many-query scheme, giving the desired bound.

Theorem 6.3 ([36, Section 6]). Consider a computationally secure single-
query offline/online PIR scheme such that, on security parameter λ ∈ N and
database size n ∈ N,

– the server stores the database in its original form,

– the client downloads C bits in the offline phase, and

– the server probes T bits of the database while processing each online query.

Then, for polynomially bounded n = n(λ), it holds that (C+ 1) · (T + 1) ≥ Ω̃(n).

We now give a proof of Theorem 6.2.

Proof of Theorem 6.2. Let Π be a computationally secure single-server of-
fline/online PIR scheme for Q adaptive queries, as in the theorem statement. For
an integer Q′ ∈ {0, . . . , Q−1} and a sequence of indices (i1, . . . , iQ′ , i) ∈ [n]Q

′+1,
denote by T (i1, i2, ..., iQ′ ; i) the number of database bits that the server probes
when processing the client’s query on input i, after having previously processed
the client’s queries on inputs i1, . . . , iQ′ .

Claim 6.4. There exists an integer Q′ ∈ {0, . . . , Q − 1} and a sequence of
indices (i1, . . . , iQ′) ∈ [n]Q

′
such that, for every index i ∈ [n], it holds that

T (i1, . . . , iQ′ ; i) ≤ T .

Proof. Consider the following procedure.

– For Q′ := 1, . . . , Q do:

• Set foundBad← false.

• For i := 1, . . . , n:

∗ If T (i1, . . . , iQ′−1; i) > T , set iQ′ ← i, set foundBad ← true, and break
of the inner loop.

• If foundBad = false, output ok and i1, . . . , iQ′−1 and halt.

– Output fail and i1, . . . , iQ.

When the above procedure does not fail, then by construction it outputs a se-
quence i1, . . . , iQ′ such that for every i ∈ [n], it holds that T (i1, . . . , iQ′−1; i) ≤ T .
We only need to show that the procedure never fails. Suppose for the sake of con-
tradiction that the procedure fails and outputs i1, . . . , iQ. Then, when the client
reads the sequence i1, . . . , iQ, the server probes more than T database bits when
processing each query, which contradicts our assumption that the (worst-case)
amortized number of bits that the server probes is at most T .

Returning to the proof of Theorem 6.2, we now build the following single-
query two-server offline/online PIR scheme Π ′.

Offline phase. The first server proceeds as follows:

23

– Run the offline phase of scheme Π, playing the part of both the client and
the offline server of Π, to generate a client key ck and a hint h.

– Compute indices i1, . . . , iQ′ as in Claim 6.4.

– Run the online phase of scheme Π on indices i1, . . . , iQ′ , playing the part of
the client and the online server of Π. When playing the part of the client, use
the above ck and h as the initial state of the client.

– Send the updated client key ck and hint h to the client.

To complete the offline phase, the client stores the client key ck and hint h that
the first server sends to it.

Online phase. To read the database bit at index i, the client runs the online
phase of Π with the online server, using its local client key ck and hint h.

The resulting scheme Π ′ is a secure single-query offline/online PIR scheme.
Correctness holds by construction, from the correctness of Π. Security follows
from the security of Π, since the online server’s view in Π ′, when the client is
reading index i, is contained in the server’s view in Π, when the client is reading
indices i1, . . . , iQ′ , i.

Finally, the offline communication C in Π ′ is equal to the size S of the client
storage between consecutive queries inΠ. Moreover, by the choice of (i1, . . . , iQ′),
the number of database bits that the online server probes in Π ′ is at most T ,
the amortized number of bits probed by each server in scheme Π.

Therefore, by Theorem 6.3, we conclude that (S + 1)(T + 1) ≥ Ω̃(n).

7 Conclusion

We construct new single-server PIR schemes that have sublinear amortized total
server time. A number of related problems remain open:

– Is it possible to match the performance of our PIR scheme based on fully
homomoprhic encryption (Section 5) while using simpler assumptions?

– Can we construct single-server PIR schemes for many adaptive queries that
achieve optimal Õλ(1) communication, Õλ(n1/2) amortized server time, and

Õλ(n1/2) client storage? Our scheme from Section 5 has larger communica-

tion Õλ(n1/2). One approach would be to design puncturable pseudorandom
sets [36,83] with short descriptions that support both insertions and deletions.

– Our lower bound in Section 6 only applies to PIR schemes in which the server
stores the database in unencoded form. Can we beat this bound by having
the server store the database in some encoded form [14]?

Acknowledgements. We thank David Wu and Yuval Ishai for reading an early
draft of this work and for their helpful suggestions on how to improve it. We
thank Yevgeniy Dodis, Siyao Guo, and Sandro Coretti for answering questions
about presampling. We deeply appreciate the support and technical advice that
Dan Boneh gave on this project from the very start. This work was supported
in part by the National Science Foundation (Award CNS-2054869), a gift from

Google, a Facebook Research Award, and the Fintech@CSAIL Initiative, as well
as the National Science Foundation Graduate Research Fellowship under Grant
No. 1745302 and an EECS Great Educators Fellowship.

References

[1] Aguilar-Melchor, C., Barrier, J., Fousse, L., Killijian, M.O.: XPIR: Private
information retrieval for everyone. PoPETs 2016(2), 155–174 (2016)

[2] Aiello, W., Bhatt, S., Ostrovsky, R., Rajagopalan, S.R.: Fast verification of
any remote procedure call: Short witness-indistinguishable one-round proofs
for NP. In: ICALP (2000)

[3] Ajtai, M., Komlós, J., Szemerédi, E.: An O(N log N) sorting network. In:
STOC (1983)

[4] Ali, A., Lepoint, T., Patel, S., Raykova, M., Schoppmann, P., Seth, K., Yeo,
K.: Communication–computation trade-offs in PIR. In: USENIX Security
(2021)

[5] Ambainis, A.: Upper bound on communication complexity of private infor-
mation retrieval. In: ICALP (1997)

[6] Angel, S., Chen, H., Laine, K., Setty, S.T.V.: PIR with compressed queries
and amortized query processing. In: IEEE Security and Privacy (2018)

[7] Angel, S., Setty, S.: Unobservable communication over fully untrusted in-
frastructure. In: SOSP (2016)

[8] Backes, M., Kate, A., Maffei, M., Pecina, K.: ObliviAd: provably secure
and practical online behavioral advertising. In: IEEE Security and Privacy
(2012)

[9] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S., Yang, K.: On the (im)possibility of obfuscating programs. In: CRYPTO
(2001)

[10] Batcher, K.E.: Sorting networks and their applications. In: AFIPS (1968)
[11] Beimel, A., Ishai, Y.: Information-theoretic private information retrieval: A

unified construction. In: ICALP (2001)
[12] Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.: Breaking the

O(n1/(2k−1)) barrier for information-theoretic private information retrieval.
In: FOCS (2002)

[13] Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers computation in pri-
vate information retrieval: PIR with preprocessing. In: CRYPTO (2000)

[14] Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers’ computation in
private information retrieval: PIR with preprocessing. J. Cryptol. 17(2),
125–151 (2004)

[15] Bell, J.H., Bonawitz, K.A., Gascón, A., Lepoint, T., Raykova, M.: Secure
single-server aggregation with (poly) logarithmic overhead. In: CCS (2020)

[16] Bell, S., Komisarczuk, P.: An analysis of phishing blacklists: Google Safe
Browsing, OpenPhish, and PhishTank. In: ACSW (2020)

25

[17] Bentley, J.L., Saxe, J.B.: Decomposable searching problems I: static-
to-dynamic transformation. J. Algorithms 1(4), 301–358 (1980).
https://doi.org/10.1016/0196-6774(80)90015-2

[18] Biehl, I., Meyer, B., Wetzel, S.: Ensuring the integrity of agent-based com-
putations by short proofs. In: Mobile Agents (1998)

[19] Blackwell, K., Wootters, M.: A note on the permuted puzzles toy conjecture.
arXiv preprint arXiv:2108.07885 (2021)

[20] Boneh, D.: The decision Diffie-Hellman problem. In: International Algorith-
mic Number Theory Symposium (1998)

[21] Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: EUROCRYPT
(2015)

[22] Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: Improvements and
extensions. In: CCS (2016)

[23] Boyle, E., Holmgren, J., Ma, F., Weiss, M.: On the security of doubly effi-
cient PIR. Cryptology ePrint Archive, Report 2021/1113 (2021)

[24] Boyle, E., Holmgren, J., Weiss, M.: Permuted puzzles and cryptographic
hardness. In: TCC (2019)

[25] Boyle, E., Ishai, Y., Pass, R., Wootters, M.: Can we access a database both
locally and privately? In: TCC (2017)

[26] Boyle, E., Naor, M.: Is there an oblivious RAM lower bound? In: ITCS
(2016)

[27] Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In: CRYPTO (2011)

[28] Cachin, C., Micali, S., Stadler, M.: Computationally private information
retrieval with polylogarithmic communication. In: EUROCRYPT (1999)

[29] Canetti, R., Holmgren, J., Richelson, S.: Towards doubly efficient private
information retrieval. In: TCC (2017)

[30] Chang, Y.: Single database private information retrieval with logarithmic
communication. In: ACISP (2004)

[31] Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homo-
morphic encryption with malicious security. In: CCS (2018)

[32] Cheng, R., Scott, W., Masserova, E., Zhang, I., Goyal, V., Anderson, T.E.,
Krishnamurthy, A., Parno, B.: Talek: Private group messaging with hidden
access patterns. In: ACSAC (2020)

[33] Chor, B., Gilboa, N.: Computationally private information retrieval (ex-
tended abstract). In: STOC (1997)

[34] Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information
retrieval. In: FOCS (1995)

[35] Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information
retrieval. J. ACM 45(6), 965–982 (1998)

[36] Corrigan-Gibbs, H., Kogan, D.: Private information retrieval with sublinear
online time. In: EUROCRYPT (2020)

[37] Dauterman, E., Feng, E., Luo, E., Popa, R.A., Stoica, I.: DORY: an en-
crypted search system with distributed trust. In: OSDI (2020)

[38] Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and
its applications. In: CRYPTO (2016)

26

[39] Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.:
Trapdoor hash functions and their applications. In: CRYPTO (2019)

[40] Dvir, Z., Gopi, S.: 2-server PIR with subpolynomial communication. J.
ACM 63(4), 39:1–39:15 (2016)

[41] Dwork, C., Langberg, M., Naor, M., Nissim, K., Reingold, O.: Succinct
proofs for NP and Spooky interactions (2004)

[42] Dwork, C., Naor, M., Rothblum, G.N.: Spooky interaction and its discon-
tents: Compilers for succinct two-message argument systems. In: CRYPTO
(2016)

[43] Efremenko, K.: 3-query locally decodable codes of subexponential length.
SIAM J. Comput. 41(6), 1694–1703 (2012)

[44] Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford
University (2009)

[45] Gentry, C., Halevi, S.: Compressible FHE with applications to PIR. In:
TCC (2) (2019)

[46] Gentry, C., Ramzan, Z.: Single-database private information retrieval with
constant communication rate. In: ICALP (2005)

[47] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In: CRYPTO (2013)

[48] Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
EUROCRYPT (2014)

[49] Goldreich, O., Karloff, H., Schulman, L., Trevisan, L.: Lower bounds for
linear locally decodable codes and private information retrieval. In: CCC
(2002)

[50] Goldreich, O.: Foundations of Cryptography. Cambridge University Press
(2001)

[51] Goldreich, O., Ostrovsky, R.: Software protection and simulation on obliv-
ious rams. J. ACM 43(3), 431–473 (1996)

[52] Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of computer
and system sciences 28(2), 270–299 (1984)

[53] Goodrich, M.T.: Zig-zag sort: A simple deterministic data-oblivious sorting
algorithm running in O(n log n) time. In: STOC (2014)

[54] Green, M., Ladd, W., Miers, I.: A protocol for privately reporting ad im-
pressions at scale. In: CCS (2016)

[55] Groth, J., Kiayias, A., Lipmaa, H.: Multi-query computationally-private
information retrieval with constant communication rate. In: PKC (2010)

[56] Gupta, T., Crooks, N., Mulhern, W., Setty, S., Alvisi, L., Walfish, M.: Scal-
able and private media consumption with Popcorn. In: NSDI (2016)

[57] Hamlin, A., Ostrovsky, R., Weiss, M., Wichs, D.: Private anonymous data
access. Cryptology ePrint Archive, Report 2018/363 (2018)

[58] Henry, R.: Polynomial batch codes for efficient IT-PIR. PoPETs 2016(4),
202–218 (2016)

[59] Henry, R., Huang, Y., Goldberg, I.: One (block) size fits all: PIR and SPIR
with variable-length records via multi-block queries. In: NDSS (2013)

27

[60] Henry, R., Olumofin, F.G., Goldberg, I.: Practical PIR for electronic com-
merce. In: CCS (2011)

[61] Huang, Y., Evans, D., Katz, J.: Private set intersection: Are garbled circuits
better than custom protocols? In: NDSS (2012)

[62] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Batch codes and their
applications. In: STOC (2004)

[63] Jacob, R., Larsen, K.G., Nielsen, J.B.: Lower bounds for oblivious data
structures. In: SODA (2019)

[64] Juels, A.: Targeted advertising ... and privacy too. In: CT-RSA (2001)

[65] Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the
power of no-signaling proofs. In: STOC (2014)

[66] Kogan, D., Corrigan-Gibbs, H.: Private blocklist lookups with Checklist.
In: USENIX Security (2021)

[67] Komargodski, I., Lin, W.K.: A logarithmic lower bound for oblivious RAM
(for all parameters). In: CRYPTO (2021)

[68] Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database,
computationally-private information retrieval. In: FOCS (1997)

[69] Larsen, K.G., Nielsen, J.B.: Yes, there is an oblivious RAM lower bound!
In: CRYPTO (2018)

[70] Larsen, K.G., Simkin, M., Yeo, K.: Lower bounds for multi-server oblivious
RAM. In: TCC (2020)

[71] Lipmaa, H.: An oblivious transfer protocol with log-squared communication.
In: International Conference on Information Security (2005)

[72] Lipmaa, H.: First cpir protocol with data-dependent computation. In: ICISC
(2009)

[73] Lueks, W., Goldberg, I.: Sublinear scaling for multi-client private informa-
tion retrieval. In: Financial Cryptography (2015)

[74] Mockapetris, P.: Domain names - concepts and facilities. RFC 1034 (1987),
http://www.rfc-editor.org/rfc/rfc1034.txt

[75] Mughees, M.H., Chen, H., Ren, L.: OnionPIR: Response efficient single-
server PIR. Cryptology ePrint Archive, Report 2021/1081 (2021)

[76] Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: EUROCRYPT (1999)

[77] Patel, S., Persiano, G., Yeo, K.: Private stateful information retrieval. In:
CCS (2018)

[78] Persiano, G., Yeo, K.: Limits of preprocessing for single-server pir. In: SODA
(2022). https://doi.org/10.1137/1.9781611977073.99

[79] Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based
on OT extension. In: USENIX Security (2014)

[80] Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based
on OT extension. ACM Transactions on Privacy and Security 21(2) (2018)

[81] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. J. ACM 56(6), 1–40 (2009)

[82] Servan-Schreiber, S., Hogan, K., Devadas, S.: AdVeil: A private targeted-
advertising ecosystem (2021)

28

http://www.rfc-editor.org/rfc/rfc1034.txt

[83] Shi, E., Aqeel, W., Chandrasekaran, B., Maggs, B.: Puncturable pseudoran-
dom sets and private information retrieval with near-optimal online band-
width and time. In: CRYPTO (2021)

[84] Stark, E.M.: Splitting up trust. https://emilymstark.com/2021/09/14/
splitting-up-trust.html (September 14, 2021)

[85] Tauman Kalai, Y., Raz, R., Rothblum, R.D.: Delegation for bounded space.
In: STOC (2013)

[86] Wehner, S., de Wolf, R.: Improved lower bounds for locally decodable codes
and private information retrieval. In: ICALP (2005)

[87] Woodruff, D., Yekhanin, S.: A geometric approach to information-theoretic
private information retrieval. In: CCC (2005)

[88] Yekhanin, S.: Towards 3-query locally decodable codes of subexponential
length. J. ACM 55(1), 1:1–1:16 (2008)

29

https://emilymstark.com/2021/09/14/splitting-up-trust.html
https://emilymstark.com/2021/09/14/splitting-up-trust.html

A Deferred material from Section 3

Proof of Lemma 3.1. Construction 3.5 gives the PIR scheme that proves the
lemma. The bounds on the communication cost and running time follow imme-
diately from the construction.

To complete the proof, we need only show that Construction 3.5 satisfies
correctness and security for Q queries.

Correctness. Fix λ, n,Q ∈ N, database D ∈ {0, 1}n, and input sequence
(i1, . . . , iQ) ∈ [n]Q. When sequentially reading database records i1, . . . , iQ using
scheme Π as in Experiment 2.1, the experiment outputs “0” (i.e., correctness
fails), when reading one of the input indices ibad, it holds that ibad /∈ queried,
and one of the following two failure events happen:

F1. The client, when running Step 3 of the Query algorithm, fails to find an
index `∗ ∈ [λ] such that (ck)j∗`∗ 6= ⊥.

F2. The client, when running Step 2 of the Reconstruct algorithm, obtains an
incorrect value from the Reconstruct function of the single-query scheme Π.

The correctness of the underlying single-query scheme Π implies that failure
event F2 happens with probability negligible in the security parameter.

In the remainder, we show that failure event F1 also happens with negligible
probability. In particular, for j ∈ [Q], we say that the client uses chunk j during
an execution of the Query algorithm, if it calls Π.Query on (ck)jl for some ` ∈
[λQ]. When this happens the client also sets (ck)jl ← ⊥. A necessary condition
for the event F1 to happen is that there exists an index j ∈ [Q] such that the
client uses chunk j the maximal number of times λ.

We use the following combinatorial claim, which bounds the probability that
failure event F1 occurs:

Claim A.1. For any sequence of Q query indexes, the probability, taken over the
choice of the pseudorandom permutation key, that there exists a chunk j ∈ [Q]
that the client uses more than λ times is negl(λ).

Proof of claim. We have that Q < n. We may also assume that λ < Q since
otherwise the claim is vacuously true. In addition, replace the pseudorandom
permutation used in the construction with a truly random permutation. By the
security of the pseudorandom permutation, this can only increase the probability
of failure by a quantity negligible in the security parameter λ.

Next, we use a standard balls-into-bins argument. Fix a chunk j ∈ [Q] and
sequence of query indexes (i1, . . . , iQ) ∈ [n]Q. Recall that when querying an index
i ∈ queried, the client chooses a random chunk and makes a dummy query. (In
this case, it later recovers the value of database bit i from the cache, rather than
from the server’s response.) Therefore, we may assume that the query indexes
are distinct, since this can only increase the probability of an overloaded chunk.
We may also assume that λ < n/Q, since the number of times the client uses
each chunk is at most the number of distinct indices in a chunk (i.e., the size of
a chunk), which is n/Q.

30

Consider a subset I ⊆ {i1, . . . , iQ} of size λ. Let CI be the event that all
queries in I use chunk j. Then

Pr[CI] =

(
(n/Q)

n

)(
(n/Q)− 1

n− 1

)
· · ·
(

(n/Q)− λ
n− λ

)
,

where the probability is over the choice of the random permutation. Each term
in this product is at most

n/Q

n− λ
≤ n/Q

n− n/Q
=

1

Q− 1
.

Then Pr[CI] ≤ (Q− 1)−λ. There are at most(
Q

λ

)
≤
(
eQ

λ

)λ
choices of the index set I, so by the union bound, the probability that there
exists a bad set is (

1

Q− 1
· eQ
λ

)λ
≤
(

6

λ

)λ
,

which is negligible in λ. Taking a union bound over all Q chunks completes the
proof of the claim.

We now return to the proof of Lemma 3.1.

Security. Consider any security parameter λ ∈ N, efficient adversary A, and
polynomially bounded n = n(λ) ∈ N and Q = Q(n) ∈ N. We design a sequence
of Q+ 1 hybrid games, named Game 0 up to Game Q:

Game t, for t ∈ {0, . . . , Q}. Parameterized by an adversary A, PIR
schemeΠ, security parameter λ ∈ N, number of queriesQ ∈ N, and database
size n ∈ N.

1. Compute:

(ck, q)← Π.HintQuery(1λ, n)

st← A(1λ)

2. For l = 1, . . . , t, compute:

(st, i0, i1)← A(st)

(ck, , q)← Π.Query(ck, i0)

st← A(st, q)

3. For l = t+ 1, . . . , Q, compute:

(st, i0, i1)← A(st)

(ck, , q)← Π.Query(ck, i1)

st← A(st, q)

4. Output b← A(st)

31

Game 0 corresponds to Experiment 2.2 with b = 1, while GameQ corresponds
to Experiment 2.2 with b = 0. For 0 ≤ t ≤ Q, let GA,λ,Q,n,t be the event that
Game t outputs “1” when parametrized by these values, and let Viewt denote
the adversary’s view in Game t. The construction is secure if it holds that

|Pr [GA,λ,Q,n,0]− Pr [GA,λ,Q,n,Q]| ≤ negl(λ).

Equivalently, we prove that the adversary A has a negligibly small advantage
in distinguishing adjacent games. As the total number of games is polynomially
bounded, this completes the argument.

Consider any two adjacent games, t and t+ 1 (for 0 ≤ t < Q). We show that
A’s advantage in distinguishing Games t and t+ 1 is negligible, as A’s views in
both games are computationally indistinguishable. Viewt consists of

1. the security parameter λ, and

2. Q online queries, q1, · · · , qQ, of which the first t are to an index i0, chosen by
A, and the remaining (Q− t) are to an index i1, chosen by A.

By a hybrid argument:

– We begin with Viewt.

– We replace query qQ in Viewt by the corresponding query in Viewt+1.
In the offline phase, the client constructs her keys for each database chunk fol-
lowing the same key generation procedure. Therefore, all client keys she holds
are distributed identically—regardless of which database chunk they map to.
By the security of the underlying single-query scheme Π, using any client key,
the output of Π.Query on any index is computationally indistinguishable from
its output on any other index in [n/Q]. Thus, query qQ is computationally
indistinguishable from a query to any other index in [n].
As Construction 3.5 never re-uses the same client key for more than one on-
line query, and the client keys are generated independently, each of the online
queries q1, · · · , qQ is distributed independently.
We conclude that this new distribution is computationally indistinguishable
from Viewt.

– We repeat the above step for each query from qQ−1 until query qt+1, one by
one. By the same argument, each pair of consecutive distributions is compu-
tationally indistinguishable.

– The resulting distribution is exactly Viewt+1, as required.

This completes the proof of Lemma 3.1.

B Deferred material from Section 5

In this section, we present a PIR scheme that proves Theorem 5.1. We first give
the required definitions of batch PIR (Appendix B.1). Then, we show that it
is possible to privately retrieve the parities of many subsets of a database in
quasi-linear time, assuming fully homomorphic encryption (Appendix B.2). We
build upon this result to construct the first single-server, many-query, adaptive
PIR scheme with optimal work and storage (Appendix B.3).

32

Experiment B.1 (Correctness). Parameterized by a PIR scheme Π =
(Batch.Query,Batch.Answer,Batch.Reconstruct), database size n ∈ N, batch
size Q ∈ [n], database D ∈ {0, 1}n, and query sequence (i1, . . . , iQ) ∈ [n]Q.

– Compute:

(st, q)← Π.Batch.Query(1λ, n, i1, . . . , iQ)

a← Π.Batch.Answer(D, q)

(vi1 , . . . , v1Q)← Π.Batch.Reconstruct(st, a)

– Output “1” if vt = Dit for all t ∈ [Q]. Output “0” otherwise.

Experiment B.2 (Security). Parameterized by an adversary A, a security pa-
rameter λ ∈ N, PIR scheme Π = (Batch.Query,Batch.Answer,Batch.Reconstruct),
database size n ∈ N, batch size Q ∈ [n], and bit b ∈ {0, 1}.
– Compute:

(st, i0,1, . . . , i0,Q, i1,1, · · · , i1,Q)← A(1λ)

(, q)← Π.Batch.Query(1λ, n, ib,1, . . . , ib,Q)

st← A(st, q)

– Output b′ ← A(st).

B.1 Standard definitions of batch PIR

Definition B.1 (Single-server batch PIR). A single-server batch PIR scheme,
on a security parameter λ ∈ N, a database size n ∈ N, and a batch size Q ∈ [n],
is a tuple of polynomial-time algorithms:

– Batch.Query(1λ, n, i1, · · · , iQ)→ (st, q), a randomized algorithm that takes as
input a security parameter λ ∈ N, a database length n ∈ N and Q indices in
[n], i1, · · · , iQ, and outputs a query state st and a query q,

– Batch.Answer(D, q) → a, a deterministic algorithm that takes in a database
D ∈ {0, 1}n and a query q, and outputs an answer a, and

– Batch.Reconstruct(st, a) → (Di1 , · · · , DiQ), a deterministic algorithm that
takes as input the query state st and the server’s answer a, and outputs
Q database bits, Di1 , · · · , DiQ .

The protocol must satisfy both correctness and security for Q queries:

1. Correctness for Q queries: If a client and a server correctly execute the
protocol, the client can recover any Q database records of its choosing. For-
mally, a batch PIR scheme on database size n ∈ N and batch size Q ∈ [n]
satisfies correctness if, for every D ∈ {0, 1}n and every (i1, · · · , iQ) ∈ [n]Q,
Experiment B.1 outputs “1” with probability 1− negl(λ).

2. Security for Q queries: An adversarial server “learns nothing” about which
sequence of database indices the client is fetching, even if the adversary

33

can choose these indices. Formally, let WA,λ,n,Q,b be the event that Exper-
iment B.2 outputs “1” when parametrized by a batch PIR scheme Π, on
security parameter λ ∈ N, database size n ∈ N and batch size Q ∈ [n], and by
a bit b ∈ {0, 1}. Protocol Π satisfies security for Q queries if, for all efficient
algorithms A,

|Pr [WA,λ,n,Q,0]− Pr [WA,λ,n,Q,1]| ≤ negl(n).

Using batch codes [62] on top of a state-of-the-art single-server PIR scheme [28],
prior work constructs correct and secure batch PIR protocols where:

– Batch.Query runs in time Õλ(Q) and produces a query q of length Õλ(Q) bits,

– Batch.Answer runs in time Õλ(n) and produces an answer a of length Õλ(Q)
bits, and

– Batch.Reconstruct runs time time Õλ(Q).

B.2 A new scheme for batch parity retrieval

In this section, we present a key building block for the PIR scheme that proves
Theorem 5.1. We construct a family of Boolean circuits for the batch parity
retrieval problem that, parametrized by an n-bit database,

1. take as input a batch of m length-l lists of elements in [n], and

2. output the m parities of the database bits indexed by each list.

Each circuit in this family has size Õ(l ·m+ n).
In our PIR scheme, the server holds a database and constructs the corre-

sponding batch parity retrieval circuit. (We explain how the server picks m and
l in Appendix B.3.) In the offline phase, the server evaluates this circuit under
encryption, using gate-by-gate fully homomorphic encryption (Definition 2.2).
By our definition of gate-by-gate fully homomorphic encryption, evaluating this
circuit under encryption preserves its asymptotic runtime. This gives a solution
to the problem of privately retrieving the parities of many subsets of a database
in quasi-linear time, referred to in prior work as batch PIR-for-parities or batch
private sum retrieval [36, 75,77].

Lemma B.2 (Batch parity retrieval in quasi-linear time). For all n ∈ N,
all m ∈ N, all l ∈ N, and any n-bit database D, there is a Boolean circuit of size
Õ(l ·m+ n) over the standard basis that:

– takes m lists S1, . . . , Sm ∈ [n]l, each represented as l (log2 n)-bit values, and

– outputs the parities of the database bits indexed by the m lists:∑
j∈S1

Dj mod 2, . . . ,
∑
j∈Sm

Dj mod 2.

Proof. Let n ∈ N be a database size, m ∈ N be a number of lists, and l ∈ N be a
list length. We first build the intermediate circuit Cn,l,m that takes as input (1)
m lists, S1, . . . , Sm, each containing l elements in [n], and (2) an n-bit database
D, and outputs the m parities of the database bits indexed by each list. The
circuit Cn,l,m operates as follows:

34

1. Join the input lists and the input database. The circuit builds (l ·m+n) tuples
in [n]×{0, . . . ,m}× {0, 1}, each consisting of (a) a database index, (b) a list
index, and (c) a database value.

– The first l ·m tuples are of the form (i, j, 0), where j ∈ [m] and i ∈ Sj . The
circuit can produce each such tuple using a polylog(n,m)-size gadget that
takes the log2 n input bits that correspond to i and has j and 0 hardcoded.

– The other n tuples are of the form (i, 0, Di) where i ∈ [n]. The circuit can
produce each such tuple using a polylog(n)-size gadget that takes the input
bit that corresponds to Di and has i and 0 hardcoded.

As this step requires (l ·m + n) gadgets of size polylog(n,m) gates each, it

requires Õ(l ·m+ n) gates.

2. Sort by database index. With a sorting network, the circuit sorts the tuples
first by database index, and secondarily by list index. This sorting network
operates on (l ·m+n) elements of size (log n+log(m+1)+1) each; therefore,

it requires Õ(l ·m+ n) gates [3, 53].

3. Propagate the database values for each database index. The circuit now com-
putes the correct database value for each tuple. To achieve this, the circuit
compares every pair of consecutive tuples, from left to right. If two consecutive
tuples have the same database index, the circuit propagates the first tuple’s
database value to the second tuple. Concretely, the circuit takes (l ·m + n)
input tuples (i1, j1, v1), . . . , (il·m+n, jl·m+n, vl·m+n) and produces (l ·m + n)
output tuples (i′1, j

′
1, v
′
1), . . . , (i′l·m+n, j

′
l·m+n, v

′
l·m+n) using a sequence of the

following gadgets.

The first gadget sets (i′1, j
′
1, v
′
1) to be (i1, j1, v1). Then for t := 2, . . . , l ·m+n,

the tth gadget takes as input the input tuple (it, bt, vt) and the output of
the previous gadget (i′t−1, j

′
t−1, v

′
t−1) and compares it and i′t−1. If i′t−1 = it

holds, then the gadget sets its output (i′t, j
′
t, v
′
t) := (it, jt, v

′
t−1). Otherwise

it outputs (i′t, j
′
t, v
′
t) := (it, jt, vt). As it operates on (l · m + n) tuples of

(log n+ log(m+ 1) + 1) bits each, this step requires Õ(l ·m+ n) gates.

4. Sort by input list. With a sorting network, the circuit sorts the tuples by list
index. This sorting network again requires Õ(l ·m+ n) gates.

5. Sum the database values in each input list. The circuit ignores the first n
tuples. (These tuples were constructed from the input database, rather than
from the input sets.) For each group of l consecutive tuples, the circuit sums
their database values. The circuit outputs the m resulting sums.
As it sums a total of (l ·m) one-bit values, this step requires Õ(l ·m) gates.

By construction, Cn,l,m correctly outputs the m parities of the database bits
indexed by each of its m input lists, with respect to its input database. By
summing the number of gates in each step, we conclude that circuit Cn,l,m has

size Õ(l ·m+ n).

Consider any database D ∈ {0, 1}n. We now build the circuit CD,l,m that
is identical to Cn,l,m, except it hardcodes D’s database values into the circuit
(instead of taking them as inputs). As required, CD,l,m takes as input m lists in

35

[n]l and retrieves the parity of the database bits indexed by each list, relative

to D. As CD,l,m is no larger than Cn,l,m, CD,l,m contains at most Õ(l ·m + n)
gates, completing the proof.

B.3 Proof of Theorem 5.1

Consider any security parameter λ ∈ N, polynomially bounded database size
n = n(λ) ∈ N, and maximum number of online queries Q = Q(n), where Q < n.
Using our circuits for batch parity retrieval (Lemma B.2) as a building block, we
construct a PIR scheme Π = (HintQuery, HintAnswer, HintReconstruct, Query,
Answer, Reconstruct) that proves Theorem 5.1. We present a formal specification
of Π in Construction B.3 and we analyze its correctness, security, and efficiency.

Constructing pseudorandom sets that support a random deletion and
a single insertion. Our construction makes use of sets of size n/Q, which the
client randomly samples in the offline phase and then optionally modifies in
the online phase, by deleting a random element and inserting a chosen element.
Inspired by prior work on puncturable pseudorandom sets [36, 83], our scheme
minimizes communication by succinctly representing these sets using pseudoran-
domness. Given a pseudorandom permutation PRP : Kλ×[n]→ [n], we represent
each set by (1) a PRP key k ∈ Kλ, and (2) a point p ∈ [n]. We define the (un-
ordered) set contents to be {PRP(k, 1),PRP(k, 2), · · · ,PRP(k, n/Q − 1), p}. As
long as PRP−1(k, p) ≥ n/Q, this set has size n/Q; as long as p is chosen ran-
domly to satisfy this condition, this set is pseudorandom. Then, we can remove
an element from the set by setting p ←⊥. After removing this element, it is
possible to insert any element i ∈ [n] into the set by setting p← i.

In the offline phase, the client uses the succinct representation of the set as
a pair (k, p) for PRP key k ∈ Kλ and point p ∈ [n]. In the online phase, the
client must hide which points have been added to or removed from the set, so
the client represents the set by explicitly listing its elements.

We begin by showing that sets sampled in this way using a PRP and a random
point are indeed pseudorandom (Fact B.4). Therefore, the probability that any
index i ∈ [n] is not present in at least one of λQ such sets, each generated
independently, is negligible in λ (Fact B.5).

Fact B.4. For any security parameter λ ∈ N, universe size n = n(λ) ∈ N, set
size s = s(n) ≤ n, and pseudorandom permutation PRP : Kλ × [n] → [n], let S
be the set of size s constructed as

S ← {PRP(k, 1), · · · ,PRP(k, s)} for k ←R Kλ.

If PRP is computationally secure, then, for any i ∈ [n],

s/n− negl(λ) ≤ Pr [i ∈ S] ≤ s/n+ negl(λ).

Proof. For any i ∈ [n], we define εi = Pr [i ∈ S]. We build an efficient algorithm
Ai that distinguishes between

Dλ,s,0 := {S : k ←R Kλ, S ← {PRP(k, 1), · · · ,PRP(k, s)}}

36

Construction B.3 (Single-server offline/online PIR with Õ(n/Q) amor-
tized time from fully homomorphic encryption). The scheme is param-
eterized by a security parameter λ ∈ N, database size n ∈ N, and maximum
number of online queries Q = Q(n) and uses (1) a pseudorandom permutation
PRP : Kλ × [n] → [n], (2) a gate-by-gate fully homomorphic encryption scheme
(FHE.Gen, FHE.Enc, FHE.Dec, FHE.Eval), (3) a single-server batch PIR scheme
(Batch.Query,Batch.Answer,Batch.Reconstruct) with database size n and batch
size Q, and (4) the circuit CD,(λ+1)·Q,n/Q for the batch parity retrieval of (λ+1)·Q
subsets of [n], each of size n/Q, with respect to D (constructed in the proof of
Lemma B.2). We define m = (λ+ 1) ·Q. The final scheme runs λ instances of each
phase in parallel.

I. Offline phase.

HintQuery(ck, n)→ (ck, q).

– Sample sk ← FHE.Gen(1λ).

– // The PRP keys determine m pseudorandom sets of database indexes: λQ
primary sets, followed by Q backup sets.
For j ∈ [m], let kj ←R Kλ, k̂j ← FHE.Enc(sk, kj), and lj ← PRP(kj , n/Q).

– // Fetch the value of one database element indexed by each backup set.
Compute qb ← Batch.Query(1λ, n, lλQ+1, · · · , lm).

– Let ck← (sk, (k1, l1), · · · , (km, lm)) and q ← (k̂1, · · · , k̂m, qb).

HintAnswer(D, q)→ a.

– Parse (k̂1, · · · , k̂m, qb)← q.

– // Generate m pseudorandom sets Ŝj ⊆ [n] under encryption.
For j ∈ [m], let Ŝj ←

⋃
i∈[n/Q] FHE.Eval(PRP(·, i), k̂j).

– // Compute (under encryption) the parity of the database bits these sets index.

Compute (p̂1, · · · , p̂m)← FHE.Eval
(
CD,m,n/Q(·), Ŝ1, · · · , Ŝm

)
.

– // Return the value of one database element indexed by each backup set.
Compute ab ← Batch.Answer(D, qb).

– Let a← (p̂1, · · · , p̂m, ab).

HintReconstruct(ck, a)→ h.

– Parse (sk, (k1, l1), · · · , (km, lm))← ck. Parse (p̂1, · · · , p̂m, ab)← a.

– // Recover the m parities of database bits indexed by the pseudorandom sets.
For j ∈ [m], let pj ← FHE.Dec(sk, p̂j).

– // Recover one database element in each backup set.
Let (b1, · · · , bQ)← Batch.Reconstruct(ab).

– Let h← (p1, · · · , pm, b1, · · · , bQ).

Continued on Page 38. . .

37

. . . continued from Page 37.

II. Online phase.

Query(ck, i)→ (ck′, st, q).

– Parse (sk, (k1, l1), · · · , (km, lm))← ck.

– // Toss a coin to see if i should be in the query set.

Sample r ←R Bernoulli
(

1
Q
− 1

n

)
.

– If r = 0: // Build a query set that looks random and does not contain i.

• // Find a primary set that contains i.
If ∃ j ∈ [λQ] such that lj = i or PRP−1(kj , i) < n/Q:

∗ // Generate the contents of this primary set, and remove i.

Initialize q ←
(⋃

i∈[n/Q−1] PRP(kj , i)
)
∪ ljr{i}.

∗ // Promote the next available backup set to be a new primary set.
Find the smallest j′ > λQ such that kj′ 6=⊥. Set kj ← kj′ and kj′ ←⊥.

· // If the new primary set already contains i, do not modify it.
If PRP−1(kj , i) < n/Q, set ir ←⊥ and lj ← lj′ .

· // If the new primary set does not contain i, puncture it and insert i.
Else, set ir ← lj and lj ← i.

∗ Set st← (i, j, j′, ir).

• Else: // No primary set contains i.

∗ Sample S ←R
(
[n]r{i}
n/Q−1

)
and set q ← S.

∗ Set st← (i,⊥,⊥,⊥).

– Else: // r = 1, so build a query set that looks random and contains i.

• Sample S ←R
(
[n]r{i}
n/Q−2

)
and set q ← S ∪ {i}.

• Set st← (i,⊥,⊥,⊥).

– Let ck′ ← (sk, (k1, l1), · · · , (km, lm)).

AnswerD(q)→ a.

– Parse q as a set of n/Q− 1 elements.

– Let a←
∑
i∈qDi mod 2.

Reconstruct(st, h, a)→ (h′, Di).

– Parse (i, j, j′, ir)← st and parse (p1, · · · , pm, b1, · · · , bQ)← h.

– // Reconstruct the database bit at index i.
If j 6=⊥, Di ← a⊕ pj .
Otherwise, Di ←R {0, 1}.

– If j 6=⊥ and j′ 6=⊥: // Update the parity of the new primary set.

• // If i was inserted into the set, compute its new parity based on the database
values at i and at the index that was replaced.
If ir 6=⊥, set pj ← pj′ ⊕ bir−λQ ⊕Di.
Else, set pj ← pj′ .

– Let h′ ← (p1, · · · , pm, b1, · · · , bQ).

38

and

Dλ,s,1 :=

{
S : S ←

(
[n]

s

)}
.

On input S ∈
(

[n]
s

)
, Ai outputs 1 iff i ∈ S. Then,

DistAdv[Ai,Dλ,s,0,Dλ,s,1] = |s/n− εi|.

As PRP is computationally secure and s ≤ n is polynomially bounded, it must
hold that DistAdv[Ai,Dλ,n,0,Dλ,n,1] ≤ negl(λ). It follows that:

s/n− εi ≤ negl(λ) and εi − s/n ≤ negl(λ)

εi ≥ s/n− negl(λ) and εi ≤ s/n+ negl(λ)

Fact B.5. For any security parameter λ ∈ N, universe size n = n(λ) ∈ N, Q =
Q(n) ∈ N where Q < n, and computationally secure pseudorandom permutation
PRP : Kλ × [n] → [n], let S1, · · · , SλQ be λQ sets, each of size n/Q, generated
independently as follows:

Sj ← {PRP(kj , 1), · · · ,PRP(kj , n/Q)} where kj ←R Kλ.

The probability that any index i ∈ [n] does not occur in at least one of the λQ
sets is negligibly small in λ.

Proof. We construct λQ sets independently as above. Then, from Fact B.4,

Pr

i /∈ ⋃
j∈[λQ]

Sj

 ≤ (1− 1/Q+ negl(λ))
λQ

≤ e−(1/Q−negl(λ))·λQ

= e−λ+negl(λ)

= negl(λ).

We now prove a sequence of useful claims about the PIR protocol of Con-
struction B.3. Throughout, we use the term “primary sets” to denote the first
λQ sets sampled by the client in the offline phase and the term “backup sets” to
denote the latter Q sets. First, following the proof technique of Corrigan-Gibbs
and Kogan [36, Lemma 45], we show that the distribution of primary sets that
the client holds remains identical as she makes queries, even conditioned on her
past queries (Claim B.6). Using this fact, we prove that the online queries made
by the client are indistinguishable from queries to any other index (Claim B.7)
and that they are independent of all prior queries (Claim B.8).

39

Claim B.6 (Primary set distribution). As the client makes adaptive queries
using the PIR scheme of Construction B.3, the distribution of primary sets
she holds remains statistically identical and is distributed independently of prior
queries. Concretely, for any security parameter λ ∈ N, database size n = n(λ) ∈
N, and any index i ∈ [n],

(ck,)← HintQuery(1λ, n)
(, , q)← Query(ck, i)
(ck,)← HintQuery(1λ, n)

Output (the primary sets in ck, q)


s
≈

 (ck,)← HintQuery(1λ, n)
(ck, , q)← Query(ck, i)
Output (the primary sets in ck, q)


Proof. As query q is constructed identically in the left-hand side and the right-
hand side of the above equation, we know that q is distributed identically in both
cases. We must show that the distribution of primary sets held by the client is
statistically identical before and after she queries for any index i ∈ [n], even
conditioned on her query q for i. By cases:

– If bit r is sampled to be 1, or if i does not appear in any of the primary
sets, then the client does not modify her primary sets. The client samples her
query q to be a random set of the appropriate size, containing i iff r = 0. The
claim trivially holds.

– Otherwise, the client replaces a primary set S with a backup set, Sb. Both
S and Sb are pseudorandom sets, sampled independently following the same
procedure. S necessarily contains i. Further, the client ensures that Sb also
contains i (by removing a random element and inserting i if it isn’t already
in the set). Thus, S and Sb are identically distributed and independent of
all other primary sets. Further, the client derives q from only the contents
of S and the index i. After replacing S with Sb, the joint distribution of all
primary sets thus remains the same, and independent of q.

We conclude that the distribution of primary sets held by the client is dis-
tributed identically before and after she makes query q, even when conditioned
on q.

Claim B.7 (Online query indistinguishability). Consider any security
parameter λ ∈ N, database size n = n(λ) ∈ N, maximal number of queries
Q = Q(n) < n, and query sequence i1, · · · , it ∈ [n]t for any 0 ≤ t < Q. Then,
for any it+1, i

′
t+1 ∈ [n],q :

(ck0,)← HintQuery(1λ, n)
(ck1, ,)← Query(ck0, i1)

· · ·
(ckt, ,)← Query(ckt−1, it)

(, , q)← Query(ckt, it+1)


c
≈

q :

(ck0,)← HintQuery(1λ, n)
(ck1, ,)← Query(ck0, i1)

· · ·
(ckt, ,)← Query(ckt−1, it)

(, , q)← Query(ckt, i
′
t+1)


Proof. By applying Claim B.6 inductively, the distribution of primary sets in ckt
is statistically identical to the distribution of primary sets in ck0, after only the

40

offline phase. Therefore, we know that the left-hand side in the equation above
is statistically identical to Dλ,n,it+1

, while the right-hand side is statistically
identical to Dλ,n,i′t+1

, where, for any i ∈ [n], we define the following distribution:

Dλ,n,i =



For j ∈ [λQ], kj ←R Kλ and lj ← PRP(kj , n/Q)

Sample r ←R Bernoulli
(

1
Q −

1
n

)
If r = 0 :

- If ∃ j ∈ [λQ] such that lj = i or PRP−1(kj , i) < n/Q,

initialize q ←
(⋃

i∈[n/Q−1] PRP(kj , i)
)
∪ ljr{i}

- Else, sample S ←R
(

[n]r{i}
n/Q−1

)
and set q ← S

Else:

- Sample S ←R
(

[n]r{i}
n/Q−2

)
and set q ← S ∪ {i}

Output q



.

We now analyze the distribution Dλ,n,i for any i ∈ [n]. By Fact B.4, the
sets {(k1, l1), · · · , (kλQ, lλQ)} sampled as in Dλ,n,i are pseudorandom. Then, by
Fact B.5, the condition in the inner if statement (checking whether there exists
a primary set that contains i) evaluates to true with probability 1 − negl(λ).
When this is the case, the selected jth set (kj , lj) is computationally indistin-
guishable from a random set that contains i. Thus, Dλ,n,i is computationally
indistinguishable from the distribution D′λ,n,i, which we define as follows:

D′λ,n,i =



Sample r ←R Bernoulli
(

1
Q −

1
n

)
If r = 0 :

- Sample S ←R
(

[n]r{i}
n/Q−1

)
and output q ← S

Else:

- Sample S ←R
(

[n]r{i}
n/Q−2

)
and output q ← S ∪ {i}


.

Since the probability that r = 1 above is exactly the probability that a random
set of size n/Q− 1 contains i, we can again rewrite the distribution as follows:

D′′λ,n,i =
{

Output q ←R
(

[n]
n/Q−1

)}
.

The distribution D′′λ,n,i is independent of i, and therefore D′′λ,n,it+1
≡ D′′λ,n,i′t+1

.

We conclude that Dλ,n,it+1

c
≈ Dλ,n,i′t+1

, as required.

Claim B.8 (Online query independence). For any security parameter λ ∈
N, database size n = n(λ) ∈ N, and number of queries Q = Q(n) < n, consider
a client that makes online queries q1, · · · , qt for a sequence of indices i1, · · · , it ∈
[n]t, where 2 ≤ t ≤ Q, using the PIR scheme of Construction B.3:

(ck0,)← HintQuery(1λ, n)
(ck1, , q1)← Query(ck0, i1)
(ck2, , q2)← Query(ck2, i2)

· · ·
(ckt, , qt)← Query(ckt−1, it).

41

Then, qt is independent of (q1, · · · , qt−1).

Proof. Query qt is the output of Query(ckt−1, it) and, more specifically, qt de-
pends only on it and on the primary sets in ckt−1. However, by applying Claim B.6
inductively, we know that the distribution of primary sets in each ckt−1 is sta-
tistically identical to the distribution of primary sets in ck0 and is independent
of all prior queries q1, · · · , qt−1. This implies that qt is independent of all queries
that came before it.

We now prove that the PIR scheme of Construction B.3 is correct and secure.

Claim B.9 (Correctness). If the underlying batch PIR scheme and fully ho-
momorphic encryption scheme are correct, then the PIR protocol in Construc-
tion B.3 satisfies correctness for Q queries.

Proof. Consider any security parameter λ ∈ N, database size n = n(λ) ∈ N,
and maximum number of online queries Q = Q(n) < n. Let D ∈ {0, 1}n be any
database held by the server. We show that the PIR protocol in Construction B.3
correctly recovers Q database values from D with negligible failure probability.

We execute the PIR protocol on Q queries by first running the offline phase
once and then running the online phase Q times. To execute each phase, we run
λ instances of the scheme in parallel. We say that this execution fails if, in some
online phase, none of the λ instances satisfy that:

1. at least one primary set contains the index queried, and

2. the bit r that is randomly sampled from Bernoulli
(

1
Q −

1
n

)
takes value 0.

We first demonstrate that, if the execution does not fail, then the client suc-
cessfully recovers the Q database values she queried for. We prove this statement
by induction over the number of online phases: for each online phase 1 ≤ t ≤ Q,
we show that, if the execution has not failed, then

– before the t-th online phase, in all λ instances, the client’s hint holds the
correct parity pj of the database bits indexed by each primary set Sj , and

– after the t-th online phase, in some instance, the client successfully recon-
structs Dit on query it ∈ [n].

After the offline phase (and thus before the first online phase), in each in-
stance, the client by construction holds the correct database parities for each of
her primary sets. As no failures occur, in the first online phase, there exists some
instance in which (1) the client holds a primary set S that contains i1, and (2)
the client samples r to be 0. In this instance, the client then asks the server for
the parity a of the database bits indexed by Sr{i1}. In the corresponding offline
phase, the client already retrieved the parity p of the database bits indexed by
S. Therefore, the client correctly reconstructs Di1 to be a⊕ p.

We have shown that the required property holds for the first online phase.
Next, we assume that the same property holds for the t-th online phase and show
that it also holds for the (t + 1)-th online phase. After the t-th online phase,
the client may have to refresh her distribution of primary sets, by discarding

42

the primary set she used and promoting the t-th backup set, Sb, to become a
new primary set. Crucially, the client only does this refreshing procedure if she
correctly recovered Dit in the t-th online phase (as she only does so if both
r = 0 and she found a primary set containing it). In the offline phase, the client
already retrieved the parity of the database bits indexed by Sb. However, if Sb
does not contain it, the client must update Sb by deleting one of its elements,
ir, and inserting it. Then, the client computes the parity of the bits indexed by
the updated Sb from the following values:

– the parity of the bits originally indexed by Sb (correctly retrieved in the offline
phase, by running the batch parity retrieval circuit under fully homomorphic
encryption),

– Dir (correctly retrieved in the offline phase, by the batch PIR scheme), and

– Dit (correctly retrieved in the last online phase).

Thus, at the start of the (t+ 1)-th online phase, in each of the λ instances, the
client holds the correct database parities for each of her primary sets. As no
failures occur, the client will successfully recover Dit+1

in some instance, by the
same argument as in the base case. We conclude that, after Q online phases, the
client has correctly recovered all Q database values queried, if no failures occur.

Next, we examine the probability with which failure events occur.

1. By Fact B.5, after only the offline phase, the probability that any i ∈ [n]
does not appear in any of the λQ primary sets is negligible in λ. By applying
Claim B.6 inductively, after each online query made by the client, the dis-
tribution of primary sets remains identical, implying that same property still
holds.

Then, by a union bound, the probability that none of the primary sets contain
the index queried, in any of the λ instances, for any of the Q online phases,
is also negligible in λ.

2. Each time the bit r is sampled, r takes value 1 with probability (1/Q −
1/n). For any given online phase, the probability that none of the λ instances
samples r to be 0 is then negligibly small in λ.

Finally, by a union bound, the probability that, for any of the Q queries, none
of the λ instances samples r to be 0 is also negligible in λ.

We conclude that the PIR scheme fails with negligible probability, implying that
Π satisfies correctness for Q queries.

Claim B.10 (Security). If the underlying pseudorandom permutation and batch
PIR scheme are computationally secure, and the underlying fully homomorphic
encryption scheme is semantically secure, then the PIR protocol in Construc-
tion B.3 satisfies security for Q queries.

Proof. Consider any efficient adversary A, security parameter λ ∈ N, database
size n = n(λ) ∈ N, and maximum number of online queries Q = Q(n) < n. We
show that any instance of the PIR protocol of Construction B.3 satisfies security
for Q queries.

43

As in the security proof of Lemma 3.1, we design a sequence of Q+ 1 hybrid
games, presented in Experiment B.3. Again, game 0 corresponds to Experi-
ment 2.2 for b = 1, while game Q corresponds to Experiment 2.2 for b = 0. We
define GA,λ,Q,n,t to be the event that game t outputs “1” when parametrized by
these values, and we denote the adversary A’s view in game t by Viewt. To prove
security, we again show that the adversary’s views in adjacent games are compu-
tationally indistinguishable. As A is computationally bounded, this means that
A has at most a negligible advantage in distinguishing adjacent games. Since the
number of games is polynomially bounded, we conclude that

|Pr[GA,λ,Q,n,0]− Pr[GA,λ,Q,n,Q]| ≤ negl(λ).

Experiment B.3 (Single-server security games t = 0, · · · , Q). Parameter-
ized by an adversary A, PIR scheme Π, security parameter λ ∈ N, number of
queries Q ∈ N, and database size n ∈ N.

1. Compute:

(ck, q)← Π.HintQuery(1λ, n)

st← A(1λ, q)

2. For l = 1, . . . , Q, compute:

(st, i0, i1)← A(st)

i←

{
i0, if l ≤ t
i1, otherwise

(ck, , q)← Π.Query(ck, i)

st← A(st, q)

3. Output b← A(st)

For the PIR scheme of Construction B.3, Viewt amounts to:

– The offline hint request. This hint request consists of λQ encrypted primary
sets, Q encrypted backup sets, and a batch PIR query.

– Q online queries, (q1, · · · , qQ). Each online query consists of a set S ⊂ [n],
where |S| = n/Q− 1.

In Viewt, the first t online queries are to an index i0 chosen by the adversary,
while the remaining (Q − t) online queries are to an index i1 chosen by the
adversary.

With a hybrid argument, we show that the adversary’s views in any two
consecutive games in the sequence, Viewt and Viewt+1 (for 0 ≤ t < Q), are
computationally indistinguishable. The hybrid argument follows these steps:

– We begin with distribution Viewt.

44

– We replace the encrypted primary sets and the encrypted backup sets by
encryptions of fixed strings, relying on the semantic security of the encryption
scheme.

– We replace the batch PIR query by a batch PIR query to a set of fixed indices,
relying on the computational security of the batch PIR scheme.

– We replace query qQ by a query to a fixed index, relying on the facts that:

• the last query qQ is independent of all queries that came before it (Claim B.8),
and

• qQ is computationally indistinguishable from a query to a fixed index
(Claim B.7).

Applying the same reasoning, we one-by-one replace all queries from qQ−1

until qt+2 with queries to a fixed index.

– We replace query qt+1 with the (t+ 1)-th query in Viewt+1, relying again on
the fact that qt+1 is computationally indistinguishable from a query to any
index in [n] (Claim B.7) and on query independence (Claim B.8).
Applying the same reasoning, we one-by-one replace all queries from qt+1 until
qQ with the corresponding query from Viewt+1.

– We replace the batch PIR query to a fixed set of indices by the batch PIR
query of Viewt+1, relying on the security of the batch PIR scheme.

– We replace the encryptions of fixed strings by the encrypted primary and
backup sets in Viewt+1, relying on the semantic security of the encryption
scheme.
Then, the resulting distribution is exactly Viewt+1, completing the argument.

We conclude that Π satisfies security for Q queries.

Finally we analyze the PIR scheme’s efficiency. By inspection:

– The server’s amortized, per-query computation is Õλ(n/Q), assuming the
server runs our quasi-linear-size circuit from Lemma B.2 under gate-by-gate
fully homomorphic encryption.

– The client’s amortized, per-query computation is Õλ(Q+ n/Q).

– The client uses Õλ(Q) bits of storage.

– The scheme’s amortized, per-query communication is Õλ(n/Q) bits (and the
server and the client never communicate O(n) bits in a single phase).

45

	Single-Server Private Information Retrieval with Sublinear Amortized Time
	1 Introduction
	1.1 Our results
	1.2 Overview of techniques
	1.3 Related work

	2 Background
	2.1 Standard definitions
	2.2 Definition of offline/online PIR

	3 Two-server PIR with a single-server online phase and sublinear amortized time
	Construction 3.5

	4 Single-server PIR with sublinear amortized time from DCR, QR, DDH, or LWE
	5 Single-server PIR with optimal amortized time and storage from fully homomorphic encryption
	6 Lower bound
	7 Conclusion

	References
	Appendix
	A Deferred material from Section 3
	B Deferred material from Section 5
	B.1 Standard definitions of batch PIR
	B.2 A new scheme for batch parity retrieval
	B.3 Proof of Theorem 5.1
	Construction B.3

