
Token meets Wallet:
Formalizing Privacy and Revocation for FIDO2

Lucjan Hanzlik

hanzlik@cispa.de

CISPA Helmholtz Center for

Information Security

Julian Loss

loss@cispa.de

CISPA Helmholtz Center for

Information Security

Benedikt Wagner

benedikt.wagner@cispa.de

CISPA Helmholtz Center for

Information Security

ABSTRACT
The FIDO2 standard is widely-used class of challenge-response

type protocols that allows to authenticate to an online service

using a hardware token. Barbosa et al. (CRYPTO ‘21) provided the

first formal security model and analysis for the FIDO2 standard.

However, their model has two shortcomings: (1) it does not include

privacy, one of the key features claimed by FIDO2 (2) their model

and proofs apply only to tokens that store all secret keys locally. In

contrast, due to limited memory, most existing FIDO2 tokens use

one of the following approaches to handle an unlimited number of

keys. Key derivation derives a fresh per-server secret key from a

common seed. Key wrapping stores an encryption of the key on the

server and retrieves them for each authentication. These approaches

substantially complicate the protocols and their security analysis.

In particular, they bear additional risks for privacy and security of

FIDO2 that are not captured in the model Barbosa et al. model.

In this paper, we revisit the security of the FIDO2 as implemented

in practice. Our contributions are as follows. (1) We adapt the model

of Barbosa et al. so as to capture authentication tokens using key

derivation or key wrapping. (2) In our adapted model, we provide

the first formal definition of privacy for FIDO2 and show that these

common FIDO2 token implementations are secure in our model, if

the underlying building blocks are chosen appropriately. (3) Finally,

we address the unsolved problem of global key revocation in FIDO2.

We first provide appropriate syntax of a revocation procedure and

extend our model to support this feature. We then provide the

first secure global key revocation protocol for FIDO2. Our solution

is based on the popular BIP32 standard used in cryptocurrency

wallets.

CCS CONCEPTS
• Security and privacy → Mathematical foundations of cryp-
tography; Security protocols;

KEYWORDS
FIDO2; BIP32; unlinkability; revocation;

1 INTRODUCTION
Online authentication is one of the most pressing challenges faced

by security engineers and cryptographers today. Reliable authen-

tication is an important concern for both the security of user’s

accounts as well as the reputation of service providers. A simple

way to strengthen the security of an authentication process is to

introduce additional authentication factors. Usually, the user has to

just provide a login and password (something she knows). A popular

way to introduce a second factor is for the user to use a device

(something she has). This is usually implemented by registering a

device to the user account.

Universal Second Factor (U2F) (or CTAP1, as it is currently

named) is a protocol to achieve two-factor authentication using a

designated device. This cryptographic hardware token (also called

authenticator) runs a simple piece of code and interacts with the

user’s platform (also called client or agent) represented, e.g., by
a web browser. The agent acts as a proxy device during the au-

thentication process between an authenticator and a server (also

called relying party). The main benefit of this solution over the

login/password approach is the protection against phishing attacks

and database breaches.

CTAP1/U2F and its successor CTAP2 are part of the FIDO au-

thentication specification [2]. Together with the complement W3C

web authentication [3] they form the state-of-the-art for online

authentication using security tokens.

In recent work, Barbosa et al. [6] gave the first formal model

for token-based two-factor authentication and provided a security

proof for the FIDO2 standard. On one hand, their model provides an

important starting point for further exploration of FIDO2’s security

properties. On the other hand, it does not accurately model several

key aspects of FIDO2 as used in practice. In this work, we revisit

the FIDO2 standard and give a more complete security analysis of

its security features. We also augment the existing standard with

a new feature that allows to easily revoke keys of compromised

tokens.

1.1 Our Contribution
We begin by identifying several disparities between the model of

Barbosa et al. and how FIDO2 is commonly used in practice, which

we explain below. For each of these points, we explain how our

work amends the existing security model to close these gaps. We

also discuss a practical feature for key revocation that we call global
revocation. To the best of our knowledge, this property of FIDO2

has not been discussed or formalized prior to this work.

Attestation. Barbosa et al. consider a model where the authentica-

tor and the relying party are initially provided a pair of attestation

secret key and attestation public key by the (trusted) manufacturer.

While attestation is common practice for critical interactions such

as banking transactions, it is rarely used for more mundane scenar-

ios such as logging in to an internet account. Also, naive attestation

violates privacy [23]. Therefore, to reason about the security and

privacy of FIDO2 in its most widely used form, we consider a model

without attestation.

Resident Keys vs. Privacy. FIDO2 can be used in two different

modes. The first is to store the secret keys of the authenticator

1

locally, i.e., on the authentication token. Such keys are known as

resident keys. In practice, a more commonway is to store (encrypted)

keys with the server, in the form of so-called non-resident keys. This
technique is also called key wrapping. Another approach to non-

resident keys is to use a key derivation function. Since the token

is often limited with regards to storage space, non-resident keys

provide a distinct storage advantage over resident keys.

On the downside, non-resident keys give the server additional

information that it may use to link separate sessions of the token.

This violates the privacy properties claimed by many common

implementations of FIDO2.

Let us illustrate this using a (pathological) implementation of key

wrapping. Assume that the server stores ciphertexts of the form

(Enc(𝑘, sk), 𝐻 (𝑘)), where Enc is a symmetric encryption scheme,𝐻

is a hash function, 𝑘 denotes the encryption key, and sk denotes the
signing key used for authentication. Observe that the above scheme

appends a hash of the secret encryption key to the ciphertext of Enc.
It is not hard to see that if 𝐻 is modelled as a random oracle with

independent randomness of Enc, the above scheme remains secure.

However, ciphertexts produced by the same token (i.e., using the

same key 𝑘) can trivially be linked using the second component.

Interestingly, we observe that the Yubico implementation of FIDO2

[32] uses an authenticated encryption scheme based on CCM-mode

of encryption. To the best of our knowledge, key anonymity (i.e.,

unlinkability of ciphertexts produced with the same encryption

key) of this mode of encryption has not been formally explored.

The above discussion shows that the use of non-resident keys

leads to unexpected subtleties with regards to privacy across dif-

ferent sessions of the same token. Unfortunately, as Barbosa et

al. consider exclusively the setting of resident keys, their model

does capture privacy gurantees. One of our key contributions is to

augment their model with a suitable notion of privacy.

Adding Global Revocation. When using FIDO2, a crucial aspect

is how to securely revoke keys in case access to the authentication

token is ever lost. Indeed, the usability study by Lyastani et al. [26]

shows that one of the top concerns of users is that an adversary

can gain access to their account in case their FIDO2 authenticator

gets lost or is stolen. In such a case, we desire a public procedure

that allows to simultaneously revoke all keys associated with such

an authenticator. We stress that this includes also any future keys

that the (compromised) authenticator may attempt to register with

the relying party. We refer to such a procedure as global revocation.
Despite significant benefits, current authenticator implementations

do not support global revocation.

Implementing the key generation process on the authenticator

in a way that is compatible with global revocation is challenging. To

see the issue, suppose that the authenticator naively generates each

key pair using a fresh random seed. In this case, it is not possible to

revoke any of the future keys that the authenticator could derive

post-compromise. Thus, any solution for global revocation seems

to require that the authenticator generates keys using correlated

randomness (e.g., deterministically from the same seed). Later, it

can reveal this randomness to revoke all past and future keys at

once. However, this solution might introduce different issues: first,

is it possible to link sessions if keys are correlated? Second, does

FIDO2 remain secure against impersonation if the random seed is

ever leaked?

Crypto Wallets to the Rescue. Fortunately, we can rely on a

practical solution from the cryptocurrency space to solve this is-

sue. A common approach to store a multitude of keys compactly

is to use deterministic key derivation1. Considering the case of

BIP32, the most widely implemented procedure for determinis-

tic key derivation, keys are derived from a pair of master keys

msk ∈ Z𝑝 ,mpk = 𝑔msk
and a chaincode chain. Here, 𝑔 denotes

the base point of an elliptic curve and chain can be thought of

as a random seed. To derive a fresh key pair for an identity id,
BIP32 first computes 𝑤 = Hash(id, chain,mpk), then sets skid :=

msk +𝑤, pkid := mpk · 𝑔𝑤 . Proving that ECDSA signatures remain

unforgeable with respect to keys derived in this fashion once chain
is leaked turns out be non-trivial. In recent work, Das et al. were the

first to consider this stronger form of unforgeability and showed

that it holds given that no message is ever signed twice [14]. On the

other hand, the above procedure provides a very simple means of

global revocation. To revoke all public keys associated with a pair

msk,mpk, all one needs to do is to publish chain. Now, each relying

party can revoke the appropriate public keys by deterministically

recomputing them (for suitable identities) from mpk and chain.
Given the widespread use of BIP32, our solution offers a practical

means of global key revocation that can be directly implemented

using a multitude of existing hardware devices.

1.2 Related Work
The first formal model for the FIDO2 authentication protocol was

proposed by Barbosa et al. [6]. The authors introduced the notion of

passwordless authentication that models the Webauthn protocol in

the scenario when the token uses resident keys. They also introduce

a security model for PIN-based access control that tries to formally

define the CTAP protocol executed between the token and the client.

Barbosa et al. show that CTAP only provides a weaker notion of

access control and propose an alternative protocol based on a PAKE.

Guirat et al. [23] analyzed the Webauthn protocol using auto-

mated verification and modeled a simple privacy definition. They

showed that if the same key is used for attestation it allows a server

to link the same token. Feng et al. [20] also used automated ver-

ification to check the FIDO UAF protocol. Potential security and

privacy issues that arise during the development phase of FIDO

components were discussed by Alam et al. [4].

Another line of related work provides alternative protocols and

usability studies. Chakraborty et al. [11] used a TPM implemen-

tation (simTPM) based on a sim card, as a secure and convenient

FIDO2 authenticator. The problem of backdoored FIDO tokens was

discussed Dauterman et al. [16]. They introduced an alternative

design for a token, which is resistant against backdoors introduced

to the device by the manufacturer. Frymann et al. [22] discussed

the token backup procedure proposed by Yubico. A usability and

acceptability study of FIDO2 was done by Lyastani et al. [26]. Flo-

rian et al. [19] show that despite security benefits, hardware tokens

face acceptability challenges in small companies.

From a cryptographic point of view, FIDO2 is a simple authen-

tication scheme, a primitive which has been extensively studied.

1
Such a mechanism is colloquially referred to as a wallet.

2

Everything started with simple solutions. One of the first and well-

known protocols is the Schnorr identification scheme [29]. Authen-

ticated key exchange (AKE) protocols [17, 24, 25] simultaneously to

authentication provide means to agree on a secret key between the

interacting parties. A different approach to authentication is the

folklore challenge-response protocol based on signature schemes,

which FIDO2 is based on. This technique provides a framework

for creating authentication protocols. Instantiated with group sig-

natures [7, 12] the protocol provides a way for group members to

anonymously authenticate to a server. A direct solution introduced

by Teranishi, Furukawa, and Sako is anonymous authentication

[10, 30] .

Dwork, Naor and Sahai [18] introduced the concept of deniable

authentication where an interaction between the parties cannot

be used as undeniable proof of interaction. This notion was later

extended to proof systems [27]. An alternative approach to authen-

tication using a hardware device is the extended access control

protocol (EAC) [9, 13] for machine-readable travel documents (e.g.

e-Passports). This protocol is used for local authentication can be

easily be used to authenticate the document online.

2 PRELIMINARIES
In this section we fix some notation and provide the necessary

cryptographic background that will be needed for our analysis.

Notation. We denote by 𝑧 ← A(𝑥) the execution of algorithm A
on input 𝑥 and with output 𝑧. We write 𝑦 ∈ A(𝑥) to indicate that

𝑦 is a possible output of A on input 𝑥 . By 𝑟 ←$ 𝑆 we mean that 𝑟

is chosen uniformly at random over the set 𝑆 . We will use [𝑛] to
denote the set {1, . . . , 𝑛}. Throughout the paper, we assume public

parameters param are given implicitly to all algorithms.

Signatures. We recall the standard notion of digital signatures.

We also introduce the notion of rerandomizable signature schemes

[15, 21] and the corresponding security notion.

Definition 2.1 (Digital Signature Scheme.). A digital signature
scheme is a tuple of algorithms sig = (kg, sign, ver) with the follow-

ing properties.

• The randomized key generation algorithm kg takes as input
parameters param. It outputs a secret key and public key

(sk, pk).
• The randomized signing algorithm sign takes as input a

secret key sk and a message𝑚. It outputs a signature 𝜎 .

• The deterministic verification algorithm ver takes as input
a public key pk a signature 𝜎 , and a message𝑚. It outputs

0 (reject) or 1 (accept).

We say that a digital signature scheme is correct if for all (sk, pk) ∈
kg(param) and all messages𝑚 ∈ {0, 1}∗ we have

Pr

𝜎←sign(sk,𝑚)
[ver(pk, 𝜎,𝑚) = 1] = 1.

Further, without loss of generality, we assume that secret keys are

chosen uniformly at random and there is an algorithm toPK that

maps secret keys to public keys, i.e. pk := toPK(sk).

Definition 2.2 (Unforgeability under Chosen Message Attacks.).
Let sig = (kg, sign, ver) be a digital signature scheme and consider

the experiment euf-cmaAsig defined as follows:

• Setup. The experiment generates (sk, pk) via (sk, pk) ←
kg(param). It runs the adversary A on input pk.

• Online Phase. In this phase, A is given access to oracle

Sign, which takes as input a message𝑚 and returns the

signature 𝜎 ← sign(sk,𝑚).
• Output Phase.WhenA returns (𝑚∗, 𝜎∗), the experiment

returns 1 if ver(pk, 𝜎∗,𝑚∗) = 1 and𝑚∗ was not queried to

Sign. Otherwise, it returns 0.

We define the advantage of A in euf-cmaAsig as

AdvAeuf-cma,sig := Pr[euf-cmaAsig = 1] .

Definition 2.3 (Rerandomizable Signature Scheme.). A rerandom-
izable signature scheme is a tuple of algorithms sig = (kg, sign,
srerand, prerand, ver), where (kg, sign, ver) is a digital signature

scheme, and algorithms srerand, prerand have the following prop-

erties.

• The deterministic secret key rerandomization algorithm
srerand takes as input a secret key sk and a string 𝜌 . It

outputs a rerandomized key sk𝜌 .
• The deterministic public key rerandomization algorithm

prerand takes as input a public key pk and a string 𝜌 . It

outputs a rerandomized key pk𝜌 .

Moreover, we require that for all (sk, pk) ∈ kg(param), key pairs

(sk𝜌 , pk𝜌) generated as 𝜌 ← {0, 1}𝜆, sk𝜌 := srerand(sk, 𝜌), and
pk𝜌 := prerand(pk, 𝜌) are identically distributed to key pairs gen-

erated via (sk′, pk′) ← kg(param).
We next recall the security notion of unforgeability under hon-

estly rerandomized keys [14, 15].

Definition 2.4 (Unforgeability under Honestly Rerandomized Keys.).
Let sig = (kg, sign, srerand, prerand, ver) be a rerandomizable sig-

nature scheme and consider the experimentufcma-hrk1Asig defined
as follows:

• Setup. The experiment generates (sk, pk) via (sk, pk) ←
kg(param). It runs the adversary A on input pk.

• Online Phase. In this phase, A is given access to oracles

Sign and Rand:
– Rand takes no inputs and returns 𝜌 ← {0, 1}𝜆 .
– Sign takes as input a message 𝑚 and a string 𝜌 ∈
{0, 1}𝜆 . If 𝜌 was not a previous output of Rand or the

pair (𝑚, 𝜌) has been queried before, Sign returns ⊥.
Otherwise, it returns the signature 𝜎 computed via

𝜎 ← sign(srerand(sk, 𝜌),𝑚).
• Output Phase.When A returns (𝜎∗, 𝜌∗,𝑚∗), the experi-

ment returns 1 if ver(prerand(pk, 𝜌∗), 𝜎∗,𝑚∗) = 1, 𝜌∗ was
a previous output of Sign, and (𝑚∗, 𝜌∗) was not queried to

Sign. Otherwise, it returns 0.

We define the advantage of A in ufcma-hrk1Asig as

AdvAufcma-hrk1,sig := Pr[ufcma-hrk1Asig = 1] .

Symmetric Key Encryption. Here, we recall the definition of

symmetric key encryption that is both authenticated and anony-

mous. For the definition of security, we follow [5]. We note that

a scheme that satisfies this notion can be constructed using for

example the OCB mode of operation [28].

3

Definition 2.5 (Symmetric Key Encryption Scheme.). A symmet-
ric key encryption scheme (SKE) is a tuple of algorithms ske =

(Gen, Enc,Dec) with the following properties.

• The randomized key generation algorithm Gen takes as

input parameters param. It outputs a secret key sk.
• The randomized encryption algorithm Enc takes as input a

secret key sk and a message𝑚. It outputs a ciphertext 𝑐 .

• The deterministic decryption algorithm Dec takes as input
a secret key sk and a ciphertext 𝑐 . It outputs either ⊥ or a

message𝑚.

Definition 2.6 (Authenticated Anonymous Security for SKE.). Let
ske = (Gen, Enc,Dec) be a symmetric key encryption scheme. For

an algorithm A and a bit 𝑏 ∈ {0, 1}, consider the following experi-

ment anon-authAske,𝑏 :

• Setup. The experiment generates a key sk← Gen(param)
and initializes a map 𝐿[·].

• Online Phase. The adversary A is run on input param
with oracle access to oracles EncO𝑏 ,DecO𝑏 , which are

defined as follows.

– EncO0 (𝑚): Return 𝑐 ← Enc(sk,𝑚).
– DecO0 (𝑐): Return𝑚 := Dec(sk, 𝑐).
– EncO1 (𝑚): Sample a ciphertext 𝑐 uniformly at ran-

dom, define 𝐿[𝑐] :=𝑚 and return 𝑐 .

– DecO1 (𝑐): If 𝐿[𝑐] ≠⊥, return 𝐿[𝑐]. Otherwise, return
⊥.

• Output Phase. The adversary outputs a bit 𝑏 ′. The exper-
iment outputs 𝑏 ′.

We define the advantage of A against authenticated anonymous

security of ske as

AdvAanon-auth,ske :=���Pr[anon-authAske,0 = 1] − Pr[anon-authAske,1 = 1]
��� .

3 MODELING THE FIDO2 PROTOCOL
We begin this section with an informal description of the FIDO2

standard. It can be used as means of passwordless authentication

or as a second-factor for the standard login-via-password scenario.

The FIDO2 protocol template consists of a registration and an au-

thentication process executed between a token (also called authen-
ticator) and a server (also called relying party). This communication

is relayed through a client (also called agent) which is implemented

e.g. by the user’s browser. More precisely, the user connects to the

server via client interface and simultaneously interacts with the

token. Below we provide a simplified description of the protocol. A

schematic overview can be found in Figure 1.

Registration. The main purpose of the registration protocol is

to bind the token to the user’s account on the server. During this

step, the server sends a unique identifier id𝑆 (which is based on the

server’s domain name e.g. login.example.com) and a challenge

𝑟𝑠 to the client. This data is then processed and sent to the token

which generates a server-specific key pair (sk, pk) and sends pk to

the server via the client. The server stores this key and additional

information in a credential cred.

Non-Resident Keys. To accommodate for memory-constraints,

tokens commonly implement one of two techniques for outsourcing

secret key storage that we describe below. Keys that are not stored

on the token are called non-resident keys. By contrast, resident keys
are kept internally by the token.

The first technique to outsource key storage is referred to as

key wrapping. The server-specific secret key sk is encrypted and

the resulting ciphertext cid (the credential identifier) is stored on

the server. During authentication, cid is returned by the server and

allows the token to restore sk. The server uses a structure known
as a key handle to send cid to the token for authentications.

The second technique uses a key derivation function to compute

the server-specific key pair using a master secret, id𝑆 and a random

seed cid chosen by the token during registration. Similarly to key

wrapping, cid is stored (with no encryption necessary) on the server
and can be retrieved for later authentication via the key handle

structure.

Attestation. If required by the server, the public key pk and other

data can also be attested by the token. In the following, we explain

two ways to implement attestation.

The first option is to create an attestation signature using a fresh

key pair. This approach requires the token to receive a certificate

for each key pair. To receive such a certificate, the token must au-

thenticate itself to the certification authority (also called privacy
CA) using a special endorsement key, which is loaded during man-

ufacturing. Note that the same key cannot be used to attest public

keys for different services since this would immediately break un-

linkability of separate user sessions with the server. Attestation, in

this case, consists of a signature and an attestation certificate for

the signing key.

The second option is the elliptic curve direct anonymous attes-

tation scheme (ECDAA) [1] where an interaction with a privacy

CA is not needed. Instead, the token receives a randomizable cer-

tificate on a secret signing key, e.g. by the manufacturer. To verify

an attestation signature, the server is only required to use a public

key provided by the CA. In other words, besides the authenticity

of the attestation, the signature does not leak the signer’s identity

but only that the signer is certified. An advantage of ECDAA is that

there is no need for an attestation certificate as with a privacy CA.

We note that the model and analysis in [6] focuses on attesta-

tion with a fixed key instead of the unlinkable attestation options

discussed above.

Authentication. The authentication process begins with the server
sending the following data to the client: the key handle generated

during registration, including cid, the server’s identifier id𝑆 , and
a challenge 𝑟𝑠 for the token to sign. The client processes this data,

adds extensions (e.g. information about the https connection) and

forwards it to the token. The token restores the server-specific

signing key sk, signs the received data, and returns the signature

to the server which accepts if the signature is valid. This signature

is also called an assertion. An optional way to prevent physical

cloning attacks is to implement a counter mechanism on the token.

3.1 Passwordless Authentication
We model passwordless authentication for the non-resident key

case as follows. Similar to [6], in our model we consider a set of

4

challenge, RPIDchallenge, RPID

pkID, key handle

attestation certificate

attestation signature

pkID, key handle

attestation certificate

attestation signature
Token Agent (e.g. Browser) Relying Party (Service)

challenge, RPIDchallenge, RPID

key handle

assertion signature

key handle

Token Agent (e.g. Browser) Relying Party (Service)

assertion signature

Figure 1: Registration (top) and authentication (bottom) in
the FIDO2 authentication process (simplified).

parties P = T ∪ S, which is partitioned into the set of tokens T
and the set of servers S. Each party keeps an internal state. We do

not model clients explicitly. Instead, we allow the adversary to do

the computation that the clients do.

The state of servers 𝑆 ∈ S is initially empty, while the state of

tokens will be initialized with a long-term keymsk. Also, we assume

that each server has a unique identifier id𝑆 . In all experiments that

we define, we assume that these identifiers are given.

Syntax. Now, we define the syntax of our schemes. The syntax

follows the setup introduced above.

Definition 3.1 (PlANRK). A passwordless authentication scheme
with non-resident keys (PlANRK) is a tuple of algorithms PlANRK =

(Gen,Reg,Auth) with the following properties:

• The randomized key generation algorithm Gen takes as

input parameters par. It outputs a master secret key msk.
• The registration protocol Reg given as a tuple of stateful

algorithms (rchallenge, rcommand, rresponse, rcheck).
– The randomized registration challenge generation algo-

rithm rchallenge takes as input a server identity id𝑆
and outputs a challenge value 𝑐 .

– The deterministic registration command creation algo-
rithm rcommand takes as input a server identity id𝑆
and a challenge value 𝑐 and outputs a message𝑀𝑟 .

– The randomized registration response algorithm
rresponse takes as input a master secret key msk, a
server identity id𝑆 and a message𝑀𝑟 and outputs and

credential identifier cid and a response 𝑅𝑟 .

– The deterministic registration check algorithm rcheck
takes as input a credential identifier cid and a response
𝑅𝑟 and outputs a bit 𝑏 ∈ {0, 1} and a credential cred.

• The authentication protocol Auth given as a tuple of stateful

algorithms (achallenge, acommand, aresponse, acheck).
– The randomized authentication challenge generation

algorithm achallenge takes as input a server identity
id𝑆 and outputs a challenge value 𝑐 .

– The deterministic authentication command creation
algorithm acommand takes as input a server identity

id𝑆 and a challenge value 𝑐 and outputs a message

𝑀𝑎 .

– The randomized authentication response algorithm
aresponse takes as input a master secret key msk, a
server identity id𝑆 and a message 𝑀𝑎 and outputs a

response 𝑅𝑎 .

– The deterministic authentication check algorithm acheck
takes as input a credential identifier cid and a response
𝑅𝑎 and outputs a bit 𝑏 ∈ {0, 1}

Algorithms rchallenge, rcheck, achallenge, acheck are executed by

servers 𝑆 ∈ S, algorithms rcommand, acommand are executed by

clients (which are not explicitlymodeled in security definitions), and

the corresponding algorithms rresponse, aresponse are executed

by tokens 𝑇 ∈ T .

Definition 3.2 (Completeness of PlANRK). We say that a PlANRK

PlANRK = (Gen,Reg,Auth) with Reg = (rchallenge, rcommand,
rresponse, rcheck) andAuth = (achallenge, acommand, aresponse,
acheck) is complete, if for all msk ∈ Gen(par), parties 𝑇 and 𝑆 ,

states St𝑇 , St𝑆 the following experiment outputs 1:

(1) Initialize the state of party 𝑇 with msk and St𝑇 , and the

state of party 𝑆 with St𝑆 .
(2) Run the registration protocol Reg of 𝑇 at 𝑆 , as follows:

𝑐 ← rchallenge(id𝑆),
𝑀𝑟 ← rcommand(id𝑆 , 𝑐), (cid, 𝑅𝑟) ← rresponse(msk, id𝑆 , 𝑀𝑟),

(𝑏𝑟 , cred) ← rcheck(cid, 𝑅𝑟).
(3) If 𝑏𝑟 = 0, output 0. Otherwise, run the authentication

protocol Auth of 𝑇 at 𝑆 , which is as follows:

𝑐 ← achallenge(id𝑆), 𝑀𝑎 ← acommand(id𝑆 , 𝑐),
𝑅𝑎 ← aresponse(msk, id𝑆 , cid, 𝑀𝑎), 𝑏𝑎 ← acheck(cid, 𝑅𝑎).

(4) Return 𝑏𝑎 .

Security. Next, we focus on defining security notions for PlANRK.
To do so, we first define server and token oracles an adversary may

access. These oracles model the capability of an adversary to freely

communicate with tokens and servers.

Definition 3.3 (Server and Token Oracles). Let A be an algorithm

and PlANRK = (Gen,Reg,Auth) be a PlANRK. We associate each

party 𝑃 ∈ T ∪ S with a set of oracles 𝜋
𝑖, 𝑗

𝑃
which model two types

of instances corresponding to registration and authentication. Each

party is represented by a number of instances with a shared state

and we will use the superscript 𝑖 to indicate the particular instance

of the party. In other words, we we refer to 𝜋
𝑖, 𝑗

𝑃
for 𝑗 = 0 as the 𝑖-th

registration instance of party 𝑃 and for 𝑗 ≥ 1 as the 𝑗-th authentica-

tion instance of 𝑃 corresponding to the 𝑖-th registration. The oracles

can be accessed by A via interfaces Start,Challenge,Complete as
follows:

• Start(𝜋𝑖, 𝑗
𝑆
): Server oracle 𝜋𝑖, 𝑗

𝑆
executes rchallenge(id𝑆) in

case 𝑗 = 0 or achallenge(id𝑆) in case 𝑗 > 0. The result is

returned to A.

• Challenge(𝜋𝑖, 𝑗
𝑇
, id𝑆 , cid, 𝑀): Token oracle 𝜋

𝑖, 𝑗

𝑇
runs algo-

rithm rresponse(id𝑆 , 𝑀) (if 𝑗 = 0) or aresponse(id𝑆 , cid, 𝑀)
(if 𝑗 > 0). The result is returned to A.

• Complete(𝜋𝑖, 𝑗
𝑆
, cid, 𝑅): Server oracle𝜋𝑖, 𝑗

𝑆
runs rcheck(cid, 𝑅)

(if 𝑗 = 0) or acheck(cid, 𝑅) (if 𝑗 > 0). The result is returned

to A.

5

We assume without loss of generality that an oracle is only executed

once with the same type of query. Note that all oracles take as input

instances token or server instances and thus A can just query the

same input with the next instance 𝑗 ′ = 𝑗 + 1 of the target party.

We follow the work of Bellare et al. [8] to define partnering of

oracles, which will be used in the winning condition of our security

experiments. Informally, two oracles 𝜋
𝑖, 𝑗

𝑆
and 𝜋

𝑖′, 𝑗 ′

𝑇
are partnered, if

they share the same view. Here, the notion of view must be defined

by the protocol. Intuitively, one should think of partnered oracles

as if the adversary just forwarded messages between these oracles.

Definition 3.4 (Session Identifiers and Partnering). Let PlANRK =

(Gen,Reg,Auth) be a PlANRK and consider the oracles from Def-

inition 3.3. Let 𝑉𝑡 be a function that takes as input the transcript

𝑡𝑟
𝑖, 𝑗

𝑇
= (id𝑆 , cid, 𝑀, 𝑅) that a token 𝑇 ∈ T observes in an oracle

call to Challenge(𝜋𝑖, 𝑗
𝑇
, ·), and outputs a bitstring 𝑉𝑡 (𝑡𝑟 𝑖, 𝑗𝑇). Simi-

larly, let 𝑉𝑠 be a function that takes as input the transcript 𝑡𝑟
𝑖, 𝑗

𝑆
=

(𝑐, cid, 𝑅) that a server 𝑆 ∈ S observes in oracle calls to Start(𝜋𝑖, 𝑗
𝑆
),

Complete(𝜋𝑖, 𝑗
𝑆
, ·), and outputs a bitstring𝑉𝑠 (𝑡𝑟 𝑖, 𝑗𝑆). We assume that

these functions are specified by PlANRK.
We say that oracles 𝜋

𝑖, 𝑗

𝑇
and 𝜋

𝑖′, 𝑗 ′

𝑆
are partnered, if the following

hold:

(𝑗 = 0⇐⇒ 𝑗 ′ = 0) ∧𝑉𝑡 (𝑡𝑟 𝑖, 𝑗𝑇) = 𝑉𝑠 (𝑡𝑟
𝑖′, 𝑗 ′

𝑆
).

We now define what it means for a passwordless authentication

protocol with non-resident keys to be secure against impersonation.

Informally, we say that if this property holds then the token must

be used to authenticate against a server and a single interaction

cannot be used to authenticate multiple times. More formally, we

define impersonation security as follows.

Definition 3.5 (Man-in-the-Middle Security for Passwordless Au-
thentication). For PlANRK PlANRK = (Gen,Reg,Auth), let us de-
fine the following security experiment MiM run between the chal-

lenger and an adversary A.

• Setup. For each token𝑇 ∈ T , a key is generated by running
msk𝑇 ← Gen(par). Then, each token 𝑇 is initialized with

key msk𝑇 and each server 𝑆 ∈ S is initialized with an

empty state.

• Phase 1. In the online phase the adversary is allowed to

interact with the oracles Start,Challenge,Complete as in
Definition 3.3.

• Output Phase. Finally, the adversary terminates the ex-

periment which return 1 if and only if there exists a server

oracle 𝜋
𝑖, 𝑗

𝑆
for 𝑗 > 0 such that the following conditions

hold:

(1) 𝜋
𝑖,0
𝑆

is partnered with a token oracle 𝜋
𝑘,0
𝑇

.

(2) 𝜋
𝑖, 𝑗

𝑆
accepted, i.e. in the call Complete(𝜋𝑖, 𝑗

𝑆
, cid, 𝑅) the

algorithm acheck(cid, 𝑅) returned 1.

(3) 𝜋
𝑖, 𝑗

𝑆
is not partnered with any token oracle 𝜋

𝑖′, 𝑗 ′

𝑇
.

We define the advantage of A in winning the experiment as:

AdvAMiM,PlANRK := Pr[MiMAPlANRK = 1] .

3.2 Defining Unlinkability
We will now discuss the problem of unlinkability for passwordless

authentication. Informally, what we want to achieve is that interac-

tions between the same token and different servers are unlinkable,

even if servers are malicious. If a protocol is proven secure using

the below definition then it means the passwordless authentication

protocol for non-resident keys does not provide means to malicious

servers to link interactions. This also means that data that is ex-

changed outside of the protocol is out of the scope of our definition,

e.g. metadata that could be used to link interactions of the token.

Definition 3.6 (Unlinkability for Passwordless Authentication). For
PlANRK PlANRK = (Gen,Reg,Auth), define the security exper-

iment Unl run between the challenger and an adversary A as

follows.

• Setup. For each token𝑇 ∈ T , a key is generated by running
msk𝑇 ← Gen(par). Then, each token 𝑇 is initialized with

key msk𝑇 and each server 𝑆 ∈ S is initialized with an

empty state.

• Phase 1. In the online phase the adversary is allowed to

interact with the oracles Start,Challenge,Complete as in
Definition 3.3.

• Phase 2. In this phase, the adversary outputs two user

identifiers 𝑇0,𝑇1, and two (not necessarily distinct) server

identifier 𝑆𝐿, 𝑆𝑅 ∈ S. Let 𝑖0 and 𝑖1 be the smallest identi-

fiers for which the token instances 𝜋
𝑖0,0

𝑇0
and 𝜋

𝑖1,0
𝑇1

were not

queried to the Challenge oracle in phase 1. The challenger

now chooses a bit 𝑏 and initializes two oracles and keeps

internally two values 𝑗0, 𝑗1 initialized to 0:

– Left(cid, 𝑀): ReturnChallenge(𝜋𝑖𝑏 , 𝑗𝑏
𝑇𝑏

, id𝑆𝐿 , cid, 𝑀) and
increase 𝑗𝑏 = 𝑗𝑏 + 1,

– Right(cid, 𝑀): ReturnChallenge(𝜋𝑖1−𝑏 , 𝑗1−𝑏
𝑇1−𝑏

, id𝑆𝑅 , cid, 𝑀)
and increase 𝑗

1−𝑏 = 𝑗
1−𝑏 + 1

• Phase 3. The adversary is allowed to interact with all the

oracles defined in Phase 1 and 2.

• Output Phase. Finally, the adversary outputs a bit
ˆ𝑏 and

the experiment returns 1 if and only if:

– bit
ˆ𝑏 is equal to bit 𝑏, and

– (intance freshness) the adversary never made a query

to the Challenge oracle using the token oracle in-

stances 𝜋
𝑖0,𝑘0
𝑇

and 𝜋
𝑖1,𝑘1
𝑇

for any 𝑘0, 𝑘1, and

– (registration uniqueness) there was never a query

to the Challenge(𝜋𝑖, 𝑗
𝑇
, id𝑆 , ·, ·) oracle for any 𝑖, 𝑗 , 𝑇 ∈

{𝑇0,𝑇1} and 𝑆 ∈ {𝑆𝐿, 𝑆𝑅}.
We define the advantage of A in winning the experiment as:

AdvAUnl,PlANRK := | Pr[UnlAPlANRK = 1] − 1/2|.

We will now briefly discuss the idea behind this definition and

the winning condition. First notice that we reuse the oracles from

the impersanation experiments. This allows the adversary to create

a view on the system that shows all the connections, i.e. which

account (e.g. defined by cid) corresponds to which authenticator.

However, such a powerfull adverary would immediately break any

unlinkability definition by trivially revealing those connection. The

key point of our unlinkability definition is for the adversary to

6

reveal connections between two tokens and two servers with the

knowledge of every other connection in the system.

Therefore, we restrict the adversary and ask it to output two to-

kens and two servers which will be part of the challenge. Informally,

we give the adversary a left and right oracle that are initialized de-

pending on a bit 𝑏 with one of the two tokens returned by the

adversary. If the adversary tries to interact with those tokens using

one of the two returned servers then it must do it via the left or

right oracle. We ensure this by the registration uniqueness property

where we only allow to register the target tokens at most once

with those servers. To not allow for trivial attack we also do not

allow the adversary to interact with instances of the tokens that

we initialized the left and right oracles with. We call this condition

instance freshness in the definition above.

3.3 Difference to Barbosa et al.’s Model
Aswementioned in the introduction, Barbosa et al. [6] model FIDO2

passwordless authentication exclusively for the use of resident keys,

i.e., where all the secret keys are stored on the authentication device.

Our model, on the other hand, focuses on the more practical use

case, namely authentication using non-resident keys. As a conse-

quence, our syntax and experiment for authentication are different

from those in [6]. The main novelty of our model, however, is our

definition of unlinkability. Below we will summarize our changes

to Barbosa et al.’s model.

(1) When using resident keys, FIDO2 uses a per-server signa-

ture counter to enable cloning detection of token devices.

However, the main feature of non-resident keys is that

they allow for use of token devices with limited memory.

Clearly, due to limited memory, a token can not keep state

for every server it interacts with. On the other hand, if

the token uses a naive implementation of a global state

(e.g., a counter), this might violate privacy/unlinkability

of the token. Hence, most authentication tokens used in

practice favor privacy over cloning detection. This change

is reflected in the winning condition of the adverary in

the passwordless authentication experiment. [6] ensures

that if a server oracle accepts then it is partnered with a

unique token oracle with the same session identifier. In our

model we do not include this condition on the number of

partnered token oracles with a single server oracle. This

models the case that a single server runs multiple sessions

with the same token which is the case e.g. if there exists a

cloned token (and it is not detected).

(2) We extract the server identifier sid from the commands

exchanged between the server and token. In contrast to [6],

all of our schemes require explicit access to this identifier

to provide a meaningful unlinkability definition.

(3) For the same reason, we assume that the credential iden-

tifier cid is explicitly generated on the token and shared

with the server during registration (rather than wrapped

together with other values as done in [6]). We use this iden-

tifier to model the key handle that is bound to the user’s

account and provided to the token during authentication.

(4) In contrast to [6], we do not consider attestation in this

paper. As already mentioned in the introduction, attesta-

tion is rarely used in practice. What is more, if designed

incorrectly, attestation can lead to trivial attacks against

unlinkability. We leave a formal analysis of WebAuthn

with anonymous attestation (e.g. using ECDAA [1]) for fu-

ture research. To account for this change in the model, the

server’s state is not initialized with any public key material

of the tokens.

4 EXISTING SCHEMES
There are manyways to implement non-resident keys for the FIDO2

protocol. While the protocol itself remains the same, the only dif-

ference is in the way secret keys and key handles are generated. In

this paper we will focus on the following two:

• Key Derivation Function. - the signing key is gener-

ated in a pseudorandom way using a master secret key,

the server’s identifier, and the key handle which acts as a

random salt. This method is e.g. used by the open-source

FIDO2 token SoloKey.
2

• Key wrapping. - the signing keys are encrypted together

with the server’s identifier and the ciphertext is stored in

the key handle. This method is e.g. used by Yubico in their

implementation of FIDO2 tokens [32].

Wewill now describe the above two schemes using our syntax for

passwordless authentication. Then we will prove security against

man-in-the-middle attacks. Additionally, we will also show how

to instantiate the used building blocks (i.e. encryption scheme and

KDF) to provide privacy. To this end, we will prove the security of

the above using our unlinkability definition. We will use a common

description and refer to each of those schemes as respectively kwrPA
and kdfPA.

Key Generation. Initialization of a token is done using the Gen
algorithm that outputs a master secret keymsk. For kdfPA this key

is generated by executing msk ←$ {0, 1}𝜆 . In the case of the key

wrapping scheme, this key is the secret key for a symmetric key

encryption scheme ske. Thus, we set msk← ske.Gen(param).

Registration. The registration protocol Reg is formally presented

in Figure 2. First, the server executes algorithm rchallenge(id𝑆),
which generates a random nonce 𝑟𝑠 ←$ {0, 1}𝜆 and returns the

challenge 𝑐 = (id𝑆 , 𝑟𝑠). The challenge is then sent to the client,

which executes the rcommand(id𝑆 , 𝑐) algorithm. This algorithm

verifies that id = id𝑆 and returns message 𝑀𝑟 = 𝐻 (𝑟𝑠). After-
wards,𝑀𝑟 and id𝑆 is send to the token, which executes algorithm

rresponse(msk, id𝑆 , 𝑀𝑟). Here, the variants kwrPA and kdfPA differ

slightly.

In kdfPA the token first chooses a random identifier cid ←$
{0, 1}𝜆 . It then uses the key derivation function to generate the

secret key sk := 𝐾𝐷𝐹 (msk, cid, id𝑆). Note that we assume here that

the 𝐾𝐷𝐹 outputs values in the secret key space of the signature

scheme. This allows the token to compute the corresponding public

key pk := toPK(sk).

2
see https://github.com/solokeys/solo

7

https://github.com/solokeys/solo

In kwrPA the keypair is computed directly using the signature

scheme key generation algorithm (sk, pk) ← kg(param). The se-
cret key sk is then encrypted by the token together with id𝑆 as

cid := Enc(msk, (id𝑆 , sk)).
For both schemes the secret key sk is used to create the signature

𝜎 ← sign(sk,𝑚), where𝑚 := (𝐻 (id𝑆), cid, pk, ℎ = 𝑀𝑟). Finally, the
token sends a response message 𝑅𝑟 = (pk, 𝜎) together with cid to

the client, which forwards it directly to the server.

The server verifies the token’s response by running algorithm

rcheck(cid, 𝑅𝑟), which is as follows. The server returns (0,⊥) in
case ver(pk, 𝜎,𝑚), where𝑚 := (𝐻 (id𝑆), cid, pk, 𝑀𝑟). It then updates
the internal registration state with the new registration rcs[cid] :=
pk and outputs (1, cred := (cid, pk)).

Authentication. The authentication protocol Auth, given in Fig-

ure 3, begins with the server executing the achallenge(id𝑆) algo-
rithm, which generates a random nonce 𝑟𝑠 ←$ {0, 1}𝜆 and returns

the challenge 𝑐 = (id𝑆 , 𝑟𝑠). The challenge and the identifier cid is

sent to the client. Given the challenge 𝑐 from the server the client

executes the acommand(id𝑆 , 𝑐) algorithm, which parses the chal-

lenge as 𝑐 := (id, 𝑟𝑠), verifies that id = id𝑆 and sends the message

𝑀𝑎 := 𝐻 (𝑟𝑠), the server identifier id𝑆 and identifier cid to the to-

ken. The token executes the aresponse(msk, id𝑆 , cid, 𝑀𝑎) algorithm,

which is described in the following.

In the first step the token recreates the signing key sk that it

created during registration. For kdfPA this means that the token

runs sk := 𝐾𝐷𝐹 (msk, cid, id𝑆). In case of the kwrPA the token first

decrypts the cid to receive (id, sk′) := Dec(msk, cid). It then checks
if this secret key correspond to the server, i.e. it returns an error if

id ≠ id𝑆 . Otherwise it sets sk = sk′.
For both schemes the secret key sk is used to create the signature

𝜎 ← sign(sk,𝑚), where 𝑚 := (𝐻 (id𝑆), 𝑀𝑎). Finally, the token

creates a response message 𝑅𝑎 = (𝜎), which is send to the client.

The client forwards this message directly to the server.

The server verifies the token’s response by running algorithm

acheck(cid, 𝑅𝑎), which is as follows. In the first step, the server

uses the internal state to get the token’s public key pk← rcs[cid]
using the identifier cid. Finally, it sets 𝑚 := (𝐻 (id𝑆), 𝐻 (𝑟𝑠)) and
outputs ver(pk, 𝜎,𝑚).

Security With Key Derivation Function. We will now show

man-in-the-middle security and unlinkability for the scheme kdfPA,
which uses a key derivation function.

Lemma 4.1. LetA be an adversary in the man-in-the-middle game
of kdfPA. Assume thatA makes at most𝑄𝐾𝐷𝐹 , 𝑄𝐻 queries to random
oracles𝐾𝐷𝐹,𝐻 , respectively, at most𝑄𝑆 queries to oracle Start, and at
most 𝑄𝐶 queries to oracle Challenge. Then there exists an algorithm
B with the same running time as A such that A’s advantage in the
man-in-the-middle game can be upper bounded by

𝑄𝐾𝐷𝐹 · |T | + |T |2 +𝑄2

𝑆

2
𝜆

+
𝑄2

𝐻

2
2𝜆
+𝑄𝐶 · AdvBeuf-cma,sig .

Proof. We show the statement via a sequence of games. For

each game G𝑖 , we denote the advantage of A, i.e. probability that

G𝑖 outputs 1, by Adv𝑖 .

Game G0: This is the real man-in-the-middle game. Recall that at

the beginning, each token 𝑇 ∈ T is initialized with a master secret

key msk𝑇 ←$ {0, 1}𝜆 . Then, the adversary gets access to oracles

Start,Challenge,Complete. By definition, we have

Adv0 = AdvAMiM,kdfPA .

Game G1: This game is as G0, but we introduce a bad event and

let the game abort if this bad event occurs. The bad event occurs,

if the adversary ever queries 𝐾𝐷𝐹 (msk𝑇 , ·) for any token 𝑇 ∈ T .
Note that A obtains no about msk𝑇 throughout the game (except

via hash values). Thus, we can use a union bound over the 𝑄𝐾𝐷𝐹
random oracle queries and the |T | tokens to obtain

|Adv0 − Adv1 | ≤
𝑄𝐾𝐷𝐹 · |T |

2
𝜆

.

Game G2: This game is as G1, but we introduce another bad

event and let the game abort if this bad event occurs. The bad event

occurs, if there are tokens𝑇 ≠ 𝑇 ′ such thatmsk𝑇 = msk𝑇 ′ . Clearly,
we have

|Adv1 − Adv2 | ≤
|T |2

2
𝜆
.

Game G3: We rule out another bad event. That is, we let the

game abort if this bad event occurs. Namely, we abort whenever

there is a collision for random oracle 𝐻 . Precisely, we abort, if for

𝑥 ≠ 𝑥 ′ we have 𝐻 (𝑥) = 𝐻 (𝑥 ′). As the images of 𝐻 are sampled

uniformly at random from {0, 1}2𝜆 , we have

|Adv2 − Adv3 | ≤
𝑄2

𝐻

2
2𝜆
.

Game G4: In this game, we introduce yet another bad event, for

which we let the game abort on its occurrence. To define this event,

consider the server-side oracles Start. Recall that these oracles

(in both registration and authentication) sample a random 𝑟𝑠 ←$
{0, 1}≥𝜆 . The bad event occurs if the same 𝑟𝑠 is sampled in two

different invocations of the oracle Start. Clearly, we can bound the

distinguishing advantage by

|Adv3 − Adv4 | ≤
𝑄2

𝑆

2
𝜆
.

Finally, we bound the probability Adv4 that G4 outputs 1. Recall

that the game outputs 1 if none of the introduced aborts occur, and

the adversary successfully finished an authentication via oracle

Complete(𝜋𝑖, 𝑗
𝑆
, ·), for which 𝑗 = 0, the oracle 𝜋

𝑖, 𝑗

𝑆
is not partnered

with any oracle 𝜋
𝑖′, 𝑗 ′

𝑇
and the oracle 𝜋

𝑖,0
𝑆

is partnered with an oracle

𝜋
𝑖′,0
𝑇

. In the following, we will call this interaction with oracle

Complete the forged authentication. We refer to the interaction with

oracle 𝜋
𝑖′,0
𝑇

as above via oracle Challenge as the target registration.
Now, we give a reduction B from the euf-cma security of sig.

The reduction is as follows.

• B gets as input a public key pk∗. It gets access to a signing
oracle Sign.

• B samples an index 𝑘∗ ←$ [𝑄𝐶]. It simulates game G4,

except for the 𝑘∗-th query to oracle Challenge, for which
it works as follows:

– If this query is an authentication query, i.e. it is of the

formChallenge(𝜋𝑖, 𝑗
𝑇
, ·) for 𝑗 > 0, then it the reduction

B aborts.

8

– If this query is a registration query, i.e. it is of the form

Challenge(𝜋𝑖,0
𝑇
, ·), then it sets pk := pk∗, and contin-

ues the simulation using this key. Thereby, it obtains

the signature 𝜎 from its signing oracle Sign. Let cid
be the random credential identifier sampled within

this simulation. Later, whenever the adversary queries

oracle Challenge for authentications for this cid, the
reduction uses its signing oracle Sign to answer the

query.

• After termination of A, reduction B first finds the forged

authentication and the corresponding target registration.

• If the target registration is not the 𝑘∗-th query to oracle

Challenge, B aborts. Otherwise, let 𝜎 be the signature that

A submitted in the forged authentication, id𝑆 be the server
identity that is used in the forged authentication, and 𝑟𝑠

be the challenge that is used.

• B returns

𝑚∗ := (𝐻 (id𝑆), 𝐻 (𝑟𝑠)), 𝜎∗ := 𝜎.
First, assume that B does not abort. It is easy to see that, the

simulation of game G4 is perfect. Also, by definition of algorithm

acheck, as the forged authentication accepted, 𝜎∗ is a valid signa-

ture on𝑚∗ under pk∗. Furthermore, due to the changes introduced

in games G3 and G4, if A wins game G4, we know that the sign-

ing oracle Sign was never used on a message (·, 𝐻 (𝑟𝑠)), and thus

the forgery output by B is fresh. Finally, note that A’s view is

independent of 𝑘∗, until an abort happens. Thus, we have

Adv4 ≤ 𝑄𝐶 · AdvBeuf-cma,sig .

□

Lemma 4.2. Let A be an adversary in the unlinkability game of
kdfPA. Assume thatA makes at most𝑄𝐾𝐷𝐹 queries to random oracle
𝐾𝐷𝐹 . Then A’s advantage in the unlinkability game can be upper
bounded by

𝑄𝐾𝐷𝐹 · |T | + |T |2

2
𝜆

.

Proof. We show the statement via a sequence of games. For

each game G𝑖 , we denote the probability that G𝑖 outputs 1 by pr𝑖 .
We note that games G1,G2 are taken verbatim from the proof of

Lemma 4.1.

Game G0: This game is the real unlinkability game. Recall that

at the beginning of this game, a master secret key msk𝑇 ←$ {0, 1}𝜆
is generated for each token 𝑇 ∈ T . The adversary A gets access

to oracles Start,Challenge,Complete. Then, it outputs two tokens

𝑇0,𝑇1 and servers 𝑆𝐿, 𝑆𝑅 . Afterwards, it also gets access to ora-

cles Left,Right, which internally runChallenge(𝜋𝑖𝑏 , 𝑗𝑏
𝑇𝑏

, id𝑆𝐿 , ·, ·) and
Challenge(𝜋𝑖1−𝑏 , 𝑗1−𝑏

𝑇1−𝑏
, id𝑆𝑅 , ·, ·), respectively. Throughout the game,

the adversary A also gets access to random oracle 𝐾𝐷𝐹 . By defini-

tion, we have

pr
0
= AdvAUnl,kdfPA .

Game G1: This game is as G0, but we introduce a bad event and

let the game abort if this bad event occurs. The bad event occurs,

if the adversary ever queries 𝐾𝐷𝐹 (msk𝑇 , ·) for any token 𝑇 ∈ T .
Note that A obtains no information about msk𝑇 throughout the

game (except via hash values). Thus, we can use a union bound

over the 𝑄𝐾𝐷𝐹 random oracle queries and the |T | tokens to obtain��pr
0
− pr

1

�� ≤ 𝑄𝐾𝐷𝐹 · |T |
2
𝜆

.

Game G2: This game is as G1, but we introduce another bad

event and let the game abort if this bad event occurs. The bad event

occurs, if there are tokens𝑇 ≠ 𝑇 ′ such thatmsk𝑇 = msk𝑇 ′ . Clearly,
we have ��pr

1
− pr

2

�� ≤ |T |2
2
𝜆
.

Game G3: This game is as G2, but we change how oracle Left be-

haves. Recall that inG2, oracle Left runs Challenge(𝜋𝑖𝑏 , 𝑗𝑏
𝑇𝑏

, id𝑆𝐿 , ·, ·).
Concretely, in each call Left(cid, 𝑀) in G2, a key pair (sk, pk) is
sampled as

sk := 𝐾𝐷𝐹 (msk𝑇𝑏 , cid, id𝑆𝐿), pk := toPK(sk) .
In game G3 we change the way these keys are generated. Namely,

we instead keep a map 𝐾𝐿 [·], and in each call Left(cid, 𝑀) we first
check if 𝐾𝐿 [cid] is already defined. If it is defined, we use it as a key
pair. Otherwise, we sample a fresh key pair (sk, pk) ← kg(param),
store it as 𝐾𝐿 [cid] := (sk, pk) and use it. The rest of the oracle stays
the same, using that particular key pair.

We claim that pr
2
= pr

3
. This can be argued as follows. With-

out loss of generality, we can focus on the case where A does

not violate registration uniqueness or instance freshness. Also, we

can assume that the bad events defined in games G1,G2 do not

occur. In case any of these assumptions does not hold, both games

G2 and G3 output 0. Using these assumptions, we see that the ad-

versary learns nothing about 𝐾𝐷𝐹 (msk𝑇𝑏 , cid, id𝑆𝐿) in game G1.

Especially, due to registration uniqueness and non-colliding msk’s,
the oracle Challenge never queries 𝐾𝐷𝐹 (msk𝑇𝑏 , cid, id𝑆𝐿). Thus,
𝐾𝐷𝐹 (msk𝑇𝑏 , cid, id𝑆𝐿) is uniformly random for A, which implies

that the distribution of key pairs used is exactly the same as in

game G3. We have

pr
2
= pr

3
.

Game G4: This game is as G3, but we change how oracle Right
behaves. Concretely, we apply a similar change using fresh key

pairs and a map 𝐾𝑅 as we did for oracle Left in game G3. With the

same arguments, it follows that

pr
3
= pr

4
.

Finally, we see that the behavior of oracles Left and Right in
game G4 and thus A’s view is independent of the bit 𝑏. Thus, we

have pr
4
= 1/2. This shows the claim. □

Security of Key Wraping. We will now show man-in-the-middle

security and unlinkability for the scheme kwrPA, which uses key

wrapping. Notably, our proofs require that the encryption scheme

that is used is anonymous. To the best of our knowledge, it is not

known if the CCM mode used in Yubico’s implementation of key

wrapping is anonymous. Due to space limitations, we postpone the

proofs of the statements to Appendix A.

Lemma 4.3. Let A be an adversary in the man-in-the-middle
game of kwrPA. Assume thatA makes at most𝑄𝐻 queries to random
oracle𝐻 , at most𝑄𝑆 queries to oracle Start, and at most𝑄𝐶 queries to
oracle Challenge. Then there exist algorithms B and C with the same

9

running time asA such thatA’s advantage in the man-in-the-middle
game can be upper bounded by

𝑄2

𝑆

2
𝜆
+
𝑄2

𝐻

2
2𝜆
+ |T | · AdvBanon-auth,ske +𝑄𝐶 · Adv

C
euf-cma,sig .

Lemma 4.4. Let A be an adversary in the unlinkability game of
kwrPA. Then there exists an algorithmB, which has the same running
time as A, such that A’s advantage in the unlinkability game can
be upper bounded by

|T 2 | · AdvBanon-auth,ske .

5 GLOBAL KEY REVOCATION
A useful feature that FIDO2 currently does not support is a means of

revoking keys of a comprised token. Informally, we want to give the

user the option to revoke its keys globally, without accessing all the

servers which her token is registered to one by one. In this section,

we focus on formally defining syntax and security for global key

revocation. Then, in the next section we show a way to add this

feature to FIDO2 using BIP32 key derivation.

In short, we define a global revocation mechanism as two algo-

rithms that are associated with PlANRK. Intuitively, these should
be understood as follows. First, when a user starts using its token

𝑇 ∈ T , it also obtains a revocation key rk, which is extracted from

the long-term key msk using some algorithm Revoke. Recall from
Definition 3.1 that when token 𝑇 registers at a server 𝑆 ∈ S, the
server stores a credential cred for this token in its state. If the user

wants to revoke its key, it publishes rk. We do not further specify

how the user publishes rk. However, we assume that all servers

periodically scan for published revocation keys rk. Whenever a new

revocation key is published, the server (with identity id𝑆) runs an
algorithm CheckCred(id𝑆 , cred, rk) for each credential cred in its

state. If this algorithm accepts, the server considers this credential

as revoked.

Definition 5.1 (Global Key Revocation of PlANRK). A PlANRK

PlANRK = (Gen,Reg,Auth) satisfies global key revocation if there

are algorithms Revoke,CheckCred with the following syntax:

• Revoke(msk) takes as input a master secret key msk and
outputs a revocation key rk.

• CheckCred(id𝑆 , cred, rk) takes as input a server identity
id𝑆 , a credential cred and a revocation key rk and outputs

a bit 𝑏 ∈ {0, 1}.
Further, the algorithms should be complete in the following sense:

For all msk ∈ Gen(par), parties 𝑇 and 𝑆 , states St𝑇 , St𝑆 the follow-

ing experiment outputs 1 with probability 1:

(1) Run steps (1)-(3) from the experiment in Definition 3.2.

(2) If 𝑏𝑎 = 0, output 0. Otherwise, run rk← Revoke(msk) and
𝑏 ← CheckCred(id𝑆 , cred, rk). Return 𝑏.

Clearly, the above definition is easily satisfied if we make algo-

rithm CheckCred always output 𝑏 = 1. This is not what we aim for.

Instead, we need a security notion that ensures that only the owner

of msk can revoke keys that are stored on an honest server.

Definition 5.2 (Revocation Soundness of PlANRK). Let PlANRK =

(Gen,Reg,Auth) be a PlANRK. Consider an algorithm A and the

following experiment rev-soundAPlANRK:
• Setup. For each token𝑇 ∈ T , a key is generated by running

msk𝑇 ← Gen(par). Then, each token 𝑇 is initialized with

key msk𝑇 and each server 𝑆 ∈ S is initialized with an

empty state.

• Online Phase 1. A gets as input {mpk𝑇 }𝑇 ∈T and oracle

access to oracles Start,Challenge,Complete as in Defini-

tion 3.3. Then, A outputs a token 𝑇 ∗ and a server 𝑆∗.
• Registration. Run the registration protocol Reg of 𝑇 ∗ at
𝑆∗, which is as follows:

𝑐 ← rchallenge(id𝑆∗),
𝑀𝑟 ← rcommand(id𝑆∗ , 𝑐), (cid, 𝑅𝑟) ← rresponse(msk𝑇 ∗ , id𝑆∗ , 𝑀𝑟),

(𝑏𝑟 , cred) ← rcheck(cid, 𝑅𝑟) .
• Online Phase 2. Continue the execution of A with the

same oracles as before. Additionally, provide the input

(𝑐, 𝑀𝑟 , cid, 𝑅𝑟 , 𝑏𝑟 , cred) to A.

• Challenge Phase. The adversary outputs rk∗. The experi-
ment outputs 1 if and only if CheckCred(id𝑆∗ , cred, rk∗) =
1.

We define the advantage of A in rev-soundAPlANRK as

AdvArev-sound,PlANRK := Pr[rev-soundAPlANRK = 1] .

To show our informal claim that even for globally revoked keys

impersonation is impossible, we extend the notion of impersonation

security.

Definition 5.3 (Man-in-the-Middle Security with Global Revoca-
tion). Let PlANRK = (Gen,Reg,Auth) be a PlANRK. We consider

the experiment given in Definition 3.5 with the following modifica-

tion:

After generating msk𝑇 for each 𝑇 ∈ T , the experiment also

generates rk𝑇 ← Revoke(msk𝑇) for each 𝑇 ∈ T . Then, {rk𝑇 }𝑇 ∈T
is given to algorithm A as an additional input.

We define the advantage of an algorithmA in the experiment as

AdvAMitM-GR,PlANRK := Pr[MitM-GRAPlANRK = 1] .

6 BIP32 PASSWORDLESS AUTHENTICATION
In this section, we show how to instantiate FIDO2 by deriving

ECDSA keypairs using the BIP32 key derivation [31] The resulting

scheme, denoted by bip32PA supports global key revocation.

Key-Prefixed ECDSA.. We recall the necessary background of the

ECDSA signature scheme. We denote the scheme by sig = (kg, sign,
srerand, prerand, ver). For the purpose of this work, we can treat

signing and verification as a black box. For details, see [14]. We

highlight that we use a variant of ECDSA, where messages are pre-

fixed with the public key, see [14]. We now describe key generation

and randomization. The system parameters of the scheme contain

a group G of prime order 𝑝 with generator 𝑔 ∈ G. Key generation

and rerandomization, i.e. algorithms kg, srerand, prerand, are as

follows:

• Secret keys are sampled uniformly from Z𝑝 , i.e. sk←$ Z𝑝 .
• The public key for a secret key sk is pk := 𝑔sk.

10

• To rerandomize a secret key with randomness 𝜌 ∈ Z𝑝 , we
compute pk′ := pk · 𝑔𝜌 and sk′ := sk + 𝜌 .

In terms of security, Das et al. [14] show that the key-prefixed

ECDSA scheme is ufcma-hrk1. We will use this result to show the

security of our construction.

Lemma 6.1 (informal, [14]). Let sig be the key-prefixed ECDSA
signature scheme as above. Then, under a suitable assumption, for each
efficient algorithm A, the advantage AdvAufcma-hrk1,sig is negligible.

Key Generation. Let us describe how master secret keys msk
are generated for our scheme bip32PA. A master secret key msk
consists of an ECDSA key pair (sk

0
, pk

0
) and a so called chaincode

𝑐ℎ. Looking ahead, the chaincode and the public key pk
0
can later

be used to revoke keys. Concretely, the components of the key are

generated as sk
0
←$ Z𝑝 , pk0 := 𝑔sk0 , 𝑐ℎ ←$ {0, 1}𝜆 .

Registration and Authentication. Registration and authentication

follow the FIDO2 specification. Thus, they are very similar to the

protocols described in Section 4. Formally, we present protocols Reg
and Auth in Figures 2 and 3. Let us describe the differences between

bip32PA and the existing schemes. The most important difference

is how keys are derived during registration and authentication.

Namely, the token chooses a random cid←$ {0, 1}𝜆 as in the scheme

kdfPA. Then, it derives a randomness 𝜌 := 𝐻̂ (pk
0
, 𝑐ℎ, cid, id𝑆) using

a random oracle 𝐻̂ . This randomness is used to rerandomize the

pair (sk
0
, pk

0
) to a new keypair, i.e. sk := srerand(sk

0
, 𝜌) and pk :=

prerand(pk
0
, 𝜌). As in the scheme kdfPA, the server obtains and

stores cid, pk during registration and the key sk is used to sign

challenges. One minor detail that we have to change is the use

of an additional nonce 𝑛𝑜 ←$ {0, 1}𝜆 that is sampled by the token

and added to the actual challenge before signing. This ensures that

with high probability, even for malicious servers a token never

signs the same message twice. We need this, as the security notion

ufcma-hrk1 that ECDSA satisfies only allows one signature query

per message.

Global Revocation. The advantage of the BIP32 key derivation

compared to key wrapping or simple key derivation is global key re-

vocation, as defined in the previous section. Informally, the scheme

bip32PA allows to publish a revocation key rk to globally revoke

a lost/stolen token without compromising the user’s account. For-

mally, we present algorithmsRevoke andCheckCred for our scheme

bip32PA. Algorithm Revoke(msk) is given as follows:

(1) Parse (sk
0
, pk

0
, 𝑐ℎ) := msk.

(2) Return rk := (pk
0
, 𝑐ℎ).

Algorithm CheckCred(id𝑆 , cred, rk) is as follows:
(1) Parse (pk

0
, 𝑐ℎ) := rk and (cid, pk) := cred.

(2) Run pk′ := prerand(pk
0
, 𝐻̂ (pk

0
, 𝑐ℎ, cid, id𝑆)).

(3) Return 1 if pk = pk′. Otherwise, return 0.

6.1 BIP32 Scheme Security
Next, we show security of our scheme. Concretely, we first show

that only the owner of a token can revoke its keys (i.e. revocation

soundness). Then, we show unlinkability. Finally, we show that even

given all revocation keys, man-in-the-middle security still holds.

Due to space limitations, we postpone the proofs of revocation

soundness and unlinkability to Appendix B.

Lemma 6.2. Let A be an adversary in the revocation soundness
game of bip32PA. Assume thatA makes at most𝑄

𝐻̂
queries to oracle

𝐻̂ . Then the advantage of A against revocation soundness can be
upper bounded by

AdvArev-sound,PlANRK ≤
3𝑄

𝐻̂
+ 1

2
𝜆

.

Lemma 6.3. Let A be an adversary in the unlinkability game
of bip32PA. Assume that A makes at most 𝑄

𝐻̂
queries to random

oracle 𝐻̂ . ThenA’s advantage in the unlinkability game can be upper
bounded by

𝑄
𝐻̂
· |T | + |T |2

2
𝜆

.

Lemma 6.4. LetA be an adversary in the man-in-the-middle with
global revocation game with global revocation of bip32PA. Assume
that A makes at most 𝑄𝐻 , 𝑄𝐻̂ queries to random oracles 𝐻, 𝐻̂ , re-
spectively, at most 𝑄𝑆 queries to oracle Start, and at most 𝑄𝐶 queries
to oracle Challenge. Then there exists an algorithm B with the same
running time asA such thatA’s advantage in the man-in-the-middle
with global revocation game can be upper bounded by

𝑄2

𝑆
+𝑄2

𝐶
+𝑄𝐶 ·𝑄𝐻̂
2
𝜆

+
𝑄2

𝐻

2
2𝜆
+ AdvBufcma-hrk1,sig .

Proof. We show the statement by presenting a sequence of

games G𝑖 , where for each such game G𝑖 the probability that the

game outputs 1 is denoted by Adv𝑖 .
Game G0: This game is the real man-in-the-middle with global

revocation game. That is, at the beginning a master secret key

msk𝑇 = (sk𝑇,0, pk𝑇,0, 𝑐ℎ𝑇) is generated for each token 𝑇 ∈ T .
Further, the global revocation keys rk𝑇 := (pk𝑇,0, 𝑐ℎ𝑇) are passed
to the adversary. Then, the adversary A gets access to oracles

Start,Challenge,Complete. By definition, we have

Adv0 = AdvAMitM-GR,bip32PA .

Game G1: This game is as G0, but we introduce an additional

abort. Namely, G1 aborts whenever for we have 𝐻 (𝑥) = 𝐻 (𝑥 ′) for
𝑥 ≠ 𝑥 ′. As the images of 𝐻 are sampled uniformly at random from

{0, 1}2𝜆 , we have

|Adv0 − Adv1 | ≤
𝑄2

𝐻

2
2𝜆
.

Game G2: In this game, another abort is introduced. Namely, we

consider the server-side oracles Start. Recall that in an execution

of such an oracle, the game samples a random value 𝑟𝑠 ←$ {0, 1}≥𝜆 .
Now, game G2 aborts if the same 𝑟𝑠 is sampled in two different

invocations of the oracle Start. Clearly, we have

|Adv1 − Adv2 | ≤
𝑄2

𝑆

2
𝜆
.

Game G3: In this game, we introduce another abort. Consider

the token-side oracle Challenge. More precisely, consider a query

Challenge(𝜋𝑖, 𝑗
𝑇
, id𝑆 , cid, 𝑀) with 𝑗 > 0, i.e. an authentication inter-

action. Recall that in the execution of this oracle, a value 𝑛𝑜 ←$
{0, 1}𝜆 is sampled, and then the message𝑚 := (𝑀,𝑛𝑜) is signed.

11

The game now aborts, if this message has been signed in any call

to oracle Challenge before. As 𝑛𝑜 is sampled uniformly at random

and there are at most 𝑄𝐶 such queries, we have

|Adv2 − Adv3 | ≤
𝑄2

𝐶

2
𝜆
.

Game G4: In this game, we change how the master secret keys

msk𝑇 = (sk𝑇,0, pk𝑇,0, 𝑐ℎ𝑇) for all tokens 𝑇 ∈ T are generated at

the beginning of the game. In previous games, (sk𝑇,0, pk𝑇,0) was
generated as a fresh key pair (sk𝑇,0, pk𝑇,0) ← kg(param). In game

G4, a key pair (sk∗, pk∗) ← kg(param) is generated first. Then, the
key pairs (sk𝑇,0, pk𝑇,0) are generated using

(sk𝑇,0, pk𝑇,0) := (srerand(sk∗, 𝜌𝑇), prerand(pk∗, 𝜌𝑇))

for 𝜌𝑇 ←$ {0, 1}𝜆 . The generation of 𝑐ℎ𝑇 stays as in game G4. As

the distribution of rerandomized keys is exactly the same as the

distribution of fresh keys, we have

Adv3 = Adv4 .

Game G5: In this game, we introduce another abort. Namely,

consider a query of the form Challenge(𝜋𝑖,0
𝑇
, id𝑆 , 𝑀), i.e. a token-

side registration query. Recall that in the execution of such a query,

the game samples cid ←$ {0, 1}𝜆 . Later, keys (sk, pk) are derived
as rerandomizations of (sk𝑇,0, pk𝑇,0) using the randomness 𝜌 :=

𝐻̂ (pk𝑇,0, 𝑐ℎ𝑇 , cid, id𝑆). Now, game G5 aborts, if at this point the

hash value 𝐻̂ (pk𝑇,0, 𝑐ℎ𝑇 , cid, id𝑆) is already defined. As cid is sam-

pled uniformly at random over {0, 1}𝜆 , a union bound over the at

most 𝑄𝐶 queries of this form and the at most 𝑄
𝐻̂
random oracle

queries leads to

|Adv4 − Adv5 | ≤
𝑄𝐶 ·𝑄𝐻̂

2
𝜆

.

Game G6: In this game, we change the execution of queries of the

form Challenge(𝜋𝑖,0
𝑇
, id𝑆 , 𝑀) again. Concretely, the game samples

cid←$ {0, 1}𝜆 as before. Then, it samples a randomness 𝜌 ←$ {0, 1}𝜆
and computes (sk, pk) as rerandomizations of (sk∗, pk∗) instead of

(sk𝑇,0, pk𝑇,0). To be precise, it sets

(sk, pk) := (srerand(sk∗, 𝜌), pk := prerand(pk∗, 𝜌)
and programs

𝐻̂ (pk𝑇,0, 𝑐ℎ𝑇 , cid, id𝑆) := 𝜌 − 𝜌𝑇 ,
which is possible due to the previous change. Here the subtraction

should be understood over Z𝑝 . It follows from the definition of

ECDSA key generation that this does not change the view of the

adversary. Hence we have

Adv5 = Adv6 .

Wewant to boundAdv6 using a reduction from the ufcma-hrk1
security of sig. This is possible, as all keys involved are rerandomiza-

tions of pk∗ and signing keys are only needed for signing. Further,

the winning condition and the aborts that we introduced imply that

a successful adversary forges a signature for a fresh message.

Before we describe the reduction, we introduce some terminol-

ogy. We recall that the game outputs 1 if none of the introduced

aborts occur, and the adversary successfully finished an authentica-

tion via oracle Complete(𝜋𝑖, 𝑗
𝑆
, ·), for which 𝑗 = 0, the oracle 𝜋

𝑖, 𝑗

𝑆
is

not partnered with any oracle 𝜋
𝑖′, 𝑗 ′

𝑇
and the oracle 𝜋

𝑖,0
𝑆

is partnered

with an oracle 𝜋
𝑖′,0
𝑇

. We call this interaction with oracle Complete

the forged authentication and the interaction with oracle 𝜋
𝑖′,0
𝑇

as

above via oracle Challenge the target registration.
Reduction B is as follows.

• B gets as input a public key pk∗. It gets access to a signing
oracle Sign.

• For each token 𝑇 ∈ T , reduction B rerandomizes pk∗

into pk𝑇,0 using its oracle Rand. Thereby it also obtains

the randomness 𝜌𝑇 . It also samples 𝑐ℎ𝑇 and defines the

revocation key rk𝑇 . Then, it passes all revocation keys

rk𝑇 ,𝑇 ∈ T to A.

• B simulates oracles Start,Challenge,Complete as in game

G6, where it uses its oracles Sign and Rand to simulate

oracle Challenge. Concretely,
– In queries of the form Challenge(𝜋𝑖,0

𝑇
, id𝑆 , 𝑀), B does

not sample the randomness 𝜌 by itself, but rather ob-

tains 𝜌 from its oracle Rand.
– Whenever B is needs a signature according to game

G6, it uses oracle Sign. The change introduced in game

G3 ensures that no message is signed twice.

• After termination of A, reduction B first finds the forged

authentication and the corresponding target registration.

• Let 𝜎 be the signature that A submitted in the forged

authentication, id𝑆 be the server identity that is used in

the forged authentication, and 𝑟𝑠 be the challenge that is

used. Further, let 𝜌 be the randomness that B obtained

from oracle Rand in the target registration.

• B returns

𝜎∗ := 𝜎, 𝜌∗ := 𝜌,𝑚∗ := (𝐻 (id𝑆), 𝐻 (𝑟𝑠)) .

One can easily see that B simulates G6 perfectly. Further, due to

the changes introduced in games G1 and G2, if A wins game G6,

we know that the forgery output by B is fresh. We conclude with

Adv6 ≤ AdvBufcma-hrk1,sig .

□

7 CONCLUSIONS
In this paper we analyzed the FIDO2 protocol with a focus on its

real-world use cases and adapted the existing security model of Bar-

bosa et al. [6] accordingly. We showed that privacy (unlinkability)

of the protocol is not immediately guaranteed by the specification

if non-resident keys are used. To solve this issue we introduced the

first formal security definition to capture privacy. Our results can be

used as a guideline for token vendors. As an important example, we

observed that in the case of key-wrapping the underlying encryp-

tion scheme must provide an anonymity property, i.e. ciphertexts

created using the same key must be unlinkable to each other. This

paper also introduces the notion of global key revocation and gives

the first formalization of this property. Finally, we have shown that

using the BIP32 key derivation, it is possible to obtain an efficient

token implementation that supports global key revocation.

12

REFERENCES
[1] 2017. FIDO ECDAA Algorithm. https://fidoalliance.org/specs/fido-uaf-v1.

1-ps-20170202/fido-ecdaa-algorithm-v1.1-ps-20170202.pdf. (2017). [Online;

accessed 22-January-2021].

[2] 2019. Client to Authenticator Protocol (CTAP). https://fidoalliance.

org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.

0-ps-20190130.pdf. (2019). [Online; accessed 14-January-2022].

[3] 2020. Web Authentication: An API for accessing Public Key Credentials. https:

//www.w3.org/TR/webauthn/. (2020). [Online; accessed 14-January-2022].

[4] Aftab Alam, Katharina Krombholz, and Sven Bugiel. 2019. Poster: Let History not

Repeat Itself (this Time) - TacklingWebAuthn Developer Issues Early On. InACM
CCS 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan

Katz (Eds.). ACM Press, 2669–2671. https://doi.org/10.1145/3319535.3363283

[5] Fabio Banfi and Ueli Maurer. 2020. Anonymous Symmetric-Key Communication.

In SCN 20 (LNCS), Clemente Galdi and Vladimir Kolesnikov (Eds.), Vol. 12238.

Springer, Heidelberg, 471–491. https://doi.org/10.1007/978-3-030-57990-6_23

[6] Manuel Barbosa, Alexandra Boldyreva, Shan Chen, and Bogdan Warinschi. 2021.

Provable Security Analysis of FIDO2. In CRYPTO 2021, Part III (LNCS), Tal Malkin

and Chris Peikert (Eds.), Vol. 12827. Springer, Heidelberg, Virtual Event, 125–156.

https://doi.org/10.1007/978-3-030-84252-9_5

[7] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. 2003. Foundations of

Group Signatures: Formal Definitions, Simplified Requirements, and a Construc-

tion Based on General Assumptions. In EUROCRYPT 2003 (LNCS), Eli Biham (Ed.),

Vol. 2656. Springer, Heidelberg, 614–629. https://doi.org/10.1007/3-540-39200-9_

38

[8] Mihir Bellare, David Pointcheval, and Phillip Rogaway. 2000. Authenticated Key

Exchange Secure against Dictionary Attacks. In EUROCRYPT 2000 (LNCS), Bart
Preneel (Ed.), Vol. 1807. Springer, Heidelberg, 139–155. https://doi.org/10.1007/

3-540-45539-6_11

[9] Jacqueline Brendel and Marc Fischlin. 2017. Zero Round-Trip Time for the

Extended Access Control Protocol. In ESORICS 2017, Part I (LNCS), SimonN. Foley,

Dieter Gollmann, and Einar Snekkenes (Eds.), Vol. 10492. Springer, Heidelberg,

297–314. https://doi.org/10.1007/978-3-319-66402-6_18

[10] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and

Mira Meyerovich. 2006. How to win the clonewars: Efficient periodic n-times

anonymous authentication. In ACM CCS 2006, Ari Juels, Rebecca N. Wright, and

Sabrina De Capitani di Vimercati (Eds.). ACM Press, 201–210. https://doi.org/10.

1145/1180405.1180431

[11] Dhiman Chakraborty and Sven Bugiel. 2019. simFIDO: FIDO2 User Authenti-

cation with simTPM. In ACM CCS 2019, Lorenzo Cavallaro, Johannes Kinder,

XiaoFeng Wang, and Jonathan Katz (Eds.). ACM Press, 2569–2571. https:

//doi.org/10.1145/3319535.3363258

[12] David Chaum and Eugène van Heyst. 1991. Group Signatures. In EUROCRYPT’91
(LNCS), Donald W. Davies (Ed.), Vol. 547. Springer, Heidelberg, 257–265. https:

//doi.org/10.1007/3-540-46416-6_22

[13] Özgür Dagdelen and Marc Fischlin. 2011. Security Analysis of the Extended

Access Control Protocol for Machine Readable Travel Documents. In ISC 2010
(LNCS), Mike Burmester, Gene Tsudik, Spyros S. Magliveras, and Ivana Ilic (Eds.),

Vol. 6531. Springer, Heidelberg, 54–68.

[14] Poulami Das, Andreas Erwig, Sebastian Faust, Julian Loss, and Siavash Riahi. 2021.

The Exact Security of BIP32 Wallets. In CCS ’21: 2021 ACM SIGSAC Conference
on Computer and Communications Security, Virtual Event, Republic of Korea,
November 15 - 19, 2021, Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi

(Eds.). ACM, 1020–1042. https://doi.org/10.1145/3460120.3484807

[15] Poulami Das, Sebastian Faust, and Julian Loss. 2019. A Formal Treatment of

Deterministic Wallets. In ACM CCS 2019, Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz (Eds.). ACM Press, 651–668. https://doi.org/

10.1145/3319535.3354236

[16] Emma Dauterman, Henry Corrigan-Gibbs, David Mazières, Dan Boneh, and

Dominic Rizzo. 2019. True2F: Backdoor-Resistant Authentication Tokens. In 2019
IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 398–416.

https://doi.org/10.1109/SP.2019.00048

[17] Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener. 1992. Authentica-

tion and Authenticated Key Exchanges. Designs, Codes and Cryptography 2, 2

(June 1992), 107–125.

[18] Cynthia Dwork, Moni Naor, and Amit Sahai. 1998. Concurrent Zero-Knowledge.

In 30th ACM STOC. ACM Press, 409–418. https://doi.org/10.1145/276698.276853

[19] Florian M. Farke, Lennart Lorenz, Theodor Schnitzler, Philipp Markert, and

Markus Dürmuth. 2020. “You still use the password after all” – Exploring FIDO2

Security Keys in a Small Company. In Sixteenth Symposium on Usable Privacy
and Security (SOUPS 2020). USENIX Association, 19–35. https://www.usenix.org/

conference/soups2020/presentation/farke

[20] Haonan Feng, Hui Li, Xuesong Pan Pan, and Ziming Zhao. 2021. A formal

analysis of the FIDO UAF protocol. In Proceedings of the Network and Distributed
System Security Symposium (NDSS).

[21] Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider, Do-

minique Schröder, and Mark Simkin. 2016. Efficient Unlinkable Sanitizable

Signatures from Signatures with Re-randomizable Keys. In PKC 2016, Part I
(LNCS), Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin

Yang (Eds.), Vol. 9614. Springer, Heidelberg, 301–330. https://doi.org/10.1007/

978-3-662-49384-7_12

[22] Nick Frymann, Daniel Gardham, Franziskus Kiefer, Emil Lundberg,MarkManulis,

and Dain Nilsson. 2020. Asynchronous Remote Key Generation: An Analysis of

Yubico’s Proposal for W3C WebAuthn. In ACM CCS 2020, Jay Ligatti, Xinming

Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM Press, 939–954. https:

//doi.org/10.1145/3372297.3417292

[23] Iness Ben Guirat and Harry Halpin. 2018. Formal Verification of the W3C

Web Authentication Protocol. In Proceedings of the 5th Annual Symposium and
Bootcamp on Hot Topics in the Science of Security (HoTSoS ’18). Association for

Computing Machinery, New York, NY, USA, Article 6, 10 pages. https://doi.org/

10.1145/3190619.3190640

[24] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. 2007. Stronger Security

of Authenticated Key Exchange. In ProvSec 2007 (LNCS), Willy Susilo, Joseph K.

Liu, and Yi Mu (Eds.), Vol. 4784. Springer, Heidelberg, 1–16.

[25] Laurie Law, Alfred Menezes, Minghua Qu, Jerome A. Solinas, and Scott A. Van-

stone. 2003. An Efficient Protocol for Authenticated Key Agreement. Des. Codes
Cryptogr. 28, 2 (2003), 119–134.

[26] Sanam Ghorbani Lyastani, Michael Schilling, Michaela Neumayr, Michael Backes,

and Sven Bugiel. 2020. Is FIDO2 the Kingslayer of User Authentication? A

Comparative Usability Study of FIDO2 Passwordless Authentication. In 2020
IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 268–285.

https://doi.org/10.1109/SP40000.2020.00047

[27] Rafael Pass. 2003. On Deniability in the Common Reference String and Random

Oracle Model. In CRYPTO 2003 (LNCS), Dan Boneh (Ed.), Vol. 2729. Springer,

Heidelberg, 316–337. https://doi.org/10.1007/978-3-540-45146-4_19

[28] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. 2001. OCB: A

Block-Cipher Mode of Operation for Efficient Authenticated Encryption. In ACM
CCS 2001, Michael K. Reiter and Pierangela Samarati (Eds.). ACM Press, 196–205.

https://doi.org/10.1145/501983.502011

[29] Claus-Peter Schnorr. 1991. Efficient Signature Generation by Smart Cards. Jour-
nal of Cryptology 4, 3 (Jan. 1991), 161–174. https://doi.org/10.1007/BF00196725

[30] Isamu Teranishi, Jun Furukawa, and Kazue Sako. 2004. k-Times Anonymous

Authentication (Extended Abstract). In ASIACRYPT 2004 (LNCS), Pil Joong
Lee (Ed.), Vol. 3329. Springer, Heidelberg, 308–322. https://doi.org/10.1007/

978-3-540-30539-2_22

[31] Bitcoin Wiki. 2018. BIP32 proposal. https://en.bitcoin.it/wiki/BIP_0032. (2018).

[32] Yubico. 2020. Yubikey U2F Key Generation. https://developers.yubico.com/U2F/

Protocol_details/Key_generation.html. (2020). [Online; accessed 14-January-

2022].

A OMITTED PROOFS FOR KEYWRAPPING
Proof of Lemma 4.3. We show the statement by presenting a

sequence of games G𝑖 , where for each such game G𝑖 the probability
that the game outputs 1 is denoted by Adv𝑖 .

Game G0: This is the real man-in-the-middle game. At the be-

ginning of this game, every token𝑇 ∈ T is initialized with a master

secret key msk𝑇 ← Gen(param). Then, the adversary gets access

to oracles Start,Challenge,Complete. By definition, we have

Adv0 = AdvAMiM,kwrPA .

Game G1: We change the game as follows. The game is as G0,

but it aborts if for 𝑥 ≠ 𝑥 ′ we have 𝐻 (𝑥) = 𝐻 (𝑥 ′). The images of 𝐻

are sampled uniformly at random from {0, 1}2𝜆 , which implies that

|Adv0 − Adv1 | ≤
𝑄2

𝐻

2
2𝜆
.

Game G2: This game is as G2, but we introduce another abort.

To this end, consider the server-side oracles Start. Recall that dur-
ing the execution of such an oracle, a random 𝑟𝑠 ←$ {0, 1}≥𝜆 is

sampled. Game G2 aborts if the same 𝑟𝑠 is sampled in two different

invocations of the oracle Start. Clearly, we have the bound

|Adv1 − Adv2 | ≤
𝑄2

𝑆

2
𝜆
.

13

https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-ecdaa-algorithm-v1.1-ps-20170202.pdf
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-ecdaa-algorithm-v1.1-ps-20170202.pdf
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.pdf
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.pdf
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.pdf
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/
https://doi.org/10.1145/3319535.3363283
https://doi.org/10.1007/978-3-030-57990-6_23
https://doi.org/10.1007/978-3-030-84252-9_5
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/978-3-319-66402-6_18
https://doi.org/10.1145/1180405.1180431
https://doi.org/10.1145/1180405.1180431
https://doi.org/10.1145/3319535.3363258
https://doi.org/10.1145/3319535.3363258
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1145/3460120.3484807
https://doi.org/10.1145/3319535.3354236
https://doi.org/10.1145/3319535.3354236
https://doi.org/10.1109/SP.2019.00048
https://doi.org/10.1145/276698.276853
https://www.usenix.org/conference/soups2020/presentation/farke
https://www.usenix.org/conference/soups2020/presentation/farke
https://doi.org/10.1007/978-3-662-49384-7_12
https://doi.org/10.1007/978-3-662-49384-7_12
https://doi.org/10.1145/3372297.3417292
https://doi.org/10.1145/3372297.3417292
https://doi.org/10.1145/3190619.3190640
https://doi.org/10.1145/3190619.3190640
https://doi.org/10.1109/SP40000.2020.00047
https://doi.org/10.1007/978-3-540-45146-4_19
https://doi.org/10.1145/501983.502011
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/978-3-540-30539-2_22
https://doi.org/10.1007/978-3-540-30539-2_22
https://en.bitcoin.it/wiki/BIP_0032
https://developers.yubico.com/U2F/Protocol_details/Key_generation.html
https://developers.yubico.com/U2F/Protocol_details/Key_generation.html

Game G3: In this game, we will no longer generate master secret

keysmsk𝑇 for each token. Recall that these keys are used in the pre-

vious games to encrypt signing keys via cid← Enc(msk𝑇 , (id𝑆 , sk))
in queries of the formChallenge(𝜋𝑖,0

𝑇
, id𝑆 , ·) (i.e. in registration) and

to decrypt such cid in queries of the formChallenge(𝜋𝑖, 𝑗
𝑇
, id𝑆 , cid, ·),

𝑗 > 0 (i.e. in authentication). In gameG2, we instead hold an initially

empty map 𝐿[·, ·]. In each registration query Challenge(𝜋𝑖,0
𝑇
, id𝑆 , ·)

the value cid is now sampled uniformly at random from the ci-

phertext space, and an entry 𝐿[𝑇, cid] := (id𝑆 , sk) is added. In each

authentication query Challenge(𝜋𝑖, 𝑗
𝑇
, id𝑆 , cid, ·), 𝑗 > 0, the entry

(id, cid) := 𝐿[𝑇, cid] is retrieved from the map instead of decrypt-

ing cid, and it is used if it is defined. If it is undefined, the oracle

aborts its execution.

We can bound the distinguishing advantage between G2 and G3

using |T | intermediate hybrids. Namely, in hybrid 𝑖 , we apply the

change to the first 𝑖 tokens𝑇 ∈ T . For each hybrid step we can give

a straight-forward reductionB from the anonymous authentication

security of ske. Thus, we have

|Adv1 − Adv2 | ≤ |T | · AdvBanon-auth,ske .

Now, if we take a look at G3, we see that each challenge that the ad-

versary gets via oracle Start and has to sign is unique. Also, signing

keys sk are only needed to sign, and not in the plain anymore. Thus,

similar to the proof of Lemma 4.1 we can build a reduction C from

the euf-cma security of sig to bound Adv3. On a high level, the

reduction guesses in which query of the form Challenge(𝜋𝑖,0
𝑇
, ·) the

adversary obtained the public key, for which it forges a signature.

We have

Adv3 ≤ 𝑄𝐶 · AdvCeuf-cma,sig .

□

Proof of Lemma 4.4. We show the claim by presenting a se-

quence of games G𝑖 . For each game G𝑖 , we denote the probability
that it outputs 1 by pr𝑖 .

Game G0: This game is the real unlinkability game. In this game,

a key sk𝑇 ← Gen(param) is generated for each token𝑇 ∈ T . Then,
the adversary A gets access to oracles Start,Challenge,Complete
and outputs tokens𝑇0,𝑇1 and servers 𝑆𝐿, 𝑆𝑅 . Afterwards, it also gets

access to oracles Left,Right, which run Challenge(𝜋𝑖𝑏 , 𝑗𝑏
𝑇𝑏

, id𝑆𝐿 , ·, ·)
and Challenge(𝜋𝑖1−𝑏 , 𝑗1−𝑏

𝑇1−𝑏
, id𝑆𝑅 , ·, ·), respectively. By definition, we

have

pr
0
= AdvAUnl,kwrPA .

Game G1: We change game G0 in the following way. At the

beginning, G1 samples 𝑇 ∗
0
,𝑇 ∗

1
←$ T . Later, if 𝑇0 ≠ 𝑇 ∗

0
or 𝑇1 ≠ 𝑇 ∗

1
,

the game returns a random bit. Otherwise, it continues as G0 does.

AsA obtains no information about 𝑇 ∗
0
,𝑇 ∗

1
until the potential abort,

we have ����pr1 − 1

2

���� = 1

|T |2

����pr0 − 1

2

���� .
Game G2: We change G1 in the following way. Recall that in

G1, wheneverA starts a registration interaction with token𝑇𝑏 , 𝑏 ∈
{0, 1} via oraclesChallenge or Left,Right, a ciphertext cid is created
as cid := Enc(msk𝑇𝑏 , (id𝑆 , sk)). Furthermore, when A starts an

authentication interaction with token 𝑇𝑏 , 𝑏 ∈ {0, 1} via oracles

Challenge or Left,Right, it provides a ciphertext cid, which is then

decrypted as (id, sk) := Dec(msk, cid). If Dec returns ⊥ or id does

not match with the server identity id𝑆 provided, the oracles abort.

Otherwise, they continue their execution using secret key sk.
Now, in game G2, we change this encryption and decryption

for the tokens 𝑇 ∗
0
,𝑇 ∗

1
that we guessed in G1. Note that if G1 does

not abort, we know that (𝑇 ∗
0
,𝑇 ∗

1
) = (𝑇0,𝑇1) and these tokens are

also used in oracles Left and Right. Concretely, the game works

as follows: Initially, two empty maps 𝐿0 [·], 𝐿1 [·] are initialized.

Then, in each registration interaction with token 𝑇 ∗
𝑖
, 𝑖 ∈ {0, 1}

(including the ones in oracle Left or Right) the value cid is sampled

randomly from the ciphertext space. Then, an entry 𝐿𝑖 [cid] :=

(id𝑆 , sk) is added. Furthermore, in each authentication interaction

with token𝑇 ∗
𝑖
, 𝑖 ∈ {0, 1} (including the ones in oracle Left or Right),

where the adversary provides cid, we check if 𝐿𝑖 [cid] is defined.
If it is, we use it instead of decrypting cid. If it is not defined, we
abort this interaction. A direct reduction B from the anonymous

authentication security of ske shows that��pr
1
− pr

2

�� ≤ AdvBanon-auth,ske .

We note that now, the only dependence of A’s view on bit 𝑏 is

the shared use of the maps 𝐿0, 𝐿1. Namely, the table 𝐿𝑏 is used by

challenge oracles for token 𝑇𝑏 and by the oracle Left.
Game G3: This game is as game G2, but we partition map 𝐿𝑏

into two tables: The first map, 𝐿′
𝑏
, is used in oracle Challenge for

token 𝑇𝑏 . The second map, 𝐿𝐿 is used in oracle Left. The maps are

used as before, and the difference is that oracle Challenge never
accesses 𝐿𝐿 and oracle Left never accesses 𝐿′

𝑏
.

We claim that the view of A does not change from G2 to G3.

To see this, note that A can only observe the change, if it sends

a value cid to one oracle in authentication (e.g. Challenge), which
was given out by the other oracle (e.g. Left) in registration. But then,
due to registration uniqueness, the oracle used for authentication

would have aborted in G2 as well. It follows that

pr
2
= pr

3
.

Game G4: This game is as G3, but we partition the map 𝐿
1−𝑏

into two tables 𝐿′
1−𝑏 and 𝐿𝑅 . The change is similar as above, and

the same argument shows

pr
3
= pr

4
.

We note that in G4, the view ofA is independent of bit 𝑏, which

implies that pr
4
= 1/2. □

B OMITTED PROOFS FOR BIP32
Lemma B.1. Let sig = (kg, sign, srerand, prerand, ver) be a the

ECDSA signature scheme and 𝐻̃ : {0, 1}∗ → {0, 1}𝜆 be a random
oracle. For an adversary A, consider the following game:

(1) Run A𝐻̃ on input param and obtain a string 𝑖𝑑 ∈ {0, 1}∗

from A𝐻̃ .
(2) Generate fresh key pair (sk, pk) ← kg(param) and give it

(including sk) to A𝐻̃ .
(3) When A𝐻̃ outputs (pk′, 𝑐ℎ), output 1 if and only if

prerand(pk′, 𝐻̃ (pk′, 𝑐ℎ, 𝑖𝑑)) = pk.

Then, if algorithmA makes at most𝑄
𝐻̃
queries to 𝐻̃ , the probability

that the game outputs 1 is at most 𝑄
𝐻̃
/2𝜆 .

14

Proof. Consider an adversary A and the game as in the state-

ment. Let sk′ ∈ Z𝑝 be such that 𝑔sk
′
= pk′. Then, note that the

winning condition is equivalent to

𝐻̃ (pk′, 𝑐ℎ, 𝑖𝑑) = sk − sk′.
Note that pk′ uniquely determines sk′ and thus sk− sk′. Hence, for
each random oracle query of A, the probability that it can be used

for a valid output is at most 1/2𝜆 . The claim follows from a union

bound. □

Proof of Lemma 6.2. We show the statement via a sequence

of games. For each game G𝑖 , we denote the advantage of A, i.e.

probability that G𝑖 outputs 1, by Adv𝑖 .
Game G0: This is the real revocation soundness game. Recall

that in the beginning of the game, a keymsk𝑇 = (sk𝑇,0, pk𝑇,0, 𝑐ℎ𝑇)
is generated for each token. Then, the adversary gets access to

oracles Start,Challenge,Complete and outputs a token 𝑇 ∗ and a

server 𝑆∗. Using these, the game executes a registration of token

𝑇 ∗ at server 𝑆∗. Afterwards, the adversary A gets all informa-

tion about that registration, namely (𝑐,𝑀𝑟 , cid, 𝑅𝑟 , 𝑏𝑟 , cred). Again,
A has access to the oracles Start,Challenge,Complete and finally

outputs a revocation key rk∗. The game outputs 1 if and only if

CheckCred(id𝑆∗ , cred, rk∗). By definition, we have

Adv1 = AdvArev-sound,PlANRK .

Game G1: This game is as G0, but we introduce a bad event and

let the game abort if this event occurs. Consider the registration of

𝑇 ∗ at 𝑆∗. In this registration, the algorithm rresponse is executed.
We say that the bad event occurs, if the value 𝐻̂ (pk𝑇 ∗,0, 𝑐ℎ𝑇 ∗ , cid, id𝑆∗)
is already defined. Note that the value cid is sampled uniformly at

random from {0, 1}𝜆 in rresponse. Thus, the probability that the

hash value is already defined is at most𝑄
𝐻̂
/2𝜆 . Therefore, we have

|Adv0 − Adv1 | ≤
𝑄
𝐻̂

2
𝜆
.

Game G2: This game is as G1, but we change the registration of

𝑇 ∗ at 𝑆∗ again. Recall that in game G1, during that registration, a

key pair (sk, pk) is generated using 𝜌 := 𝐻̂ (pk𝑇 ∗,0, 𝑐ℎ𝑇 ∗ , cid, id𝑆∗)
and

sk := srerand(sk𝑇 ∗,0, 𝜌), pk := prerand(pk𝑇 ∗ , 𝜌) .
Especially, due to the change inG1, the value 𝜌 is uniformly random

at this point. In game G2, we sample (sk, pk) as a fresh key pair via

(sk, pk) ← kg(param) and program

𝐻̂ (pk𝑇 ∗,0, 𝑐ℎ𝑇 ∗ , cid, id𝑆∗) := sk − sk𝑇 ∗,0 .
As the distribution of rerandomized keys is the same as fresh keys

if the randomness 𝜌 is uniform, it follows that the view of A does

not change. Therefore, we have

Adv1 = Adv2 .

Game G3: This game is as G2, but we add another bad event and

make the game abort if this event occurs. Namely, we say that the

bad event occurs, if A queries 𝐻̂ (pk𝑇 ∗,0, 𝑐ℎ𝑇 ∗ , ·, ·) at some point

during the game. Clearly, all information thatA obtains about 𝑐ℎ𝑇 ∗

are the random oracle hashes that it (implicitly) sees. Thus, by a

union bound over A’s random oracle queries we get

|Adv2 − Adv3 | ≤
𝑄
𝐻̂

2
𝜆
.

Game G4: This game is as G3, but we add another bad event and

make the game abort if this event occurs. We say that the bad event

occurs ifA’s final output is rk∗ = (pk𝑇 ∗,0, 𝑐ℎ𝑇 ∗). As all information

thatA obtains about 𝑐ℎ𝑇 ∗ are the random oracle hashes that it sees,

the probability of this bad event is at most 1/2𝜆 . Thus,

|Adv3 − Adv4 | ≤
1

2
𝜆
.

Finally, we can bound the advantage Adv4 of A in game G4

using a reduction from the game in Lemma B.1. The reduction gets

as input parameters param and gets oracle access to an oracle 𝐻̃ . It

sets up the game for A as in G4, while simulating oracle 𝐻̂ by for-

warding queries to 𝐻̃ . Then, once the adversary outputs 𝑇 ∗, 𝑆∗, the
reduction runs 𝑐 ← rchallenge(id𝑆∗), 𝑀𝑟 ← rcommand(id𝑆∗ , 𝑐) as
in G4. Then, it samples cid←$ {0, 1}𝜆 and outputs 𝑖𝑑 := (cid, id𝑆∗)
to its game. It obtains (sk, pk) from its game and programs

𝐻̂ (pk𝑇 ∗,0, 𝑐ℎ𝑇 ∗ , cid, id𝑆∗) := sk − sk𝑇 ∗,0
as in G3. Later, whenA outputs rk∗ = (pk′, 𝑐ℎ), it outputs (pk′, 𝑐ℎ)
to its own game.

It is easy to see that the reduction perfectly simulates game G4

for A. Moreover, if the bad event defined in G4 does not occur,

the random oracles 𝐻̃ and 𝐻̂ coincide on (pk′, 𝑐ℎ, 𝑖𝑑), which is

why the reduction wins its game. Thus, Lemma B.1 implies that

Adv4 ≤ 𝑄𝐻̂ /2
𝜆
and the statement follows. □

Proof of Lemma 6.3. We note that the proof is very similar to

the proof of Lemma 4.2, and we use some parts literally.

We show the statement via a sequence of games. For each game

G𝑖 , we denote the probability that G𝑖 outputs 1 by pr𝑖 .
Game G0: This game is the real unlinkability game. At the begin-

ning of the game, a master secret key msk𝑇 = (sk𝑇,0, pk𝑇,0, 𝑐ℎ𝑇)
is generated for each token 𝑇 ∈ T . The adversary A gets ac-

cess to oracles Start,Challenge,Complete. Then, it outputs two
tokens 𝑇0,𝑇1 and servers 𝑆𝐿, 𝑆𝑅 . Afterwards, it also gets access to

oracles Left,Right, which internally run Challenge(𝜋𝑖𝑏 , 𝑗𝑏
𝑇𝑏

, id𝑆𝐿 , ·, ·)
and Challenge(𝜋𝑖1−𝑏 , 𝑗1−𝑏

𝑇1−𝑏
, id𝑆𝑅 , ·, ·), respectively. Additionally, the

adversary gets access to random oracle 𝐻̂ . By definition, we have

pr
0
= AdvAUnl,bip32PA .

Game G1: This game is as G0, but we introduce a bad event and

let the game abort if this bad event occurs. The bad event occurs, if

the adversary ever queries 𝐻̂ (pk𝑇,0, 𝑐ℎ𝑇 , ·, ·) for any token 𝑇 ∈ T .
Note thatA obtains no information about 𝑐ℎ𝑇 throughout the game

(except via hash values). Thus, we can use a union bound over the

𝑄
𝐻̂
random oracle queries and the |T | tokens to obtain��pr

0
− pr

1

�� ≤ 𝑄𝐻̂ · |T |
2
𝜆

.

Game G2: This game is as G1, but we introduce another bad

event and let the game abort if this bad event occurs. The bad event

occurs, if there are tokens𝑇 ≠ 𝑇 ′ such that 𝑐ℎ𝑇 = 𝑐ℎ𝑇 ′ . Clearly, we

have ��pr
1
− pr

2

�� ≤ |T |2
2
𝜆
.

Game G3: This game is as G2, but we change the way oracle

Left works. Recall that in input cid, 𝑀 , oracle Left(cid, 𝑀) in game

15

G2 samples a key pair (sk, pk) as follows: It derives randomness

𝜌 := 𝐻̂ (pk𝑇𝑏 ,0, 𝑐ℎ𝑇𝑏 , cid, id𝑆𝐿) and sets

sk := srerand(sk𝑇𝑏 ,0, 𝜌), pk := prerand(pk𝑇𝑏 ,0, 𝜌) .
Now, assuming the game G3 does not abort, we know that value

𝜌 is uniformly distributed for A here. Especially, due to registra-

tion uniqueness and non-colliding 𝑐ℎ’s, the oracle Challenge never
queries 𝐻̂ (pk𝑇𝑏 ,0, 𝑐ℎ𝑇𝑏 , cid, id𝑆𝐿). As the distributions of rerandom-

ized key pairs is the same as the one of fresh key pairs, we can

change sk, pk to a fresh key pair. To be precise, game G3 keeps a

map 𝐾𝐿 [·], and in each call Left(cid, 𝑀) it first checks if 𝐾𝐿 [cid] is
already defined. If it is defined, it is used as a key pair. Otherwise,

a fresh key pair (sk, pk) ← kg(param) is sampled and stored as

𝐾𝐿 [cid] := (sk, pk). The rest of the oracle stays the same, using that

particular key pair. The above argument shows that if the game

does not abort, the view of A does not change. Thus we have

pr
2
= pr

3
.

Game G4: This game is as G3, but we change how oracle Right
behaves. Concretely, we apply a similar change using fresh key

pairs and a map 𝐾𝑅 as we did for oracle Left in game G3. With the

same arguments, it follows that

pr
3
= pr

4
.

Finally, note that oracles Left and Right in game G4 and thus

A’s view are independent of the bit 𝑏. Thus, we have pr
4
= 1/2

and the claim follows. □

16

Token(msk) Client(id𝑆) Server(id𝑆)

(cid, 𝑅𝑟) ← rresponse(msk, id𝑆 , 𝑀𝑟) : 𝑀𝑟 ← rcommand(id𝑆 , 𝑐) : 𝑐 ← rchallenge(id𝑆) :

ℎ := 𝑀𝑟 , cid←$ {0, 1}𝜆 (id, 𝑟𝑠) := 𝑐 𝑟𝑠 ←$ {0, 1}≥𝜆

sk := 𝐾𝐷𝐹 (msk, cid, id𝑆), pk := toPK(sk) // kdfPA id𝑆 , 𝑀𝑟 if id ≠ id𝑆 : abort 𝑐 𝑐 := (id𝑆 , 𝑟𝑠)

(sk, pk) ← kg(param) // kwrPA 𝑀𝑟 := 𝐻 (𝑟𝑠)
cid := Enc(msk, (id𝑆 , sk)) // kwrPA

(sk
0
, pk

0
, 𝑐ℎ) := msk // bip32PA (𝑏, cred) ← rcheck(cid, 𝑅𝑟)

sk := srerand(sk
0
, 𝐻̂ (pk

0
, 𝑐ℎ, cid, id𝑆)) // bip32PA 𝑚 := (𝐻 (id𝑆), cid, pk, 𝐻 (𝑟𝑠))

pk := prerand(pk
0
, 𝐻̂ (pk

0
, 𝑐ℎ, cid, id𝑆)) // bip32PA 𝑏 := ver(pk, 𝜎,𝑚)

𝜎 ← sign(sk, (𝐻 (id𝑆), cid, pk, ℎ)) cid, 𝑅𝑟 cid, 𝑅𝑟 if 𝑏 = 0 : cred :=⊥

𝑅𝑟 := (pk, 𝜎) rcs[cid] := pk, cred := (cid, pk))

Figure 2: The WebAuthn registration protocol. The highlighted statements are only executed in the variation that is given in
the respective comment. Functions 𝑉𝑡 ,𝑉𝑠 (cf. Definition 3.4) are given as (𝐻 (id𝑆), 𝐻 (𝑟𝑠), cid).

Token(msk) Client(id𝑆) Server(id𝑆 , cid)

𝑅𝑎 ← aresponse(msk, id𝑆 , cid, 𝑀𝑎) : 𝑀𝑎 ← acommand(id𝑆 , 𝑐) : 𝑐 ← achallenge(id𝑆) :

sk := 𝐾𝐷𝐹 (msk, cid, id𝑆) // kdfPA id𝑆 , cid, 𝑀𝑎 (id, 𝑟𝑠) := 𝑐 cid, 𝑐 𝑟𝑠 ←$ {0, 1}≥𝜆

(id, sk) := Dec(msk, cid) // kwrPA if id ≠ id𝑆 : abort 𝑐 := (id𝑆 , 𝑟𝑠)
if id ≠ id𝑆 : abort // kwrPA 𝑀𝑎 := 𝐻 (𝑟𝑠)
(sk

0
, pk

0
, 𝑐ℎ) := msk // bip32PA 𝑏 ← acheck(cid, 𝑅𝑎)

𝑛𝑜 ←$ {0, 1}𝜆, 𝑀𝑎 := (𝑀𝑎, 𝑛𝑜) // bip32PA pk← rcs[cid]
sk := srerand(sk

0
, 𝐻̂ (pk

0
, 𝑐ℎ, cid, id𝑆)) // bip32PA 𝑚 := (𝐻 (id𝑆), 𝐻 (𝑟𝑠)),

𝜎 ← sign(sk, (𝐻 (id𝑆), 𝑀𝑎)) 𝑅𝑎 𝑅𝑎 𝑚 := (𝐻 (id𝑆), 𝐻 (𝑟𝑠), 𝑛𝑜) // bip32PA

𝑅𝑎 := 𝜎, 𝑅𝑎 := (𝜎,𝑛𝑜) // bip32PA 𝑏 := ver(pk, 𝜎,𝑚)

Figure 3: The WebAuthn authentication protocol. The highlighted statements are only executed in the variation that is given in
the respective comment. Functions 𝑉𝑡 ,𝑉𝑠 (cf. Definition 3.4) are given as (𝐻 (id𝑆), 𝐻 (𝑟𝑠), cid).

17

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	3 Modeling the FIDO2 Protocol
	3.1 Passwordless Authentication
	3.2 Defining Unlinkability
	3.3 Difference to Barbosa et al.'s Model

	4 Existing Schemes
	5 Global Key Revocation
	6 BIP32 Passwordless Authentication
	6.1 BIP32 Scheme Security

	7 Conclusions
	References
	A Omitted Proofs For Key Wrapping
	B Omitted Proofs For BIP32

