
PlonKup: Reconciling PlonK with plookup

Luke Pearson∗1, Joshua Fitzgerald2, Héctor Masip4,
Marta Bellés-Muñoz3,5, and Jose Luis Muñoz-Tapia4

1Polychain Capital
2Anoma

3Dusk Network
4Universitat Politècnica de Catalunya

5Pompeu Fabra University

January, 2022

Abstract

In 2019, Gabizon, Williamson, and Ciobotaru introduced PlonK – a fast and flexible ZK-SNARK
with an updatable and universal structured reference string. PlonK uses a grand product argument to
check permutations of wire values, and exploits convenient interactions between multiplicative subgroups
and Lagrange bases. The following year, Gabizon and Williamson used similar techniques to develop
plookup– a ZK-SNARK that can verify that each element from a list of queries can be found in a public
lookup table. In this paper, we present PlonKup, a fully succinct ZK-SNARK that integrates the ideas
from plookup into PlonK in an efficient way.

Contents
1 Introduction 2

2 Terminology and Notation 3

3 Our Protocol 3
3.1 General Overview . 3
3.2 Polynomials Defining a Circuit . 5
3.3 The SNARK Proof Relation . 6
3.4 The PlonKup Protocol . 6

3.4.1 Prover Algorithm . 7
3.4.2 Verifier Algorithm . 11

4 Variations of the Protocol 12
4.1 Multiple Lookup Tables . 12
4.2 Options for Hiding Polynomials . 12

∗This work was commenced whilst the first author was at Dusk Network

1

5 Conclusions 14

1 Introduction
The first practical zero-knowledge succinct noninteractive arguments of knowledge (ZK-SNARKs) with con-
stant verification and communication complexity [GGPR13, PHGR13, Gro16], needed an structured reference
string (SRS) per each specific individual relation. The construction of the SRS requires a set of secret val-
ues that if ever gets exposed, the whole scheme gets compromised. To reduce risk, the secret values are
usually computed collaboratively using multi-party computation (MPC) protocols that guarantee that, if at
least one of the participants is honest, the final parameters are secure [BGM17]. However, each specific
individual relation being proved with ZK-SNARKs required a different SRS, and hence, every change in the
construction required a new MPC. Recently, new schemes like [MBKM19, CHM+20, GKM+18, GWC19],
were constructed with an updatable SRS that could be upgraded at any point in time. Moreover, the SRS
from these protocols is also universal, meaning that it can be used for any circuit of some bounded size.
In this paper, we generalize PlonK [GWC19], a universal and updatable ZK-SNARK for general arithmetic
circuit satisfiability that was presented by Gabizon, Williamson and Cioboutaru in 2019.

PlonK represents circuits using fan-in 2 and fan-out 1 gates that can be expressed as constraints of the form

qLi · ai + qRi · bi + qOi · ci + qMi · aibi + qCi = 0. (1)

The coefficients qLi, qRi, qOi, qMi and qCi are selectors that represent the gate’s operation (addition, multipli-
cation, or constant assignment), and the elements ai, bi, and ci are wires whose values should satisfy the gate’s
operation, i.e. the corresponding constraint. Typically, ai and bi are the left and the right wire, respectively,
and ci represents the output wire. This way, we can think of an arithmetic circuit as a set of gates represented
by the set of selector vectors {qL = (qLi)

n
i=1,qR = (qRi)

n
i=1,qO = (qOi)

n
i=1,qM = (qMi)

n
i=1,qC = (qCi)

n
i=1},

together with some function that connects the wires from one gate to another. At a very high level, the idea
behind PlonK is to use Kate polynomial commitments [KZG10] to prove that each element i of the vectors
a = (ai)

n
i=1, b = (bi)

n
i=1 and c = (ci)

n
i=1 satisfy the i-th constraint, and also that the wires are connected to

the right gates. This second condition is enforced by a grand product argument constructed using additional
vectors representing permutations of the variables.

The restricted form of the constraints in PlonK, makes the implementation of some common functions very
expensive. For instance, manipulation of bits, such as XOR or AND operation between bit strings, or
common hash functions such as AES-128 or SHA-256, which are constructed from the repeated use of some
simple computation units that are heavy on bit manipulations, are very inefficient [GW20]. There have
been different ways to tackle this problem. In particular, the authors of plookup [GW20] propose a way to
treat some of the “frequently used” computation units as precomputed lookup tables. The idea is that the
whole original computations can be converted into a more general type of circuit which has, besides addition,
multiplication and constant gates, a fourth type of gates, called lookup gates.

For now, we consider a lookup gate as a fan-in2 and fan-out 1 gate, whose operation is described in a public
table. In this case, the table must have three columns, one per input/output, and each row should describe
the relation between the output and the pair of inputs. When integrating this type of gate in a circuit, the
prover will prove that her witness values exist in the table.

Our contributions. In this paper, we generalize PlonK based on the ideas of plookup, and present PlonKup, a
fully-succinct ZK-SNARK that allows proving gates of the form of Equation (1), as well as lookup gates. As

2

a result, PlonKup can be easily used as an extension of PlonK, enhancing the performance of the original
protocol in many useful cases. We assume the reader is familiar with Kate polynomial commitments [KZG10],
PlonK [GWC19] and plookup [GW20] protocols.

2 Terminology and Notation
We follow a notation similar to [GWC19] and [GW20].

Let G1, G2, and Gt groups of prime order r, and e an efficiently computable non-degenerate pairing e :
G1 × G2 → Gt. We choose generators for these groups g1 ∈ G1 and g2 ∈ G2, such that e(g1, g2) generates
Gt. We use the addition notation for G1 and G2, and the shorthand notation [x]1 := x · g1 and [x]2 := x · g2.
The operations on Gt are written multiplicatively.

We consider F a finite field of prime order p. For a given integer n, we denote by [n] the set of integers
{1, ..., n}. We explicitly define the multiplicative subgroup H ⊂ F∗ as the subgroup containing the n-th roots
of unity in F, where ω is a primitive n-th root of unity and a generator of H. That is,

H = {ω, . . . , ωn−1, ωn = 1}.

We denote by F<n[X] the set of univariate polynomials over F of degree strictly smaller than n. For a
polynomial f(x) ∈ F<n[X] and i ∈ [n], we sometimes denote fi := f(ωi). For a vector f ∈ Fn, we also
denote by f(x) the polynomial in F<n[X] with f(ωi) = fi.

The Lagrange polynomial Li(X) ∈ F<n[X] for i ∈ [n] has the form

Li(X) =
ωi (Xn − 1)

n (X − ωi)
.

Thus, the zero polynomial ZH(X) ∈ F<n+1[X] is defined as

ZH(X) = (X − ω) · · · (X − ωn−1)(X − ωn) = Xn − 1.

Let T ∈ Fn×3 be a publicly known table of 3 columns and n rows. We denote by Ti,j , the element of the
table placed in column i and row j, for i ∈ {1, 2, 3} and j ∈ {1, . . . , n}. To compress the rows of the table,
we define the vector t = (t1, . . . , tn) ∈ Fn, where

ti = T1,i + ζT2,i + ζ2T3,i,

for all i ∈ [n] and where ζ ∈ F is a random element obtained from the verifier.

Let n and d be two integers, and let f = {fi}ni=1 ∈ Fn and t = {ti}di=1 ∈ Fd be two vectors such that
{fi}ni=1 ⊂ {ti}di=1. We say that f is sorted by t, when values appear in f the same order as they do it in t.

We assume that the number of gates in a circuit, that is, the total sum of arithmetic and lookup gates, is
no more than n, and that the length of the vector t (that coincides with the number of rows in the table T)
is, as well, no more than n.

3 Our Protocol

3.1 General Overview
In this Section, we present the main ideas in our protocol that differ from the PlonK and plookup protocols.

3

Selecting Lookup Gates

For our needs, the lookup and PlonK portions of the protocol needed to be able to refer to the same variables,
so that the output variable of a regular arithmetic gate could be an input to a plookup gate and vice-versa.
For this reason, we use the same wires for both arithmetic and lookup gates. Then, we use a selector qK to
select only lookup gates when necessary.

Constructing the Compressed Public Lookup Table

Given a public table T ∈ Fn×3, we compress the columns of T into a single vector t = (t1, . . . , tn) by
sampling a random γ ∈ F and computing

ti = T1,i + ζ · T2,i + ζ2 · T3,i.

If the circuit has m wires and T has n rows, for m < n, the wires should be padded with m − n dummy
values and the selectors padded with m− n zeroes until the lengths match. If n < m, then the table should
be padded with n−m copies of one of its elements.

Constructing the Query Wire

The query vector f = (f1, . . . , fn) is constructed from the wires a, b, and c. When the lookup selector qKi

is 0, fi takes on a dummy value from the public table, and when qKi is 1, then fi becomes the compression
of ai, bi, and ci. That is, we define fi as

fi =

{
a(ωi) + ζ · b(ωi) + ζ2 · c(ωi), if the i-th gate is a lookup gate,
T1,n + ζ · T2,n + ζ2 · T3,n, otherwise.

Alternating Method for the Sorted Vector

Let f = (f0, ..., fn−1) be a query vector and t = (t0, ..., tn−1) a table vector, both of length n. Like in plookup,
the prover has to compute the vector s = (f , t) and sort s with respect to t.

Consider the randomized difference sets for t and s. That is, ∆t = (∆t0, ...,∆tn−1), and ∆s = (∆s0, ...,∆sn−1),
such that

∆ti =

{
ti + δti+1 for i ∈ {0, ..., n− 2},
ti + δt0, for i = n− 1,

∆si =

{
si + δsi+1 for i ∈ {0, ..., n− 2},
si + δs0, for i = n− 1,

for some randomly chosen δ.

The prover’s algorithm from plookup divides the s vector into lower and upper halves h1 and h2, so that
h1 = (s0, s1, s2, ..., sn−1) and h2 = (sn, sn+1, sn+2, ..., s2n−1). Then, the expression ∆si = si + δsi+1 can be
written as h1i + δh1i+1, and the expression ∆sn+i = sn+i + δsn+i+1 can be written as h2i + δh2i+1.

As a result, their permutation polynomial expression is of the form

Z(Xω) = Z(X)
(1 + δ)(ϵ+ f(X))(ϵ(1 + δ) + t(X) + δt(Xω))

(ϵ(1 + δ) + h1(X) + δh1(Xω)(ϵ(1 + δ) + h2(X) + δh2(Xω))
.

4

The drawback of this method is that the verifier must check that h1 and h2 overlap, i.e., the verifier must
check that

Ln−1(X)h1(X)− L0(X)h2(X) = 0.

In our protocol, we have the prover divide s into alternating halves h1 and h2 so that h1 = (s0, s2, s4, ..., s2n−2)
and h2 = (s1, s3, s5, ..., s2n−1). Now, the expression ∆s2i = s2i+δs2i+1 can be written as h1i+δh2i, and the
expression ∆s2i+1 = s2i+1 + δs2i+2 can be written as h2i + δh1i+1. This way, our permutation polynomial
expression becomes

Z(Xω) = Z(X)
(1 + δ)(ϵ+ f(X))(ϵ(1 + δ) + t(X) + δt(Xω))

(ϵ(1 + δ) + h1(X) + δh2(X)(ϵ(1 + δ) + h2(X) + δh1(Xω))
,

and no extra check from the verifier is needed.

Finalising a Mega Permutation argument

Both PlonK and plookup utilise a similar methodology for converting a computer program into a SNARK.
PlonK is especially well-known for the introducing the grand product argument and evaluations over a
multiplicative subgroup, amongst other novelties. The permutation in the plookup protocol uses a polynomial
s, which is a concatenated and sorted version of the table and query polynomials, to check that certain
relations hold. The sorting algorithm is performed after both the table and query columns are compressed
into single vectors of field elements with ascending powers of a challenge scalar. As a result the complexity
class of applicable algorithms, which can sort with respect to a list of field elements, are not akin to the
complexity class of the rest of the prover operations. We modify and augment the above permutation
polynomial by introducing a sorted version of the preprocessed table, namely t’. This ultimately increases
the efficiency, as it allows for the construction of the sorted polynomial, s, with algorithms of complexity
O(nlogn). The prover can enforce constraints from the product permutation by appending t′i+θ

ti+θ . Our mega-
permutation is defined as

Z(Xω) = Z(X)
(1 + δ)(ε+ (X))(ε(1 + δ) + t′(X) + δt′(Xω))(θ + t′(X))

(ε(1 + δ) + h1(X) + δh2(X)(ε(1 + δ) + h2(X) + δh1(Xω)(θ + t(X))
.

3.2 Polynomials Defining a Circuit
In the following list, we define the polynomials that define a specific circuit with lookup gates.

• The table polynomial t(X) ∈ F<n[X] representing the table T :

t(X) =

n∑
i=1

tiLi(X).

• The selector polynomials qM (X), qL(X), qR(X), qO(X), qC(X) ∈ F<n[X], which define the arithmeti-
zation of an arithmetic circuit.

• An additional selector qK(X) ∈ F<n[X], which activates the lookup gates. More specifically:

qK(ωi) = qKi
=

{
1, if the i-th gate is a lookup gate,
0, otherwise.

5

• The identity permutation polynomials SID1(X) = X,SID2(X) = k1 · X,SID3(X) = k2 · X applied to
a, b, c, with constants k1, k2 ∈ F chosen such that H, k1 ·H, k2 ·H are distinct cosets in F∗, and thus
consist of 3n distinct elements.

• Let us denote H ′ := H ∪ k1 · H ∪ k2 · H. Let σ : [3n] → [3n] be a permutation. Now, identify [3n]
with H ′ via i → ωi, n + i → k1 · ωi, 2n + i → k2 · ωi. Finally, define σ∗ below to denote the mapping
from [3n] to H ′ derived from applying σ and then this injective mapping into H ′. We encode σ∗ by
the three copy permutation polynomials Sσ1

(X), Sσ2
(X), Sσ3

(X) ∈ F<n[X]:

Sσ1(X) =

n∑
i=1

σ∗(i)Li(X), Sσ2(X) =

n∑
i=1

σ∗(n+ i)Li(X), Sσ3(X) =

n∑
i=1

σ∗(2n+ i)Li(X).

3.3 The SNARK Proof Relation
Given ℓ < n and fixed values for the above polynomials, we wish to prove statements of knowledge for the
relation R ⊂ Fℓ × F3n−ℓ containing all pairs x = (wi)i∈[ℓ], w = (wi)

3n
i=ℓ+1 such that:

1. For all i ∈ [n]:

qMiwiwn+i + qLiwi + qRiwn+i + qOiw2n+i + qCi = 0,

qKi

(
wi + ζwn+i + ζ2w2n+i − fi

)
= 0,

fi ∈ {t1, t2, . . . , tn}.

2. For all i ∈ [3n]:
wi = wσ(i).

3.4 The PlonKup Protocol
In the following protocol we use Hash to refer to a hash function, where Hash : {0, 1}∗ → {0, 1}ℓ is an
efficiently computable hash function that takes arbitrary length inputs and returns ℓ-bit outputs.

We describe the protocol below as a non-interactive protocol using the Fiat-Shamir heuristic. For this
purpose we always denote by transcript the concatenation of the common preprocessed input, public input,
and the proof elements written by the prover up to a certain point in time. We use transcript for obtaining
random challenges via Fiat-Shamir.

Common preprocessed input:

n,
(
[1]1 , [x]1 , . . . ,

[
xn+5

]
1

)
, (T1,i, T2,i, T3,i)i∈[n], (qMi , qLi , qRi , qOi , qCi , qKi)i∈[n] , σ

∗,

T1(X) =
∑n

i=1 T1,iLi(X), T2(X) =
∑n

i=1 T2,iLi(X), T3(X) =
∑n

i=1 T3,iLi(X),

qM (X) =
∑n

i=1 qMi
Li(X), qL(X) =

∑n
i=1 qLi

Li(X), qR(X) =
∑n

i=1 qRi
Li(X),

qO(X) =
∑n

i=1 qOi
Li(X), qC(X) =

∑n
i=1 qCi

Li(X), qK(X) =
∑n

i=1 qKi
Li(X),

Sσ1
(X) =

∑n
i=1 σ

∗(i)Li(X), Sσ2
(X) =

∑n
i=1 σ

∗(n+ i)Li(X), Sσ3
(X) =

∑n
i=1 σ

∗(2n+ i)Li(X).

Public input: The number of public inputs ℓ and the public input x = (wi)i∈[ℓ].

6

3.4.1 Prover Algorithm

Prover input: The pair (x,w) = (wi)i∈[3n] that satisfies the circuit C .

Round 1

1. Generate random blinding scalars b1, . . . , b6 ∈ F.

2. Compute the wire polynomials a(X), b(X), c(X) ∈ F<n+2[x]:

a(X) = (b1X + b2)ZH(X) +

n∑
i=1

wiLi(X),

b(X) = (b3X + b4)ZH(X) +

n∑
i=1

wn+iLi(X),

c(X) = (b5X + b6)ZH(X) +

n∑
i=1

w2n+iLi(X).

3. Compute [a(x)]1, [b(x)]1, [c(x)]1.

The first output of P is ([a(x)]1, [b(x)]1, [c(x)]1).

Round 2

1. Compute the compression factor ζ ∈ Fp:

ζ = Hash(transcript).

2. Compute the query vector f = (f1, . . . , fn) and the table vector t = (t1, . . . , tn):

fi =

{
a(ωi) + ζ · b(ωi) + ζ2 · c(ωi), if the i-th gate is a lookup gate,
T1,n + ζ · T2,n + ζ2 · T3,n, otherwise.

,

ti = T1,i + ζ · T2,i + ζ2 · T3,i.

3. Compute the sorted version of the table vector t, denoted t′ = (t′1, . . . , t
′
n).

4. Generate random blinding scalars b7, . . . , b13 ∈ F.

5. Compute the query polynomial f(X) ∈ F<n+2[x], the table polynomial t(X) ∈ F<n[X] and the sorted
table polynomial t′(X) ∈ F<n[X]:

f(X) = (b7X + b8)ZH(X) +

n∑
i=1

fiLi(X),

t(X) = T1(X) + ζT2(X) + ζ2T3(X),

t′(X) =

n∑
i=1

t′iLi(X).

7

6. Let s ∈ F2n be the vector that is (f , t′) sorted by t′. We represent s by the vectors h1,h2 ∈ Fn as
follows:

h1 = (s1, s3, . . . , s2n−1),

h2 = (s2, s4, . . . , s2n).

7. Compute the polynomials h1(X) ∈ F<n+3[X], and h2(X) ∈ F<n+2[X]

h1(X) = (b9X
2 + b10X + b11)ZH(X) +

n∑
i=1

s2i−1Li(X),

h2(X) = (b12X + b13)ZH(X) +

n∑
i=1

s2iLi(X).

8. Compute [f(x)]1, [t′(x)]1, [h1(x)]1 and [h2(x)]1.

The second output of P is ([f(x)]1, [t
′(x)]1, [h1(x)]1, [h2(x)]1).

Round 3

1. Compute the permutation challenges β, γ, δ, ε, θ ∈ F:

β = Hash(transcript || 1), γ = Hash(transcript || 2),
δ = Hash(transcript || 3), ε = Hash(transcript || 4),
θ = Hash(transcript || 5).

2. Generate random blinding scalars b14, . . . , b19 ∈ F.

3. Compute the PlonK permutation polynomial z1(X) ∈ F<n+3[x]:

z1(X) = (b14X
2 + b15X + b16)ZH(X) + L1(X)

+

n−1∑
i=1

Li+1(X)

i∏
j=1

(wj + βωj−1 + γ)(wn+j + βk1ω
j−1 + γ)(w2n+j + βk2ω

j−1 + γ)

(wj + βσ∗(j) + γ)(wn+j + βσ∗(n+ j) + γ)(w2n+j + βσ∗(2n+ j) + γ)

 .

4. Compute the mega-permutation polynomial z2(X) ∈ F<n+3[x], which results from the product of the
Plookup and the sorted table permutation polynomials:

z2(X) = (b17X
2 + b18X + b19)ZH(X) + L1(X)

+

n−1∑
i=1

Li+1(X)

i∏
j=1

(1 + δ)(ε+ fj)(ε(1 + δ) + t′j + δt′j+1)(θ + t′j)

(ε(1 + δ) + s2j−1 + δs2j)(ε(1 + δ) + s2j + δs2j+1)(θ + tj)

 .

5. Compute [z1(x)]1, [z2(x)]1.

The third output of P is ([z1(x)]1, [z2(x)]1).

8

Round 4

1. Compute the quotient challenges α ∈ F:

α = Hash(transcript).

2. Compute the quotient polynomial q(X) ∈ F<3n+5[x]:

q(X) =
1

ZH(X)

(a(X)b(X)qM (X) + a(X)qL(X) + b(X)qR(X) + c(X)qO(X) + PI(X) + qC(X))

+(a(X) + βX + γ)(b(X) + βk1X + γ)(c(X) + βk2X + γ)z1(X)α

−(a(X) + βSσ1(X) + γ)(b(X) + βSσ2(X) + γ)(c(X) + βSσ3(X) + γ)z1(Xω)α

+(z1(X)− 1)L1(X)α2

+qK(X)(a(X) + ζb(X) + ζ2c(X)− f(X))α3

+z2(X)(1 + δ)(ε+ f(X))(ε(1 + δ) + t′(X) + δt′(Xω)(θ + t′(X)))α4

−z2(Xω)(ε(1 + δ) + h1(X) + δh2(X))(ε(1 + δ) + h2(X) + δh1(Xω))(θ + t(X)))α4

+(z2(X)− 1)L1(X)α5.

3. Split q(X) into three polynomials qlow(X), qmid(X), qhigh(X) of degree at most n+ 1 such that:

q(X) = qlow(X) +Xn+2qmid(X) +X2n+4qhigh(X).

4. Compute [qlow(x)]1 , [qmid(x)]1 , [qhigh(x)].

The fourth output of P is ([qlow(x)]1 , [qmid(x)]1 , [qhigh(x)]).

Round 5

1. Compute the evaluation challenge z ∈ F:

z = Hash(transcript).

2. Compute the opening evaluations:

a(z), b(z), c(z), Sσ1
(z), Sσ2

(z), f(z), t′(z), h2(z), t(z),

z1(zω), t′(ωz), z2(ωz), h1(ωz).

The fifth output of P is (a(z), b(z), c(z), Sσ1
(z), Sσ2

(z), f(z), t′(z), h2(z), t(z), z1(zω), t
′(ωz), z2(ωz), h1(ωz)).

Round 6

1. Compute the opening challenge v ∈ F:

v = Hash(transcript).

9

2. Compute linearization polynomial r(X) ∈ F<n+3[x]:

r(X) = a(z)b(z)qM (X) + a(z)qL(X) + b(z)qR(X) + c(z)qO(X) + PI(z) + qC(X)

+ α[(a(z) + βz+ γ)(b(z) + βk1z+ γ)(c(z) + βk2z+ γ)z1(X)

− (a(z) + βSσ1(z) + γ)(b(z) + βSσ2(z) + γ)(c(z) + βSσ3(X) + γ)z1(zω)]

+ α2(z1(X)− 1)L1(z)

+ α3qK(X)(a(z) + ζb(z) + ζ2c(z)− f(z))

+ α4[z2(X)(1 + δ)(ε+ f(z))(ε(1 + δ) + t′(z) + δt′(zω))(θ + t′(z))

− z2(zω)(ε(1 + δ) + h1(X) + δh2(z))(ε(1 + δ) + h2(z) + δh1(zω)(θ + t(z))]

+ α5(z2(X)− 1)L1(z)

− ZH(z)(qlow(X) + zn+2qmid(X) + z2n+4qhigh(X)).

3. Compute the opening proof polynomial Wz(X) ∈ F<n+2[X]:

Wz(X) =
1

X − z

r(X)

+v(a(X)− a(z))

+v2(b(X)− b(z))

+v3(c(X)− c(z))

+v4(Sσ1(X)− Sσ1(z))

+v5(Sσ2(X)− Sσ2(z))

+v6(f(X)− f(z))

+v7(t′(X)− t′(z))

+v8(h2(X)− h2(z))

+v9(t(X)− t(z)).

4. Compute the opening proof polynomial Wzω(X) ∈ F<n+2[X]:

Wzω(X) =
1

X − zω

z1(X)− z1(zω)

+v(t′(X)− t′(zω))

+v2(z2(X)− z2(zω))

+v3(h1(X)− h1(zω))

 .

5. Compute [Wz(x)]1 and [Wzω(x)]1.

The sixth output of P is ([Wz(x)]1, [Wzω(x)]1).

The complete proof is:

πPlonKup =

[a(x)]1, [b(x)]1, [c(x)]1, [f(x)]1, [t

′(x)]1, [h1(x)]1, [h2(x)]1, [z1(x)]1, [z2(x)]1,

[qlow(x)]1 , [qmid(x)]1 , [qhigh(x)] , [Wz(x)]1, [Wzω(x)]1,

a(z), b(z), c(z), Sσ1
(z), Sσ2

(z), f(z), t′(z), h2(z), t(z),

z1(zω), t
′(ωz), z2(ωz), h1(ωz).

10

Compute multipoint evaluation challenge u ∈ F:

u = Hash(transcript).

We now describe the verifier algorithm in a way that minimizes the number of G1 scalar multiplications.

3.4.2 Verifier Algorithm

Verifier preprocessed input:

[qM (x)]1 , [qL(x)]1 , [qR(x)]1 , [qO(x)]1 , [qC(x)]1 , [qK(x)]1 ,

[Sσ1
(x)]1 , [Sσ2

(x)]1 , [Sσ3
(x)]1 , [T1(x)] , [T2(x)] , [T3(x)] , [x]2 .

V((wi)i∈[ℓ], πPlonKup) :

1. Validate that [a(x)]1, [b(x)]1, [c(x)]1, [f(x)]1, [t′(x)]1, [h1(x)]1, [h2(x)]1, [z1(x)]1, [z2(x)]1, [qlow(x)]1,
[qmid(x)]1, [qhigh(x)], [Wz(x)]1, [Wzω(x)]1 ∈ G1.

2. Validate that a(z), b(z), c(z), Sσ1
(z), Sσ2

(z), f(z), t′(z), h2(z), t(z), z1(zω), t
′(ωz), z2(ωz), h1(ωz) ∈ F.

3. Validate that (wi)i∈[ℓ] ∈ Fℓ.

4. Compute the challenges ζ, β, γ, δ, ε, θ, α, z, v, u ∈ F as in prover description, from the common prepro-
cessed inputs, public input, and elements of πPlonKup.

5. Compute the zero polynomial evaluation ZH(z) = zn − 1.

6. Compute the Lagrange polynomial evaluation L1(z) =
ω (zn−1)
n (z−ω) .

7. Compute the public input polynomial evaluation PI(z) =
∑ℓ

i=1 wiLi(z).

8. Compute the public table commitment [t(x)]1 = [T1(x)]1 + ζ[T2(x)]1 + ζ2[T3(x)]1.

9. To save a verifier scalar multiplication, we split r(X) into its constant and non-constant terms. Com-
pute r(X)’s constant term:

r0 := PI(z)− α(a(z) + βSσ1
(z) + γ)(b(z) + βSσ2

(z) + γ)(c(z) + γ)z1(zω)− α2L1(z)

− α4z2(zω)(ε(1 + δ) + δh2(z))(ε(1 + δ) + h2(z) + δh1(zω))(θ + t(z))− α5L1(z),

and let r′(X) := r(X)− r0.

10. Compute the first part of the batched polynomial commitment [D]1 := [r′(x)]+u([z1(x)]1+v2 [z2(x)]1+
v3 [h1(x)]1):

[D]1 := a(z)b(z) [qM (x)]1 + a(z) [qL(x)]1 + b(z) [qR(x)]1 + c(z) [qO(x)]1 + [qC(x)]1

+ ((a(z) + βz+ γ)(b(z) + βk1z+ γ)(c(z) + βk2z+ γ)α+ L1(z)α
2 + u) [z1(x)]1

− (a(z) + βSσ1
(z) + γ)(b(z) + βSσ2

(z) + γ)αβz1(zω) [Sσ3
(x)]1

+ (a(z) + ζb(z) + ζ2c(z)− f(z))α3 [qK(x)]1

+ ((1 + δ)(ε+ f(z))(ε(1 + δ) + t′(z) + δt′(zω))(θ + t′(z))α4 + L1(z)α
5 + uv2) [z2(x)]1

+ (uv3 − z2(zω)(ε(1 + δ) + h2(z) + δh1(zω))(θ + t(z))α4) [h1(x)]1

− ZH(z)([qlow(x)]1 + zn+2 · [qmid(x)]1 + zn+4 · [qhigh(x)]1).

11

11. Compute the full batched polynomial commitment [F]1:

[F]1 := [D]1 + v · [a(x)]1 + v2 · [b(x)]1 + v3 · [c(x)]1 + v4 · [Sσ1(x)]1 + v5 · [Sσ2(x)]1

+ v6 · [f(x)]1 + v7 · [t′(x)]1 + v8 · [h2(x)]1 + v9 · [t(x)]1 + u(v · [t′(x)]1).

12. Compute the group-encoded batch evaluation [E]1 :

[E]1 :=

[
−r0 + v · a(z) + v2 · b(z) + v3 · c(z) + v4 · Sσ1(z) + v5 · Sσ2(z) + v6 · f(z)
+v7 · t′(z) + v8 · h2(z) + v9 · t(z) + u(z1(zω) + v · t′(zω) + v2 · z2(zω) + v3 · h1(zω))

]
1

.

13. Finally, batch validate all evaluations:

e ([Wz(x)]1 + u · [Wzω(x)]1, [x]2)
?
= e (z · [Wz(x)]1 + uzω[Wzω(x)]1 + [F]1 − [E]1, [1]2) .

4 Variations of the Protocol
In this Section, we propose a solution for circuits with multiple lookup tables, and a different way of hiding
the wire polynomials.

4.1 Multiple Lookup Tables
Let T1, . . . , Ts ∈ Fn×3 be lookup tables associated to different functions. We want to prove that for each
tuple (ai, bi, ci) of a lookup gate, there exists a j ∈ {1, . . . , s} such that (ai, bi, ci) ∈ Tj . Note that this
happens if and only if for any δ1, δ2, δ3 it holds that

ai + δ1bi + δ2ci + δ3j ∈ T ′,

where
T ′ = {(Tl[k][1] + δ1Tl[k][2] + δ2Tl[k][3] + δ3l)}l∈[s],

and k goes for all rows of Tj . Let ft be an interpolant of degree n of [j0, j1, . . . , jn−1] : ft(g
i) = ji.

Then:

1. P sends polynomials fa, fb, fc to I.

2. V sends challenges δ1, δ2, δ3 to P.

3. P computes table T ′ = {(Tl[k][1] + δ1Tl[k][2] + δ2Tl[k][3] + δ3l)}.

4. P computes Z ′ using x = ai + δ1bi + δ2ci + δ3ji and sends it to I.

5. V asks the same 4 identities as for regular tables using f = fa + δ1fb + δ2fc + δ3ft.

4.2 Options for Hiding Polynomials
In PlonK, vectors of private prover inputs are interpolated into polynomials and blinded by adding to each a
random multiple of the vanishing polynomial over a particular domain. For a polynomial opened k times, a
k-th degree multiple is required to ensure hiding under the discrete logarithm. The proof was not originally
included in PlonK, and we add a proof for completion.

12

Hiding Using the Vanishing Polynomial

Suppose we have a commitment scheme com : F[x] → G that is hiding under the discrete logarithm, and a
multiplicative supgroup H = {1, g, g2, ..., gn−1} for some g ∈ F. We can construct a Lagrange basis {Li}n−1

i=0

over H where Li(g
i) = 1 but takes the value 0 for all other elements of H. Additionally, we can construct

an n-degree polynomial ZH that vanishes on H. For a wire of private inputs {w1, ..., wd}, we compute

w(x) =
∑
i∈[d]

wiLi(x).

A wire polynomial opened k times can be hidden by adding a random k-th degree multiple of ZH to w:

a(x) = w(x) + (b0 + b1x+ ...+ bkx
k)ZH(x).

Now, a(x) agrees with w(x) on H, and can be used in place of w(x) in the proving protocol. The prover
can reveal a commitment com(a) and k openings {a(zi)}i∈[k] with zi ̸∈ H without leaking any information
about w, provided that the discrete logarithm assumption holds in G.

Proposition 1. The blinding scheme above is hiding under the discrete logarithm assumption.

Proof. Let b(x) = b0 + b1x + ... + bkx
k be the kth-degree blinding polynomial. With zi ̸∈ H, an adversary

A with a guess ŵ for w can compute k points on the blinding polynomial b using the k openings:

b(z1) =
a(z1)− ŵ(z1)

ZH(z1)

...

b(zk) =
a(zk)− ŵ(zk)

ZH(zk)

There is a unique polynomial b′ of degree k − 1 passing through these k points. Define K = {z1, ..., zk} and
ZK the degree-k vanishing polynomial on K. The blinding polynomial b agrees with b′ on K, implying that

b(x) = b′(x) + cZK(x)

for some c ∈ F.

To confirm their guess for w the adversary must find d satisfying the equation:

com(a)− com(ŵ)− com(b′ZH) = d · com(ZKZH),

which is equivalent to solving the discrete logarithm problem.

Next, we propose an alternative method for blinding private input by appending k+1 random inputs to the
vector before interpolation. This method provides the same security and may be more practical for certain
implementations. A proof of this method’s equivalency to the vanishing polynomial method is included.

13

Adding Random Wire Values

Instead of hiding the wire polynomial by adding a degree k multiple of the vanishing polynomial, we can
instead append k + 1 random elements to the wire and achieve the same security.

For wire values {wi}i∈[d] and corresponding selector values {qi}i∈[d], define the polynomials

w(x) =
∑
i∈[d]

wiLi(x), q(x) =
∑
i∈[d]

qiLi(x),

where {Li}i∈[n] is a Lagrange basis for H = {1, g, g2, ..., gn−1}.

For a polynomial opened k times, choose k + 1 blinding factors b1, ..., bk+1, and similarly define

a(x) = w(x) +

k+1∑
j=1

bjLd+j(x).

Note that a(x) is the Lagrange interpolation of {w1, ..., wd, b1, ..., bk+1} over H.

Now, a(x) agrees with w(x) on {gi}d−1
i=0 . The selector q is zero on {gi}d+k

i=d , so a(x) can be used in place of
w(x) during the proving rounds.

Proposition 2. The blinding scheme above is also hiding under the discrete logarithm assumption.

Proof. The sum
∑k+1

j=1 bjLd+j(x) vanishes on D = {1, g, ..., gd}, and so a(x) can be rewritten as:

a(x) = w(x) + b(x)ZD(x),

where b(x) is the appropriate k-degree polynomial. From here, we can proceed similarly to previous proof.

5 Conclusions
In this article we presented our work on PlonKup, a ZK-SNARK that integrates plookup into PlonK in an
efficient way. To do so, we introduced a new selector qK that activates or switches off the lookup gates. In
order to check the equations from plookup and PlonK simultaneously, we use dummy values of the table vector
when the lookup gates are activated. On the other hand, to make the protocol efficient, we sort the table
vector in a way that the sorted version by this vector can be computed very efficiently. The polynomials
h1(X) and h2(X) are chosen by separating even an odd indexes of s. Notice that this differs from the original
structure used by plookup, but allows us to use less identities for checking our grand product. The protocol is
explained so that its implementation can be done following the rounds described. In this context, we would
like to mention that the implementation of PlonKup is currently a work in progress available at [Net21].

14

References
[BGM17] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for zk-SNARK

parameters in the random Beacon model. Cryptology ePrint Archive, Report 2017/1050, 2017.
Available online: http://eprint.iacr.org/2017/1050.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas
Ward. Marlin: Preprocessing zkSNARKs with universal and updatable SRS, pages 738–768. 05
2020.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors,
Advances in Cryptology – EUROCRYPT 2013, pages 626–645, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[GKM+18] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Updatable and
universal common reference strings with applications to zk-SNARKs. In Advances in Cryptology
– CRYPTO 2018, pages 698–728, Cham, 2018. Springer International Publishing.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Advances in Cryptology
– EUROCRYPT 2016, pages 305–326, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[GW20] Ariel Gabizon and Zachary J. Williamson. Plookup: A simplified polynomial protocol for lookup
tables. Cryptology ePrint Archive, Report 2020/315, 2020. Available online: https://eprint.
iacr.org/2020/315.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Re-
port 2019/953, 2019. Available online: https://eprint.iacr.org/2019/953.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to polyno-
mials and their applications. In Advances in Cryptology - ASIACRYPT 2010 - 16th International
Conference on the Theory and Application of Cryptology and Information Security, volume 6477
of Lecture Notes in Computer Science, pages 177–194. Springer, 2010.

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS ’19,
page 2111–2128, New York, NY, USA, 2019. Association for Computing Machinery.

[Net21] Dusk Network. Pure rust implementation of the PlonK proving system over BLS12-381. GitHub,
2021. Available online: https://github.com/dusk-network/plonk.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In 2013 IEEE Symposium on Security and Privacy, pages 238–252,
2013.

15

http://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953
https://github.com/dusk-network/plonk

	Introduction
	Terminology and Notation
	Our Protocol
	General Overview
	Polynomials Defining a Circuit
	The SNARK Proof Relation
	The PlonKup Protocol
	Prover Algorithm
	Verifier Algorithm

	Variations of the Protocol
	Multiple Lookup Tables
	Options for Hiding Polynomials

	Conclusions

