A survey on the security protocols employed by
mobile messaging applications.

Stefania Andries * Andrei-Daniel Miron T Andrei Cristian *
Emil Simion $

January 24, 2022

Abstract

Recently, there has been an increase in the popularity of messaging
applications that use end-to-end encryption. Among them were Telegram
(in October 2021 it has 550 million active users [1]), Signal (in January
2022 it has over 50 million downloads in the Google Play Store [2]),
WhatsApp (according to Statista [1], in 2021 it has over 2 billion active
users), Wire (until January 2022 it has been downloaded for over 1 million
times on Android devices [3]). Two distinct protocols underlying these
applications are noted: MTProto (developed in Russia by Nikolai Durov)
and Signal (developed in the US by Moxie Marlinspike). This paper
presents the two protocols and examines from the point of view of the
primitive cryptographic security used and how the authenticated encryption,
key derivation and asynchronous messaging are performed.

Keywords MTProto, Signal, End-to-End Encryption, Messaging apps.

*Faculty of Computer Science, Alexandru Ioan Cuza University of lasi
Email: stefania.andries21@gmail.com

TFaculty of Computer Science, Alexandru Ioan Cuza University of Tasi
Email: danielandreil61@gmail.com

fFaculty of Computer Science, Alexandru Toan Cuza University of Iasi
Email: andrecristian6@protonmail.com

$Politehnica University of Bucharest, Email: emil.simion@upb.ro

1 Introduction

Revelations about mass surveillance of communications have made consumers
more privacy-aware. In response, scientists and developers have proposed techniques
which can provide security for end users even if they do not fully trust the service
providers. For example, the popular messaging service WhatsApp was unable
to comply with Brazilian government demands for users’ plaintext messages
because of its end-to-end encryption [4].

Perhaps the first secure instant message protocol to achieve widespread
adoption was Apple’s iMessage [5], a proprietary protocol that provides end-
to-end encryption. A notable characteristic of iMessage is that it automatically
manages the distribution of users’ long-term keys, and in particular (as of this
writing) users have no interface for verifying friends’ keys. iMessage, unfortunately,
had a variety of flaws that seriously undermine its security[6].

Nowadays, two of the most used secure instant message protocols are Telegram
Messenger Inc’s MTProto [7] and Signal Foundation’s Signal [8].

2 MTProto Protocol

MTProto is a set of cryptographic protocols, created by Telegram, designed
for implementing fast, scalable and secure message exchange without relying on
the security of the underlying transport protocol. It is formed from protocols
that are tasked with the creation of shared keys between clients and server, the
creation of session keys between two clients for end-to-end encryption in secret
chats, the rekeying of secret chats and the encryption of all messages.[9]

MTProto provides two different encryption protocols for cloud chats and
secret chats. As of december 2017, Telegram has started to phase out the
MTProto 1.0 in favor of the MTProto 2.0, that brings important changes like
using SHA-256 instead of SHA-1 and the 12..1024 padding bytes instead of the
0..15 bytes. [7]

2.1 Protocol Overview

Before a message (or a multipart message) is transmitted over a network
using a transport protocol, it is encrypted in a certain way, and an external
header is added at the top of the message that consists of a 64-bit key identifier
auth_key_id (that uniquely identifies an authorization key for the server as
well as the user) and a 128-bit message key msg_key. [7]

The authorization key auth_key combined with the message key msg_key
define an actual 256-bit key aes_key and a 256-bit initialization vector aes_iv,
which are used to encrypt the message using AES-256 encryption in infinite
garble extension (IGE) mode. Note that the initial part of the message to be
encrypted contains variable data (session, message ID, sequence number, server

salt) that obviously influences the message key (and thus the AES key and iv).[7]

In MTProto 2.0, the message key is defined as the 128 middle bits of
the SHA-256 of the message body (including session, message ID, padding,
etc.) prepended by 32 bytes taken from the authorization key. In the older
MTProto 1.0, the message key was computed as the lower 128 bits of SHA-1
of the message body, excluding the padding bytes. [7]

2.2 Cloud chat system

MTProto 2.0, part |
Cloud chats (server-client encryption)

to be encrypted
shared key (auth_key) Salt Session_id Payload » Padding
persistent, generated via DH 64-Bit 64-Bit 12-1024 bytes

—_

Note:

SHA-256 Payload always contains time,
length and sequence number
to be checked by the receiving

KDF
e

party after decryption.

AES key

256-Bit
AES |GE Encryption

AES IGE IV
256-Bit

auth_key_id msg key
64-Bit 128-Bit F.ﬂcfypted data

embedded into the transport protocol (TCP, HTTP, ..)

Important: After decryption, the receiver must check that
msg_key = SHA-256(fragment of auth_key + decrypted data)

Figure 1: MTProto Cloud Encryption (Telegram Documentation [7])

In the cloud-chat system, the default Telegram’s chat system, after a
message has been encrypted with MTProto, it is then transmitted to Telegram

Messenger LLP’s servers.[7]
On the server, the messages are decrypted, to be encrypted again and sent

to the receiver again, as presented in Figure 2.

2.3 Secret chats

MTProto 2.0, part I
Secret chats (end-to-end encryption)

Length
32-Bit

Payload type
32-Bit

Random bytes
min 128-Bit

Layer
32-Bit

IN_seq_no
32-Bit

type ialized object
32-Bit Variable length

g
12-1024 bytes

OUT_seq_no
32-Bit

Secret Chat key
generated via DH, periodically
regenerated for PFS

Note:

Payload contains length
and sequence numbers to be

checked by the receiving party
after decryption.

msg_key

KDF
SHA-256

AES key
256-Bit

AES IGE Encryption

-
Encrypted data

embedded into an outer layer of client-server (cloud) MTProto encryption,
then into the transport protocol (TCP, HTTP, ..)

AES IGE IV
256-Bit

key_fingerprint
64-Bit

msg key
128-Bit

Important: After decryption, the receiver must check that
msg_key = SHA-256(fragment of the secret chat key + decrypted data)

Figure 2: MTProto E2E Encryption (Telegram Documentation [7])

Differently from cloud-based chats, Telegram’s secret chats provide an End-
to-End Encryption and messages can be exchanged in a client-to-client mode.
These messages are encrypted with MTProto protocol, too. Unlike the default
ones, this kind of chats can only be accessed on the device upon which the secret
chat has been started and on the device upon which the secret chat has been
accepted. In this case, the server has the role to receive from client A, encrypt
and resend the messages to client B, without storing any data. [7]

Keys are generated using the Diffie-Hellman protocol: if Alice wants to start
a secret chat with Bob, she asks the server to obtain the DH parameters and
then opens an EncryptedChat session passing the appropriate DH generated
numbers. After Bob confirms the creation of a secret chat with Alice, he receives
the configuration parameters for the DH method. Then Alice and Bob exchange
their keys and if no problems occurred they can start exchanging encrypted
messages. [7]

2.4 Encryption

The data will be encrypted with a 256-bit key and a 256-bit IV, using AES-
256 with infinite garble extension (IGE). The encryption key fingerprint and
the message key, msg_key, will be added on top of the resulting byte array. The
ciphertext will be computed as [10]:

c; Fk(mi@ci_ﬁ D m;_q

where 1 <i <1 and I represents the number of blocks from the payload of
size B and F is a pseudorandom permutation. The final output will also include
the msg_key:

¢ = (msgkey, ¢1, ...,)

2.5 Decryption

The ciphertext ¢ will be parsed as:
¢ = (msgkey, c1, ..., ¢)

The short-term key k and the initialization blocks ¢; and m; will obtained as:
(k, co, mg) = KDF (K, msg_key)

The payload is recovered by computing:
¢ = mi—l@Fgl(ﬁh@Ci—ﬁ

and the (¢, ..., ¢;) will be parsed into the components that were concatenated.

When an encrypted message is received, the msg_key will be checked to see
if it is in fact equal to the 128 middle bits of the SHA-256 hash of the decrypted
message, prepended by 32 bytes from the shared key. If this check fails, the
message is dropped, and the sender is not notified of any error.[10] [11]

3 Signal Protocol

Developed in the 2013 in the Signal Technology Foundation non-profit organization
(former Open Whisper Systems), Signal protocol provides End-to-End Encryption
(E2EE) for many instant messaging applications. The core of the protocol
consists in the combination of the Extended Triple Diffie-Hellman (X3DH) [12]
key exchange protocol and the Double Ratchet algorithm [13]. Properties like
future secrecy, post-compromise security or asynchronous communication are
describing the Signal Protocol through the before mentioned core components.

3.1 Protocol Key Features

Signal Protocol offers end-to-end encrypted chats to the users and incorporates
the well known security goals, confidentiality, integrity and authenticity.
The protocol also provides other key features that should be presented before the
building blocks to fully understand the what they accomplish. Several authors
have highlighted some specific features of the Signal protocol with concrete
security demonstrations. [14-19]

e Future Secrecy is a feature key that ensures via a key derivation function
(KDF), the intruder incapability to decrypt any future messages using a
compromised message key.

e Forward Secrecy is another feature key similar to the previous one
that prevents an attacker from finding any past messages using also a
compromised message key.

e Message Unlinkability is the trait that ensures that although a message
has been associated with a user, no other message can be linked from that
point. The messages are encrypted and authenticated with different one-
time keys and therefore no proofs should be found to associate multiple
messages to one party.

e Offline Deniability similarly with the previous property, a user can deny
his involving in a conversation as long as the metadata are not saved or
the keys are not compromised.

e Asynchrony a dominant trait for a messaging protocol, it allows users
to initiate communications even when the receiver is not online. The
asynchronous key agreement protocol X3DH enables parties to participate
in the communication session at different times.

3.2 Building Blocks

The Signal protocol can be divided into three main blocks: the registration
phase, the session setup and the ratchet steps, and each block will be presented
below.

1. Registration phase: Each user has to run a device setup before engaging
in any conversations using the protocol. This step will produce the prekeys
used further in the X3DH protocol [12]. The registration is a single
incipient phase or can be re-executed whenever the user wants. Therefore,
each party must generate and transmit the following to the key server:

e n one-time prekey pairs {(ospk’, oppk’;)}i, for party X, where i is a
unique id

e A semi ephemeral key pair {(sspk'g(, sppkgg)}j , for party X, where j
is a unique id

e A long-term identity key pair (iskx,ipkx) for party X.

Every time a user, say Alice, wants to initiate a new communication session

with another party, Bob, she has to request his key-bundle from the server

key. The so called key-bundle associated with Bob is computed from the

previous keys that Bob sent on the registration and contains the following:
e The user’s registration id (idx)

e A public one-time key preceded by a unique id (i, oppk’.). The one-
time keys are deleted by the server upon transmission.

o The semi-ephemeral public key signed with the long-term identity key '
and also identified by a unique id (j, sppk’, sigk;), where sigh sign(iskx, sppk’)

e the public long-term identity key (ipkx)

. Session setup: The second main block of Signal Protocol sets the cryptographic
keys for the symmetric encryption scheme used in the upcoming conversation
session. The Extended Triple Diffie-Hellman key agreement protocol,
X3DH, is used in this scope, and the resulting shared secret will be used on

the next component. Once Alice received the bundle-key associated with

Bob, she can start calculating three or four keys applying Diffie-Hellman

on combinations of her new generated base key and Bob’s keys from server.

(bska, bpka) < gen()

k1 <+ DH (iska, sppk;fg)
k2 «+ DH (bska,ipkp)
k3 < DH (bska, sppkl)
k4 < DH (bsk,oppkt)

The last key, k4, is optional as the Bob’s one-time key can be missing
from the key-bundle if the server used and deleted all one-time keys
generated from the registration phase. All the results from the Diffie-
Hellman calculations are concatenated in one master key which is used to
open a session with Bob.

sk « KDF(k1||k2||k3(||K4))

Bob will receive from Alice in the first messages her base key, her identity
and an identifier of the Bob’s prekeys she used and then Bob will be able
also to compute the master secret.

k1 < DH(sspkl,ispka)
k + DH (iskp, bpka)
ks < DH (sspkly, bpka)
ky <+ DH (ospk's, bpk)

3. Ratchet steps: Since the X3DH key agreement protocol was run, a
secret shared key was calculated. Any encrypted message based on it can
be exchanged between the parties using the Double Ratchet algorithm[13].
This component ensures that each party generates new keys at every step,
providing Future Secrecy and Forward Secrecy properties. The Double
Ratchet algorithm involves three Key Derivation Functions (KDF) [20]
chains for each user: a root chain, a sending chain, and a receiving
chain. There are two ratchet stages in which the chains are advanced:
the symmetrical Ratchet and the asymmetrical Ratchet.

e Asymmetrical Ratchet: the root chain refreshes the other ones. The
output is a new chain key and the message key

(rk,ck) < KDF(rk, k)

The first ratchet will take the secret shared key as input for this
KDF and the next ones will take the second part of the output of the
previous ratchet. k,, is generated on each party using Diffie-Hellman
on an ephemeral key pair generated by Alice and Bob’s signed prekey:

(eska,epka) < gen()
kn < DH(eska, sppkp)
kn < DH(sppkp, epka)

When asymmetric ratchets take place, the current symmetric key
chains are potentially discarded if there are not messages in transit
needed for decryption. New sending and receiving chain pair are
created, providing freshness and future secrecy.

e Symmetrical Ratchet: To ratchet the sending and receiving chains,
a KDF will be run on the first part of the output of the previous
execution. The second part of the output will be used as a key for a
new message encryption/decryption operation.

(ck,mk) + KDF(ck)

This step allows the users to discard symmetric keys after using them
to encrypt or decrypt a message and so a possible adversary that
compromise a key is prevented from decrypting past messages.

3.3 Protocol Usage

Signal Protocol is an open-source implementation that is present in many
chat applications, many of which are used in daily basis. Through the most
popular instant messaging applications that use Signal Protocol for End-to-End
Encryption we can mention WhatsApp, Facebook Messenger and without a
doubt Signal itself.

Signal Technology Foundation launched the Signal platform for instant messages

in 2014 and offers a free, open source software that covers all messages with
End-to-End Encryption. The source code is in a public GitHub repository [21]
to allow any curious party to analyse, test and improve the security and the
correctness.

WhatsApp integrate the Signal protocol in its implementation on 2016 in
order to provide encrypted messages exchange and all features mentioned in
section 3.1. WhatsApp published a technical white paper [22] to acknowledge
the integration and explains how and where the protocol is used.

Facebook adopted Signal Protocol in 2016 for Messenger to introduce the
Secret Conversations feature. The technical white paper [24] recognises this
new integration. Compared to Signal App and WhatsApp which offer end-to-
end encryption for all sessions by default, Messenger did not enabled this feature
on each conversation. However Facebook announced that wants to implement
Secret Conversation as default.

4 Comparison of Signal and MTProto

As our interest is in the comparision of the end-to-end encryption, in this
section we will refer MTProto as MTProto’s secret chats, if not explicitly
specified otherwise.

4.1 Cryptographic Primitives

Both Signal and MTProto use 256-bit AES encryption [26], SHA256 . Signal
uses one of two elliptic curves to implement X3DH: curve X25519 or curve X448
[27], while MTProto uses a 2048-bit RSA key for DH.

4.2 Forward Secrecy

Signal renews the keys used for message encryption after Alice receives a
message from Bob, while MTProto (actually ’official Telegram clients’) will
initiate re-keying once a key has been used to decrypt and encrypt more than
100 messages, or has been in use for more than one week, provided the key has
been used to encrypt at least one message[28].

In Signal compromising the current key will only compromise a set of messages
until the the next message from the other party arrives - possible 0. [18]
In Telegram (MTProto), less than 100 messages can be recovered using the
compromised key.

4.3 Asynchronous Communication

To cope with the situations when users are not online at the same time two
different approaches have been developed:

e Signal Protocol uses a Key Distribution Server solution where servers are
only intermediary and they are only deputed to store and relay information
to let the communication being feasible and secure between the parties
providing End-to-End Encryption.

e MTProto bases all its functioning around the cloud server side, where
servers compute encryptions and decryptions, store and forward data to
the interested users.

The two different methods bring to one of the main differences between the
applications, that is the fact that in Telegram it is possible to access to all
conversations from different devices with the same account, cause the data are
stored in the cloud, while in Signal this is not possible, because all data are only
available on the unique client (and the linked devices).

5 Conclusions

Signal and MTProto protocols are the underlying substrate in some of the
most used messaging applications in the world right now.

For key derivation, Signal has a good story to tell: compromising the current
key will only compromise a set of future messages (possibly zero; until the next
message from the other party arrives). However, in MTProto, compromising
the authorization key (which is the closest equivalent key) allows all past and
future messages to be compromised.

Speaking of the applications, Signal, which is owned by Signal Technology
Foundation an American non-profit organization, keeps the messages on your
device, while Telegram, owned by Telegram Messenger Inc which was founded
by two Russian brothers, by using it’s default cloud-messaging mode keeps your
encrypted messages in the cloud, accessible for the people having the decryption
keys.

10

References

[1]

Most popular social networks worldwide as of October 2021, ranked by
number of active users. URL: https://www.statista.com/statistics/
272014/global-social-networks-ranked-by-number-of-users/.

URL: https://play . google . com/store/apps/details?id=org.
thoughtcrime.securesms.

URL: https://play.google.com/store/apps/details?id=com.wire.

Marcelo Santos and Antoine Faure. “Affordance is power: Contradictions
between communicational and technical dimensions of WhatsApp’s end-
to-end encryption”. In: Social Media+ Society 4.3 (2018), p. 2056305118795876.

Scott E Coull and Kevin P Dyer. “Traffic analysis of encrypted messaging
services: Apple imessage and beyond”. In: ACM SIGCOMM Computer
Communication Review 44.5 (2014), pp. 5-11.

Xiaoyu Shi. 2016. URL: https://www. cs . tufts . edu/ comp/ 116/
archive/fall2016/xshi.pdf.

Telegram MTProto Documentation. URL: https://core.telegram.org/
mtproto.

Signal Website. URL: https://signal.org/docs/.

Marino Miculan and Nicola Vitacolonna. “Automated Symbolic Verification
of Telegram’s MTProto 2.0”. In: (2021).

Sungsook Kim Jeeun Lee Rakyong Choi and Kwangjo Kim. “Security
Analysis of End-to-End Encryption in Telegram”. In: (2017).

Jakob Jakobsen and Claudio Orlandi. “On the CCA (in)security of MTProto”.
In: (2015).

Moxie Marlinspike Trevor Perrin. “The X3DH Key Agreement Protocol”.
In: (2016). DOI: https://signal . org/docs/specifications/x3dh/
x3dh. pdf.

Moxie Marlinspike Trevor Perrin. “The Double Ratchet Algorithm”. In:
(2016). DOL: https://signal.org/docs/specifications/doubleratchet/
doubleratchet.pdf.

Michael Schliep and Nicholas Hopper. “End-to-end secure mobile group
messaging with conversation integrity and deniability”. In: Proceedings
of the 18th ACM Workshop on Privacy in the FElectronic Society. 2019,
pp. 55-T73.

Sara Stadler et al. “Hybrid Signal protocol for post-quantum email encryption”.
In: Cryptology ePrint Archive (2021).

Matthew L Jansen. “A Security Analysis of the Signal Protocol’s Group
Messaging Capabilities in Comparison to Direct Messaging”. In: (2020).

11

[17]

[23]

[24]

[25]

[26]

Joél Alwen, Sandro Coretti, and Yevgeniy Dodis. “The double ratchet:
security notions, proofs, and modularization for the signal protocol”. In:
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer. 2019, pp. 129-158.

Katriel Cohn-Gordon et al. “A formal security analysis of the signal messaging
protocol”. In: Journal of Cryptology 33.4 (2020), pp. 1914-1983.

Paul Rosler, Christian Mainka, and Jorg Schwenk. “More is Less: On the
End-to-End Security of Group Chats in Signal, WhatsApp, and Threema”.
In: 2018 IEEE European Symposium on Security and Privacy (EuroS P).
2018, pp. 415-429. DOL: 10.1109/EuroSP.2018.00036.

Hugo Krawczyk. Cryptographic Extraction and Key Derivation: The HKDF
Scheme. Cryptology ePrint Archive, Report 2010/264. https://ia.cr/
2010/264. 2010.

Signal open-source Repository. URL: https://github.com/signalapp.

WhatsApp. WhatsApp Encryption Overview Technical white paper. URL:

https : / / scontent . whatsapp . net /v /t39 . 8562 - 34 /271639644 _
1080641699441889_2201546141855802968_n.pdf/WhatsApp_Security_

Whitepaper . pdf 7ccb=1-5& _nc _sid=2fbf2a & _nc _ohc =XagoRV _
TTsgAX92_ZMT&_nc_ht=scontent.whatsapp.net&oh=01_AVw83188FFhEpYcl1FBAMZCwrZn_
no8eF_TAjEPOLVxhjEA&oe=61E46CBE.

Tom Carpay and Pavlos Lontorfos. “WhatsApp End-to-End Encryption:Are
Our Messages Private?” In: (2019). DOL https://www.o0s3.nl/_media/
2018-2019/courses/rpl/p25_report.pdf.

Facebook Inch. Messenger Secret Conversations Technical Whitepaper.
URL: https://about.fb.com/wp-content/uploads/2016/07/messenger—
secret-conversations-technical-whitepaper.pdf.

Facebook Messenger deploys Signal Protocol for end-to-end encryption.
URL: https://signal.org/blog/facebook-messenger/.

Vincent Rijmen and Joan Daemen. “Advanced encryption standard”. In:
Proceedings of Federal Information Processing Standards Publications, National
Institute of Standards and Technology 19 (2001), p. 22.

Adam Langley, Mike Hamburg, and Sean Turner. “Elliptic curves for
security”. In: Internet Engineering Task Force (2016).

URL: https://core . telegram. org/api/end- to- end#perfect -
forward-secrecy.

12

