
NTRU-ν-um: Secure Fully Homomorphic
Encryption from NTRU with Small Modulus

Kamil Kluczniak

CISPA Helmholtz Center for Information Security
kamil.kluczniak@cispa.de

Abstract. NTRUEncrypt is one of the first lattice-based encryption
schemes. Furthermore, one of the first fully homomorphic encryption
(FHE) schemes were built on the NTRU problem. What makes NTRU
appealing when designing cryptosystems is the age of the problem and
relatively good performance results when compared to ring learning with
errors.
Unfortunately, current fully homomorphic schemes based on NTRU be-
came extremely impractical duo to efficient sublattice attacks. Roughly
speaking, these types of (leveled) homomorphic encryption schemes, to
support a reasonable depth of the circuit we want to evaluate, require
publishing RLWE or NTRU encryptions with a very large modulus. Un-
fortunately, recovering the sublattice and breaking the NTRU problem
for such large moduli turns out to be easy, and to compensate, one would
need to choose an impractically large dimension. We call NTRU instances
with a too large modulus “overstretched”. Due to the sublattice attacks,
any serious work on practical NTRU-based fully homomorphic encryp-
tion essentially stopped.
In this paper, we reactivate research on practical FHE that can be based
on NTRU. To do so, we design an efficient bootstrapping scheme in which
the noise growth is small enough to keep the modulus to dimension ratio
relatively small, thus avoiding the negative consequences of “overstretch-
ing” the modulus. Our bootstrapping algorithm is an accumulation-type
bootstrapping scheme analogous to FHEW/TFHE. Finally, we show that
we can use the bootstrapping procedure to compute any function over
Zp. Consequently, we obtain one of the fastest FHE schemes to compute
arithmetic circuits over finite fields.

1 Introduction

A fully homomorphic encryption scheme gives the possibility to compute any
function on encrypted data. Early practical homomorphic encryption schemes
were built either from the ring learning with errors problem (e.g. BGV [BV11,
BGV12] and BFV [Bra12, FV12]) or the NTRU problem1 (LTV [LTV12] and
YASHE [BLLN13]). Both variants demonstrated similar performance character-
istics [CS16]. It is worth noting that NTRUEncrypt by Hoffstein, Pipher, and

1 The problem is called “Decisional Small Polynomial Ratio Assumption” but here we
refer to it briefly as NTRU.

2 Kamil Kluczniak

Silverman [HPS98] was among the first lattice-based cryptosystems, is currently
subject to standardization [IEE09, ANS10] and considered to be a leading can-
didate for further standards [AASA+20].

The first subfield attacks against NTRU were due to Gentry, and Szydlo
[GS02] which was directed against the NTRU signature scheme. However, the
attack did not get much attention since the original NTRU encryption algorithm
did not require a large modulus. Further, Albrecht, Bai, and Ducas [ABD16] and
independently by Cheon, Jeong and Lee [CJL16] apply the subfield attack to,
among other, LTV [LTV12] and YASHE [BLLN13].

Roughly speaking, the NTRU lattice contains a sublattice that, when recov-
ered, allows an attacker to recover the secret key almost immediately. Therefore,
when the modulus of an NTRU is too large in comparison to the dimension,
then NTRU is broken. Kirchner and Faugue [KF17] later studied the attack and
showed that finding the basis vector of the sublattice is faster than recovering
the secret key already for moduli as small as n2.783+o(1). The same attack does
not apply to ring learning with errors. In order to support correct computa-
tion, all schemes BGV, BFV, LTV, and YASHE need to increase the modulus
with the depth of the circuit. But since for larger moduli, NTRU is broken, to
compensate, we would need to increase its dimension making NTRU-based fully
homomorphic encryption schemes uncompetitive to RLWE-based schemes. Very
recently, Ducas and van Woerden [DvW21] gave a detailed analysis and estima-
tions, backed by experiments, on the hardness of the NTRU problem when the
modulus falls into the overstretched regime.

1.1 Our Contribution.

We give a very competitive scheme based on NTRU that we call NTRU-ν-um
(read NTRUnium). Our scheme is an accumulator type of scheme. It has also a
low ciphertext rate. Concretely, we need only one element in ZQ per plaintext
Zp, for log2(Q) = 30, . . . , 42 and log2(p) = 4, . . . , 11.

We propose to instantiate the scheme over the ring ZQ[X]/(XN − 1) as in
[IEE09, ANS10, AASA+20]. We show that for this ring choice our bootstrapping
algorithm, alongside reducing the error, can compute all functions F : Zp 7→ Zp

where p ∈ N. For the ring ZQ[X]/(XN+1), similarly to FHEW/TFHE, our boot-
strapping can compute all negacyclic functions, i.e., F (x+p/2 mod p) = −F (x)
mod p. In other words, for the circulant version of NTRU, we efficiently compute
arithmetic circuits over finite fields. With a single bootstrapping invocation, we
can compute any power of x, including the multiplicative inverse. Note that for
the negacyclic version, the same is not possible unless we assume the input plain-
text to be < q/2. Nevertheless, to use such bootstrapping to compute arithmetic
circuits over Zp becomes much more expensive [KS21, YXS+21].

We show several parameters sets to correctly bootstrap plaintexts from Zp

where log2 p = 4, . . . , 11. We note however that some of our parameters sets can
bootstrap plaintexts that are even log2 p = 14 if the application can tolerate
errors.

NTRU-ν-um: Fully Homomorphic Encryption from NTRU 3

1.2 Techniques.

Let us first start by recalling the structure of NTRU samples and introducing
a gadget NTRU version. Denote RQ = ZQ[X]/(XN − 1). An NTRU sample is
a polynomial c ∈ RQ of the form c = e1/f + e2 +m, where f ∈ RQ (usually
having coefficients in {−1, 0, 1}) is the secret key, e1, e2 ∈ RQ are the error
polynomials and have coefficients from some distribution X , and m is such that
Q
p ·m

′ with m′ ∈ Rp. Note that if we want to add two NTRU ciphertexts c, and

c′ = e′1/f + e′2 +m′, we simply compute c+ c′ = (e1 + e2)/f + e2 + e′2 +m+m′

which is a valid ciphertext of m+m′ but with larger error. We can also multiply
a ciphertext by a scalar a ∈ RQ such that c′′ = c · a = e1 · a/f + e2 · a+m · a.

Note that the above scalar multiplication is quite expensive as the error
terms are multiplied by the scalar a. Hence, to preserve correctness and allow
for decryption, we can only multiply with “small” scalars, i.e., scalars that have
small coefficients. To resolve the issue we introduce a gadget version of NTRU.
Gadget NTRU is analogous to the GSW scheme for (R)LWE, but we adapt
the GSW technique to NTRU. In this paper, we will use the gadget NTRU to
multiply two ciphertexts and use the fact that the resulting error is relatively
small. A gadget NTRU sample is a vector cG = [ci]

ℓ
i=1 with ℓ = logL(Q), where

each ci is a NTRU ciphertext of mG · Li−1. To multiply such ciphertext with a
scalar c ∈ RQ, we compute the inner product between cG and the decomposition

of c in L. Concretely, let cD = Decomp(c, L) be such that
∑ℓ

i=1 cD[i] · Li−1 = c.
Then to multiply a gadget NTRU ciphertext cG with c we compute cout =
⟨cG, cD⟩ = e1,G/f +e2,G+mG · c. Note that when computing the inner product,
we make N scalar multiplication and additions, where the scalar multiplications
are with polynomials from RL. Furthermore, if c is itself an NTRU ciphertext,
then we have

cout = e1,G/f + e2,G +mG · (e1/f + e2 +m)

= (e1,G +mG · e1)/f + e2,G +mG · e2 +mG ·m.

which is a valid NTRU ciphertext. Note that the error, in this case, depends on
the magnitude ofmG. In this paper,mG is always a monomial with its coefficient
in {0, 1}.

1.3 Bootstrapping.

Following the ideas from [AP14, DM15, CGGI16], we construct a homomorphic
accumulator scheme which we can informally summarize as follows. Remind a
LWE sample is a vector c ∈ Zn+1

N , where c[1] = −c[2 : n + 1]⊤s + e + N
p m.

To partially decrypt c it is sufficient to compute the linear function c[1] + c[2 :
n + 1]⊤s = e + N

p ·m. Given that the error e < N
2·p , we can further decode the

message by ⌊ p
N (e+ N

p m)⌉ = m. Note that each message is encoded in an interval

of size N
p to assure correct decryption.

Now let us consider the operation rotP ·Xc[1]+c[2:n+1]⊤s = rotP ·Xe+N
p ·m ∈

RQ. Note that when RQ = ZQ[X]/(XN − 1), this operation is a cyclic shift of

4 Kamil Kluczniak

the coefficients of rotP by c[1] + c[2 : n + 1]⊤s = e + N
p ·m mod N positions.

Hence, the idea is to set the coefficients of the polynomial rotP such that after
rotating it, the desired value for e+ N

p ·m is encoded in the constant coefficient.
At this point, let us note that we can set the coefficients of rotP to any values
in ZQ. Therefore, to compute any function F : Zp 7→ Zp on the input plaintext
we set the coefficients according to the function F ′ : ZQ 7→ ZQ defined as

F ′(x) = Q
p · F (⌊

p
Qx⌉).

Now we are ready to describe the bootstrapping procedure. Let us assume
for simplicity that we want to bootstrap an LWE ciphertext with a secret key
s ∈ {0, 1}n. We publish n gadget NTRU ciphertexts that encrypt the bits of the
LWE secret key. Denote the vector of those gadget NTRU ciphertexts by cBk.
Furthermore, we have a NTRU ciphertext cacc that encodes rotP. We call cacc
the accumulator. To bootstrap a LWE ciphertext c we compute

cout = cacc ·Xc[1] ·
n∏

i=1

Xc[i+1] · cBk[i]

= c′acc ·Xc[2:n+1]⊤s.

where c′acc encrypts rotP just as cacc but with a higher error. Finally we have
that the message in cout contains the desired result in its constant coefficient.

The problem now is that if we want to continue computing and bootstrap-
ping on the resulting ciphertext, we need to extract the constant coefficient and
switch back to LWE. Hence we design a special key switching procedure that
homomorphically extracts the dth coefficient, by computing the linear function

(cacc · f)[d] =
N∑

i=1,j=1,
i+j−2 mod N=d

cacc[i] · f [i]

from the coefficient of the NTRU ciphertext and its secret key. Furthermore, we
can now use such NTRU to LWE key switching key to pack N messages into
a single NTRU ciphertext which we can then extract for bootstrapping. This
allows us to obtain the best ciphertext rate for a fully homomorphic encryption
to date.

Note, however, that there is a problem with this solution. Namely, when
computing cacc ·f we obtain m ·f instead of m. In other words, we have the mes-
sage masked by the secret key f . So how can we possibly continue to bootstrap
such ciphertext? We solve this issue, by including f−1 ∈ RQ in the accumulator
cacc. That is the accumulator will encrypt f−1 · rotP, hence when multiplying
f we immediately recover rotP (or the cyclic rotation of rotP). Unfortunately,
the trick requires us to assume NTRU is key-dependent message (KDM) se-
cure with respect to f−1. While we do not have a formal reduction, we believe
that this version preserves security as we can write such NTRU samples as
c = e1/f + e2 +m/f = (e1 +m)/f + e2. In this case, the constant coefficient
of the e1 error is shifted by m. If coefficients of e1 are random variables with
expectations equal to zero, then the KDM version of ciphertext simply shifts the

NTRU-ν-um: Fully Homomorphic Encryption from NTRU 5

expectation by the respective coefficients of m. To the best of our knowledge, the
expectation of e1 does not play a role in the cryptanalysis of the NTRU problem.
Hence we conjecture that such a KDM version of NTRU preserves security.

Another problem appears when using such a scheme in practice. Namely,
since we require the message in the accumulator to be key-dependent, an eval-
uator cannot freely choose rotation polynomials, and we need to publish all
potential accumulators together with the bootstrapping key. To resolve this is-
sue, instead of publishing an accumulator with the rotation polynomials, we can
publish a gadget NTRU encryption of Q

p · f
−1. The evaluator can then choose

its own rotP and multiply it with the accumulator. Note that if plaintexts are
Zp, then rotP ∈ Rp and p << Q. Hence we actually need to publish a smaller
gadget that supports the composition of numbers up to p instead of Q.

1.4 Related Work

Gentry’s introduction of the bootstrapping technique [Gen09], opened a flood-
gate of research on fully homomorphic encryption [BV11, Bra12, FV12, BGV12,
AP13, GSW13, HS15, CH18, HS21].

The NTRU problem and the corresponding cryptosystem dates back to work
by Hoffstein, Pipher, and Silverman [HPS98]. One of the earliest schemes by
López-Alt, Tromer and Vaikuntanathan [LTV12], and its scale-invariant version
YASHE [BLLN13] are based on the Stehlé and Steinfeld’s [SS11] variant of the
NTRU problem.

The first accumulator-based bootstrapping scheme is due to Alperin-Sheriff,
and Peikert [AP14]. The techniques require representing the decryption circuit
as an arithmetic circuit, and we do not rely on Barrington’s theorem. Further-
more, the method exploits error characteristics of the cryptosystem by Gentry,
Sahai, and Waters [GSW13], in short, called GSW. Hiromasa, Abe, and Okamoto
[HAO15] improved upon [AP14] and build a version of GSW that natively en-
crypts matrices. Genise et al. [GGH+19] showed an encryption scheme that fur-
ther improves the efficiency of matrix operations, albeit using a novel NTRU-like
assumption.

Ducas and Miccancio [DM15], building on [AP14], design a practical boot-
strapping algorithm called FHEW. FHEW uses the ring version of the GSW
cryptosystem.

Chillotti et al. [CGGI16, CGGI20] showed numerous optimizations to FHEW
bootstrapping algorithm. On the other hand, their scheme called TFHE relies
on LWE with binary keys, while FHEW was originally designed to support keys
with much larger coefficients. We refer to the work by Micciancio and Polyakov
[MP21] for an excellent comparison of both methods.

The FHEW and TFHE bootstrapping algorithms by far are the fastest boot-
strapping algorithms to date. Further improvements mostly relied on incorporat-
ing packing techniques [CGGI17, MS18], and improved lookup tables evaluation
[CGGI17, CIM19].

6 Kamil Kluczniak

Initially, FHEW/TFHE were designed to bootstrap ciphertexts with binary
plaintexts, but a series of works [BDF18, CIM19, GBA21] showed that extending
the computation to larger plaintexts may be beneficial in practice.

Concurrently, Chillotti et al. [CLOT21] and Kluczniak and Schild [KS21],
who was very quickly followed by Yang et al. [YXS+21], showed how to resolve
the limitation of the FHEW/TFHE functional/programmable bootstrap. In par-
ticular, while previous schemes could bootstrap larger plaintexts, due to the ne-
gacyclicity of the function that the bootstrapping could compute, it wasn’t easy
to compute arithmetic circuits over Zp. The works [CLOT21, KS21, YXS+21]
resolve the issue by using TFHE as a subroutine. Still, the resulting bootstrap-
ping algorithms are inherently slower then the original TFHE algorithm, and so
far only [KS21, YXS+21] implemented their schemes.

Concurrent and Independent Work. We note that Bonte et al. [BIP+22]
independently published similar to ours fully homomorphic encryption scheme.
In particular, they also define a gadget NTRU cryptosystem and build an ac-
cumulator bootstrapping algorithm. We note that there are several differences
in our designs. The most crucial difference seems to be that Bonte et al. build
their scheme with binary ciphertexts in mind while we compute arbitrary func-
tions on plaintexts from Zp. Furthermore, we currently instantiate our scheme
on ZQ/(X

N−1) which was analyzed in [DvW21] and the same choice is made in
the standards [IEE09, ANS10] and the round three NIST candidate [AASA+20]
for post-quantum encryption and signature schemes. Bonte et al. instantiate
their scheme over the ring ZQ[X]/(XN +1). There are also some very technical
differences, like the way both works extract LWE ciphertexts. We describe a
generalized algorithm that we can later use to extract LWE samples from the
packed NTRU ciphertexts. We note that Bonte et al. [BIP+22] show a faster
blind rotation algorithm for ternary keys. On the other hand, we perform key
switching before modulus reduction, which gives us a much smaller error in the
LWE ciphertexts, which is supposed to be bootstrapped. We note that it seems
all optimization can be applied in both works.

2 Preliminaries

Notation. We denote as R the ring of polynomials Z[X]/Ψ and as RQ = R/qZ
the ring of polynomials with coefficients in Zq. In this paper Ψ = (XN − 1)
for N -prime, or Ψ = (XN + 1) for N being a power-of-two. We denote vectors
with a bold lowercase letter, e.g., v, and matrices with uppercase letters V. We
denote a n dimensional column vector as [f(., i)]ni=1, where f(., i) defines the i-
th coordinate. For brevity, we will also denote as [n] the vector [i]ni=1, and more
generally [n,m]mi=n the vector [n, . . . ,m]⊤. We address the ith entry of a vector
v by v[i], and denote a slice of the vector by v[i, j]. For a random variable a ∈ Z
we denote as Var(a) the variance of a, as stddev(x) its standard deviation and
as E(x) its expectation. For a ∈ RQ, we define Var(a), stddev(a) and E(a) to be
the largest variance, standard deviation and expectation respectively among the

NTRU-ν-um: Fully Homomorphic Encryption from NTRU 7

coefficients of the polynomial a. By Ham(a) we denote the hamming weight of
vector a, i.e., the number of of non-zero coordinates of a.

Throughout the paper we denote as q ∈ N and Q ∈ N two moduli. The
parameter n ∈ N always denotes the dimension of a LWE sample, that we de-
fine below. For rings, we always use N to denote the degree of Ψ . We define
ℓ = ⌈logL q⌉ for some decomposition basis L ∈ N. Often we mark different de-
composition bases Lname and the corresponding ℓname, or bounds Bname with some
subscript name.

We recall the learning with errors assumption by Regev [Reg05].

Definition 1 (Learning With Errors). Let s ∈ ZQ be a secret key, and
e ∈ XQ for a error distribution XQ. We define a LWE sample of a message
m ∈ ZQ as c = LWEe(s,m) ∈ ZQ where c[1] = −c[2 : n+ 1]⊤ · s+ e+m ∈ ZQ,
and c[2 : n+1] is a vector that is chosen from the uniform distribution over ZQ.

We define the phase of c as Phase(c) = c[1] + c[2 : n+ 1]⊤ · s.

Lemma 1 (Linear Homomorphism of GLWE samples). Let c = LWEec(s,mc)
and d = LWEed(s,md). If cout ← c + d, then cout ∈ LWEeout(s,m), where
m = mc +md, and V ar(eout) ≤ Var(ec) + Var(ed). Furthermore, let d ∈ ZQ. If

cout ← c · d, then cout ∈ GLWEeout(s,mc · d), where Var(eout) =
d2−1
12 · Var(ec).

3 Homomorphic Encryption Techniques from NTRU

In this section, we describe the algorithms that we use to build the bootstrapping
algorithm. Below we recall the basic cryptosystem. First of all, we describe the
algorithm as a symmetric key cryptosystem. Specifically, we do not define a
public key version, as it is unnecessary in this paper and simplifies the exposition.

Definition 2 (A NTRU Homomorphic Encryption Scheme). Let RQ =
ZQ[X]/ψ where ψ is a polynomial of degree N . Let Xsk, Xi for i ∈ [2] be distribu-
tions over RQ. Set the message modulus as t < Q, and define the scaling factor

∆Q,t = ⌊Qt ⌉. Let the secret key f ∈ Xsk be such that f has an inverse in RQ. We
define an NTRU encryption as c = NTRUe1,e2(f,∆Q,t ·m) = e1 · f−1 + e2 +m,
where e1 ∈ X1 and e2 ∈ X2 and m ∈ Rt.

To decrypt we compute f ·m = ⌊ t
Q ·c ·f⌉ ∈ Rt. If additional f has an inverse

in Rt, then we can recover m ∈ Rt.

Lemma 2 (Correctness of the NTRU Decryption Procedure). Let c =
NTRUe1,e2(f,∆Q,t ·m). We have that m · f + e = f · c, where Var(e) = Var(e1)+

Ham(f) · Var(f) · Var(e2). Furthermore if e < Q
2·t , then ⌊

t
Q · c · f⌉ = m · f ∈ Zt.

Proof. From definition we have that c = e1 · f−1 + e2 + ∆Q,t ·m ∈ RQ where
m ∈ Rt. Then f · c = e1 + f · e2 + f ·m = e+ f ·m. Note that e = e1 + f · e2.
Hence Var(e) = Var(e1) + Var(f · e2) = Var(e1) + Ham(f) · Var(f) · Var(e2). The

8 Kamil Kluczniak

above follows from the fact that f and e2 are independent and centered around
zero. Specifically, the variance of the dth coordinate of f · e2 is given by

Var((f · e2)[d]) =
N∑

i=1,j=1,
i+j−2 mod q=d

Var(f [i] · e2[j]).

Hence if f has Ham(f) coordinates of variance Var(f) and all other set to zero,
we have Var((f · e2)[d]) = Ham(f) · Var(f) · Var(e2). Finally, if e < Q

2·t , then
⌊ t
Q · (e+∆Q,t · f ·m)⌉ = ⌊ t

Q · e+ f ·m⌉ = f ·m ∈ Rt, because
t
Q · e <

1
2 .

Below we analyze the variance of the errors for elementary homomorphic
operations.

Lemma 3 (Affine Functions on Encrypted Data). Let R contain poly-
nomials of degree N . Let c1 = NTRUe1,e2(f,m1) and c2 = NTRUẽ1,ẽ2(f,m2),
m,m1,m2 ∈ ZQ and a ∈ RQ. We have the following.

Scalar Addition: c1+a = NTRUē1,ē2(sk,m1+a), where Var(ē1) = Var(e1) and
Var(ē2) = Var(e1).

Scalar Multiplication by Monomial: c1·m·Xk = NTRUē1,ē2(sk,m1·m·Xk),
where k < N , Var(ē1) = m2 · Var(e1) and Var(ē2) = m2 · Var(e2). If m

is a uniformly random variable in Zt, then Var(ē1) = (t2−1)
12 · Var(e1) and

Var(ē2) =
(t2−1)

12 · Var(e2).
Scalar Multiplication by Polynomial: c1 · a = NTRUē1,ē2(sk,m1 · a), where

Var(ēi) ≤ Ham(a) · ||a||∞ · Var(ei) for i ∈ [2]. If a is a uniformly random

variable in Rt, then Var(ēi) = Ham(a) · (t
2−1)
12 · Var(ei).

Addition: c1+c2 = NTRUē1,ē2(sk,m1+m2), where Var(ē1) = Var(e1)+Var(ẽ1)
and Var(e2) = Var(e1) + Var(ẽ1).

Proof. From definition we have c1 = e1/f1 + e2 +m1 and c2 = ẽ1/f1 + ẽ1 +m2.
Clearly scalar addition preserve the error variance. Let i ∈ [2]. For monomial

multiplication we have ēi = ei ·m · Xk. Hence Var(ēi) =
(t2−1)

12 · Var(ei) in the
ring RQ, because we multiply each coefficient by m and do a cyclic rotation if
RQ = ZQ[X]/(XN − 1) and a negacyclic rotation if RQ = ZQ[X]/(Xq + 1).
Multiplying with a polynomial a is analogous to multiplying with a monomial,
however in that case the variance of the error polynomials Var(ēi) = Ham(a) ·
(t2−1)

12 ·Var(ei). Addition follows from c1+c2 = e1/f1+e2+m1+ẽ1/f1+ẽ1+m2 =
(e1 + ẽ1)/f1 + e1 + ẽ1 +m1 +m2.

3.1 NTRU to LWE Key Switching

Definition 3 (NTRU to LWE Key Switching). Let RQ = ZQ[X]/Φ with
Φ = XN − 1 or Φ = XN + 1. Let f ∈ Xsk. Let s ∈ ZQ be a LWE secret key.
Let XKsk be a distribution over ZQ. Let L ∈ N be a decomposition parameter and
denote ℓ = ⌈logLQ⌉. Let ψ be a function that on input a monomial a ·Xk with

NTRU-ν-um: Fully Homomorphic Encryption from NTRU 9

a coefficient a ∈ ZQ and an index d ∈ [N], outputs the dth coefficient of a ·Xk

mod Φ.
We define the NTRU-to-LWE key switching key as Ksk[i, ∗]← [LWEei,k(s, f [i]·

Lk−1)]ℓk=1 for i ∈ [N] and ei,k ∈ XKsk. We call E = [ei,k]
ℓ,N
i=1,k=1 the error matrix

of the key switching key. To indicate that we a key switching key is from an
NTRU key f to LWE key s, and that E is its corresponding error matrix, we
write KskEf,s.

The key switching procedure KeySwitch is defined as

KeySwitch(Ksk, c, d) =
N∑

i=1,j=1,
i+j−2 mod N=d

⟨Ksk[i, ∗],Decomp(ψ(c[j] ·Xi+j−2, d), L)⟩,

where c = NTRUe1,e2(f,m), m ∈ ZQ.

Lemma 4 (Correctness of NTRU to LWE Key Switching). Let Var(eKsk)
be a random variable over ZQ such that for all i ∈ [N] and k ∈ [ℓ] we have
that Var(ei,k) ≤ Var(eKsk). If c = KeySwitch(Ksk, c, d) for d ∈ [N], then c =
LWEe(s, (f ·m)[d]), where Var(e) = Var(e1) + Ham(f) · Var(f) · Var(e2) +N · ℓ ·
L2−1
12 · Var(eKsk).

Proof. Let us denote [a
(i,j)
k]ℓk=1 = Decomp(ψ(c[j] ·Xi+j−2, d), L), which are such

that a
(i,j)
k < L and

∑ℓ
k=1 a

(i,j)
k ·Lk−1 = ψ(c[j]·Xi+j−2, d). In the main summation

of the key switching procedure we have

⟨Ksk[i, ∗],Decomp(ψ(c[j] ·Xi+j−2, d), L)⟩ = LWEēi,j (s,

ℓ∑
k=1

f [i] · Lk−1 · a(i,j)k)

= LWEēi,j (s, f [i] · ψ(c[j] ·Xi+j−2, d))

where Var(ēi,j) = ℓ · L
2−1
12 · Var(eKsk). Then we have

KeySwitch(Ksk, c, d) =
N∑

i=1,j=1,
i+j−2 mod N=d

LWEēi,j (s, f [i] · ψ(c[j] ·Xi+j−2, d)),

= LWEe′(s, (f · c)[d])
= LWEe′(s, e1[d] + (f · e2)[d] + (f ·m)[d])

= LWEe(s, (f ·m)[d]),

where Var(e′) = N ·ℓ · L
2−1
12 ·Var(eKsk) because there are exactly N pairs i, j ∈ [N]

such that i+ j − 2 mod N = d. Then from correctness of the NTRU decryption
procedure we have Var(e1+f ·e2) = Var(e1)+Ham(f) ·Var(f) ·Var(e2). Therefore
Var(e) = Var(e1) + Ham(f) · Var(f) · Var(e2) +N · ℓ · L

2−1
12 · Var(eKsk).

10 Kamil Kluczniak

3.2 Gadget Encryption and Gadget Multiplication

Definition 4 (NTRU Gadget Encryption and Multiplication). Let RQ

be a ring, L ∈ N be a decomposition parameter, and X1, X2 be error distributions
over RQ. Let f ∈ RQ be such that both have inverses in RQ. Denote as ℓ =
⌈logL(Q)⌉. We define a gadget NTRU sample of a message mG ∈ RQ as cG =
G-NTRUe1,e2(f,mG) = [NTRUe1[i],e2[i](f,mG · Li−1)]ℓi=1, where e1 ∈ X ℓ

1 and

e2 ∈ X ℓ
2 . We define the gadget multiplication procedure GMul as GMul(cG, c) =

⟨cG,Decompc, L⟩, where c ∈ RQ and in particular c = NTRUe1,e2(f,m).

Note that the gadget ciphertext is nothing more than a vector of NTRU
ciphertexts of mG · f · Li−1. Addition and scalar multiplication for individual
gadget ciphertexts is as for NTRU. In this paper we will never directly decrypt
a gadget ciphertext, hence we omit describing the decryption algorithm.

Below we analyze the correctness of the gadget multiplication algorithm. In
this paper we use only the case where the message mG is a monomial with its
coefficient in Z2. Hence we will focus the analysis only to this special case for
simplicity.

Lemma 5 (Correctness of NTRU Gadget Multiplication). If cout = GMul(cG, c),
then cout = NTRUeout,1,eout,2(f, c ·mG), where

Var(eout,i) = N · ℓ · (L
2 − 1

12
) · Var(ei).

for i ∈ [2].
If additionally c = NTRUe1,e2(f,m), then

Var(eout,i) = Var(e)i +N · ℓ · (L
2 − 1

12
) · Var(ei).

Proof. Let [ck]
ℓ
k=1 = Decomp(c, L) which is such that

∑ℓ
k=1 ck · Lk−1 = c ∈ RQ.

From definition we have

c′ = ⟨cG,Decompc, L⟩

=

ℓ∑
k=1

NTRUe1[k],e2[k](f,mG · Lk−1) · ck

= NTRUe′1,e
′
2
(f,mG ·

ℓ∑
k=1

ck · Lk−1)

= NTRUe′1,e
′
2
(f,mG · c).

From linear homomorphism of NTRU we have Var(e′i) = N ·ℓ ·(L
2−1
12) ·Var(ei) for

i ∈ [2]. Note that in the above we treat ck as ring elements uniformly distributed
in RL. Since the coefficient of mG is smaller than or equal 1 we have

c′ = e′1/f + e′2 +mG · c
= e′1/f + e′2 +mG · (e1/f + e2 +m)

≤ (e′1 + e1)/f + e′2 + e2 +mg ·m.

NTRU-ν-um: Fully Homomorphic Encryption from NTRU 11

To summarize we have Var(eout,i) = Var(e)i +N · ℓ · (L
2−1
12) · Var(ei) for i ∈ [2].

Below we remind the modulus switching algorithm and recall its correctness.

Lemma 6 (Modulus Switching). Let c = LWEe(s, ∆Q,t ·m), where s ∈ Zn
Q.

Let us define the modulus switching procedure as ModSwitch(c, q) = ⌊[c · q
Q]n+1

i=1 ⌉
for q ≤ Q. If cout ← ModSwitch(c, q), then cout = LWEeout(s, ∆q, t ·m), where

Var(eout) = (
q

Q
)2 · Var(e) + 1

12
+

Ham(s)

12
· (Var(s) + E(s)2) +

q

2 ·Q

Proof. Let c[1] + c[2 : n+ 1]⊤ · s = e+∆Q,t ·m. From definition we have

cout[1] + cout[2 : n+ 1]⊤ · s = ⌊ q
Q
· c[1]⌉+ ⌊ q

Q
cout[2 : n+ 1]⊤ · s⌉

=
q

Q
· c[1] + r +

q

Q
cout[2 : n+ 1]⊤ · s+ r⊤ · s

=
q

Q
· (c[1] + cout[2 : n+ 1]⊤ · s) + r + r⊤ · s

=
q

Q
·∆Q,t ·m+

q

Q
+ e+ r + r⊤ · s

=
q

t
·m+

q

Q
· (ϵ ·m+ e) + r + r⊤ · s,

≤ q

t
·m+

q

Q
· (ϵ · t+ e) + r + r⊤ · s

where r ∈ [−1/2, 1/2] and r ∈ [−1/2, 1/2]n. We assume that r and r are uniform
random. Hence cout = LWEeout(c, ∆q,t · m), where eout = q

Q · (ϵ · t + e) + r +

r⊤ · s. Therefore, Var(eout) = Var(q
Q · e) + Var(r) + Var(r⊤ · s). Clearly we have

Var(q
Q · e) = (q

Q)2 · Var(e). Then Var(r) = Var(r[i]) = 1/12 for i ∈ [n] and the
expectation for all these variables is 0. Since r and s are independent, we have
Var(r⊤ · s) =

∑n
i=1 Var(r[i]) · (Var(s) + E(s)2) in general when all coordinates of

s are random variable. However, if we set n − Ham(s) coordinates of s to zero,
then we get

Var(r⊤ · s) =
Ham(s)∑
i=1

Var(r[i]) · (Var(s) + E(s)2)

=
Ham(s)

12
· (Var(s) + E(s)2)

To summarize we have

Var(eout) = (
q

Q
)2 · Var(e) + 1

12
+

Ham(s)

12
· (Var(s) + E(s)2) +

q

2 ·Q

4 Computing on Ciphertexts and Bootstrapping

Below we give our bootstrapping algorithm. In the procedure, we use a vector
u ∈ Zu for which the following holds. For all y ∈ S where S = {−1, 0, 1} or

12 Kamil Kluczniak

S = {0, 1} there exist x ∈ {0, 1}u such that y =
∑u

j=1 x[i] ·u[i]. For example for
ternary S we have u = [−1, 1] and for binary we have u = [1].

Definition 5 (The NTRU-ν-um Bootstrapping Procedure). Let s ∈ Zn
Q

be a LWE secret key, and f ∈ RQ a NTRU secret key, for a modulus Q and ring
RQ. Let q ∈ N be the smallest integer such that Xq = 1 ∈ RQ. Let s

′ = Zu·n
Q be

such that s[i] =
∑u

j=1 s
′[i, j] · u[j]. We define the blind rotation key Bk as

Bk[i, j] = G-NTRUeBk,1,i,j ,eBk,2,i,j (f, s
′[i, j]),

for i ∈ [n] and j ∈ [u]. We denote EBk = [[eBk,1,i,j , eBk,2,i,j]]
n,u
i=1,j=1 the error

matrix of the blind rotation key. Similarly to the key switching key, we write
BkEBk

f,s to indicate that the blind rotation key is with respect to the NTRU secret
key f , LWE secret key s and error matrix EBk.

Bootstrap(KskEf,s,Bk
EBk

f,s , cacc, d) : The algorithm takes as input an NTRU cipher-

text c = NTRUe1,e2(f,∆Q,t1 · m · f−1), a NTRU-to-LWE keyswitching key

KskEf,s, the bootstrapping key Bk, an accumulator cacc = NTRUeacc,1,eacc,2(f,∆Q,t2 ·
rotP · f−1), and an index d ∈ [N]. The bootstrapping procedure is as follows.

1. cLWE ← KeySwitch(Ksk, c, d).

2. cin ← ModSwitch(cLWE, q).

3. cacc ← cacc ·Xcin[1].

4. For i ∈ [n]

4.1. For j ∈ |u|:

cacc ← GMul(Bk[i, j], cacc ·Xcin[i+1]·u[j] − cacc) + cacc

5. Output cout = cacc.

4.1 Setting up the Rotation Polynomial and the Accumulator

Before giving the formal analysis of the bootstrapping algorithm, let us briefly
explain how to choose the rotation polynomial rotP. Suppose we want to boot-
strap a ciphertext that holds the message m ∈ Zt1 , and along the way we want
to compute the function F : Zt1 7→ Zt2 . To do so we need to construct a rotation
polynomial rotP ∈ RQ. When working over the ring ZQ[X]/(XN − 1) with N
prime, then setting up the polynomial is fairly easy. In this case N = q and we
set the coefficients as rotP[y + 1] = ∆Q,t1 · F (⌊

t1·y
q ⌉) mod Q for all y ∈ Zq.

When working over the ring ZQ[X]/(XN + 1) where N is a power of two
we have q = 2 · N , and we can compute functions F such that F (x + ⌈t1/2⌉
mod t1) = −F (x mod t1) mod t1 for x ∈ Zt1 . We set rotP[y + 1] = ∆Q,t1 ·
F (⌊ t1·yq ⌉) mod Q for all y ∈ ZN . Note that y ∈ ZN where N = q/2.

NTRU-ν-um: Fully Homomorphic Encryption from NTRU 13

4.2 Correctness of the Bootstrapping Algorithm

Below we give the correctness and noise analysis of our bootstrapping algorithm.

Theorem 1 (Correctness of the Bootstrapping Algorithm).
Let rotP ∈ RQ be such that (rotP · Xy)[1] = F (⌊ t1q · y⌉), where y ∈ Zq

and F : Zt1 7→ Zt2 . Let cacc = NTRUeacc,1,eacc,2(f,∆Q,t2 · rotP · f−1) and c =
NTRUe1,e2(f,∆Q,t1 ·m · f−1).

– We have cin = LWEein(s, (∆q,t1 ·m)[d]) and (rotP · Xcin[1]+cin[2:n+1]⊤·s)[1] =
F (m) given that ein <

q
2·t2 , where

Var(ein) = (
q

Q
)2 · Var(eLWE) +

1

12
+

Ham(s)

12
· (Var(s) + E(s)2) +

q

2 ·Q

and

Var(eLWE) = Var(e1) + Ham(f) · Var(f) · Var(e2) +N · ℓKsk ·
L2Ksk − 1

12
· Var(eKsk)

– If cout ← Bootstrap(KskEf,s,Bk
EBk

f,s , cacc, d), then cout = NTRUeout,1,eout,2(f,∆Q,t2 ·
rotP ·Xcin[1]+cin[2:n+1]⊤·s · f−1), where for l ∈ [2]

Var(eout,l) = Var(eacc,l) + n · u ·N · ℓBk · (
L2Bk − 1

12
) · Var(EBk).

Proof. First note that cacc ·Xcin[1] = NTRUeacc,1,eacc,2(f,∆Q,t2 · rotP ·f−1 ·Xcin[1]).
Let cacc,curr = NTRUecurr,1,ecurr,2(f,mcurr) for some mcurr ∈ RQ.

If

cacc,next ← GMul(Bk[i, j], cacc,curr ·Xcin[i+1]·u[j] − cacc,curr) + cacc,curr

then cacc,next = NTRUeacc,next,1,eacc,next,2(f,mcurr ·Xcin[i+1]·u[j]), where Var(eacc,i,l) =

ecurr,l+N ·ℓ·(L
2−1
12)·Var(EBk) for l ∈ [2]. Note that Bk[i, j] encrypts s′[i, j] ∈ {0, 1}.

If s′[i, j] = 0, then from correctness of GMul we have

cacc,next = NTRUeGMul,1,eGMul,2
(f, 0) + cacc,curr = NTRUeacc,next,1,eacc,next,2(f,mcurr ·Xcin[i+1]·u[j]),

where for l ∈ [2] we have Var(eGMul,l) = N · ℓBk · (L
2
Bk−1
12) ·Var(EBk). If s

′[i, j] = 0,
then again from correctness of GMul we have

cacc,next = NTRUeGMul,1,eGMul,2
(f, cacc,curr · s′[i, j] ·Xcin[i+1]·u[j] − cacc,curr) + cacc,curr

= NTRUeGMul,1,eGMul,2
(f, cacc,curr ·Xcin[i+1]·s′[i,j]·u[j])

= NTRUeacc,next,1,eacc,next,2(f,mcurr ·Xcin[i+1]·s′[i,j]·u[j]).

In either case we have

Var(eacc,next,l) = Var(eacc,curr,l) +N · ℓBk · (
L2Bk − 1

12
) · Var(EBk)

14 Kamil Kluczniak

Then after n · u iterations we have

cout = NTRUeout,1,eout,2(f,∆Q,t2 · rotP ·Xcin[1]+
∑n

i=1 cin[i+1]·
∑u

j=1 s′[i,j]·u[j])

= NTRUeout,1,eout,2(f,∆Q,t2 · rotP ·Xcin[1]+
∑n

i=1 cin[i+1]·s[i])

= NTRUeout,1,eout,2(f,∆Q,t2 · rotP ·Xcin[1]+cin[2:n+1]⊤·s · f−1)

where Var(eacc,l) + n · uN · ℓBk · (L
2
Bk−1
12) · Var(EBk) as desired.

On the other hand we have cLWE = LWEeLWE
(s, (∆Q,t2 ·m)[d]), where Var(e) =

Var(e1) + Ham(f) · Var(f) · Var(e2) + N · ℓ · L2−1
12 · Var(eKsk) from correctness

of key switching. Furthermore, we have cin = LWEein(s, (∆q,t2 · m)[d]), where

Var(ein) = (q
Q)2 ·Var(eLWE)+

1
12 +

Ham(s)
12 · (Var(s)+E(s)2)+ q

2·Q from correctness

of modulus switching. Finally (rotP ·Xcin[1]+cin[2:n+1]⊤·s)[1] = F (m) follows from
the definition of rotP and the size restriction of the error of Var(ein).

Remark 1. Note that to estimate correctness, we need to take the lowest correct-
ness among the correctness of decryption of cout and correctness of decryption of
cin. Furthermore, it is crucial to estimate the error of the cin ciphertext when the
bootstrapping algorithm gets as input an NTRU ciphertext that itself was an
outcome of bootstrapping. This is important because the error of bootstrapped
ciphertexts is usually higher than the error of fresh ciphertexts.

4.3 Computing on Encrypted Data and Packing

To compute on encrypted data, we can use the homomorphism of NTRU ci-
phertexts to compute affine functions over Zt1 . After bootstrapping a ciphertext
holding a message m at position d we obtain a NTRU ciphertexts that has the
rotation polynomial rotated such that its first coefficient has (∆Q,t2 ·rotP·f−1) =
∆Q,t2 · F (m). Note that we can still compute affine functions on these cipher-
texts with monomials of degree zero. But any further bootstrapping must ex-
tract the LWE from position d = 1. Note that then working over Φ = Xq − 1,
we can compute any function F without the negacyclicity assumption. In this
case we can for example correctly compute x2 mod t1 for x ∈ Zt1 . When work-
ing over Φ = Xq + 1 we cannot easily compute such functions since x2 isn’t
negacyclic, and we would need to resort to much more expensive techniques
[CLOT21, KS21, YXS+21]. If furthermore Zt1 contains inverses of 4 then we
can compute x · y = (x+y

2)2 − (x−y
2)2 mod t1 with only two invocations of the

bootstrapping algorithm. This way we can efficiently compute arithmetic cir-
cuits. Furthermore, the arithmetic can be easily extended to composite Zp with
p =

∏m
i=1 t1,i where all t1,i are pairwise co-prime from the Chinese remainder

theorem.

Encrypting Data. To send encrypted data, we have a few options. We can either
send LWE ciphertexts, with modulus q and error distribution being a Gaussian
with standard deviation matching the standard deviation of the error of the

NTRU-ν-um: Fully Homomorphic Encryption from NTRU 15

LWE ciphertext after switching the modulus. Then, instead of key switching the
input NTRU ciphertexts, we can immediately start to compute step four on the
LWE ciphertexts. The downside of this method is that we require n+1 elements
in Zq to transmit a single message.

Another method is to set a message into a coefficient of the NTRU ciphertext.
Then we run the bootstrapping algorithm on this NTRU ciphertext for d ∈ [N].
This way, we may transmit N messages at the cost of only N elements in ZQ.
We note that for the initial NTRU ciphertext, we may actually take a smaller
modulus and obtain an even better ciphertext rate. The modulus Q is chosen
to support the error induced by the blind rotation part of the bootstrapping as
well as the NTRU to LWE key switching part. When sending a fresh NTRU
ciphertext, the error doesn’t have to be that large; hence we can lower the
modulus size for this particular ciphertext. It is also easy to see that we don’t
need another NTRU to LWE key switch key for such ciphertexts. Since the
modulus is smaller than Q, we have enough “powers” in the key switching key
to support homomorphic decryption.

Finally, the naive way to return the outcome of the computation is to return
the NTRU ciphertext from the last invocation of bootstrapping (or after addi-
tionally computing some affine functions on a vector of NTRU ciphertexts). In
this case, the ciphertext rate for the result is rather weak since we transmit N
elements in ZQ per message. What we can do, is either run the NTRU to LWE
switching procedure to reduce the rate to n+1 elements in Zq, or we can try to
pack the outcome multiple NTRU ciphertexts into a single NTRU ciphertext.
For this purpose, we need an additional packing key that works as the NTRU
to LWE key switching procedure but has NTRU ciphertexts instead of LWE
ciphertexts.

Building Accumulators. Note that the accumulator that we give as input to the
bootstrapping procedure is key-dependent. There are a few options on how to
provide such an accumulator.

– We send an accumulator as part of the evaluation key. In this case, the
evaluation key has fixed rotation polynomials, and we compute only these
functions defined by the evaluation key.

– A trivial option is to give and encryption of ∆Q,t2 · f−1 ∈ RQ, and let the
evaluator multiply the ciphertext by rotP ∈ Rt2 .

– When t2 is large, the above method may yield an accumulator with a large
error. To make the accumulator’s error independent of the magnitude of
the coefficients of rotP, we publish a G-NTRU ciphertext, and obtain the
accumulator by invoking GMul with rotP.

5 Security and Parameters

In this section, we give our parameter sets and estimate the correctness of these
parameters for different plaintext moduli. All our parameters are targeted to
achieve 128-bits of security. Across different parameter sets we use the same

16 Kamil Kluczniak

standard deviation for all NTRU ciphertexts. The NTRU secret key f is assumed
to have coefficients from {−1, 0, 1}, hence Var(f) = 2/3. We choose the errors
e1 and e2 for the NTRU ciphertexts such that Var(e1 + e2 · f) = Var(e · (g + f))
for some g ∈ RQ with the same parameters as f , where stddeve = 3.2. For the
key switching key, we take either ternary or binary keys.

n log2(Q) N LBk stddevKsk Ksk [MB] Bk [MB] ct [KB]

Ternary LWE Secret Key

NTRU-ν-um-C-11-T 29 + 212 30 211 − 9 24 212 178.17 47.44 8.19
NTRU-ν-um-C-12-T 29 + 250 38 212 − 3 210 219 593.79 62.42 20.48
NTRU-ν-um-C-13-T 29 + 360 42 213 − 1 29 220 1802.20 214.30 49.15
NTRU-ν-um-C-14-T 29 + 360 42 214 − 3 29 220 3604.41 428.60 98.304

Binary LWE Secret Key

NTRU-ν-um-C-11-B 29 + 240 30 211 − 9 26 212 185.05 30.80 8.19
NTRU-ν-um-C-12-B 29 + 315 36 212 − 3 28 216 610.46 84.68 20.48
NTRU-ν-um-C-13-B 29 + 355 41 213 − 1 29 220 1749.22 213.07 49.15
NTRU-ν-um-C-14-B 29 + 390 42 214 − 3 29 220 3728.27 443.35 98.30

Table 1. Parameter sets for circulant NTRU (over the ring Z[X]Q/(X
N − 1)). The

hamming weight of these parameters is not enforces, and all coefficients are from the
same distribution. In other words we have Ham(f) = N and Ham(s) = n.

To estimate security for the LWE samples used the LWE estimator [APS15].
Note that for the NTRU ciphertexts, the modulus Q passes the fatigue point.
To estimate security, we use the estimator from [DvW21] to calculate the BKZ
block size needed to recover a basis vector of the dense sublattice. Based on
the block size, we estimate the running time of BKZ using the cost model from
[BDGL16]. Since it is beneficial to work over larger rings, we notice that for
most parameter sets, the security bottleneck lies with the LWE samples of the
key switching key instead of the NTRU ciphertexts.

Below we show correctness estimates for plaintext space Zt1 , for t1 = 24, . . . , 211.
The sk row gives the share of variance that comes from the LWE secret key when
modulus switching. Specifically, we calculate what percentage of the total vari-
ance of cin consists of the variance of the rounding error. Other rows give the
correctness of bootstrapping for log2(t1) = 4, . . . , 11. Each entry contains two
lower bounds on the probabilities of failure. The first is the lower-bound on the
probability of failing to decrypt the ciphertext cout, the second is the lower-bound
on the probability to decrypt cin. We note that the variance of the error of cin
is calculated assuming the ciphertext input to the bootstrapping procedure was
cout from a previous bootstrapping operation.

NTRU-ν-um: Fully Homomorphic Encryption from NTRU 17

NTRU-ν-um C-11-T C-12-T C-13-T C-14-T

sk 60.13% 72.56% 98.54% 86.51%
4 0,2−48 0,0 0.00,0.00 0.00,0.00
5 2−32,2−14 0,0 0,0 0,0
6 2−10,2−5 0,2−16 0,0 0,0
7 0.11,0.32 2−17,2−5 0,2−18 0,0
8 0.42,0.62 2−6,0.29 0,2−6 0,2−16

9 0.69,0.80 0.27,0.60 0,0.25 2−42,2−5

10 0.84,0.90 0.58,0.79 2−42,0.56 2−12,0.28
11 0.92,0.95 0.78,0.89 2−12,0.77 0.06,0.59

NTRU-ν-um C-11-B C-12-B C-13-B C-14-B

sk 10.45% 64.43% 93.36% 82.96%
4 2−14,2−13 0,0 0,0 0,0
5 0.05,0.06 0,0 0,0 0,0
6 0.32,0.35 2−44,2−17 0,0 0,0
7 0.62,0.64 2−13,0.02 0,2−22 0,0
8 0.80,0.81 0.06,0.27 0,2−7 0,2−19

9 0.90,0.90 0.35,0.58 2−42,0.19 2−41,0.01
10 0.95,0.95 0.64,0.78 2−12,0.52 2−12,0.23
11 0.97,0.97 0.81,0.89 0.06,0.74 0.07,0.55

Table 2. Correctness estimates for our circulant parameters.

References

AASA+20. Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh
Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta,
et al. Status report on the second round of the nist post-quantum cryp-
tography standardization process. US Department of Commerce, NIST,
2020.

ABD16. Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on
overstretched NTRU assumptions - cryptanalysis of some FHE and graded
encoding schemes. In Matthew Robshaw and Jonathan Katz, editors, Ad-
vances in Cryptology – CRYPTO 2016, Part I, volume 9814 of Lecture
Notes in Computer Science, pages 153–178. Springer, Heidelberg, August
2016.

ANS10. X9 ANSI. 98: Lattice-based polynomial public key establishment algo-
rithm for the financial services industry. Technical report, Technical report,
ANSI, 2010.

AP13. Jacob Alperin-Sheriff and Chris Peikert. Practical bootstrapping in quasi-
linear time. In Ran Canetti and Juan A. Garay, editors, Advances in Cryp-
tology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer
Science, pages 1–20. Springer, Heidelberg, August 2013.

AP14. Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with poly-
nomial error. In Juan A. Garay and Rosario Gennaro, editors, Advances
in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes in
Computer Science, pages 297–314. Springer, Heidelberg, August 2014.

18 Kamil Kluczniak

APS15. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hard-
ness of learning with errors. Journal of Mathematical Cryptology, 9(3):169–
203, 2015.

BDF18. Guillaume Bonnoron, Léo Ducas, and Max Fillinger. Large FHE gates from
tensored homomorphic accumulator. In Antoine Joux, Abderrahmane Ni-
taj, and Tajjeeddine Rachidi, editors, AFRICACRYPT 18: 10th Interna-
tional Conference on Cryptology in Africa, volume 10831 of Lecture Notes
in Computer Science, pages 217–251. Springer, Heidelberg, May 2018.

BDGL16. Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New di-
rections in nearest neighbor searching with applications to lattice sieving.
In Robert Krauthgamer, editor, 27th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 10–24. ACM-SIAM, January 2016.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Shafi Goldwasser, ed-
itor, ITCS 2012: 3rd Innovations in Theoretical Computer Science, pages
309–325. Association for Computing Machinery, January 2012.

BIP+22. Charlotte Bonte, Ilia Iliashenko, Jeongeun Park, Hilder V. L. Pereira, and
Nigel P. Smart. Final: Faster fhe instantiated with ntru and lwe. Cryptol-
ogy ePrint Archive, Report 2022/074, 2022. https://ia.cr/2022/074.

BLLN13. Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved
security for a ring-based fully homomorphic encryption scheme. In Martijn
Stam, editor, Cryptography and Coding, pages 45–64, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

Bra12. Zvika Brakerski. Fully homomorphic encryption without modulus switch-
ing from classical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti,
editors, Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture
Notes in Computer Science, pages 868–886. Springer, Heidelberg, August
2012.

BV11. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) LWE. In Rafail Ostrovsky, editor, 52nd An-
nual Symposium on Foundations of Computer Science, pages 97–106. IEEE
Computer Society Press, October 2011.

CGGI16. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Faster fully homomorphic encryption: Bootstrapping in less than 0.1 sec-
onds. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryp-
tology – ASIACRYPT 2016, Part I, volume 10031 of Lecture Notes in
Computer Science, pages 3–33. Springer, Heidelberg, December 2016.

CGGI17. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Faster packed homomorphic operations and efficient circuit bootstrapping
for TFHE. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in
Cryptology – ASIACRYPT 2017, Part I, volume 10624 of Lecture Notes in
Computer Science, pages 377–408. Springer, Heidelberg, December 2017.

CGGI20. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
TFHE: Fast fully homomorphic encryption over the torus. Journal of
Cryptology, 33(1):34–91, January 2020.

CH18. Hao Chen and Kyoohyung Han. Homomorphic lower digits removal and
improved FHE bootstrapping. In Jesper Buus Nielsen and Vincent Rij-
men, editors, Advances in Cryptology – EUROCRYPT 2018, Part I, vol-
ume 10820 of Lecture Notes in Computer Science, pages 315–337. Springer,
Heidelberg, April / May 2018.

https://ia.cr/2022/074

NTRU-ν-um: Fully Homomorphic Encryption from NTRU 19

CIM19. Sergiu Carpov, Malika Izabachène, and Victor Mollimard. New techniques
for multi-value input homomorphic evaluation and applications. In Mitsuru
Matsui, editor, Topics in Cryptology – CT-RSA 2019, volume 11405 of
Lecture Notes in Computer Science, pages 106–126. Springer, Heidelberg,
March 2019.

CJL16. Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An algorithm for
ntru problems and cryptanalysis of the ggh multilinear map without a low-
level encoding of zero. LMS Journal of Computation and Mathematics,
19(A):255–266, 2016.

CLOT21. Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Im-
proved programmable bootstrapping with larger precision and efficient
arithmetic circuits for tfhe. In Mehdi Tibouchi and Huaxiong Wang, edi-
tors, Advances in Cryptology – ASIACRYPT 2021, pages 670–699, Cham,
2021. Springer International Publishing.

CS16. Ana Costache and Nigel P. Smart. Which ring based somewhat homomor-
phic encryption scheme is best? In Kazue Sako, editor, Topics in Cryptology
– CT-RSA 2016, volume 9610 of Lecture Notes in Computer Science, pages
325–340. Springer, Heidelberg, February / March 2016.

DM15. Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic
encryption in less than a second. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology – EUROCRYPT 2015, Part I, volume
9056 of Lecture Notes in Computer Science, pages 617–640. Springer, Hei-
delberg, April 2015.

DvW21. Léo Ducas and Wessel van Woerden. Ntru fatigue: How stretched is over-
stretched? In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in
Cryptology – ASIACRYPT 2021, pages 3–32, Cham, 2021. Springer Inter-
national Publishing.

FV12. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homo-
morphic encryption. Cryptology ePrint Archive, Report 2012/144, 2012.
https://eprint.iacr.org/2012/144.

GBA21. Antonio Guimarães, Edson Borin, and Diego F. Aranha. Revisiting the
functional bootstrap in tfhe. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 2021(2):229–253, Feb. 2021.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Michael Mitzenmacher, editor, 41st Annual ACM Symposium on Theory
of Computing, pages 169–178. ACM Press, May / June 2009.

GGH+19. Nicholas Genise, Craig Gentry, Shai Halevi, Baiyu Li, and Daniele Miccian-
cio. Homomorphic encryption for finite automata. In Steven D. Galbraith
and Shiho Moriai, editors, Advances in Cryptology – ASIACRYPT 2019,
Part II, volume 11922 of Lecture Notes in Computer Science, pages 473–
502. Springer, Heidelberg, December 2019.

GS02. Craig Gentry and Michael Szydlo. Cryptanalysis of the revised NTRU
signature scheme. In Lars R. Knudsen, editor, Advances in Cryptology –
EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science,
pages 299–320. Springer, Heidelberg, April / May 2002.

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes in
Computer Science, pages 75–92. Springer, Heidelberg, August 2013.

https://eprint.iacr.org/2012/144

20 Kamil Kluczniak

HAO15. Ryo Hiromasa, Masayuki Abe, and Tatsuaki Okamoto. Packing messages
and optimizing bootstrapping in GSW-FHE. In Jonathan Katz, editor,
PKC 2015: 18th International Conference on Theory and Practice of Public
Key Cryptography, volume 9020 of Lecture Notes in Computer Science,
pages 699–715. Springer, Heidelberg, March / April 2015.

HPS98. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. Ntru: A ring-based
public key cryptosystem. In Joe P. Buhler, editor, Algorithmic Number
Theory, pages 267–288, Berlin, Heidelberg, 1998. Springer Berlin Heidel-
berg.

HS15. Shai Halevi and Victor Shoup. Bootstrapping for HElib. In Elisabeth
Oswald and Marc Fischlin, editors, Advances in Cryptology – EURO-
CRYPT 2015, Part I, volume 9056 of Lecture Notes in Computer Science,
pages 641–670. Springer, Heidelberg, April 2015.

HS21. Shai Halevi and Victor Shoup. Bootstrapping for HElib. Journal of Cryp-
tology, 34(1):7, January 2021.

IEE09. Ieee standard specification for public key cryptographic techniques based
on hard problems over lattices. IEEE Std 1363.1-2008, pages 1–81, 2009.

KF17. Paul Kirchner and Pierre-Alain Fouque. Revisiting lattice attacks on over-
stretched NTRU parameters. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, Part I,
volume 10210 of Lecture Notes in Computer Science, pages 3–26. Springer,
Heidelberg, April / May 2017.

KS21. Kamil Kluczniak and Leonard Schild. Fdfb: Full domain functional boot-
strapping towards practical fully homomorphic encryption. Cryptology
ePrint Archive, Report 2021/1135, 2021. https://ia.cr/2021/1135.

LTV12. Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-
fly multiparty computation on the cloud via multikey fully homomorphic
encryption. In Howard J. Karloff and Toniann Pitassi, editors, 44th Annual
ACM Symposium on Theory of Computing, pages 1219–1234. ACM Press,
May 2012.

MP21. Daniele Micciancio and Yuriy Polyakov. Bootstrapping in FHEW-like
Cryptosystems, page 17–28. Association for Computing Machinery, New
York, NY, USA, 2021.

MS18. Daniele Micciancio and Jessica Sorrell. Ring packing and amortized FHEW
bootstrapping. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel
Marx, and Donald Sannella, editors, ICALP 2018: 45th International Col-
loquium on Automata, Languages and Programming, volume 107 of LIPIcs,
pages 100:1–100:14. Schloss Dagstuhl, July 2018.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th Annual
ACM Symposium on Theory of Computing, pages 84–93. ACM Press, May
2005.

SS11. Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case
problems over ideal lattices. In Kenneth G. Paterson, editor, Advances in
Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in Com-
puter Science, pages 27–47. Springer, Heidelberg, May 2011.

YXS+21. Zhaomin Yang, Xiang Xie, Huajie Shen, Shiying Chen, and Jun Zhou.
Tota: Fully homomorphic encryption with smaller parameters and stronger
security. Cryptology ePrint Archive, Report 2021/1347, 2021. https:

//ia.cr/2021/1347.

https://ia.cr/2021/1135
https://ia.cr/2021/1347
https://ia.cr/2021/1347

	NTRU–um: Secure Fully Homomorphic Encryption from NTRU with Small Modulus

