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Abstract

The continuous learning with errors (CLWE) problem was recently introduced by Bruna
et al. (STOC 2021). They showed that its hardness implies infeasibility of learning Gaussian
mixture models, while its tractability implies efficient Discrete Gaussian Sampling and thus
asymptotic improvements in worst-case lattice algorithms. No reduction between CLWE and
LWE is currently known, in either direction.

We propose four public-key encryption schemes based on the hardness of CLWE, with varying
tradeoffs between decryption and security errors, and different discretization techniques. Some
of our schemes are based on hCLWE, a homogeneous variant, which is no easier than CLWE.
Our schemes yield a polynomial-time algorithm for solving hCLWE, and hence also CLWE,
using a Statistical Zero-Knowledge oracle.

1 Introduction

A sample from the continuous learning with errors (CLWE) distribution [BRST21] is of the form
(a, z), where a ∈ Rn is a vector with individual entries sampled independently from the standard
normal distribution N (0, 1), and

z := γ〈a,w〉+ e mod 1.

Here e is the noise drawn from a Gaussian distribution with mean 0 and variance β2 for some
β > 0, γ > 0 is a fixed parameter and w ∈ Rn is a secret unit vector. CLWE is the problem of
distinguishing multiple CLWE samples from an equal number of samples of the form (a, u), where
u is uniform over [0, 1) and independent of a.

The CLWE problem can be viewed as a continuous analog of Regev’s LWE problem [Reg05] and
is at least as (quantumly) hard as the same worst-case lattice problems underlying LWE [BRST21].
However, in spite of the similarities to LWE, and even more so to the equivalent torus LWE [Reg05]
and scale-invariant LWE [CS15, AD97], there is no known reduction from one problem to the other.

Owing to its continuous nature, CLWE has been speculated to be a potentially easier target for
cryptanalysis than LWE [BRST21]. It is however possible that CLWE turns out to be no easier
than LWE. In this work we construct four public-key encryption schemes that are at least as hard
to break as CLWE, and in fact potentially harder problems.
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1.1 The Homogeneous CLWE Problem

Our schemes are based on the hardness of the hCLWE problem, which is a homogenenous variant
of CLWE, and on a related problem, (0, 1/2)-hCLWE. Both problems can be shown to be no easier
than CLWE. The hCLWE problem is a special case of learning high-dimensional Gaussian mixtures,
a notoriously challenging problem in computational learning theory [DKS17].

Samples of hCLWE are normally distributed in every direction perpendicular to a secret di-
rection w ∈ Rn. The distribution in direction w is a noisy discrete Gaussian, i.e. a mixture of
”Gaussian pancakes” of standard deviation β/

√
β2 + γ2 ≈ β/γ and spacing γ/(β2 + γ2) ≈ 1/γ.

The hCLWE problem is to distinguish miltiple hCLWE samples from purely normal ones.
Bruna et al. [BRST21] show that hCLWE samples are CLWE samples conditioned on z = 0

(Figure 1.a) and design a polynomial-time reduction from CLWE to hCLWE based on this property.
Conditioning z to take some other fixed value s ∈ [0, 1) shifts the modes of the distribution in the
hidden direction w by a relative phase of s (Figure 1.b). To control the decryption error two of our
schemes construct public keys from a labeled mixture of the two, which we call (0, 1/2)-hCLWE
(Figure 1.c with red and blue denoting labels 0 and 1/2, respectively).
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Figure 1: Probability density function of the hidden direction in the (a) hCLWE, (b) 1/2-hCLWE,
and (c) (0, 1/2)-hCLWE distributions with parameters β = 0.05 and γ = 2

Our hCLWE-based public-key encryption schemes imply limits on the hardness of hCLWE: just
as LWE, hCLWE is tractable in Statistical Zero-Knowledge. It follows that hCLWE is unlikely to
be helpful for constructing encryption as secure as NP (unless NP is contained in coAM).

1.2 Four Public-Key Encryption Schemes

The schemes we propose offer varying tradeoffs between decryption and security errors, and use
different techniques when disretizing continuous values.

Our first scheme (”pancake”) is based on hCLWE. It has inverse polynomial decryption and
constant security errors. These parameters, along with the specifics of the scheme, already suffice to
prove that hCLWE can be solved in Statistical Zero-Knowledge (SZK), and therefore is in coAM.1

The discretization step in the scheme can be performed during encryption, and so the public key
is continuous. Arguing security then necessitates proving an analog of the leftover hash lemma for
Gaussian matrices, which may be of independent interest.

One could in principle rely on standard techniques to reduce decryption and security errors in
the first scheme [HR05] , albeit at the price of a significant loss in efficiency. Instead, we present
three different ideas to reduce the errors directly.

1We will say that a distinguishing problem is in class C if there is an algorithm in C that accepts at least 2/3 of
the yes instances and rejects at least 2/3 of the no instances.
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Scheme Assumption Decryption error Security error PK size SK size

Pancake hCLWE O(1/n) 1/4 Õ(n3) n

Bimodal (0, 1/2)-hCLWE 0 1/2 Õ(n3) n
Discretized (0, 1/2)-hCLWE 0 2−n+2 O(n3) n

Baguette hCLWE(`) O(1/n`) 1/4 Õ(n3) n`

Table 1: Comparison of our encryption schemes. If the assumption holds against time t(n) + nO(1)

and advantage Ω(ε(n)) adversaries then the corresponding scheme is resilient against time t(n) and
advantage (security error + ε(n)) adversaries.

In the second scheme (”bimodal”), we achieve perfect decryption error by publishing (0, 1/2)-
hCLWE samples as the public key. To encrypt a 0, Bob uses samples with z = 0 and to encrypt a
1, he uses samples with z = 1/2. This eliminates the probability that a random normal ciphertext
of 1 is of the form of an hCLWE sample and thus makes decryption perfect.

The third scheme (”discretized”) achieves negligible security error by mapping the samples into
a parallelpiped spanned by hCLWE samples; a technique due to Ajtai and Dwork [AD97]. Here the
discretization step takes place already in public-key generation, allowing for the use of the standard
leftover hash lemma and yielding favorable security error in comparison with the other schemes.

In the fourth scheme (”baguette”) we achieve negligible decryption error assuming only hCLWE.
Instead of publishing samples that have a ”pancake” distribution in one direction, we sample vectors
that have a pancake distribution in ` hidden directions. In [BRST21] the authors give a reduction
from hCLWE to this hCLWE(`) distribution.

The parallelepiped technique can also be applied to the fourth scheme, yielding an hCLWE-
based scheme with negligible decryption and security error. We omit a formal analysis of this step
as it is similar to the discretized scheme.
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Figure 2: Reductions between problems and encryption schemes (new results are in bold).
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1.3 CLWE, SZK, and Statistical-Computational Gaps

Hypothesis testing is the computational task of distinguishing whether a sequence of independent
samples X1, . . . , Xm comes from a null distribution D0 or an alternative distribution D1. Several
works [BR13, HWX15, BB20] uncover that such problems tend to exhibit statistical-computational
gaps: There is a range of sample complexities m ∈ [mstat,mcomp] for which hypothesis testing is
possible, but no efficient2 algorithm is known.

A striking feature of the hCLWE problem is that it is potentially intractable even when the
sample complexity is unbounded, i.e., mcomp is infinite. Our Theorem 9.2 shows that when m ≥
Õ(n2) samples are available hCLWE becomes solvable in SZK. Thus, in a world in which SZK =
BPP, the computational threshold mcomp for hCLWE is at most Õ(n2).

In contrast, the statistical threshold for CLWE is mstat = O(n). It is an intriguing open question
whether a statistical-computational gap for hCLWE exists assuming SZK = BPP. One approach
for ruling out this possibility is to design a more efficient hCLWE-based PKE scheme.

Applying the reduction from CLWE to hCLWE of Bruna et al., our result also implies that
CLWE is in SZK. As their reduction does not preserve sample complexity, the resulting SZK
algorithm for CLWE requires a larger number of samples.

2 Technical Overview

The messages in our encryption schemes are single bits. The distributions of encryptions of zero
and one, respectively, are efficiently distinguishable with the secret key but not without it. The
public keys are independent samples of the hCLWE or (0, 1/2)-hCLWE distributions and the secret
key is the hidden direction w of the corresponding yes instances.

As can be seen in Figure 1, the hCLWE samples used to generate the public-key have a periodic
discrete structure along the secret direction w. Encryption is designed to retain this discrete
structure in the ciphertext even though the sender is oblivious to it. Decryption calculates the
correlation between the secret key w and the ciphertext. This correlation is close to an integer
multiple of the period for encryptions of zero and (typically) far from it for encryptions of one.

2.1 ”Pancake” Encryption

The first scheme (Section 4) is based on the hCLWE problem. The secret key is a random unit
vector w and the public key is an n×m matrix A that consists of m hCLWE samples conditioned
on the secret direction w.

To encrypt a 0, sample a uniform vector t← {1/
√
m,−1/

√
m}m and compute At. To encrypt

a 1, sample a standard normal vector. The ciphertext c is a discretization of the resulting vector
using a rounding function that divides the real line into intervals (”buckets”) of equal Gaussian
measure.3 To decrypt a ciphertext c, compute γ

√
m〈w, c〉 and output 0 if the result is close to an

integer. Otherwise output 1.
The scheme has inverse polynomial decryption error since the probability of γ

√
m〈w, c〉 being

close to an integer is inverse polynomial for a random choice of c. The main technical contribution
in this scheme is the security proof, in particular Proposition 4.5. This result is an analog of the

2Efficiency is measured in terms of the length of a single sample |X1|, not the number of samples m.
3In the body of the paper we use the notation 1/γ′ = γ/(β2 + γ2) for the period of the hCLWE hidden direction.

As the difference between 1/γ′ and 1/γ is small we make no distinction between the two in this overview.
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leftover hash lemma for the multiplication of Gaussian matrices with vectors with uniform vectors
t← {1/

√
m,−1/

√
m}m which shows that the security error is 1/2 for our choice of parameters.

2.2 ”Bimodal” Encryption

In the second scheme (Section 6) we introduce the following changes: We base the scheme on the
(0, 1/2)-hCLWE problem and publish two matrices (A0,A1) as the public key. The matrix A0

consists of hCLWE samples conditioned on w and A1 consists of 1/2-hCLWE samples conditioned
on w. To encrypt a 0, do the same as in the pancake scheme with the matrix A0. To encrypt a
1, do exactly the same with A1. To decrypt, check if γ

√
m〈w, c〉 mod 1 is closer to 0 or to 1/2.

Replacing one hCLWE matrix by two (0, 1/2)-hCLWE matrices yields perfect decryption error for
all but negligibly many choices of the public key. The security error however remains constant.

2.3 ”Discretized” Encryption

The third scheme (Section 7) has perfect decryption for all but an inverse polynomial fraction of
public keys and negligible security error. To achieve this we make use of the parallelepiped technique
due to Ataj and Dwork [AD97] to obtain uniform matrices from (0, 1/2)-hCLWE samples.

The public key (A0,A1,B) now consists of 3 matrices: A square matrix B that consists of
hCLWE samples, a matrix A0 that is essentially obtained by mapping hCLWE samples into the
parallelpiped spanned by the columns of B (denoted by P(B)) and a matrix A1 that is obtained in
the same way but with 1/2-hCLWE samples mapped to P(B). This mapping into the parallelepiped
transforms Gaussian vectors in R into uniform vectors in P(B), while preserving the pancakes in
the secret direction. An additional rounding step discretizes the matrices A0,A1.

To encrypt a bit b, sample a vector t with uniform entries in {−1, 1} and set c := Abt mod B.
To decrypt, check if γ〈w, c〉 mod 1 is closer to 0 or to 1/2. For all but an inverse polynomial
fraction of choices of the matrix B this scheme has perfect correctness. Security follows from the
classical leftover hash lemma [IZ89] since the matrices A0 and A1 are uniform and discrete.

2.4 ”Baguette” Encryption

The fourth scheme (Section 8) is based on the hCLWE(`) problem, which is potentially harder
than the (0, 1/2)-hCLWE problem. We achieve negligible decryption error by modifying our first
scheme as follows: Instead of publishing samples that have a pancake distribution in only one
hidden direction, we publish a matrix A of samples that have a pancake distribution in log n many
hidden directions, i.e. we replace the Gaussian pancakes with ”Gaussian Baguettes”.

As in the first scheme, to encrypt a 0, sample a uniform vector t ← {1/
√
m,−1/

√
m}m and

compute At, and to encrypt a 1, sample a standard normal vector. Discretization of the ciphertext
is also identical to the first scheme.

To decrypt, multiply the ciphertext with a matrix that consists of all hidden directions. If all
of the entries in the resulting vectors are close to an integer, output 0, otherwise output 1. While
the probability that the inner product of the ciphertext of 1 with one secret direction is close to an
integer is polynomial, the probability that this happens for all of the log n directions is negligible.
The security error of this scheme remains constant but could be amplified either by a standard
approach or by the above parallelepiped method.
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3 Preliminaries

We introduce key concepts that are used throughout the paper.

3.1 Public Key Encryption

We focus on encryption schemes with binary message space. Some of our encryptions schemes will
decrypt incorrectly with bounded probability δ, and will sometimes also have noticeable (but still
bounded) statistical distance ε between the distribution of encryptions of zero and those of one.
Once such schemes are attained it is possible to invoke standard polarization methods to amplify
security and correctness errors to be negligible [HR05].

Definition 3.1 (Syntax). A public key encryption scheme is a tuple of algorithms (Gen,Enc,Dec)
such that for λ ∈ N:

• Gen(1λ) outputs a pair of keys (sk, pk);

• Enc(pk,m) encrypts a message m with the public key pk and outputs a ciphertext c;

• Dec(sk, c) decrypts a ciphertext c using the secret key sk and outputs a message m.

Both key-generation, Gen, and encryption, Enc, are randomized. We will allow for the decryp-
tion algorithm, Dec, to make errors.

Definition 3.2 (δ-correctness). A public key encryption scheme (Gen,Enc,Dec) is correct with
probability δ if

Pr [Dec(sk,Enc(pk,m)) = m] ≥ δ,

where probability is taken over the randomness of Gen and Enc. We call 1−δ the decryption error.

Security is defined through indistingushability of encryptions [GM84]. To this end, we rely on
the notion computational indistinguishability (defined next), which is also used more generally in
our proofs of security.

Definition 3.3 (ε-indistinguishability). We say that two distributions X,Y are ε-indistinguishable
if for any probabilistic polynomial time algorithm (”distinguisher”) A:∣∣∣∣ Pr

x←X
[A(x) = 1]− Pr

y←Y
[A(y) = 1]

∣∣∣∣ ≤ ε.
Sometimes we quantify over size s distinguishers, in which case we say that the distributions

X,Y are (s, ε)-indistinguishable. By (∞, ε)-indistinguishable we mean that the distributions X,Y
have statistical distance ε.

Definition 3.4 (ε-security). A public key encryption scheme (Gen,Enc,Dec) is said to have secu-
rity error ε ∈ [0, 1] if the distributions (pk,Enc(pk, 0)) and (pk,Enc(pk, 1)) are ε-indistinguishable,
where probabilities are taken over the randomness of Gen and Enc.
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3.2 Singular values and matrix norms

We use the notation 〈x,y〉 =
∑n

i=1 xiyi for the inner product in Rn and ‖x‖ =
√
〈x,x〉 for the

Euclidean norm in Rn.
Given a norm ‖·‖p on Rn and a norm ‖·‖q on Rm, the operator norm ‖·‖p,q on the space of

matrices Rm×n is defined as

‖A‖p,q := sup
0 6=x∈Rn

‖Ax‖q
‖x‖p

where A ∈ Rm×n.
We are mainly interested in the case when the vector norms on Rn and Rm are just the Euclidean

norm. In this case, we use the notation ‖A‖.

Fact 3.5. For all vectors x,y ∈ Rn and matrices A ∈ Rm×n, B ∈ Rn×m we have

1. 〈x,y〉 ≤ ‖x‖ · ‖y‖,

2. ‖Ax‖ ≤ ‖A‖ · ‖x‖,

3. ‖AB‖ ≤ ‖A‖ · ‖B‖.

Given a matrix A ∈ Rm×n the singular values of A are the square roots of the eigenvalues of
ATA. We use the notation si(A) for the i-th singular value and we order them in descending order,
that is, s1(A) denotes the largest singular value of A.

Fact 3.6. Let A ∈ Rn×m and s1(A) its largest singular value. We have that

s1(A) = ‖A‖ ≤
√∑
i∈[m]

∑
j∈[n]

|aij |2.

Fact 3.7 ([Ede88]). Let B ∈ Rn×n be a matrix with entries independently sampled from N (0, σ2)
and sn(B) be its smallest singular value. We have that for every ε > 0

Pr[sn(B) ≤ ε] ≤ σ−1√nε.

3.3 Normal Distribution

We consider both the continuous normal distribution and the discrete one. We refer to them as nor-
mal or Gaussian and we use these two words interchangeably. The continuous normal distribution
in Rn, denoted by Nn(µ,Σ), has probability density function at x ∈ Rn given by

1√
(2π)n det Σ

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
where µ ∈ Rn is the mean vector and Σ ∈ Rn×n is a positive definite matrix called the covariance

matrix. We usually work with vectors with i.i.d. entries from N (0, 1), which we denote by Nn(0, 1)
instead of Nn(0, In), where In is the n-dimensional identity matrix.
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Let µ ∈ Rn×s, U ∈ Rn×n and V ∈ Rs×s such that both U and V are positive definite. We say
that a n× s random matrix A has a matrix normal distribution, denoted by MN n×s(µ,U,V), if
and only if vec(A) follows a Nns(vec(µ),V ⊗U) distribution .

In the case of the discrete Gaussian we only consider covariance matrices of the form Σ = σ2In
for some σ > 0 and µ = 0. This allows us to simplify the notation for the discrete Gaussian
distribution, DL,σ2 , where L denotes its support. If x ∈ L, the probability mass function at x is
proportional to the value of the probability density function at x ∈ Rn of N (0, σ2In).

Fact 3.8. Pr[N (0, 1) > t] ≤ 1√
2πt
e−t

2/2 for t > 0.

Fact 3.9. Pr[N (0, 1) > t] ≥ e−t2 for t ≥ 1.91.

Proof. Fact 3.8 and the following lower bound are well-known [Gor41]:

Pr[N (0, 1) > t] ≥ t√
2π(t2 + 1)

e−t
2/2

The inequality t/
√

2π(t2 + 1) ≥ e−t2/2 for t ≥ 1.91 gives Fact 3.9.

Fact 3.10. For a random variable X with distribution N (0, σ2) it holds that:

Pr [|X| > s] ≤
√

2σ2/π
e−s

2/(2σ2)

s
.

Corollary 3.11. For a vector x ∈ Rn with entries independently sampled from N (0, σ2) we have

‖x‖ ≤ nσ

with probability at at least 1−
√
ne−n.

Proof. By Fact 3.10 we have that the absolute value of a fixed entry of x is larger than
√
nσ with

probability at most e−n/(
√
n). Applying the union bound yields that all entries are bounded by√

nσ with probability ne−n/(
√
n) =

√
ne−n. It follows that ‖x‖ ≤

√
n · (
√
nσ)2 = nσ with the

same probability.

Fact 3.12. Let X be a random variable with Pr[|X| > t] ≤ 2e−t
2/(2σ2) then we have

E[|X|k] ≤ (2σ2)k/2kΓ(k/2).

Proof. We have

E[|X|k] =

∫ ∞
0

Pr[|X| > t1/k]dt ≤ 2

∫ ∞
0

e−t
2/k/2σ2

dt = (2σ2)k/2kΓ(k/2),

where the last equality follows from replacing t with u = t2/k/(2σ2).
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3.4 Gaussian hypercontractivity

In the proof of our analog of the leftover hash lemma we will use a Gaussian hypercontractivity
result. For the sake of completeness we introduce some concepts that are only needed to understand
the general hypercontractivity theorem and the proof of Corollary 3.16. Later on we will only use
the result in Corollary 3.16.

Definition 3.13. Let Lk(Rn, γ) denote the space of Borel functions f : Rn → R that have finite
k-th moment ‖f‖kk under the Gaussian measure, i.e. ‖f‖kk = Ez∼N (0,1)n [|f(z)|k] is finite.

Definition 3.14. Let X = (X1, . . . , Xn), X ′ = (X ′1, . . . , X
′
n) be two n-dimensional standard Gaus-

sian variables. We call X and X ′ ρ-correlated if each pair (Xi, X
′
i) is a correlated Gaussian pair

with covariance matrix E[X2
i ] = E[X ′2i ] = 1, E[XiX

′
i] = ρ and the n pairs are mutually independent.

Theorem 3.15. [O’D14, Gaussian hypercontractivity Theorem, p. 333] Let f, g ∈ L1(Rn, γ),
r, s ≥ 0, 0 ≤ ρ ≤

√
rs ≤ 1 and Z,Z ′ be ρ-correlated n-dimensional Gaussian variables. Then we

have that
E(Z,Z′)[f(Z)g(Z ′)] ≤ ‖f‖1+r‖g‖1+s.

Corollary 3.16. Let S be any event in Rn and X = (X1, . . . , Xn), X ′ = (X ′1, . . . , X
′
n) be ρ-

correlated n-dimensional standard variables. We have that

Pr[X ∈ S and X ′ ∈ S] ≤ Pr[X ∈ S]1/(1+|ρ|) Pr[X ′ ∈ S]1/(1+|ρ|).

Proof. First assume that ρ ≥ 0. Theorem 3.15 with r = s = ρ and f, g being indicators of the set
S gives the statement:

Pr[X ∈ S and X ′ ∈ S] = E[1S(X)1S(X ′)]

≤ ‖1S‖21+ρ

= EZ∼N (0,1)[1S(Z)1+ρ]2/(1+ρ)

= Pr[X ∈ S]1/(1+ρ) Pr[X ′ ∈ S]1/(1+ρ).

In the case where ρ < 0 we apply the statement to X and −X ′ since then X and −X are −ρ-
correlated and hence

Pr[X ∈ S and X ′ ∈ S] = Pr[X ∈ S and −X ′ ∈ S] ≤ Pr[X ∈ S]1/(1−ρ) Pr[X ′ ∈ S]1/(1−ρ).

The two cases together give the claim of the corollary.

3.5 Lattices

Given a basis B = {b1, . . . ,bn} of Rn we define the lattice L(B) as the set of all integer linear
combinations of B, i.e.,

L(B) :=

{∑
i=1

zibi

∣∣∣∣∣ z1, . . . , zn ∈ Z

}
.

The minimum distance of a lattice L is λ1(L) := min06=x∈L ‖x‖. We say that L ⊂ Rn is a
(full-rank) lattice if there exists a basis B of Rn such that L = L(B). The dual lattice of L is the
set
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L∗ := {y ∈ Rn | ∀x ∈ L : 〈y,x〉 ∈ Z} .

The minimum distance of a lattice L is λ1(L) := min06=x∈L ‖x‖.
One parameter that is particularly useful to study the relation between normal distributions

and lattices is the smoothing parameter. It is defined as

ηε(L) := inf {r | fXr(L∗ \ {0}) ≤ ε}

where Xr is a random variable with distribution Nn(0n,
r2

2π In) and fXr its probability density
function.

The following is a result that guarantees that under certain conditions the sum of two inde-
pendent random variables with a discrete normal distribution are statistically close to a random
variable with discrete normal distribution. This result appears as Lemma 4.12 in the complete ver-
sion ([BF10]) of [BF11]. Here we state it in a simplified way and make the bound on the statistical
distance explicit.

Lemma 3.17 (Special case of [BF10, Lemma 4.12]). Let L ⊂ Zn be a full rank lattice, ε ∈ R,
σ ∈ R, and X1, X2 two independent random variables with distribution DL+t,σ2. If σ > ηε(L), then
the statistical distance between a random variable with distribution DL+2t,2σ2 and X1 + X2 is at
most 2ε

1−ε .

We will also need the following results:

Lemma 3.18 ([PRSD17, Lemma 2.5]). For any n-dimensional lattice L, real ε > 0, and r ≥ ηε(L),

the statistical distance between N (0, r
2

2π In) mod L and the uniform distribution over Rn/L is at
most ε/2.

Lemma 3.19 ([PRSD17, Lemma 2.6]). Let L ⊂ Rn be an n-dimensional lattice, c ≥ 1 and ε =

exp(−c2n). It holds that ηε(L) ≤ c
√
n

λ1(L∗) .

And as a special case;

Lemma 3.20. For any n-dimensional lattice L ⊂ Rn with basis B = {b1, . . . ,bn} we have
η2−n(B) ≤

√
nmaxi‖bi‖.

3.6 The (homogeneous) CLWE distribution

Definition 3.21 (CLWE Distribution). Given a dimension n and parameters β, γ > 0, and a unit
vector w ∈ Rn, samples (y, z) ∈ Rn × [0, 1) from the CLWE distribution Aw,β,γ,n are generated as
follows:

1. Sample y← Nn(0, 1).

2. Sample e← N (0, β2).

3. Output (y, γ〈w,y〉+ e mod 1).

Definition 3.22 (CLWE Distinguishing Problem). For real numbers β, γ > 0 and n ∈ N, the
(average-case) distinguishing problem CLWEβ,γ,n asks to distinguish between Aw,β,γ,n for a uniform
vector w ∈ Rn and Nn(0, 1)× U , where U is the uniform distribution on [0, 1).
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Definition 3.23 (hCLWE Distribution). Given a dimension n, parameters β, γ > 0, and a unit
vector w ∈ Rn, samples y ∈ Rn from the hCLWE distribution Hw,β,γ,n are generated as follows:

1. The pancake: Sample k ∈ Z with probability proportional to exp(−k2/(2γ2 + 2β2)).

2. The noise: Sample e from N (0, β′2), where β′2 = β2/(γ2 + β2).

3. The rest: Sample w⊥ as Nn−1(0, 1) on the subspace orthogonal to w.

4. Output w⊥ + (k/γ′ + e)w, where 1/γ′ = γ/(γ2 + β2).

Definition 3.24 (hCLWE Distinguishing Problem). For real numbers β, γ > 0 and n ∈ N, the
(average-case) distinguishing problem hCLWEβ,γ,n asks to distinguish between Hw,β,γ,n for a uni-
form vector w ∈ Rn and Nn(0, 1).

The (s, ε) homogeneous CLWE (hCLWE(s, ε)) assumption [BRST21] postulates that for a ran-
dom w, a hCLWE oracle cannot be distinguished in size s from an oracle that outputs N (0, 1)
samples on Rn with advantage ε. As evidence Bruna, Regev, Song, and Tang show a polynomial-
time quantum reduction from the problem of sampling a discrete gaussian of width O(

√
n/β) times

the smoothing parameter assuming γ ≥ 2
√
n. Specifically, if γ and β are polynomial in n then it is

plausible that hCLWE holds with s and 1/ε exponential in n. Note that they define the standard
normal distribution as N (0, 1/(2π)) instead of N (0, 1).

It can be shown that all hCLWE versions with different variances are equivalent by rescaling
the samples and the problem parameters γ and β. In particular hCLWE with normal distribution
N (0, 1/(2π)) and problem parameters γ and β is equivalent to hCLWE with normal distribution
N (0, 1) and problem parameters γ/

√
2π and β/

√
2π. We will always work with the N (0, 1) distri-

bution for which γ ≥
√
n is sufficient.

4 Scheme 1: Pancake Encryption

The first encryption scheme relies on the hCLWE assumption and has polynomial decryption- and
constant security error. It is the basis for all of the following encryption schemes that achieve
better error bounds but either rely on an assumption that is potentially easier to break and/or
incur a blow-up in the key size. Furthermore, this scheme enables us to prove that hCLWE is in
the complexity class SZK. Before presenting the scheme, we define a rounding function that we will
need to discretize the ciphertexts of the scheme.

4.1 Rounding into buckets of equal measure

In the encryption we use of the following Gaussian rounding function roundr : R→ {1, . . . , r} given
by

roundr(x) = dr · µ((−∞, x))e,
where µ is the standard Gaussian measure on the line. In words, partition R into r inter-
vals (”buckets”) J1, J2, . . . , Jr of equal Gaussian measure, and set roundr(x) to be the unique i
such that x ∈ Ji. We extend the definition over Rn coordinate-wise, i.e. roundr(x1, . . . , xn) =
(roundr(x1), . . . , roundr(xn)).

Some of the buckets are very wide (at least two of them are infinite!) so the rounding will cause
encryption errors with some probability. We will argue that this is an unlikely event using the
following regularity property of roundr. The width of an interval J = (a, b) is b− a.
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Proposition 4.1. For every 0 < α < 1 and all r such that r1−α ≥ 19, the number of i for which
the width of Ji = round−1

r (i) exceeds r−α is at most 2rα/
√

ln r1−α + 2.

The k widest intervals capture a k/r fraction of the probability mass µ at the tails of the normal
distribution. If t is chosen so that µ((−∞, t)∪ (t,∞)) = k/r then the next widest interval is of the
form (t′, t) and t′ is uniquely determined by the constraint µ((t′, t)) = 1/r. Using suitable analytic
approximations for the normal CDF the maximum width t − t′ of all remaining intervals can be
bounded by r−α when k = b2rα/

√
ln r1−α + 2c.

Proof of Proposition 4.1. By monotonicity, the width of the intervals increases the farther the in-
terval is from zero. Assuming r is even or not all intervals have width exceeding r−α, there
are exactly two narrowest intervals of width exceeding r−α of the form Ji− = (−t,−t′) and
Ji+ = (t′, t) for some 0 < t′ < t. We will later justify the assumption. The intervals of width
at least r−α are then Ji−, Ji+, and all those contained in the set B = (−∞, t] ∪ [t,∞). As
µ(B) =

∑
i : Ji⊆B µ(Ji) =

∑
i : Ji⊆B 1/r, the number of intervals of width exceeding r−α must equal

r · µ(B) + 2. By Fact 3.8,

µ(B)

2
= Pr[N (0, 1) > t] ≤ e−t

2/2

√
2πt

,

from where,

1

r
= µ(Ji+) ≥ e−t

2/2

√
2π
· width(Ji+) >

e−t
2/2

√
2π
· r−α ≥ tµ(B)

2
· r−α. (1)

If t ≥ 2 then by Fact 3.9, µ(B)/2 ≥ e−t
2
, so t ≥

√
ln(2/µ(B)). Plugging into (1) we get

µ(B)
√

ln(2/µ(B)) ≤ 2rα−1, and hence

µ(B) ≤ 2rα−1√
ln(2/µ(B))

≤ 2rα−1

√
ln tr1−α

≤ 2rα−1

√
ln r1−α

.

We conclude that rµ(B) + 2 ≤ 2rα/
√

ln r1−α + 2 in this case. If t < 2 then by (1) we get
r1−α <

√
2πet

2/2 < 19.
If r is odd, at least 3, and all intervals including the middle one Ji = (−t, t) have width exceeding

r−α, then t < 0.5 and

1

r
= µ((−t, t)) ≥ e−t

2/2

√
2π
· r−α > r−α

3
,

so r1−α < 3.

4.2 The encryption scheme

The scheme is parametrized by γ > 0; β > 0; r > 0 and n,m ∈ Z.

• The secret key is a uniformly random unit vector w ∈ Rn.

• The public key is a matrix A ∈ Rn×m whose columns are independent hCLWE samples from
Hw,β,γ,n.

• To encrypt a 0, sample a vector t ∈ {−1/
√
m,+1/

√
m}m uniformly at random and output

c := roundr(At).

12



• To encrypt a 1, sample a vector c← {1, 2, . . . , r}n uniformly at random and output c.

• To decrypt a ciphertext c, take any z such that roundr(z) = c, compute

γ′
√
m〈w, z〉 mod 1

and check if it is in the interval (−1/2n, 1/2n). If yes, output 0, else output 1.

Theorem 4.2. Set the parameters of the scheme to γ =
√
n,β = (40000n3/2 log(n))−1,r =

(40000n3 log(n))5/3 and m = 108 log(n)2n2. Assuming hCLWE(s, ε), the scheme has decryption
error O(1/n) + ε and security error at most 1/4 + 2ε.

We prove correctness and security of the scheme separately in the next two subsections.

4.3 Correctness

There are two sources of error in this encryption scheme: key generation error and encryption error.
While the key generation error is negligible, the encryption error may be noticeable.

We will call a public key A good if in all its column samples the noise e has magnitude at most√
nβ. By hCLWE(s, ε), Fact 3.10 and a union bound a public key is good except with probability

m/en + ε.

Claim 4.3. Assuming hCLWE(s, ε) where s is the complexity of rounding, the probability that
Dec(w,Enc(A, 0)) 6= 0 is at most 1/2n+ ε for all but a fraction of m/en + ε choices of A.

Proof. Given a ciphertext c, the decryption chooses a vector z that satisfies roundr(z) = c and
outputs

γ′
√
m〈w, z〉 = γ′

√
m〈wA, t〉+ γ′

√
m〈w, z−At〉.

Since the public key is good, all entries of wA are
√
nβ-close to multiples of 1/γ′ (i.e. they are a

multiple of 1/γ′ plus an error term of magnitude at most
√
nβ) , so 〈wA, t〉 must be

√
mnβ-close

to a multiple of 1/γ′
√
m. By our choice of parameters we get∣∣γ′√m〈wA, t〉 mod 1

∣∣ ≤ 1/4n.

It remains to bound the absolute value of the term γ′
√
m〈w, z − At〉, which arises from the

rounding error. By the hCLWE(s, ε) assumption and the fact that ft(X) := roundr(Xt) is an
efficiently computable function, the probability that at least one entry of roundr(At) falls into an
interval of width more than r−3/5 is within ε of the probability of the same event when A is replaced
by a standard normal n×m matrix N. By Proposition 4.1 and a union bound, this probability is
at most 2nr−2/5 + 2n/r which is at most 1/2n by our choice of r. Assume this does not happen.
Since roundr(z) = roundr(Nt), the entries of z−Nt are bounded in magnitude by r−3/5, so∣∣γ′√m〈w, z−Nt〉

∣∣ ≤ ‖w‖ · ‖z−Nt‖ γ′
√
m ≤

√
nr−3/5γ′

√
m ≤ 1

4n

by our choice of parameters. By the triangle inequality |γ′
√
m〈w, z〉 mod 1| ≤ 1/2n as desired. As

this happens except with probability at most 1/2n+ ε, the claim follows.

Claim 4.4. The probability that Dec(w,Enc(A, 1)) 6= 1 is at most 3/2n.
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Proof. The ciphertext c := Enc(A, 1) is a vector with i.i.d. uniform entries in {1, 2, . . . , r}. The
decryption chooses a vector z that satisfies roundr(z) = c. By definition of the rounding function
this is a standard Gaussian g ∈ Rn plus the rounding error z− g. We have already seen that the
absolute value of γ′

√
m〈w, z− g〉 mod 1 is at most 1/4n except with probability 1/2n.

Since w is a unit vector, 〈w,g〉 is a standard normal random variable. By the smoothing prop-
erty of Gaussians modulo the integers (Lemmas 3.18 and 3.19) γ′

√
m〈w,g〉 mod 1 is exp(−γ′2m)-

close to a uniform random variable on the interval (−1/2, 1/2). The probability that its absolute
value is 1/2n or less is at most 1/n. It follows that the decryption error is at most 1/2n+1/n = 3/2n
in this case.

4.4 Security

We show that the above scheme has constant security error by the following argument:

1. Under the hCLWE(s, ε) assumption, the tuple (A,Enc(A, b)) is ε-indistinguishable from
(N,Enc(N, b)) for both b = 0 and b = 1, where N is a n × m matrix with i.i.d. entries
sampled from N (0, 1).

2. The distributions (N,Enc(N, 0)) and (N,Enc(N, 1)) are 1/4-statistically close.

3. It follows that the distributions (A,Enc(A, 0)) and (A,Enc(A, 1)) are at most (1/4 + 2ε)-
indistinguishable.

The first claim follows directly from the hCLWE assumption using the fact that the encryption
is an efficiently computable function of the public-key. To prove the second claim (Proposition 4.8)
we will argue that for each possible set (bucket) S that is the of the form round−1

r (c), the random
variable Pr[Nt ∈ S|N] is unlikely to deviate from its mean E [Pr[Nt ∈ S|N]] = Pr[g ∈ S] by much,
where g is a standard normal vector. Then by a union bound over all the buckets we can say that
with high probability over the choice of N the statistical distance between the two distributions is
small (given N). Recall that µ(S) = Pr[g ∈ S] is the standard Gaussian measure over Rn.

Proposition 4.5. Let N be a m × n matrix of independent N (0, 1) random variables, t a ran-
dom m-dimensional {−1/

√
m,+1/

√
m} vector, and S be any event in Rn. Assuming µ(S) ≥

exp(−
√
m/4e), we have

Var [Pr[Nt ∈ S|N]] ≤ 4eµ(S)2 ln(1/µ(S))√
m

.

Proof. Using the definition Var[Z] = E[Z2]− E[Z]2 for any random variable Z we get:

Var
[
Pr[Nt ∈ S|N]

]
= Pr[Nt ∈ S and Nt′ ∈ S]− Pr[Nt ∈ S] Pr[Nt′ ∈ S], (2)

where t, t′ are two independent copies of a random ±1/
√
m-valued m-dimensional vector. Let X =

(X1, . . . , Xn) = Nt and X = (X ′1, . . . , X
′
n) = Nt′. Conditioned on t and t′, each pair (Xi, X

′
i) is a

correlated Gaussian pair (independent of the others) with covariance matrix E[X2
i ] = E[X ′2i ] = 1,

E[XiX
′
i] = ρ, where ρ = 〈t, t′〉 is the inner product of the vectors t and t′. By Corollary 3.16 we

get
Pr[Nt ∈ S and Nt′ ∈ S] ≤ Pr[Nt ∈ S]1/(1+|ρ|)] Pr[Nt′ ∈ S]1/(1+|ρ|)
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for fixed choices of t and t′. The quantities Pr[Nt ∈ S] and Pr[Nt′ ∈ S] are simply the Gaussian
measure µ(S) of the bucket S, so (2) gives

Var
[
Pr[Nt ∈ S|N]

]
≤ E[µ(S)2/(1+|ρ|) − µ(S)2] = E

[
µ(S)−2|ρ|/(1+|ρ|) − 1

]
µ(S)2. (3)

The expectation here is taken over the choice of ρ = 〈t, t′〉 = (Z1 + · · ·+Zm)/m, where Zi are i.i.d.
±1. If we further use µ(S) ≤ 1 and |ρ| ≥ 0, we get that

E
[
µ(S)−2|ρ|/(1+|ρ|) − 1

]
≤ E[µ(S)−2|ρ|]− 1.

We further bound this expression by using the following claim:

Claim 4.6. E[µ−2|ρ|] ≤
∑∞

k=0(es)k, where s = (2 ln 1/µ)/
√
m.

By our assumption µ(S) ≥ exp(−
√
m/4e), we have 0 ≤ es ≤ 1/2 so we get

∑
k(es)

k =
1/(1− es) ≤ 1 + 2es. Plugging into (3) we get the proposition.

Proof of Claim 4.6. The random variable |ρ|
√
m is subgaussian: Pr[|ρ|

√
m ≥ t] ≤ 2 exp(−t2/2),

but doesn’t have mean zero. Then

E[µ−2|ρ|] = E[exp(s |ρ|
√
m)]

=
∞∑
k=0

skE[(|ρ|
√
m)k]

k!

≤ 1 +

∞∑
k=1

sk · 2k/2kΓ(k/2)

k!
(by Fact 3.12)

≤ 1 +

∞∑
k=1

(es)k

kk/2−1
(Γ(k/2) ≤ (k/2)k/2 and k! ≥ (k/e)k)

≤
∞∑
k=0

(es)k (kk/2−1 ≥ 1 for k ≥ 1.)

Using Proposition 4.5 we can now bound the statistical distance between (N, roundr(Nt)) and
(N, roundr(g)) which are basically encryptions of 0 and 1 with a standard normal matrix instead of
a public key. Security of the scheme then follows from the fact that under the hCLWE assumption
N is indistinguishable from a public key.

Corollary 4.7. Let round be any discrete-valued function on Rn such that µ(round−1(c)) ≥ α for
all c in the range of round. Then the statistical distance between (N, round(Nt)) and (N, round(g))
is at most

√
4e ln(1/α)/

√
m.

Proof. We will assume α ≥ exp(−
√
m/4e) for otherwise

√
4e ln(1/α)/

√
m ≥ 1 and the claim is

true. Fix c and let S = round−1(c). Applying the Cauchy-Schwarz inequality to Proposition 4.5
we have

E
∣∣Pr[Nt ∈ S|N]− µ(S)

∣∣ ≤√4e ln(1/µ(S))√
m

· µ(S).
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In particular, if µ(round−1(c)) ≥ α ≥ exp(−
√
m/4e) for every c, then

∆((N, round(Nt)); (N, round(g))) =
1

2
E

[∑
c

∣∣Pr[round(Nt) = c|N]− Pr[round(g) = c|N]
∣∣]

≤ 1

2

∑
c

√
4e ln(1/µ(round−1(c)))√

m
· µ(round−1(c))

≤

√
e ln(1/α)√

m

∑
c

µ(round−1(c)),

which is at most the desired expression as the summation equals µ(Rn) = 1.

Proposition 4.8. The distributions (N,Enc(N, 0)) and (N,Enc(N, 1)) are 1/4-statistically close
for a matrix N of independent standard Gaussians.

Proof. By construction, µ(round−1
r (b)) = r−n for all b. By Corollary 4.7 the statistical distance

between encryptions is then at most
√

4e ln rn/
√
m which is at most 1/4 by our choice of parameters.

Corollary 4.9. Assuming hCLWE(s, ε), (A,Enc(A, 0)) and (A,Enc(A, 1)) are (s−poly(n), 1/4+
2ε)-indistinguishable where A is the public key matrix.

Proof. Let N be a random normal matrix. By hCLWE(s, ε), (A,Enc(A, b)) and (N,Enc(N, b)) are
(s−poly(n), ε)-indistinguishable for both b = 0 and b = 1. By Proposition 4.8, (N,Enc(N, 0)) and
(N,Enc(N, 1)) are (∞, 1/4)-indistinguishable. The corollary follows from the triangle inequality.

5 The s-hCLWE and (0, 1/2)-hCLWE Distributions

In this section we introduce two distributions that are indistinguishable from Nn(0, 1) (i.e. n-
dimensional vectors with i.i.d. entries from N (0, 1)) by the CLWE assumption: the s-hCLWE and
the (0, 1/2)-hCLWE distributions. Samples from the s-hCLWE distribution are CLWE samples
(yi, zi) with zi = s. Note that by definition the 0-hCLWE distribution is just the hCLWE distribu-
tion. Samples from the (0, 1/2)-hCLWE distribution are CLWE samples (yi, zi) with zi ∈ {0, 1/2}.
We obtain them by flipping a coin and, depending on the outcome, generating either an hCLWE
sample or a 1/2-hCLWE sample. In the next two encryption schemes (”bimodal” in Section 6 and
”discretized” in Section 7) we use samples from the (0, 1/2)-hCLWE distribution to construct the
public key.

To argue that these two distributions are indistinguishable from Nn(0, 1), we give a reduction
from CLWE to both distributions. We also give a reduction from 1/2-hCLWE to hCLWE for
completeness even though it is not needed in the rest of the paper.

5.1 The s-hCLWE Distribution

We begin by formally defining the distribution and then we show that there exists a reduction from
CLWE.
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Definition 5.1 (s-hCLWE Distribution). For a unit vector w ∈ Rn, real numbers β, γ > 0, n ∈ N
and s ∈ [0, 1], samples y ∈ Rn for the s-hCLWE distribution Hsw,β,γ,n are generated as follows:

1. Sample k ∈ Z + s with probability proportional to exp(−k2/(2γ2 + 2β2)).

2. Sample e← N (0, β′2), where β′2 := β2/(γ2 + β2).

3. Sample v as Nn−1(0, 1) from the subspace orthogonal to w.

4. Output y := v + (k/γ′ + e)w, where γ′ := (γ2 + β2)/γ.

It follows from the definition that hCLWE corresponds to the case s = 0. When s = 0, we write
Hw,β,γ,n instead of H0

w,β,γ,n. The s-hCLWE distinguishing problem asks to distinguish between
s-hCLWE samples and standard normal ones.

Definition 5.2 (s-hCLWE Distinguishing Problem). For real numbers β, γ > 0, n ∈ N and s ∈
[0, 1], the (average-case) distinguishing problem s-hCLWEβ,γ,n asks to distinguish between Hsw,β,γ,n
for a uniform unit vector w ∈ Rn and Nn(0, 1).

We do not consider the worst-case formulation of this problem as it is equivalent to the average-
case one. The proof is analogous to [BRST21, Claim 2.22] for hCLWE and CLWE.

We now proceed to compare s-hCLWE to hCLWE and CLWE. First of all, using rejection
sampling it is possible to obtain s-hCLWE samples from CLWE samples. This result follows from
[BRST21, Lemma 4.1], which shows this for the case s = 0. Let Aw,β,γ,n denote the distribution
of CLWE samples.

Lemma 5.3. For a unit vector w ∈ Rn, real numbers β, γ > 0, n ∈ N and s ∈ [0, 1], there exists a
probabilistic algorithm that runs in time poly(n, 1/δ) and that on input δ ∈ (0, 1) and samples from
Aw,β,γ,n, outputs samples from Hs

w,
√
β2+δ2,γ,n

.

Proof. The same proof as the one of Lemma 4.1 in [BRST21] with g0(z) :=
∑

k∈Z ρδ(z+ s+k).

If we take δ = β/
√

2, we obtain as a corollary the following reduction:

Proposition 5.4. For s ∈ [0, 1], n ∈ N and real numbers β = β(n), γ = γ(n) > 0 such that β is
the inverse of a polynomial in n, there exists a polynomial-time reduction from CLWEβ/

√
2,γ,n to

s-hCLWEβ,γ,n.

Now that we have given a reduction from CLWE to s-hCLWE it is a natural question to ask
whether there is a reduction from s-hCLWE to CLWE. However, we do not know if this is possible
for any value of s.

5.2 The (0, 1/2)-hCLWE Distribution

We now define the (0, 1/2)-hCLWE distribution, which is the distribution on which the following
two encryptions schemes are based. Afterwards we show that there is a reduction from CLWE to
(0, 1/2)-hCLWE.

Definition 5.5 ((0, 1/2)-hCLWE Distribution). For a unit vector w ∈ Rn and real numbers β, γ >

0, n ∈ N , samples (y, z) ∈ Rn×{0, 1/2} for the (0, 1/2)-hCLWE distribution H(0, 1
2

)

w,β,γ,n are generated
as follows:
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1. Sample z ← {0, 1/2}.

2. Sample y← Hzw,β,γ,n.

3. Output (y, z).

Definition 5.6 ((0, 1/2)-hCLWE Distinguishing Problem). For real numbers β, γ > 0 and n ∈ N ,

the (average-case) distinguishing problem (0, 1/2)-hCLWEβ,γ,n asks to distinguish between H(0, 1
2

)

w,β,γ,n

for a uniform unit vector w ∈ Rn and Nn(0, 1)× U({0, 1/2}).

Lemma 5.7. For a unit vector w ∈ Rn, n ∈ N and real numbers β, γ > 0 , there exists a
probabilistic algorithm that runs in time poly(n, 1/δ) and that on input δ ∈ (0, 1) and samples from

Aw,β,γ,n, outputs samples from H(0, 1
2

)

w,
√
β2+δ2,γ,n

.

Proof. We first sample z ← {0, 1/2} uniformly at random. By Lemma 5.3 we can obtain a sample
y from Hz

w,
√
β2+δ2,γ,n

using samples from Aw,β,γ,n in time poly(n, 1/δ) and (y, z) is a sample from

H(0, 1
2

)

w,
√
β2+δ2,γ,n

.

If we take δ = β/
√

2, we obtain as a corollary the following result:

Proposition 5.8. For n ∈ N and real numbers β = β(n), γ = γ(n) > 0 such that β is the
inverse of a polynomial in n, there exists a polynomial-time reduction from CLWEβ/

√
2,γ,n to

(0, 1/2)-hCLWEβ,γ,n.

5.3 A reduction from 1/2-hCLWE to hCLWE

Finally, we show that there exists a reduction from 1/2-hCLWE to hCLWE (with slightly different
parameters) to get a finer understanding of the relative hardness of these phased hCLWE problems.

We obtain the reduction by constructing samples from Hw,
√

2β,
√

2γ,n using samples from H1/2
w,β,γ,n.

Lemma 5.9. For a unit vector w ∈ Rn, n ∈ N, real numbers β, γ > 0 such that γ >
√
n, and

independent random variables Y1, Y2 with distribution H1/2
w,β,γ,n, the distribution of (Y1 − Y2)/

√
2 is

e1−n-statistically close to Hw,
√

2β,
√

2γ,n.

Proof. By definition, Yi = vi + (ki/γ
′ + ei)w for i = 1, 2 and

1√
2

(Y1 − Y2) =
1√
2

(v1 − v2) +

(
1√
2

k1 − k2

γ′
+

1√
2

(e1 − e2)

)
w

By standard properties of the normal distribution, it follows that (v1 − v2)/
√

2 has a Nn−1(0, 1)
distribution and (e1 − e2)/

√
2 has a N (0, β′2) distribution.

It remains to show that the distribution of k1 − k1 is statistically close to the discrete normal
distribution over Z with variance 2(γ2 +β2). In order to apply Lemma 3.17, we first need a bound
on the smoothing parameter of the lattice Z. From Lemma 3.19 with L = Z and ε = exp(−c2)
where c =

√
n, we get ηε(Z) ≤

√
n ≤ γ. By Lemma 3.17 with L = Z and t = 1/2, we get that

k1 − k2 is e1−n-statistically close to DZ,2(γ2+β2) as ηε(Z) ≤ γ ≤
√
γ2 + β2, which completes the

proof.
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This gives the following result:

Proposition 5.10. For n ∈ N and real numbers β = β(n), γ = γ(n) > 0, there exists a polynomial-
time reduction from 1/2-hCLWEβ/

√
2,γ/
√

2,n to hCLWEβ,γ,n.

6 Scheme 2: Bimodal Encryption

In this section we modify the ”pancake” scheme from Section 4 to achieve perfect correctness.
Note that the decryption error in this scheme can be at least polynomial since the pancakes have
polynomial width in the secret direction. This is due to the fact that the hCLWE assumption can
be broken whenever the error distribution has exponentially small width as was shown in [BRST21].
A random normal vector therefore ”hits” a pancake with probability 1/poly(n). If we encrypt a 1
with such a vector, decryption fails. A standard approach to amplify the decryption error is sending
multiple independent ciphertexts of the same message [DNR04]. This amplification increases the
size of the ciphertext and the security error since a potential adversary only needs to be successful
in decrypting one of the ciphertexts. Instead, we modify the encryption process of the bit 1. We
introduce the following two changes:

• The public key consists of two matrices. A matrix A0 whose columns are independent hCLWE
samples and a matrix A1 whose columns are independent 1/2-hCLWE samples. The samples
from both matrices are obtained from the same secret direction w.

• To encrypt a 0, take the matrix A0 and perform the same encryption as in the first scheme.
To encrypt a 1, do exactly the same but with the matrix A1.

In Section 4 we have already seen that the decryption of Enc(0) is 1/poly(n)-close to 0 mod 1.
We show that in our modified scheme the decryption of Enc(1) is 1/poly(n) to 1/2 so the scheme has
perfect correctness. Security of the scheme follows by Proposition 4.8 and the triangle inequality.

6.1 The encryption scheme

The scheme is parametrized by γ > 0, β > 0, n ∈ Z,r > 0 and m ∈ Z \ 2Z an odd integer.

• The secret key is a uniformly random unit vector w ∈ Rn.

• The public key is a pair of matrices (A0,A1) ∈ Rn×m × Rn×m. The columns of A0 are
independent hCLWE samples and the columns of A1 are independent 1/2-hCLWE samples.

• To encrypt a bit b ∈ {0, 1}, compute

c := roundr(Abt)

where t← {−1/
√
m, 1/

√
m}m is sampled uniformly at random. Check if all of the entries of

c correspond to a bucket of width less than 1/(5
√
nmγ′). If yes, output c. If no, output b.

• To decrypt a ciphertext c, take any z such that roundr(z) = c, compute

γ′
√
m · 〈w, z〉 mod 1

and check if it is closer to 0 or closer to 1/2. In the former case output 0 in the latter case
output 1.
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Theorem 6.1. Set the parameters of the scheme to γ =
√
n, β = (40000n5/2 log(n)2)−1 , r =

(40000n3 log(n))5/3 and m = 108n2 log(n)2. Assuming (0, 1/2)-hCLWE(s, ε) we have that for all
but a fraction of 2−Ω(n) choices of the public key the scheme has perfect correctness and security
error at most 1/2 + 1/n2 + 3ε.

We prove correctness and security of the scheme separately in the next two subsections.

6.2 Correctness

We call a public key good if the norm of the noise vector is less than mβ′ in both matrices. By
Corollary 3.11 this holds except with probability 2−Ω(n). During the construction of the public key
it can be efficiently tested if a public key is good by checking if the absolute value of the generated
noise value is small enough.

Claim 6.2. If the public key is good, the scheme has perfect correctness.

Proof. A preimage of a ciphertext c is of the form z = Abt + er, where er denotes the rounding
error. To decrypt one computes

γ′
√
m〈w, z〉 = γ′

√
m〈w,Abt + er〉

= γ′
√
m(1/γ′k− eb + b/(2γ′) · 1)t + γ′

√
mwer

= (k− γ′eb + b/2 · 1)1 + γ′
√
mwer

= mb/2− γ′eb · 1 + γ′
√
mwer mod 1

= b/2− γ′eb · 1 + γ′
√
mwer mod 1,

for some integer vector k ∈ Zm. Here eb is the noise vector of the corresponding hCLWE or 1/2-
hCLWE samples and 1 is the m-dimensional vector of all 1’s. The second equality holds since
〈w,A0〉 is a vector of multiples of 1/γ′ minus the noise value and 〈w,A1〉 is a vector of multiples
of 1/γ′ minus the noise value plus 1/2. The last equality follows from the fact that m is an odd
integer.

In order to show that γ′
√
m〈w, z〉 is close to b · 1/2 we bound the above expression by using

Fact 3.5 and ‖w‖ = 1. We get that∣∣γ′√m〈w, z〉 − b · 1/2 mod 1
∣∣ ≤ ∑

i∈[m]

|(eb)i|+ γ′
√
m‖er‖.

Since our public key is good we have that |(eb)i| ≤
√
nβ′ so

∑
i∈[m] |(eb)i| ≤ m

√
nβ′. We also

know that each entry of er has absolute value less than 1/(5
√
nmγ′) since the encryption process

only outputs a ciphertext if this is the case. It follows that γ′
√
m‖er‖ < 1/5. By the choice of

parameters we have ∣∣γ′√m〈w, z〉 mod 1
∣∣ = b · 1/2± o(1/5 + 1/n),

which is closer to 0 if b = 0 and closer to 1/2 if b = 1.

6.3 Security

There are two sources of security error in this scheme:
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1. If at least one of the entries of the ciphertext corresponds to a bucket of width larger than
1/(5
√
nmγ′), the encryption algorithm outputs the plaintext in the clear.

2. If the above event does not happen, the ciphertexts of 0 and of 1 are 1/2+2ε-indistinguishable.

Claim 6.3. Let Ab ∈ Rn×m be a matrix whose columns consist either of independent hCLWE-
samples or of independent 1/2-hCLWE samples. Let t← {−1/

√
m, 1/

√
m}m be sampled uniformly

at random. Assuming hCLWE(s, ε) and 1/2-hCLWE(s, ε), where s is the complexity of rounding,
the probability that any entry of the vector c := roundr(Abt) corresponds to a bucket of width larger
than 1/(5

√
mγ′) is at most 1/n2 + ε.

Proof. First consider a matrix A with i.i.d. entries from N (0, 1). Since ‖t‖ = 1 we get that At
is a vector with i.i.d. entries in N (0, 1). By Proposition 4.1 we know that the number of intervals
of length larger than 1/(5

√
nmγ′) is at most 10

√
nmγ′/

√
ln(r/(5

√
nmγ′)) + 2, so the probability

that any entry lands in such a bucket is at most

10n
√
nmγ′

r
√

ln(r/(5
√
nmγ′))

+
2n

r
≤ γ′n

√
nm+ 2n

r
≤ 1

n2
.

The claim follows from the fact that the matrices A0 and A1 are ε-indistinguishable from A and
the rounding function being efficiently computable.

Remark 6.4. Note that we can avoid the above event by rejection sampling the public key. Since
t is a unit vector, the absolute value of the inner product of any vector a with t is bounded by the
norm of a. This means that we can avoid the event that an entry of the ciphertext c corresponds to
a wide bucket by rejection sampling the matrices A0,A1: As long as the rows of these matrices have
small enough norm, the entries of the vector Abt will not land in a wide bucket for both b ∈ {0, 1}.
We omit a formal analysis of this optimization because the main security issue is not the rounding
error but the probability of distinguishing ciphertexts of 0 and 1 as is shown by the next claim.

Claim 6.5. The distributions (N0,N1,Enc(N0, 0)) and (N0,N1,Enc(N1, 1)) are 1/2-statistically
close for matrices N0,N1 of independent standard Gaussians.

Proof. By Proposition 4.8 we have

∆((N0,N1,Enc(Nb, b)), (N0,N1,g)) ≤ 1/4,

where g is a vector with i.i.d. entries sampled uniformly from {1, 2, . . . , r} and b ∈ {0, 1}. By the
triangle inequality we follow that

∆((N0,N1,Enc(N0, 0)), (N0,N1,Enc(N1, 1))) ≤ 1/2.

Corollary 6.6. Assuming (0, 1/2)-hCLWE(s, ε), (A0,A1,Enc(A0, 0)) and (A0,A1,Enc(A1, 1))
are (s− poly(n), 1/2 + 2ε)-indistinguishable where A0,A1 are the public key matrices.

Proof. Let N0,N1 be standard normal matrices. By (0, 1/2)-hCLWE(s, ε), (A0,A1Enc(Ab, b)) and
(N0,N1,Enc(Nb, b)) are (s− poly(n), ε)-indistinguishable for both b = 0 and b = 1. By Claim 6.5,
(N0,N1,Enc(N0, 0)) and (N0,N1,Enc(N1, 1)) are (∞, 1/2)-indistinguishable. The corollary fol-
lows from the triangle inequality.
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7 Scheme 3: Discretized Encryption

In this section we describe an encryption scheme based on CLWE that has negligible soundness
error and perfect correctness for all but a fraction of 1/poly(n) many public keys. The scheme
is inspired by the encryption scheme in [AD97] which also achieves negligible soundness error but
only polynomial decryption error. We reduce this decryption error by applying their techniques to
the bimodal encryption scheme from Section 6 which is based on (0, 1/2)-hCLWE. Alternatively,
it could be applied to the baguette encryption scheme presented in Section 8 which would yield
a scheme based on hCLWE. An important concept from [AD97] is the parallelepiped technique
which enables us to transform continuous Gaussian samples into uniform ones. We first describe
the technique before we present the encryption scheme and prove its correctness and security.

7.1 The parallelepiped technique and Zq
We will make use of the parallelepiped technique introduced by Ataj and Dwork in [AD97]. Let
B = (b1, . . . ,bn) ∈ Rn×n be an arbitrary matrix of rank n. We denote by P(B) the n-dimensional
parallelepiped that is defined by the columns of B, i.e.

P(B) :=

∑
i∈[n]

λibi : 0 ≤ λi < 1 for all i ∈ [n]

 .

We denote by Pq(B) the set we obtain by partitioning P(B) into qn smaller parallelpipeds of
equal volume and then rounding each vector to the lower left corner of the corresponding smaller
parallelepiped, i.e.

Pq(B) :=
{
BbqB−1ccq−1 : c ∈ P(B)

}
.

We will later need the following facts:

Fact 7.1. The distance between a vector c ∈ P(B) and its rounded image c′ := BbqB−1ccq−1 is at
most q−1nmaxi ‖bi‖.

The above fact follows from the observation that the maximum length of an edge of the small
parallelepiped is maxi ‖bi‖/q and by computing the distance from the ”lower left” corner to the
”upper right” corner of the parallelepiped.

Fact 7.2. Let B = (b1, . . . ,bn) ∈ Rn×n be an arbitrary matrix of rank n. Then (Pq(B),+) is a
group isomorphic to Znq .

This can be seen by the following argument: We obtain Pq(B) by partitioning each vector bi
into q equal parts. Labelling the parts by {0, 1, 2, . . . , q−1} in the natural way gives an isomorphism
between the q parts of bi and Zq for any i ∈ [n]. Fact 7.2 follows by taking the direct product of
the labellings of the bi.

In the construction of our public key we essentially map continuous Gaussian vectors into P(B).
We will need the next lemma to show that this mapping transforms them into uniformly random
vectors. We denote by ηε(B) the smoothing parameter of the lattice with basis B.

Lemma 7.3 ([MR07, Lemma 4.1]). Let B ∈ Rn×n be a square matrix of rank n. For any ε > 0
and any s > ηε(B) the statistical distance between Nn(0, s2) mod B and the uniform distribution
over P(B) is at most ε/2.
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7.2 The encryption scheme

The scheme is parametrized by γ > 0; β > 0; n,m, q ∈ Z \ 2Z odd integers. We set n to be an odd
integer only to clarify the description and the analysis, m and q however are always required to be
odd.

• The secret key is a uniformly random unit vector w ∈ Rn.

• The public key is a tuple of matrices (A0,A1,B) ∈ Rn×m × Rn×m × Rn×n. We obtain the
public key as follows: We let B ∈ Rn×n be a matrix whose columns consist of hCLWE samples,
such that the smallest singular value of B is larger than 1/m. To generate one column of A0

we produce n2 many samples ai from the hCLWE distribution Hw.β,γ,n and compute

a := B-round

∑
i∈[n2]

ai mod B

 ,

where B-round = B-roundq : Rn → Pq(B) is defined as B-roundq(a) = BbqB−1ac/q. Re-
peating this process m times gives the columns of A0. To generate the columns of A1 we do

the same with 1/2-hCLWE samples from H
1
2
w,β,γ,n.

• To encrypt a bit b ∈ {0, 1}, compute

c := Abt mod B,

where t← {−1, 1}m is sampled uniformly at random.

• To decrypt a ciphertext c, compute

γ′〈w, c〉 mod 1

and check if it is closer to 0 or closer to 1/2. In the former case output 0 in the latter case
output 1.

Remark 7.4. In the next section we will see that we require n to be an odd integer only because we
need that the inner product of w with the sum of n2 many 1/2-hCLWE samples is approximately
1/2 mod 1 and not 0. One can slightly change the scheme for even values of n: obtain one column
of the matrices Ab by using the sum of n2 + 1 samples instead of n. In the rest of the section we
will assume that n is odd without loss of generality.

Theorem 7.5. Set the parameters of the scheme to γ =
√
n,m = n2, β = 1/n10, q = n7. Assuming

(0, 1/2)-hCLWE(s, ε) we get that for all but a fraction of 1/n3/2 + O(ε) choices of the public key
the scheme has perfect correctness and negligible soundness error.

We prove correctness and soundness of the scheme separately in the next two subsections.
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7.3 Correctness

We show that for all but a fraction of at most 1/n3/2 + ε choices of the public key decryption
is always correct. We denote by {b1, . . . ,bn} the columns of B, by {a0

1, . . . ,a
0
n2m} the hCLWE

samples used to construct A0 and by {a1
1, . . . ,a

1
n2m} the 1/2-hCLWE samples used to construct

A1. We define e := γ′wB mod 1 which is the noise vector of the hCLWE samples bi. For b ∈ {0, 1}
we define

eb := γ′w

 n2∑
i=1

abi ,

2n2∑
i=n2+1

abi , . . . ,

mn2∑
i=(m−1)n2+1

abi

− b · (1/2, 1/2, . . . , 1/2)T mod 1.

If b = 0 this is the vector where each entry is the sum of the n noise values corresponding to the
hCLWE samples that we add during the construction of A0. If b = 1 this is the noise vector we
get during the construction of A1. We call a public key (A0,A1,B) good if the following holds:

1. ‖e0‖, ‖e1‖ ≤ mnβ′;

2. ‖e‖ ≤ nβ′;

3. For all i ∈ [nm] the entries of a0
i ,a

1
i lie in the interval

[
−n3/2, n3/2

]
;

4. For all i ∈ [n] the entries of bi lie in the interval [−n, n];

5. the smallest singular value of B is larger than 1/m.

Note that all of these conditions can be efficiently tested during the key generation.

Claim 7.6. If the (0, 1/2)-hCLWE(s, ε) assumption holds, a public key (A0,A1,B) is good except
with probability 1/n3/2 +O(ε).

Proof. By Corollary 3.11 conditions 1 and 2 hold except with negligible probability. Next we
consider a hybrid where the matrices A0,A1,B are replaced by Ã0, Ã1, B̃ which are not obtained
from (0, 1/2)-hCLWE samples but from i.i.d. random Gaussian samples and bound the probability
that the rest of the conditions for a good public key hold. By Fact 3.10 condition 3 and 4 hold
except with negligible probability. To bound the probability that the smallest singular value sn(B̃)
is less than 1/m we use Fact 3.7. We get that

Pr
[
sn(B̃) ≤ 1/m

]
≤
√
n

m
=

1

n3/2
.

The claim follows from the observation that if the above probability bounds differed for our
matrices A0,A1,B by more than ε, we could efficiently distinguish between a random normal matrix
and matrices that consist of (0, 1/2)-hCLWE samples and therefore break the (0, 1/2)-hCLWE(s, ε)
assumption by checking the absolute values of the matrices A0,A1 and computing the Eigenvalues
of the matrix BTB.

Claim 7.7. If the public key (A0,A1,B) is good, decryption is correct with probability 1.
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Proof. An encryption of a bit b is of the form

c = Abt mod B

= Abt−Bs

= (Ãb −BZ + Eq)t−Bs

for some s ∈ Zn,Z ∈ Zn×m. Here Eq is a matrix whose entries are rounding errors and Ãb :=
Ab + BZ−Eq is a matrix whose columns are the sum of n2 hCLWE samples if b = 0 or the sum of
n2 many 1/2-hCLWE samples if b = 1. In other words Ãb is the matrix we get in the construction
of the matrix Ab before rounding and before mapping to the parallelepiped P(B). To decrypt one
computes

γ′〈w, c〉 = γ′〈w, (Ãb −BZ + Eq)t−Bs〉 mod 1

= (b/2 · 1 + γ′eb − γ′eTZ + γ′wTEq)t− γ′〈e, s〉 mod 1

= b/2 + γ′(eb − eTZ + wTEq)t− γ′〈e, s〉 mod 1,

where 1 is the m-dimensional vector of all 1’s. The last equality follows from the fact that m is
odd.

In order to show that 〈w, c〉 is close to b · 1/2 we bound the above expression by repeatedly
using Fact 3.5 and ‖w‖ = 1. We get that∣∣γ′〈w, c〉 − b · 1/2 mod 1

∣∣ ≤ γ′(‖eb‖+ ‖e‖ · ‖Z‖+ ‖Eq‖) · ‖t‖+ γ′‖e‖ · ‖s‖

Since our public key is good we have that ‖eb‖ ≤ mnβ′ and ‖e‖ ≤ nβ′. We have ‖t‖ =
√
m since

its entries have absolute value 1. By Facts 3.6 and 7.1 we have ‖Eq‖ ≤
√
m ·maxi‖(Eq)i‖2 ≤√

mnq−1 maxi‖bi‖ ≤
√
mn5/2/q, where the last inequality follows from the fact that our public key

is good and so the absolute values of the entries of B are at most n. It remains to bound the norms
of Z and s.

Claim 7.8. Let 1/α be the smallest singular value of B. We have ‖s‖ ≤ αn5/2(m + 1) and
‖Z‖ ≤ 2αn3√m.

Plugging in these values we get∣∣γ′〈w, c〉 − b/2 mod 1
∣∣ ≤ β′γ′(nm√m+ 2n4αm+ n7/2α(m+ 1)) + γ′q−1n5/2m

Since our public key is good and by the choice of our parameters we have that α ≤ m, β = 1/n10,
γ =
√
n and q = n7. It follows that γ′〈w, c〉 = b · 1/2 + o(1/n) mod 1.

Proof of Claim 7.8. By definition we have s = B−1(Abt− r) and Z = B−1(Ã′b −R), where r and
the columns of R are vectors in P(B). Since the smallest singular value of B is 1/α we have that
the largest singular value of B−1 is α so ‖B−1‖ = α. Furthermore, since our public key is good the
entries of the matrices are not too large so

|(Abt− r)i| ≤ (m+ 1)
∑
j

|(B)ij | ≤ n2(m+ 1)
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and hence ‖Abt− r‖ ≤
√
n5(m+ 1)2 = n5/2(m+ 1). By the same argument we can bound∣∣∣(Ãb −R)ij

∣∣∣ ≤ ∣∣∣(Ãb)ij

∣∣∣+
∑
j

|(B)ij | = n2(
√
n+ 1)

and get ‖Ãb −R‖ ≤ 2n3√m by Fact 3.6.

7.4 Security

We show that encryptions of 0 and 1 are indistinguishable under the (0, 1/2)-hCLWE assumption
by showing that the following distributions are indistinguishable for b ∈ {0, 1}:

1. Realb: (A0,A1,B,Abt mod B) is a public key of the encryption scheme.

2. Hybridb: (A0,A1,B,Abt mod B) is a tuple where the entries of B are independently sampled
from N (0, 1), the columns of A0 and A1 are uniformly random vectors in Pq(B).

3. Ideal: (A0,A1,B, r) is the same as above but with r a uniformly random vector in Pq(B).

Realb and Hybridb are computationally indistinguishable under the (0, 1/2)-hCLWE assumption.
Hybridb and Ideal are statistically indistinguishable by the leftover hash lemma. In the rest of the
section we formally prove the above statements. We start by showing the first claim.

Claim 7.9. Under the (0, 1/2)-hCLWE(s, ε) assumption the distributions Realb and Hybridb are
(s− poly(n), 2−n+1 + ε)-indistinguishable.

Proof. Assume that there is a distinguisher D that decides if (A0,A1,B,Abt mod B) is from Realb
or from Hybridb with probability δ. We construct an algorithm D′ that distinguishes between
(0, 1/2)-hCLWE samples and random samples with probability δ − 2−n+1 as follows:

1. Given poly(n) many (0, 1/2)-hCLWE samples {(yi, zi)}i∈[poly(n)], define a matrix B by choos-
ing n samples with zi = 0 such that the corresponding vectors yi are linearly independent.
These vectors are the columns of B.

2. Repeat the following procedure m times: choose n2 samples of the form {(ŷi, 0)}i∈[n2] and
compute

y0 = B-round

∑
i∈[n2]

ŷi mod B


and choose n samples of the form {(ỹi, 1/2)}i∈[n2] and compute

y1 = B-round

∑
i∈[n2]

ỹi mod B

 ,

where B-round = B-roundq : Rn → Pq(B) is defined as B-roundq(a) = BbqB−1ac/q.

3. Let A0 be the matrix with m columns generated as above from the samples with zi = 0 and
A1 be the matrix with m columns generated as above from the samples with zi = 1/2. Give
(A0,A1,B,Abt mod B) to the distinguisher D.
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Note that in the case where the samples {(yi, zi)}i∈[poly(n)] are (0, 1/2)-hCLWE samples, A0,A1,B
is a public key of our scheme. It remains to prove that given samples {(yi, zi)}i∈[poly(n)], where the
yi are normal random vectors and the zi are uniform in {0, 1/2}, the resulting matrices A0,A1 are
statistically close to uniform matrices in Pq(B). Lemma 7.3 says that if we sample a vector from
a Gaussian distribution with standard deviation larger than η2−n(B) and map it into Pq(B), the
resulting vector is statistically close to uniform in Pq(B).

Now we only need an upper bound on the smoothing parameter in order to prove that the
columns of A0 and A1 are sampled from a Gaussian with sufficiently large variance.

By Corollary 3.11 the length of a vector with entries independently sampled from N (0, 1) is at
most n except with probability

√
ne−n. Hence, the smoothing parameter of B is at most n3/2 by

Lemma 3.20 except with probability
√
ne−n. The entries of A0 and A1 are sampled from N (0, n2).

Since n2 > n3/2 we follow from Lemma 7.3 that A0 and A1 are 2−n+1-statistically close to uniformly
random matrices in Pq(B).

Next we show that Hybridb is statistically close to Ideal, which completes the proof of soundness.
By Fact 7.2 we know that (Pq(B),+) is a group isomorphic to Znq for any full rank n × n matrix

B. It is therefore sufficient to prove statistical closeness of the tuples (Â0, Â1, Âbt mod q) and
(Â0, Â1, r̂), where Â0, Â1 are matrices with i.i.d. uniform entries in Zq and r̂ is a uniform vector
in Znq . This can be done using the classical leftover hash lemma [IZ89]. To this end we need to
show that multiplication of a {−1, 1}m vector by a uniform matrix H ∈ Zm×nq is a universal family
of hash functions, i.e.:

Claim 7.10. For q odd, x,y ∈ {−1, 1}m such that x 6= y we have

Pr
H←Zm×nq

[Hx = Hy mod q] =
1

qn
.

Proof. Since x 6= y we know that they differ in at least one coordinate. Without loss of generality
assume that xi = 1 and yi = −1. Choose all of H except for the i-th column hi. We have that
Hx = b + hi mod q and Hy = c− hi mod q for some fixed b and c. This means that Hx = Hy
if and only if b + hi = c−hi which is equivalent to 2hi = c−b. Since q is odd we can divide by 2
and get that Hx + Hy if and only if hi = 2−1(c− b) mod q. This holds for exactly one choice of
hi in Znq which concludes the proof.

The following lemma is a special case of the leftover hash lemma [IZ89, Reg05] :

Lemma 7.11. Let q be an odd integer. Let H ∈ Zn×mq be a matrix with columns chosen uniformly
at random from Znq and t ← {−1, 1}m a uniformly random vector. Then the statistical distance
of the uniform distribution on Znq and the distribution given by multiplying H with t is at most

(qn/2m)1/4 with probability 1− (qn/2m)1/4.

By our choice of parameters we have m = n2 and q = n7. We follow that the statistical distance
of Hybrid0 and Hybrid1 to Ideal is (n7n/2n

2
)1/4 ≤ 2−n for large enough values of n. Hence, Hybrid0

is at least 2−n+1-close to Hybrid1. Together with Claim 7.9 this yields that an encryption of 0 is
2−n+2 + 2ε-indistinguishable from an encryption of 1.

27



8 Scheme 4: Baguette Encryption

In this section we present a second approach that reduces the decryption error of the pancake
scheme. The security error remains constant but could be reduced by the parallelepiped technique
presented in Section 7. Instead of publishing samples that have a pancake distribution in only one
secret direction, we publish samples that have a pancake distribution in multiple secret directions,
i.e. samples from the hCLWE(`) distribution. This is a distribution defined in [BRST21] to which
the authors give a reduction from hCLWE. To decrypt we take the inner products of the ciphertext
with all secret directions. If the ciphertext is an encryption of 0 all of the results are polynomially
close to an integer. If the ciphertext is an encryption of 1, at least one of the results is not close to
an integer with high probability since taken modulo 1 they are uniformly random values in [0, 1).
Before presenting the encryption scheme we formally define the hCLWE(`) distribution.

8.1 The hCLWE(`) distribution

Both the hCLWE(`), distribution and the corresponding decision problem were introduced in
[BRST21]. This problem is the extension of hCLWE to the case of ` hidden orthogonal direc-
tions.

Definition 8.1 (hCLWE(`) Distribution). For a matrix W = (w1| . . . |w`) ∈ Rn×` such that
WTW = I`, real numbers β, γ > 0, n ∈ N and ` ∈ N with 0 ≤ ` ≤ n, samples y ∈ Rn for the
hCLWE(`) distribution HW,β,γ,n,` are generated as follows:

1. Sample k1, . . . , k` ∈ Z independently with distribution DZ,γ2+β2.

2. Sample e1, . . . , e` ← N (0, β′2) independently where β′2 := β2/(γ2 + β2).

3. Sample v as Nn−`(0, 1) from the subspace orthogonal to W.

4. Output y := v +
∑`

i=1(ki/γ
′ + ei)wi where γ′ := (γ2 + β2)/γ.

For ` = 0 we get the normal distribution with covariance matrix In and for ` = 1 we recover
the hCLWE distribution. We refer to the columns of W as the hidden directions. Note that they
are orthonormal vectors.

Definition 8.2 (hCLWE(`) Distinguishing Problem). For real numbers β, γ > 0, n ∈ N and
` ∈ N with 0 ≤ ` ≤ n, the (average-case) distinguishing problem hCLWEβ,γ,n(`) asks to distinguish
between HW,β,γ,n,` for a uniform matrix W ∈ Rn×` such that WTW = I`, and Nn(0, 1).

The hCLWE(`)(s, ε) assumption postulates that the hCLWE(`) distinguishing problem cannot
be solved in size s with advantage ε. As shown in [BRST21] (Lemma 9.3.), if n − ` = Ω(nk) for
some constant k > 0, there is an efficient reduction from hCLWEβ,γ,n−`+1 to hCLWEβ,γ,n(`).

8.2 Encryption scheme

We now give an encryption scheme that builds on the pancake scheme from Section 4. It achieves
negligible decryption error using more hidden directions instead of the (0, 1/2)-hCLWE distribution.

The scheme is parametrized by γ > 0; β > 0; r > 0, n, `,m ∈ N and a parameter a > 0 for
which we will only consider two possible values, namely, a = 1/n and a = 1/100.
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• The secret key is a uniformly random matrix W ∈ Rn×` such that WTW = I`.

• The public key is a matrix A ∈ Rn×m whose columns are independently sampled from
HW,β,γ,n,`.

• To encrypt 0, choose a vector t ∈ {−1/
√
m,+1/

√
m}m uniformly at random and output

c := roundr(At).

Check if all entries of c correspond to buckets of width less than 1/(4a
√
n
√
mγ′). If yes,

output c. Otherwise, output 0.

• To encrypt 1, choose a vector c ← {1, 2, . . . , r}n uniformly at random. Check if all entries
of c correspond to buckets of width less than 1/(4a

√
n
√
mγ′). If yes, output c. Otherwise,

output 1.

• To decrypt a ciphertext c, take any z such that roundr(z) = c, compute

γ′
√
mWT z mod 1

and check if all ` entries are in (−1/2a, 1/2a). If yes, output 0, else output 1.

Theorem 8.3. Set the parameters of the scheme to γ =
√
n, β = (16 · 104n3 log(n))−1, ` = log n,

m = 108n2 log(n)2, r = (40001n3 log(n))5/3 and a = 1/n. Assuming hCLWE(s, ε), the scheme has
negligible decryption error and security error at most 1/4 + 4ε.

We prove correctness and security of the scheme separately in the next two subsections.
We are also interested in using this scheme to prove that hCLWE and hCLWE(`) are in SZK

(statistical zero knowledge), what is shown in Section 9 for the following choice of parameters:

a = 100

β′γ′ ln γ′ <
1

4 · 104Kn log n

γ′ > 1

m = (Kn log n ln γ′)2

r = m10(γ′)5/3

(4)

where K = 4 · 9 · 10 · e · 2 · 5.

8.3 Correctness

Claim 8.4. The probability that Dec(W,Enc(A, 0)) = 0 over the joint choice of the public key and
encryption randomness is at least

1− `
√

2β′2γ′2m

π

e
− (1/4a)2

2β′2γ′2m

1/4a
.

In particular,
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• for the choice of parameters made in Theorem 8.3, it is at least 1 − e−n, i.e., the error is a
negligible function.

• for the choice of parameters suggested in Equation 4, the probability is at least 1− e−5000.

Proof. For correctness we only need to consider the case when all entries of c correspond to buckets
of width less than 1/(4n3/2√mγ′). We write 〈wi, z〉 = 〈wi,At〉 + 〈wi, z − At〉 and bound each
inner product separately. We start by bounding the first inner product.

For each i ∈ {1, . . . , `}, γ′
√
m
∑m

j=1 eijtj follows a N (0, β′2γ′2m) distribution. By a union bound
and 3.10,

Pr

∀i :
∣∣∣∣∣∣γ′√m

m∑
j=1

eijtj

∣∣∣∣∣∣ ≤ 1

4a

 =1− Pr

∃i :
∣∣∣∣∣∣γ′√m

m∑
j=1

eijtj

∣∣∣∣∣∣ ≤ 1

4a


≥1− `

√
2β′2γ′2m

π

e
− (1/4a)2

2β′2γ′2m

1/4a

By definition of the encryption scheme ‖z−At‖ <
√
n/(4a

√
n
√
mγ′), so∣∣γ′√m〈wi, z−At〉

∣∣ ≤ ‖z−At‖ γ′
√
m <

√
n

1

4a
√
n
√
mγ′

γ′
√
m ≤ 1

4a
.

Thus Dec(W,Enc(A, 0)) = 0.

Claim 8.5. If n ≥ 4, the probability that Dec(w,Enc(A, 1)) = 1 is at least 1−(3/2a)`−exp(−γ′2m).
In particular,

• for the choice of parameters made in Theorem 8.3, the probability is at least 1− (3/2n)logn−
exp(−n3), i.e., the error is negligible.

• for the choice of parameters suggested in Equation 4, the probability is at least 1− (3/200)`−
exp(−n2).

Proof. Encryptions of 1 can be seen as sampling g← Nn(0, In), rounding it and checking the width
of its entries as described in the definition of the encryption scheme. For correctness we only need
to consider the case when all entries correspond to buckets of width less than 1/(4a

√
n
√
mγ′). To

decrypt we take any z such that roundr(z) = roundr(g). We write 〈wi, z〉 = 〈wi,g〉 + 〈wi, z − g〉
and consider each inner product separately.

From the bound on the width of the buckets it follows that∣∣γ′√m〈wi, z− g〉
∣∣ ≤ ‖z− g‖ γ′

√
m <

√
n

1

4a
√
n
√
mγ′

γ′
√
m ≤ 1

4a
.

By the reverse triangle inequality, it follows that∣∣∣∣ ∣∣γ′√m〈wi, z〉 mod 1
∣∣− ∣∣γ′√m〈wi,g〉 mod 1

∣∣ ∣∣∣∣ ≤ ∣∣γ′√m〈wi, z− g〉 mod 1
∣∣ .

Combining these two inequalities, we obtain that

− 1

4a
+
∣∣γ′√m〈wi,g〉 mod 1

∣∣ < ∣∣γ′√m〈wi, z〉 mod 1
∣∣ .
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We now show that at least one entry satisfies |γ′
√
m〈wi,g〉 mod 1| ≥ 3/4a with probability at

least 1− (3/2a)` − exp(−γ′2m).
As g is a vector with distribution Nn(0, 1), WTg has distribution N`(0, 1). By the smooth-

ing property of Gaussians modulo Z` (Lemmas 3.18 and 3.19), the statistical distance between
γ′
√
mWTg mod Z` and a uniform random variable on (−1/2, 1/2)` is at most exp(−(γ′

√
m/
√
`)2`) =

exp(−γ′2m). This implies that the probability that at least one entry of γ′
√
mWTg mod Z` does

not belong to (−3/4a, 3/4a) is

1− Pr[γ′
√
mWTg mod Z` ∈ (−3/4a, 3/4a)`] ≥ 1−

(
3

2a

)`
− exp(−γ′2m)

This shows that Dec(W,Enc(A, 1)) = 1 with probability at least 1− (3/2a)`−exp(−γ′2m).

8.4 Security

In order to analyze the security of the scheme we have to take into account the possibility that at
least one of the entries of the ciphertext corresponds to a bucket of width larger than 1/(4a

√
n
√
mγ′)

as the encryption algorithm outputs the plaintext in the clear in that case.

Claim 8.6. Let r be such that the following inequalities are satisfied

r−3/5 ≤ 1

4a
√
n
√
mγ′

(5)

2nr−2/5

√
ln r2/5

+
2n

r
≤ δ(n). (6)

Let A ∈ Rn×m be a matrix whose columns consist of independent hCLWE(`) samples and as-
sume hCLWE(`)(s, ε) where s is the complexity of rounding and ε is a function of n. Let t ←
{−1/

√
m, 1/

√
m}m be sampled uniformly at random. The probability that any entry of the vector

c := roundr(At) corresponds to a bucket of width larger than 1/(4a
√
n
√
mγ′) is at most δ(n) + ε.

For the choice of parameters made in Theorem 8.3 and in Equation 4 both conditions are satisfied
for δ(n) = 1

24 .

Proof. First consider a matrix N with i.i.d. entries from N (0, 1). Since ‖t‖ = 1 we get that At is a
vector with i.i.d. entries in N (0, 1). By Proposition 4.1 and condition 5 we know that the number
of intervals of length larger than 1/(4a

√
n
√
mγ′) is at most

2r3/5

√
ln r2/5

+ 2.

By a union bound and condition 6 the probability that any entry lands in such a bucket is at
most

2nr−2/5

√
ln r2/5

+
2n

r
≤ δ(n).

The claim follows from the fact that the matrix A is ε-indistinguishable from N.
For the choice of parameters made in Theorem 8.3, r−3/5 = (40001n3 log n)−1, while 1/(4a

√
n
√
mγ′) =

1/(40000n2√n log n(
√
n+ O(1/n6))). This proves that condition 5 holds. Condition 6 holds since

r−2/5 = (40001n3 log n)−2/3.
For the choice of parameters made in Equation 4, r−3/5 = m−6(γ′)−1 and r−2/5 = m−4(γ′)−2/3.

This proves that condition 5 and condition 6 hold.
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The next claim follows directly from Proposition 4.8.

Claim 8.7. If the ciphertexts are not the messages, the distributions (N,Enc(N, 0)) and (N,Enc(N, 1))
are

√
4e ln rn/

√
m-statistically close for a matrix N of independent standard Gaussians. In partic-

ular,

• for the choice of parameters made in Theorem 8.3, the distance is at most 1/
√

50 < 1/4.

• for the choice of parameters suggested in Equation 4, the distance is at most 1/3.

Corollary 8.8. If hCLWE(`)(s, ε) holds, then the distributions (A,Enc(A, 0)) and (A,Enc(A, 1))
are (s − poly(n),

√
4e ln rn/

√
m + 4ε)-indistinguishable where A is the public key matrix. In par-

ticular,

• for the choice of parameters made in Theorem 8.3, and ε = 1/24, we get 1/4 + 4/24 < 1/2.

• for the choice of parameters suggested in Equation 4 and ε = 1/24, we get 1/3 + 4/24 = 1/2.

Proof. Let N ∈ Rn×m be a random standard normal matrix. By hCLWE(`)(s, ε), (A,Enc(A, b))
and (N,Enc(N, b)) are (s − poly(n), ε)-indistinguishable for both b = 0 and b = 1. By Claim 8.7
and Claim 8.6 for δ(n) = ε, (N,Enc(N, 0)) and (N,Enc(N, 1)) are (∞,

√
4e ln rn/

√
m + 2ε)-

indistinguishable. The result follows from the triangle inequality and the bound on the advantage
that we get is

√
4e ln rn/

√
m+ 4ε.

9 hCLWE and hCLWE(`) are in SZK

In this section we prove that hCLWE and hCLWE(`) are in SZK, which is the class of decision
problems that admit a statistical zero-knowledge proof [GMR89]. Zero-knowledge is defined with
respect to honest verifiers.

We say that a sampling problem is in SZK if there is a polynomial-time honest-verifier statistical
zero-knowledge protocol that accepts at least 2/3 of the YES instances and rejects at least 2/3 of
the NO instances. The choice of threshold 2/3 is operational.

Our proof consists in a reduction from hCLWE to the statistical difference problem (SD). Sahai
and Vadhan proved in [SV03] that SD is complete for SZK.

Definition 9.1 (SD Problem). The YES instances of the Statistical Difference (SD) problem are
pairs of circuits (C0, C1) such that ∆(C0, C1) > 2/3 and the NO instances are pairs of circuits
(C0, C1) such that ∆(C0, C1) < 1/3.

Here ∆ is the statistical (total variation) distance between the output distributions sampled by
the circuits when instantiated with a uniformly random seed. That is, if the output space of C0

and C1 is some finite set Ω,

∆(C0, C1) = sup
A⊆Ω
|Pr[C0 ∈ A]− Pr[C1 ∈ A]| = 1

2

∑
ω∈Ω

|Pr[C0 = ω]− Pr[C1 = ω]|

Since SD is a complete problem for the SZK class and SZK is a class closed under reductions
(see [SV03]), we can study the SZK class by considering reductions to SD instead of interactive
proof systems. This approach also removes any reference to zero-knowledge.

In order to show that hCLWE is in SZK, it suffices to define two circuits that satisfy the
conditions of Definition 9.1.
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Theorem 9.2. Let K,K ′ be sufficiently large constants. If γ′ > 1, β′γ′ ln γ′ < 1/(K ′n log n) and
γ′ is polynomially bounded, hCLWEβ,γ,n with m = (Kn log n ln γ′)2 samples is in SZK.

Proof. Take K and r as in Equation 4, that is, K = 4 · 9 · 10 · e · 2 · 5 and r = m10(γ′)5/3. Let
K ′ = 4 · 104K. Let X be either a valid public key A ∈ Rn×m or a matrix N ∈ Rn×m with i.i.d.
entries sampled from N (0, 1). We define two circuits C0, C1 that take as input the pair (t,u) where
t ∈ {−1/

√
m, 1/

√
m}m and u ∈ {1, 2, . . . , r}n. C0 outputs roundr(Xt), i.e., an encryption of 0

using randomness t, while C1 outputs u, i.e., an encryption of 1 with randomness u.
If X = A, by Claim 8.4 and Claim 8.5 and Claim 8.6 for ε(n) = 1/24 = δ(n), the decryption

error is at most e−5000 + 3/200 + exp(−n2) + 1/24 + 1/24. It follows that ∆(C0, C1) > 2/3.
If X = N, then the statistical distance between C0 and C1 is at most 1/3 by Proposition 4.8.

We now prove an analogous statement for hCLWE(`).

Theorem 9.3. Let K,K ′ be sufficiently large constants. If γ′ > 1, β′γ′ ln γ′ < 1/(K ′n log n), γ′ is
polynomially bounded and 1 ≤ ` ≤ n, hCLWEβ,γ,n(`) with m = (Kn log n ln γ′)2 samples is in SZK.

Proof. Take K and r as in Equation 4, that is, K = 4 · 9 · 10 · e · 2 · 5 and r = m10(γ′)5/3. Let
K ′ = 4 · 104K. Let X be either a valid public key A ∈ Rn×m or a matrix N ∈ Rn×m with i.i.d.
entries sampled from N (0, 1). We define two circuits C0, C1 that take as input the pair (t, u) where
t ∈ {−1/

√
m, 1/

√
m}m and u ∈ {1, 2, . . . , r}n. C0 outputs roundr(Xt), i.e., an encryption of 0

using randomness t, while C1 outputs u, i.e., an encryption of 1 with randomness u.
If X = A, then the statistical distance between C0 and C1 is at least 2/3. By Claim 8.4 and

Claim 8.5 and Claim 8.6 for ε(n) = 1/24 = δ(n), the decryption error is at most e−5000 +(3/200)`+
exp(−n2) + 1/24 + 1/24, so

∆(C0, C1) > 1− e−5000 −
(

3

200

)`
− exp(−n2)− 1

12
>

2

3
.

If X = N, then the statistical distance between C0 and C1 is at most 1/3 by Claim 8.7.
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