
Spatial Encryption Revisited:
From Delegatable Multiple Inner Product

Encryption and More

Huy Quoc Le1,2(�), Dung Hoang Duong1(�), Willy Susilo1(�) and Josef
Pieprzyk2,3(�)

1 Institute of Cybersecurity and Cryptology, School of Computing and Information
Technology, University of Wollongong, Northfields Avenue, Wollongong NSW 2522,

Australia.
qhl576@uowmail.edu.au, {hduong,wsusilo}@uow.edu.au,

2 CSIRO Data61, Sydney, NSW, Australia,
3 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland.

Josef.Pieprzyk@data61.csiro.au

Abstract. Spatial Encryption (SE), which involves encryption and de-
cryption with affine/vector objects, was introduced by Boneh and Ham-
burg at Asiacrypt 2008. Since the introduction, SE has been shown as
a versatile and elegant tool for implementing many other important
primitives such as (Hierarchical) Identity-based Encryption ((H)IBE),
Broadcast (H)IBE, Attribute-based Encryption, Forward-secure cryp-
tosystems.

In this paper, we revisit SE toward a more compact SE in the lattice
setting. In doing that, we introduce a novel primitive called Delegatable
Multiple Inner Product Encryption (DMIPE), which is a delegatable
generalization of Inner Product Encryption (IPE) but different from the
Hierarchical IPE (HIPE) (Okamoto and Takashima at Asiacrypt 2009).
We point out that DMIPE and SE are equivalent in the sense that there
are security-preserving conversions between them. As a proof of con-
cept, we then successfully instantiate a concrete DMIPE construction
relying on the hardness of the decisional learning with errors problem.
The DMIPE design in turn implies a more compact lattice-based SE
in terms of sizes, in comparison with SEs converted from HIPE (e.g.,
Xagawa’s HIPE at PKC 2013) using the framework by Chen at al. (De-
signs, Codes, and Cryptography, 2014). Furthermore, we show that SE
can also be used to implement the Allow-/Deny-list encryption, which
subsumes, e.g., puncturable encryption (Green and Miers at IEEE S&P
2015) among others.

Key words: spatial encryption, learning with errors, inner product encryp-
tion, delegatable multiple inner product encryption, hierarchical inner product
encryption, allow-/deny-list encryption, lattice evaluation, lattice trapdoors

1 Introduction

The notion of predicate encryption (PrE) introduced by Katz, Sahai and Waters
[31] generalizes identity-based encryption (IBE) [39], attribute-based encryption

2 H. Q. Le, D. H. Duong, W. Susilo, J. Pieprzyk

(ABE) [27] and hidden vector encryption (HVE) [12]. Roughly speaking, in PrE,
decryption keys and ciphertexts are associated with predicates and attributes,
respectively. One can consider a predicate as a function and an attribute as a
variable. Assume that one wants to decrypt a ciphertext ctx respective to an
attribute x, using a decryption key skf respective to a predicate f . Then, the
decryption is successful only if f(x) = 1 holds. Besides IBE, ABE and HVE, PrE
also covers some other classes of encryption such as spatial encryption (SE) [10],
for instance.

Spatial Encryption. SE was introduced by Boneh and Hamburg in their pa-
per [10] at Asiacrypt 2008 and then it was systematically investigated in the
Hamburg’s thesis [29]. SE is a subclass of PrE, in which predicates and at-
tributes are relative to affine/vector objects. In the case of SE involving affine
objects, we call it affine SE and in the case of SE involving vector objects–call
it linear SE. However, as we will show later, an affine SE can be transformed to
a linear SE, then it is sufficient to talk about linear SEs throughout this work.

In SE, encryption is done on an input pair of (plaintext, attribute), where
the latter is a vector or an affine point (called attribute vector from now on).
A decryption key is associated with a vector space or an affine space (called
predicate space hereafter). The decryption key allows to recover the plaintext if
and only if the attribute vector belongs to the predicate space. Given a space V
and its subspace W , it is required that one can delegate a decryption key skW
for W from a decryption key skV for V .

There exists also a variant of SE called doubly spatial encryption (DSE),
which is expected to be more expressive than SE. In DSE, attribute spaces (i.e.,
vector spaces or affine spaces) are needed for encryption rather than vectors.
Decryption is successful if and only if the intersection of the attribute and policy
spaces is not empty. Because of important applications of SE (and DSE) for
constructing other cryptographic primitives (that will be discussed further in
this work; now the readers can have a look at Figure 1 for the relation of SE
with some of them), SE and DSE have been the main topic of many research
works [10], [29], [45], [17], [18], [19].

1.1 Our Motivations

Our work is inspired by a wide range of possible applications of SE and DSE as
argued in [10] and [29]. However, the main driver behind our work is an attempt
to remove shortcomings of a generic SE construction via [18]. Furthermore, as
lattice-based cryptosystems are resistant against quantum adversaries, we pro-
pose a post-quantum lattice-based SE construction, which is more efficient than
other lattice-based ones such as those from [1], [44].

Applications of SE. SE can be used to build many other cryptographic prim-
itives such as (H)IBE, broadcast (H)IBE, and encryption schemes with forward
security (see [10], [29]). This is done by converting e.g., identities, time periods
into vectors/spaces compatible with SE. For more details, the reader is referred
to [10], [29]. Our further discussion is driven by the following questions.

Q1: “Can we use SE to implement other important cryptographic primi-
tives?”

We have discovered some new applications of SE. It turns out that we can use
SE to construct puncturable encryption (PE) [28], [41], DFPE [22] and their gen-

Spatial Encryption Revisited 3

Fig. 1: The relation of SE and other primitives. Here, the implying relation A→
B means that from A one can construct B.

eralization, the allow/deny-list encryption (ADE). ADE has also been mentioned
by Derler et al. in their work [22] and can also subsume other “predecessors”
such as IBE [39], HIBE [25], fs-PIBE [43], FuPE [21].

Roughly saying, ADE is an encryption framework endowed with a delegation
mechanism, that we call puncturing, on tags. Tags are classified into two lists,
allow and deny, which consists of positive and negative tags, respectively. A
positive tag allows decryption while a negative one does not. These tags, with
a varying quantity depending on case by case, are embedded into ciphertexts
as well as decryption keys with different rules. E.g., in PE, only negative tags
are punctured; while in DFPE, multiple positive tags and at most one positive
tag can be punctured, in any order. (We refer to [22, Table 1] for a summary
and comparison of ADE and its predecessors.) Generally, the main challenge in
designing of ADE is to ensure that positive puncturing and negative puncturing
on multiple tags can be done in any order. Note that so far there is neither
formal definition nor security notions for ADE. We fill this gap and provide a
formal definition of ADE (and its versions) as well as their security notions.

Lattice-based SE. There are many instantiations of SE in the literature (see
Table 1). Almost are based on intractability assumptions such as bilinear decision
Diffie-Hellman exponent (BDDHE) [10, 29], decisional bilinear Diffie-Hellman
(DBDH) [17,19,45], and decisional linear (DLIN) [17]. Some of them are provably
secure in the generic group model (GGM) [10], [29], while others – in the standard
model (SDM) [45], [17], [19] .

Recall that lattice-based cryptosystems are believed to enjoy post-quantum
(PQ) security. In contrast, cryptosystems whose security is based on intractabil-
ity of factorisation or discrete logarithm are breakable by quantum adversaries
[40]. With a rapid development of large-scale quantum computers4, it is imper-
ative to design cryptosystems, which are secure against quantum adversaries.
This leads us to the following question.

Q2: “Is it possible to design SE in the lattice setting?”

4 For instance, see at https://www.nature.com/articles/d41586-019-03213-z

4 H. Q. Le, D. H. Duong, W. Susilo, J. Pieprzyk

We found out that an answer to the question has already existed in the
literature. In fact, one can get a lattice-based SE using a generic construction
from the hierarchical inner product encryption (HIPE) given by Chen et al.
in [18]. The generic construction deploys two lattice-based SE schemes from [1]
and [44]. Security of both schemes is based on intractability of the learning with
errors (LWE) problem. Unfortunately, a such (lattice-based) SE construction is
not free from few weaknesses.

Table 1: (D)SE constructions

Literature From Assumption
Security
model

Selective (S)
/Adaptive (A)

PQ
security

Boneh,
Hamburg [10]

BDDHE GGM S & A 7

Hamburg [29] BDDHE GGM S 7

Chen, Wee [19] DBDH SDM S 7

Chen, Zhang,
Feng [17]

DLIN,
DBDH

SDM A 7

Zhou, Cao [45] DBDH SDM S 7

Abdalla, Caro,
Mochetti [1]

HIPE
via Chen

[18]
LWE SDM S X

Xagawa [44]
HIPE

via Chen
[18]

LWE SDM S X

Our work DMIPE LWE SDM S X

Shortcomings of Constructing SE from HIPE. The notion of inner prod-
uct encryption (IPE) is introduced by Katz, Sahai, and Waters [31]. IPE is a
also subclass of PrE and can be seen as a generalization of IBE, in which each
ciphertext and decryption key involve a vector defined over a finite field. A de-
cryption key can recover a plaintext from a ciphertext if the inner product of two
vectors is equal to zero. Hierarchical inner product encryption (HIPE) is then
introduced as an extension of IPE by Okamoto and Takashima [35]. In HIPE, a
list of attribute vectors is embedded into a ciphertext and another list of predi-
cate vectors – in a decryption key. To decrypt a plaintext, a complex collection
of requirements has to be satisfied.

We now briefly introduce HIPE to the reader. Let F be a field and let ∆(δ) :=
(δ; `1, · · · , `δ) be a tuple of positive integers, which is called a hierarchical format
of depth δ. For k ≤ δ, we consider Γ|k := Γ1 × · · · × Γk, where Γi := F`i . For

any ~V = (v1, · · · ,vk) ∈ Γ|k, a hierarchical predicate f~V (·) is defined as follows:

f~V (~X) = 1 for any ~X = (x1, · · · ,xt) ∈ Γ|t if and only if k ≤ t and 〈vi,xi〉 = 0,
for all i ∈ [k]. Informally, given ∆(δ)-HIPE. One encrypts a plaintext together

with a list of attribute vectors ~X and produces a decryption key together with
a list of predicate vectors ~V . The criteria for successful decryption is that the
hierarchical predicate f~V (~X) defined above is equal to 1.

Spatial Encryption Revisited 5

Chen et al. [18] have investigated a relation between SE and HIPE. They
show that we can construct a d-dimensional linear SE from ∆(d) := (d; d, · · · , d)-
HIPE (i.e., `1 = · · · = `d = d) and vice versa (but the dimension of SE and the
hierarchical format of HIPE might change). To construct SE from HIPE, the
authors change the “belong to” relation into the “orthogonal to” relation, i.e.

x ∈ V ⇔ 〈x,v〉 = 0 ∀v ∈ V ⊥,

where V ⊥ denotes the orthogonal complement of V . If we denote a basis of V ⊥

by B⊥(V), then this is equivalent to 〈x,v〉 = 0 for all vi ∈ B⊥(V). In order to

deploy HIPE for SE, we set ~X := (x, · · · ,x) and ~V := {vi : vi ∈ B⊥(V)} for
each x and V , respectively. Thanks to Linear Algebra (see Lemma 9 in Section
4) and the delegation capability of HIPE, one can perform delegation for SE.

The following shortcomings of the above construction can be identified:

– There is a single vector that is involved in SE encryption. Decryption keys
may involve a list of vectors. In contrast, HIPE encryption takes many vec-
tors. That’s why in a construction of SE from HIPE, one has to duplicate
the attribute vector of SE many times to fit the hierarchical format of HIPE.

– It is difficult, in general, to instantiate HIPE for a practical use because
of its complex structure. It is worth noting that there are only some other
lattice-based HIPE constructions (for instance these from Abdalla et al. [1]
and Xagawa [44]). Unfortunately, they are not efficient enough.

The above considerations lead us to the following question:

Q3: “Can we construct SE from an IPE-related primitive that is simpler
than HIPE?”

We give an affirmative answer to this question by introducing the new notion
of delegatable multiple inner product encryption (DMIPE). Syntax of DMIPE
is presented in Section 1.3.

1.2 Contributions

Below we list main results of our work.

– We introduce a novel primitives called delegatable multiple inner product
encryption (DMIPE). It is a natural extension of IPE. We give a novel design
of DMIPE using LWE. We prove that our design is selective payload-hiding
secure in the standard model.

– We show an equivalence between DMIPE and SE, which provides a generic
framework for construction of SE from DMIPE. As a result, we obtain a
lattice-based SE, which is more efficient (in term of sizes) than SEs con-
structed from HIPE. Conversely, we can also build DMIPE from SE. More-
over, the conversions between DMIPE and SE are security-preserving.

– We formally define the allow/deny-list encryption (ADE), which subsumes
some other important primitives, e.g., PE [28], FuPE [21], DFPE [22]. We
point out that two versions of ADE (and hence PE, FuPE, DFPE) that can
be easily built from SE under appropriate embeddings.

6 H. Q. Le, D. H. Duong, W. Susilo, J. Pieprzyk

1.3 Overview of Our Results.

DMIPE. The notion of DMIPE originates from IPE and is equipped with a
delegation mechanism for producing decryption keys. In particular, a DMIPE
ciphertext is connected to its attribute vector. A DMIPE decryption key can
be generated from either the master secret key or alternatively from other
secret keys by adding more vectors to the list of predicate vectors. More for-
mally, DMIPE is defined by five main algorithms DMIPE.Setup, DMIPE.Derive,
DMIPE.Del, DMIPE.Enc, DMIPE.Dec. Given a vector space D that supports the
inner product operation (e.g., D = Zdq for q prime). For a security parameter
λ and a setup parameter sp, the setup algorithm DMIPE.Setup(λ, sp) generates
public parameters pp and a master secret key msk. The key generation algo-
rithm DMIPE.Derive(pp,msk, ~V) takes public parameters pp, a master secret key

msk and a list ~V ⊂ D of vectors. It outputs a secret key sk~V for ~V . For pub-

lic parameters pp, a secret key sk~V for ~V and a predicate vector v ∈ D, the
delegation algorithm DMIPE.Del(pp, sk~V ,v) returns a secret key for sk~V ′ where
~V ′ = ~V ∪ {v}. The encryption algorithm DMIPE.Enc(pp, µ,x) outputs a cipher-
text ctx for public parameters pp, a message/plaintext µ and an attribute vector
x ∈ D. The decryption algorithm DMIPE.Enc(pp, sk~V , ctx) either recovers the

plaintext µ if 〈x,v〉 = 0 for all v ∈ ~V or returns ⊥.

There is an important requirement for predicate vectors ~V = {v1, · · · ,vk}.
They have to be linearly independent, i.e. there is no vector that is a linear
combination of two or more other vectors from ~V . The requirement is necessary
to ensure that there is no redundant vector in ~V when checking decryption
conditions. Besides, delegation of a decryption key for ~V ∪ v is possible if v is
linearly independent from the existing predicate vectors in ~V .

Let us illustrate a possible application of DMIPE. Consider a company, where
each officer/worker has a secret key allowing him/her to access internal docu-
ments. Assume that access is restricted depending on his/her role/department
in the company. To this ends, each document is encrypted together with an at-
tribute vector and each person in the company is issued with a predicate vector.
A private key for each person corresponds to a list of predicate vectors. Further-
more, a manager can use her/his key to generate a key for subordinates using
delegation.

In the work we show that DMIPE can be used to implement other primitives,
e.g., SE, which in turn can be used to implement other primitives as previously
mentioned. We argue that DMIPE is a generalization of IPE and it is more
natural than HIPE. Compared to HIPE, decryption hierarchy in DMIPE is more
flexible for delegation. (See Table 2 for a quantitative comparison of IPE, HIPE
and DMIPE and Figure 1 for an intuitive illustration of their relation).

Lattice-based DMIPE. At a high level description, our lattice-based DMIPE
design exploits the lattice trapdoor mechanism and the lattice evaluation for
inner product functions (see Lemma 1 and Lemma 2 for informal statements).
First, we prepare by defining the inner product functions: For v ∈ Zdq , an inner
product function indexed by a vector v is defined as fv(x) = 〈v,x〉 (mod q), for
all x ∈ Zdq .

Lemma 1 (Lattice Trapdoors, informal). Given a matrix A ∈ Zn×mq . There

exists a procedure A−1σ that samples A−1σ (U) ∼ (DZm,σ)m
′

in poly(n,m, log q,m′)-

Spatial Encryption Revisited 7

Table 2: Comparison of IPE, HIPE and DMIPE
IPE HIPE DMIPE

Attribute vectors 1 d 1
Predicate vectors 1 ≤ d ≥ 1

Delegation? No Yes Yes

Dimension of vectors same

not necessarily same,
depending on each

vector’s level in
the hierarchical format

same

time for any U ∈ Zn×m′q conditioned on A · A−1σ (U) = U. One can always
generate such a pair (A,A−1σ) by calling the TrapGen algorithm. Furthermore,
using A−1σ , one can compute [A|B]−1σ , or [B|A]−1σ for any B. We call A−1σ the
σ-trapdoor for A.

Lemma 2 (Lattice Evaluation for Inner Product Functions, informal).
Let n, q,m = ndlog qe be integers. There exists an efficient deterministic algo-
rithm EvalFIP(fv,B) that, on input a function fv and a matrix B ∈ Zn×mdq ,

outputs a matrix Hv ∈ {0, 1}md×m such that ‖Hv‖max ≤ 1 and that for every
x ∈ Zdq , [B± x⊗G]Hv = BHv ± 〈v,x〉 ·G (mod q).

Now, we sketch the lattice-based DMIPE construction. For appropriately chosen
parameters n,m, d, q, σ0, a public key (included in the public parameters pp)

consists of matrices B
$←− Zn×dmq , U

$←− Zn×mq and A ∈ Zn×mq , which is generated

together with a σ0-trapdoor A−1σ0
. The trapdoor acts as the master secret key.

To generate a key for a list ~V of k predicate vectors, we compute Bvi := BHvi

for each vi ∈ ~V . Here, we use the public evaluation Hvi ← EvalFIP(fvi ,B)
from Lemma 2. The secret key sk~V is the σ0-trapdoor A−1~V ,σ0

for A~V computed

using the master secret key A−1σ0
via Lemma 7, where A~V := [A|Bv1

| · · · |Bvk].

Regarding delegation, given a secret key sk~V := A−1~V ,σ0
, one can update it to get

a secret key for ~V ′ := ~V ∪{vk+1} for any vk+1. This can be done by generating a
trapdoor A−1~V ′,σ0

for A~V ′ = [A~V |Bvk+1
] from A−1~V ,σ0

. Again, Bvk+1
is computed

by evaluating (fvk+1
, B) using EvalFIP.

Encryption on an attribute vector x employs the dual Regev’s style to pro-
duce a ciphertext ctx := (cin, cmid, cout), in which cmid := s>(B − x ⊗ G) +

e>inR ∈ Zmdq . Here s
$←− Znq is an LWE secret, ein ← χm is an LWE error, and

R
$←− {−1, 0, 1}m×md is a high-entropy matrix. For decrypting a ciphertext ctx

using a secret key sk~V , we again exploit Lemma 2 to compute cvi := cmidHvi

for all vi ∈ ~V . Putting cvi ’s, cin, and cout together allows us to recover the un-

derlying plaintext if 〈x,vi〉 = 0 (mod q) for all vi ∈ ~V . Otherwise, decryption
fails.

Equivalence of DMIPE and SE. We prove that DMIPE and SE are equiv-
alent in the sense that we can establish security-preserving conversions between
them. In particular, we can use DMIPE to construct SE, where SE inherits se-
curity from DMIPE and vice versa. It also means that we can get a lattice-based
SE from a lattice-based DMIPE. This way, our (d-dimensional) SE construction

8 H. Q. Le, D. H. Duong, W. Susilo, J. Pieprzyk

is more efficient, in terms of sizes, than SE obtained from ∆(d)-HIPEs [1,44], ac-
cording to the generic framework of Chen et al. [18]. Table 3 compares different
lattice-based SEs.

Table 3: Comparison of lattice-based d-dimensional SEs

d-dim.
SE from

pk-size
(` := dlogr qe)

msk-size
(` := dlogr qe)

sk-size
(k predicate

vectors)

ct-size
(h attribute

vectors,
m-bit message)

Abdalla et al.
[1]

(∆(d)-HIPE)

(d2(`+ 1) · Zn×mq

+2 · Zn×mq
1 ·Dm×m

Z 1 ·Dkm×m
Z

(hd(`+ 1)) · Zmq
+2 · Zmq

Xagawa
[44]

(∆(d)-HIPE)

(d2 + d) · Zn×n`q

+2 · Zn×mlq
1 ·D(m−n`)×n`

Z
1 ·D(m+(2k−1)n`)×m

Z
+1 ·D(m+(2k−1)n`)×nk

Z

(h− 1 + hd) · Zn`q
+2 · Zmq

Ours
(DMIPE)

(d+ 2) · Zn×mq 1 ·Dm×m
Z 1 ·Dkm×m

Z (d+ 2) · Zmq

Security Notions of DMIPE and SE. There are several security notions for
DMIPE and SE, which are the same as for PrE. First, we recap security notions
for PrE as introduced in the work [31]. Then, we discuss notions that are relevant
for DMIPE and SE only.

S1. Payload-hiding. It is the most basic security notion for PrE. It ensures
that a ciphertext leaks no information about the underlying plaintext (but
attributes can be revealed). In the challenge phase, an adversary must submit
an attribute, say x∗ (together with two plaintexts µ∗0, µ

∗
1 of the same length).

Any key queries related to predicate f subject to the restriction f(x∗) = 0.
S2. Attribute-hiding. This security notion is stronger than payload-hiding.

It requires from ciphertext to leak no information about either plaintext
or attached attributes. When challenged, an adversary must submit two
attributes x∗0,x

∗
1 (together with two plaintexts µ∗0, µ

∗
1 of the same length).

Any key queries related to predicate f are subject to the restriction that
f(x∗0) = f(x∗1). If there is a query related to some predicate f such that
f(x∗0) = f(x∗1) = 1, then it is required that µ∗0 = µ∗1. There is an intermediate
notion called weak attribute-hiding [4]. This notion requires that f(x∗0) =
0 ∧ f(x∗1) = 0 for any key query on predicates f ’s.

S3. Selective security. For this notion, an adversary must commit to its target
attribute(s) ahead of time before seeing any keys.

S4. Adaptive (full) security. For this notion, an adversary does not have to
commit to its target attribute(s) until the challenge phase starts.

We can combine S1/S2 with S3/S4 notions and get the following four security
notions for PrE (and hence DMIPE, SE and even ADE): selective payload-hiding,
selective attribute-hiding, adaptive payload-hiding, and adaptive attribute-hiding.
We stress that in this work, we concentrate on the selective payload-hiding. Note
that our lattice-based DMIPE actually enjoys the selective payload-hiding se-

Spatial Encryption Revisited 9

curity. This is the result of our assumption that the decisional LWE problem is
intractable.

ADE and the Construction from SE. ADE is parametrized by a security
parameter λ, a maximum number of negative tags per ciphertext d = d(λ) and
a maximum number of positive tags a = a(λ). Now, consider an allow list AL
and a deny list DL. AL consists of positive tags, while DL holds negative tags.

ADE is defined by its five algorithms, namely: key generation, (pp, sk∅∅) ←
ADE.Gen(1λ, 1a, 1d); positive puncturing, sk

AL′1∪AL
′
2

DL′ ← ADE.Ppun(pp, sk
AL′1
DL′ , AL

′
2,

k), here k is only used in the k-tADE variant; negative puncturing, skAL
′

DL′1∪DL′2 ←
ADE.Npun(pp, skAL

′

DL′1
, DL′2); encryption, ctALDL ← ADE.Enc(pp, µ,AL,DL); and

decryption, µ/⊥ ← ADE.Dec(pp, skAL
′

DL′ , ct
AL
DL). Note that, positive puncturing

and negative puncturing can be done in any order.
We consider three versions of ADE: (i) standard ADE (sADE); (ii) inclu-

sive ADE (iADE) and (iii) k-threshold ADE (k-tADE). For all three ADE ver-
sions, it is required that the initial key sk∅∅ can successfully decrypt any cipher-

texts. However, when punctured, in order for skAL
′

DL′ to be able to successfully
decrypt ctALDL): for sADE, it requires ((AL = AL′) ∧ (DL ∩ DL′ = ∅)); for
iADE, it requires ((AL′ ⊆ AL) ∧ (DL ∩ DL′ = ∅)); for k-tADE, it requires
((|AL ∩AL′| ≥ k) ∧ (DL ∩DL′ = ∅)).

We can construct sADE and iADE from SE by applying the following encod-
ings. For key generation, an allow list AL′ = {p1, · · · , pk} is associated with space
WAL′ := {(p1, · · · , pk, xk+1, · · · , xa)> : xi ∈ Zq} ⊆ Zaq ; while a deny list DL′, is

connected to space WDL′ := span{vx : x ∈ DL′′}. Here, DL′′ := T (−) \DL′ and
vx := (1, x, x2, · · · , x2d−1) is a Vandermonde vector. The predicate space related

to skAL
′

DL′ is Wkey := WAL′×WDL′ . For encryption, allow list AL = {p1, · · · , pk} is
sticky to vector xAL := (p1, · · · , pk, 0, · · · , 0) ∈ Zaq ; while deny list DL is trans-

lated into vector xDL :=
∑
x∈DL vx ∈ Z2d

q . The attribute vector corresponding

to ctALDL is xct := (xAL,xDL) ∈ Za+2d
q . Note that, spaces mentioned here are pos-

sibly affine ones. More details are given in Section 7. However, how to translate
k-tADE to SE is an open problem.

1.4 Related Works

Katz, Sahai, and Waters [31] have proposed IPE together with the generalized
concept of PrE. They have designed a PrE scheme for inner products over ZN
for some large integer N . They have introduced the notion of payload-hiding and
attribute-hiding for generic predicates as well as for the inner product predicate.

Okamoto and Takashima [35] have introduced the concept of hierarchical
predicate encryption for inner products (HPE), which is called HIPE in this
work. They have deployed the notion of dual pairing vector spaces (DPVS)
to design their HIPE, whose security is proven assuming intractability of the
decisional subspace problem (DSP) [34]. As mentioned above, the first lattice-
based HIPE has been constructed by Abdalla et al. [1]. The construction has
been improved by Xagawa [44].

Agrawal et al. [4] have proposed the first lattice-based IPE. The scheme has
been used by Abdalla et al. [1] to construct their lattice-based HIPE. Security
of both IPE and HIPE is proven assuming intractability of the decisional LWE

10 H. Q. Le, D. H. Duong, W. Susilo, J. Pieprzyk

problem. In particular, IPE security is weakly attribute hiding [4]. Unfortunately,
both IPE and HIPE are impractical (see [1, 4]).

Lattice evaluation algorithms have been proposed and developed in a long
sequence of works [3], [33] [24], [7] [9], with many modifications and abstractions
(for example, see [26], [15]). The technique is being used to realize many impor-
tant primitives for lattice manipulation. The reader is referred to works [11], [14],
[37], [41] for details. Recently, Tsabary [42] has exploited lattice evaluation algo-
rithms together with constrained pseudorandom functions (CPRF) to construct
a fully secure ABE for t-CNF from LWE. Katsumata et al. [30] have used the
techniques from [42] to relax the “conforming” condition of CPRF. Katsumata
et al. have taken advantage of a specific linearity property in lattice evaluation
algorithms. As the result, they have been able to construct the first LWE-based
payload-hiding adaptively secure IPE over Z (but can be converted to one over
Zq for a polynomial-size q). We believe that it is possible to employ the work [30]
to construct a adaptively secure DMIPE in the lattice setting. It is clear, how-
ever, that design of a delegation mechanism might be the main challenge in this
case. We leave this problem for a future research.

1.5 Organisation

The rest of the paper is organized as follows. Section 2 presents preliminaries, in
particular, it gives the syntax and security of SE together with a mathematical
background necessary for the reader to follow our lattice-based DMIPE design.
Section 3 introduces a novel primitive DMIPE. Section 4 proposes a generic SE
construction from DMIPE. We then present a concrete lattice-based DMIPE
design in Section 5, whose security depends on intractability of the decision
variant of the learning with errors problem. The section also details our security
proofs and gives a guide for parameter selection. Section 6 gives the generic
reduction from SE to DMIPE. By combining results of both Sections 4 and 6,
it is possible to establish the equivalence between SE and DMIPE. In Section
7, we formally state the definition and security notions for ADE and then show
how to translate some of ADE variants to SE. Finally, Section 8 concludes the
work and discusses possible future research directions.

2 Preliminaries

Notation. Given a discrete set S, we denote its cardinality by |S|. Given a
positive integer n, [n] stands for the set {1, · · · , n}. We write W v V for the fact
that W is an (affine or vector) subspace of V . The notation A ⊗B is a tensor
product of two matrices A and B. Throughout this work, a vector is represented
by a small bold-face letter, e.g., x and in the column form unless stated otherwise.
A matrix is written as a capital bold-face letter, e.g., B. We write b> (resp.,
A>) to denote the transpose of a vector b (resp., a matrix A). The notation

S̃ := [̃s1| · · · |̃sk] stands for the Gram-Schmidt (GS) orthogonalisation of S :=
[s1| · · · |sk]. The notation U(X) means the uniform distribution over the set X.
We sometimes write A ∼ χ to say A follows the distribution χ, while A ← χ

is used to say that A is sampled from the distribution χ. The notation A
negl∼ χ

means that the distribution of A is negligibly close to χ. A
$←− X says that A

Spatial Encryption Revisited 11

is sampled uniformly at random from the set X. A function negligible in n is
denoted as negl(n), while a function which is a polynomial in n is denoted as
poly(n). Finally, all logarithms are for base 2.

2.1 Framework of Spatial Encryption

Boneh and Hamburg [10, 29] have introduced the Spatial Encryption (SE). SE
belongs to PrE ans also to a bigger class called generalized identity-based encryp-
tion (GIBE). Cryptographic operations of GIBE are controlled by role and policy
components. Encryption takes a plaintext together with a role and produces a
ciphertext. Decryption key is derived using a policy. If the role and policy fulfil a
certain condition, then a plaintext hidden in a ciphertext can be recovered. Oth-
erwise, decryption fails. Consider SE, then a role is an affine (or vector) subspace
V of the top space T. A policy is an affine point (or a vector) v that belongs
to the top space T. The condition v ∈ V has to hold for successful decryption.
Additionally, SE allows to delegate decryption. This means that a decryption
key for a subspace V1 v T should allow to get a decryption key for V2 v V1. If
roles and policies are affine points/subspaces, we call such SE affine. It they are
vectors/subspaces, we call it linear. The dimension of SE is the corresponding
dimension of the top space.

Syntax. Let us recall the syntax of SE. Formally, SE consists of five main
algorithms SE.Setup, SE.Derive, SE.Del, SE.Enc, SE.Dec described as follows:

(pp,msk)← SE.Setup(1λ, sp): The algorithm takes as input a security param-
eter λ and setup parameters sp. It returns public parameters pp which im-
plicitly defined a top space T and a master secret key msk. The master key
msk can be seen as the secret key skT (i.e., msk = skT) for the top space T.

skV ← SE.Derive(pp,msk, V): The algorithm takes as input the master secret
key msk and a subspace V . It outputs the secret key skV for V .

skV2
← SE.Del(pp, skV1

, V2): The algorithm takes as input the secret key skV1

for the space V1. It outputs the secret key skV2 for V2, where V2 v V1.
ctx ← SE.Enc(pp,x, µ): The encryption algorithm encrypts a message µ under

a point/vector x. It outputs a ciphertext ctx.
µ/ ⊥← SE.Dec(pp, ctx, skV): The decryption algorithm takes as input a secret

key skV and a ciphertext ctx. Decryption succeeds if x ∈ V and it outputs
the plaintext µ. Otherwise, it fails and returns ⊥.

Correctness. It requires that for all λ, sp, (pp,msk)← SE.Setup(1λ, sp)), ctx ←
SE.Enc(pp,x, µ), skV ← SE.Del(pp, skV ′ , V) (for some V ′ such that V v V ′) or
skV ← SE.Derive(pp,msk),

– if x ∈ V then Pr[SE.Dec(pp, skV , ctx) = µ] ≥ 1− negl(λ);
– otherwise, Pr[SE.Dec(pp, skV , ctx) = µ] < negl(λ).

We also require that the distribution of secret keys skV for any subspace V must
be the same. It should depend neither on how a key is produced (i.e. by either
SE.Derive or SE.Del) nor on what a path is (e.g., the direct path from the top
space or the path of delegation from another subspace).

Security Notions for SE. As discussed before, SE security notions include
selective/adaptive payload/attribute-hiding. However, we only formally define

12 H. Q. Le, D. H. Duong, W. Susilo, J. Pieprzyk

SEsel,ATK
payload,A Game (ATK ∈ {CPA,CCA}) :

• x∗ ← A(1λ, sp);

• (pp,msk)← SE.Setup(1λ, sp), VKList← ∅; // VKList is to store (V, skV)

• (µ∗0, µ
∗
1)← AKQ(·),KD(·,·),DQ(·,·)(pp);

• b $←− {0, 1}, ct∗x∗ ← SE.Enc(pp,x∗, µ∗b);

• b′ ← AKQ(·),KD(·,·),DQ(·,·)(pp, ct∗x∗). // Restrictions: Not allowed DQ(V, ct∗x∗)
with x∗ ∈ V .

Queried Oracles:

• KQ(V) (allowed only if x∗ /∈ V): Take skV from (V, skV) ∈ VKList (if exists there).
Otherwise, run skV ← SE.Derive(pp,msk, V). Update VKList ← VKList ∪
{(V, skV)}.

• KD(V1, V2) (allowed only if V2 v V1 ∧ x∗ /∈ V1): Take skV1 from (V1, skV1) ∈ VKList
(if exists there). Otherwise, run skV1 ← SE.Derive(pp,msk, V1) and return
skV2 ← SE.Del(pp, skV1 , V2). Update VKList ← VKList ∪ {(Vi, skVi)} for i = 1, 2.

• DQ(V, ctx) (allowed only if ATK = CCA): Take skV from (V, skV) ∈ VKList (if
exists there). Otherwise, run skV ← SE.Derive(pp,msk, V), then return the
output of SE.Dec(pp, ctx, skV). Update VKList ← VKList ∪ {(V, skV)}.

Fig. 2: Selective payload-hiding security game for SE

the selective payload-hiding security for SE – see Definition 1 and the game
SEsel, ATK

payload,A in Figure 2. Note that ATK ∈ {CPA,CCA}, where CPA and CCA
stand for chosen plaintext and chosen ciphertext attacks, respectively.

Definition 1 (Selective Payload-hiding Security for SE). SE is selective

payload-hiding secure if the advantage of the adversary playing in the SEsel,ATK
payload,A

game is negligible, i.e., Advpayload,ATKSE,A,sel := |Pr[b′ = b]− 1/2| = negl(λ).

2.2 Lattices, Gaussians, Trapdoors

Norms. In this paper, all norms are the max-absolute-value norm ‖·‖max
5 unless

otherwise stated. The norm returns the maximum absolute value of the entries of
an input vector/matrix. For example, for a vector a = (a1, · · · , an) and a matrix

A = (ai,j)
j∈[m]
i∈[n] , ‖a‖max := maxi∈[n] |ai| and ‖A‖max := maxi∈[n],j∈[m] |ai,j |.

The following lemma is the well-known result regarding the max-absolute-value
norm.

Lemma 3. Let e1, e2, e3 be vectors of dimensions m1,m2,m3 ∈ N, respectively.
Let A1,A2 be matrices of appropriate dimensions. Then,

1. ‖e>1 A1‖max ≤ m1‖e>1 ‖max · ‖A1‖max.
2. ‖(e>2 |e>3)A2‖max ≤ (m2‖e>2 ‖max +m3‖e>3 ‖max) · ‖A2‖max.

Lattices. An integer lattice can always be represented as a set L = L(B) :=

{Bx : x ∈ Zm} ⊆ Zn, where B ∈ Zn×m is a basis for the lattice L. For A
$←−

Zn×m, u ∈ Znq and U ∈ Zn×kq , we focus on the following lattices: Λ⊥q (A) :=

{e ∈ Zm | Ae = 0 (mod q)} , Λu
q (A) := {e ∈ Zm|Ae = u (mod q)} and ΛU

q (A) :={
R ∈ Zm×k|AR = U (mod q)

}
. Note that, Zm for any m ∈ N is also a lattice.

5 Some papers (e.g., [15], [42], [30]) denote this max-absolute-value norm by ‖ · ‖∞.

Spatial Encryption Revisited 13

Distributions. We sample lattice vectors using a discrete Gaussian distribution
to keep their size sufficiently short. Given n ≥ 1, a lattice L ⊆ Zn, a vector
v ∈ Rn, a real number σ > 0. Then, a discrete Gaussian distribution over L
centred at v with (Gaussian) parameter σ is defined by DL,σ,v(x) =

ρσ,v(x)
ρσ,v(L) for

all x ∈ L, where ρσ,v(x) = exp(−π‖x− v‖2/σ2) and ρσ,v(L) :=
∑

x∈L ρσ,v(x).
In case v = 0, we just write DL,σ. The following lemma says how short a vector
sampled via a discrete Gaussian distribution (over Z) is.

Lemma 4 ([32, Lemma 4.4]). Pr[|x| > kσ : x← DZ,σ] ≤ 2 exp(−k
2

2).

Note that, in Lemma 4, if we set k = 12, then Pr[|x| ≤ 12σ : x ← DZ,σ] ≥
1− 2 exp(−72) ≈ 1− 2−100. We also consider the (B, ε)-bounded distributions χ

supported over Z which is required that Pr[|x| > B : x← χ] ≤ ε. In this sense,
χ = DZ,σ is a (12σ, 2−100)-bounded distribution.

Randomness Extraction. The following leftover hash lemma enables us to re-
place a random matrix by a pseudo-random one in hybrid games for our security
proofs.

Lemma 5 (Leftover Hash Lemma, [2, Lemma 13]). Given m,n, q are pos-
itive integers such that m > (n + 1) log q + ω(log n), k = poly(n), q > 2 is

a prime, and that A
$←− Zn×mq and B

$←− Zn×kq . Then, the joint distributions

(A,AR, e>R) and (A,B, e>R) are statistically close to each other for any

matrix R
$←− {−1, 0, 1}m×k and for all vectors e ∈ Zmq .

Decisional Variant of Learning with Errors (DLWE). DLWE is defined
below and is used as our intractability assumption to prove security of our
DMIPE design.

Definition 2 (DLWE, [38]). An instance of the decisional learning with er-
rors problem (n,m, q, χ)-DLWE is parametrized by positive integers n,m, a prime
q and a distribution χ over Zq. The advantage of a probabilistic polynomial
time (PPT) distinguisher S in solving the (n,m, q, χ)-DLWE problem is defined
by the difference of probabilities in distinguishing the two joint distributions

(A, s>A + e>) and (A, c>), where A
$←− Zn×mq , s

$←− Znq , e ← χm, c
$←− Zmq .

Formally, Adv
(n,m,q,χ)−DLWE
S := |Pr[S(A, s>A + e>) = 1]− Pr[S(A, c>) = 1]|.

The (n,m, q, χ)-DLWE assumption holds if Adv
(n,m,q,χ)−DLWE
S ≤ negl(n) for all

S.

The hardness of the DLWE problem is guaranteed by a quantum reduction [38]
or classical reduction [36], [13] to the worst-case GapSVP problem to within
a factor of nO(d) if we take χ is (B, ε)-bounded, with B = q/nd; see [9] for
discussion. We restate Lemma 6 followed from [15] for choosing parameters in
Section 5.

Lemma 6 (DLWE Hardness, [15, Corollary 3.2]). Given the (n,m, q, χ)-
DLWE problem, then it is at least as hard as the classical GapSVPγ and the
quantum SIVPγ , where q = q(n) ≤ 2n, m = Θ(n log q) = poly(n), χ = χ(n)
such that χ is a (B, ε)-bounded for some B = B(n), q/B ≥ 2n

ε

and γ = 2Ω(nε).

14 H. Q. Le, D. H. Duong, W. Susilo, J. Pieprzyk

Gadget Matrix. Let n,m, q be positive integers, and m ≥ ndlog qe. The gadget
matrix G ∈ Zn×mq is defined by taking the tensor product In⊗(1, 2, · · · , 2dlog qe−1)
then padding (m− ndlog qe) zero columns. In addition, for any k ∈ N, there ex-
ists an efficient deterministic algorithm G−1 : Zn×kq → {0, 1}m×k such that for

any matrix A ∈ Zn×kq , G ·G−1(A) = A.

Lattice Trapdoors. We follow the works [15], [42], [30]. In particular, let n,m, q
be positive integers and consider a matrix A ∈ Zn×mq . For any positive integer

m′ and any matrix U (including zero matrices) in Zn×m′q , we denote by A−1σ (U)

a random variable that is drawn from a discrete Gaussian distribution (DZm,σ)m
′

provided A · A−1σ (U) = U. Now, a σ-trapdoor is defined as a procedure that
enables us to sample A−1σ (U) in polynomial time in n,m, log q,m′ for any U.
With a slight notational abuse, we also take A−1σ to denote the σ-trapdoor for
A. In particular, it is shown in [33] that the gadget matrix G has a publicly
known constant trapdoor. In other works, it is often denoted as TG ∈ Zm×m.
In our work, we denote it as G−1O(1). We briefly summarise some standard results
and algorithms for handling lattice trapdoors that we use in our design. The
writing style we use follows [15], [42], [30].

Lemma 7 ([5], [23], [8], [2], [16], [33]). The following facts hold for lattice
trapdoors:

1. Let n,m, q be positive integers where m = O(n log q). There is an efficient
algorithm TrapGen that takes (n,m, q) as input to generate a matrix A ∈
Zn×mq together with its trapdoor A−1σ0

satisfying that A
negl∼ U(Zn×mq) with

σ0 = ω(n log q log n).

2. Given a trapdoor A−1σ1
, one can compute A−1σ2

for any σ2 ≥ σ1.

3. Given a trapdoor A−1σ , one can compute [A|B]−1σ , [B|A]−1σ for any matrix
B having the same number of rows as A.

4. Given the gadget matrix G ∈ Zn×mq defined above, using its trapdoor G−1O(1)

one can compute the trapdoor [A|AR + G]−1σ for all A ∈ Zn×mq and R ∈
Zn×m′ with m′ > ndlog qe for σ = m · ‖R‖max · ω(

√
logm).

5. For a trapdoor A−1σ1
and for any U ∈ Zn×m′q , by Lemma 4, Pr[‖A−1σ1

(U)‖max ≤
12σ : x← DZ,σ] ≥ 1− 2−100.

2.3 Lattice Evaluation for Inner Product Functions

Boneh et al. [9] have introduced algorithms that allow to evaluate unbounded
fan-in arithmetic circuits of a polynomial depth. This technique has arisen from
the sequence of works by Miciancio and Peikert [33], Gentry et al. [24] and Boneh
et al. [9]. A further progress is due to works by Brakerski and Vaikuntanathan
[15], Brakerski et al. [14] and Tsabary [42]. Note that the works [15], [14], [42]
consider binary functions, i.e., f : {0, 1}∗ → {0, 1}∗ rather than functions over
Zq.

In this work, we only focus on a family of inner product functions defined
over Zq. Specifically, for every x ∈ Zdq , an inner product function fv : Znq → Zq is

indexed by a vector v ∈ Zdq and is defined as fv(x) := 〈v,x〉 (mod q). Thus, [42,
Theorem 2], for example, is not suitable for our work. Besides, we cannot use the

Spatial Encryption Revisited 15

norm bound of Ĥ and H as in [42, Theorem 2] since they are quite large. Recall
that inner product functions defined over Zq can be represented as an addition
gate [9, Section 4.2] whose depth is ` = 1. The following lemma is sufficient for
our purpose.

Lemma 8 (Evaluation for Inner Product Functions). There exist an ef-
ficient deterministic algorithm EvalFIP such that for all n, q, d ∈ N and m =
ndlog qe, for any inner product function fv : Zdq → Zq indicated by v ∈ Zdq ,

and for any matrix B ∈ Zn×mdq , it outputs a matrix H ∈ {0, 1}md×m ←
EvalFIP(fv,B), satisfying that ‖H‖max ≤ 1 and that for every x ∈ Zdq ,

[B± x⊗G]H = BH± 〈v,x〉 ·G (mod q).

Proof. We give such a construction of H, which in turn proves the existence of
the algorithm EvalFIP. Assume that v = (v1, · · · , vd) ∈ Zdq . For i ∈ [d], let Hi :=

G−1(viG) ∈ {0, 1}m×m. Note that, GHi = viG. Now just let H :=

H1

...
Hd

 ∈
{0, 1}md×m then (x⊗G)H =

∑d
i=1 xiG(G−1(viG)) =

∑d
i=1 xiviG = 〈v,x〉 ·G.

Therefore, [B±x⊗G]H = BH±〈v,x〉 ·G (mod q). Furthermore, ‖H‖max ≤ 1
as H ∈ {0, 1}md×m. ut

3 Delegatable Multiple Inner Product Encryption

In this section, we present the syntax and security notions for DMIPE. For
DMIPE, a ciphertext is produced together with a d-dimensional vector. We call
it ciphertext vector, or attribute vector. A secret key contains a list of one or
multiple vectors of dimension d. We call them key vectors or predicate vectors.
All vectors are supposed to belong to the same domain (space) D. The domain
supports typical or symbolic inner product operations. The operation is defined
as 〈x,v〉 = x1v1 + · · ·xdvd ∈ D for x := (x1, · · · , xd), v := (v1, · · · , vd) ∈ Dd.
Note that D can be Z or even Zq. As we mentioned in Section 1.3, the set

of predicate vectors ~V = {v1, · · · ,vk} embedded in a decryption key is always
linearly independent. This requirement is natural because otherwise some vectors
are redundant. Moreover, this guarantees that the delegation algorithm is well-
defined in the following sense. A delegated decryption key for ~V ∪v can only be
issued by someone who has a secret key for ~V and v is linearly independent of
the existing predicate vectors from ~V .

Syntax of DMIPE. A DMIPE consists of the five algorithms DMIPE.Setup,
DMIPE.Derive, DMIPE.Del, DMIPE.Enc and DMIPE.Dec. They are formally de-
fined below.

(pp,msk)← DMIPE.Setup(1λ, sp): The algorithm takes as input a security pa-
rameter λ and a setup parameters sp. It returns public parameters pp and a
master secret key msk.

sk~V ← DMIPE.Derive(pp,msk, ~V): The algorithm takes a master secret key

msk and a list of vector ~V = {v1, · · · ,vk}. It returns a secret key sk~V for ~V .

16 H. Q. Le, D. H. Duong, W. Susilo, J. Pieprzyk

⊥ /sk~V2
← DMIPE.Del(pp, sk~V1

,vk+1): The algorithm takes the secret key sk~V1

for ~V1 = {v1, · · · ,vk} and returns a secret key sk~V2
for ~V2 := ~V1 ∪ {vk+1}.

If vk+1 is not linearly independent of ~V , then it returns ⊥.
ctx ← DMIPE.Enc(pp, µ,x): The algorithm encrypts a message µ under a vec-

tor x and produces a ciphertext ctx.
⊥/µ← DMIPE.Dec(pp, sk~V , ctx): The algorithm decrypts a ciphertext ctx us-

ing a secret key sk~V . It is successful if ~V · x = 0 (i.e., 〈vi,x〉 = 0 for all

vi ∈ ~V). If the condition does not hold, it fails and returns ⊥.

Correctness of DMIPE. It requires that:
For all λ, sp, (pp,msk) ← DMIPE.Setup(1λ, sp), ctx ← DMIPE.Enc(pp, µ,x),

sk~V ← DMIPE.Del(pp, sk~V ′ ,v) (where ~V = ~V ′∪{v}) or sk~V ← DMIPE.Derive(pp,

msk, ~V),

– if ~V · x = 0 then Pr[DMIPE.Dec(pp, sk~V , ctx) = µ] ≥ 1− negl(λ);
– otherwise, Pr[DMIPE.Dec(pp, sk~V , ctx) = µ] < negl(λ).

Security Notions of DMIPE. Same as SE, we only consider selective payload-
hiding security for DMIPE. Definiton 3 and Figure 3 together describe our se-
curity notion.

Definition 3. DMIPE is selective payload-hiding secure if the advantage of the
adversary playing in the DMIPEsel,ATK

payload,A game (in Figure 3) is negligible, i.e.,

Advpayload,ATKDMIPE,A,sel := |Pr[b′ = b]− 1/2| = negl(λ).

4 Generic SE Construction from DMIPE

We only focus on a linear SE, where components are vectors and vector subspaces
over some field F, e.g., F = Zq for q prime. Note that, we can always embed a
d-dimensional affine SE into a (d + 1)-dimensional linear SE as shown below.
First, we recap some notions in the affine/linear algebra.

4.1 Selected Facts from Affine/Linear Algebra

Let F be a field. A d-dimensional vector subspace V v Fd can be represented
as V := span(M) = {Mx : x ∈ Fm} for some x ∈ Fm, where M ∈ Fd×m is a
basis for V . Note that all rows of M are linearly independent. A d-dimensional
affine subspace W of Fd can be represented as W = y + span(M) = {y +
Mx : x ∈ Fm} for some y ∈ Fd,M ∈ Fd×m. We can transform W to a vector

subspace defined as W = span(M′) :=

{
M′x′ : x′ =

(
1
x

)
,x ∈ Fm+1

}
, where

M′ has the form

[
1 0
y M

]
∈ F(d+1)×(m+1). Obviously, all rows of M′ are still

linearly independent assuming the linear independence for M’s rows. Then W
now is a vector subspace of dimension d+1. Recall that for linear SE, we encrypt
a plaintext together with a vector x and a decryption key is produced using

Spatial Encryption Revisited 17

DMIPEsel,ATK
payload,A Game (ATK ∈ {CPA,CCA}) :

• x∗ ← A(1λ, sp);

• (pp,msk)← DMIPE.Setup(1λ, sp), VKList← ∅; // VKList is to store (~V , sk~V)

• (µ∗0, µ
∗
1)← AKQ(·),KD(·,·),DQ(·,·)(pp);

• b $←− {0, 1}, ct∗x∗ ← DMIPE.Enc(pp,x∗, µ∗b);

• b′ ← AKQ(·),KD(·,·),DQ(·,·)(pp, ct∗x∗). // Restrictions: Not allowed DQ(~V , ct∗x∗)

with x∗ ⊥ ~V .

Queried Oracles:

• KQ(~V) (allowed only if x∗ 6⊥ ~V): Take sk~V from (~V , sk~V) ∈ VKList (if exists there).

Otherwise, run sk~V ← DMIPE.Derive(pp,msk, ~V). Update VKList ← VKList ∪
{(~V , sk~V)}.

• KD(~V1,v) (allowed only if v /∈ ~V1 ∧ x∗ 6⊥ ~V1): Take sk~V1
from (~V1, sk~V1

) ∈ VKList

(if exists there). Otherwise, run sk~V1
← DMIPE.Derive(pp,msk, ~V1) and return

sk~V2
← DMIPE.Del(pp, sk~V1

,v). Here ~V2 = ~V1 ∪ {v}. Update VKList ← VKList

∪{(~Vi, sk~Vi)}i=1,2.

• DQ(V, ctx) (allowed only if ATK=CCA): Take sk~V from (V, sk~V) ∈ VKList

(if exists there). Otherwise, run sk~V ← DMIPE.Derive(pp,msk, ~V), then return

the output of DMIPE.Dec(pp, ctx, sk~V). Update VKList ← VKList ∪ {(~V , sk~V)}.

Fig. 3: Selective payload-hiding security game for DMIPE. Here if x ⊥ v,∀v ∈ ~V
then we write x ⊥ ~V ; otherwise we write x 6⊥ ~V .

a vector space V . Successful decryption using the decryption key requires that
x ∈ V . We need a tool that helps us to transform the ”belong to” relation for the
SE syntax to the “ orthogonal to” relation compatible with the DMIPE syntax.
The following well-known lemma from Linear Algebra helps us to compute the
basis for the orthogonal complement of a vector space.

Lemma 9 ([20, Algorithm 2.3.7] and [18]). There exists an efficient algo-
rithm, named OCB, such that on input a vector space V outputs a basis, named
B⊥(V), for the orthogonal complement V ⊥ of V . Furthermore, the algorithm
guarantees that if V2 v V1 then B⊥(V1) ⊆ B⊥(V2).

4.2 Construction

Now we are ready to present our generic SE construction from DMIPE. Given a
DMIPE schemeΠDMIPE := (DMIPE.Setup,DMIPE.Derive,DMIPE.Del, DMIPE.Enc,
DMIPE.Dec). Then we can construct a SE scheme ΠSE := (SE.Setup, SE.Derive,
SE.Del, SE.Enc, SE.Dec) as follows:

SE.Setup(1λ, sp): For input a security parameter λ, a system parameters sp,
run (dmipe.pp, dmipe.msk) ← DMIPE.Setup(1λ, sp) and set pp := dmipe.pp,
and msk := dmipe.msk.

SE.Derive(pp,msk, V): For input public parameters pp, the master secret key
msk and a subspace V , perform:
1. Run B⊥(V)← OCB(V), and set ~V := {v : v ∈ B⊥(V)}.
2. Run dmipe.sk~V ← DMIPE.Derive(pp,msk, ~V), and set skV := dmipe.sk~V .

SE.Del(pp, skV1 , V2): For input public parameters pp, secret key for subspace
skV1 = dmipe.sk~V for V1 and a subspace V2 v V1, perform:

18 H. Q. Le, D. H. Duong, W. Susilo, J. Pieprzyk

1. Run B⊥(V1) ← OCB(V1), B⊥(V2) ← OCB(V2), and set ~V1 := {v : v ∈
B⊥(V1)}, ~V2 := {v : v ∈ B⊥(V2)}. Note that, since V2 v V1 , ~V1 ⊆ ~V2.

2. Suppose that ~V2 \ ~V1 = {v1, · · · ,vk} for some k ≥ 1. Set ~V ← ~V1. For
i ∈ [k], run dmipe.sk~V ∪{vi} ← DMIPE.Del(pp, dmipe.sk~V ,vi), then set

~V ← ~V ∪ {vi}.
3. At this point, we reach ~V = ~V2. Finally, output skV2

:= dmipe.sk~V2
.

By doing this, it is clear that the distribution of the private keys are indepen-
dent of the path taken. Namely, the distribution for the key skV3

computed
from skV2

is the same as that of skV3
computed from skV1

with V3 v V2 v V1.
SE.Enc(pp,x, µ): For input the public parameters pp, an attribute vector x and

a plaintext µ, run dmipe.ctx ← DMIPE.Enc(pp,x, µ) and output a ciphertext
ctx := dmipe.ctx.

SE.Dec(pp, ctx, skV): For input the public parameters pp, a ciphertext ctx and
a secret key skV for a space V , return the output of DMIPE.Dec(pp, ctx, skV).

The correctness of SE is established by Theorem 1.

Theorem 1. The SE ΠSE is correct assuming correctness of the underlying
DMIPE ΠDMIPE.

Proof. The correctness of ΠSE follows from the equivalence of the statements
that “x ∈ V ” and that “x ⊥ v, for all v ∈ B⊥(V)”. ut

4.3 Security Proof

Theorem 2. Given an adversary S that plays against some security game (se-
lective/adaptive payload-/attribute-hiding) for ΠSE, one can build an adversary
A playing against the same security game for ΠDMIPE such that AdvDMIPE

A ≥
AdvSES .

Proof. The adversary A will take the role of the SE challenger playing with
S. And, the winning strategy of A is to simulate the environment of the same
security game for ΠSE for the SE adversary S to join. The reduction is described
below.

Setup. After getting the public parameters pp from the DMIPE challenger C,
A hands pp to S.

Query 1. For any query receiving from S, A first uses the algorithm OCB to
converts the queries into the forms compatible with DMIPE, then forwards
those to C. A responds S with what C sent back to A .

Challenge. The adversary S now submits its challenge (plaintexts and/or at-
tribute vectors). The adversary A then forwards these to C. Finally, A for-
wards to S what C has returned.

Query 2. Same as Query 1 with the restriction mentioned in the both DMIPE
and SE games.

Output. Finally, A will output b′ which S has guessed.
Analysis. Obviously, the SE game environment that A simulated for S is per-

fect in the view of S. Therefore, the winning advantage of A is at least as
same as that of S. ut

Spatial Encryption Revisited 19

5 Lattice-based DMIPE construction

For a vector v ∈ Zdq , we define an inner product function fv : Zdq → Zq as

fv(x) := 〈v,x〉 (mod q), for any x ∈ Zdq . Recall that this function can be repre-
sented as an addition gate; see [9, Section 4].

Our lattice-based DMIPE construction exploits the lattice trapdoor mecha-
nism [23] [2] [33] and the lattice evaluation algorithms developed in a long series
of works [33], [24], [9], [42].

We set up the public key (included in public parameters pp) by sampling

A
$←− Zn×mq , B

$←− Zn×dmq and generating U ∈ Zn×mq together with a σ0-trapdoor

A−1σ0
using TrapGen. The trapdoor A−1σ0

is now the master secret key.

To generate a key on a list ~V of predicate vectors, for each vi ∈ ~V , we evaluate
Hvi ← EvalFIP(fvi ,B) (Lemma 8) from which will get the corresponding matrix

Bvi := BHvi . Now, the secret key sk~V for ~V is a trapdoor A−1~V ,σ0
for A~V :=

[A|Bv1
| · · · |Bvk] where k = |~V |, which can be easily produced using the master

secret key A−1σ0
(thanks to Lemma 7). Performing in the same way, from A−1~V ,σ0

we can also delegate a key for any ~V ′ satisfying ~V ⊆ ~V ′. Encryption on a message
produces a ciphertext of dual Regev’s style consisting of ctx := (cin, cmid, cout),

with cmid := s>(B−x⊗G)+e>inR ∈ Zmdq . Here x is the attribute vector, s
$←− Znq

is an LWE secret, ein ← χm is an LWE error, and R
$←− {−1, 0, 1}m×md is a

high-entropy matrix. Decrypting a ciphertext ctx using a secret key sk~V , needs

to compute cvi := cmidHvi for all vi ∈ ~V . Combining cvi ’s, cin, cout together
allows us to recover the underlying plaintext if and only if 〈x,vi〉 = 0 (mod q)

for all vi ∈ ~V .

The Construction. The lattice-based DMIPE is presented right below.

DMIPE.Setup(1λ, 1d): On input a security parameter λ, a dimension d, do the
following:

1. Choose n,m, q according to λ, d. Also, choose a (B, ε)-bounded distri-
bution χ for the underlying LWE problem. We can take χ = DZ,σ∗ (for
some σ∗ > 0) which is a (12σ∗, 2−100)-bounded distribution.

2. Choose a Gaussian parameter σ0, and sample (A,A−1σ0
)← TrapGen(n,m, q),

U
$←− Zn×mq , B

$←− Zn×mdq .
3. Output public parameters pp := (A,B,U) and master secret key msk :=

A−1σ0
.

DMIPE.Derive(pp,msk, ~V): Taking as input public parameters pp, a master

secret key msk and a list of d-dimensional vectors ~V = {v1, · · · ,vk}, perform:

1. For each vector vi, evaluate Hvi ← EvalF(fvi ,B) and compute Bvi :=
BHvi .

2. Set B~V := [Bv1
| · · · |Bvk] and A~V := [A|B~V].

3. Compute trapdoor A−1~V ,σ0
for A~V (via Item 3 of Lemma 7) and output

sk~V := A−1~V ,σ0
.

DMIPE.Del(pp, sk~V1
,vk+1): On input public parameters pp, a secret key sk~V1

=

A−1~V1,σ0
for a list ~V1 = {v1, · · · ,vk}, and a vector vk+1 /∈ ~V1), do the following:

20 H. Q. Le, D. H. Duong, W. Susilo, J. Pieprzyk

1. For all i ∈ [k + 1], evaluate Hvi ← EvalFIP(fvi ,B) and compute Bvi :=
BHvi .

2. Set A~V2
:= [A|Bv1

| · · · |Bvk |Bvk+1
] with ~V2 := ~V1 ∪ {vk+1}. Note that,

A~V1
:= [A|Bv1

| · · · |Bvk]

3. Compute trapdoor A−1~V2,σ0
using the trapdoor A−1~V1,σ0

(via Item 3 of

Lemma 7) and output sk~V2
:= A−1~V2,σ0

.

DMIPE.Enc(pp, µ,x): On input public parameters pp, a message vectors µ :=
(µ1, ·, µm) ∈ {0, 1}m and an attribute vector x ∈ Zdq , do the following:

1. Sample s
$←− Znq , R

$←− {−1, 0, 1}m×md and ein, eout ← χm.

2. Compute cin := s>A + e>in ∈ Zmq , cmid := s>(B− x⊗G) + e>inR ∈ Zmdq ,

cout := s>U + e>out + µ · dq/2e ∈ Zmq .
3. Output ciphertext ctx := (cin, cmid, cout).

DMIPE.Dec(pp, sk~V , ctx): On input public parameters pp, secret key sk~V :=

A−1~V associated with ~V = (v1, · · · ,vk) and a ciphertext ctx := (cin, cmid, cout)

associated with x ∈ Zdq , do the following:

1. For each vector vi, evaluate Hvi ← EvalFIP(fvi ,B) and compute Bvi :=
BHvi .

2. Set A~V := [A|Bv1
| · · · |Bvk].

3. Compute W← A−1~V ,σ0
(U), i.e., A~V W = U (mod q).

4. For i ∈ [k], compute cvi := cmidHvi , i.e, cvi = s>(Bvi + 〈vi,x〉 ·G) +
e>inRHvi .

5. Compute µ′ := (µ′1, · · · , µ′m)← cout − [cin|cv1
| · · · |cvk]W.

6. For i ∈ [m], output µi = 0 if |µ′i| < q/4; output µi = 1 otherwise.

5.1 Correctness, Parameters and Security Proofs

Theorem 3 (Correctness). The given DMIPE is correct assuming the chosen
parameters satisfy B + 12(mB + km3B) · σ0 < q/4.

Proof. We have cvi = s>(Bvi − 〈vi,x〉 ·G) + e>inRHvi = s>Bvi + e>inRHvi if

and only if 〈vi,x〉 = 0. Therefore, if 〈vi,x〉 = 0 for all vi ∈ ~V , then

µ′ := cout−[cin|cv1
| · · · |cvk]W = µ·dq/2e+eout+[e>in |e>inRHv1

| · · · |e>inRHvk]W.

Since we have

‖eout + [e>in |e>inRtHv1
| · · · |e>inRHvk]W‖max

≤ ‖eout‖max + [e>in |e>inRHv1
| · · · |e>inRHvk]W‖max

≤ ‖eout‖max + (m‖e>in‖max + kmmax
i∈[k]
‖e>inRHvi |‖max) · ‖W‖max

≤ ‖eout‖max + (m‖e>in‖max + km3‖e>in‖max · ‖R‖max ·max
i∈[k]
‖Hvi‖max) · ‖W‖max

≤ B + 12(mB + km3B) · σ0.

Here, the second and the third inequality are due to Lemma 3. The last inequality
is due to ‖e>in‖max ≤ B (as χ is B-bounded), ‖R‖max ≤ 1, ‖Hvi‖max ≤ 1 (Lemma
8) and ‖W‖max ≤ 12σ0 (by Item 5 of Lemma 7). By choosing parameters such
that B + 12(mB + km3B) · σ0 ≤ q/4, the theorem follows. ut

Spatial Encryption Revisited 21

Setting Parameters. Parameters should be chosen as follows:

– First, choose λ to be a security parameter.
– For the hardness of (n, 2m, q, χ)-DLWE (in Lemma 13): by Lemma 6, we

choose n = n(λ), ε, q = q(n) ≤ 2n, m = Θ(n log q) = poly(n), χ = χ(n)
such that χ is a (B, ε)-bounded for some B = B(n) such that, q/B ≥ 2n

ε

.
Note that, the “core-SVP hardness” methodology has been usually used in
the literature for choosing practical parameters; see [6, Section 5.2.1].

– m > (n+ 1) log q + ω(log n) (For Lemma 11; due to Lemma 5).
– σ0 = ω(n log q log n) (for TrapGen; due to Item 1 of Lemma 7)
– σ ≥ m2d · ω(

√
logm) (for Hybrid 3 to work; due to Lemma 12).

– B + 12(mB + km3B) · σ0 < q/4. (for Correctness; due to Theorem 3).

We come up with the selective payload-hiding security of the proposed DMIPE.

Theorem 4 (Selective Payload-hiding Security). Under the hardness of
the (n, 2m, q, χ)-DLWE assumption, the lattice-based DMIPE is selectively payload-
hiding secure (under chosen plaintext attacks). Specifically, suppose that there is

an adversary A that wins the DMIPEsel,CPA
payload,A, then one can use A to build a

solver B that can solve the (n, 2m, q, χ)-DLWE problem at least with the same
advantage.

Proof. We prove the theorem via a sequence of hybrids. Let Wi be the event
b′ = b in Hybrid i. We want to prove that |Pr[W0]− 1/2| = negl(λ)

Hybrid 0 This is the original game DMIPEsel,CPA
payload,A stated in Figure 3. Suppose

that the target attribute vector is x∗ and the short matrix used in Step 1 of
DMIPE.Enc for producing the challenge ciphertext (in the Challenge phase)
is R∗ ∈ {−1, 0, 1}m×md. Also, let x∗ be the target attribute vector released
by the adversary.

Hybrid 1 This hybrid is similar to Hybrid 0 except that R∗
$←− {−1, 0, 1}m×md

is generated in the Setup phase instead in the Challenge phase.

Hybrid 2 This hybrid is similar to Hybrid 1 except the way the challenger sets
public parameters pp. Namely, pp := (A,B,U), where B is generated as
B := AR∗ + x∗ ⊗G ∈ Zn×mdq , while A,U are unchanged (i.e., (A,A−1σ0

)←
TrapGen(n,m, q), U

$←− Zn×mq). Note that, in this game the component c∗mid

in the challenge ciphertext ct∗x∗ = (c∗in, c
∗
mid, c

∗
out) can be rewritten as

c∗mid := s>(B− x∗ ⊗G) + e>inR∗ = s>(AR∗) + e>inR∗ = c∗inR
∗.

Hybrid 3 This hybrid is similar to Hybrid 2 except the way the challenger gen-
erates A in the public parameters pp. Namely, A is sampled uniformly at
random from Zn×mq (and the challenger does not have A−1σ0

). Instead, the

challenger uses the trapdoor G−1O(1) for G as the master secret key. By this

way, for any key query KQ(~V), any key delegation query KD(~V ,v), the chal-
lenger utilizes G−1O(1) to compute sk~V with the help of Item 4 of Lemma 7.
Specifically,

22 H. Q. Le, D. H. Duong, W. Susilo, J. Pieprzyk

1. For each vector vi, evaluate Hvi ← EvalFIP(fvi ,AR∗).
2. Compute Bvi := BHvi = AR∗Hvi + 〈vi,x∗〉 ·G.

3. Set A~V := [A|Bv1
| · · · |Bvk], where k = |~V |.

4. Note that, if 〈vi,x∗〉 = 0 (mod q) for all vi ∈ ~V , then the challenger
aborts the game. Otherwise, we will have at least one 〈vi0 ,x∗〉 6= 0 (mod
q), then the challenger can successfully

(a) compute [A|AR∗Hvi0
+〈vi0 ,x∗〉·G]−1σ from G−1O(1) (Item 4 of Lemma

7),
(b) compute [A~V]−1σ from [A|AR∗Hvi0

+ 〈vi0 ,x∗〉 · G]−1σ (Item 3 of

Lemma 7), and finally assign sk~V ← [A~V]−1σ .

Hybrid 4 This hybrid is similar to Hybrid 3 except that for the challenge cipher-
text cin and cout are both sampled uniformly at random from Zmq , while cmid

is unchanged.

We prove that Pr[W0] ≤ negl(λ) through the following lemmas which show
the indistinguishability of the two consecutive hybrids above.

Lemma 10. In the view of the adversary A, Hybrid 1 and Hybrid 0 are perfectly
the same; i.e., Pr[W1] = Pr[W0].

Proof. The lemma follows from the fact that sampling R∗ is independent of the
view of A. Hence, the challenger can sample R∗ at any time before returning
the challenge ciphertext without making the adversary noticed. ut

Lemma 11. In the view of the adversary A, Hybrid 2 and Hybrid 1 are indis-
tinguishable, i.e., |Pr[W1]− Pr[W2]| = negl(λ).

Proof. This is simply due to the leftover hash lemma (Lemma 5). ut

Lemma 12. In the view of the adversary A, Hybrid 3 and Hybrid 2 are indis-
tinguishable, i.e., |Pr[W2]− Pr[W3]| = negl(λ).

Proof. This is simply due to (i) the pseudo-randomness of TrapGen (see Item 1 of
Lemma 7) and (ii) the distribution of secret keys generated using the trapdoor
G−1O(1) of G are the same as that generated using the trapdoor A−1σ0

. However,
we have to care about choosing the Gaussian parameter σ in Step 4 of Hybrid 3.
Namely, we should choose

σ = m · ‖R∗Hvi0
‖max · ω(

√
logm)

≤ m2d · ‖R∗‖max · ‖Hvi0
‖max · ω(

√
logm) ≤ m2d · ω(

√
logm).

ut

Lemma 13. In the view of the adversary A, Hybrid 4 and Hybrid 3 are indis-
tinguishable, i.e., |Pr[W3] − Pr[W4]| = negl(λ), assuming the hardness of the
(n, 2m, q, χ)-DLWE problem.

Proof. Suppose that A can distinguish Hybrid 4 from Hybrid 3 with a non-
negligible advantage. From A, we construct a DLWE solver B as follows:

Spatial Encryption Revisited 23

DLWE Instance. The DLWE solver B is required to solve an (n, 2m, q, χ)-

DLWE instance (F, c), with F
$←− Zn×2mq , and a vector c ∈ Z2m

q is either (i)

random or (ii) LWE samples, i.e., c> = s>F + e>, for some random vector
s ∈ Znq and e← χ2m.

Initialize. Now B calls A to get the target attribute vector x∗ ∈ Zdq upon which
A wants to challenge.

Setup. B now simulates the environment for A by parsing (cin, cout)← c, with
cin, cout ∈ Zmq , (ein, eout) ← e, where ein, eout ← χm, and (A,U) ← F, with
A,U ∈ Zn×mq . B generates the public parameters pp = (A,B,U) and master

secret key as in Hybrid 3 by sampling R∗
$←− {−1, 0, 1}m×md and then setting

B := AR∗ + x∗ ⊗G. After that, B sends pp to A.
Query. For all sorts of queries that A makes, B replies similarly to Hybrid 3.
Challenge. At this point, A challenges by submitting two messages µ∗0 and µ∗1.

In turn, B chooses a bit b
$←− {0, 1}, then computes the challenge ciphertext

ctx∗ = (c∗in, c
∗
mid, c

∗
out) by setting c∗in = cin, c∗>mid ← c∗>in R∗ and c∗out ← cout +

µ∗bd
q
2e.

– If c is LWE samples, then c>in = s>A + e>in , c>out = s>U + e>out. Hence,
c∗>mid = c∗>in R∗ = s>AR∗ + e>inR∗ = s>(B − x∗ ⊗G) + e>inR∗, which is
exactly the ones computed in Hybrid 3.

– If c is random then so are c∗in, c∗out. Hence, ct∗x∗ is exactly computed as
in Hybrid 4.

Output. B takes the A’s output as its decision for the DLWE problem.
ut

Now, we have |Pr[W0]| ≤ |Pr[W0]−Pr[W1]|+ |Pr[W1]−Pr[W2]|+ |Pr[W2]−
Pr[W3]|+ |Pr[W3]− Pr[W4]| = negl(λ). ut

6 Constructing DMIPE from SE

One can construct DMIPE from SE. The key idea is that for predicate vectors ~V ,
we utilize a transformation, named OVS, that maps ~V to the (unique) orthogonal

complement of the subspace generated by all vectors in ~V . That is, OVS(~V) :=

(span(v1, · · · ,vk))⊥. Remind that, all vectors in ~V are linearly independent.

By doing that, the condition 〈vi,x〉 = 0 (mod q) ∀vi ∈ ~V is equivalent to

x ∈ OVS(~V). Furthermore, the transformation also guarantees that if ~V1 ⊆ ~V2
then OVS(~V2) v OVS(~V1).

The construction for DMIPE from SE is quite similar to the way for SE from
DMIPE. We include it here for completeness.

DMIPE.Setup(1λ, sp): Run (se.pp, se.msk)← SE.Setup(1λ, sp) and then output
pp := se.pp, msk := se.msk.

DMIPE.Derive(pp,T,msk, ~V): Run V ← OVS(~V) and se.skV ← SE.Derive(pp,msk, V)
and then output sk~V := se.skV .

DMIPE.Enc(pp,x, µ): Run se.ctx ← SE.Enc(pp,x, µ) and output ctx := se.ctx.

DMIPE.Del(pp, ~V1, sk~V1
,v): Compute V1 ← OVS(~V1), V2 ← OVS(~V1∪{v}), and

then se.skV2
← SE.Del(pp, se.skV1

, V2). (Note that, se.skV1
= sk~V1

.) Finally,
output sk~V2

:= se.skV2
.

DMIPE.Dec(pp, ctx, skV): Return the output of SE.Dec(pp, ctx, skV).

24 H. Q. Le, D. H. Duong, W. Susilo, J. Pieprzyk

The correctness of DMIPE is straightforward from that of SE. The security
of DMIPE folllows from that of SE can be done in a similar way as in the proof
of Theorem 2. Then we omit it.

7 Allow-/Deny-list Encryption from Spatial Encryption

We generalize IBE [39], HIBE [25], PE [28], DFPE [22], FuPE [21] in a fam-
ily called Allow-/Deny-list Encryption (ADE). ADE is in fact also a subclass of
PrE, in which both predicates and attributes are tags. These tags are categorized
into two lists: allow list contains positive tags and deny list–negative tags. Both
ciphertexts and decryption keys are associated with these two kinds of tags. Fur-
ther, ADE also supports the delegation mechanism which is called puncturing.
Roughly saying, negatively puncturing is delegation on negative tags and this
puncturing can revoke the decryption ability. In contrast, positively puncturing
is delegation done on positive tags and allows decryption.

The formal syntax and the security notions for ADE will be given next. We
introduce three versions of ADE: (i) standard ADE (sADE); (ii) k-threshold
ADE (k-tADE) and (iii) inclusive ADE (iADE depending on the correctness
requirements. After that, we present encodings that help to construct sADE and
iADE from SE.

7.1 Framework of ADE

Let λ be a security parameter, d = d(λ) be the maximum number of negative
tags per ciphertext, and a = a(λ) be the the maximum number of positive tags
in the ADE system. Further, we denote the space of plaintexts, the negative
tag space and the positive tag space by M = M(λ), T (−) = T (−)(λ) and by
T (+) = T (+)(λ), respectively.

Syntax. ADE is a tuple of the following algorithms ADE=(ADE.Gen, ADE.Enc,
ADE.Npun, ADE.Ppun, ADE.Dec):

(pp, sk∅∅)← ADE.Gen(1λ, 1a, 1d): On input (a security parameter λ and a max-
imum number a of positive tags per ciphertext and a maximum number d of
negative tags per ciphertext), the PPT algorithm outputs public parameters

pp and a (not punctured) initial secret key sk∅∅.

sk
AL′1∪AL

′
2

DL′ ← ADE.Ppun(pp, sk
AL′1
DL′ , AL

′
2, k): 6 On input a tuple of (public pa-

rameters pp; a previously punctured key sk
AL′1
DL′ w.r.t a set of positive tags

∅ ⊆ AL′1 ⊆ T (+) and a set of negative tags ∅ ⊆ DL′ ⊆ T (−); a set of positive
tags AL′2 ∈ T (+) \ AL′1), the PPT algorithm returns a new punctured key

sk
A′L∪{pt}
DN ′ .

skAL
′

DL′1∪DL′2 ← ADE.Npun(pp, skAL
′

DL′1
, DL′2): On input a tuple of (public param-

eters pp; a previously punctured key skAL
′

DL′ w.r.t a set of positive tags ∅ ⊆
AL′ ⊆ T (+) and a set of negative tags ∅ ⊆ DL′1 ⊆ T (−); a set of negative
tags DL′2 ∈ T (−) \DL′1), the PPT algorithm returns a new punctured key

skAL
′

DL′1∪DL′2 .

6 Here, note that k is only used in the k-tADE variant.

Spatial Encryption Revisited 25

ctALDL ← ADE.Enc(pp, µ,AL,DL): On input a tuple of (public parameters pp;
a plaintext µ; a set of positive tags AL; a set of negative tags DL), the PPT
algorithm returns a ciphertext ctALDL.

µ/⊥ ← ADE.Dec(pp, skAL
′

DL′ , ct
AL
DL): : On input a tuple of (public parameters

pp; a secret key skAL
′

DL′ associated with AL′ ⊆ T (+) and DL′ ⊆ T (−); a
ciphertext ctALDL associated with AL ⊆ T (+) and DL ⊆ T (−)), the DPT
algorithm outputs either a plaintext µ if decryption succeeds or ⊥ otherwise.

Correctness and ADE Variants. Consider all λ, a, d ∈ N, µ ∈ M, ∅ ⊂
AL,AL′ ⊆ T (+), ∅ ⊂ DL,DL′ ⊆ T (−), (pp, sk∅∅)← ADE.Gen(1λ, 1a, 1d), ctALDL ←
ADE.Enc (pp, µ,AL,DL), and any punctured key skAL

′

DL′ generated using any
combination of ADE.Npun, and ADE.Ppun onAL′, DL′. We define the correctness
and classify ADE variants at the same time.

All variants require that the initial key is always able to successfully de-
crypt a ciphertext i.e., Pr[ADE.Dec(pp, sk∅∅, ct

AL
DL) = µ] ≥ 1− negl(λ). However,

when punctured, the additional correctness requirement varies for each variant.
Specifically,

1. Standard ADE (sADE). If (AL = AL′)∧(DL∩DL′ = ∅) then Pr[ADE.Dec

(pp, skAL
′

DL′ , ct
AL
DL) = µ] ≥ 1 − negl(λ). Otherwise, Pr[ADE.Dec(pp, skAL

′

DL′ ,
ctALDL) = µ] ≤ negl(λ).

2. Inclusive ADE (iADE). If ((AL′ ⊆ AL)∧(DL∩DL′ = ∅)) then Pr[ADE.Dec

(pp, skAL
′

DL′ , ct
AL
DL) = µ] ≥ 1−negl(λ).Otherwise, Pr[ADE.Dec(pp, skAL

′

DL′ , ct
AL
DL)

= µ] ≤ negl(λ).
3. k-threshold ADE (k-tADE). If ((|AL ∩AL′| ≥ k) ∧ (DL ∩DL′ = ∅)), then

Pr[ADE.Dec(pp, skAL
′

DL′ , ct
AL
DL) = µ] ≥ 1−negl(λ). Otherwise, Pr[ADE.Dec (pp,

skAL
′

DL′ , ct
AL
DL) = µ] ≤ negl(λ).

Note that, in iADE if the equality in AL′ ⊆ AL happens then we get sADE.

Security Notions of ADE Variants. Same as SE and DMIPE, one can define
security following the PrE framework. However, we only focus on the notion
of selective payload-hiding security for all ADE variants (see Definition 4 and
Figure 4).

Definition 4. ADE is selective payload-hiding secure if the advantage of the
adversary playing in the ADEsel,ATK

payload,A game (in Figure 4) is negligible or

Advpayload,ATKADE,A,sel := |Pr[b′ = b]− 1/2| = negl(λ).

7.2 Transforming sADE and iADE to SE

Let T (−), T (+) ⊂ Zq for q prime. Suppose that we have at most a positive tags
and d negative tags. i.e., |T (+)| = a and |T (−)| = d involved in the (s/i)ADE. For
(AL′1, DL

′
1), (AL′2, DL

′
2) ∈ T (+)×T (−), we say (AL′1, DL

′
1) ⊆ (AL′2, DL

′
2) if and

only if (AL′1 ⊆ AL′2)∧(DL′1 ⊆ DL′2). Now, for any pair (AL′, DL′) ⊆ T (+)×T (−)

punctured on decryption keys, we will try to encode it as a (possibly affine)
subspace V compatible with the SE syntax. On the other hand, for any pair
(AL,DL) of positive/negative ciphertext tags, we will try to encode it as a
vector v such that v ∈ V iff (AL′ ⊆ AL) ∧ (DL′ ∩ DL = ∅). We need the
following encodings EncodeInKey and EncodeInCipher to do that:

26 H. Q. Le, D. H. Duong, W. Susilo, J. Pieprzyk

ADEsel,ATK
payload,A Game (ATK ∈ {CPA,CCA}) :

• (AL∗, DL∗)← A(1λ, 1a, 1d);

• (pp, sk∅∅)← ADE.Gen(1λ, 1a, 1d), AL′ ← ∅, DL′ ← ∅, ADKList← ∅;
// ADKList is to store (AL′, DL′, skAL

′
DL′)

• (µ∗0, µ
∗
1)← APunc(·,·),DQ(·,·)(pp);

• b $←− {0, 1}, ctAL
∗

DL∗ ← ADE.Enc(pp, µ∗b , AL
∗, DL∗);

• b′ ← APunc(·,·),DQ(·)(pp, ctAL
∗

DL∗). // Restrictions: Not allowed DQ(AL′, DL′, ctAL
∗

DL∗)
with (AL′, DL′) ∈ SUCC(AL∗, DL∗).

Queried Oracles:

• Punc((AL′1, DL′1), (AL′2, DL
′
2)) (It is only allowed if (AL′1 ∪AL′2, DL′1 ∪DL′2)

/∈ SUCC(AL∗, DL∗)): Take sk
AL′1
DL′2

from (AL′1, DL
′
1, sk

AL′1
DL′1

) ∈ ADKList (if exists

there). Otherwise, run ADE.Ppun and ADE.Npun in any order using sk∅∅ to get

sk
AL′1
DL′1

. Finally, run ADE.Ppun and ADE.Npun in any order using sk
AL′1
DL′2

to

output sk
AL′1∪AL

′
2

DL′1∪DL
′
2
. Update ADKList ← ADKList ∪ {(AL′1 ∪AL′2, DL′1 ∪DL′2,

sk
AL′1∪AL

′
2

DL′1∪DL
′
2
)}.

• DQ(AL′, DL′, ctALDL) (allowed only if ATK=CCA): Take skAL
′

DL′ from (AL′, DL′,

skAL
′

DL′) ∈ ADKList (if exists there). Otherwise, run ADE.Ppun and ADE.Npun

in any order using sk∅∅ to get skAL
′

DL′ . Finally, return the output of

ADE.Dec(pp, ctALDL, sk
AL′

DL′). Update ADKList ← ADKList ∪ {(AL′, DL′, skAL
′

DL′)}.
Define SUCC(AL∗, DL∗) for ADE Variants:

• For sADE:
SUCC(AL∗, DL∗) := {(AL′, DL′) : ((AL′ = AL∗) ∧ (DL′ ∩DL∗ = ∅))} .

• For k-tADE:
SUCC(AL∗, DL∗) := {(AL′, DL′) : ((|AL′ ∩AL∗| ≥ k) ∧ (DL′ ∩DL∗ = ∅))} .

• For iADE:
SUCC(AL∗, DL∗) := {(A′L,DL′) : ((AL′ ⊆ AL∗) ∧ (DL′ ∩DL∗ = ∅))} .

Fig. 4: Selective security for the ADE variants

Wkey ← EncodeInKey(AL′, DL′). Do the following:
1. Associate the allow list AL′ = {p1, · · · , pk} with a space beginning

with (p1, · · · , pk)>, namely WAL′ := {(p1, · · · , pk, xk+1, · · · , xa)> : xi ∈
Zq} ⊆ Zaq .
Obviously, it is easy to see that if AL′1 ⊆ AL′2 then WAL′2

vWAL′1
.

2. For the deny list DL′, compute its complement DL′′ := T (−) \ DL′
then associate DL′ with WDL′ := span{vx : x ∈ DL′′}, where vx :=
(1, x, x2, · · · , x2d−1) is a Vandermonde vector.
Since adding more tags into DL′ is equivalent to removing tags from
DL′′, then given DL′1 ⊆ DL′2 we have WDL′′2

vWDL′′1
.

3. Output the subspaceWkey which is the direct product ofWAL′ andWDL′ :

Wkey := WAL′ ×WDL′ .

It can be easily seen that puncturings of (s/i)ADE can be done through
delegation of SE.

vct ← EncodeInCipher(AL,DL). Do the following steps:
1. ForAL = {p1, · · · , pk} associate with vector xAL := (p1, · · · , pk, 0, · · · , 0)
∈ Zaq .
Clearly, if AL′ ⊆ AL then xAL ∈WAL′ .

Spatial Encryption Revisited 27

2. For a list DL, encode it as xDL :=
∑
x∈DL vx ∈ Z2d

q , where vx :=

(1, x, x2, · · · , x2d−1).
We claim that xDL /∈WDL′ for any DL ∩DL′ 6= ∅ (i.e., DL * DL′′).

3. Output vector xct := (xAL,xDL) ∈ Za+2d
q .

We can see that xct ∈ Wkey iff (xAL,xDL) ∈ WAL′ ×WDL′ , which is equivalent
to (AL′ ⊆ AL) ∧ (DL′ ∩ DL = ∅). Therefore, the correctness of (s/i)ADE can
be straightforwardly obtained from that of SE.

8 Conclusions and Future Works

We revisit SE towards an efficient lattice-based SE. Along the way, we introduce
the new concept of Delegatable Multiple Inner Product Encryption (DMIPE).
We show that DMIPE is sufficient for us to build an efficient lattice-based Spa-
tial Encryption (SE). The lattice-based SE is more efficient than some previous
lattice-based ones, which follow the generic SE construction from the Hierar-
chical Inner Product Encryption. In fact, DMIPE and SE are equivalent in the
sense that there are “security notions-preserving” conversions between them.

Although, our lattice-based DMIPE is proved to be selectively payload-hiding
secure in the standard model. However, it seems that the construction can enjoy
the selectively weak attribute-hiding security. A possible technical idea might be
from Agrawal et al. [4]. We leave this for a future work.

Moreover, an adaptively secure DMIPE construction in the lattice setting
is worthwhile to pursuit in the future. Recall that, such a construction for IPE
has been done for IPE by [30]. Additionally, an attribute-hiding secure DMIPE
construction over lattices should also be interesting for further research.

Also, as mentioned before, we leave open the encodings for transforming
k-tADE to SE. We think that the idea of threshold gates in the Hamburg’s
thesis [29, Page 51] can help. However, the Douby Spatial Encryption (DSE) or
another SE variant rather than original SE (as defined in this paper) might be
needed.

References

1. Abdalla, M., De Caro, A., Mochetti, K.: Lattice-based hierarchical inner product
encryption. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) 7533 LNCS, 121–
138 (2012). https://doi.org/10.1007/978-3-642-33481-8 7

2. Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard
Model. In: Gilbert, H. (ed.) Advances in Cryptology – EUROCRYPT 2010. vol.
6110 LNCS, pp. 553–572. Springer Berlin Heidelberg, Berlin, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13190-5 28

3. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics) 6223 LNCS, 98–115 (2010). https://doi.org/10.1007/978-3-642-14623-7 6

4. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 7073 LNCS, 21–40 (2011). https://doi.org/10.1007/978-3-642-
25385-0 2

28 H. Q. Le, D. H. Duong, W. Susilo, J. Pieprzyk

5. Ajtai, M.: Generating Hard Instances of Lattice Problems (Extended Abstract).
In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory
of Computing. pp. 99–108. STOC ’96, ACM, New York, NY, USA (1996).
https://doi.org/10.1145/237814.237838

6. Alkim, E., Bos, J.W., Ducas, L., Others: Frodo{KEM}: Learning with Errors Key
Encapsulation Algorithm Specifications And Supporting Documentation, version
30 September, 2020 (2020)

7. Alperin-Sheriff, J., Peikert, C.: Faster Bootstrapping with Polynomial Error. In:
Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology – CRYPTO 2014. pp.
297–314. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

8. Alwen, J., Peikert, C.: Generating Shorter Bases for Hard Random Lattices.
In: 26th International Symposium on Theoretical Aspects of Computer Science,
{STACS} 2009, February 26-28, 2009, Freiburg, Germany, Proceedings. pp. 75–86
(2009). https://doi.org/10.4230/LIPIcs.STACS.2009.1832

9. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikun-
tanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). vol. 8441 LNCS, pp. 533–556 (2014). https://doi.org/10.1007/978-
3-642-55220-5 30

10. Boneh, D., Hamburg, M.: Generalized identity based and broadcast encryption
schemes. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 5350 LNCS, 455–470
(2008). https://doi.org/10.1007/978-3-540-89255-7 28

11. Boneh, D., Kim, S., Montgomery, H.: Private Puncturable PRFs from Standard
Lattice Assumptions. In: Coron, J.S., Nielsen, J.B. (eds.) Advances in Cryptology –
EUROCRYPT 2017. pp. 415–445. Springer International Publishing, Cham (2017).
https://doi.org/10.1007/978-3-319-56620-7 15

12. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 4392 LNCS, 535–554 (2007).
https://doi.org/10.1007/978-3-540-70936-7 29

13. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical Hardness of
Learning with Errors. In: Proceedings of the Forty-fifth Annual ACM Symposium
on Theory of Computing. pp. 575–584. STOC ’13, ACM, New York, NY, USA
(2013). https://doi.org/10.1145/2488608.2488680

14. Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private Constrained
PRFs (and More) from LWE. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics) 10677 LNCS(H2020 639554), 264–302 (2017). https://doi.org/10.1007/978-
3-319-70500-2 10

15. Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: Unbounded Attributes
and Semi-adaptive Security. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptol-
ogy – CRYPTO 2016. vol. 9816, pp. 363–384. Springer, Berlin, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53015-3 13

16. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) Advances in Cryptology – EUROCRYPT
2010. EUROCRYPT 2010. Lecture Notes in Computer Science. vol. 6110, pp.
601–639. Springer-Verlag, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13190-5 27

17. Chen, C., Zhang, Z., Feng, D.: Fully secure doubly-spatial encryption under sim-
ple assumptions. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7496 LNCS,
253–263 (2012). https://doi.org/10.1007/978-3-642-33272-2 16

Spatial Encryption Revisited 29

18. Chen, J., Lim, H., Ling, S., Wang, H.: The relation and transformation between
hierarchical inner product encryption and spatial encryption. Designs, Codes, and
Cryptography 71(2), 347–364 (2014). https://doi.org/10.1007/s10623-012-9742-y

19. Chen, J., Wee, H.: Doubly spatial encryption from DBDH. Theoretical Computer
Science 543(C), 79–89 (2014). https://doi.org/10.1016/j.tcs.2014.06.003

20. Cohen, H.: A Course in Computational Algebraic Number Theory. No. Graduate
texts in mathematics, 138, Springer, Berlin (1996)

21. Derler, D., Krenn, S., Lorünser, T., Ramacher, S., Slamanig, D., Striecks, C.: Revis-
iting Proxy Re-encryption: Forward Secrecy, Improved Security, and Applications.
In: Abdalla, M., Dahab, R. (eds.) Public-Key Cryptography – PKC 2018. pp. 219–
250. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-
3-319-76578-5 8

22. Derler, D., Ramacher, S., Slamanig, D., Striecks, C.: Fine-Grained Forward Secrecy
: Allow-List / Deny-List Encryption and Applications. In: Financial Cryptography
and Data Security 2021. pp. 1–22 (2021)

23. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices and
New Cryptographic Constructions. In: Proceedings of the Fortieth Annual ACM
Symposium on Theory of Computing. pp. 197–206. STOC ’08, ACM, New York,
NY, USA (2008). https://doi.org/10.1145/1374376.1374407

24. Gentry, C., Sahai, A., Waters, B.: Homomorphic Encryption from Learning
with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In:
Canetti, R., Garay, J.A. (eds.) Advances in Cryptology – CRYPTO 2013. pp.
75–92. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

25. Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.)
Advances in Cryptology — ASIACRYPT 2002. pp. 548–566. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-25C 34

26. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-Based Encryption for Cir-
cuits. J. ACM 62(6), 45:1—-45:33 (dec 2015). https://doi.org/10.1145/2824233

27. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for
fine-grained access control of encrypted data. In: Proceedings of the ACM
Conference on Computer and Communications Security. pp. 89–98 (2006).
https://doi.org/10.1145/1180405.1180418

28. Green, M.D., Miers, I.: Forward Secure Asynchronous Messaging from Puncturable
Encryption. In: 2015 IEEE Symposium on Security and Privacy. pp. 305–320 (may
2015). https://doi.org/10.1109/SP.2015.26

29. Hamburg, M.: Spatial Encryption. PhD. Thesis (July) (2011)
30. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Adaptively Secure Inner

Product Encryption from LWE. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
12493 LNCS, 375–404 (2020). https://doi.org/10.1007/978-3-030-64840-4 13

31. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 4965 LNCS(2006), 146–162 (2008). https://doi.org/10.1007/978-
3-540-78967-3 9

32. Lyubashevsky, V.: Lattice Signatures without Trapdoors. In: Pointcheval,
D., Johansson, T. (eds.) Advances in Cryptology – EUROCRYPT 2012.
pp. 738–755. Springer Berlin Heidelberg, Berlin, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 43

33. Micciancio, D., Peikert, C.: Trapdoors for Lattices: Simpler, Tighter, Faster,
Smaller. In: Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology – EURO-
CRYPT 2012. pp. 700–718. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

34. Okamoto, T., Takashima, K.: Homomorphic Encryption and Signatures from Vec-
tor Decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing-Based Cryp-

30 H. Q. Le, D. H. Duong, W. Susilo, J. Pieprzyk

tography – Pairing 2008. pp. 57–74. Springer Berlin Heidelberg, Berlin, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85538-5 4

35. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics). vol. 5912 LNCS, pp. 214–231
(2009). https://doi.org/10.1007/978-3-642-10366-7 13

36. Peikert, C.: Bonsai Trees (or, Arboriculture in Lattice-Based Cryptography). Cryp-
tology ePrint Archive, Report 2009/359 (2009)

37. Peikert, C., Shiehian, S.: Privately Constraining and Programming PRFs, the LWE
Way. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 10770 1076, 675–701
(2018). https://doi.org/10.1007/978-3-319-76581-5 23

38. Regev, O.: On lattices, learning with errors, random linear codes,
and cryptography. Journal of the ACM 56(6), 84–93 (sep 2009).
https://doi.org/10.1145/1568318.1568324

39. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakley,
G.R., Chaum, D. (eds.) Advances in Cryptology. vol. 196 LNCS, pp. 47–53.
Springer Berlin Heidelberg, Berlin, Heidelberg (1985). https://doi.org/10.1007/3-
540-39568-7 5

40. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring.
In: Proceedings 35th Annual Symposium on Foundations of Computer Science. pp.
124–134 (nov 2002). https://doi.org/10.1109/sfcs.1994.365700

41. Susilo, W., Duong, D.H., Le, H.Q., Pieprzyk, J.: Puncturable encryption: A
generic construction from delegatable fully key-homomorphic encryption. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics) 12309 LNCS, 107–127 (2020).
https://doi.org/10.1007/978-3-030-59013-0 6

42. Tsabary, R.: Fully Secure Attribute-Based Encryption for t-CNF from
LWE, vol. 11692 LNCS. Springer International Publishing (2019).
https://doi.org/10.1007/978-3-030-26948-7 3

43. Wei, J., Chen, X., Wang, J., Hu, X., Ma, J.: Forward-Secure Puncturable
Identity-Based Encryption for Securing Cloud Emails. In: Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics). vol. 11736 LNCS, pp. 134–150 (2019).
https://doi.org/10.1007/978-3-030-29962-0 7

44. Xagawa, K.: Improved (Hierarchical) Inner-Product Encryption from Lattices.
Full version of the paper appeared at PKC’13 pp. 235–252 (2015)

45. Zhou, M., Cao, Z.: Spatial encryption under simpler assumption. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics) 5848 LNCS, 19–31 (2009).
https://doi.org/10.1007/978-3-642-04642-1 4

