
Statistical Decoding 2.0: Reducing Decoding to LPN

Kévin Carrier1, Thomas Debris-Alazard2, Charles Meyer-Hilfiger3, and Jean-Pierre Tillich3

1 ETIS Laboratory, CY Cergy-Paris University, kevin.carrier@ensea.fr
2 Project GRACE, Inria Saclay-Ile de France, thomas.debris@inria.fr

3 Project COSMIQ, Inria de Paris,
charles.meyer-hilfiger@inria.fr,jean-pierre.tillich@inria.fr

Abstract. The security of code-based cryptography relies primarily on the hardness of
generic decoding with linear codes. The best generic decoding algorithms are all improve-
ments of an old algorithm due to Prange: they are known under the name of information
set decoders (ISD). A while ago, a generic decoding algorithm which does not belong to
this family was proposed: statistical decoding. It is a randomized algorithm that requires
the computation of a large set of parity-checks of moderate weight, and uses some kind of
majority voting on these equations to recover the error. This algorithm was long forgotten
because even the best variants of it performed poorly when compared to the simplest ISD
algorithm. We revisit this old algorithm by using parity-check equations in a more general
way. Here the parity-checks are used to get LPN samples with a secret which is part of
the error and the LPN noise is related to the weight of the parity-checks we produce. The
corresponding LPN problem is then solved by standard Fourier techniques. By properly
choosing the method of producing these low weight equations and the size of the LPN prob-
lem, we are able to outperform in this way significantly information set decoders at code
rates smaller than 0.3. It gives for the first time after 60 years, a better decoding algorithm
for a significant range which does not belong to the ISD family.

1 Introduction

1.1 The Decoding Problem and Code-based Cryptography

Code-based cryptography relies crucially on the hardness of decoding generic linear codes which
can be expressed as follows in the binary case

Problem 1.1 (decoding a linear code). Let C be a binary linear code over F2 of dimension k
and length n, i.e. a subspace of Fn

2 of dimension k. We are given y ∈ Fn
2 , an integer t and want to

find a codeword c ∈ C and an error vector e ∈ Fn
2 of Hamming weight |e| = t for which y = c+e.

This terminology stems from information theory, y is a noisy version of a codeword c: y = c+e
where e is a vector of weight t and we want to recover the original codeword c. It can also be viewed
as solving an underdetermined linear system with a weight constraint. Indeed, we can associate to
a subspace C of dimension k of Fn

2 a binary (n−k)×n matrix H (also called a parity-check matrix
of the code) whose kernel defines C, namely C = {x ∈ Fn

2 : Hx⊺ = 0}. The decoding problem is
equivalent to find an e of Hamming weight t such that He⊺ = s⊺ where s is the syndrome of y
with respect to H, i.e. s⊺ = Hy⊺. This can be verified by observing that if there exists c ∈ C and
e such that y = c+ e then Hy⊺ = H(c+ e)⊺ = Hc⊺ +He⊺ = He⊺.

The decoding problem has been studied for a long time and despite many efforts on this
issue [Pra62, Ste88, Dum91, Bar97, FS09, BLP11, MMT11, BJMM12, MO15] the best algorithms
[BJMM12, MO15, BM17, BM18] are exponential in the number of errors that have to be corrected:
correcting t errors in a binary linear code of length n with the aforementioned algorithms has a

cost of 2αn(1+o(1)) where α = α(R, τ) is a constant depending of the code rate R
△
= k

n , the error

rate τ
△
= t

n and the algorithm which is used. All the efforts that have been spent on this problem
have only managed to decrease slightly this exponent α. Let us emphasize that this exponent is the
key for estimating the security level of any code-based cryptosystem. We expect that this problem

2 K. Carrier, T. Debris-Alazard, C. Meyer-Hilfiger, J-P. Tillich

is the hardest at the Gilbert-Varshamov relative distance τ = δGV where δGV
△
=h−1(1−R), with

h being the binary entropy function h(x)
△
=−x log2 x− (1− x) log2(1− x) and h−1(x) its inverse

ranging over [0, 1
2]. This corresponds in the case of random linear codes to the largest relative

weight below which there is typically just one solution of the decoding problem assuming that
there is one. Above this bound, the number of solutions becomes exponential (at least as long as
τ < 1− δGV) and this helps to devise more efficient decoders. Furthermore, all the aforementioned
algorithms become polynomial in the regime 1−R

2 ≤ τ ≤ 1+R
2 (see an illustration of this behaviour

in Figure 1.1).

0.05 δGV 0.15 0.20 0.25
τ

0.02

0.04

0.06

0.08

0.10

0.12

unique solution many solution

Figure 1.1. Complexity exponent α of the Prange ISD algorithm [Pra62] as a function of the error

ratio τ
△
= t

n
at rate R = 1

2
. The peak corresponds to the normalized Gilbert-Varshamov distance δGV =

h−1(1−R).

There are code-based cryptographic primitives whose security relies precisely on the difficulty
of decoding at the Gilbert-Varshamov relative distance (something which is also called full dis-
tance decoding [MO15, BM17, BM18]), for instance the Stern code-based identification schemes
or associated signatures schemes [Ste93, GG07, AGS11, FJR21]. In the light of the upcoming
NIST second call for new quantum resistant signature algorithms, it is even more important to
have a stable and precise assessment of what we may expect about the complexity of solving
this problem. For much smaller distances, say sub-linear, which is relevant for cryptosystems like
[MTSB13, McE78], the situation seems much more stable/well understood, since the complexity
exponent of all the above-mentioned algorithms is the same in this regime [CS16].

1.2 ISD Algorithms and Beyond: Statistical Decoding

All the aforementioned algorithms can be viewed as a refinement of the original Prange algorithm
[Pra62] and are actually all referred to as Information Set Decoding (ISD) algorithms. Basically,
they all use a common principle, namely making the bet that in a certain set of about k positions
(the “information set”) there are only very few errors and using this bet to speed-up decoding.
The parameters of virtually all code-based cryptographic algorithms (for the Hamming metric)
have been chosen according to the running time of this family of algorithms. Apart from these
algorithms, there is one algorithm which is worth mentioning, namely statistical decoding. It was
first proposed by Al Jabri in [Jab01] and improved a little bit by Overbeck in [Ove06]. Later on,
[FKI07] proposed an iterative version of this algorithm.

It is essentially a two-stage algorithm, the first step consisting in computing an exponentially
large number of parity-check equations of the smallest possible weight w, and then from these

Statistical Decoding 2.0: Reducing Decoding to LPN 3

parity-check equations the error is recovered by some kind of majority voting based on these
equations. This majority voting is based on the following principle, take a parity-check equation h
for the code C we want to decode, i.e. a binary vector h = (hi)1≤i≤n such that ⟨h, c⟩ = 0 for every
c inC. Assume that the i-th bit of the parity-check is 1, then since ⟨h,y⟩ = ⟨h, e⟩ = ei+

∑
j ̸=i hjej ,

the i-th bit ei of the error e we want to recover satisfies

ei +
∑
j ̸=i

hjej = ⟨h,y⟩ . (1.1)

The sum
∑

j ̸=i hjej is biased, say it is equal to 1 with probability 1−ε
2 with a bias ε which is

(essentially) a decreasing function of the weight w of the parity-check h. This allows to recover ei
with about Θ

(
1/ε2

)
parity-checks. However the bias is exponentially small in the minimum weight

of h and e and the complexity of such an algorithm is exponential in the codelength. An asymptotic
analysis of this algorithm was performed in [DT17] and it turns out that even if we had a way to
obtain freely the parity-check equations we need, this kind of algorithm could not even outperform
the simplest ISD algorithm: the Prange algorithm. This is done in [DT17] by showing that there
is no loss in generality if we just care about getting the best exponent to restrict ourselves to a
single parity-check weight w (see Section 5 in [DT17]) and then analyse the complexity of such
a putative algorithm for a single weight by using the knowledge of the typical number of parity-
check equations of a given weight in a random linear code. The complexity exponent we get is a
lower bound on the complexity of statistical decoding. We call such a putative statistical decoding
algorithm, genie-aided statistical decoding: we are assisted by a genie which gives for free all the
parity-check equations we require (but of course we can only get as much parity-check equations
of some weight w as there exists in the code we want to decode). The analysis of the exponent
we obtain with such genie-aided statistical decoding is given in [DT17, §7] and shows that it is
outperformed very significantly by the Prange algorithm (see [DT17, §7.2, Fig. 6]).

1.3 Contributions

In this work, we modify statistical decoding so that each parity-check yields now an LPN sample
which is a noisy linear combination involving part of the error vector. This improves significantly
statistical decoding, since the new decoding algorithm outperforms significantly all ISD’s for code
rates smaller than 0.3. It gives for the first time after 60 years, a better decoding algorithm that
does not belong to the ISD family, and this for a very significant range of rates. The only other
example where ISD algorithms have been beaten was in 1986, when Dumer introduced his collision
technique. This improved the Prange decoder only for rates in the interval [0.98, 1] and interest-
ingly enough it gave birth to all the modern improvements of ISD algorithms starting from Stern’s
algorithm [Ste88].

A New Approach : Using Parity-Checks to Reduce Decoding to LPN. Our approach
for solving the decoding problem reduces it to the so-called Learning Parity with Noise Problem
(LPN).

Problem 1.2 (LPN). Let Os,τ (·) be an oracle parametrized by s ∈ Fs
2 and τ ∈ [0, 1] such that on

a call it outputs (a, ⟨s,a⟩+ e) where a ∈ Fs
2 is uniformly distributed and e is distributed according

to a Bernoulli of parameter τ . We have access to Os,τ (·) and want to find s.

(1.1) can be interpreted as an LPN sample with an s of size 1, namely ei. However, if instead
of splitting the support of the parity-check with one bit on one side and the other ones on the
other side, but choose say s positions on the first part (say the s first ones) and n−s on the other,
we can write

⟨h,y⟩ =
s∑

i=1

hiei︸ ︷︷ ︸
linear comb.

+
∑
j>s

hjej︸ ︷︷ ︸
LPN noise

.

4 K. Carrier, T. Debris-Alazard, C. Meyer-Hilfiger, J-P. Tillich

We may interpret such a scalar product as an LPN sample where the secret is (e1, · · · , es); i.e. we
have a noisy information on a linear combination

∑s
i=1 hiei on the s first bits of the error where the

noise is given by the term
∑

j>s hjej and the information is of the form
∑s

i=1 hiei+noise = ⟨h,y⟩.
Again the second linear combination is biased, say P

(∑
j>s hjej = 1

)
= 1−ε

2 and information

theoretic arguments show that again Θ
(
1/ε2

)
samples are enough to determine (e1, · · · , es). It

seemed that we gained nothing here since we still need as many samples as before and it seems
that now recovering (e1, · · · , es) is much more complicated than performing majority voting.

However with this new approach, we just need parity-check equations of low weight on n − s
positions (those that determine the LPN noise) whereas in statistical decoding algorithm we have
to compute parity-check equations of low weight on n − 1 positions. This brings us to the main
advantage of our new method: the parity-checks we produce have much lower weight on those
n− s positions than those we produce for statistical decoding. This implies that the bias ε in the
LPN noise is much bigger with the new method and the number N = Θ

(
1/ε2

)
of parity-check

equations much lower. Secondly, by using the fast Fourier transform, we can recover (e1, · · · , es)
in time O(s2s). Therefore, as long as the number of parity-checks we need is of order Ω (2s), there
is no exponential extra cost of having to recover (e1, · · · , es). This new approach will be called
from now on Reduction to LPN decoding (RLPN).

Subset Sum Techniques and Bet on the Error Distribution. As just outlined, our RLPN
decoder needs an exponential number N = Θ

(
1/ε2

)
of parity-checks of small weight on n − s

positions. This can be achieved efficiently by using collision/subset techniques used in the inner
loop of ISD’s. Recall that all ISD’s proceed in two steps, (i) first they pick an augmented informa-
tion set and (ii) then have an inner loop computing low weight codewords of some sort. Step (ii)
uses advanced techniques to solve subset-sum problems like birthday paradox [Dum86, Dum91],
Wagner algorithm [Wag02] or representations techniques [MMT11, BJMM12]. All these techniques
can also be used in a natural way in our RLPN decoder to compute the low weight parity-checks
we need.

Furthermore, another idea of ISD’s can be used in our RLPN decoder. All ISD’s are making,
in a fundamental way, a bet on the error weight distribution in several zones related to the infor-
mation set picked up in (i). There are two zones: the potentially augmented information set and
the rest of the positions. ISD algorithms assume that the (augmented) information set contains
only very few errors. A similar bet can be made in our case. We have two different zones: on one
hand the s positions determining s error bits and on the other n − s bits which determine the
LPN noise. It is clearly favourable to have an error ratio which is smaller on the second part. The
probability that this unlikely event happens is largely outweighed by the gain in the bias of the
LPN noise.

Our Results. Using all the aforementioned ingredients results in dramatically improving statis-
tical decoding (see Figure 1.2), especially in the low rate regime (R ≤ 1

2) where ISD algorithms
are known to perform slightly worse than in the high rate regime (R > 1

2). Indeed, the complexity

exponent α(R)
△
=α(R, δGV(R)) of ISD’s for full decoding (a.k.a. the GV bound decoding) which

could be expected to be symmetric in R is actually bigger in the low rate regime than in the high
rate regime: α(R) > α(1− R) for 0 < R < 1

2 . This results in an exponent curve which is slightly
tilted towards the left, the maximum exponent being always obtained for R < 1

2 . Even worse, the
behaviour for very small rates (i.e. R→ 0+) is fundamentally different in the very high rate regime
(R→ 1−). The complexity curve behaves like α(R) ≈ R in the first case and like α(R) ≈ 1−R

2 in
the second (at least for all later improvements of the Prange decoder incorporating collision tech-
niques). This behaviour at 0 for full distance decoding has never been changed by any decoder.
It should be noted that α(R) = R(1 + o(1)) around 0 means that the complexity behaves like
2α(R)n = 2R(1+o(1))n = 2k(1+o(1)), so in essence ISD’s are not performing really better than trivial
enumeration on all codewords. This fundamental barrier is still unbroken by our RLPN decoder,
but it turns out that α(R) approaches R much more slowly with RLPN. For instance, for R = 0.02

Statistical Decoding 2.0: Reducing Decoding to LPN 5

we have α(R) ≈ R
2 . This behaviour in the very low regime is instrumental for the improvement we

obtain on ISD’s. In essence, this improvement is due in this regime to the conjunction of RLPN
decoding with a collision search of low weight parity-checks. This method can be viewed as the
dual (i.e. operating on the dual code) of the collision search performed in advanced ISD’s which
are successful for lowering the complexity exponent down to α(R) ≈ 1−R

2 in the high rate regime.
In some sense, the RLPN strategy allows us to dualize advanced ISD techniques for working in
the low rate regime.

All in all, using [BJMM12] (one of the most advanced ISD techniques) to compute low weight
codewords of some shape we are able to outperform significantly even the latest improvements of
ISD algorithms for code rates R smaller than 0.3 as shown in Figure 1.2. This is a breakthrough in
this area, given the dominant role that ISD algorithms have played during all those years for assess-
ing the complexity of decoding a linear code. Note however that the correctness of this algorithm
relies on the LPN error model (Assumption 3.7) for which some recent experiments have found out
not to be completely accurate (see https://github.com/tillich/RLPNdecoding/tree/master/
verification_heuristic/histogram). However, experimental results seem to indicate that this
LPN modelling can be replaced by the weaker Conjecture 3.11 which is compatible with the exper-
iments we have made and for which there is a clear path to demonstrate its validity (see Subsection
3.4).

0.05 0.10 0.15 0.20 0.25 0.30 0.35
R

0.05

0.10

0.15

0.20

log2(Complexity)
n

[DT17a]
[Pra62]
corrected [BM18]
section 5: RLPN with [BJMM12]

Figure 1.2. Complexity exponent for full distance decoding of genie-aided statistical decoding [DT17, §7]
(recall that this is a lower bound on the complexity exponent of statistical decoding), the basic Prange
ISD algorithm [Pra62], the best state-of-the-art algorithm of [BM18] (with a correction in the exponent
that we give here, see Appendix B) and our RLPN decoder as a function of R.

Proving the Standard Assumption of Statistical Decoding. In analysing the new decoding
algorithm, we also put statistical decoding on a much more rigorous foundation. We show that
the basic condition that has to be met for both statistical decoding and RLPN decoding, namely
that the number N of parity-check equations that are available is at least of order Ω

(
1/ε2

)
in the

case of statistical decoding and Ω
(
s/ε2

)
in the case of RLPN decoding where ε is the bias of the

LPN noise, is also essentially the condition which ensures that the bias is well approximated by
the standard assumption made for statistical decoding which assumes that

bias (⟨eN,hN⟩) ≈ bias (⟨eN,h′
N⟩) , (1.2)

where bias(X) is defined for a binary random variable as bias(X)
△
=P(X = 0) − P(X = 1), N is

a subset of n− s positions (those which are involved in the LPN noise), h is chosen uniformly at

6 K. Carrier, T. Debris-Alazard, C. Meyer-Hilfiger, J-P. Tillich

random among the parity-checks of weight w on N of the code C we decode whereas h′ is chosen
uniformly at random among the words of weight w on N. We will namely prove that as soon

as the parameters are chosen such that N = ω
(
1/ bias (⟨eN,h′

N⟩)2
)
, we have that for all but a

proportion o(1) of codes C (as proved in Proposition 3.1 in Subsection 3.1)

bias (⟨eN,hN⟩) = (1 + o(1)) bias (⟨eN,h′
N⟩) .

2 Notation and Coding Theory Background

In this section, we introduce notation and coding theoretic background which are used throughout
the paper.

Vectors and matrices. Vectors and matrices are respectively denoted in bold letters and bold cap-
ital letters such as a and A. The entry at index i of the vector x is denoted by xi. The canonical
scalar product

∑n
i=1 xiyi between two vectors x and y of Fn

2 is denoted by ⟨x,y⟩. Let I be a list of
indexes. We denote by xI the vector (xi)i∈I. In the same way, we denote by AI the sub-matrix
made of the columns of A which are indexed by I. The concatenation of two vectors x and y is
denoted by x||y. The Hamming weight of a vector x ∈ Fn

2 is defined as the number of its non-zero

coordinates, namely |x|△=# {i ∈ J1, nK : xi ̸= 0} where #A stands for the cardinality of a finite
set A and Ja, bK stands for the set of the integers between a and b.

Probabilistic notation. For a finite set S, we write X
$← S when X is an element of S drawn

uniformly at random in it. For a Bernoulli random variable X, denote by bias(X) the quantity

bias(X)
△
=P(X = 0) − P(X = 1). For a Bernoulli random variable X of parameter p = 1−ε

2 , i.e.
P(X = 1) = 1−ε

2 , we have bias(X) = ε.

Soft-O notation. For real valued functions defined over R or N we define o(), O(), Ω (), Θ (), in

the usual way and also use the less common notation Õ() and Ω̃ (), where f = Õ(g) means that

f(x) = O
(
g(x) logk g(x)

)
and f = Ω̃ (g) means that f(x) = Ω

(
g(x) logk g(x)

)
for some k. We

will use this for functions which have an exponential behaviour, say g(x) = eαx, in which case

f(x) = Õ(g(x)) means that f(x) = O(P (x)g(x)) where P is a polynomial in x. We also use

f = ω(g) when f dominates g asymptotically; that is when lim
x→∞

|f(x)|
g(x) =∞.

Coding theory. A binary linear code C of length n and dimension k is a subspace of the vector
space Fn

2 of dimension k. We say that it has parameters [n, k] or that it is an [n, k]-code. Its rate

R is defined as R
△
= k

n . A generator matrix G for C is a full rank k × n matrix over F2 such that

C =
{
uG : u ∈ Fk

2

}
.

In other words, the rows of G form a basis of C. A parity-check matrix H for C is a full-rank
(n− k)× n matrix over F2 such that

C = {c ∈ Fn
2 : Hc⊺ = 0} .

In other words, C is the null space of H. The code whose generator matrix is the parity-check
matrix of C is called the dual code of C. It might be seen as the subspace of parity-checks of C
and is defined equivalently as

Definition 2.1 (dual code). The dual code C⊥ of an [n, k]-code C is an [n, n− k]-code which
is defined by

C⊥ △
= {h ∈ Fn

2 : ∀c ∈ C, ⟨c,h⟩ = 0} .

Statistical Decoding 2.0: Reducing Decoding to LPN 7

It will also be very convenient to consider the operation of puncturing a code, i.e. keeping only
a subset of entries in a codeword.

Definition 2.2 (punctured code). For a code C and a subset I of code positions, we denote
by CI the punctured code obtained from C by keeping only the positions in I, i.e.

CI = {cI : c ∈ C}.

We will also use several times that random binary linear codes can be decoded successfully,
with a probability of error going to 0, as the codelength goes to infinity as long as the code rate
is below the capacity, and this of any binary input symmetric channel whose definition is

Definition 2.3 (binary input memoryless symmetric channel). A binary input memoryless
symmetric channel (BIMS) with output a finite alphabet Y, is an error model on {0, 1}∗ assuming
that when a bit b ∈ {0, 1} is sent, it gets mapped to y ∈Y with probability denoted by p(y|b) (these
are the transition probabilities of the channel). Being symmetric means that there is an involution
f such that p(y|0) = p(f(y)|1). Being memoryless means that the outputs of the channel are
independent conditioned on the inputs: when b1 · · · bn ∈ {0, 1}n is sent, the probability that the
output is y1 · · · yn is given by p(y1|b1) · · · p(yn|bn).

We use here this rather general formulation to analyse what is going on when we have several
different LPN samples corresponding to the same parity-check h. The error model that we have
in this case will be more complicated than the standard binary symmetric channel (see Definition
2.6 below). The capacity of such a channel is given by

Definition 2.4 (capacity of a BIMS channel). The capacity4 C of a BIMS channel with
transition probabilities (p(y|b)) y∈Y

b∈{0,1}
is given by

C
△
=
∑
y∈Y

∑
b∈{0,1}

p(y|b)
2

log2
p(y|b)

1
2p(y|0) + 1

2p(y|1)
.

LPN samples correspond to the binary symmetric channel (BSC) given by

Definition 2.5 (binary symmetric channel). BSC(p) is a BIMS channel with output alphabet
Y = {0, 1} and transition probabilities p(0|0) = p(1|1) = 1− p, p(1|0) = p(0|1) = p, where p is the
crossover probability of the channel.

In other words, this means that a bit b is transformed into its opposite 1− b with probability
p when sent through the channel. It is readily verified that

Definition 2.6 (binary symmetric channel). The capacity C of BSC(p) is given by C =
1− h(p).

We will also talk about maximum likelihood decoding a code (under the assumption that the
input codeword is chosen uniformly at random) for a given channel, meaning the following

Definition 2.7 (maximum likelihood decoding). Maximum likelihood decoding of a binary
code C ⊂ {0, 1}n over a BIMS channel with transitions probabilities (p(y|b)) y∈Y

b∈{0,1}
corresponds,

given a received word y ∈ Yn, to output the (or one of them if there are several equally likely

candidates) codeword x which maximizes p(y|x). Here p(y|x)△
= p(yi|xi) · · · p(yn|xn) denotes the

probability of receiving y given that x was sent.

In a sense, this is the best possible decoding algorithm for a given channel model. There is a
variation of Shannon’s theorem (see for instance [RU08, Th. 4.68 p. 203]) which says that a family
of random binary linear codes (Cn)n attain the capacity of a BIMS channel.

4 The formula given here is strictly speaking the symmetric capacity of a channel, but these two notions
coincide in the case of a BIMS channel.

8 K. Carrier, T. Debris-Alazard, C. Meyer-Hilfiger, J-P. Tillich

Theorem 2.8. Consider a BIMS channel of capacity C. Let δ > 0 and consider a family of
random binary linear codes Cn of length n and rate smaller than (1−δ)C obtained by choosing their
generator matrix uniformly at random. Then under maximum likelihood decoding, the probability
of error after decoding goes to 0 as n tends to infinity.

3 Reduction to LPN and the Associated Algorithm

The purpose of this section is (i) to explain in detail the reduction to LPN, (ii) to give a high level
description of the algorithm which does not specify the method for finding the dual codewords we
need, and then (iii) to give its complexity. We assume from now on that we are given y which
is equal to a sum of a codeword c of the code C we want to decode plus an error vector e of
Hamming weight t:

y = c+ e, c ∈ C, |e| = t.

We will start this section by explaining how we reduce decoding to an LPN problem and also show
how the LPN noise can be estimated accurately.

3.1 Reduction to LPN

Recall that in RLPN decoding we first randomly select a subset P of s positions

P ⊆ J1, nK such that #P = s

where s is a parameter that will be chosen later. P corresponds to the entries of e we aim to

recover and is the secret in the LPN problem. We denote by N
△
=J1, nK \P the complementary

set, with a choice of the letter N standing for “noise” for reasons that will be clear soon. Given
h ∈ C⊥, we compute,

⟨y,h⟩ = ⟨e,h⟩
=
∑
j∈P

hjej +
∑
j∈N

hjej

= ⟨eP,hP⟩+ ⟨eN,hN⟩

It gives access to the following LPN sample:

(a, ⟨s,a⟩+ e) where

s
△
= eP

a
△
=hP

e
△
=⟨eN,hN⟩

Here e follows a Bernoulli distribution that is a function of n, s and u (resp. w) the weight of e
(resp. h) restricted to N, namely

u
△
= |eN| and w

△
= |hN| .

The probability that e is equal to 1 is estimated through the following proposition which gives for
the first time a rigorous statement for the standard assumption (1.2) made for statistical decoding.

Proposition 3.1. Assume that the code C is chosen by picking for it an (n−k)×n binary parity-
check matrix uniformly at random. Let N be a fixed set of n− s positions in J1, nK and e be some
error of weight u on N. Choose h uniformly at random among the parity-checks of C of weight

w on N and h′ uniformly at random among the words of weight w on N. Let δ
△
=bias (⟨e,h′⟩).

If the parameters k, s, u, w are chosen as functions on n so that for n going to infinity, the
expected number N of parity-checks of C of weight w on N satisfies N = ω

(
1/δ2

)
then for all but

a proportion o(1) of codes we have

bias (⟨eN,hN⟩) = (1 + o(1))δ.

Statistical Decoding 2.0: Reducing Decoding to LPN 9

Proof. Let us define for b ∈ {0, 1}:

Eb
△
=#{h ∈ C⊥ : |hN| = w, ⟨eN,hN⟩ = b} (3.1)

E′
b
△
=#{h′ ∈ Fn

2 : |h′
N| = w, ⟨eN,h′

N⟩ = b} (3.2)

By using [Bar97, Lemma 1.1 p.10]5, we obtain

E(Eb) =
E′

b

2k
(3.3)

Var (Eb) ≤
E′

b

2k
(3.4)

By using now the Bienaymé-Tchebychev inequality, we obtain for any function f mapping the
positive integers to positive real numbers:

PC

(
|Eb − E(Eb)| ≥

√
f(n)E(Eb)

)
≤ 1

f(n)
. (3.5)

Since bias (⟨eN,hN⟩) = E0−E1

E0+E1
we have with probability greater than 1− 2

f(n) that

µ0 − µ1 −
√
2f(n)

√
µ0 + µ1

µ0 + µ1 +
√
2f(n)

√
µ0 + µ1

≤ bias (⟨eN,hN⟩) ≤
µ0 − µ1 +

√
2f(n)

√
µ0 + µ1

µ0 + µ1 −
√
2f(n)

√
µ0 + µ1

(3.6)

where µi
△
=E(Ei) and where we used that for all positive x and y,

√
x+
√
y ≤

√
2(x+ y). We let

f(n) = δ
√
N/2. Since N = µ0 + µ1 this implies f(n) = δ

√
µ0 + µ1/2. By the assumptions made

in the proposition, note that f(n) tends to infinity as n tends to infinity. We notice that√
2f(n)

√
µ0 + µ1 = δ1/2(µ0 + µ1)

3/4

= o (δ(µ0 + µ1)) (3.7)

because

δ1/2(µ0 + µ1)
3/4

δ(µ0 + µ1)
=

1√
δ
√
µ0 + µ1

=
1√
2f(n)

→ 0 as n→∞.

Equation (3.6) can now be rewritten as

µ0 − µ1 − o (δ(µ0 + µ1))

µ0 + µ1 + o (δ(µ0 + µ1))
≤ bias (⟨eN,hN⟩) ≤

µ0 − µ1 + o (δ(µ0 + µ1))

µ0 + µ1 − o (δ(µ0 + µ1))
(3.8)

Now, on the other hand

δ = bias (⟨eN,h′
N⟩) =

E′
0 − E′

1

E′
0 + E′

1

=

E′
0

2k
− E′

1

2k

E′
0

2k
+

E′
1

2k

=
µ0 − µ1

µ0 + µ1
(by (3.1)).

From this it follows that we can rewrite (3.8) as

δ

1 + o(δ)
− o(δ) ≤ bias (⟨eN,hN⟩) ≤

δ

1− o(δ)
+ o(δ) (3.9)

from which it follows immediately that bias (⟨eN,hN⟩) = δ(1 + o(1)).
5 Note that there is an additional condition “Suppose Lq−r grows exponentially in n” in the statement
of this lemma, but it is readily seen that this condition is neither necessary nor used in the proof.

10 K. Carrier, T. Debris-Alazard, C. Meyer-Hilfiger, J-P. Tillich

Remark 3.2. Note that the condition N = Ω
(
1/δ2

)
, respectively N = Ω

(
s/δ2

)
is the condition

we need in order that statistical decoding, respectively RLPN decoding succeed. This means that
if we just have slightly more equations than the ratio 1

δ2 , then the standard assumption (1.2) made
for statistical decoding holds. The point of this assumption is that it allows easily to estimate the
bias as the following lemma shows.

Lemma 3.3. Under the same assumptions made in Proposition 3.1 we have that for all but a
proportion o(1) of codes,

bias(⟨eN,hN⟩) = δ(1 + o(1)) with δ
△
=

Kn−s
w (u)(
n−s
w

)
where u

△
= |eN| and Kn

w stands for the Krawtchouk polynomial of order n and degree w ∈ J0, nK
which is defined as:

Kn
w(X)

△
=

w∑
j=0

(−1)j
(
X

j

)(
n−X

w − j

)
.

Proof. By using Proposition 3.1 (and the same notation as the one used there) we have that for
all but a proportion o(1) of codes

bias (⟨eN,hN⟩) = (1 + o(1)) bias (⟨eN,h′
N⟩) .

Now by definition of u we have

bias (⟨eN,h′
N⟩) =

1(
n−s
w

) ∑
j even

(
u

j

)(
n− s− u

w − j

)
− 1(

n−s
w

) ∑
j odd

(
u

j

)(
n− s− u

w − j

)

=
1(

n−s
w

) ∑
j

(−1)j
(
u

j

)(
n− s− u

w − j

)

=
Kn−s

w (u)(
n−s
w

) .

We will now repeatedly denote by bias of the LPN sample the quantity ε appearing in the
previous lemma and the estimated bias the quantity namely

Definition 3.4 (bias of the LPN samples). The bias ε of the LPN samples is defined by

ε
△
=bias(⟨eN,hN⟩)

when eN has Hamming weight u and h is drawn uniformly at random among the parity-check
equations of weight w restricted on N. The estimated bias is the quantity δ defined by

δ
△
=bias(⟨eN,h′

N⟩)

when eN has Hamming weight u and h′ is drawn uniformly at random among the binary words of
weight w restricted on N. This quantity is equal to

δ =
Kn−s

w (u)(
n−s
w

) .

The point of introducing Krawtchouk polynomials is that we can bring in asymptotic expan-
sions of Krawtchouk polynomials. Most of the relevant properties we need about Krawtchouk
polynomials are given in [KS21, §II.B]. They can be summarized by

Statistical Decoding 2.0: Reducing Decoding to LPN 11

Proposition 3.5.

1. Value at 0. For all 0 ≤ w ≤ n, Kn
w(0) =

(
n
w

)
.

2. Reciprocity. For all 0 ≤ t, w ≤ n,
(
n
t

)
Kn

w(t) =
(
n
w

)
Kn

t (w).
3. Roots. The polynomials Kn

w have w distinct roots which lie in the interval

r
n/2−

√
w(n− w), n/2 +

√
w(n− w)

z
.

The distance between roots is at least 2 and at most o(n).

4. Magnitude outside the root region. We set τ
△
= t

n , ω
△
= w

n . We assume w ≤ n/2 and t ≤
n/2−

√
w(n− w). Let z

△
= 1−2τ−

√
D

2(1−ω) where D
△
=(1− 2τ)

2 − 4ω(1− ω). We have

Kn
w(t) = 2n(τ log2(1−z)+(1−τ) log2(1+z)−ω log2 z+o(1)). (3.10)

5. Magnitude in the root region. Between any two consecutive roots of Kn
w, where 1 ≤ w ≤ n

2 ,
there exists t such that:

Kn
w(t) = 2n(

1+h(ω)−h(τ)
2 +o(1)) where ω

△
=

w

n
and τ

△
=

t

n
. (3.11)

By using this proposition, we readily obtain

Proposition 3.6 (exponential behavior of δ2). Let τ and ω be two reals in the interval
[
0, 1

2

]
.

Let ω⊥ △
= 1

2−
√
ω(1− ω) and z

△
= 1−2τ−

√
D

2(1−ω) where D
△
=(1− 2τ)

2−4ω(1−ω). There exists a sequence

of positive integers (tn)n∈N and (wn)n∈N, such that tn
n →

n→∞
τ , wn

n →
n→∞

ω and
log2(K

n
wn

(tn)
2/(n

wn
)
2
)

n

has a limit which we denote δ̃(τ, ω) with

δ̃(τ, ω) =

{
2 (τ log2(1− z) + (1− τ) log2(1 + z)− ω log2 z − h(ω)) if τ ∈ [0, ω⊥]
1− h(τ)− h(ω) otherwise.

Proof. In the case τ ∈ [0, ω⊥] we just let tn = ⌈τn⌉, wn = ⌈ωn⌉ and use directly the asymp-

totic expansion (3.10). In the case τ ∈
[
ω⊥, 1

2

]
we still define wn with wn

△
=⌈ωn⌉ but define tn

differently. For n large enough, we know from Proposition 3.5 that ⌈τn⌉ lies between two ze-
ros of the Krawtchouk polynomial and that there exists an integer tn in this interval such that
log2(K

n
wn

(tn))

n = 1+h(ω)−h(τn)
2 + o(1) where τn = tn

n . Now since the size of this interval is an o(n)

we necessarily have τn = τ + o(1) and therefore
log2(K

n
wn

(tn))

n = 1+h(ω)−h(τ)
2 + o(1).

The point of this proposition is that the term 2 log2(K
n−s
w (u)/

(
n−s
w

)
) quantifies the exponential

behaviour of the square ε2 of the bias ε (see Lemma 3.3) and 1/ε2 is up to polynomial terms the
number of parity-checks we need for having enough information to solve the LPN problem as will
be seen. This is because the capacity of the BSC(1−ε

2) is 1− h
(
1−ε
2

)
= θ(ε2) and that solving an

LPN-problem with a secret of size s and N samples amounts to be able to decode a random linear
code of rate s

N over the BSC(1−ε
2). It is therefore doable as soon as the rate is below the capacity

(see Theorem 2.8). The reason why the Shannon capacity appears here is because of the following
heuristic/assumption we will make here:

Assumption 3.7 (LPN modelling). We will assume that the ⟨eN,hN⟩ are i.i.d Bernoulli ran-
dom variables of parameter 1−ε

2 .

Strictly speaking, the corresponding random variables are not independent. However, note that
similar heuristics are also used to analyze a related lattice decoder making use of short dual lattice
vectors (they are called dual attacks in the literature). We will discuss this assumption in more
depth in Subsection 3.4. Assumption 3.7 models the LPN noise as a binary symmetric channel
BSC(1−ε

2) of crossover probability 1−ε
2 . A straightforward application of Theorem 2.8 together

with the fact that the capacity of a binary symmetric BSC(1−ε
2) is 1− h

(
1−ε
2

)
= Ω(ε2) implies

12 K. Carrier, T. Debris-Alazard, C. Meyer-Hilfiger, J-P. Tillich

Fact 3.8. With Assumption 3.7, the number N of LPN samples is such that s/N = O(ε2) for
a small enough constant in the O, performing maximum-likelihood decoding of the corresponding
[N, s] binary code recovers the secret eP with probability 1− o(1).

Performing maximum likelihood decoding of the corresponding code can be achieved by a fast

Fourier transform on a relevant vector. Indeed, for a given received word y and a set H̃ of N
parity-checks so that their restriction to P leads to a set H of N different vectors of Fs

2, we let

for a ∈H, ã be the unique parity-check in H̃ such that ãP = a and define fy,H as

fy,H : Fs
2 → R

a 7→
{
(−1)⟨y,ã⟩ if a ∈H

0 otherwise
(3.12)

We define the Fourier transform of such a function by

f̂(x)
△
=
∑
u∈Fs

2

f(u)(−1)⟨x,u⟩.

The code D we want to decode (obtained via our LPN samples) is described as

D
△
={cx, x ∈ Fs

2} where cx
△
=(⟨x,a⟩)a∈H , (3.13)

and the word uy,H we want to decode is given by uy,H = (⟨y, ã⟩)a∈H . It is readily seen that

f̂y,H(x) =
∑
a∈Fs

2

f(a)(−1)⟨x,a⟩

=
∑
a∈H

(−1)⟨x,a⟩+⟨y,ã⟩

= #H − 2|uy,H − cx|.

In other words, finding the closest codeword to uy,H is nothing but finding the x which maximizes

f̂y,H(x). This is achieved in time O(s2s) by performing a fast Fourier transform. Notice that an
exhaustive search would cost O

(
22s
)
.

3.2 Sketch of the whole algorithm

Besides, the fast Fourier transform solving the LPN problem, Algorithm 3.1 uses two other ingre-
dients:

– A routine Create(N,w,P) creating a set H of N parity-check equations h such that |hN| =
w where N

△
=J1, nK \P. We will not specify how this function is realized here: this is done in

the following sections. This procedure together with an FFT for decoding the code associated
to the parity-check equations in H (see Equation (3.13)) form the inner loop of our algorithm.

– An outer loop making a certain number Niter of calls to the inner procedure, checking each
time a new set P of s positions with the hope of finding an N containing an unusually low
number u of errors in it. The point is that with a right u, the number of times we will have to
check a new P is outweighed by the decrease in N because the bias δ is much higher for such
a u.

3.3 Analysis of the RLPN decoder

We need to show now that our RLPN decoder returns what we expect.

Statistical Decoding 2.0: Reducing Decoding to LPN 13

Algorithm 3.1. RLPN decoder

Input: y, t, C an [n, k]-code
Output: e such that |e| = t and y − e ∈ C.

function RLPNdecode(y, C, t)
s, u← Optim(t, k, n)

▷ s and u in order to minimize the complexity of the following procedure.
for i from 1 to Niter do ▷ Niter is a certain function of n, s, t and u.

P
$← {I ⊆ J1, nK : #I = s}

N ← J1, nK \P
H ← Create(N,w,P)

f̂y,H ←FFT(fy,H)

x0 ← argmax f̂y,H

if f̂y,H(x0) ≥ δN
2

then ▷ δ
△
=Kn−s

w (u)/
(
n−s
w

)
.

return e such that eP = x0 and eN = RLPNdecode(yN,CN, t− |x0|))
end if

end for
end function

Proposition 3.9 (acceptation criteria). Under Assumption 3.7, by choosing Niter = ω
(

1
Psucc

)
(where Psucc is the probability over the choice of N that there are exactly u errors in N), s = ω(1)
and N = ω

(
n
δ2

)
, we have with probability 1− o(1) that at least one iteration is such that eP meets

the acceptation criteria f̂y,H(eP) ≥ δN
2 . Moreover, the probability that there exists x ̸= eP which

meets this acceptation criteria is o(1).

Proof. We need to show that two things happen both with probability 1 − o(1): (i) there is at

least one iteration in the Algorithm 3.1 for which f̂y,H(eP) ≥ δN
2 and (ii) for all x ∈ Fs

2 different

from eP, we have f̂y,H(x) < δN
2 for all iterations.

The first point (i) follows from the fact that by taking Niter
△
=ω

(
1

Psucc

)
, we have that one iteration

is such that |eN| = u and |eP| = t−u with probability 1−o(1). For such an iteration, we have from
Assumption 3.7 that |ceP − uy,H | ∼ Binomial

(
N, 1−ε

2

)
. Thus, by using the Hoeffding inequality,

P
(
f̂y,H(eP) ≥ δN

2

)
= P

(
|ceP − uy,H | ≤

1− δ
2

2
N

)
≥ 1− exp

(
− (ε− δ/2)2N

2

)
which is a 1− o(1) by the choice made on N .

For the second point (ii), consider now an x ∈ Fs
2 such that x ̸= eP. Let c′

△
= cx − ceP , d

△
= |c′|

and y′ △=uy,H − ceP . Then we have:

P
(
f̂y,H(x) ≥ δN

2

)
= P

(
|c′ − y′| ≤ 1− δ

2

2
N

)
(because |cx − uy,H | = |c′ − y′|)

=

N∑
b=0

1− δ
2

2 N∑
a=0

P
(
|c′ − y′| = a

∣∣∣ |y′| = b
)

P (|y′| = b)

≤
N∑
b=0

1− δ
2

2 N∑
a=0

Py′

(
|c′ − y′| = a

∣∣∣ |y′| = b
)

≤
N∑
b=0

1− δ
2

2 N∑
a=0

(
b

d+b−a
2

)(N−b
d−b+a

2

)(
N
d

) . (3.14)

14 K. Carrier, T. Debris-Alazard, C. Meyer-Hilfiger, J-P. Tillich

The last point follows from the fact that |y′| ∼ Binomial
(
N, 1−ε′

2

)
for some ε′ depending on |eN|

and therefore the conditional distribution of y′ given that |y′| = b is the uniform distribution of
words of weight b over FN

2 . This implies

Py′

(
|c′ − y′| = a

∣∣∣ |y′| = b
)
=

(
b

d+b−a
2

)(N−b
d−b+a

2

)(
N
d

) .

Note that both cx and ceP are in the code D defined by Equation (3.13). We can bound again
the (typical) minimum non-zero weight and the maximum weight by using [Bar97, Lemma 1.1,
p.10]. Let B = {x ∈ FN

2 : 0 < |x| ≤ Nh−1(1 − 2s/N)}. The expected number M of codewords

of D in B is #B
2N(1−s/N) . Since #B ≤ 2Nh(h−1(1−2s/N)) = 2N(1−2s/N) we have that M ≤ 2−s.

Since the probability that the minimum distance of D is less than or equal to Nh−1(1− 2s/N) is
upper-bounded by M , we obtain that the minimum distance of D is greater than Nh−1(1−2s/N)
with probability 1− o(1). A similar reasoning can be made for the maximum weight. We therefore
obtain that with probability 1 − o(1) all the weights d of the non-zero codewords of D lie in
Jd−, d+K where

d−
△
=Nh−1(1− 2s/N) and d+

△
=N −Nh−1(1− 2s/N).

In such a case, we always have for n large enough

a ≤ d ≤ N − a (3.15)

1− 2s/N ≤ h(d/N) ≤ 1. (3.16)

We observe now that(
b

d+b−a
2

)(N−b
d−b+a

2

)(
N
d

) ≤ 2bh(
1
2−

d−a
2b)+(N−b)h(1

2−
N−d−a
2(N−b))−Nh(d

N) (because of (3.15))

≤ 2min[−b(1−h(1
2−

d−a
2b))+2s , −(N−b)(1−h(1

2−
d−a

2(N−b)))+2s] (because of (3.16))

≤ 2−
N
2 (1−h(1

2−
d−a
2N))+2s (3.17)

The last inequality comes from the fact that either b or N − b is greater than N
2 and that both

of them are smaller than N . Since h−1(1 − u) = 1
2 − Θ (

√
u) for u → 0+ we have that N/2(1 −

Θ
(√

s
N

)
) ≤ d ≤ N/2(1 +Θ

(√
s
N

)
) and therefore

d− a

2N
≥ δ/2−Θ

(√
s
N

)
4

= Ω (δ) . (3.18)

By using that h(1/2− u) = 1−Θ
(
u2
)
for u→ 0 together with (3.18) in (3.17) we obtain(

b
d+b−a

2

)(N−b
d−b+a

2

)(
N
d

) ≤ 2−Ω(Nδ2)+2s. (3.19)

By plugging this inequality in (3.14) we finally obtain

P
(
f̂y,H(x) ≥ δN

2

)
≤ N2 2−Ω(Nδ2)+2s

and the probability of the event “there exists an iteration and an x ̸= eP such that f̂y,H(x) ≥ δN
2 ”

is upper-bounded by

Niter 2
sN22−Ω(Nδ2)+2s = o(1).

The space and time complexity of this method are readily seen to be given by

Statistical Decoding 2.0: Reducing Decoding to LPN 15

Proposition 3.10. Assume that Create(N ,w,P) produces N parity-check equations in space
Seq and time Teq. The probability Psucc (over the choice of N) that there are exactly u errors

in N is given by Psucc =
(s
t−u)(

n−s
u)

(nt)
. The space complexity S and the time complexity T of the

RLPN-decoder are given by

Space: S = O(Seq + 2s) , Time: T = Õ

(
Teq + 2s

Psucc

)
.

The parameters s, u and w have to meet the following constraints

N ≤ 2s (3.20)

N ≤
(
n−s
w

)
2k−s

. (3.21)

Under Assumption 3.7 the algorithm outputs the correct eP with probability 1− o(1) if in addition
we choose N and Niter such that

N = ω

n

((
n−s
w

)
Kn−s

w (u)

)2
 (3.22)

Niter = ω

(
1

Psucc

)
. (3.23)

Proof. All the points are straightforward here, with the exception of the constraints. The first
constraint is that the number of parity-checks should not be bigger than the total number of
different LPN samples we can possibly produce. The second one is that the number of parity-
checks needed is smaller than the number of available parity-checks. The conditions ensuring the
correctness of the algorithm follow immediately from Proposition 3.9.

3.4 On the validity of Assumption 3.7

The proof of the correctness of the algorithm relies on the validity of the LPN modelling (As-
sumption 3.7). We have programmed this algorithm and have verified that for several param-
eters it gives the correct answer. The corresponding experiments with the programs that have
been used for running them can be found on https://github.com/tillich/RLPNdecoding. How-
ever, we have also found out (see https://github.com/tillich/RLPNdecoding/tree/master/

verification_heuristic/histogram) that the second largest Fourier coefficient (the one which
corresponds to the second nearest codeword, besides eP) does not behave in the same way in
the LPN model as in practice with the noise given by the ⟨hN, eN⟩’s. This can be traced back
to the fact that ⟨hN, eN⟩ and

〈
h′
N, eN

〉
are positively correlated when hN and h′

N are close to
each other in Hamming distance. Actually these correlations have an effect on the tails of the
largest Fourier coefficients as demonstrated in Figure 3.1 which display longer tails corresponding
to the largest Fourier coefficients in the case of a noise produced by ⟨hN, eN⟩’s (called parity-
checks in the figure) instead of Fourier coefficients produced by decoding a code with a BSC(1−ε

2)
noise (called BSC in the figure). This phenomenon vanishes when k gets larger as can be verified
in Figure 3.1 or on https://github.com/tillich/RLPNdecoding/tree/master/verification_

heuristic/histogram. From our experiments (see more details on https://github.com/tillich/
RLPNdecoding) this phenomenon is not severe enough to prevent Algorithm 3.1 from working but
needs some adjustments about how larger N has to be in terms of 1

δ2 . This experimental evidence
leads us to conjecture

Conjecture 3.11. Algorithm 3.1 is successful if we replace in Proposition 3.10 the condition N =

ω

(
n

(
(n−s

w)
Kn−s

w (u)

)2
)

by the slightly stronger condition N = ω

(
nα

(
(n−s

w)
Kn−s

w (u)

)2
)

for a certain

α ≥ 1.

16 K. Carrier, T. Debris-Alazard, C. Meyer-Hilfiger, J-P. Tillich

If this conjecture is true, then obviously the asymptotic exponent of the complexity is un-
changed if we replace Assumption 3.7 by Conjecture 3.11. A semi-heuristic way to verify this
conjecture could be to proceed as follows

1. Let W be the weight of the vector
(〈

h̃N, eN

〉)
h∈H̃

. Compute Var (W) and prove that

Var (W) is of order O
(
nβN

)
where β is some constant.

2. Use this computation to bound heuristically the tails of the Fourier coefficients and use this
computation of Var (W) to give an estimation for the second largest Fourier coefficient when
decoding the [N, s]-code which agrees with the experimental evidence.

3. Use this to prove that the second largest Fourier coefficient is typically far away enough from
the first one to prove the validity of Conjecture 3.11.

2000 3000 4000 5000 6000
0

100

200

300

400

500

Walsh transform of a word at distance GV: F(GV) : 3266.0

Number Walsh coe±cient greater than F(GV)+F(≤)
2

: 2 (Parity Checks) ; 1 (BSC)

Parity Checks

BSC

2000 3000 4000 5000 6000
0

100

200

300

400

500

600

Walsh transform of a word at distance GV: F(GV) : 3259.0

Number Walsh coe±cient greater than F(GV)+F(≤)
2

: 1 (Parity Checks) ; 1 (BSC)

2000 3000 4000 5000 6000
0

100

200

300

400

500

600

Walsh transform of a word at distance GV: F(GV) : 3262.0

Number Walsh coe±cient greater than F(GV)+F(≤)
2

: 1 (Parity Checks) ; 1 (BSC)

2000 3000 4000 5000 6000
0

100

200

300

400

500

600

Walsh transform of a word at distance GV: F(GV) : 3255.0

Number Walsh coe±cient greater than F(GV)+F(≤)
2

: 1 (Parity Checks) ; 1 (BSC)

w = 6, s = 19 k = 26, n = 94, |eP | = 6, |eN | = 10, 1°≤
2

= 0, 436318, Tail distribution 0.6 § F(GV)

2000 3000 4000 5000 6000
0

100

200

300

400

500

600

Walsh transform of a word at distance GV: F(GV) : 3260.0

Number Walsh coe±cient greater than F(GV)+F(≤)
2

: 1 (Parity Checks) ; 1 (BSC)

Parity Checks

BSC

2000 3000 4000 5000 6000
0

100

200

300

400

500

600

Walsh transform of a word at distance GV: F(GV) : 3263.0

Number Walsh coe±cient greater than F(GV)+F(≤)
2

: 1 (Parity Checks) ; 1 (BSC)

2000 3000 4000 5000 6000
0

100

200

300

400

500

600

Walsh transform of a word at distance GV: F(GV) : 3262.0

Number Walsh coe±cient greater than F(GV)+F(≤)
2

: 1 (Parity Checks) ; 1 (BSC)

2000 3000 4000 5000 6000
0

100

200

300

400

500

600

Walsh transform of a word at distance GV: F(GV) : 3261.0

Number Walsh coe±cient greater than F(GV)+F(≤)
2

: 1 (Parity Checks) ; 1 (BSC)

w = 6, s = 19 k = 40, n = 387, |eP | = 6, |eN | = 53, 1°≤
2

= 0, 437490, Tail distribution 0.6 § F(GV)

Figure 3.1. Tails of the largest Fourier coefficients when decoding the [N, s]-code either with the noise
produced by the ⟨hN, eN⟩’s or by the ideal LPN noise model (the BSC(1−ε

2
) noise model). Both figures

correspond to parity-checks hN of weight 6 and to s = 19. However they differ in the value for k. k equals
26 in the first figure and displays rather heavy tails for the largest Fourier coefficients corresponding to
the parity-checks hN whereas k = 40 corresponds to rather similar tails in both cases. This is a general
trend that can be verified on https://github.com/tillich/RLPNdecoding/tree/master/verification_

heuristic/histogram, when k gets larger, the heavy tail phenomenon vanishes.

4 Collision techniques for finding low weight parity-checks

4.1 Using the [Dum86] method

A way for creating parity-checks with a low weight on N is simply to use subset-sum/collision
techniques [Dum86, Ste88, Dum89]. We start here with the simplest method for performing such a
task pioneered by Dumer in [Dum86]. Consider a parity-check matrix H for the code C we want to
decode and keep only the columns belonging to N to obtain an (n− k)× (n− s) matrix HN. The
row-space of HN generates the restrictions hN to N of the parity-checks h of C. This row-space

Statistical Decoding 2.0: Reducing Decoding to LPN 17

is nothing but the dual code C⊥ punctured in P, i.e. we keep only the positions in N. With our
notation, this is C⊥

N and is an [n− s, n− k]-code. Therefore if we want to find parity-checks h of
C such that |hN| = w, this amounts to find codewords of C⊥

N of weight w. For this, we compute
a parity-check matrix H′ of C⊥

N i.e. a (k − s)× (n− s) matrix such that

C⊥
N = {c ∈ Fn−s

2 : H′c⊺ = 0}.

We split such a matrix in two parts6 of the same size H′ =
(
H1 H2

)
. We obtain an algorithm of

time and space complexity, T and S respectively, producing N codewords of weight w, with

N =

(n−s
2
w
2

)2
2k−s

(1 + o(1)) and S = T = O

((n−s
2
w
2

)
+N

)
.

The algorithm for producing such codewords is to set up two lists,

L1
△
=
{
(H1h

⊺
1 ,h1) : |h1| =

w

2
, h1 ∈ F

n−s
2

2

}
L2

△
=
{
(H2h

⊺
2 ,h2) : |h2| =

w

2
, h2 ∈ F

n−s
2

2

}
and looking for collisions H1h

⊺
1 = H2h

⊺
2 in the lists. It yields vectors h′ = h1||h2 of weight w

which are in C⊥
N since H′h′⊺ = H1h

⊺
1+H2h

⊺
2 = 0. These vectors in Fn−s

2 can be completed to give

vectors h ∈ Fn
2 such that hN = h′. The number of collisions is expected to be of order

(n−s
2
w
2

)2
/2k−s

since 2−(k−s) is the collision probability of two vectors in Fk−s
2 . The algorithm for performing this

task is given by Algorithm 4.1.

Algorithm 4.1. Creating low weight parity-checks by collisions

Input C, w, P

Output a list of parity-check equations h of C such that |hN| = w where N
△
=J1, nK \P.

function Create(C,w, P)
H← Parity-check-matrix(C⊥,P)
▷ returns a parity-check matrix for C⊥ with an identity corresponding to the positions in P:

H =

(
I P
0 H′

)
where we assume that the first block corresponds to the positions of P.

L1 ← {(H1h
⊺
1,h1) : |h1| = w/2,h1 ∈ F

n−s
2

2 }
L2 ← {(H2h

⊺
2,h2) : |h2| = w/2,h2 ∈ F

n−s
2

2 }
▷ We assume H′ =

(
H1 H2

)
, with H1 and H2 of the same size.

L ← {h1||h2 ∈L1 ×L2 : H1h
⊺
1 = H2h

⊺
2}

return {h′P⊺||h′ : h′ ∈L}
▷ It is straightforward to check that h′P⊺||h′ belongs to C⊥.

end function

We have represented in Figure 4.1 the form of the parity-checks output by this method, together
with the bet we make on the error.

The amortized cost for producing a parity-check equation of weight w is O(1) as long as

N ≥ Ω
((n−s

2
w
2

))
. It is insightful to consider the smallest value of w for which

(n−s
2
w
2

)
≤
(n−s

2
w
2

)2
/2k−s.

This is roughly speaking the smallest value (up to negligible terms) of w for which the amortized

6 To simplify the presentation, the cut is explained by taking the first n−s
2

positions for the first part and
the n−s

2
for the second part, but of course in general these positions are randomly chosen.

18 K. Carrier, T. Debris-Alazard, C. Meyer-Hilfiger, J-P. Tillich

h

s (n− s)/2

w/2

(n− s)/2

w/2

e t− u u

Figure 4.1. The form of the parity-checks produced by this method, vs. the bet made on the error. The
hatched rectangle of size s for h indicates that the weight is arbitrary on this part.

cost for producing parity-check equations of weight w is O(1) per equation. In such a case, we
roughly have

N ≈
(n−s

2
w
2

)
≈
(n−s

2
w
2

)2
2k−s

≈ 2k−s.

In other words with this choice we have

Teq = O
(
2k−s

)
.

Let us choose now u as the “typical error weight” when restricted to N, namely u ≈ tn−s
n and s

such that the decoding complexity of the [N, s]-code is also of order the codelength, i.e. N = Θ̃ (2s).
This would imply 2s ≈ 2k−s, which means that we are going to choose s = k

2 . By using Proposition
3.10, all these choices would yield a time complexity TDumer86 for decoding C which would be of
order

TDumer86 = Õ
(
2k/2

)
, (4.1)

if the constraint N = Ω̃

((
(n−s

w)
Kn−s

w (u)

)2
)

for successful decoding the [N, s]-code is met. This

amounts to 2Rn/2 = Ω̃

((
(n(1−R/2)

w)
K

n(1−R/2)
w (t(1−R/2))

)2
)
, where R is the code rate, i.e. R = k

n . By

using Proposition 3.1, we can give an asymptotic formula for this constraint. It translates into

R/2 ≥ 2(1−R/2) δ̃ (τ, ω/(1−R/2)) ,

where δ̃ is the function defined in Proposition 3.6. Amazingly enough this constraint is met up
to very small values of R, it is only below R ≈ 0.02 that this condition is not met anymore.
This innocent looking remark has actually very concrete consequences. This means that above

the range R ⪆ 0.02 the asymptotic complexity exponent, i.e. αDumer86
△
= lim supn log2 TDumer86/n

where TDumer86 is the time complexity, satisfies

αDumer86 ≤
R

2
. (4.2)

This is very surprising, since in the vicinity of R ≈ 0 the asymptotic time complexity of all known
decoding methods approach quickly R. In other words, in this regime, the complexity is of order
T ≈ 2Rn = 2k for full distance (a.k.a. GV) decoding, meaning that they are not better than
exhaustive search. Unfortunately this is also the case for our method. It can namely be proved
that even by optimizing on the value of s, w and u we can not do better than this with our
method, since αDumer86(R) ∼ R as R approaches 0. However, as can be guessed from the fact
that αDumer86 ≤ R

2 for R ⪆ 0.02, the behaviour of the complexity is much better for our RLPN
decoder. This can be verified in Figure 4.2.

It is worthwhile to recall that ISD algorithms in the regime of the rate close to 1 precisely use
this collision method to find low weight codewords in order to reduce significantly the complexity
of decoding. In a sense, we have a dual version of the birthday/collision decoder of [Dum86] with
reduced complexity for rates close to 0.

Statistical Decoding 2.0: Reducing Decoding to LPN 19

0.005 0.010 0.015 0.020
R

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

log2(Complexity)
n

[Pra62]
RLPN with [Dum86]

0.05 0.10 0.15 0.20 0.25 0.30 0.35
R

0.02

0.04

0.06

0.08

0.10

0.12

0.14

log2(Complexity)
n

Pra[62]
RLPN with [Dum86]

Figure 4.2. The complexity of the RLPN-decoder for very small rates vs. the simplest information set
decoder, namely the ISD Prange decoder [Pra62]. For small R, there is no much difference between the
ISD Prange decoder and much more evolved decoders like [BJMM12, MO15, BM17, BM18]. The RLPN-
decoder with the very simple [Dum86] technique performs much better for small rates than ISD decoders.
It is only outperformed by the Prange decoder for rates above 0.25 approximately.

4.2 Improving [Dum86] by puncturing as in [Dum89]

There is a simple way of improving the generation of dual codewords of low weight on N. It
consists in partitioning N in two sets N1 and N2 with N2 being a subset of positions of size just a
little bit above n− k (which is the dimension of the dual code C⊥), say n− k+ ℓ and then to use
the collision method to get dual codewords of weight w2 on N2. The same method is used in the
improvement [Dum89] of the simple collision decoder [Dum86] or in a slightly less efficient way in
[Ste88]. It just consists in finding codewords in C⊥ which have weight w1 on N1 and w2 on N2

instead of simply weight w on N. We have represented in Figure 4.3 the form of the parity-checks
we produce with this method. Note that the weight w1 is expected to be half the size k− ℓ− s of
N1.

h

s k − ℓ− s

(k − ℓ− s)/2

(n− k + ℓ)/2

w2/2

(n− k + ℓ)/2

w2/2

N1 N2

e t− u u1 u2

Figure 4.3. The form of the parity-checks produced by this method, vs. the bet made on the error. The
hatched rectangle of size s for h indicates that the weight is arbitrary on this part.

To understand the bias we get in this case, the proof of Proposition 3.1 can be readily adapted
to yield

Proposition 4.1. Assume that the code C is chosen by picking for it an (n − k) × n binary
parity-check matrix uniformly at random. Let N be a fixed set of n − s positions in J1, nK which
is partitioned in two sets N1 and N2 and e be some error of weight ui on Ni for i ∈ {1, 2}. For
i ∈ {1, 2}, choose h uniformly at random among the parity-checks of C of weight wi on the Ni’s

20 K. Carrier, T. Debris-Alazard, C. Meyer-Hilfiger, J-P. Tillich

and h′ uniformly at random among the words of weight wi on the Ni’s. For i ∈ {1, 2}, let

δi
△
= bias

(〈
eNi

,h′
Ni

〉)
δ

△
= δ1δ2

If the parameters k, s, ui, wi are chosen as functions on n so that for n going to infinity, the
expected number N of parity-checks of C of respective weight wi on Ni for i ∈ {1, 2}, satisfies
N = ω

(
1/δ2

)
then for all but a proportion o(1) of codes we have

bias (⟨eN,hN⟩) = (1 + o(1))δ.

With the collision method we use, the parity-checks we produce have actually a slightly more
specific form, since N2 is partitioned in two sets of (almost) the same size on which h has weight
w2/2. It is not difficult to turn such a generation of parity-checks at the cost of a polynomial
overhead into a generation of uniformly distributed parity-checks of weight w2 on N2. We leave
out the details for doing this here. Under such an assumption, we have

Lemma 4.2. With the same assumptions as in Proposition 4.1,

Ph(⟨eN,hN = 1⟩) = 1− ε

2
where ε = δ1δ2(1− o(1))

with δ1
△
=

Kk−ℓ−s
w1

(u1)

(k−ℓ−s
w1

)
, δ2

△
=

Kn−k+ℓ
w2

(u2)

(n−k+ℓ
w2

)
, u1

△
= |eN1

|, u2
△
= |eN2

|, w1
△
= |hN1

| and w2
△
= |hN2

|.

Proof. This is a straightforward application of the previous proposition and Lemma 3.3.

All these considerations lead to a slight variation of the RLPN decoder given in Algorithm
3.1. Let us make now a bet on the weight ui of the error restricted to Ni for i ∈ {1, 2} and use
Dumer’s [Dum89] collision low-weight codeword generator to produce N parity-checks h such that
|hNi
| = wi for i ∈ {1, 2}. We call the associated function Create(N ,w1,w2, P).

Proposition 4.3. If Assumption 3.7 holds and assuming that Create(N ,w1,w2, P) produces
N parity-check equations in space Seq and time Teq that are of weight wi on Ni for i ∈ {1, 2}.
The probability Psucc (over the choice of N1 and N2) that there are exactly u1 errors in N1 and
u2 errors in N2 is given by

Psucc =

(
s

t−u1−u2

)(
k−ℓ−s

u1

)(
n−k+ℓ

u2

)(
n
t

) .

The space complexity SDumer89 and time complexity TDumer89 of the RLPN-decoder are given by

Space: SDumer89 = O(Seq + 2s) , Time: TDumer89 = Õ

(
Teq + 2s

Psucc

)
.

under the constraint on the parameters s, ℓ, u1, u2, w1 and w2 given by

N ≤ 2s (4.3)

N ≤
(
k−ℓ−s

w1

)(
n−k+ℓ

w2

)
2k−s

(4.4)

N = ω

((
k−ℓ−s

w1

)(
n−k+ℓ

w2

)
Kk−ℓ−s

w1 (u1)K
k−ℓ−s
w2 (u2)

)2
 . (4.5)

We have found out that choosing w1 carefully is unnecessary and simply setting it to it its
expected value is sufficient, i.e. w1 = k−ℓ−s

2 . Again, the same discussion as in the previous section
applies and if Conjecture 3.11 applies then the asymptotic form of the complexity is the same as
if we use Proposition 4.3 and we get the following asymptotic form

Statistical Decoding 2.0: Reducing Decoding to LPN 21

Proposition 4.4. If Conjecture 3.11 holds, the asymptotic complexity exponent of the RLPN
decoder based on Dumer’s collision low weight dual codeword generators is given by

αDumer89(R)
△
= min

(σ,ν1,ν2,λ,ω1,ω2)∈R
β(R, σ, ν1, ν2, λ, ω1, ω2) (4.6)

where

β
△
=max (σ, ν′) + π,

ν′
△
=max

(
(1−R+ λ)

2
h

(
ω2

1−R+ λ

)
, ν

)
, ν

△
=(1−R+ λ)h

(
ω2

1−R+ λ

)
− λ,

π
△
=1−R− σh

(
τ − ν1 − ν2

σ

)
− (R− λ− σ)h

(
ν1

R− λ− σ

)
− (1−R+ λ)h

(
ν2

1−R+ λ

)
,

τ
△
= δGV(R) = h−1(1−R)

and the constraint region R is defined by the subregion of non-negative tuples (σ, ν1, ν2, λ, ω1, ω2)
such that ω1 = R−λ−σ

2

σ ≤ R− λ, ν1 ≤ R− λ− σ, ν2 ≤ 1−R+ λ, τ − σ ≤ ν1 + ν2 ≤ τ, ν ≤ σ,

and

ν = −(R− λ− σ)δ̃(
ν1

R− λ− σ
,

ω1

R− λ− σ
)− (1−R+ λ)δ̃(

ν2
1−R+ λ

,
ω2

1−R+ λ
)

where δ̃ is the function defined in Proposition 3.6.

5 Using advanced collision techniques

ISD techniques have evolved [Ste88, Dum89, BLP11, MMT11, BJMM12] by first introducing
[Ste88] collision/subset-sum techniques whose purpose is to produce for codes of rate close to 1,
all codewords of some small weight, and later on by substantially improving them by using on
top of that for instance representation techniques [MMT11]. These algorithms come very handy
in our case for devising the function Create(N,w,P) that we need. In the previous section,
we have explored what could be achieved by the very first techniques of this type taken from
[Dum86, Dum89]. We are going to explain now what can be gained by using [MMT11, BJMM12].
It is convenient here to formalize the basic step used in the previous section which can be explained
by the following function

Input: L1 ⊆ Fn
2 , L2 ⊆ Fn

2 , w ∈ J1, nK, H ∈ Fℓ×n
2

Output: a list L = {x = x1 + x2 : xi ∈ Li, i ∈ {1, 2}, |x| = w, Hx⊺ = 0} of elements of the form
x1 + x2 with xi belonging to Li of weight w belonging to the code of parity-check matrix H

function Merge(L1,L2, w,H)
L ← ∅
for all x1 ∈L1 do

Store x1 in a hashtable T at address Hx⊺
1

end for
for all x2 ∈L2 do

if ∃x1 in T at address Hx⊺
2 and |x1 + x2| = w then

Put x1 + x2 in L

end if
end for
return L

end function

22 K. Carrier, T. Debris-Alazard, C. Meyer-Hilfiger, J-P. Tillich

It creates codewords of weight w in a code of parity-check matrix H as sums x1 + x2 of two

lists L1 and L2 with a complexity which is of the form O
(
max

(
#L1,#L2,

#L1·#L2

2ℓ

))
if the

Hx⊺
i ’s are distributed uniformly at random and independently (we will make this assumption from

now on). It is clear that [Dum86] and [Dum89] is more or less a direct application of this method.
[MMT11] and [BJMM12] use several layers of this function. [MMT11] starts by partitioning the
set of positions of the vectors of Fn

2 which are considered in two sets I1 and I2 of about the
same size. Then it starts with two lists L0

1 and L0
2 of all elements of weight p0 and support

I1 and I2 respectively. It merges them in a list L1 of elements of weight p1 in the kernel of a
parity-check matrix H1. Since the elements of L0

1 and L0
2 have disjoint supports by construction,

we necessarily have that p1 = 2p0. List L1 is then merged with itself to yield elements which
are in the kernel of another matrix H2 (see Figure 5.1). Since these are sums of elements of L1

they are also in the kernel of H1, so that that the elements of the final list are of weight p2 and

belong to the code of parity-check H =

(
H1

H2

)
. The size of H1 is chosen such that an element x

of weight p2 and H1x
⊺ = 0 is typically the sum of only two elements of L1 (this is the point of

the representation technique). [BJMM12] is similar to [MMT11] with one layer which is added. In
this case, we create at the end a list of elements of weight p3 which are in the code of parity-check
matrix

H
△
=

H1

H2

H3

 . (5.1)

The sizes of H1 in the [MMT11] case, and of H1 and H2 in [BJMM12] are chosen to ensure unicity
of the representation of an element of a list as the sum of two elements of the lists used for the
merge (this is the representation technique).

[MMT11]

I1 I2

p0
p1,H1 p2,H2

[BJMM12]

I1 I2

p0
p1,H1

L1

p2,H2

L2

p3,H3

L3

Figure 5.1. This figure represents the successive lists obtained in [MMT11] and [BJMM12]. The support
of the elements of the list are represented in pink. Arrows point from the lists which are merged to the
result of the merge and if two arrows depart from a list and arrive at another list, this means that the
departure list is merged with itself. The weights of the elements are indicated for each level and the matrix
Hi used for the merge is also given at the level of the result of the merge.

We use these two techniques as we used the [Dum86] technique inside the [Dum89] technique,
namely to generate codewords of C⊥ (i.e. Hx⊺ = 0 for H given by (5.1)) which are of weight p3
on a set of indices of size n− k + ℓ (see Figure 5.2).

If we let ℓ1 be the number of rows of H1, ℓ2 be the number of rows of the matrix of H′
2
△
=

(
H1

H2

)
,

then the fact that the elements of L2 should have a unique representation in terms of a sum of a
pair of elements ofL1 respectively and that they are all elements x of weight p1 and p2 respectively

Statistical Decoding 2.0: Reducing Decoding to LPN 23

h

s k − ℓ− s

(k − ℓ− s)/2

n− k + ℓ

p3

e t− u u1 u2

Figure 5.2. The form of the parity-checks produced by this method [BJMM12], vs. the bet made on the
error. The hatched rectangle of size s for h indicates that the weight is arbitrary on this part.

which satisfy H′
2x

⊺ = 0 and Hx⊺ = 0 respectively, imposes conditions (5.2) which follow. The
Si represent the space complexity of the successive lists (i.e. L0, L1, L2 and L3) used in the
[BJMM12] algorithm, whereas the Ti’s denote the complexity of each merge and Teq is the final
complexity.

2ℓ1 =

(
p2
p2/2

)(
n− k + ℓ− p2

p1 − p2/2

)
, 2ℓ2 =

(
p3
p3/2

)(
n− k + ℓ− p3

p2 − p3/2

)
(5.2)

S0 =

(n−k+ℓ
2
p1

2

)
, S1 =

(
n−k+ℓ

p1

)
2ℓ1

, S2 =

(
n−k+ℓ

p2

)
2ℓ2

, S3 =

(
n−k+ℓ

p3

)
2ℓ

(5.3)

T0 = S0, T1 = S0+
S2
0

2ℓ1
, T2 = S1+

S2
1

2ℓ2−ℓ1
, T3 = S2+

S2
2

2ℓ−ℓ2
, Teq = T0+T1+T2+T3 (5.4)

There is a similar proposition as Proposition 4.4 which gives the asymptotic complexity of the
RLPN decoder used in conjunction with the [MMT11] or [BJMM12] techniques for producing low
weight codewords. For [MMT11] it is given by

Proposition 5.1. If conjecture 3.11 applies, the asymptotic complexity exponent of the RLPN
decoder based on [MMT11] is given by

αMMT(R)
△
= min

(σ,ν1,ν2,λ,λ1,ω1,ω2,π1)∈R
β(R, σ, ν1, ν2, λ, λ1, ω1, ω2, π1) (5.5)

where

β
△
= max(σ, ν′) + π,

ν′
△
= max(γ1, γ2), ν

△
=(1−R+ λ)h

(
ω2

1−R+ λ

)
− λ,

γ1
△
= max

(
1−R+ λ

2
h

(
π1

1−R+ λ

)
, (1−R+ λ)h

(
π1

1−R+ λ

)
− λ1

)
,

γ2
△
= 2(1−R+ λ)h

(
π1

1−R+ λ

)
− λ1 − λ,

ρ
△
= 1−R− σh

(
τ − ν1 − ν2

σ

)
− (R− λ− σ)h

(
ν1

R− λ− σ

)
− (1−R+ λ)h

(
ν2

1−R+ λ

)
,

τ
△
= δGV(R) = h−1(1−R)

and the constraint regionR is defined by the subregion of non-negative tuples (σ, ν1, ν2, λ, λ1, π, ω1, ω2)
such that

σ ≤ R− λ, λ1 ≤ λ, π1 ≤ ω2, ν1 ≤ R− λ− σ, ν2 ≤ 1−R+ λ, ν ≤ σ,

τ − σ ≤ ν1 + ν2 ≤ τ, ω1 =
R− λ− σ

2
, ω2 < 1−R+ λ,

24 K. Carrier, T. Debris-Alazard, C. Meyer-Hilfiger, J-P. Tillich

ω2

2
< π1 < 1−R+ λ, λ1 = ω2 + (1−R+ λ− ω2)h

(
π1 − ω2/2

1−R+ λ− ω2

)
,

ν = −(R− λ− σ)δ̃(
ν1

R− λ− σ
,

ω1

R− λ− σ
)− (1−R+ λ)δ̃(

ν2
1−R+ λ

,
ω2

1−R+ λ
)

where δ̃ is the function defined in Proposition 3.6.

We give a proof in the Appendix A for reference. There is a similar proposition for the asymp-
totic behaviour of RLPN decoding used together with [BJMM12] which is given in the Appendix
A. We have used them for producing the complexity curves given in Figure 6.1 which display the
various complexities of the RLPN decoders we have presented. Even if there is a tiny improvement
by using [BJMM12] instead of [MMT11] the two curves are nearly indistinguishable. A perspec-
tive of improvement of our algorithm could be to produce the parity-check equations by using
more recent ISD techniques than [BJMM12], in particular [MO15, BM17] or [BM18] which all
use nearest-neighbor search. Our preliminary results using in particular [MO15] do not provide
significant improvement, we have only been able to achieve a very slightly better complexity for
rates close to 0.2.

6 A Lower bound on the complexity of RLPN decoders

As pointed out all along the paper, RLPN decoding needs a large number N of parity-check
equations to work but of some shape as indicated below

h

s n− s

w

where the hatched area indicates that the weight is arbitrary on this part while h restricted on
the other positions needs to have Hamming weight w. The number N of such parity-checks has to
verify (see Proposition 3.10)

N = ω

n

((
n−s
w

)
Kn−s

w (u)

)2
 (6.1)

in order to be able to solve the underlying LPN problem. It can be verified that the smaller w is
(the bigger is the bias ε), the smaller is N and the more efficient is our algorithm. Obviously if w
is too small, there are not enough such parity-checks. It can be verified that the expected number
of parity-checks of the aforementioned shape is given by 2s

(
n−s
w

)
/2k in a random code (which is

our assumption). Therefore we need

N = O

(
2s
(
n−s
w

)
2k

)
. (6.2)

Given this picture it is readily seen that the complexity of RLPN decoding is always lower-
bounded by N (which is at least the cost to produce N parity-checks) but we can be more
accurate on the lower-bound over the complexity. Recall that we first need to solve an underlying
LPN problem and that we make a bet on the number of errors u in N. Therefore, assuming that
we can compute a parity-check of the aforementioned shape in time O(1), the complexity of this
genie-aided RLPN decoding is given by

Õ

(
1

Psucc
max (2s, N)

)
(6.3)

where Psucc is given in Proposition 3.10. Our only constraints are given by (6.1) and (6.2). By
optimizing (6.3) over s, u and w, we can give a lower-bound on the complexity of RLPN decoding.

Statistical Decoding 2.0: Reducing Decoding to LPN 25

However notice that our lower-bound applies to a partition of parity-checks in two parts (s and
n−s). We do not consider here finer partitions. This method for lower bounding the complexity of
RLPN decoding is very similar to the technique used in [DT17, §7] to lower bound the complexity
of statistical decoding. All in all, we give in Figure 6.1 this lower-bound of the complexity. The
optimal parameters computed for each RLPN algorithms can be found on https://github.com/

tillich/RLPNdecoding. As we see our RLPN decoders meet this lower-bound for small rates and
we can hope to outperform significantly ISD’s for code rates smaller than ≈ 0.45.

0.2 0.4 0.6 0.8 1.0
R

0.02

0.04

0.06

0.08

0.10

0.12

log2(Complexity)
n [Pra62]

corrected [BM18]
section 4.2: RLPN with [Dum89]
section 5: RLPN with [BJMM12]
section 6: RLPN lower bound

Figure 6.1. Complexity exponents of our different RLPN decoders, ISD’s and the genie-aided RLPN
algorithm when splitting parity-checks in two parts.

7 Concluding remarks

Since Prange’s seminal work [Pra62] in 1962, ISD algorithms have played a predominant role for
assessing the complexity of code-based cryptographic primitives. In the fixed rate regime, they
have been beaten only once in [Dum86] with the help of collision techniques, and this only for
a tiny code rate range (R ∈ (0.98, 1)) and for a short period of time [Ste88, Dum89] until these
collision techniques were merged with the collision techniques to yield modern ISD’s. Surprisingly
enough, these improved ISD have resulted in decoding complexity curves tilting more and more
to the left (i.e. with a maximum which is attained more and more below 1

2) instead of being
symmetric around 1

2 as it could have been expected. It is precisely for rates below 1
2 that RLPN

decoding is able to outperform the best ISD’s. This seems to point to the fact that it is precisely
for this regime of parameters that we should aim for improving them. Interestingly enough, even
if there is some room of improvement for RLPN decoding by using better strategies for producing
the needed low weight parity-checks, there is a ceiling that this technique can not break (at least
if we just split the parity-checks in two parts) and which is extremely close at rate R = 0.45 to
the best ISD algorithm [BM18]. The RLPN decoding algorithm presented here has not succeeded
in changing the landscape for very tiny code rates (R going to 0), since the complexity exponent
of RLPN decoding approaches the one of exhaustive search on codewords, but the speed at which
this complexity approaches exhaustive search is much smaller than for ISD’s in the full decoding
regime (i.e. at the GV distance). The success of RLPN decoding for R < 0.3 could be traced back
precisely to this behaviour close to 0. An interesting venue for research could be to try to explore
if there are other decoding strategies that would be candidate for beating exhaustive search in the
tiny code rate regime.

26 K. Carrier, T. Debris-Alazard, C. Meyer-Hilfiger, J-P. Tillich

Note however that like dual attacks in lattice based cryptography, the success of this algorithm
relies on assumptions of the noise model we get from the low weight parity-check equations we
produce (which is similar to the vectors in the dual lattice of small norm we use for dual attacks).
The strict LPN model for this noise (Assumption 3.7) has been found out not to be completely
accurate for the large Fourier coefficients obtained during decoding the [N, s]-code with Fourier
techniques (see Subsection 3.4). However, a weaker conjecture, namely Conjecture 3.11, is enough
for guaranteeing the success of this decoding method and is compatible with the experiments we
have made. There is a rather clear path for verifying at least semi-heuristically this conjecture and
this will be the object of further studies about this algorithm.

Acknowledgement

We would like to express our warm gratitude to Elena Kirshanova and the Asiacrypt 22’ reviewers
for their precious comments and remarks. We wish also to thank Ilya Dumer for his very insightful
thoughts about decoding linear codes in the low rate regime.

The work of TDA was funded by the French Agence Nationale de la Recherche through ANR
JCJC COLA (ANR-21-CE39-0011). The work of Charles Meyer-Hilfiger was funded by the French
Agence de l’innovation de défense and by Inria.

References

[AGS11] Carlos Aguilar, Philippe Gaborit, and Julien Schrek. A new zero-knowledge code based identifi-
cation scheme with reduced communication. In Proc. IEEE Inf. Theory Workshop- ITW 2011,
pages 648–652. IEEE, October 2011.

[Arı09] Erdal Arıkan. Channel polarization: a method for constructing capacity-achieving codes for
symmetric binary-input memoryless channels. IEEE Trans. Inform. Theory, 55(7):3051–3073,
2009.

[Bar97] Alexander Barg. Complexity issues in coding theory. Electronic Colloquium on Computational
Complexity, October 1997.

[BJMM12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random binary
linear codes in 2n/20: How 1 + 1 = 0 improves information set decoding. In Advances in
Cryptology - EUROCRYPT 2012, LNCS. Springer, 2012.

[BLP11] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Smaller decoding exponents: ball-
collision decoding. In Advances in Cryptology - CRYPTO 2011, volume 6841 of LNCS, pages
743–760, 2011.

[BM17] Leif Both and Alexander May. Optimizing BJMM with Nearest Neighbors: Full Decoding in
22/21n and McEliece Security. In WCC Workshop on Coding and Cryptography, September
2017.

[BM18] Leif Both and Alexander May. Decoding linear codes with high error rate and its impact for
LPN security. In Tanja Lange and Rainer Steinwandt, editors, Post-Quantum Cryptography
2018, volume 10786 of LNCS, pages 25–46, Fort Lauderdale, FL, USA, April 2018. Springer.

[Car20] Kevin Carrier. Recherche de presque-collisions pour le décodage et la reconnaissance de codes
correcteurs. Theses, Sorbonne Université, June 2020.

[CS16] Rodolfo Canto-Torres and Nicolas Sendrier. Analysis of information set decoding for a sub-
linear error weight. In Post-Quantum Cryptography 2016, LNCS, pages 144–161, Fukuoka,
Japan, February 2016.

[DT17] Thomas Debris-Alazard and Jean-Pierre Tillich. Statistical decoding. preprint, January 2017.
arXiv:1701.07416.

[Dum86] Ilya Dumer. On syndrome decoding of linear codes. In Proceedings of the 9th All-Union Symp.
on Redundancy in Information Systems, abstracts of papers (in russian), Part 2, pages 157–159,
Leningrad, 1986.

[Dum89] Il’ya Dumer. Two decoding algorithms for linear codes. Probl. Inf. Transm., 25(1):17–23, 1989.

[Dum91] Ilya Dumer. On minimum distance decoding of linear codes. In Proc. 5th Joint Soviet-Swedish
Int. Workshop Inform. Theory, pages 50–52, Moscow, 1991.

Statistical Decoding 2.0: Reducing Decoding to LPN 27

[EKZ21] Andre Esser, Robert Kübler, and Floyd Zweydinger. A faster algorithm for finding closest
pairs in Hamming metric. In Mikolaj Bojanczyk and Chandra Chekuri, editors, 41st IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2021, December 15-17, 2021, Virtual Conference, volume 213 of LIPIcs, pages 20:1–
20:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[FJR21] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Shared permutation for syndrome
decoding: New zero-knowledge protocol and code-based signature. IACR Cryptol. ePrint Arch.,
page 1576, 2021.

[FKI07] Marc P. C. Fossorier, Kazukuni Kobara, and Hideki Imai. Modeling bit flipping decoding
based on nonorthogonal check sums with application to iterative decoding attack of McEliece
cryptosystem. IEEE Trans. Inform. Theory, 53(1):402–411, 2007.

[FS09] Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of code-based cryp-
tosystems. In M. Matsui, editor, Advances in Cryptology - ASIACRYPT 2009, volume 5912 of
LNCS, pages 88–105. Springer, 2009.

[Gal63] Robert G. Gallager. Low Density Parity Check Codes. M.I.T. Press, Cambridge, Massachusetts,
1963.

[GG07] Philippe Gaborit and Marc Girault. Lightweight code-based authentication and signature. In
Proc. IEEE Int. Symposium Inf. Theory - ISIT, pages 191–195, Nice, France, June 2007.

[Jab01] Abdulrahman Al Jabri. A statistical decoding algorithm for general linear block codes. In
Bahram Honary, editor, Cryptography and coding. Proceedings of the 8th IMA International
Conference, volume 2260 of LNCS, pages 1–8, Cirencester, UK, December 2001. Springer.

[Kha02] Aamod Khandekar. Graph-based Codes and Iterative Decoding. PhD thesis, California Institute
of Technology, Pasadena, California, 2002.

[KS21] Naomi Kirshner and Alex Samorodnitsky. A moment ratio bound for polynomials and some
extremal properties of krawchouk polynomials and hamming spheres. IEEE Trans. Inform.
Theory, 67(6):3509–3541, 2021.

[McE78] Robert J. McEliece. A Public-Key System Based on Algebraic Coding Theory, pages 114–116.
Jet Propulsion Lab, 1978. DSN Progress Report 44.

[MMT11] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear codes in
O(20.054n). In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology - ASI-
ACRYPT 2011, volume 7073 of LNCS, pages 107–124. Springer, 2011.

[MO15] Alexander May and Ilya Ozerov. On computing nearest neighbors with applications to decod-
ing of binary linear codes. In E. Oswald and M. Fischlin, editors, Advances in Cryptology -
EUROCRYPT 2015, volume 9056 of LNCS, pages 203–228. Springer, 2015.

[MTSB13] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto. MDPC-
McEliece: New McEliece variants from moderate density parity-check codes. In Proc. IEEE
Int. Symposium Inf. Theory - ISIT, pages 2069–2073, 2013.

[Ove06] Raphael Overbeck. Statistical decoding revisited. In Reihaneh Safavi-Naini Lynn Batten,
editor, Information security and privacy : 11th Australasian conference, ACISP 2006, volume
4058 of LNCS, pages 283–294. Springer, 2006.

[Pra62] Eugene Prange. The use of information sets in decoding cyclic codes. IRE Transactions on
Information Theory, 8(5):5–9, 1962.

[RU08] Tom Richardson and Ruediger Urbanke. Modern Coding Theory. Cambridge University Press,
2008.

[Ste88] Jacques Stern. A method for finding codewords of small weight. In G. D. Cohen and J. Wolf-
mann, editors, Coding Theory and Applications, volume 388 of LNCS, pages 106–113. Springer,
1988.

[Ste93] Jacques Stern. A new identification scheme based on syndrome decoding. In D.R. Stinson,
editor, Advances in Cryptology - CRYPTO’93, volume 773 of LNCS, pages 13–21. Springer,
1993.

[Wag02] David Wagner. A generalized birthday problem. In Moti Yung, editor, Advances in Cryptology
- CRYPTO 2002, volume 2442 of LNCS, pages 288–303. Springer, 2002.

Appendices

Statistical Decoding 2.0: Reducing Decoding to LPN 29

A Asymptotic complexity of the RLPN decoder used in conjunction
with the [MMT11] and [BJMM12] technique

Proof of Proposition 5.1. In the case of the MMT technique we have the following set of equalities

2ℓ1 =

(
w2

w2/2

)(
n− k + ℓ− w2

p1 − w2/2

)
(A.1)

S0 =

(n−k+ℓ
2
p
2

)
, S1 =

(
n−k+ℓ

p

)
2ℓ1

, S2 =

(
n−k+ℓ

w2

)
2ℓ

(A.2)

T0 = S0, T1 = S0 +
S2
0

2ℓ1
, T2 = S1 +

S2
1

2ℓ−ℓ1
, Teq = T0 + T1 + T2 (A.3)

We let

σ
△
=

s

n
, λ

△
=

ℓ

n
, λ1

△
=

ℓ1
n
, π

△
=

p

n
, ω2

△
=

w2

n
, ν1

△
=

v1
n
, ν2

△
=

v2
n
.

The equality

2ℓ1 =

(
w2

w2/2

)(
n− k + ℓ− w2

p1 − w2/2

)
translates into

λ1 = ω2 + (1−R+ λ− ω2)h

(
π − ω2/2

1−R+ λ− ω2

)
.

In our case, the number N of parity-check which are produced is equal to S2 and therefore the
condition

N = Ω̃

((k−ℓ−s
w1

)(
n−k+ℓ

w2

)
Kk−ℓ−s

w1 (u1)

)2
 .

of Proposition 4.3 becomes

(1−R+ λ)h

(
ω2

1−R+ λ

)
− λ = −(R− λ− σ)ε̃(

ν1
R− λ− σ

,
ω1

R− λ− σ
)

− (1−R+ λ)δ̃(
ν2

1−R+ λ
,

ω2

1−R+ λ
).

Proposition A.1. The asymptotic complexity exponent of the RLPN decoder based on [BJMM12]
is given by

αBJMM(R) = min
(σ,ν1,ν2,λ,λ1,λ2,π1,π2,ω1,ω2)∈R

β(σ, ν1, ν2, λ, λ1, λ2, π1, π2, ω1, ω2) (A.4)

where

β
△
= min(σ, ν′ + ρ) with

ν′ = max(γ1, γ2, γ3), ν = (1−R+ λ)h

(
ω2

1−R+ λ

)
− λ,

γ1 = max

(
1−R+ λ

2
h

(
π1

1−R+ λ

)
, (1−R+ λ)h

(
π1

1−R+ λ

)
− λ1

)
γ2 = 2(1−R+ λ)h

(
π1

1−R+ λ

)
− λ1 − λ2

γ3 = 2(1−R+ λ)h

(
π2

1−R+ λ

)
− λ− λ2

ρ = 1−R− σh

(
τ − ν1 − ν2

σ

)
− (R− λ− σ)h

(
ν1

R− λ− σ

)
− (1−R+ λ)h

(
ν2

1−R+ λ

)
τ

△
= δGV(R) = h−1(1−R)

30 K. Carrier, T. Debris-Alazard, C. Meyer-Hilfiger, J-P. Tillich

and the constraint regionR is defined by the sub-region of nonnegative tuples (σ, ν1, ν2, λ, λ1, λ2, π1, π2, ω1, ω2)
such that

σ ≤ R−λ, λ1 ≤ λ2 ≤ λ, π1 ≤ π2 ≤ ω2, ν1 ≤ R−λ−σ, ν2 ≤ 1−R+λ, τ−σ ≤ ν1+ν2 ≤ τ, ν ≤ σ,

π1 ≥
π2

2
, π2 ≥

ω2

2
, π2 < λ1, ω2 < λ2, π1 < 1−R+ λ, ω1 =

R− λ− σ

2
,

λ1 = π2 + (1−R+ λ− π2)h

(
π1 − π2/2

1−R+ λ− π2

)
,

λ2 = ω2 + (1−R+ λ− ω2)h

(
π2 − ω2/2

1−R+ λ− ω2

)
and

ν = −(R− λ− σ)δ̃(
ν1

R− λ− σ
,

ω1

R− λ− σ
)− (1−R+ λ)δ̃(

ν2
1−R+ λ

,
ω2

1−R+ λ
)

where δ̃ is the function defined in Proposition 3.6.

Statistical Decoding 2.0: Reducing Decoding to LPN 31

B About [BM18]

We have compared all along the paper our results to the state-of-the-art for solving the decoding
problem, that is [BM18]. Actually, this paper claims better results than those presented in this
paper (in particular in figures 1.2 and 6.1). Indeed, in [BM18], the authors pretend that we can
get a gain of ≈ 7% for full decoding and at the worst code rate in comparison with [BM17] (which
is the state-of-the-art before [BM18]). However, this result is flawed: there is indeed an error in
the analysis of this new decoding algorithm which leads to this result. The decoding algorithm
in [BM18] essentially consists in producing lists recursively by using nearest-neighbor searches
at each stage; the solution of the decoding problem is then contained in the last list. Thus, an
accurate analysis of this algorithm lies in the good estimation of the size of the various lists. In
[BM18, Section 4, p. 16], an upper bound of the size of these lists is given. Unfortunately this
upper bound does not hold. Let us recall it. It is a bound of the list-size Si at stage i:

Si ≤
∣∣{ x ∈ Fk

2 , |x| = pi}
∣∣ P

x∈Fℓi
2

(
|x| = ω

(i)
i

) i−1∏
h=1

P
x,y∈Fℓh

2

(
|x+ y| = ω

(i)
h : |x| = |y| = ω

(i−1)
h

)
(B.1)

We use here the notation from [BM18]: at each stage i ∈ J1,mK, the algorithm is producing

lists of Si vectors with weight pi on an information set and weight
(
ω
(i)
h

)
h∈J1,iK

on redundancy

subsets of respective length (ℓi)h∈J1,iK. Since the list at the final stage m contains the solution, the

decoding distance ω that we aim to achieve is ω = p3 +
∑m

i=1 ωi.
We have noticed that there is a problem with (B.1) by running simulations7. For instance, let

look at the following parameters for depth m = 3:

Decoding problem parameters: n = 120 k = 30 ω = 42

Size of the redundancy subsets: ℓ1 = 32 ℓ2 = 13 ℓ3 = 36

Stage 1 parameters: p1 = 64 ω
(1)
1 = 12

Stage 2 parameters: p2 = 8 ω
(2)
1 = 24 ω

(2)
2 = 8

Stage 3 parameters: p3 = 10 ω
(3)
1 = 8 ω

(3)
2 = 10 ω

(3)
3 = 14

The Equation (B.1) tells us that S2 should not be bigger than 513 whereas in practice it is
around 2250. In an other way, for those parameters, we have in addition that S3 should be lower
than 438; which appears to be the case in practice but this time, the bound seems to not be tight
at all since the lists at the last stage are actually of size around 8. Finally, the upper bound (B.1)
seems to be at best not tight and at worst wrong.

The problem lies in the fact that in (B.1), the probability

Pi
△
= P

x∈Fℓi
2

(
|x| = ω

(i)
i

)
·
i−1∏
h=1

P
x,y∈Fℓh

2

(
|x+ y| = ω

(i)
h : |x| = |y| = ω

(i−1)
h

)
(B.2)

represents the probability that a pair from the lists at stage i− 1 produces an element in the list
at stage i, but it is not the probability that a vector of length k and weight pi is in that list as it
is suggested by Equation (B.1). If we do not filter the duplicates, the actual expected size of the
lists at stage i > 1 is NiPi where

Ni
△
=S2

i−1 ·
(k−pi−1

pi/2

)(pi−1

pi/2

)(
k

pi−1

) (B.3)

7 The code in C for the aforementioned simulations can be found on https://github.com/tillich/

RLPNdecoding/tree/master/aboutBM18.

32 K. Carrier, T. Debris-Alazard, C. Meyer-Hilfiger, J-P. Tillich

is the number of pairs in a list at stage i− 1 which are a representation of a vector of weight pi.
Note that we still have

S1 = O

(k
p1

)(ℓ1
ω

(1)
1

)
2ℓ1

 . (B.4)

After filtering the duplicates in the resulting lists, we finally obtain

Si = O(min (NiPi , Li)) (B.5)

where Li is the maximal size of the list, obtained when the whole set of vectors with the desired
weight distribution is typically produced by the algorithm at the considered stage:

Li =

(
k

pi

) i∏
h=1

(ℓh
ω

(i)
h

)
2ℓh

(B.6)

Note that if the assumptions in the correctness lemma [BM18, Lemma 2, p. 17] are met, then
we actually have Si = Li for all i ∈ J1,mK.

In [BM18, Theorem 3, Section 5, p. 19] the following parameters are given for the full decoding
at the hardest rate k

n = 0.46:

ℓ1
n

= 0.0366
ℓ2
n

= 0.0547
ℓ3
n

= 0.0911
ℓ4
n

= 0.3576

p1
n

= 0.00559
ω

(1)
1

n
= 0.011515

p2
n

= 0.01073
ω

(2)
1

n
= 0.023029

ω
(2)
2

n
= 0.016676

p3
n

= 0.02029
ω

(3)
1

n
= 0.0232

ω
(3)
2

n
= 0.033351

ω
(3)
3

n
= 0.009993

p4
n

= 0.03460
ω

(4)
1

n
= 0.0066

ω
(4)
2

n
= 0.0099

ω
(4)
3

n
= 0.0114 ω

(4)
4 = 0.0612

With these parameters, if we believe the bound (B.1), we should have

S0 ≤ 20.02179n S1 ≤ 20.03987n S2 ≤ 20.05939n S3 ≤ 20.05975n

But since the correctness lemma is verified we can use formula (B.6) to compute the expected size
of the lists:

S0 = 20.02179n S1 = 20.03987n S2 = 20.0655n S3 = 20.0705n

We can see that S2 and S3 exceed their presumed upper bound, which increases the complexity
of the algorithm to O

(
20.1083n

)
in comparison to the claimed one O

(
20.0885n

)
.

As a result, we have re-optimized the Both-May algorithm by replacing the bound (B.1) by
the new formula (B.5). Actually, we have slightly modified the algorithm in [BM18] by replacing
the nearest-neighbor search routine, that stems from [MO15], by a more recent one that we can
found in [Car20] or [EKZ21]:

Theorem B.1 ([Car20, Corollary 7.2.3, p. 183] or [EKZ21, Theorem 1, p. 8]). For any
constants λ ∈ [0, 1] and ω ∈

[
0, 1

2

]
, when n tends to infinity, the time complexity for finding all

the pairs (except o(1) of them) of binary vectors at distance ⌊ωn⌋ in a list of O
(
2λn
)
vectors of

length n is
NNS

(
n, ⌊ωn⌋, 2λn

)
= Õ(2αn) (B.7)

where

α =

{
(1− ω)

(
1− h

(
h−1(1−λ)−ω/2

1−ω

))
if 1−

√
1−2ω
2 < h−1(1− λ)

2λ− 1 + h(ω) otherwise

Statistical Decoding 2.0: Reducing Decoding to LPN 33

Armed with this tool and considering the new estimation of the list sizes, the corrected time
complexity of the Both-May decoder is then

TBM18 = Õ

(
maxi∈J1,mK (Ti)

Psucc

)
(B.8)

where Ti
△
=NNS

(
ℓi, ω

(i)
i , Si−1

)
is the cost for producing the lists at the stage i and Psucc is the

probability of success of an iteration of the Both-May algorithm. When the conditions of the
correctness lemma [BM18, Lemma 2, p. 17] are met, we have

Psucc =

(
k
pm

)∏m
i=1

(ℓi
ω

(m)
i

)(
n
t

) (B.9)

Finally, Figure B.1 illustrates the results we obtained with our new analysis of [BM18]. In this
figure, the corrected complexity of Both-May algorithm is indistinguishable from the complexity of
the [BM17] decoder. More precisely, the first one is slightly better than the second; in particular,
the optimized complexity for the full decoding problem at the hardest rate R = 0.46 is O

(
20.0953n

)
with the [BM17] decoder and O

(
20.0950n

)
with [BM18]8.

0.2 0.4 0.6 0.8 1.0
R

0.02

0.04

0.06

0.08

0.10

0.12

log2(Complexity)
n

[Pra62]
[MO15]
[BM17]
corrected [BM18]
old [BM18]

FigureB.1. Corrected complexity of the [BM18] decoder.

8 The code in C++ for optimizing the corrected [BM18] complexity and some tables containing the
optimized parameters for full decoding at various rates are given on https://github.com/tillich/

RLPNdecoding/tree/master/aboutBM18

