
Zswap: zk-SNARK Based Non-Interactive Multi-Asset
Swaps

Felix Engelmann1, Thomas Kerber2, Markulf Kohlweiss2,3, and Mikhail Volkhov3⋆

1 IT University of Copenhagen, Denmark
fe-research@nlogn.org

2 IOHK
thomas.kerber@iohk.io

3 University of Edinburgh
{markulf.kohlweiss,mikhail.volkhov}@ed.ac.uk

Abstract. Privacy-oriented cryptocurrencies, like Zcash or Monero, provide fair transac-
tion anonymity and confidentiality, but lack important features compared to fully public
systems, like Ethereum. Specifically, supporting assets of multiple types and providing a
mechanism to atomically exchange them, which is critical for e.g. decentralized finance
(DeFi), is challenging in the private setting. By combining insights and security properties
from Zcash and SwapCT (PETS 21, an atomic swap system for Monero), we present a
simple zk-SNARKs-based transaction scheme, called Zswap, which is carefully malleable
to allow the merging of transactions, while preserving anonymity. Our protocol enables
multiple assets and atomic exchanges by making use of sparse homomorphic commitments
with aggregated open randomness, together with Zcash-friendly simulation-extractable
non-interactive zero-knowledge (NIZK) proofs. This results in a provably secure privacy-
preserving transaction protocol, with efficient swaps, and overall performance close to that
of existing deployed private cryptocurrencies. It is similar to Zcash Sapling and benefits
from existing code bases and implementation expertise.

Keywords: NIZK, Cryptocurrency, Privacy, Multi-Asset, Exchange

1 Introduction

Cryptocurrencies are experiencing steady growth not only in terms of general popularity, security,
and real-world applicability, but also in terms of diversity of financial instruments that can
be realized with them. Decentralized finance (DeFi [24]), an umbrella term that covers such
financial instruments in the cryptocurrency community, is one of the raison d’être of Ethereum,
a cryptocurrency popularized by the wide applicability of its smart contract toolchain. One of the
foundational pieces of DeFi is the ability (of the distributed ledger) to create user-defined tokens,
and trade or exchange them directly on-chain. Ethereum, by providing Turing complete smart
contracts and the ERC tokens standards (e.g. ERC20 or non-fungible ERC721), allows building
tools such as automated exchanges [25], investment platforms12, bidding platforms, insurance
tools, NFT marketplaces, etc. An important limitation of current DeFi solutions is the public
nature of these atomic on-chain exchanges.

While privacy-preserving cryptocurrencies, like Monero and Zcash, are undoubtedly practical,
and ample academic research on the problem of private currencies is available [1,5,13,7,14], much

⋆ Corresponding Author
1 https://compound.finance/markets
2 https://polygon.market.xyz/

https://compound.finance/markets
https://polygon.market.xyz/

2 F. Engelmann, T. Kerber, M. Kohlweiss, M. Volkhov∗

less is known about the private exchange of assets [12,9,15] — hindering DeFi applications.
This is unfortunate, as privacy on the blockchain, such as transaction anonymity or transfer
amount secrecy, is not only interesting per se (for the end user), but also changes the financial
landscape of the ecosystem. This can be advantageous, for example, if restricting the adversarial
view prevents certain harmful behaviour that results from gaming the market (e.g. frontrunning,
Miner Extractable Value). Consider a miner which observes a buy-order for an asset that is either
from a notorious investor or has an exceptionally large transfer amount. The miner can buy that
asset itself early and cheaply before the order drives up the price of the asset. Private swaps of
assets can mitigate such attacks.

However, while practically attractive, combining privacy with DeFi tools is challenging. So-
lutions that try to tackle this question, such as private smart contracts [21] and privacy-friendly
decentralized exchanges [3], often find it hard to balance practical applicability with the privacy
guarantees they provide. Flexibility, so desirable for DeFi, is at odds with privacy, since hav-
ing both generally requires heavier cryptographic primitives, like general NIZKs, or multi-party
computation (MPC).

In this work we do not support a full private DeFi solution, but instead focus on the foun-
dational problem of constructing a private cryptocurrency mechanism that has both support for
multiple assets, and an embedded functionality to perform non-interactive atomic assets swaps
(as well as regular transfers).

An atomic swap is the exchange of different assets between multiple parties. It has to happen
atomically such that all participants get their desired output or the transaction is aborted.
A classical example is a foreign currency exchange, where a bank sells a foreign currency to
a customer who pays in the local currency. There, atomicity is guaranteed by simultaneously
handing over the assets.

The atomic swap protocol we suggest enables untrusted parties to merge transactions off-
chain. The transactions themselves only reveal a map of the imbalance for each asset where
the sum of its inputs is unequal to the sum of its outputs. Hence, a balanced transaction does
not reveal any amounts or types. Especially, the mergers can neither deanonymize senders or
receivers nor correlate a subsequent spending of an output by its precise amount and type.
With such little trust required in mergers, this very basic functionality already allows creating
local exchange markets, where users can send exchange offers (as transactions with a negative
imbalance for the asked token and a positive imbalance for the offered), and community-selected
participants can match them and merge them to then submit to the blockchain. The anonymity
of the system is controlled by users: the system allows both private swaps between several parties,
who agree on their exchange off-chain, and bigger exchange pools, as just mentioned. In both
cases, the only information that the mergers and other users see is the one necessary to match
the offers (total value for each unbalanced type), and it is erased as soon as the transaction
is balanced and sent to the ledger. For partial merges, any type with an imbalance of zero is
dropped. An open group of participants in a pool may provide sufficient liquidity and maintain
a public order book, similar to classical exchanges.

An interesting open question is how to integrate Zswap with private smart contracts to
support more elaborate private DeFi solutions. A first step in that direction would be to extend
a public smart contract system with minting policies for private assets, to support, e.g. the private
trading of NFTs. Finally, our mechanism is compatible with existing consensus protocols, such
as proof-of-work or stake, and can be viewed as a full cryptocurrency.

Zswap 3

1.1 Technical Overview

With respect to swaps, a major challenge of many existing solutions is that transaction data is
not explicitly separated from the transaction signature, which binds inputs from multiple users
together. This, often results in the need for (slow) MPC protocols to construct such a signature
jointly. An important insight of our work is that the Zcash ecosystem already implement signature
separation. It was first introduces by Zcash Sapling [17] to reduce the size of SNARK circuits for
large transactions, and was inherited by the corresponding Shielded Assets3, or similar MASP4

multi-asset protocols. Another inspiration of our work is SwapCT, that realizes atomic swaps on
Monero [12]. We continue this direction by designing and proving secure an extension of a Zcash
Sapling like system that satisfies the required multi-asset and atomic swap properties.

Zcash Sapling, as opposed to the Zerocash paper, separates the validation of inputs and
outputs (each input and output requires a separate NIZK) from the transaction balancing, which
is done using homomorphic commitments and a Schnorr-like binding signature. The binding
signature “seals” the inputs and outputs in place, forbidding adding or removing any extra
inputs or outputs. Instead, in our work we use a sparse multi-value Pedersen commitments
and relax the signature, allowing transactions to be non-interactively merged together. While
inspired by SwapCT, we deal with different challenges specific to the zk-SNARK setting and take
advantage of the existing signature separation in Zcash Sapling. The explicit signature separation
opens more space for potential transaction malleability, and should be taken with care. To our
knowledge our work is the first to extend the security analysis of [5] in that direction.

Our modelling relies on a one-time account (OTA) scheme to anonymously and confidentially
create and store value in notes. This is an abstraction from existing protocols in Zcash and
Monero. The spending of input notes, stored in a Merkle tree, is authorized by a simulation
extractable (SE) non-interactive zero-knowledge proof (NIZK). Double spends are prevented by
proving the correctness of a deterministic nullifier, marking an input as spent. To connect inputs
to newly created output notes, we use sparse homomorphic commitments to value-type pairs,
which can be summed to check that the transaction is well-balanced. Importantly, the values and
types remain hidden even when we publish their aggregated randomness, which is necessary to
facilitate transaction merging.

Our protocol bears similarities to variants of Zcash and SwapCT which we compare in more
detail:

Zcash Sapling: Compared to Sapling, we add multi-asset support and remove the authorization
signature which is replaced by the SE NIZK. We also do not need a binding signature over
all intermediate commitments — instead we directly publish the randomness. This opens
room for controlled malleability, and enables non-interactive joint transaction generation (by
merging) without MPC, which can be used to implement swaps mechanics. The multi-asset
aspect of our scheme is very similar to Shielded Assets or MASP, both of which extend Sapling
but do not provide a mechanism for atomic swaps. We also provide a rigorous theoretical
formalization, which is lacking for both Sapling and its Shielded Asset and MASP variants,
and can be of independent interest.

Conversely, the technical discussions and implementation effort that went into the Shielded
Assets ZIP 220 and the MASP implementation are valuable starting points for the deployment
of Zswap as part of a larger Zcash like blockchain. In particular, deployment of our new
transactions into Zcash requires a hard fork and creates a new shielded pool holding typed

3 Previously “user-defined assets” (UDA) or UIT, see ZIP 220: https://github.com/zcash/zcash/
issues/830

4 https://github.com/anoma/masp/blob/main/docs/multi-asset-shielded-pool.pdf

https://github.com/zcash/zcash/issues/830
https://github.com/zcash/zcash/issues/830
https://github.com/anoma/masp/blob/main/docs/multi-asset-shielded-pool.pdf

4 F. Engelmann, T. Kerber, M. Kohlweiss, M. Volkhov∗

notes. Transferring tokens from an existing shielded pool is possible by explicitly adding the
Zcash type to the notes.

SwapCT: Our work is inspired by SwapCT which also provides atomic swaps and transaction
merging, but on top of Monero (ring based anonymity). We simplified their scheme to unify
their offers and transactions. With the use of SNARKs (requiring a trusted or transparent
setup) our simpler construction no longer needs their anonymously aggregatable signatures.
We achieve better confidentiality for unfinished transactions as we only reveal a total imbal-
ance instead of per input and output values. Another important difference is that the use of
SNARKS allows to efficiently support large rings. This motivates the use of a single global
ring in our formalization.

Formalization: We formalize our protocol using game based definitions, which generalize Ze-
rocash definitions, but are also compatible with Monero except for using a single global ring
(as in Zcash and differing from SwapCT).
Zerocash [5] formalizes Ledger indistinguishability, Transaction non-malleability and Bal-
ance. Our balance definition is very similar with the addition of checking multiple assets.
We replace indistinguishability with the privacy definition, as our transactions may be cir-
culated off-chain. The non-malleability of merged transactions is inspired by Zerocash and
SwapCT [12]. Instead of the strong non-malleability, it provides a relaxed property that
controls malleability (transaction merging) and only requires theft prevention, namely that
an adversary cannot steal from the intended recipients of a transaction, or split unbalanced
transactions, rerouting honest funds. Modelling this malleability relies on a variant of hiding
of the Pedersen commitment scheme, when the joint commitment randomness is revealed,
which we call HID-OR5. This property does not require any additional security assumptions.

1.2 Our Contributions

In this work we present the following results:
– We specify a formal model for a multi-asset Zcash system with swaps that builds on top of a

One-Time Account (OTA) System, abstracting a nullifier-like private UTXO mechanism. The
OTA model and our proof techniques could be of independent interest for proving systems
such as Zcash and Monero secure.

– We provide a minimal practical instantiation of private non-interactive atomic swaps. It is
based on a simplified version of Zcash that removes authorization and blinding signatures.

– We prove our construction secure under commonly used assumptions similar to the ones used
in Zerocash. This validates the removal of the Zcash signatures and shows that the perfect
hiding and binding properties of spend and output commitments is sufficient for security.

– We implement and evaluate our protocol: our merging mechanism is very effective, and all
performance overheads of our construction, as compared to the basic single-asset protocol
without swaps, are small.

1.3 Related Work

Surprisingly little academic work directly addresses exchange of multiple assets in a private ledger.
Undoubtedly, such a functionality can be achieved through certain generic private smart contract
solutions [19,18,23], but their flexibility comes at a cost of non-negligible performance overhead,
since they often require heavy primitives like SNARKs over big contract code-dependant (or
even universal) circuits. The performance of universal zero-knowledge based constructions such

5 HIDing with Open Randomness

Zswap 5

as ZEXE [6] requires minutes of proving time for ten times the constraints compared to our one
second prover runtime. This is why we would like to consider systems with such a functionality
embedded directly.

Several solutions take the route of extending the vanilla Zerocash. Ding et al. [11] propose
a solution supporting multiple assets, but with no exchange mechanism, and with public asset
types. Gao et al. [15] construct a transaction system specifically for exchanging assets which
is based on storing debt in sibling notes which are only spendable if the debt is settled. Its
inefficiency results from requiring multiple persisted transactions per swap.

On the other hand, Confidential Assets [22] uses a commitment construction that hashes an
asset type descriptor to the bases of an extended Pedersen commitment such that the resulting
commitments are additively homomorphic, which facilitates proving the balancing of amounts.
We use this sparse commitment scheme as part of our construction. A similar solution by Zheng
et al. [26] exists for the Mimblewimble private cryptocurrency. Both these works do not provide
sender and receiver anonymity.

Sparse homomorphic commitments have the drawback that they can only store type-amount
pairs. A more flexible approach is to use a hash-based commitment scheme for notes to store a
vector of attributes. This is used in Zcash’s multi-asset ZIP 220, Shielded Assets, or similarly
MASP. To achieve balancing, these protocols prove equality between the type-value pair of a
note and a sparse homomorphic commitment. We follow the same approach. Another system
that does not rely on homomorphic commitments is Stellar6, which instead uses shuffle proofs.

Finally, some works emphasize the exchange and offer matching functionality. Manta [9]
describes a privacy-preserving decentralized exchange (DEX) based on an automated marked
maker (AMM) scheme which works without a second party but does not hide the types, which is
an inherent limitation of the AMM approach. Another idea is to privately exchange assets between
different systems in cross-chain atomic swaps [10]. In contrast to both, we propose a more basic
mechanism within a single blockchain, and leave leave it open to implement the concrete offer
matching algorithm on top of Zswap. This allows, and will likely enable more powerful DeFi
applications, since Zswapprovides a more flexible interface to the application layer.

2 Preliminaries

Let us introduce our notation. We write PPT for probabilistic polynomial-time. All our sets are
multisets by default. The set minus operation A \ B removes as many values in A as there are
in B: if B has more values of the same type than in A, the number of elements in the resulting
set is 0. The function ToSet(S) removes all duplicate entries in the multiset S and sorts the
result according to some predefined ordering, essentially converting S to a “proper” set. We use
[n] := 1 . . . n, and |S| for the cardinality of the set S, |x⃗| is the length if x⃗ is a vector, thus [|S|]
means 1 . . . |S|.

As of pseudocode conventions, abortion by default means returning ⊥ immediately, and as-
sertions abort on failure. When the result of an assignment cannot be properly pattern-matched,
e.g. (a, b) ← foo (function returns ⊥ or a different type), the execution aborts. The symbol @
denotes temporary variable assignment in the pattern-matching cases, e.g. (a@(x, y), z)← Foo()
means ((x, y), z)← Foo(); a← (x, y).

2.1 Sparse Homomorphic Commitments

Our first building block is a commitment scheme which is additively homomorphic for an ex-
ponential number of possible domains, also called types, however each commitment is sparsely

6 https://github.com/stellar/slingshot/blob/main/spacesuit/spec.md

https://github.com/stellar/slingshot/blob/main/spacesuit/spec.md

6 F. Engelmann, T. Kerber, M. Kohlweiss, M. Volkhov∗

populated, i.e. few domains have a non-zero value. Between domains, there exists no homomor-
phic property. Contructions were proposed by [22] and formalized by [8] which resemble vector
Pedersen commitments with ad-hoc generators.

Definition 1 (Sparse Homomorphic Commitment). A SHC scheme consists of the algo-
rithms ComSetup and Commit defined as follows:

p← ComSetup(1λ) takes the security parameter λ and outputs the public parameters p implicitly
provided to Commit. It specifies a type space T

com← Commit({(tyi, ai)}ni=1, rc) takes a set of distinct types tyi and values ai, and a random-
ness rc, and outputs a commitment com. We write Commit(ty, a, rc) for Commit({(ty, a)}, rc).

Definition 2 (Homomorphism). A SHC scheme is homomorphic, if there exists an efficient
operation ⊕, such that for any ty ∈ T it holds that

Commit({(tyi, ai)}n1 , rc)⊕ Commit({(tyi, a′i)}n1 , rc′) = Commit({(tyi, ai + a′i)}n1 , ϕ(rc, rc′))

for some function ϕ, while zero values do not affect the input set: Commit((ty, 0), rc) = Commit(∅, rc).
In other words, the commitment is additive on the same type, but acts like a vector commit-

ment on distinct types.

We require standard binding and hiding properties.

Definition 3 (Commitment Binding). For any λ ∈ N with p ← Setup(1λ) and any PPT
adversary A, it holds that

Pr

{(tyb, ab, rcb)}1b=0 ← A(p)
com0 = Commit(ty0, a0, rc0)
com1 = Commit(ty1, a1, rc1)

:
com0 = com1 ∧
(ty0, a0, rc0) ̸= (ty1, a1, rc1)

 ≤ negl(λ)

Definition 4 (Commitment Hiding). For any λ ∈ N with p ← Setup(1λ) and any stateful
PPT adversary A, it holds that

Pr


{(tyi, ai)}1i=0 ← A(p)
b

$←− {0, 1}, rc $←− R
com← Commit(tyb, ab, rc)
b′ ← A(com)

: b′ = b

 ≤ 1

2
+ negl(λ)

To instantiate a SHC we use a well-known Pedersen-based construction derived from the [22],
which we will simply call “sparse Pedersen commitment scheme”. Let G be a cyclic group of
order q with a generator G in which the discrete logarithm assumption holds. Additionally, we
use a cryptographic hash function H : T → G. Then Commit({(tyi, ai)}, rc) := (

∏
H(tyi)

a)Grc

with ai, rc ∈ Zq.
To avoid value overflows in our protocol, we will upper-bound the committed values by 2α−1,

and the total number of commitments that we homomorphically combine to β — in this way, the
maximum sum in the exponent of a single base will be α+ β bits, which must be below certain
B which in turn must be reasonably smaller than the order of any base H(ty) (thus the message
space). We assume that this upper bound B(λ) and the parameters (α(λ), β(λ)), for simplicity,
is given by the commitment scheme.

Finally, we observe the following property of the sparse Pedersen commitment scheme that
guarantees that the adversary cannot distinguish between two pairs of commitments that sum
to the same values (per type), even if we reveal their common randomness. This is the main
property used in our swaps: we will use it to argue that transaction can be merged (to join two
unbalanced swap offers), but not split apart (so swap offers cannot be adversarially modified).

Zswap 7

HID-ORb
A(1

λ)

p← Setup(1λ)

{(tyt, at), (ty
′
t, a

′
t)}1t=0 ← A(p)

∆ty,t := {at if tyt = ty else 0} − {a′
t if ty′t = ty else 0}

assert ∀ty ∈
⋃

tyt ∪
⋃

ty′t : ∆ty,0 = ∆ty,1

r, r′
$←− R

com← Commit(tyb, ab, r); com′ ← Commit(ty′b, a
′
b, r

′)

b′ ← A(com, com′, rc = r − r′)

return b′

Fig. 1. Hiding with Open Randomness Game

Lemma 1 (Hiding with Open Randomness). The sparse Pedersen commitment scheme is
perfectly hiding with open randomness in the RO model. By this we mean that if for all λ ∈ N
and all PPT A:

Pr[HID-OR1
A(1

λ) = 1]− Pr[HID-OR0
A(1

λ) = 0] = 0

where the game is defined in Fig. 1.

The proof of this statement is presented in Appendix C and based on perfect hiding together
with the equivocation of the Pedersen commitment scheme.

2.2 Proofs and Signatures of Knowledge

A non-interactive zero-knowledge proof of knowledge (or just NIZK) for the language L is a
proving system consisting of algorithms (Setup,Prove,Verify,Sim). The first algorithm allows to
create a common reference string (CRS), crs← Setup(1λ) that is used as an input to Prove and
Verify. To obtain a non-interactive proof that stmt ∈ L with the corresponding witness w (s.t.
(stmt, w) ∈ RL) one executes π ← NIZK.Prove(crs, stmt, w). To then verify this prove one runs,
correspondingly NIZK.Verify(crs, stmt, π), which returns 0 or 1. To simulate the proof, one uses
the the trapdoor τ created with Setup (but which is not used in the honest case), additionally
to the CRS, and then passes this τ to Sim(crs, stmt, τ) to obtain a simulated proof. We provide
the standard definitions and security properties in Appendix A.

Signatures of Knowledge are NIZK proofs which are bound to a specific message m. For
a simulation extractable (SE) NIZK protocol, this is done by including m into the statement
without asserting anything about m in the relation. Still, the SE property invalidates the proof,
if the statement is changed.

3 One-Time-Account Scheme

To highlight our novel transaction mechanism, we first describe the one-time account (OTA)
scheme that we use to model the mechanics of underlying accounts our transactions use. The
OTA scheme may be seen as an anonymous version of an unspent transaction output (UTXO)
system (e.g. the one used in Bitcoin); it generalises accounts of privacy-preserving transaction
systems such as Zcash or Monero. Instead of creating transaction outputs including a long term
identity as with plain UTXO, an OTA scheme generates a unique, anonymous, one-time account
for each transaction output. To support the UTXO functionality to decide if a one-time-account

8 F. Engelmann, T. Kerber, M. Kohlweiss, M. Volkhov∗

is still valid, the OTA scheme allows generating a unique nullifier which anonymously marks it
as spent. A duplicate nullifier indicates that the same one-time account is used.

The OTA scheme is used as follows. After a system Setup, each participant generates their
credentials with KeyGen. Anyone with the public key can then non-interactively derive a one-
time account, also called “note”7, with Gen. Each note contains a set vector of attributes. Most
importantly, one attribute is the amount the note represents. In our multi-type setting, a second
attribute is the type of the amount. Other systems may make use of additional note attributes
such as e.g. time locks — a timestamp identifier, allowing a note to be spendable only after a
specified block number. To allow the intended recipient to recover the note, it is accompanied by
an encryption C calculated by Enc. With the secret key, note and ciphertext, the original owner
Receives the note and is then able to create the corresponding nullifier with NulEval, a unique
serial value characterizing the note that cannot be predicted by anyone else than the owner.

We emphasize that any party can create an OTA account for anyone knowing only their public
key. The OTA itself does not allow any claims to the value stored inside. In our system, only
the OTAs which are included as outputs of a valid, balanced and persisted transaction can be
claimed by their owners in subsequent transactions. The transaction then enforces that sufficient
inputs were consumed to cover for the output. To mint coins an OTA needs to be included on
the ledger in an unbalanced transaction for the newly minted type. This transaction needs to be
accepted by the ledger rules. This behaviour might as well be governed by a smart contract.

Definition 5. A One-Time-Account (OTA) scheme consists of the PPT algorithms (Setup,
KeyGen,Enc,Gen,Receive,NulEval) defined as follows:

p← Setup(1λ): takes the security parameter λ and outputs the public parameters p which are
implicitly provided to the subsequent algorithms. This includes the note randomness space S,
the message space M, and the encryption randomness space Ξ.

(sk, pk)← KeyGen(1λ): generates a key pair (sk, pk). We assume a function P : sk 7→ pk for
generating the public key from a secret key.

note← Gen(pk, a⃗, r): takes a public key pk, a vector of attributes a⃗ ∈M|⃗a|, where, by agreement,
the first might be an amount, and randomness r ∈ S. It outputs a one-time-account, known
as note.

C ← Enc(pk, (⃗a, r), ξ): encrypts the attributes a⃗ and the randomness r ∈ S to the public key pk
with additional randomness ξ ∈ Ξ. It outputs a ciphertext C.

(⃗a, r)/⊥ ← Receive(note, C, sk): if the note and ciphertext C belongs to the secret key sk, the
algorithm outputs the vector of attributes a⃗ and the randomness r or fails otherwise.

nul← NulEval(sk, r): Takes a secret key sk and a randomness r and outputs a nullifier nul.

In addition, the algorithms Gen and NulEval must be efficiently provable in zero-knowledge. More
formally, the construction must provide NIZK-friendly circuits for the following languages:

Lnul = {(note, nul) | ∃(sk, a⃗, r) : note = Gen(P (sk), a⃗, r) ∧ nul = NulEval(sk, r)}
Lopen = {note | ∃(pk, a⃗, r) : note = Gen(pk, a⃗, r)}

The language Lopen may optionally be extended, such that elements of a⃗ have relations to other
commitments.

We first present the basic correctness and soundness properties of the OTA scheme, which
primarily dictate how Receive should be implemented.

7 Unlike in some other works, “note” here means the final, hidden account; and not the plaintext coin.

Zswap 9

Definition 6 (OTA Correctness). An OTA scheme is correct if for any λ ∈ N with p ∈
Setup(1λ) it holds that any honestly generated note is receivable. Formally, for every (sk, pk) ∈
KeyGen(p), every (⃗a, r) ∈M|⃗a| × S and ξ ∈ Ξ it holds that

Receive(Gen(pk, a⃗, r),Enc(pk, (⃗a, r), ξ), sk) = (⃗a, r)

Definition 7 (OTA Soundness). An OTA scheme is sound if any non-⊥ output of Receive
reconstructs the note that was given to Receive as an input. Formally, for any λ ∈ N with
p ∈ Setup(1λ), every (sk, pk) ∈ KeyGen(p), every (⃗a, r) ∈M|⃗a| × S, ξ ∈ Ξ it holds that

Receive(note, C, sk) = (⃗a, r) =⇒ OTA.Gen(P (sk), a⃗, r) = note

If correctness is present, soundness can be easily achieved by appending a condition to the
realisation of Receive that asserts that extracted (⃗a, r) is valid.

Once a note is created, it must bind the attributes and prevent opening the note to a different
vector, even for the owner with the correct secret key.

Definition 8 (OTA Binding). An OTA scheme is binding with regard to the accounts created
and the vector of attributes if for any λ ∈ N with p ∈ Setup(1λ) and any PPT adversary A, it
holds that

Pr


(pk0, r0, a⃗0, pk1, r1, a⃗1)← A(p)
note0 ← Gen(pk0, a⃗0, r0)
note1 ← Gen(pk1, a⃗1, r1) :

note0 = note1 ∧ a⃗0 ̸= a⃗1

 ≤ negl(λ)

The following privacy property assures that a note and its ciphertext do not leak who the
note belongs to and what attributes it stores.

Definition 9 (OTA Privacy). Consider the following oracle, modelling OTA note receiving:

Onote∗,C∗

Rcv (i, note, C) :

assert note ̸= note∗ ∧ C∗ ̸= C
return Receive(note, C, ski)

An OTA scheme is private if for any λ ∈ N with p ∈ Setup(1λ) and any stateful PPT
adversary A, it holds that

Pr



(sk0, pk0)
$←− KeyGen()

(sk1, pk1)
$←− KeyGen()

(i0, a⃗0, i1, a⃗1)← AO
⊥,⊥
Rcv (p, pk0, pk1)

b
$←− {0, 1}, r $←− S, ξ $←− Ξ

note∗ ← Gen(pkib , a⃗b, r)
C∗ ← Enc(pkib , (⃗ab, r), ξ)

b′ ← AO
note∗,C∗
Rcv (note∗, C∗) :

b = b′ ∧ |⃗a0| = |⃗a1|


≤ 1

2
+ negl(λ)

The privacy game implicitly subsumes (1) note and ciphertext hiding, and (2) note and
encryption anonymity (key privacy). In the first case, A cannot decide the content of the note
or the ciphertext; in the second, it cannot decide which key was used to create it. E.g. if note is
not hiding, A efficiently wins the game by first returning two different vectors a⃗0 ̸= a⃗1 and then
distinguishing the note noteb according to the attribute vector.

We require notes to be unique when generated with honest randomness:

10 F. Engelmann, T. Kerber, M. Kohlweiss, M. Volkhov∗

Definition 10 (Note Uniqueness). A binding and private OTA scheme satisfies honestly
generated note uniqueness: for all PPT A,

Pr

 ((pk0, a⃗0), (pk1, a⃗1))← A(1λ)
r0, r1

$←− S :
Gen(pk0, a⃗0, r0) = Gen(pk1, a⃗1, r1)

 ≤ negl(λ)

The next property, similar to the tagging scheme of Omniring [20], captures the requirement
that nullifiers produced with sk must be only “predictable” for the party that holds sk. This is
achieved by requiring NulEval to behave like a pseudorandom function.

Definition 11 (Nullifier Pseudorandomness). Let λ ∈ N with p ∈ Setup(1λ), (sk, pk)
$←−

KeyGen(), and f be randomly sampled function on the range {0, 1}|S| → {0, 1}|NulEval(sk,·)|. An
OTA scheme nullifier is pseudorandom if for any PPT adversary A, it holds that

Pr[AReceive(·,·,sk),f(·)(pk) = 1]− Pr[AReceive(·,·,sk),NulEval(sk,·)(pk) = 1] ≤ negl(λ)

To detect duplicate use of the same note, each is assigned a unique nullifier. Even with
knowledge of the secret key, it is not possible to create two different nullifiers for the same
note. The separate secret keys are important for constructions based on algebraic nullifiers. E.g.

Omniring creates tags as g
1

sk+r for a generator g, so randomness may be “traded” for secret key.
Allowing only one note with a single secret key would not capture the realistic setting where an
adversary controls multiple correlated accounts.

Definition 12 (Nullifier Uniqueness). An OTA scheme satisfies nullifier uniqueness if for
any λ ∈ N with p ∈ Setup(1λ) and any PPT adversary A, it holds that

Pr

 (sk0, r0, a⃗0, sk1, r1, a⃗1)← A(p);
note0 ← Gen(P (sk0), a⃗0, r0);
note1 ← Gen(P (sk1), a⃗1, r1)

:
note0 = note1 ∧
NulEval(sk0, r0) ̸= NulEval(sk1, r1)

 ≤ negl(λ)

Finally, the generated nullifiers must be also collision-resistant:

Definition 13 (Nullifier Collision-Resistance). An OTA scheme satisfies nullifier collision-
resistance if for any p ∈ Setup(1λ) and PPT A, it holds that

Pr

[
(sk0, r0, sk1, r1)← A(p) :
NulEval(sk0, r0) = NulEval(sk1, r1)

]
≤ negl(λ)

4 Zswap Scheme

A Zswap scheme is an extension of an OTA scheme which allows creating (SignTx), merging
(MergeSig), and verifying (Verify) transactions that transfer coins between OTA accounts. SignTx
takes a pre-transaction ptx as input and produces a transaction signature σ, MergeSig combines
transaction signatures σ1, . . . , σn, and Verify verifies a signature σ for a transaction tx. A signature
σ is viewed separately from its transaction tx (created by tx← CompleteTx(ptx) defined below),
and not contained in it.

Many algorithms will make use of st – the current state of valid previously issued notes. It
consists of two parts: st.MT is the Merkle tree containing notes as leaves, and st.NF is the set
of used nullifiers. Intuitively, when the note is spendable, its commitment should be in st.MT;
when the note is spent, its (unique, unlinkable) nullifier goes into st.NF.

Zswap 11

We first present auxiliary algorithms for Zswap in Fig. 2 for creating pre-transactions and
transactions. These use the OTA scheme algorithms only in a black-box manner and simplify
the exposition when defining the security properties. The first set of functions glues the Zswap
and OTA schemes together.

– BuildPTx constructs inputs for SignTx from I,O instructions and a set of secret keys SK.
Inputs I consist of a list of existing (note, C) notes, outputs O consist of a list of public key,
value, and type triplets (pkT , aT , tyT) for creating the output notes. By receiving input notes
and generating output notes it produces a pre-transaction information ptx.

– CompleteTx constructs a transaction tx for Verify from a pre-transaction ptx similar to SignTx.
– MergeTx creates a new transaction tx by combining a set of existing transactions tx1, . . . , txn.

This is the non-cryptographic analogue of MergeSig.
– CheckPTx(ptx, st) checks whether pre-transaction is valid w.r.t. st, which is used in the cor-

rectness property. It is easy to see that for ptx = BuildPTx(st, ·, ·, ·) we have CheckPTx(ptx, st) =
1.

– TryReceive attempts to “receive” a note note by decrypting its ciphertext C using any of
the set SK of available secret keys: if an input can be received with one of the keys it also
computes the note’s nullifier.

– CheckBalance is merely an alias that checks that for each type the pre-transaction is balanced,
and all the values are within bounds.

Definition 14. A Zswap transaction scheme, built on top of an OTA scheme, consists of a tuple
of PPT algorithms (Setup,SignTx,MergeSig,Verify) defined as follows:

p← Setup(1λ) takes the security parameter λ and outputs public parameters p which are im-
plicitly given to all the following algorithms. Setup is called once when a Zswap system is
initialized.

σ ← SignTx(st, ptx) takes a pre-transaction ptx = (S, T) where
– S = {(skSi , noteSi , nuli, pathi, (aSi , tySi), rSi)}

|T |
i=1 is a set of inputs with a nullifier nuli cor-

responding to the noteSi , and stored in the current state at the given path st.MT[pathi],
secret key skSi , amount aSi and type tySi with input OTA notes’ randomness rSi .

– T = {(pkTi , noteTi , (aTi , tyTi), rTi)}|T |i=1 is a set of (output) notes noteTi with amount aTi ,
type tyTi and output OTA notes’ randomness rTi .

It outputs a signature σ as authorization to spend the inputs S on the given outputs T .
b← Verify(s⃗t, tx, σ) takes a transaction tx, a signature σ and returns a bit b representing the

validity of the transaction w.r.t. the valid history of states s⃗t (this history may be partial, or
contain just one last element8).

σ ← MergeSig({σi}ni=1) takes n transaction signatures and generates a combined signature σ
valid for the union of the transactions. To merge the corresponding transactions tx1, . . . , txn
together, we use the function MergeTx defined in Fig. 2. It just concatenates their input
nullifiers, output notes, and sums their ∆ty for each ty. As of the st, they must be equal in
the transactions that need to be merged, but we can assume that st is only updated once an
epoch, which is set to be a time interval long enough for transactions to be merged.

4.1 Atomic Swap Example

After presenting all necessary algorithms, we show a small example of how they interact to create
an atomic swap transaction between two parties, Alice and Bob. First, the system is created by

8 See the correctness definition in the next sections.

12 F. Engelmann, T. Kerber, M. Kohlweiss, M. Volkhov∗

BuildPTx(st, I, O, SK)
S, T ← ∅
for (noteS , CS) ∈ I do

path← st.MT.getPath(noteS)
assert path ̸= ⊥
(skS , nul, (aS , tyS), rS)← TryReceive(note, C, SK)

S := S ∪ (skS , noteS , nul, path, (aS , tyS), rS)

assert {nuli} are distinct and ∀i. nuli /∈ st.NF

for (pkT , aT , tyT) ∈ O do rT
$←− S, ξ $←− Ξ

noteT ← OTA.Gen(pkT , (aT , tyT), rT)

CT ← OTA.Enc(pkT , ((aT , tyT), rT), ξ)

T := T ∪ (pkT , noteT , CT , (aT , tyT), rT)

ptx← (S, T)
assert CheckBalance(ptx) = 1
return ptx

CheckPTx(ptx@(S, T), st)
Parse S as {(skSi , noteSi , nuli, pathi, (a

S
i , tySi), rSi)}|S|

i=1

Parse T as {(pkTi , noteTi , CT
i , (aT

i , tyTi), rTi)}|T |
i=1

% CT
i is left to the receiver to verify

assert {nuli} are distinct and ∀i. nuli /∈ st.NF
for i ∈ [|S|] do
assert st.MT[pathi] = noteSi
assert nuli = OTA.NulEval(skSi , rSi)

assert noteSi = OTA.Gen(OTA.P (ski), (a
S
i , tySi), rSi)

assert ∀i ∈ [|T |] :
noteTi = OTA.Gen(pkTi , (aT

i , tyTi), rTi)
assert CheckBalance(ptx) = 1
return 1

CompleteTx(ptx@(S, T))
Parse S as {(·, ·, nuli, ·, (aS

i , tySi), ·)}|S|
i=1

Parse T as {(·, noteTi , CT
i , (aT

i , tyTi), ·)}|T |
i=1

for ty ∈ Ty@({tySi } ∪ {ty
T
i }) do

∆ty ←
∑

(aS
i

,ty)∈S aS
i −

∑
(aT

i
,ty)∈T aT

i

return
(
{nuli}|S|

i=1, {note
T
i , CT

i }
|T |
i=1, {∆ty}ty∈Ty

)
MergeTx({txj}nj=1)

Parse txj as(
{nulj,i}

|S|j
i=1 , {(noteTj,i, C

T
j,i)}

|T |
i=1, {∆j,ty}ty∈Tyj

)
assert

∑
|Si|+

∑
|Ti| ≤ β

return
(
ToSet

(⋃
j,i{nulj,i}

)
,

ToSet
(⋃

j,i{(note
T
j,i, C

T
j,i)}

)
,

ToSet

({∑
j ∆j,ty

}
ty∈
⋃
j Tyj

))
TryReceive(note, C,SK)

for sk ∈ SK do
res← OTA.Receive(note, C, sk)
if res = ((a, ty), r) ̸= ⊥ then
nul← OTA.NulEval(sk, r)
return (sk, nul, (a, ty), r)

return ⊥

CheckBalance(ptx@(S, T))
assert

∑
|S|+

∑
|T | ≤ β

assert ∀ty ∈ {tySi } ∪ {ty
T
i }.∑

(aS
i

,ty)∈S aS
i −

∑
(aT

i
,ty)∈T aT

i ≥ 0 ∧

(∀i. aS
i < 2α) ∧ (∀i. aT

i < 2α)
return 1

Fig. 2. Auxiliary algorithms for Zswap. These only depend on the OTA scheme and do not use Zswap
methods such as Verify or SignTx.

Setup. Each participant joining, generates their key pair (sk, pk) with KeyGen. The creation of
new assets is delegated to an external consensus mechanism which updates the global state of the
system according to an agreed policy. At one point, Alice and Bob have to be the beneficiary of
a transaction. They notice this by calling TryReceive with their secret key sk on every published
transaction output (note, C). If they successfully receive a (note, C) to an amount a and type ty,
they keep it for when they want to spend it. Let’s assume Alice received a note of 10$ and Bob
has a note of 10e. Alice now wants euros and Bob dollars. They assume an exchange rate of 7:5
and proceed to generate their pre-transactions ptxi. Each party calls BuildPTx with their note
as input instruction I. As output instructions O, Alice sends 5e to her key pk. To make sure
that someone fulfills the offer, she creates a change output to herself with only 2$, leaving 1$ as
incentive. Bob performs the same. He inputs the 10e note and generates outputs of 7$ and 5e
to himself.

The resulting pre-transactions are signed by both parties respectively with SignTx to get sig-
natures σi. The final transactions txi are generated from the pre-transactions ptxi by CompleteTx
and can be verified against their signature σi with Verify. Note that both transactions by them-
selves cannot be included in the public ledger. Both have a type with a negative balance. Alice’s

Zswap 13

transaction has ∆e = −5 and Bob’s transaction has an imbalance of ∆$ = −7. So far Alice
and Bob have not communicated. The non-malleability of the transactions allow them to publish
their transactions into an exchange pool. Exchange pools may be run globally or with limited
access. The first party seeing both transactions recognizes that they are complementary and is
able to merge both txi together with MergeTx and their signatures σi with MergeSig. As a prize,
the merger is allowed to claim the surplus of 1$ paid by Alice. Technically there are now 3 trans-
actions merged. The resulting merged transaction has no imbalance and can be included in the
public ledger. Then all parties get their specified outputs and store them for future transactions.

OSpend(st, I, O)

if Spent is ⊥ then Spent← ∅
assert |O| > 0 ∧ ∃(pk, ·, ·) ∈ O : pk ∈ PK
ptx@(S, T)← BuildPTx(st, I, O, SK)
σ ← SignTx(st, ptx)

Parse S as {(nuli, ·, ·, ·)}|S|
i=1; T as {(·, noteTj , Cj , ·, ·)}|T |

j=1;

Spent := Spent ∪ (st, I, {nuli}|I|i=1, {(note
T
j , Cj)}|T |

j=1))
return σ

OKeyGen()
if SK or PK is ⊥ then
SK,PK← ∅

(sk, pk)← KeyGen()
SK := SK ∥ sk
PK := PK ∥ pk
return pk

GetLog(st)

Ins′ ← []; s⃗t← (st)
while x@(st′, st, ·, ·) ∈ Ins do
Ins′ := x ∥ Ins′; st := st′

s⃗t = s⃗t ∥ st′

assert st = st0
return (Ins′, s⃗t)

OInsert(st, tx, σ)
if Ins is ⊥ then Ins← ∅
if st0 = ⊥ then
assert st.NF = ⊥
s⃗t← {st}

else
assert (st, ·, ·, ·) ∈ Ins
(·, s⃗t)← GetLog(st)

(Nf@{nuli}|S|
i=1, {note

T
j , ·}|T |

j=1, {∆ty}ty∈Ty)← tx

% Transaction verifies
assert Verify(s⃗t, tx, σ) = 1
% And is not an offer
assert ∀ty ∈ Ty : ∆ty ≥ 0
Construct st′ s.t.

st′.MT← st.MT.insert({noteTj }
|T |
j=1)

st′.NF← st.NF ∪ Nf
Ins := Ins ∪ (st, st′, tx, σ)
if st0 = ⊥ then st0 ← st

Fig. 3. Oracles for the security experiments.

4.2 Security Modelling with Support Oracles

The security of our scheme is based on several top-level games, plus the games we define for
the OTA scheme. To model potential blockchain executions we need to introduce the oracles
which will model note spending that the adversary A sees, interactively. The relevant oracles,
OKeyGen, OSpend and OInsert are presented on Fig. 3. They are responsible for generating keys,
honest transactions and inserting them into the ledger.
OKeyGen allows generating honest public and secret keys for further use in OSpend.
OSpend models leakage of honestly generated transactions, including unbalanced “offer” trans-

actions. Each OSpend query allows spending some notes, and successful spend logs are recorded
in Spent. An adversary can specify any possible state it likes as long as the request is valid with
respect to this state. The requirement that O has at least one honest output is a modelling
artefact, and is explained further in the “anti-theft” section.
OInsert models “recording” balanced transaction in the ledger. Branching is possible inside

OInsert — A can append an honest transaction to any of the recorded states, but still one can
only spend notes through OInsert if their nullifier has not been used in the same branch. Moreover,
the st0 variable is shared between the oracle records as the first “root” state that A can initialize
the oracles with. OInsert only accepts states that are eventually linked with this root st0.

GetLog function is a state maintenance helper. When called on the state st it makes sure that
st is a valid progression of the initial state st0, and returns two values: Ins′, which is a log of

14 F. Engelmann, T. Kerber, M. Kohlweiss, M. Volkhov∗

this state progression (containing transaction history), and s⃗t – subset of Ins′ containing states
only (only state progression history). When GetLog is called in security experiments on st, it
implicitly asserts that st is a valid state that was created through the oracles.

4.3 Correctness

We start from the basic correctness definition, covering interactions between honest users.

Definition 15 (Correctness). A Zswap scheme is correct if OTA is correct and if for all λ ∈ N,
p ∈ Setup(1λ), and all PPT B (setup algorithm) it holds that:

(1) Honestly generated transactions are immediately valid: For any S, T , st such that
CheckPTx(S, T , st) = 1, and tx = CompleteTx(S, T), and for any signature σ ← SignTx(st, (S, T)),
it holds that Verify([st], tx, σ) = 1.

(2) Honestly generated transactions are valid in any future state: Let st1, st2 be any pair
of states returned by BOKeyGen,OSpend,OInsert(p), such that (·, s⃗t) ← GetLog(st2) and st1 ∈ s⃗t
(this implies GetLog does not fail, and st2 is a valid progression of st1; st1 may be equal
to st2). Let S, T be such that CheckPTx(S, T , st1) = 1; let tx = CompleteTx(S, T) and
σ ← SignTx(st1, (S, T)). Then Verify(s⃗t, tx, σ) = 1.

(3) Honestly merged valid transactions are again valid: Let n ∈ N. Let {sti}ni=1, st ←
BOKeyGen,OSpend,OInsert(p, n) be a set of states such that (sti, st) are valid progressions in the same
history: s⃗t ← GetLog(st) and ∀i. sti ∈ s⃗t. Let there be a set of {(Si, Ti)}i∈[n] s.t. for all i,
CheckPTx((Si, Ti), sti) = 1, for each σi ∈ SignTx(sti, (Si, Ti)) and σ = MergeSig({σi}ni=1),
and tx← MergeTx({CompleteTx (Si, Ti)}ni=1), it holds that Verify(s⃗t, tx, σ) = 1.

Regarding the ability to “receive” coins that were sent to the party, the formal completeness
definition is part of the OTA scheme, and the fact we receive properly send coins is guaranteed
by BuildPTx, which is not part of zswap scheme. At the same time, correctness of ciphertexts is
not guaranteed, so it is possible to create an output with an invalid ciphertext, undecryptable
by the receiver. In this case, receiver of the coin must consider this transaction factually invalid,
as burning the coin that was designated to them.

4.4 Anti-Theft and Non-Malleability

The notion of anti-theft we describe here is our main non-malleability notion. Intuitively it says
that an adversary A can only merge transactions, but cannot split honest transactions apart, or
modify them in any other way. More concretely, for any honest tx that A sees, A cannot submit
tx∗ which contains any of the (1) input nullifiers of tx; or (2) honest output notes of tx; without
merging the whole tx into tx∗. Anti-theft subsumes the even more basic property that A cannot
spend honest notes without doing it honestly (asking honest parties through OSpend).

The anti-theft game is modelled by allowing A to interact with the oracles described before:
A can generate new keys, produce unbalanced honest transactions (spend), and submit (insert)
transactions (which we want to prove to be only honest, dishonest, or merges of the two types).
The adversary then returns a state st∗ which is examined. The challenger searches through the
log of inserted transactions. The adversary wins if a transaction in the log contains an incomplete
part of (an honest) transaction earlier returned by OSpend to A, but used only partially. To do
that, it calls a sub-function SplitTx which locates complete “honest subtransactions” returned by
OSpend in tx, and returns these honest sub-transactions as first argument, and the remaining parts
of tx∗. If the challenger recognizes nullifiers or output notes in this remaining part, that were
created in OSpend, it means that A managed to deconstruct it, changing the output of OSpend, or
stealing an honest nullifier.

Zswap 15

Anti-TheftA(1
λ)

p← Setup(1λ)

st∗ ← AOKeyGen,OSpend,OInsert (p)
(Ins′, ·)← GetLog(st∗)
for (st, ·, tx, ·) ∈ Ins′ do

(·, (NfA,MA))← SplitTx(st, tx)

MA ′ ← {(note, C) ∈MA | TryReceive(note, C, SK) ̸= ⊥}
if ∃(·, ·,Nf,M) ∈ Spent : MA ′ ∩M ̸= ∅ ∨ NfA ∩ Nf ̸= ∅ then

return 1
return 0

SplitTx(st, tx)

(Nf@{nuli}|S|
i=1,M@{noteTj , ·}|T |

j=1, C)← tx

txH ← []
Nf0 ← Nf

for (st′, ·,Nf′@{nul′i}
|S′|
i=1 ,M

′@{(noteT ′
j , C′

j)}
|T ′|
j=1) ∈ Spent do

if st′.MT = st.MT ∧M ′ ⊂M ∧ Nf′ ⊂ Nf0 then
txH = txH ∥ (Nf′,M ′)
Nf0 := Nf0 \ Nf′

txA = (Nf \ {NfH | (NfH, ·) ∈ txH}, M \ {MH | (·,MH) ∈ txH})
return (txH, txA)

Fig. 4. The anti-theft experiment.

Definition 16 (Anti-Theft). A Zswap scheme is protecting against theft, if for any λ ∈ N
and any PPT adversary A, Pr[Anti-TheftA(1λ) = 1] ≤ negl(λ) where the Anti-TheftA(1

λ) game
is defined in Fig. 4.

Essentially, anti-theft captures non-malleability of output notes and their ciphertexts, which
is in practice guaranteed by NIZK SE (that implies instance binding). If A can maul an output
(e.g. change its value, or destination) and still submit the tx to OInsert successfully, it wins the
game, since SplitTx will not locate tx as being in Spent, and thus the game challenger C will catch
A spending a nullifier that was in Spent but not located by SplitTx.

On the more basic non-malleability side, A cannot construct transactions spending honest
notes. Assume that A constructs tx0 sending a note to an honest party (pk ∈ PK), and then
succeeds to spend it using tx∗, without using OSpend. If this is possible, it means A presented a
nullifier inside tx∗ corresponding to the note — then A could also make a single query to OSpend

instructing to spend the same note to elsewhere, and ignore the result of OSpend, submitting
tx∗ as planned. This would “mark” the nullifier, and trigger winning condition of the anti-theft
game.

Modelling details. The requirement that O in OSpend contains at least one honest output is needed
so that SplitTx can uniquely identify honest sub-transactions9. In other words, note uniqueness
is necessary for the anti-theft game to make sense. Without it the game would produce false
positives: A could trick SplitTx into not recognising some honest sub-transactions, even though
the tx∗ submitted by A is perfectly normal. This modelling artefact does not limit A from
creating unbalanced input-only transactions, since A can still request to include a single zero-
valued output.

No similar restrictions are put on the inputs, and they can be null; in other words, A can
instruct to generate an offer with a single honest output. However, it is easy to see that A
9 Without this requirement, and without adding extra marker information to notes, identifying honest
sub-transactions within SplitTx would take exponential time.

16 F. Engelmann, T. Kerber, M. Kohlweiss, M. Volkhov∗

cannot trigger the winning condition with this input — since the output notes are unique, it is
guaranteed that this output note will be detected in SplitTx. This does not rule out the possibility
of A using this output in other way to break the property.

The set Nf0 in SplitTx is needed since without it honest sub-transactions can be counted twice.
E.g. let tx0, tx1 be two honest transactions with the same input nullifiers Nf, but completely
different outputs M0,M1 (each containing at least one honest output note). Without Nf0, for
tx containing Nf and M0 ∪ M1, SplitTx will detect both tx0, tx1, and the winning condition
will not be triggered. We, on the other hand, want anti-theft to prevent this: with Nf0 one of
txi will be considered honest, and the honest output note in tx1−i will trigger the anti-theft
winning condition. We do not need to similarly countM since output notes are unique — adding
M =M \M ′ into SplitTx simply does not change the behaviour of the game.

Finally, it is critical to filter MA ′ from MA. Otherwise, A would be able to trivially win the
game by triggering MA ∩M ̸= 0 in the following way:

1. A, through OSpend, requests an honest spend to an adversarial public key pkA;
2. A obtains the proof and corresponding note∗, receives it, and creates a completely different,

adversarial transaction tx∗ on its own, where note∗ is an output;
3. the game will not find any honest subtransaction in tx∗ and thus note∗ ∈M ∩MA.

4.5 Balance

The balance property says that transactions distribute underlying coins “properly” — that is,
the adversarial balance per type only changes predictably, by the adversary receiving or sending
these coins. In particular, the balance game forbids malicious conversion between asset types,
coin forging, and double spending — both within a single transaction, and for any history of
adversarial interaction with the ledger.

Formally, the property is modelled as a game (Fig. 5) of A “against” the honest parties, in
which A has to prove that it has more coins that it could have obtained honestly. The challenger
lets A interact with the oracles, and asks A to present two sets of values: I0 and I containing notes
together with their secrets. Unlike in other games, st0 in balance must contain only adversarial
coins, and I0 must be all the unspent corresponding notes. The other set I is the set of unspent
adversarial coins from the new state st∗ that (supposedly, as A claims) contain illicitly produced
coins, breaking the global balance condition. This balance condition is computed next in the
following manner. Initially, v0 is set to the sum of all values in I0, and vA as a sum of all values
in I (how much per type A owned in the beginning of the game, and how much it owns in the
end). Then, by traversing the history of transactions from st0 to st∗, the game computes the
following two values:

1. vH− is the sum of all honest inputs in transactions; and
2. vH+ is the total coins received by honest parties (located in transaction outputs).

The final condition checks that A cannot show in st∗ more coins than: (1) it had in st0, plus (2)
what was sent by honest parties, minus what was received by honest parties. This last difference
is non-positive (because I0 is all the system coins), and importantly the balance of A per type
is “tied” to the balance of honest parties, so no extra coins can be produced.

Note that balance is defined in conjunction with anti-theft, since it uses SplitTx which it
assumes to work correctly (according to the anti-theft definition). In practice it also makes sense
to see them together: balance and anti-theft jointly guarantee that adversary cannot receive more
than honestly, given that it can combine its transactions with dishonest ones. Theft guarantees
that A can only merge transactions; balance guarantees that these transactions never break the
total balance of coins in the system.

In particular, the balance property guarantees the following:

Zswap 17

BalanceA,EA(1
λ)

p← Setup(1λ)

(st∗, I0, I)← AOKeyGen,OSpend,OInsert (p)
assert {notei} ∈ I0 are distinct, and

st0.MT contains only these notes.
assert {notei} ∈ I are distinct, and are in st∗.MT
for (notei, nul, (a, ty), sk, r) ∈ I ∪ I0 do

assert notei = Gen(P (sk), (a, ty), r) ∧ nul = NulEval(sk, r)

for (·, nul, (a, ty), ·, ·) ∈ I0 do
assert nul /∈ st0.NF
v0[ty] := v0[ty] + a

for (·, nul, (a, ty), ·, ·) ∈ I do
assert nul /∈ st∗.NF
vA[ty] := vA[ty] + a

vH−, vH+ ← (ty 7→ 0) % map with default value 0
(Ins′, ·)← GetLog(st∗)
for all (st, ·, tx, σ) ∈ Ins′ do

({nuli}|S|
i=1, {note

T
j , ·}|T |

j=1, ∅)← tx

(txH, ·)← SplitTx(st, tx)
for (Nf,M) ∈ txH do

Find (·, I,Nf,M) ∈ Spent
for (note′, C′) ∈ I do

(·, (a, ty), ·)← TryReceive(note′, C′, SK)
% Honestly spent inputs
vH−[ty] := vH−[ty] + a

for (note′, C′) ∈M where (·,M) ∈ tx do
res← TryReceive(note′, C′, SK)
if res = (·, (a, ty), ·) ̸= ⊥ then

% Outputs to honest parties
vH+[ty] := vH+[ty] + a

if ∃ty : vA[ty] > v0[ty] + vH−[ty]− vH+[ty] then
return 1

else return 0

Fig. 5. The balance experiment

1. Total spendable amount of coins per type is constant in the system: if there are more coins
in the system than v0, and they are spendable, A can transfer them to itself, and present
them in I, thus breaking vA > v0. Even if these coins belong to the honest users, and thus
vH− − vH+ > 0 (which should not happen), A can always create a transaction transferring
these coins to itself using OSpend.

2. Every transaction is balanced per type, that is it does not produce more coins than it con-
sumes. This means no conversion between types, and no coin forging. It follows from (1),
since an unbalanced transaction would create more funds in the state st′ that follows this
transaction. So A could just present state st′ and win the balance game.

3. Double spending is forbidden. Because we have balancing, it is not possible to spend a note
in such a way so that its funds disappear from the counter of the total coins. This means
that double spending would produce total coin imbalance, which is forbidden.

Definition 17 (Balance). A Zswap scheme is balanced if for all PPT adversaries A there
exists a PPT extractor EA such that Pr[BalanceA,EA(1

λ) = 1] ≤ negl(λ) with the game defined in
Fig. 5.

18 F. Engelmann, T. Kerber, M. Kohlweiss, M. Volkhov∗

4.6 Privacy

The privacy game captures secrecy of coin transfers by means of an indistinguishability experi-
ment. To model the game we will first introduce the notion of a transaction instruction tree T .
Such a variable width tree has as its leaf i either

1. the instructions to construct an honest transaction ({notei,j,Ci,j
}|S|ij=1, {(pki,j , aTi,j , tyTi,j)}

|T |i
j=1),

similarly to the input to OSpend, or
2. a fully adversarial transaction (txi, σi).

Its intermediate leaves are empty, and merely represent how children transactions must be
merged.

We will also need to decide what a transaction resulting from a merge according to T leaks.
We formalize this notion by defining the tree equivalency relation, formally on Fig. 6 as follows:
EquivTree(T0, T1) = 1 if the following conditions hold:

1. The imbalance of amounts in each type is equal (B1).
2. The number of input notes is equal (published nullifiers), and the number of output notes

is equal. This applies to honest (BS2 ∧BT2) leaves, as the same property implicitly holds for
adversarial leaves due to the next check (B3).

3. Malicious offers need to be the same in both trees, but maybe not at same positions (B3).
4. For all the honest nullifiers Nf that A receives via OSpend, if any of the related notes are

included in the honest leaves of a tree, these notes must be included in both trees, (B4).
5. The adversarial output instructions of honest leaves are the same in both trees (B5).

PrivacybA(1
λ)

p← Setup(1λ)

(st, T0, T1)← AOKeyGen,OSpend,OInsert (p)
assert (·, s⃗t)← GetLog(st) % s⃗t[1] = st
tx0 ← EvalTree(s⃗t, T0)
tx1 ← EvalTree(s⃗t, T1)
assert tx0 ̸= ⊥ ∧ tx1 ̸= ⊥
assert EquivTree(st, T0, T1) = 1
b′ ← A(txb)
return b′

EvalTree(s⃗t, T)
for all leafi ∈ T do
% Validate adversarial txs
if leafi = (tx, σ) then
assert Verify(s⃗t, tx, σ) = 1

% Replace instruction leaves with real txs
if leafi = (I, O) then
ptx← BuildPTx(s⃗t[1], I, O, SK)
txi ← CompleteTx(ptx)
σi ← SignTx(s⃗t[1], ptx)
Replace leafi by (txi, σi) in T

% Fold T into a single root node by merging
while ∃ node N in T with only {(txi, σi)}ci=1 as
children do
Replace node with merged transactions of its chil-

dren:
N ← (MergeTx({txi}ci=1,MergeSig({σi}ci=1))
Remove its children

return T

EquivTree(st, T0, T1)

Parse each leafb,i of each Tb as either an adv. leaf leafA:

(txb,i@({nulb,i,j}
|S|b,i
j=1 , {(noteTb,i,j , C

T
b,i,j)}

|T |b,i
j=1 ,

{∆b,i,ty}ty∈Tyb,i
), σb,i)← leafAb,i

or an honest leaf leafH:

({(noteSb,i,j , C
S
b,i,j)}

|S|b,i
j=1 ,

{(pkb,i,j , a
T
b,i,j , ty

T
b,i,j)}

|T |b,i
j=1)← leafHb,i

for b ∈ {0, 1}, leafHi ∈ Tb do
for j ∈ [|Tb,i|] do
(nulb,i,j , (a

S
b,i,j , ty

S
b,i,j), rb,i,j)←

TryReceive(noteSb,i,j , C
S
b,i,j , SK)

for ty ∈ {tySb,i,j}
|T |b,i
j=1 do

∆b,i,ty ←
∑

j:tyb,i,j=ty a
S
b,i,j −

∑
j:ty0,i,j=ty a

T
0,i,j

B1 ← ∀ty :
∑

leafH
i

∈T0
∆0,i,ty =

∑
leafH

i
∈T1

∆1,i,ty

BS
2 ←

∑
leafH

i
∈T0
|S|0,i =

∑
leafH

i
∈T1
|S|1,i

BT
2 ←

∑
leafH

i
∈T0
|T |0,i =

∑
leafH

i
∈T1
|T |1,i

B3 ←
⋃

leafA
i

∈T0
{(tx0,i, σ0,i)} =

⋃
leafA

i
∈T1
{(tx1,i, σ1,i)}

Nf ←
⋃

(·,·,Nfi,·)∈Spent Nfi

B4 ← Nf∩(
⋃

leafH
i

∈T0,j
nul0,i,j) = Nf∩(

⋃
leafH

i
∈T1,j

nul1,i,j)

for b ∈ {0, 1}, leafHi ∈ Tb do

OA
b ←

⋃
pkb,i,j /∈PK(pkb,i,j , a

S
b,i,j , ty

S
b,i,j)

B5 ← OA
0 = OA

1

return B1 ∧ BS
2 ∧ BT

2 ∧ B3 ∧ B4 ∧ B5

Fig. 6. Transaction privacy experiment

Zswap 19

The privacy notion itself asks A to present two equivalent trees, and then builds a single
transaction for each tree which both must not fail. It returns one merged transaction. The
adversary wins the game if it can decide which tree was used.

To illustrate the notion with a single example, imagine trees that contains a single leaf node,
in the first case spending a single note with X coins, sending 1 to Alice and X − 1 to Bob, and
in the second case spending a single note of Y coins, sending Y − 2 to Alice and 2 to Bob. Such
trees are equivalent according to our definition, and thus A should not be able to decide which
transaction is produced by which tree.

Definition 18 (Transaction Privacy). A Zswap scheme has private transactions, if for all
PPT adversaries A it holds that:∣∣Pr[Privacy0A(1λ) = 1]− Pr[Privacy1A(1

λ) = 1]
∣∣ ≤ negl(λ)

with PrivacybA(1
λ) defined in Fig. 6.

5 The Zswap Protocol

We present the Zswap protocol in Fig. 7. It extends the OTA scheme (constructed in Appendix B)
and additionally utilizes a sparse homomorphic commitment scheme (sparse Pedersen): SHC =
(ComSetup,Commit). and Arguments of Knowledge: AoK = (AoK.Setup,AoK.Prove,AoK.Verify,
AoK.Sim).

Setup(1λ)

pSHC ← ComSetup(1λ)

pOTA ← OTA.Setup(1λ)

pspend ← AoK[Lspend].Setup(1λ)

poutput ← AoK[Loutput].Setup(1λ)
p := (pSHC, pOTA, pspend, poutput)
return p

SignTx(st, ptx@(S, T))
Parse S as {(skSi , noteSi , nuli, pathi, (a

S
i , tySi), rSi)}|S|

i=1

Parse T as {(pki, note
T
i , CT

i , (aT
i , tyTi), rTi)}|T |

i=1
% Rerandomized input/output commitments

{rcSi
$←− R, comS

i ← Commit(tySi , aS
i ; rcSi)}|S|

i=1

{rcTi
$←− R, comT

i ← Commit(tyTi , aT
i ; rcTi)}|T |

i=1

{stmtSi =
(
st, nuli, com

S
i

)
}|S|
i=1

{wS
i = (pathi, sk

S
i , aS

i , tySi , rSi , rcSi)}|S|
i=1

{πS
i ← AoK[Lspend].Prove(stmtSi , wS

i)}|S|
i=1

{stmtTi = (noteTi , CT
i , comT

i)}|T |
i=1

{wS
i = (pki, a

T
i , tyTi , rTi , rcTi)}|T |

i=1

{πT
i ← AoK[Loutput].Prove(stmtTi , wT

i)}|T |
i=1

return (ToSet({(πS
i , comS

i)}|S|
i=1),

ToSet({(πT
i , comT

i)}|T |
i=1),∑|S|

i=1 rcSi −
∑|T |

i=1 rcTi)

Verify(s⃗t, tx, σ)

Parse tx as
(
{nuli}|S|

i=1, {(note
T
i , CT

i)}|T |
i=1, {∆ty}ty∈Ty

)
assert |S|+ |T | ≤ β
assert {nuli} are distinct
assert ∀i : nuli /∈ s⃗t[1].NF

Parse σ as ({(πS
i , comS

i)}|S|
i=1, {(π

T
i , comT

i)}|T |
i=1, rc)

for i ∈ [|S|] do
Find î such that tx was created w.r.t. s⃗t[̂i].

stmti := (s⃗t[̂i], nuli, com
S
i)

assert AoK[Lspend].Verify(πS
i , stmti)

for j ∈ [|T |] do
assert AoK[Loutput].Verify(πT

j , (noteTj , CT
i , comT

j))

return
⊕

comS
i ⊖

⊕
comT

i =
Commit(0, 0; rc)⊕

⊕
ty∈Ty Commit(ty, ∆ty, 0).

MergeSig({σj}nj=1)

Parse σj as ({(π
Sj
i , com

Tj
i)}

|Sj |
i=1 , {(π

Tj
i , com

Tj
i)}

|Tj |
i=1 , rcj)

assert
∑
|Si|+

∑
|Ti| ≤ β

rc←
∑n

j=1 rcj

return
(
ToSet

(⋃n
j=1{(π

Sj
i , com

Tj
i)}

|Sj |
i=1

)
,

ToSet
(⋃n

j=1{(π
Tj
i , com

Tj
i)}

|Tj |
i=1

)
, rc
)

Fig. 7. The Zswap Construction

The high-level idea is to create a transaction which has separate inputs and outputs han-
dled by the OTA scheme. A transaction links them together through SHC commitments. Each

20 F. Engelmann, T. Kerber, M. Kohlweiss, M. Volkhov∗

input and output has a corresponding SHC commitment with an equal amount and type. This
equivalency is assured by an AoK for each input and each output. The output AoK additionally
assure non-malleability for the note ciphertext. The input AoKs enforce that the transaction
creator possessed the secret key to authorize the spending and prove that the published nullifier
is correct. This is captured by two NIZK languages.

The first one authenticates a valid spend — it says that the (rerandomized) SHC commitment
comS is well-formed and contains the same value and type as a note in the Merkle tree of state st
with the given nullifier nul. To prevent overflows in the homomorphic commitments, we include
a range proof where α is chosen small enough in relation to the group order (maximum inputs
and outputs times 2α < |G|). Thereby we assume integer amounts in subsequent arguments.

Lspend =
{(

st,nul, comS
)
| ∃(path, note, skS , aS , tyS , rS , rcS) :

st.MT[path] = note ∧
(note, nul; skS , (aS , tyS), rS) ∈ Lnul ∧
(note;OTA.P (skS), (aS , tyS), rS) ∈ Lopen ∧

comS = Commit(tyS , aS ; rcS) ∧ aS ∈ [2α]
}

The second language Loutput is even simpler. It claims that the two output commitments, the
real (which is contained inside the output note) and the randomized one, contain the same value
of the same type.

Loutput =
{
(noteT , CT , comT) | ∃(note, pkT , aT , tyT , rT , rcT) :

(note; pk, (aT , tyT), rT) ∈ Lopen ∧

comT = Commit(tyT , aT ; rcT) ∧ aT ∈ [2α]
}

Note that the ciphertext CT is not referred to in the relation, but when used with a simulation
extractable (SE) NIZK, realizes a Signature of Knowledge. I.e. every proof is bound to a specific
ciphertext and is invalid for any other ciphertext. The transaction signature σ then contains
a proof πSi for each input together with the SHC comSi and for each output a signature πTi
and the SHC comTi . The last component of the signature is the aggregated randomness of the
commitments which, together with the ∆ty imbalance, allows verification.

For a full transaction verification, all proofs and signatures contained in σ must be valid and
the published nullifiers must be unique regarding the set of nullifiers in state st.

With the transaction signature σ having a separate proof for each input and output, it is pos-
sible to merge transactions by calculating the union of their proofs. To maintain the verifiability
of the commitments, the randomness of the merged transactions is added. The irreversible ad-
dition operation then prevents future parties to unmerge a transaction if they have not seen the
separate parts beforehand. To maintain the anonymity, we order inputs and outputs canonically
after each merge.

As a remark, the aggregated randomness in a transaction may be replaced by a proof of
knowledge. Like the binding signature of Sapling, this finalizes a transaction such that it can no
longer be merged with others.

6 Security Proof

In this section we prove the main three security properties of Zswap construction on Fig. 7 we
introduced in Section 4. The full proofs are deferred to Appendices D, E, and F.

Zswap 21

Theorem 1 (Anti-Theft). The Zswap protocol prevents theft (Definition 16), assuming OTA
security, NIZK zero-knowledge, NIZK simulation-extractability, and SHC binding and HID-OR.

Proof (Sketch). When A triggers the winning condition of the anti-theft game with an adver-
sarial transaction tx∗, there exists a note or a nullifier taken from some honest OSpend query

Ê, producing tx, such that not all nullifiers and notes from tx were included in tx∗. This is the
query that triggers the winning condition. By NIZK simulation-extractability, the proofs that
were produced in Ê “bind” together notes and nullifiers with the corresponding input and output
commitments. This means A uses some commitments from tx, but drops some other. Assuming
commitment binding, the values we extract for commitments of tx∗ (we can extract them from
NIZKs) are the same as the values committed in tx.

From this point we can build a reduction B to HID-OR. B guesses a commitment CX that
is present in both tx, tx∗, and CY that is only present in tx. It asks the HID-OR challenger C for
either

1. two commitments corresponding to the values (a1, ty1), (a2, ty2) as they should be honestly;
or

2. the values swapped as (a2, ty1), (a1, ty2) if both indices correspond to inputs or both to
outputs, and

3. swapped with negation (−a2, ty2), (−a1, ty1) otherwise.
This way of embedding guarantees the HID-OR requirement that∆ty,1 = ∆ty,2. Then B simulates
the two NIZKs corresponding to CX , CY . When A presents tx∗, B will extract the randomness
rci for all commitments except for CX , and thus because tx∗ also includes the joint randomness
rc∗, B can compute the randomness rcX for CX (as rc∗−

∑
rci). Given rcX , B can check whether

CX contains (a1, ty1) or the “swapped” value, and thus wins HID-OR.
We present the detailed proof of anti-theft in Appendix D. ⊓⊔

Theorem 2 (Balance). The Zswap protocol satisfies the Balance property (Definition 17) by
anti-theft, NIZK SE, OTA Security, commitment binding, and Merkle tree binding.

Proof (Sketch). Intuitively, the property reduces to:

1. NIZK SE (implying knowledge soundness (KS)) and commitment homomorphism (every
valid transaction is balanced),

2. anti-theft, since A can use only its own notes; and binding, since A can only open output
commitments in a single way when spending them.

The first guarantees that transactions do not break per-type balance and do not introduce any
coins out of thin air etc. The second proves that in the long-term A can only move funds through
such honest transactions.

The full proof is presented in Appendix E. ⊓⊔

Theorem 3 (Privacy). The Zswap protocol is private (Definition 18), if NIZK is zero-knowledge,
Pedersen commitments are hiding, and OTA is private and satisfies nullifier pseudorandomness.

Proof. First, we note that changing the order of merge in the tree T does not affect the resulting
merge transaction. Let T ′ be a variant of T where any two transactions are swapped — then
EquivTree(T, T ′) = 1 and EvalTree(st, T) = EvalTree(st, T ′). The first statement can be verified
by manually checking all the predicates and making sure they are indifferent to the order of the
leaves. As for the evaluation equality statement, first note that all the leaves will be processed
in the same way and with respect to the same st irrespectively of their order. So we only need to
argue that MergeTx and MergeSig are commutative — which is trivial since they are only uniting
sets and taking sums (which are commutative operations on their own).

22 F. Engelmann, T. Kerber, M. Kohlweiss, M. Volkhov∗

Hence we can represent T as a merge of two transactions, coming from subtrees TA and TH.
TA contains exactly the same leaves for both T0 and T1 if they are equivalent. Therefore, we only
need to show the indistinguishability of transactions txH,0 and txH,1, created from TH,0, TH,1

correspondingly. If TH is empty in one case (contains no leaves), it must be empty in the other
case, due to the restriction on input and output size, B2, in EquivTree. And thus if txH,b is empty,
txH,1−b should be empty too for each b ∈ {0, 1}, in which case the privacy proof is trivial, since
adversarial transactions are constructed in exactly the same manner in both worlds. Therefore,
assume that there is at least one input or output in an honest transaction in both cases. Next,
observe that:

MergeSig({SignTx(st,BuildPTx(st, Ii, Oi,SK))}i) =

SignTx(st,BuildPTx(st, I ′ =
⋃
Ii, O

′ =
⋃
Oi,SK))

Because of this homomorphic property (and a similar one for MergeTx), we can assume that both
txH,b and their signatures are just a direct output of CompleteTx and SignTx (w.r.t. (I ′, O′)),
and no merging is involved. The form of txH,b that A receives is(

{nuli}|S|, {(notei, Ci)}|T |, {∆ty}, σi@
(
{(πSi , comSi)}|S|, {(πTi , comTi)}|T |, rc

))
We first argue informally why this transaction looks the same for both trees.

1. set sizes: number of inputs and outputs |S| and |T | are the same, guaranteed by B2, and by
the fact these dimensions are just summed when transactions are merged,

2. size and content of the {∆ty} set is the same by B1,
3. the set of (honest) input nullifiers {nuli}|S| contains: nullifiers that A received from OSpend

— these are the same by B4; and nullifiers unknown previously to A — deterministic but
indistinguishable by nullifier pseudorandomness,

4. {(notei, Ci)}|T | are either: belonging to adversarial keys in which case both the notes and
ciphertexts have the same distribution, as guaranteed by B5 — these notes contain the same
values, but created in both trees with uniformly sampled randomness, so are indistinguish-
able; the same applies to the adversarial ciphertexts. Or the notes belong to the honest keys,
in which case they are (together with the ciphertexts) indistinguishable by the OTA privacy,

5. in the signatures σi:

(5.1) by zero-knowledge, proofs πSi and πTi can be simulated in both worlds, so they are
indistinguishable,

(5.2) intermediary commitments comSi , com
T
i can contain just zero (except for one chosen

commitment for each type which must contain ∆ty to balance out the public imbalance),
and this is indistinguishable by HID-OR— commitment hiding with open randomness
(by a variation with n elements involved simultaneously, as described in Lemma 1).

(5.3) joint randomness rc — the total randomness is always the sum of the individual rci of
internal nodes. If at least one node in the tree is honest, the final rc is uniform in both
worlds, so perfectly indistinguishable. If there are no honest nodes, then the final rc is
exactly equal in both worlds (by B3 malicious leaves must be the same).

The formal reduction is described in Appendix F. ⊓⊔

7 Implementation

To show that our construction is practical, we developed a prototype implementation available
online10. We use the rust framework ark-works11 and their Groth16 SNARK library. For an ef-

10 https://github.com/felix-engelmann/zswap-code
11 https://arkworks.rs

https://github.com/felix-engelmann/zswap-code
https://arkworks.rs

Zswap 23

Co
mm

it

Sp
end

pro
of

Ou
tpu

t p
roo

f

Co
m

ver
ify

Sp
end

ver
ify

Ou
tpu

t v
eri
fy

Merg
e

Tx
ass

em
bly

1µs

1ms

1 s

0
.7

1
8
6
2

8
7
9

4
.7

4
.7

6 0
.0
1
1

0
.0
0
8

0
.4

1
7
6
0

7
9
3

1
.1

4
.5

5
.8

0
.0
1

0
.1
5

2
2
9
1

1
0
.6

3
7
9

8
.9

Zswap Mock Sapling Sapling

Fig. 8. Comparison of our protocol to our Mock Sapling implementation with the same hash function
and the original Zcash. The measurements of procedures is in milliseconds.

ficient hashing circuit, we use Poseidon [16]. As the construction is similar to the Zcash Sapling
version, we use this as performance comparison. Our implementation differs in various aspects
that aren’t material to the core protocol, including the SNARK implementation, hash functions
used, and commitments used in the coin commitment Merkle tree. The production Zcash Sapling
implementation12 uses less performant variants for backwards compatibility and integration pur-
poses. A direct performance comparison to Zcash is therefore misleading, and we introduce an
artificial “Mock Sapling” code base, that re-implements the Zcash Sapling cryptographic protocol
but uses the same primitives as we do. We achieve this by removing the types and type commit-
ments from our construction. The comparison then allows us to detect the performance impact of
our changes to the cryptographic protocol compared to Sapling without the measurement error
caused by different implementations.

For spend proofs, our protocol requires 25,416 gates, 10% more than Mock Sapling (23,084).
For output proofs, we use 14,852 gates, 18% more (12,520). In both cases the difference of
2,332 gates consists of a hash-to-curve operation to associate the type with a curve point. The
rest of the constraints further break down into two dominant groups: Symmetric cryptography
(hashes, commitments, and Merkle tree verification), and group operations related to the binding
signature. For spend proofs, symmetric operations dominate with 66% of constraints (16,935),
primarily from the Merkle tree verification (using a tree of height 32). The group operations cover
almost all of the remaining 24% of constraints (with 6,114). For output proofs, group operations
make up 41% of the constraints (with the same 6,114 constraints), and symmetric operations
43% of constraints (6,403).

The median, min and max runtimes of 30 executions on a 6th generation i7 CPU@2.7GHz
are summarized in Figure 8. The times are for creating Commitments, Spend proofs and Out-
put proofs. For verification, we measure the homomorphic commitment comparison, the Spend
proof verification and the Output proof verification. Without comparison to Sapling are Merging
transaction and transaction assembly. The SNARKs proving time takes around two seconds for

12 https://github.com/zcash/zcash

https://github.com/zcash/zcash

24 F. Engelmann, T. Kerber, M. Kohlweiss, M. Volkhov∗

each input and one second for each output, dominating the transaction generation. The verifica-
tion is noticeably slower with support for types but approximately equal to Zcash. Overall, we
notice that the impact of the additional constraints required for our protocol are minimal while
providing additional functionality.

Acknowledgements

We thank the anonymous reviewers and our shepherd, Sherman Chow, for their helpful comments
in improving this work. This work was partially funded by the Carlsberg Foundation under the
Semper Ardens Research Project CF18-112 (BCM), the Sapere Aude: DFF-Starting Grant num-
ber 0165-00079B ”Foundations of Privacy Preserving and Accountable Decentralized Protocols”
and by Input Output (iohk.io) through their funding of the Edinburgh Blockchain Technology
Lab.

References

1. Alonso, K.M., Joancomart́ı, J.H.: Monero - privacy in the blockchain. Cryptology ePrint Archive,
Report 2018/535 (2018), https://eprint.iacr.org/2018/535

2. Baghery, K., Kohlweiss, M., Siim, J., Volkhov, M.: Another look at extraction and randomization
of groth’s zk-SNARK. Cryptology ePrint Archive, Report 2020/811 (2020), https://eprint.iacr.
org/2020/811

3. Baum, C., David, B., Frederiksen, T.K.: P2dex: Privacy-preserving decentralized cryptocurrency
exchange. In: Sako, K., Tippenhauer, N.O. (eds.) Applied Cryptography and Network Security. pp.
163–194. Springer International Publishing, Cham (2021)

4. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582. Springer, Heidelberg (Dec 2001).
https://doi.org/10.1007/3-540-45682-1_33

5. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.: Zerocash:
Decentralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy.
pp. 459–474. IEEE Computer Society Press (May 2014). https://doi.org/10.1109/SP.2014.36

6. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: ZEXE: Enabling decentralized private
computation. In: 2020 IEEE Symposium on Security and Privacy. pp. 947–964. IEEE Computer
Society Press (May 2020). https://doi.org/10.1109/SP40000.2020.00050

7. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: Towards privacy in a smart contract world.
In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 423–443. Springer, Heidelberg
(Feb 2020). https://doi.org/10.1007/978-3-030-51280-4_23

8. Campanelli, M., Engelmann, F., Orlandi, C.: Zero-knowledge for homomorphic key-value commit-
ments with applications to privacy-preserving ledgers. Cryptology ePrint Archive, Report 2021/1678
(2021), https://eprint.iacr.org/2021/1678

9. Chu, S., Xia, Q., Zhang, Z.: Manta: Privacy preserving decentralized exchange. Cryptology ePrint
Archive, Report 2020/1607 (2020), https://ia.cr/2020/1607

10. Deshpande, A., Herlihy, M.: Privacy-preserving cross-chain atomic swaps. In: Bernhard, M., Brac-
ciali, A., Camp, L.J., Matsuo, S., Maurushat, A., Rønne, P.B., Sala, M. (eds.) FC 2020 Work-
shops. LNCS, vol. 12063, pp. 540–549. Springer, Heidelberg (Feb 2020). https://doi.org/10.1007/
978-3-030-54455-3_38

11. Ding, D., Li, K., Jia, L., Li, Z., Li, J., Sun, Y.: Privacy protection for blockchains with account and
multi-asset model. China Communications 16(6), 69–79 (2019)

12. Engelmann, F., Müller, L., Peter, A., Kargl, F., Bösch, C.: SwapCT: Swap confidential transactions
for privacy-preserving multi-token exchanges. PoPETs 2021(4), 270–290 (Oct 2021). https://doi.
org/10.2478/popets-2021-0070

https://eprint.iacr.org/2018/535
https://eprint.iacr.org/2020/811
https://eprint.iacr.org/2020/811
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP40000.2020.00050
https://doi.org/10.1109/SP40000.2020.00050
https://doi.org/10.1007/978-3-030-51280-4_23
https://doi.org/10.1007/978-3-030-51280-4_23
https://eprint.iacr.org/2021/1678
https://ia.cr/2020/1607
https://doi.org/10.1007/978-3-030-54455-3_38
https://doi.org/10.1007/978-3-030-54455-3_38
https://doi.org/10.1007/978-3-030-54455-3_38
https://doi.org/10.1007/978-3-030-54455-3_38
https://doi.org/10.2478/popets-2021-0070
https://doi.org/10.2478/popets-2021-0070
https://doi.org/10.2478/popets-2021-0070
https://doi.org/10.2478/popets-2021-0070

Zswap 25

13. Fauzi, P., Meiklejohn, S., Mercer, R., Orlandi, C.: Quisquis: A new design for anonymous cryp-
tocurrencies. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp.
649–678. Springer, Heidelberg (Dec 2019). https://doi.org/10.1007/978-3-030-34578-5_23

14. Fuchsbauer, G., Orrù, M., Seurin, Y.: Aggregate cash systems: A cryptographic investigation of
Mimblewimble. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp.
657–689. Springer, Heidelberg (May 2019). https://doi.org/10.1007/978-3-030-17653-2_22

15. Gao, Z., Xu, L., Kasichainula, K., Chen, L., Carbunar, B., Shi, W.: Private and atomic exchange of
assets over zero knowledge based payment ledger. arXiv preprint arXiv:1909.06535 (2019)

16. Grassi, L., Kales, D., Khovratovich, D., Roy, A., Rechberger, C., Schofnegger, M.: Starkad and
Poseidon: New hash functions for zero knowledge proof systems. Cryptology ePrint Archive, Report
2019/458 (2019), https://eprint.iacr.org/2019/458

17. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification. GitHub: San Francisco,
CA, USA (2016)

18. Kerber, T., Kiayias, A., Kohlweiss, M.: Kachina–foundations of private smart contracts. In: 2021
IEEE 34th Computer Security Foundations Symposium (CSF). pp. 1–16. IEEE (2021)

19. Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain model of cryptog-
raphy and privacy-preserving smart contracts. In: 2016 IEEE Symposium on Security and Privacy.
pp. 839–858. IEEE Computer Society Press (May 2016). https://doi.org/10.1109/SP.2016.55

20. Lai, R.W.F., Ronge, V., Ruffing, T., Schröder, D., Thyagarajan, S.A.K., Wang, J.: Omniring: Scaling
private payments without trusted setup. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM
CCS 2019. pp. 31–48. ACM Press (Nov 2019). https://doi.org/10.1145/3319535.3345655

21. Meiklejohn, S., Mercer, R.: Möbius: Trustless tumbling for transaction privacy. PoPETs 2018(2),
105–121 (Apr 2018). https://doi.org/10.1515/popets-2018-0015

22. Poelstra, A., Back, A., Friedenbach, M., Maxwell, G., Wuille, P.: Confidential assets. In: Zohar,
A., Eyal, I., Teague, V., Clark, J., Bracciali, A., Pintore, F., Sala, M. (eds.) FC 2018 Work-
shops. LNCS, vol. 10958, pp. 43–63. Springer, Heidelberg (Mar 2019). https://doi.org/10.1007/
978-3-662-58820-8_4

23. Steffen, S., Bichsel, B., Gersbach, M., Melchior, N., Tsankov, P., Vechev, M.T.: zkay: Specifying
and enforcing data privacy in smart contracts. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J.
(eds.) ACM CCS 2019. pp. 1759–1776. ACM Press (Nov 2019). https://doi.org/10.1145/3319535.
3363222

24. Werner, S.M., Perez, D., Gudgeon, L., Klages-Mundt, A., Harz, D., Knottenbelt, W.J.: Sok: Decen-
tralized finance (defi). arXiv preprint arXiv:2101.08778 (2021)

25. Xu, J., Vavryk, N., Paruch, K., Cousaert, S.: Sok: Decentralized exchanges (dex) with automated
market maker (amm) protocols. arXiv preprint arXiv:2103.12732 (2021)

26. Yi, Z., Ye, H., Dai, P., Tongcheng, S., Gelfer, V.: Confidential assets on MimbleWimble. Cryptology
ePrint Archive, Report 2019/1435 (2019), https://eprint.iacr.org/2019/1435

A Proofs of Knowledge

We quickly remind the reader of the classical security properties of a NIZK: The scheme is said
to be complete, if ∀(stmt, w) ∈ RL we have

Pr
[
(crs, ·)← Setup(RL) : Verify(crs, stmt,Prove(crs, stmt, w)) = 1

]
= 1

The scheme is knowledge sound (KS) if for all PPT A there exists an extractor E such that

Pr

[
(crs, ·)← Setup(RL)
(stmt, π)← A(crs); w ← E(stmt, π)

:
Verify(crs, stmt, π) = 1 ∧
(stmt, w) /∈ RL

]
≤ negl(λ)

Finally, we say that the scheme is (computational) zero-knowledge if for any PPT adversary A
and Rλ, |ε0 − ε1| ≤ negl(λ), where

εb = Pr
[
(crs, τ)← Setup(RL) : ASb,crs,τ (crs) = 1

]

https://doi.org/10.1007/978-3-030-34578-5_23
https://doi.org/10.1007/978-3-030-34578-5_23
https://doi.org/10.1007/978-3-030-17653-2_22
https://doi.org/10.1007/978-3-030-17653-2_22
https://eprint.iacr.org/2019/458
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1145/3319535.3345655
https://doi.org/10.1145/3319535.3345655
https://doi.org/10.1515/popets-2018-0015
https://doi.org/10.1515/popets-2018-0015
https://doi.org/10.1007/978-3-662-58820-8_4
https://doi.org/10.1007/978-3-662-58820-8_4
https://doi.org/10.1007/978-3-662-58820-8_4
https://doi.org/10.1007/978-3-662-58820-8_4
https://doi.org/10.1145/3319535.3363222
https://doi.org/10.1145/3319535.3363222
https://doi.org/10.1145/3319535.3363222
https://doi.org/10.1145/3319535.3363222
https://eprint.iacr.org/2019/1435

26 F. Engelmann, T. Kerber, M. Kohlweiss, M. Volkhov∗

The oracle Sb,crs,τ on input (stmt, w) asserts that (stmt, w) ∈ Rλ and then returns π = Prove(crs, stmt, w)
if b = 0, and π = Sim(crs, τ, stmt) if b = 1.

We additionally require a stronger variant of the KS property called simulation-extractability,
where extraction is possible in the presence of simulated proofs.

Definition 19 (Simulation-Extractability [2]). We say that a non-interactive argument is
weakly simulation-extractable (SE) if for any PPT adversary A there exists a PT extractor EA
such that for Rλ,

Pr

 (crs, τ)← Setup(RL)
(stmt, π)← AScrs,τ (crs)
w ← EA(stmt, π)

:
Verify(crs, stmt, π) = 1 ∧
(stmt, w) /∈ Rλ ∧ stmt /∈ Q

 ≤ negl(λ)

where Scrs,τ (stmt) is a simulator oracle that calls Sim(crs, τ, stmt) internally, and also records
stmt into Q.

The SE property guarantees that a NIZK in a certain sense “instance-binding”. E.g. if a certain
game produces proofs {πi} for a language with a hard sublanguage (e.g. stmt = (stmt1, stmt2)
and stmt1 = f(w1) where f is a one-way function), we can simulate these proofs, and by SE A
can only return either these simulated proofs for the same instance, or we can extract w from
them (in which case the reduction essentially inverts f). This means that A cannot change the
stmt2 part in {πi}. In practice this means that if the honest π hides certain secrets (a key, or a
secret random value), then A cannot maul π into proofs for a “slightly different” instance.

B Zerocash-Style OTA

To use Zerocash style one-time-accounts, we provide an instantiation which is compatible with
Zerocash.

Given a key anonymous public key encryption scheme PKE, a labeled PRF and a commitment
scheme (Commit). The PRF of type PRFsn must in addition be collision-resistant. The random-
ness space is S := ({0, 1}λ)3, the key space is and the message space consists of two λ-bit integers
M := Z2

2λ the first representing an amount and the second identifying a type. The randomness
space Ξ is specified by PKE.

p← Setup(1λ): Initializes the SNARK parameters p.
(sk, pk)← KeyGen(): Samples ask randomly from {0, 1}λ and defines apk ← PRFaddr

ask
(0); samples

an encryption key pair skenc, pkenc using the corresponding PKE algorithm. Return sk =
(ask, skenc), pk = (apk, pkenc).

P (sk): is defined as P (ask, skenc) := (PRFaddr
ask

(0), Penc(skenc)) where Penc is assumed to be defined
in the encryption scheme.

note← Gen(pk, a⃗, r): Parse (rk, rc, rn) ← r and (apk, pkenc) ← pk. Commit to (apk, rn) with
randomness rk as commitment com and then commit to com, a⃗ with randomness rc. So
note = Commit(Commit(apk, rn; rk), a⃗; rc).

C ← Enc(pk, (⃗a, r), ξ): Parse (apk, pkenc) ← pk. Encrypt (⃗a, r) with pkenc to ciphertext C and
return C.

(⃗a′, r′)/⊥ ← Receive(note, C, sk): Parse (ask, skenc) ← sk. Decrypt C with skenc to (⃗a′, r′). Parse
(rk′, rc′, rn′)← r′ and verify that these values recreate the commitment

note = Commit(Commit(P (ask), rn
′; rk′), a⃗′; rc′)

If decryption fails or the commitment does not match the note, return ⊥.

Zswap 27

nul← NulEval(sk, r): Parse (ask, skenc) := sk and (rk, rc, rn) := r. Evaluate nul = PRFsn
ask
(rn) and

return nul.

The completeness and soundness proofs are straightforward: completeness follows by com-
pleteness of the PKE, and soundness is ensured by the verification check in the end of Receive.

Theorem 4 (OTA Binding). When using a binding commitment scheme Commit, the Zerocash
commitment scheme is binding according to Definition 8

Proof. Let A return pk0, a⃗0, r0, pk1, a⃗1, r1 such that Gen(pk0, a⃗0, r0) = Gen(pk1, a⃗1, r1) and a⃗0 ̸=
a⃗1. Parsing ∀i ∈ {0, 1} : (rki, rci, rni)← ri, the first condition implies the equality

Commit(Commit(pk0, rn0; rk0), a⃗0; rc0) = Commit(Commit(pk1, rn1; rk1), a⃗1; rc1)

but the commitments have different values for a⃗. This breaks the binding property of the com-
mitment scheme. ⊓⊔

Theorem 5 (Note Uniqueness). Zerocash OTA style notes are unique according to Defini-
tion 10

Proof. Trivially follows from binding of the underlying commitment scheme – since both pk and
a⃗ are commitment messages, finding a collision (even with adversarially chosen randomness)
amounts to breaking commitment binding.

Theorem 6 (Nullifier Uniqueness). The Zerocash OTA scheme has unique nullifiers (Defi-
nition 12), if the PRF is secure and the commitment scheme is binding.

Proof. Let A return (sk0, r0, a⃗0, sk1, r1, a⃗1) which generates the same note but different nullifiers
nul0 and nul1. The binding commitment scheme ensures that (sk0, r0, a⃗0) = (sk1, r1, a⃗1). As
NulEval is deterministic, the nullifiers are equal, contradicting our assumption. ⊓⊔

Theorem 7 (Nullifier Pseudorandomness). The Zerocash OTA nullifiers are pseudorandom
(Definition 11), if the PRF is secure and the commitment scheme is hiding.

Proof. The pseudorandomness experiment is exactly the same as standard pseudorandomness,
except A is given (1) a public key, (2) an oracle access to Receive(·, ·, sk). The public key is
computed as PRFaddr

ask
(0), and so by pseudorandomness of this PRF (with a different domain)

can be replaced by a random value ψ, so knowledge of an extra random value does not help A
to distinguish. Regarding the Receive oracle, it performs decryption with an unrelated skenc, so
it does not interfere with the main pseudorandomness reduction, since this oracle does not use
ask (it uses ψ which we already argued to be random and thus irrelevant). ⊓⊔

Theorem 8 (Nullifier Collision-Resistance). Zerocash OTA nullifiers are collision-resistant.

Proof. Follows directly from the collision-resistance of PRFsn which in practice is instantiated
using a collision-resistant hash function.

Theorem 9 (OTA Privacy). Using a hiding commitment scheme and a IND-CCA, key anony-
mous13 (IK-CCA) encryption scheme, the Zerocash-style OTA is private according to Defini-
tion 9.

Proof. The proof proceeds in three hops:

13 See [4], Definition 1.

28 F. Engelmann, T. Kerber, M. Kohlweiss, M. Volkhov∗

1. By commitment hiding we replace note∗ ← Commit(Commit(apkib
, rn; rk), a⃗; rc) by the com-

mitment to zero: note∗ ← Commit(Commit(0, 0; rk), 0; rc). A reduction to commitment hiding
is straightforward: we do not need anything else to simulate ORcv to A when building B
against hiding, because ORcv does not reply to the challenge notes.

2. By IK-CCA we can replace the encryption under pkib to encryption under pk0 always and
just ignore i1, i0. Note that in the first step we already remove note dependency on pkib , so
now public keys are only used in construction of C∗. In the reduction to IK-CCA we simulate
ORcv (which requires decrypting non-challenge C∗) to A using IK-CCA decryption oracles.
By the end of this game A always receives C∗ = Enc(pk0, (a⃗b, r), ξ).

3. Finally, by IND-CCA we replace the encryption of ab by encryption of 0. To simulate the
ORcv oracle to A we again use the IND-CCA decryption oracle (and we just need one, since
we always use the same encryption key pk0).

After the three games what A sees is Commit(Commit(0, 0; rk), 0; rc) as a note, and Encpk0(0; ξ)
as a ciphertext. Both do not depend on b, and therefore A wins the final game with probability
exactly 1/2. ⊓⊔

C Proof of HID-OR for Sparse Pedersen Commitment

Proof (Lemma 1). Let the hash function be modelled by the random oracle, and H(tyi) = Gti ,
and thus the challenger knows all ti. The form of commitments that are given to the adversary
is thus:

[tbab + r], [t′ba
′
b + r′], rc = r − r′

The initial game is HID-OR0, in which A sees the previous equation for b = 0. In Game1 we
sample r̂ and instead give A the following:

[r̂], [t′0a
′
0 + r′], rc = (r̂ − t0a0)− r′

Note that t0a0 + r and r̂ are both uniform, so A does not see the difference, the transition is
perfect. Similarly we equivocate the second commitment:

[r̂], [r̂′], rc = (r̂ − r̂′)− (t0a0 − t′0a′0)

And now we “switch” the elements to the case of b = 1. Let T = {t0, t′0} = {t1, t′1}. Given
∆ty,0 = ∆ty,1 for all ty ∈ T we have:

t0a0 − t′0a′0 =
∑
t∈T

t∆ty,0 =
∑
t∈T

t∆ty,1 = t1a1 − t′1a′1

Therefore what A sees now is:

[r̂], [r̂′], rc = (r̂ − r̂′)− (t1a1 − t′1a′1)

So we can proceed with replacing r̂ and r̂′ “back” into real commitments to the b = 1
values similarly to how we abstracted them in the first steps of the proof. The end result is a
distribution that A sees for b = 1 (HID-OR1): [t1a1 + r], [t′1a

′
1 + r′], rc = r − r′ so our hiding

holds with probability 1 (is perfect). ⊓⊔
Corollary 1. Assuming commitment hiding, Lemma 1 holds even if A provides two sets of size
n (not just pairs) of input and output commitments, {(tyi,t, ai,t), (ty′i,t, a′i,t)}

n,1
i,t=0,0, as long as

they still jointly sum to the same values per type.

Proof. The proof is exactly the same as the previous one, except that we first “idealise” 2n
commitments (and not just two) from b = 0, and then de-idealise them all back. The transition
logic in the middle holds similarly because ∆ty,0 = ∆ty,1. ⊓⊔

Zswap 29

D Anti-Theft Proof

Proof (Theorem 1). The proof starts by assuming A wins the game, and finishes with breaking
the HID-OR assumption, while using other assumptions in the process.

Assume A wins the anti-theft game. The challenger finds valid st, tx∗, σ∗ in the log of OInsert

such that for (NfA,MA
′
) (obtained through SplitTx and filtering MA) there exists an entry

E = (·, ·,Nf,M) in Spent such that MA ′ ∩M ̸= ∅ ∨ NfA ∩ Nf ̸= ∅.
We will now argue that whenever A uses (in tx∗) an output note note or input nullifier nul

from E, it also uses the corresponding comT or comS . And vice versa — including a commitment
in tx∗ from E forces A to also include the same note or nul as in E.

Let us first assume that MA ′ ∩M ̸= ∅, let note ∈ MA ′ ∩M . note is honestly owned (by
SK), by construction of MA ′. Since honestly produced notes are unique (see Section 3), all
output notes produced in OSpend are unique too, and thus we can determine in which “critical”

Spent call Ê this note was created; thus Ê is uniquely defined. Locate the corresponding OSpend

call, and the related “output” proof πT together with comT . Say that in tx∗ the proof πT ′

corresponding to note is for the statement stmtT ′ = (note, CT ′, comT ′). We claim that under
NIZK SE and OTA anonymity, comT ′ = comT (and, more generally, stmtT ′ = stmtT , where
stmtT = (note, CT , comT) as produced in OSpend). In other words, πT binds together a unique
note and comT , so A cannot produce a proof for note with a different comT ′ ̸= comT .

Proof (Anti-Theft Claim 1). The gist of the reduction is that it will embed OTA anonymity
challenge (notec, Cc) in Ê into tx instead of (note, C), and simulate πT ; later, on seeing πT ′ from
tx∗, if comT ′ ̸= comT , the reduction extracts notec message from πT ′ by NIZK SE.

The reduction B starts by guessing the OKeyGen query to use for embedding the public key pkc

provided by the anonymity game. (Formally the game will give B two public keys — pk0, pk1, but
B will only use one of them, say pk0, and also for the challenge later, sending i0 = i1 = 0). Since
the number of queries to OKeyGen is poly-limited, the reduction can decide from the beginning
which OKeyGen query it will use for this. In that query B will return pkc to A.

Immediately B has the following issue with simulating OSpend: when asked to spend coins
from pkc it cannot produce a proper πS since for that it needs to know the corresponding skc.
Luckily, this can be overcome. When the challenger gets (note, C) as part of A’s input in I, it
will first, as before, try to see whether this note can be received using SK (in which case it is an
honest spend request). If not, it might be that this is a request to spend from pkc: this B will
verify by sending (note, C) to ORcv. In this case it will obtain ((a, ty), r) and derive nul from this
information. Then, B will simulate the corresponding πS .
B also pre-guesses a “critical” OSpend query, in which it embeds the anonymity challenge

— again B can do it assuming poly-limited number of queries A can do. This critical query
must have an adversarial instruction to create an output note for pkc with some (ty, a). But
instead of doing that, B will give C two different sets of attributes (e.g. (ty, 0), (ty, 1)) for the
same anonymity game key (i0 = i1 = 0), receive the challenge note and ciphertext notec, Cc, and
embed them into the OSpend reply. The corresponding πT must be simulated14 Note that this
embedding strategy only makes sense when note is honest.

After embedding, B will continue to simulate OSpend as before, with the only difference. In
all the following OSpend queries (if they happen at all) where A attempts to spend from notec, B
will use the original (ty, a) instead of properly receiving the note (which it cannot do since skc is
owned by C only).

14 Formally, to apply SE, we must simulate all the NIZKs in the game (and we can do that). However, by
ZKA cannot distinguish between simulated and non-simulated proofs. Therefore, to simplify the proof,
we do not simulate all the proofs produced by OSpend, but only this critical one, which is equivalent.

30 F. Engelmann, T. Kerber, M. Kohlweiss, M. Volkhov∗

In the end of the anti-theft game, on detecting tx∗ triggering a winning condition, assuming
comT ′ ̸= comT we know that stmtT ′ ̸= stmtT . Hence, by NIZK SE B can extract from πT included
with the challenge note of tx∗ (extraction is possible whenever proof verifies, and statement is
different from statements of all (simulated) proofs A sees), and obtain the randomness r for this
note. Using r, B can decide which note, note0 or note1 it was given by anonymity challenger C,
and thus break OTA anonymity. ⊓⊔

Second, assume that NfA∩Nf ̸= ∅, and take any nullifier nul from this intersection. This case
is a bit more tricky: since nullifiers are not unique, and nul can appear in many Spent entries (call
their set Spentnul), it is not immediately clear which (critical) query Ê ∈ Spentnul the nullifier
was “taken from”15.

In tx∗ locate the corresponding Lspend proof πS ′ and the commitment comS ′, such that the
proof verifies for stmtS ′ = (st∗, nul, comS ′). In the queries from E ∈ Spentnul, OSpend produces
proofs πi for statements stmtSi = (sti, nul, com

S
i). We claim (by nullifier pseudorandomness,

collision-resistance, and weak SE of the NIZK) that for some Ej ∈ Spentnul it holds that stmtSj =

stmtS ′, and as a result, comS ′ = comSj . As a side result of this claim, B can now identify the

critical query Ej = Ê by looking for comS
′
among comSj .

Proof (Anti-Theft Claim 2). The proof is similar to the first claim, but by NIZK SE extraction
we obtain the preimage of the nullifier (which is supposed to be pseudorandom).

Recall that the pseudorandomness game gives us a challenge public key pkc, a Receive(·, ·, skc)
oracle ORcv, and the challenge oracle OPRF that returns evaluations of either a real NulEval(skc, ·)
or a randomly chosen f(·).

The reduction B first selects a target OKeyGen query as in Claim 1, and in this query, simulating
OKeyGen to A, it will return pkc (without knowing skc). Whenever B needs to receive a note sent
to pkc (e.g. sent by A through OInsert), B will use the ORcv.

As the game proceeds, B uses OPRF to generate a value for each NulEval(skc, ·) (in OSpend

queries if such appear). It simulates all the corresponding Lspend NIZKs. Call the logs of all
these OSpend queries Spentnul. In other words, B embeds OPRF responses into all relevant queries
Spentnul simultaneously.

After simulating the anti-theft game to A, some tx∗ will trigger the winning condition. By
weak SE, and since πS ′ ∈ tx∗ verifies on stmtS ′ that includes nul (if B guessed correctly), unless
stmtS ′ = stmtSi for some stmtSi ∈ Spentnul, we can extract the witness from πS ′. If extraction is
possible, B obtains (sk, r) such that NulEval(sk, r) = nul for nul ∈ Spentnul. By nullifier collision-
resistance it is not possible that the extracted (sk, r) is a different input from (skc, r′) (where r′

is from the critical query). This means that either sk is an actual secret key used in OPRF if it is
instantiated with a nullifier evaluation; or the oracle is random. So B uses sk to compare OPRF

outputs with NulEval(sk, r) and thus break the PRF game.

Therefore, it has to be that ∃j such that stmtSj = stmtS ′ and thus comS ′ = comSj . ⊓⊔

This last reduction can be applied to all the nullifiers in NfA ∩ Nf: if A uses an honest nullifier,
we are able to locate the critical query it was taken from, and the related comS in tx∗ is the same
as in that critical query.

Now, in tx∗, the adversary might try to combine several nullifiers or notes from different Spent
queries, and for the final reduction we only need to focus on a single such critical query. In other

15 The fact that each honest query has at least one honest output does not help with query identification:
A does not have to include any honest output notes into tx∗, and still must be able to trigger the
winning condition of the game.

Zswap 31

words, winning condition “∃Spent entry | . . . ” can be triggered by several such entries. Fix any
query Ê that has an honest nullifier or a note triggering winning condition16.

Let tx be the transaction from Ê, which defines M,Nf. Call IM the indices in tx in which
we observe MA ′ ∩M ̸= ∅, similarly INf for NfA ∩ NF. Similarly, call I∗M , I

∗
Nf the corresponding

indices in tx∗. (E.g. this notation implies ∀i : nulINf,i = nul∗I∗
Nf,i

)

There exists a set C0 = {comSi }INf
∪{comTi }IM as part of tx. And after the previous two claims

on NIZK binding commitments we now know that there is a subset C∗0 = {comS∗i }I∗
Nf
∪{comT ∗i }I∗

M

of commitments C∗ in σ∗ which is exactly the same as C0. But there are also other two disjoint
sets of commitments, C1 = C \ C0 and C∗1 = C \ C∗0 . E.g. C∗1 corresponds to the input nullifiers
and output notes of tx∗ that were not taken from Ê, but from elsewhere (other honest queries,
or adversarially generated).

Recall that C0 is defined w.r.t. M ∩MA ′ and Nf ∩NfA, and so nullifiers and notes included
with C∗1 in tx∗ are, by definition, disjoint with M and Nf in tx. We now present the last claim:
if A triggers the winning condition of the anti-theft game, then it can break security (binding or
HID-OR) of the commitment scheme.

Proof (Anti-Theft Claim 3). We first describe the reduction B to HID-OR. First, it pre-guesses
a query Ê in which it will embed. When A asks query Ê, B takes any two distinct indices corre-
sponding to inputs and outputs, which define two commitments CX and CY it will embed into.
The reduction will create all commitments except these two honestly, and regarding the two it will
put there HID-OR output challenge for either: (1) original two original values (a1, ty1), (a2, ty2);
or (2) them swapped as (a2, ty1), (a1, ty2) if both indices correspond to inputs or both to outputs,
and swapped with negation (−a2, ty2), (−a1, ty1) otherwise. This way to embed guarantees the
HID-OR requirement that ∆ty,0 = ∆ty,1. The joint randomness rc0 for CX , CY the reduction will
sum together with the randomness for other honestly produced inputs or outputs to output the
final total randomness rc for tx. The only two NIZKs that need to be simulated are the ones that
correspond to CX , CY . Note that we always have at least one input and output in the transaction
— this is because there is always by OSpend mandates |O| > 0, and |I| > 0 since offer without
inputs cannot trigger the winning condition, since it is guaranteed to be classified as honest by
SplitTx because of note uniqueness.

Continue simulating the anti-theft game to A. This does not require any changes — further
queries to OSpend do not depend on our embedding, and can be performed as before.

In the end of the game, A provides a tx∗ which triggers the winning condition with some
notes or nullifiers corresponding to commitments C0. The reduction will find Cx in C0 (abort if
it is not present), it will assert that CY /∈ C (abort otherwise). Then it will call NIZK extractor
to obtain the randomness rc∗i for all commitments in C∗ except for CX , which gives joint rc∗′ for
the whole C∗1 when summed up, and thus B computes rc∗0 = rc∗ − rc∗′ (where rc∗ is total joint
randomness of tx∗). The reduction will return b = 1 iff CX = Com((a1, ty1), rc

∗
0).

Now we argue that the reduction breaks binding or HID-ORof the commitment scheme if
A wins the anti-theft game. First, the total probability of all guesses to be correct is 1/|Q|m2,
which is polynomial, where Q is a number of queries to OSpend, and m = poly(λ) is a maximum

number of inputs and outputs in a Ê transaction). The guess inside Ê is correct if CX ∈ C0 and
CY ∈ C1 — therefore, the probability of the guess being correct is at least 1/m2 = poly(λ) .

Now, assume all guesses are correct, and that A wins the anti-theft game — then Ê was not
included completely in tx∗, so CX ∈ C∗0 , CY /∈ C∗. We know by the previous two claims that CX

in tx∗ is the same as in tx (since the nullifier or the note is the same, because it triggered the

16 Not all OSpend queries just triggering winning condition here work: when fixing Ê that shares a nullifier
with tx∗, recall that some other OSpend query can also have nul, but by the second claim we can locate
the “true” critical query for that nul by comparing comS . Fix only such a “truly” critical query.

32 F. Engelmann, T. Kerber, M. Kohlweiss, M. Volkhov∗

winning condition). We cannot extract from the corresponding (simulated) NIZK πX — however,
by NIZK SE we can still extract17 from all the other NIZKs in tx∗ (or they were honestly produced
in tx, which is equivalent), which is what reduction does. So the extractor in B will succeed, and
B will obtain rc∗0. This rc

∗
0 should give CX when message is either (a1, ty2) or (a2, ty2); and thus

B wins HID-OR. And if CX does not match Com((ab, tyb), rc
∗
0) for both b ∈ {0, 1}, it means that

binding of CX is broken, that is A found a different value and randomness giving rise to the same
CX . Thus B can either determine whether CX commits to the original value or the “swapped”
one, which is enough to break HID-OR; or B breaks commitment binding. ⊓⊔

This concludes the anti-theft proof. ⊓⊔

E Balance Proof

Proof (Theorem 2). We progress by the following sequence of games:

Game1: We start by introducing transaction extractor into the balance game. The game Balance1,
presented below, is different from the standard Balance in two aspects:

1. the setup algorithm now generates the AoK in the dishonest way, not disposing of the
trapdoor τ from AoK.Setup;

2. when the game processes transactions in the loop, the extractor EA is introduced, which
uses τ to obtain pre-transaction ptx from every tx. This extracted ptx is then asserted to
be an input to tx.

Lines marked with a star ∗ indicate new or changed lines.

Balance1A,EA(1
λ)

% Use simulated setup for the AoK.

(p, τ)← Setup′(1λ) *

(st∗, I0, I, SK
∗)← AOKeyGen,OSpend,OInsert (p)

. . .
(Ins′, ·)← GetLog(st∗)
for all (st, ·, tx, σ) ∈ Ins′ do

. . .

Parse tx as
(
{nul∗i }

|S|
i=1{(note

T ∗
i , Ci)}|T |

i=1, {∆a:ty}ty∈Ty

)
*

% Extract pre-transaction used to create tx *
ptxE@(SE , TE)← EA(p, τ, tx, σ) *

Parse SE as {(skSi , noteSi , nuli, pathi, (a
S
i , tySi), rSi)}|S|

i=1 *

Parse TE as {(pkTi , noteTi , CT
i , (aT

i , tyTi), rTi)}|T |
i=1 *

(·, s⃗t)← GetLog(st) *
assert CheckPTx(ptxE , st) = 1 ∧ CompleteTx(ptxE) = tx *
. . .

if ∃ty : vA[ty] > v0[ty] + vH−[ty]− vH+[ty] then return 1
else return 0

Formally, we claim that for every adversary A there exists EA s.t. Pr[Balance1A,EA(1
λ) = 1] ≥

Pr[BalanceA(1
λ) = 1] − negl(λ), assuming KS of the NIZKs holds, and commitments are

binding:

17 Again, there is a catch in how we use SE here. In the original SE, all proofs are simulated, and one
can extract from those which do not have the same instances stmt as simulated ones stmtsimi . In our
case, only some (two) proofs are simulated, and other proofs are honest. But from honest proofs we
can straightforwardly extract (since we produced them), so still it is true that extraction is possible
when ∀i : stmt ̸= stmtsimi .

Zswap 33

Proof (Theorem 2, Transition 1). The extractor EA is essentially a wrapper around two AoK
extractors (for spend and output proofs): it calls AoK[Lspend].EA and AoK[Loutput].EA, both
of which are guaranteed to exist by KS of the NIZKs, and concatenates their results into S
and T .
Note that the ptx assertion is the only way the games are different in terms of possibility of
different outcome. The only other line that can fail is the internal GetLog(st); but since it
queries a state which was returned by the previous GetLog(st∗), it will not abort. Therefore we
must only argue why the assertion containing CheckPTx and CompleteTx will hold every time
– in other words the probability for adversary to win will not be hindered by the assertion
failing.
We first argue why CheckPTx(ptxE , st) = 1. The check that nuli /∈ st.MT is directly checked
in Verify. All checks except for the CheckBalance reduce to the NIZK knowledge-soundness.
Looking at every Lspend NIZK first, the fact it verifies implies that AoK[Lspend].EA extracts
w = (pathi, sk

S
i , a
S
i , ty

S
i , r
S
i , rc

S
i), which by NIZK KS guarantees for all i ∈ [|S|]:

st.MT[pathi] = noteSi ∧
nuli = OTA.NulEval(skSi , r

S
i) ∧

noteSi = OTA.Gen(OTA.P (ski), (a
S
i , ty

S
i), r

S
i)

Conditions (1) and (3) are satisfied by Lopen, and (2) is by Lnul (see Lspend structure).
Similarly, the output NIZK for the Loutput language guarantees that AoK[Loutput].EA will
return (pkTi , a

T
i , ty

T
i , r

T
i , rc

T
i) such that:

∀i ∈ [|T |] : noteTi = OTA.Gen(pkTi , (a
T
i , ty

T
i), r

T
i)

Which again holds by the NIZK KS and the structure of Lopen, being part of Loutput.

The last balance check that CheckBalance(S, T) = 1, which is implemented as ∀ty ∈ {tySi }
|S|
i=1∪

{tyTi }
|T |
i=1:

∑
a∈{aS

i |tySi =ty}|S|
i=1

a −
∑

a∈{aT
i |tyTi =ty}|T |

i=1
a = ∆ty succeeds by the commitment ho-

momorphic property in Verify(·, ·, ·). We know that tx verifies, therefore the homomorphic
sum in Verify holds. By the previous steps we also know that the extracted type-value pairs
(aSi , ty

S) and (aTi , ty
T) are inputs to the commitments comS and comT correspondingly. By

the a ∈ [2α] check in NIZK, and by the β check in Verify (and by the choice of α and β),
we know that homomorphic sums of comS ,comT will not overflow. Since the commitments
in Verify (including commitment to ∆ty) sum to the identity, the committed values ai sum
to exactly ∆ty per type.
Therefore CheckPTx = 1 with overwhelming probability by existence of NIZK extractors.
Finally, we claim that CompleteTx = 1. CompleteTx does two things: first, it removes secret
information from ptx, and, second, it computes the imbalances ∆ty. First, the public infor-
mation in tx ∩ ptx is input nullifiers, and note-cipertext output pairs – because these are in
the statements of corresponding NIZKs, they are bound to be exactly the same (formally,
these values are the input of E as stmt, and not its output). Therefore all parts of tx except
for the deltas are exactly like in the ptx extracted. Second, that the deltas in tx are also the
same as computed from ai follows from the commitment binding. And the fact that they
sum up to ∆ we have just shown when arguing CheckPTx = 1.
Therefore the gap negl(λ) in this game consists of probability of failing, or binding being
broken. ⊓⊔

Now that we have ptx values extracted in clear, the main balance property will follow in-
ductively by following the (st, st′, tx, σ) ∈ Ins′ loop step by step. But before we present the

34 F. Engelmann, T. Kerber, M. Kohlweiss, M. Volkhov∗

main proof reasoning, we must introduce several auxiliary constructions into our game. Our
intention within next several games is to trace the notes that A can spend, and will argue
that both during the game, and in the end of it, the sum of these is not enough to break the
balance predicate.

Game2: We add an additional condition on the extracted data by asserting that it is equal to
the type-value pairs we use when modifying vH+, vH−.

Balance2A,EA(1
λ)

. . .
for all (st, ·, tx, σ) ∈ Ins′ do
. . .
ptxE@(SE , TE)← EA(p, τ, tx, σ)
. . .
for (Nf,M) ∈ txH do
Find (·, I,Nf,M) ∈ Spent
for (note′, C′) ∈ I do
(·, (a, ty), ·)← TryReceive(note′, C′, SK)
vH−[ty] := vH−[ty] + a

assert (a, ty) = (aS
i , tySi) *

for (note′, C′) ∈M where (·,M) ∈ tx do
res← TryReceive(note′, C′, SK)
if res = (·, (a, ty), ·) ̸= ⊥ then
vH+[ty] := vH+[ty] + a

assert (a, ty) = (aT
i , tyTi) *

. . .

This game transition is by OTA binding and nullifier collision-resistance.

Proof (Theorem 2, Transition 2). The first assertion is reached because (·, I,Nf,M) ∈ Spent
for (Nf,M) located by SplitTx to be honest on the basis of (Nf,M) ∈ tx, where tx is a
currently processed transaction. Since notes that are added to I pass checks in BuildPTx
(inside OSpend), we know that (a, ty) are valid inputs producing nul ∈ Nf and note. The
argument is exactly the same as second claim of proof of Theorem 1: this requires nullifier
pseudorandomness, collision-resistance, and weak SE of the NIZK. By this argument we know
that the NIZK statements are the same, thus value commitments are the same, and thus the
values inside the commitments (by value commitment binding) are the same.

The second assertion will hold by OTA binding: TryReceive guarantees that (a, ty) are valid
input to note′, and so are (aSi , ty

S
i) by CheckPTx and the previous game. Therefore these

must be equal.

⊓⊔

Game3: In the next game Balance3 we add more meaning to the extracted data by linking input
notes to the notes mentioned in previous transactions. We assert that all the extracted input
notes are the same as some output notes generated before, as the notes originally present in
I0; and that they are not an input to any previous transaction (thus not double spent).

Zswap 35

Balance3A,EA(1
λ)

. . .
for all (st, ·, tx, σ) ∈ Ins′ do

. . .
ptxE@(SE , TE)← EA(p, τ, tx, σ)
. . .
for nul ∈ tx do

assert The corresponding extracted noteS : *
(1) Is present at least once *

(1.1) in some TE of some previous transaction; or *
(1.2) in I0 directly. *

(2) Is not part of SE in any previous txs. *

. . .
if ∃ty : vA[ty] > v0[ty] + vH−[ty]− vH+[ty] then return 1
else return 0

The transition is by MT binding and nullifier uniqueness.

Proof (Theorem 2, Transition 3). By NIZK KS noteS must be in the Merkle tree. Notes
are put into the MT at previous steps, or they are present in st0.MT — this is how MT is
populated — so we can always find the previous step where noteS was introduced. In other
words, we can always find the previous state with Com(noteS) present. The note inserted into
MT at that step is equal to noteS because MT is a binding commitment scheme. This proves
the first part of the condition: there always exists the previous step with noteS extracted, or
this noteS was present in st0.MT.
Regarding the second condition of the assertion, namely that noteS is not an input to any
previous tx. Let nul be the nullifier of noteS ; by Lnul and previous game we know that
noteS = Gen(pk, (a, ty), r) and nul = NulEval(sk, r). Now assume the contrary, that there is a
previous spend which extracts noteS too. Backtrace to this spend, and let nul0 be its nullifier,
together with r, sk0 all jointly satisfying the same Lnul equation. It must be that nul0 ̸= nul
where nul belongs to noteS — if nul0 = nul, tx cannot be verified at the current state (nullifier’s
set is append-only by construction). This is enough to break nullifier uniqueness, since we
just observed two nullifiers for the same note:

noteS = Gen(OTA.P (sk), (a, ty), r) = Gen(OTA.P (sk0), (a0, ty0), r0)

NulEval(sk, r) ̸= NulEval(sk0, r0)

Thus double-spending is not allowed. ⊓⊔

Note that the first condition of the game is more nuanced. In fact, because (malicious)
transaction creator has control over the output note randomness, it is possible to create
several output notes with the same value and randomness. However, since all these notes
have the same nullifier, only one of them can be spent18. Hence we only require finding “at
least one output”.

Game4: In the next game Balance4 we will add a (multi-)set NH initially populated with notes
in I0. This set will track all non-honest notes, where “not honest” here means not just
adversarial notes (that A can claim similarly to how vA is computed) but also notes that are
“burned” — that cannot be accessed by anyone.
Each loop iteration will

1. remove adversarial input notes from NH, and

2. add to NH all the output notes that cannot be received by SK.

18 Similar to the “Faerie Gold” attack in zcash

36 F. Engelmann, T. Kerber, M. Kohlweiss, M. Volkhov∗

For both actions we need the data extracted in Balance1, that “reveals” the notes behind
the nullifiers, including adversarial ones. The new variable vH will track balances inside NH,
and is updated whenever NH is changed. NH and vH track all the transient adversarial
transactions, not counted in the final vA (which only sums up the “resulting”19 assets of A).

Balance4A,EA(1
λ)

. . .
NH ← ∅ *
for (notei, Ci) ∈ I0 do

NH = NH ∪ {notei} *
(·, nul, (a, ty), ·)← TryReceive(notei, Ci, SK

∗)
assert nul /∈ st0.NF
v0[ty] := v0[ty] + a

vH−, vH+ ← (ty 7→ 0)
(Ins′, ·)← GetLog(st∗)
for all (st, ·, tx, σ) ∈ Ins′ do

. . .
ptxE@(SE , TE)← EA(p, τ, tx, σ)
. . .
for note′ ∈ SE | corresponding skS /∈ SK do *

NH := NH \ {note
′} *

vH[tyS] := vH[tyS]− aS % tyS , aS as extracted by EA *

for (note′, C′) ∈M where (·,M) ∈ tx do
. . .
res← TryReceive(note′, C′, SK)
if res = (·, (a, ty), ·) ̸= ⊥ then

vH+[ty] := vH+[ty] + a
else *

NH := NH ∪ {note
′} *

vH[tyT] := vH[tyT] + aT % tyT , aT as extracted by EA *

if ∃ty : vA[ty] > v0[ty] + vH−[ty]− vH+[ty] then return 1
else return 0

As can be seen in the part where NH is populated, it contains all the notes that cannot
be received by honest parties, which includes: (1) adversarial notes, with or without correct
ciphertext (this does not matter), (2) notes to keys that are not controlled by both adversary
and honest parties (burned), (3) notes to honest parties with malformed ciphertext (also
effectively burned).
We now argue that Pr[Balance4A,EA(1

λ) = 1] ≥ Pr[Balance2A,EA(1
λ) = 1] − negl(λ) by OTA

binding.

Proof (Theorem 2, Transition 4). This change only adds parallel logic into our computation
that almost does not interact with any previous logic. It does not abort in all cases — when
we append to the set and add or subtract from the corresponding value variable — but one.
The only exception is the set subtraction, which we argue does not fail because of Balance3.
There we prove that each input note is present at least once in some outputs, and is not
present in the inputs. The latter guarantees that the note will not be removed twice. The
former guarantees that the note will be present once to be removed: when attempting to
remove a note, given that we know that it was in some outputs, the only exception would
be that this note was not put into NH at that point, which means that it is receivable using

SK, but to trigger removal skS at the current step must be /∈ SK. Finding two different secret
keys, one in SK, another not in SK, for the same note, is not possible by OTA binding. ⊓⊔

19 E.g. A can “refresh” the note note ∈ I0 by moving its funds fully to another adversarial note′ /∈ I,
and without NH this will not be reflected anywhere.

Zswap 37

Game5: Next we add an “intermediate balance assertion”, similarly to the final one, but with
vH[ty] in place of vA[ty], to the end of each iteration (and before the loop).

Balance5A,EA(1
λ)

. . .
(Ins′, ·)← GetLog(st∗)
assert ∀ty : vH[ty] ≤ v0[ty] + vH−[ty]− vH+[ty] *

for all (st, ·, tx, σ) ∈ Ins′ do
. . .
assert ∀ty : vH[ty] ≤ v0[ty] + vH−[ty]− vH+[ty] *

if ∃ty : vA[ty] > v0[ty] + vH−[ty]− vH+[ty] then return 1
else return 0

We argue that it is not harder to win Balance5 than to win Balance4 by OTA soundness and
binding.

Proof (Theorem 2, Transition 5). It could be that an adversarial strategy that worked with
Balance4 will fail because the assertion fails. So we must argue that the assertion never fails.
We proceed inductively.
In the base case, before the first loop iteration (before any transaction is processed), the
assertion holds since vH[ty] = v0[ty] and vH+ = vH− = 0 – so trivially ∀ty. vH[ty] ≤ v0[ty].
Assume now that the assertion holds in the beginning of the loop, we will show it persists
through the loop execution. This essentially reduces to the observation that the end-of-
the-loop equation is updated by differences that satisfy this equation; which reduces to the
balancing property of a single transaction.
Fix a type ty, and apply the following reasoning to each type in the transaction (all of
which are available in the extracted data). Compute the local difference values v∆H−, v

∆
H+

as prescribed by the game, but without updating the old vH−, vH+ immediately. Similarly
compute v∆H from the extracted (input and output) NIZKs by adding all the non-honest
output values and subtracting all the non-honest adversarial input values. Note that v0 is at
no point updated after it is initialised before the main loop.
Now we need to prove that v∆H ≤ v∆H− − v∆H+, then the updated end-of-the-loop equation
will still hold. This reduces to the commitment balancing condition. First, observe that

v∆H =
∑
aT Hi −

∑
aSHi : we compute v∆H using these extracted values ai directly, summing

all outputs and subtracting all inputs. Similarly, v∆H− =
∑
aSHi and v∆H+ =

∑
aT Hi , the only

difference being that values ai here are obtained not from the extracted data, but by directly
receiving the corresponding notes via TryReceive(note, C,SK). But these “received” values
((a, ty), r) are equal to the extracted ones as we asserted in the second game.
By the last (balancing) check in CheckPTx introduced in Balance1, substituting the extracted
ai values we just discussed, we obtain∑

aSHi +
∑

aSHi −
∑

aT Hi −
∑

aT Hi = 0

Which translates into −v∆H + v∆H− − v∆H+ = 0, equivalent to v∆H = v∆H− − v∆H+ as we need.
So the predicate persists through the loop iteration. ⊓⊔

Game6: Our next and final step is Balance6 where we show that after the loop vA ≤ vH. This
is because the former counts transactions that can be received with SK∗, and the latter all
that cannot be received by SK. Formally this can be shown by comparing all the notes in
NH and I: we claim that all notes in I are present in NH.

38 F. Engelmann, T. Kerber, M. Kohlweiss, M. Volkhov∗

We show it by doing two things. First, instead of computing vA in a separate loop before the
main loop, we will move it into the main loop. Now, vA is updated whenever the balance
game locates a note ∈ I in the outputs of tx (this note is still attempted to be received by
SK∗). To track what we have already counted into vA, we will create a variable NA: by design
after the game NA is exactly all the notes in I. This allows us to track the successive stake
accumulation of A, but only on those coins that it claims in I. And second, every time we
locate a coin that goes into vA, we will assert that all notes in I are also in NH.

Balance6A,EA(1
λ)

. . .
for (·, nul, (a, ty), ·, ·) ∈ I do

assert nul /∈ st∗.NF
% Removed the vA population line *

. . .
NA ← ∅ % This tracks notes in vA on the fly *
for all (st, ·, tx, σ) ∈ Ins′ do

. . .
for (note′, C′) ∈M where (·,M) ∈ tx do

% Compute vA on the fly *
if (note′, C′) ∈ I then *

. . . % After NH is updated

if (note′, (a, ty), nul, . . .) ∈ I then
assert nul /∈ st∗.NF *
vA[ty] := vA[ty] + a *
NA = NA ∪ note′ *
assert ∀note ∈ NA. note ∈ NH *

assert ∀ty : vH[ty] ≤ v0[ty] + vH−[ty]− vH+[ty] *

assert vA ≤ vH *
if ∃ty : vA[ty] > v0[ty] + vH−[ty]− vH+[ty] then return 1
else return 0

The transition is by nullifier uniqueness, pseudorandomness, and OTA binding.

Proof (Theorem 2, Transition 6). Moving vA computation into the loop on its own does not
affect the control flow: this is because all the notes in I are present as outputs of transactions
in Ins′, since we assert (line 4 of the original Balance game) that all the notes from I must be
present in the Merkle tree st.MT of the final state, and state maintenance oracles guarantee
that they were introduced in one of the previous states st′ ∈ s⃗t.
The only thing that is important are the two assertions.

Let us focus on the first assertion ∀note ∈ NA. note ∈ NH. It holds by induction: assuming
on the previous iteration (of the inner loop) this condition holds, it can only fail if (1) some
old notes in NA have been removed from NH, or (2) the currently added to NA note has not
been added to NH just a few steps before.

The first condition violates the assumption that notes in I are unspent: if note was removed
from NA it means its nullifier has been revealed. But in the final state st∗ this nullifier is
not present (this is checked in the beginning of the game). So nullifier uniqueness must be
broken.

Second condition can fail if the note was not added to NH, which happens only if it can be
received honestly. But this means that a note in I, in the beginning of the game, can be
received using SK, and also A showed a correct nullifier for it. This is impossible by nullifier
pseudorandomness: A cannot generate nullifiers for notes generated for SK.
The last assertion vA ≤ vH holds because we just showed notes inclusion at each step of the

iteration; and because of OTA binding the values used to compute vH (extracted in Balance1)
are the same as values provided by A in I.

Zswap 39

Because the predicate vH ≤ . . . holds in the end of each iteration for all types, and thus in the
end of the last iteration, and because vA ≤ vH as we showed in the last transition, the predicate
in the end of the game with vA ≤ (vH ≤) . . . will also hold, and thus A cannot win the last game
unless with negligible probability. Therefore, it cannot win the original balance game. ⊓⊔

F Privacy Proof

Proof (Deferred reduction from Theorem 3). We start from Privacy0A(1
λ).

Game1: Replace all honest NIZKs (created inside OSpend and SignTx) to simulated NIZKs.

Game2: By nullifier pseudorandomness, replace all the honest nullifiers A has not seen through
OSpend by the nullifiers over a different set of secret keys.
To switch an individual NulEval(sk0, r0) to NulEval(sk1, r1), we first pick a random function
f and switch all evaluations of NulEval(sk0, r) to f(r) (for all r). Since the nullifiers in txH

have not been queried previously in OSpend, the evaluation of f(r0) is the first one in the
game. Hence, it is equivalent to returning a random value ψ instead of f(r0). Then, again by
pseudorandomness, we return all the other (not related to txH) evaluations of f(·) back to
NulEval(sk0, ·). We now perform exactly the same steps then for the second key, de-idealizing
ψ into NulEval(sk1, r1). First we replace all evaluations of NulEval(sk1, r) to f(r) (for all r),
then we observe that r1 has not yet been queried to f(·), so it is equivalent to return f(r1)
instead of ψ. Then we replace all f(r) back to NulEval(sk1, r), including the target nullifier
in txH. This is how we have just replaced NulEval(sk0, r0) by NulEval(sk1, r1).
Repeat the procedure for all pairs of nullifiers in txH in any order (i.e. it does not matter
what the source and target of the replacement is since all values are pseudorandom).

Game3: Replace output notes and related ciphertexts to honest secret keys by the notes and
ciphertexts for T1. Recall that output notes to A keys must have exactly the same inputs in
both cases, so their distribution is exactly equal. This step relies on the OTA privacy and
again on nullifier pseudorandomness.
By OTA privacy one can replace OTA.Gen(pkb, (tyb, vb), r) and OTA.Enc(pkb, (tyb, vb, r), ξ)
from b = 0 to b = 1 even if there are Receive calls in the game before and after the replacement.
(After, we cannot query the challenge note in a CCA fashion, which is irrelevant since we
replace it in the very end of the game.)
The only detail left now is that there are also nullifier evaluations that use the challenge skb,
but by nullifier pseudorandomness we can replace these nullifiers by consistent random values
before the OTA privacy switch (we can do that in the presence of Receive evaluations because
of the Receive oracle in the pseudorandomness definition), perform the privacy switch, and
then return the real NulEval evaluations back.

Game4: Replace intermediary commitments com with the values from T1. Here we apply HID-OR
for vectors, as described in Corollary 1: replacing one set of typed commitments with another,
given that ∆ty,0 = ∆ty,1 for each type. This transition is perfect.

Game5: Remove the simulation, create real proofs according to the new data in T1. From the first
game, we have not modified anything outside of the scope of EvalTree, so all NIZKs in OSpend

queries are “restored” from simulations without any issue, since they are for exactly the
same data. Now it is a matter of a completeness check to make sure that the new transaction
constructed in EvalTree has the same distribution as txH,1 except for the (yet simulated)
proofs, and in particular it satisfies Lspend and Loutput. So now we enable real NIZKs back as
well, and by zero-knowledge we obtain honest proofs for T1.

Now Game5 is equivalent to Privacy1A(1
λ), which concludes the privacy proof. ⊓⊔

	Zswap: zk-SNARK Based Non-Interactive Multi-Asset Swaps

