
Lattice-Based Linkable Ring Signature in the
Standard Model

Mingxing Hu and Zhen Liu

Shanghai Jiao Tong University, Shanghai, China
{mxhu2018,liuzhen}@sjtu.edu.cn

Abstract. Ring signatures enable a user to sign messages on behalf of
an arbitrary set of users, called the ring. The anonymity of the scheme
guarantees that the signature does not reveal which member of the ring
signed the message. The notion of linkable ring signatures (LRS) is an
extension of the concept of ring signatures such that there is a public
way of determining whether two signatures have been produced by the
same signer. Lattice-based LRS is an important and active research line,
since lattice-based cryptography has attracted more attention due to
its distinctive features especially the quantum resistant. However, all
the existing lattice-based LRS relied on random oracle heuristics, i.e., no
lattice-based LRS in the standard model has been introduced so far.

In this paper, we present a lattice-based LRS scheme based on the well-
studied standard lattice assumptions (SIS and LWE) in the standard
model.

Keywords: Lattice-based · Linkable ring signature · Standard model.

1 Introduction

Ring signatures, introduced by Rivest et al. [43], allow a signer to hide in a
ring of potential signers of which the user is a member, without revealing which
member actually produced the signature. However, the signer-anonymous that
ring signatures provide may be too strong in some scenarios. For example, regular
ring signatures cannot be used for anonymous e-voting since any double votes
remain undetectable, which means no one is able to find out whether any two
signatures (with two votes) are submitted by the same voter or not. Similar
concerns should be aroused in cryptocurrency where a double-spent payment
should be discarded. Linkable ring signatures (LRS) [35] provide the remedy to
this problem by allowing the public to detect any signer who has produced two
or more signatures (i.e., votes, payments). Thereafter, LRS has been studied
extensively [1,2,3,9,22,23,29,44,45,49,50,51] especially in recent years, driven by
the rapid development of cryptocurrencies.

Another important line of research is constructing LRS schemes from lattices
[11,12,30,46,52,34,48,7,47,15], since lattice-based cryptography has attracted more
attention due to its distinctive features such as efficient, simple, highly paral-
lelizable and the potentially quantum resistant. However, these works have so



far required the random oracle (ROM) model [16] (or similar heuristics) for their
security analysis. Katz (Sect. 6.2.1 of [28]) mentioned that existing some neg-
ative results concerning the relying on ROM. Canetti et al. [18] and Dodis et
al. [20] shown that a proof in ROM can only serve as a heuristic argument and,
admittedly using quite contrived constructions, has been shown to possibly lead
to insecure schemes when the ROM are implemented in the practical scenarios.
Furthermore, Leurent and Nguyen [33] presented the attacks extracting the se-
cret keys on several hash-then-sign type signature schemes (includes the lattice
based signature [25]) and identity-based encryption schemes if the underlying
hash functions are modeled as random oracle. Quantum Random Oracle Model
(QROM) is a generalized notion of ROM [8]. Though a proof of security in the
QROM is stronger than one in the ROM, it does not means the security in
the QROM implies standard-model security [21]. Furthermore, Grilo et al. [24]
shown that the proofs in QROM lacking of conceptual simplicity and tightness.

1.1 Our Results

To address the above concerns, we present a lattice-based LRS scheme provably
secure from the well-studied standard lattice assumptions (SIS and LWE) in the
standard model. It is worth to mention that we employ the strongest security
model that is strong unforgeability w.r.t. insider corruption (An important re-
alistic attack presented by Bender et al. [10]). In other words, our construction
provides strong confidence on security in threefold: provably secure without re-
lying on any random oracle heuristics, and instantiated under standard lattice
assumptions make our work being quantum-resistant, and satisfies the strongest
security model that capture the realistic attacks i.e., strongly unforgeable w.r.t.
insider corruption that make our system more applicable in practical scenarios.

Moreover, we present two new lattice basis extending algorithms that may
be of independent interest. The algorithms are the key ingredients in our con-
struction, which break the obstacle in building the ‘key image’ of LRS without
the help of cryptographic hash functions that are modeled as random oracles.

2 Definitions

In this section, we review the definitions of linkable ring signatures: syntax,
correctness, unforgeability, anonymity, linkability, and non-slanderability.

Definition 1 (Linkable Ring Signature). A linkable ring signature LRS con-
sists of the following algorithms:

– Setup(1n) → PP. This is a probabilistic algorithm. On input the security
parameter n, outputs the public parameter PP.

The public parameters PP are common parameters used by all ring members in
the system, for example, the message spaceM, the modulo, etc. In the following,
PP is implicit input parameter to every algorithm.

2



– KeyGen()→ (vk,sk). This is a probabilistic algorithm. The algorithm outputs
a verification key vk and a signing key sk.

Any ring member can run this algorithm to generate a pair of verification key
and signing key.

– Sign(sk, µ,R)→ Σ. This is a probabilistic algorithm. On input a signing key

sk, a message µ ∈M, and a ring of verification keys R = (vk(1), . . . , vk(N))1.
Assume that (1) the input signing key sk and the corresponding verification
key vk is a valid key pair output by KeyGen and vk ∈ R, (2) the ring size
|R| ≥ 2, (3) each verification key in ring R is distinct. This algorithm outputs
a signature Σ.

– Ver(R, µ,Σ) → 1/0. This is a deterministic algorithm. On input a ring of

verification keys R = (vk(1), . . . , vk(N)), a message µ ∈ M, and a signature
Σ, outputs 1 if the signature is valid, or 0 if the signature is invalid.

– Link(R0, µ0, Σ0,R1, µ1, Σ1)→ 1/0. This is a deterministic algorithm. On in-
put two valid signature tuples (R0, µ0, Σ0), (R1, µ1, Σ1), the algorithm outputs
1 if the two signatures linked, or 0 if unlinked.

Remark: Note that it is open on whether the Sign algorithm is probabilistic or
deterministic, which may depend on the concrete constructions.

Correctness. A LRS scheme is correct, if for all n ∈ N, any N = poly(n), any
PP ← Setup(1n) as implicit input parameter to every algorithm, any N pairs

(vk(1), sk(1)), . . . , (vk(N), sk(N)) ← KeyGen(), let R = (vk(1), . . . , vk(N)), it holds
that

– For any messages µ ∈M, and any s ∈ [N ], it holds that

Pr
[
Ver(R, µ,Sign(sk(s), µ,R)) = 1

]
= 1− negl(n)

– For any messages µ0, µ1 ∈ M, any N0, N1 = poly(n), any ring of well-
formed verification keys R0,R1 with ring size |R0| = N0, |R1| = N1 respec-

tively, and any vk(s0) ∈ R0, vk(s1) ∈ R1 for any s0 ∈ [N0], s1 ∈ [N1], let

Σ0 ← Sign(sk(s0), µ0,R0), Σ1 ← Sign(sk(s1), µ1,R1). It holds that

Pr
[
Link(R0, µ0, Σ0,R1, µ1, Σ1) = 1

]
= 1 if sk(s0) = sk(s1),

Pr
[
Link(R0, µ0, Σ0,R1, µ1, Σ1) = 0

]
≥ 1− negl(n) if sk(s0) 6= sk(s1)

The above probability is taken over the random coins used by Setup, KeyGen,
and Sign.

Strong Unforgeability. A LRS scheme is strongly unforgeable w.r.t. insider
corruption (sUnfInsCor), if for any PPT forger A, it holds that A has at most
negligible advantage in the following experiment with a challenger C.

1 Below we regard the verification key ring as an ordered set, namely, it consists of a set
of verification keys, and when it is used in Sign and Ver algorithms, the verification
keys are ordered and each one has an index.

3



– Setup. C generates PP← Setup(1n; γst) and (vk(i), sk(i))← KeyGen(γ
(i)
kg ) for

all i ∈ [N ], where N = poly(n) and (γst, γ
(i)
kg ) are the randomnesses used in

Setup and KeyGen, respectively. C sets S = (vk(1), . . . , vk(N)) and initializes
two empty sets L and C. Finally, C sends (PP, S, γst) to A.

Note that we give to A the randomness γst that used for the Setup algorithm,
which implies the algorithm is public, does not rely on a trusted setup that may
incur concerns on the existing of trapdoors hidden in the output parameters.

– Probing Phase. A can adaptively query the following oracles:

• Signing oracle OSign(·, ·, ·):
On input a message µ ∈ M, a ring of verification keys R and an index
s ∈ [N ] such that vk(s) ∈ R

⋂
S, this oracle returns Σ ← Sign(sk(s), µ,R)

and adds the tuple (µ,R, Σ) to L.

• Corrupting oracle OCorrupt(·):
On input an index s ∈ [N ] such that vk(s) ∈ S, this oracle returns γ

(s)
kg

and adds vk(s) to C.

– Forge. A outputs a forgery (µ∗,R∗, Σ∗) and succeeds if (1) Ver(µ∗,R∗, Σ∗) =
1, (2) R∗ ⊆ S \ C, and (3) (µ∗,R∗, Σ∗) /∈ L.

Anonymity. A LRS scheme is signer-anonymous, if for any PPT adversary A,
it holds that A has at most negligible advantage in the following experiment with
a challenger C.

– Setup. C generates PP← Setup(1n; γst) and (vk(i), sk(i))← KeyGen() for all
i ∈ [N ], where N = poly(n) and γst is the randomness used in Setup. C sets

S = (vk(1), . . . , vk(N)). Finally, C sends (PP, S, γst) to A.

– Probing Phase 1. A adaptively queries the signing oracle OSign(·, ·, ·): On
input a ring of verification keys R, a message µ ∈M, and an index s ∈ [N ],

where requires that vk(s) ∈ R
⋂

S, this oracle returns Σ ← Sign(sk(s), µ,R).

– Challenge. A provides a challenge (R∗, µ∗, s∗0, s
∗
1) to the challenger such

that s∗0, s
∗
1 ∈ [N ], s∗0 6= s∗1, vk(s∗0), vk(s∗1) ∈ S

⋂
R∗ and none of OSign(·, ·, s∗0),

OSign(·, ·, s∗1) was queried. C chooses a random bit b ∈ {0, 1} and A is given

the signature Σ∗ ← Sign(sk(s∗b ), µ∗,R∗).

– Probing Phase 2. Same as the Probing Phase 1, but with the restriction
that none of OSign(·, ·, π∗0) and OSign(·, ·, s∗1) is queried.

– Guess. A outputs a guess b′. If b′ = b, C outputs 1, otherwise 0.

Linkability. A LRS scheme is signer-linkable, if for any PPT adversary A, it
holds that A has at most negligible advantage in the following experiment with a
challenger C.

4



– Setup. C generates PP ← Setup(1n; γst), where γst is the randomness used
in Setup. Finally, C sends (PP, γst) to A.

– Output Phase. A outputs l (l ≥ 2) (ring of well-formed verification keys,
messages, signature) tuples (R∗i , µ

∗
i , Σ

∗
i ) where i ∈ [l].

A succeeds if (1) Ver(R∗i , µ
∗
i , Σ

∗
i ) = 1 for i ∈ [l], (2) Link(R∗i , µ

∗
i , Σ

∗
i ,R

∗
j , µ
∗
j , Σ

∗
j ) =

0 for any i, j ∈ [l] s.t. i 6= j, and (3) | ∪i=1 R∗i | < l.

Non-Slanderability. A LRS scheme is signer-non-slanderable, if for any PPT
adversary A, it holds that A has at most negligible advantage in the following
experiment with a challenger C.

– Setup. As same as the setup phase of Strong Unforgeability.

– Probing Phase. As same as the probing phase of Strong Unforgeability.

– Output Phase. A outputs two (ring of verification keys, message, signa-

ture) tuples (R∗, µ∗, Σ∗) and (R̂, µ̂, Σ̂).

Let L be the list that stores the query-answer tuples for OSign(·, ·, ·). A succeeds

if (1) Ver(R∗, µ∗, Σ∗) = 1, (2) (R̂, µ̂, Σ̂) ∈ L, (3) (R∗, µ∗, Σ∗) /∈ L, (4) R∗ ⊆ S\C,

(5) Link(R∗, µ∗, Σ∗, R̂, µ̂, Σ̂) = 1.

3 Preliminaries

In this section, we first review the definition of strongly unforgeable one-time
signature in Sect. 3.1, key-homomorphic evaluation algorithm in Sect. 3.2, non-
interactive witness-indistinguishable proof systems in Sect. 3.3, and some lattice-
based backgrounds.

Notation. We write [l] for a positive integer l to denote the set {1, . . . , l}.
We denote vectors as lower-case bold letters (e.g. x), and matrices by upper-
case bold letters (e.g. A). We say that a function in n is negligible, written
negl(n), if it vanishes faster than the inverse of any polynomial in n. We say
that a probability p(n) is overwhelming if 1 − p(n) is negligible. We denote
the horizontal concatenation of two matrices A and B as A|B. We denote the
vertical concatenation of two matrices A and B as A; B. We denote {A(i)}i∈[l]

or {Bj}j∈[l] as the set that consists of l matrices.

3.1 Strongly Unforgeable One-Time Signature

Our construction will use one-time signature with strong unforgeability as a
building block. A one-time signature scheme is a signature scheme that is meant
to be used to sign only a single message, and is only required to satisfy un-
forgeability under properly restricted adversaries that receive only one signa-
ture/message pair.

5



Syntax. To capture the practice better, we augment the usual formalization of
general one-time signature scheme to cover the cases that users may share some
fixed public parameters.

Definition 2 (One-Time Signature Scheme). A one-time signature (OTS)
scheme consists of the following algorithms:

– Setup(1n)→ PPOTS. This is a probabilistic algorithm. On input the security
parameter 1n, the algorithm outputs the system public parameter PPOTS.

The public parameters PPOTS are common parameters used by all participants in
the system, which may be just the security parameter, or include some additional
information such as the message space M, the modulo, etc. In the following,
PPOTS are implicit input parameters to every algorithm.

– KeyGen()→ (vkOTS, skOTS). This is a probabilistic algorithm. The algorithm
outputs a verification key vkOTS and a signing key skOTS.

– Sign(skOTS, µ)→ ΣOTS. This is a probabilistic algorithm. On input a signing
key skOTS and a message µ ∈M, the algorithm outputs a signature ΣOTS.

– Ver(vkOTS, µ,ΣOTS) → 1/0. This is a deterministic algorithm. On input a
verification key vkOTS, a message µ, and a signature ΣOTS, the algorithm
outputs 1 if the signature is valid, or 0 if the signature is invalid.

Correctness. A OTS scheme is correct, if for any n ∈ N, all messages µ ∈M,
and any PPOTS ← Setup(1n) as implicit input parameter to every algorithm, it
holds that

Pr[Ver(vkOTS, µ,Sign(skOTS, µ)) = 1] = 1− negl(n),

the probability is taken over the random coins used by Setup, KeyGen, and
Sign.

Strong Unforgeability. A OTS scheme is strongly unforgeable, if for any PPT
forger A, it holds that A has at most negligible advantage in the following exper-
iment with a challenger C.

– Setup. C generates PPOTS ← Setup(1n; γst) and (vkOTS, skOTS)← KeyGen(),
where γst is randomness used in Setup. Finally, C sends (PPOTS, vkOTS, γst)
to A.

Note that we give to A the randomness γst that used for the Setup algorithm,
which implies the algorithm is public, does not rely on a trusted setup that may
incur concerns on the existing of trapdoors hidden in the output parameters.

– Probing Phase. A issues a query on message µ. C responses the query by
running ΣOTS ← Sign(skOTS, µ). Finally, the experiment returns the signa-
ture ΣOTS to A.

6



– Forge. A outputs a forgery (µ∗, Σ∗OTS). A succeeds if (µ∗, Σ∗OTS) 6= (µ,ΣOTS)
and Ver(vkOTS, µ

∗, Σ∗OTS) = 1.

3.2 Key-Homomorphic Evaluation Algorithm

In our construction, we borrow the idea from the standard signature work
[14], that is employing the key-homomorphic evaluation algorithm Eval(·, ·) from
[26,17,13] to evaluate circuits of a PRF. In particular, they used the evaluation
algorithm of the work [17]. The inputs of Eval(·, ·) are C and a set of ` different
matrices

{
A(i)

}
i∈[`]

, where C : {0, 1}` → {0, 1} is a fan-in-2 Boolean NAND cir-

cuit expression of some functions such as a PRF, and each A(i) = AR(i)+b(i)G ∈
Zn×mq corresponds to each input wire of C, and where A

$←− Zn×mq , R(i) $←−
{1,−1}m×m, b(i) ∈ {0, 1} and G ∈ Zn×mq is the gadget matrix. The algorithm

deterministically output a matrix AC = ARC + C(b(1), . . . , b(`))G ∈ Zn×mq . In
the analyzation of our unforgeability proof, we will use the following lemma to
show RC is short enough.

Lemma 1 ([14]). Let C : {0, 1}` → {0, 1} be a NAND Boolean circuit which has
depth d = c log ` for some constant c. Let {A(i) = AR(i) + b(i)G ∈ Zn×mq }i∈[`]

be ` different matrices correspond to each input wire of C where A
$←− Zn×mq ,

R(i) $←− {1,−1}m×m, b(i) ∈ {0, 1} and G ∈ Zn×mq is the gadget matrix. There is

an efficient deterministic evaluation algorithm Eval(C, (A(1), . . . ,A(`))) runs in
time poly(4d, `, n, log q), the output of the algorithm is a matrix

AC = ARC + C(b(1), . . . , b(`))G = Eval(C, (A(1), . . . ,A(`)))

where C(b(1), . . . , b(`)) is the output bit of C on the arguments (b(1), . . . , b(`)) and
RC ∈ Zm×m is a low norm matrix has ‖RC‖ ≤ O(`2c ·m3/2).

3.3 Non-Interactive Witness-Indistinguishable Proof Systems

We review the NIWI proof system presented by Gordon et al. [27]. Let B(1), . . . ,
B(l) ∈ Zn×mq and z(1), . . . , z(l) ∈ Znq for some l = l(n), and fix some ε. Define
the gap language Lσ,ε = (LYES, LNO) as follows:

LYES =

{(
B(1), . . . ,B(l)

z(1), . . . , z(l)

) ∣∣∣∣∃s ∈ Znq and i ∈ [l] :
∥∥z(i) − (B(i))T s

∥∥ ≤ σ√m}

LNO =

{(
B(1), . . . ,B(l)

z(1), . . . , z(l)

) ∣∣∣∣∀s ∈ Znq and i ∈ [l] :
∥∥z(i) − (B(i))T s

∥∥ > ε · σ
√
m

}
There is an (interactive) statistically witness-indistinguishable proof system

for Lσ,ε when set ε ≥ O(
√
m/log m) by using the techniques of the work [39].

Then the resulting protocol can be made non-interactive in the standard model
by applying the Fiat-Shamir transformation from the work [41].

7



Lemma 2. Let ε ≥ O(
√
m/log m). There is an NIWI proof system for Lσ,ε in

the standard model.

3.4 Lattice Backgrounds

Matrix Norms. For a vector x, we let ‖x‖ denote its l2-norm. For a matrix A
we denote two matrix norms: ‖A‖ denotes the l2 length of the longest column of

A. ‖Ã‖ denotes the result of applying Gram-Schmidt orthogonalization to the
columns of A.

We will need the following lemma to bound the norm of a random matrix in
{1,−1}m×m.

Lemma 3 ([4]). Let R be a k ×m matrix chosen at random from {1,−1}k×m.
Then there is a universal constant c such that Pr

[
‖R‖ > c

√
k +m

]
< e−(k+m).

Lattices and Gaussian Distributions. Let m ∈ Z be a positive integer and
Λ ⊂ Rm be an m-dimensional full-rank lattice formed by the set of all integral
combinations of m linearly independent basis vectors B = (b1, . . . ,bm) ⊂ Zm,
i.e., Λ = L(B) =

{
Bc =

∑m
i=1 cibi : c ∈ Zm

}
. For positive integers n, m,

q, a matrix A ∈ Zn×mq , and a vector y ∈ Zmq , the m-dimensional integer lat-

tice Λ⊥q (A) is defined as Λ⊥q (A) = {x ∈ Zm : Ax = 0 (mod q)}. Λy
q (A)

is defined as Λy
q (A) = {x ∈ Zm : Ax = y (mod q)}. For a vector c ∈ Rm

and a positive parameter σ ∈ R, define ρσ,c(x) = exp(−π‖x − c‖/σ2) and
ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x). For any y ∈ Λ, define the discrete Gaussian distribu-

tion over Λ with center c and parameter σ as DΛ,σ,c(y) = ρσ,c(y)/ρσ,c(Λ). For
simplicity, ρσ,0 and DΛ,σ,0 are abbreviated as ρσ and DΛ,σ, respectively.

The following Lemma 4 bounds the length of a discrete Gaussian vector with
a sufficiently large Gaussian parameter.

Lemma 4 ([38]). For any lattice Λ of integer dimension m with basis B, c ∈ Rm

and Gaussian parameter σ > ‖B̃‖ · ω(
√

log m), we have Pr[‖x − c‖ > σ
√
m :

x← DΛ,σ,c] ≤ negl(n).

The following generalization of leftover hash lemma is needed for our security
proof.

Lemma 5 ([4]). Suppose that m > (n + 1)log q + ω(log n) and that q > 2 is
prime. Let R be an m× k matrix chosen uniformly in {1,−1}m×k mod q where
k = k(n) is polynomial in n. Let A and B be matrices chosen uniformly in
Zn×mq and Zn×kq respectively. Then, for all vectors w in Zmq , the distribution

(A,AR,R>w) is statistically close to the distribution (A,B,R>w).

The proofs of our LRS construction is based on the following small integer
solution (SIS) assumption, learning with errors (LWE) assumption, and the se-
curity of PRF.

8



Definition 3 (SIS Assumption [38,25]). Let q,m, β be functions of n. Define

SISq,n,m,β problem as: Given a matrix A
$←− Zn×mq , find a non-zero vector x ∈ Zm

s.t. Ax = 0 (mod q) and ‖x‖ ≤ β.
For m,β = poly(n), q ≥ β · ω(

√
n log n), no (quantum) algorithm can solve

SISq,n,m,β problem in polynomial time.

We use the LWE assumption proposed by Gordon et al. [27] and they proved
it was implied by the standard LWE assumption [42]. The main difference is the
error distribution χ choosing from different distribution. Gordon et al. consider
the discrete Gaussian distribution DZm,αq where αq = ω(

√
log q).

Definition 4 (LWE Assumption [42]). Let q,m be functions of n, q > 2,
χ be a discretized normal error distribution parameterized by some α ∈ (0, 1),
which is obtained by drawing x ∈ R from the Gaussian distribution of width α.
Define the LWE distribution Aσ,χ as: Choose a vector a ← Znq and an error

e ← χ, output (a,a>s + e). Defines the Search-LWEq,n,m,χ as: Fix an s ← Znq ,
given at most m samples from Aσ,χ, work out s. Defines the Decision-LWEq,n,m,χ
as: For a uniformly chosen s ← Znq , given the oracle to be (1) Aσ,χ or (2) the
uniform distribution over Zn+1

q , decide which is the case with at most m oracle
calls.

For q,m, α =poly(n) such that αq = ω(
√

log q), no (quantum) algorithm can
solve the (Search/Decision)-LWEq,n,m,χ in polynomial time.

Definition 5 (Pseudorandom Functions). For a security parameter n > 0,
let k = k(n), t = t(n) and c = c(n). A pseudorandom function PRF : {0, 1}k ×
{0, 1}t → {0, 1}c is an efficiently computable, deterministic two-input function
where the first input, denoted by K, is the key. Let Ω be the set of all functions
that map ` bits strings to c bits strings. There is a negligible function negl(n)
such that:

|Pr
[
APRF(K,·)(1n) = 1

]
− Pr

[
AF (·)(1n) = 1

]
| ≤ negl(n)

where the probability is taken over a uniform choice of key K
$←− {0, 1}k and

F
$←− Ω, and the randomness of A.

Algorithms on Lattices. Our work will use the following lattice algorithms.

Lemma 6 (TrapGen Algorithm [6]). Let n ≥ 1, q ≥ 2,m = O(n log q) be inte-
gers. There is a probabilistic algorithm TrapGen(1n, 1m, q) that outputs a matrix
A ∈ Zn×mq and a trapdoor matrix TA ⊂ Λ⊥q (A) i.e., TA is a basis (full-rank

subset) of Λ⊥q (A), the distribution of A is statistically close to the uniform dis-

tribution over Zn×mq has ‖T̃A‖ ≤ O(
√
n log q) and ‖TA‖ ≤ O(n log q) with all

but negligible probability in n.

9



Lemma 7 (SuperTrapGen Algorithm [27]). Let n ≥ 1, q ≥ 2,m = O(n log q)
be integers. There is a probabilistic algorithm SuperTrapGen(1n, 1m, q,B) that
on input 1n, 1m, q, and a matrix B ∈ Zn×mq whose columns generate Znq , this

algorithm outputs a matrix A ∈ Zn×mq and a trapdoor matrix TA ⊂ Λ⊥q (A)

such that AB> = 0 (mod q), and the distribution of A is statistically close to

the uniform distribution over Zn×mq . Moreover, it holds that ‖T̃A‖ = log n ·
O(
√
mn log q) with all but negligible probability in n.

Lemma 8 (BasisExt Algorithm [19]). For i = 1, 2, 3, let Ai be a matrix in
Zn×mi
q whose columns generate Znq and let A′ = [A1|A2|A3]. Let TA2

be a basis

of Λ⊥(TA2). There is a deterministic algorithm BasisExt(TA2 ,A
′) that outputs

a basis TA′ for Λ⊥(A′) such that ‖T̃A′‖ = ‖T̃A2‖.

The following lattice basis extension algorithm also needed for our security
proof, which presented by Agrawal, Boneh and Boyen [4], so we abbreviate that
as BasisExtABB algorithm.

Lemma 9 (BasisExtABB Algorithm [4]). Let q be a prime, n,m be integers
with m > n. There is a probabilistic algorithm BasisExtABB(A,B,R,TB) which
takes as input two matrices A,B ∈ Zn×mq whose columns generate Znq , a matrix

R ∈ Zm×m, and a basis TB ∈ Λ⊥q (B), outputs a full-rank matrix TF in Λ⊥q (F)

such that ‖T̃F‖ < (‖R‖+ 1) · ‖T̃B‖ where F = [A|AR + B] ∈ Zn×2m
q .

Lemma 10 (SamplePre Algorithm [25]). Let q > 2, m > n be integers. There
is a probabilistic algorithm SamplePre(A,TA,y, σ) which takes as input a matrix
A ∈ Zn×mq whose columns generate Znq , and a basis TA of Λ⊥q (A), a vector

y ∈ Znq , and a Gaussian parameter σ ≥ ‖T̃A‖ · ω(
√

log m), outputs a vector
x ∈ Λy

q (A) sampled from a distribution which is statistically close to DΛy
q (A),σ.

Lemma 11 (SampleR Algorithm [5]). Let q > 2 be a prime, m > n be integers.
There is a probabilistic algorithm SampleR(1m) which outputs a Zq-invertible
matrix R in Zm×m from a distribution that is statistically close to Dm×m with

‖R̃‖ ≤ O(
√
m) · ω(

√
log m).

Gadget Matrix. The “gadget matrix” G defined in [37]. We recall the following
one fact of G.

Lemma 12 ([37]). Let q be a prime, and n, m be integers with m = n log q.
There is a fixed full-rank matrix such that the lattice Λ⊥q (G) has a publicly known

basis TG ∈ Zm×m with ‖T̃G‖ ≤
√

5.

10



4 Our Construction

In our construction, the main obstacle is how to design a suitable ‘key image’.2

We use the one-time verification key vkOTS as the ‘key image’. In particular, we
employ Lyubashevsky and Micciancio’s work [32] to instantiate the OTS scheme
in which the vkOTS = AcomT where Acom is a random matrix which can be shared
by all users and T is the skOTS. In this setting, the first challenge is achieving
signer-linkable i.e., how to restrict one ring member generating two signatures by
generating the other vk′OTS = A′comT′ and thus breaking the signer-linkable. For
instance, an adversary can trivially break this by generating a A′com 6= Acom or
T′ 6= T such that vk′OTS 6= vkOTS. The second challenge is achieving signer-non-
slanderable i.e., how to prevent the adversary to forge the vkOTS which belongs
to an honest signature tuple i.e., forge a vk∗OTS such that vk∗OTS = vkOTS. For
instance, an adversary can arbitrarily select a T∗ then compute a A∗com such
that vk∗OTS = A∗comT∗ = AcomT = vkOTS, or corrupt the T then compute a
A∗com such that vk∗OTS = A∗comT = AcomT = vkOTS.

To address the above two challenges, we present two lattice basis extending al-
gorithms BasisExtBindAcom and BasisExtBindSK which used to ‘bind’ the ‘Acom’
and ‘T’ in vkOTS, respectively. Our signer-linkable and signer-non-slanderable proofs
show that, when the ‘check vectors’ echk and e′chk are validated, the adversary can
not changed or forged the ‘Acom’ or ‘T’ in vkOTS as above mentioned, otherwise
the underlying hardness assumption SIS is broken.

4.1 Lattice Basis Extending Algorithms

Algorithm: BasisExtBindAcom(A,TA,F)

Inputs: A matrix A ∈ Zn×mq whose columns generate Znq , a basis TA of Λ⊥q (A),

and a matrix F =
[
AcomTA|Acom + A

]
∈ Zn×2m

q where Acom is a uni-
formly random matrix in Zn×mq .

Outputs: A basis TF of Λ⊥q (F).

The BasisExtBindAcom algorithm runs as follows:

1. Sample R0,R1 ← SampleR(1m).

2. Construct TF =
[ −R0 −R1

TAR0 TAR1

]
such that F ·TF = 0 (mod q).

Lemma 13. The matrix TF output by BasisExtBindAcom is full-rank and satisfy

‖T̃F‖ ≤ O(m3/2) · ω(
√

log m).

2 In our setting, ‘key image’ is a parameter in the output signature tuple. If two
signature tuples have the same ‘key image’, we say these two signatures are linked.

11



Proof. By Lemma 11, we know the matrices R0,R1 are invertible. By Lemma
6, we know the basis TA of Λ⊥q (A) is full-rank. Therefore, the matrix TF is full-
rank. By Lemma 11, we know the Gram-Schmidt norm of R0,R1 bounded by

O(
√
m) · ω(

√
log m). By Lemma 6, we know ‖T̃A‖ ≤ O(

√
n log q). As analyzed

in Sect. 4.3, it requires to set m = O(n log q). Therefore, we have ‖T̃F‖ ≤
O(m3/2) · ω(

√
log m).

Algorithm: BasisExtBindSK(TA,F)

Inputs: A matrix F =
[
AcomTA −Acom|Acom

]
∈ Zn×2m

q where Acom is a uni-

formly random matrix in Zn×mq , and TA is a basis of Λ⊥q (A) and A is
independent with Acom.

Outputs: A basis TF of Λ⊥q (F).

The BasisExtBindSK algorithm runs as follows:

1. Sample R0,R1 ← SampleR(1m).

2. Construct TF =
[ −R0 −R1

TAR0−R0 TAR1−R1

]
such that F ·TF = 0 (mod q).

Lemma 14. The matrix TF output by BasisExtBindSK is full-rank and satisfy

‖T̃F‖ ≤ O(m3/2) · ω(
√

log m).

Proof. The proof is as same as the proof of Lemma 13.

4.2 Construction

Setup(1n; γst)

1. On input the a security parameter n, sets the parameters q,m, k, σ as spec-
ified in Sect. 4.3 below.

2. Select a secure PRF : {0, 1}k×{0, 1}t → {0, 1}, express it as a NAND Boolean
circuit CPRF.

3. Let ΠOTS be a one-time signature scheme with strong unforgeability.

4. Compute PPOTS ← ΠOTS.Setup(1n).

5. Sample Acom ← XOF(γst) where Acom ∈ Zn×mq .

6. Output the public parameters PP = (q,m, k, σ,PRF, (ΠOTS,PPOTS),Acom, γst).

Note that including the randomness γst in PP and sample the Acom by the
extendable output function XOF [40] is to guarantee the public has no concerns
on the existing of trapdoors for PP.
In the following, PP are implicit input parameters to every algorithm.

KeyGen()

1. Select B
$←− Zn×mq and (A,TA) ← SuperTrapGen(1n, 1m, q,B) where A ∈

Zn×mq and TA ∈ Zm×m.

2. Let skOTS := TA and set vkOTS := AcomTA.

12



3. Select a PRF key k = (k1, k2, . . . , kk)
$←− {0, 1}k.

4. For j = 1 to k, select Bj
$←− Zn×mq .

5. Select A0,A1,C0,C1
$←− Zn×mq .

6. Output vk = (A, (A0,A1),B, {Bj}j∈[k], (C0,C1)) and sk = (TA,k, vkOTS).

Sign(sk,µ,R)

1. On input a signing key sk := sk(s) = (T
(s)
A ,k(s), vk

(s)
OTS) where s ∈ [N ] is

the index of the signer in the ring R, a message µ = (µ1, . . . , µt) ∈ {0, 1}t,
and a ring of verification keys R = (vk(1), . . . , vk(N)) where each vk(i) =

(A(i), (A
(i)
0 ,A

(i)
1 ),B(i), {B(i)

j }j∈[k], (C
(i)
0 ,C

(i)
1 )).

2. For i = 1 to N , set F(i) =
[
AcomTA(s) |Acom + A(i)

]
∈ Zn×2m

q . Let Fchk =

[F(1)| . . . |F(N)] ∈ Zn×2Nm
q .

3. For i = s, compute TF(s) ← BasisExtBindAcom(A(s),TA(s) ,F(s)),TFchk
←

BasisExt(TF(s) ,Fchk), and echk ← SamplePre(Fchk,TFchk
,0, σ).

4. Let F′chk =
[
AcomTA(s)−Acom|Acom

]
∈ Zn×2m

q . Compute TF′chk
← BasisExtBindSK

(TA(s) ,F′chk) and e′chk ← SamplePre(F′chk,TF′chk
,0, σ).

5. Compute d = PRF(k(s),µ).

6. For i = 1 toN , compute A
(i)
CPRF,µ

= Eval(CPRF, ({B(i)
j }j∈[k],C

(i)
µ1 ,C

(i)
µ2 , . . . ,C

(i)
µt ))

∈ Zn×mq , set F
(i)
CPRF,µ,1−d =

[
A(i)|A(i)

1−d −A
(i)
CPRF,µ

]
∈ Zn×2m

q .

7. For i = 1 toN , select u(i) $←− Znq , compute e
(i)
1 ← SamplePre(A(s),TA(s) ,u(i), σ).

8. For i = s, compute e
(s)
0 ← SamplePre(A(s),TA(s) , u′(s), σ) where u′(s) =

(A
(s)
CPRF,µ

−A
(s)
1−d) · e

(s)
1 .

9. For i = s+ 1, . . . , N, 1, . . . , s− 1, uniformly choose e
(i)
0 ∈ Zm subject to the

condition that F
(i)
CPRF,µ,1−d · (e

(i)
0 ; e

(i)
1 ) = 0 (mod q).

10. For i = 1 to N , select s(i) $←− Znq , compute z(i) = (s(i))>B(i) + e
(i)
0 .

11. Use the witness {s(i), i}i∈[N ] to construct an NIWI proof π for the gap lan-
guage Lσ,ε.

12. Compute one-time signature ΣOTS ← ΠOTS.Sign(skOTS,µ).

13. Output the signature Σ = (ΣOTS, vkOTS, echk, e
′
chk, {e

(i)
1 , z(i)}i∈[N ], π).

Ver(R,µ, Σ)

1. On input a ring of verification keys R = (vk(1), . . . , vk(N)) where each vk(i) =

(A(i), (A
(i)
0 ,A

(i)
1 ),B(i), {B(i)

j }j∈[k], (C
(i)
0 ,C

(i)
1 )), a message µ, and a signa-

ture Σ = (ΣOTS, vkOTS, echk, e
′
chk, {e

(i)
1 , z(i)}i∈[N ], π).

2. Compute (Fchk,F
′
chk) as in Sign algorithm. Check if ‖echk‖ ≤ σ

√
2Nm and

‖e′chk‖ ≤ σ
√

2m and Fchk · echk = 0 (mod q) and F′chk · e′chk = 0 (mod q)
holds, otherwise return 0.

13



3. For i = 1 to N and d ∈ {0, 1}, compute F
(i)
CPRF,µ,d

=
[
A(i)|A(i)

d −A
(i)
CPRF,µ

]
where A

(i)
CPRF,µ

is computed as in Sign algorithm. Check if each ‖e(i)
1 ‖ ≤ σ

√
m

and F
(i)
CPRF,µ,d

· (z(i); e
(i)
1 ) = 0 (mod q) holds for d = 0 or 1, otherwise return

0.

4. Check if the proof π is correct and ΠOTS.Ver(vkOTS,µ, ΣOTS) = 1, return 1,
otherwise return 0.

Link(R0,µ0, Σ0,R1,µ1, Σ1)

1. On input two valid signature tuples (R0,µ0, Σ0) and (R1,µ1, Σ1). Let vkOTS,0

and vkOTS,1 be the one-time verification keys in Σ0 and Σ1, respectively.

2. Check if vkOTS,0 = vkOTS,1 holds, return 1, otherwise return 0.

4.3 Correctness and Parameters

We now show the correctness of LRS. By Lemma 10, each e
(i)
1 in Σ follows the

distribution D
Λu(i)

q (A(s)),σ
, then by the construction of z(i) and Lemma 7, it holds

that F
(i)
CPRF,µ,d

·(z(i); e
(i)
1 ) = 0 (mod q) for d = 0 or 1. By Lemma 10, the echk and

e′chk in Σ respectively follow the distribution DΛ⊥q (Fchk),σ and DΛ⊥q (F′chk),σ
, there-

fore, it holds that Fchk ·echk = 0 (mod q) and F′chk ·e′chk = 0 (mod q). By Lemma

4, e
(i)
1 ≤ σ

√
m, echk ≤ σ

√
2Nm, and e′chk ≤ σ

√
2m hold with overwhelming

probability. Therefore, the signature is accepted by the Ver algorithm with over-
whelming probability. For the correctness of algorithm Link, the signer-linkable
proof in Sect. 4.4 shows the correctness holds with overwhelming probability.

We then explain the parameters choosing. We employ the work [31] to instan-
tiate our PRF, which based on standard LWE assumption with polynomial mod-
ulus q = nω(1). We employ the work [32] to instantiate our OTS, which requires

‖TA‖∞ ≤ p and q ≥ 2tp
√
mnΩ(1) where p = d q

n/m2n/m−1
2 e. To guarantee the

hardness of the based LWEq,n,m,χ assumption, we need to set α = ω(
√

log q)/q as
defined in Definition 4. Let n be the security parameter, let the message length
be t = t(n) and the secret key length of PRF be k = k(n). Let ` = t+ k be the
input length of PRF. To ensure that hard lattices with good short bases can be
generated by TrapGen and SuperTrapGen, we need to set m = 6n1+δ where δ > 0
is a constant such that nδ > O(log n). To ensure that the distribution on the
output of SamplePre statistically close to the distribution DΛ⊥q (F′),σ, we need to

set σ sufficiently large that is σ = O(`2c ·m3/2) ·ω(
√

log m) (see the signer-non-
slanderable proof below). To ensure that vectors sampled using a trapdoor are
difficult SIS solutions, we need to set β = O(`4c ·m7/2) · ω(

√
log m) such that

β ≥ O(`2c ·m2) · σ for some constant c (see the signer-non-slanderable proof be-
low). To ensure our construction based on SIS has a worst-case lattice reduction
as defined in Definition 3, we need to set q = O(`4c ·m4) · (ω(

√
log m))2 such

that q ≥ β · ω(
√
n log n).

14



5 Proofs of Security and Privacy

Theorem 1 (Unforgeability). Let m, q, β, α, σ be some polynomials in the
security parameter n. For large enough σ = O(`2c ·m3/2) · ω(

√
log m) and β =

O(`4c ·m7/2) · ω(
√

log m), the LRS scheme is sUnfInsCor secure in the standard
model.

Proof. Consider the following security game between an adversary A and a sim-
ulator S. Upon receiving a challenge A ∈ Zn×mq that is formed by m uniformly
random and independent samples from Znq and the (PPOTS, vkOTS), S simulates
as follows.

Setup. S takes as input a security parameter n and a randomness γst to invoke
PP← Setup(1n; PPOTS, γst) algorithm. S simulates as follows.

– Select a random index i�
$←− {1, . . . , N} and sets A(i�) = A, then sample

(B(i�),TB(i�))← SuperTrapGen(1n, 1m, q,A(i�)).

– For i = i� + 1, . . . , N, 1, . . . , i� − 1:

• Compute (B(i),TB(i))← TrapGen(1n, 1m, q).

• Compute (A(i),TA(i)) ← SuperTrapGen(1n, 1m, q,B(i)).

• Let sk
(i)
OTS = TA(i) and vk

(i)
OTS = AcomTA(i) .

– For i = i�, set vk
(i�)
OTS = vkOTS.

– For i = 1 to N and d ∈ {0, 1}:

• Choose R
A

(i)
d

,R
C

(i)
d

$←− {1,−1}m×m.

• Construct A
(i)
d = A(i)R

A
(i)
d

+ dG and C
(i)
d = A(i)R

C
(i)
d

+ dG where G

is the gadget matrix.

– For i = 1 to N :

• Select a PRF key k(i) = (k
(i)
1 , k

(i)
2 , . . . , k

(i)
k )

$←− {0, 1}k.

– For i = 1 to N and j = 1 to k:

• Choose R
B

(i)
j

$←− {1,−1}m×m and construct B
(i)
j = A(i)R

B
(i)
j

+ k
(i)
j G.

– Let S = (vk(1), . . . , vk(N)) where each vk(i) = (A(i), (A
(i)
0 ,A

(i)
1 ),B(i), {B(i)

j }j∈[k],

(C
(i)
0 ,C

(i)
1 )), then sends (PP,S, γst) to A.

Probing Signing Oracle. A adaptively issues tuples for querying the signing
oracle OSign(·, ·, ·). For simplicity, here consider only one tuple (µ,R, s) where

s ∈ [N ], and requires that vk(s) ∈ S
⋂

R. Let N ′ = |R|. Assume the ring R =

(vk(1), . . . , vk(N ′)), parse vk(s) = (A(s), (A
(s)
0 ,A

(s)
1 ),B(s), {B(s)

j }j∈[k], (C
(s)
0 ,C

(s)
1 )).

S does the following to response the signature.

– For i′ = 1 to N ′, set F(i′) =
[
AcomTA(i′) |Acom + A(i′)

]
∈ Zn×2m

q . Let

Fchk = [F(1)| . . . |F(N)] ∈ Zn×2Nm
q .

15



– Select ŝ
$←− {1, 2, . . . , N ′}\i�. Compute TF(ŝ) ← BasisExtBindAcom(A(ŝ),TA(ŝ) ,

F(ŝ)),TFchk
← BasisExt(TF(ŝ) ,Fchk), and echk ← SamplePre(Fchk,TFchk

,0, σ).

– Let F′chk =
[
AcomTA(ŝ)−Acom|Acom

]
∈ Zn×2m

q . Compute TF′chk
← BasisExtBind

SK(TA(ŝ) ,F′chk) and e′chk ← SamplePre(F′chk,TF′chk
,0, σ).

– Compute d = PRF(k(ŝ),µ).

– For i′ = 1 to N ′:

• Compute A
(i′)
CPRF,µ

= Eval(CPRF, ({Bj}(i
′)

j∈[k],C
(i′)
µ1 ,C

(i′)
µ2 , . . . ,C

(i′)
µt ))

• Set F
(i′)
CPRF,µ,1−d =

[
A(i′)|A(i′)

1−d −A
(i′)
CPRF,µ

]
.

• Select u(i′) $←− Znq .

– For i′ = i� + 1, . . . , N ′, 1, . . . , i� − 1:

• Compute e
(i)
1 ← SamplePre(A(ŝ),TA(ŝ) ,u(i′), σ).

• Uniformly choose e
(i′)
0 ∈ Zm subject to the condition that F

(i′)
CPRF,µ,1−d ·

(e
(i′)
0 ; e

(i′)
1 ) = 0 (mod q).

– For i′ = i�, note that F
(i�)
CPRF,µ,1−d can be transformed to

F
(i�)
CPRF,µ,1−d =

[
A(i�)|A(i�)

1−d −A
(i�)
CPRF,µ

]
=
[
A(i�)|A(i�)(R

A
(i�)
1−d

−R
(i�)
CPRF,µ

) + (1− 2d)G
]
∈ Zn×2m

q

then we can extend TG to T
F

(i�)
CPRF,µ,1−d

by BasisExtABB, then compute

(ei�0 ; ei�1 ) by SamplePre(F
(i�)
CPRF,µ,1−d,TF

(i�)
CPRF,µ,1−d

, σ,0).

– For i′ = 1 to N ′, sample s(i′) ← Znq and z(i′) = (B(i′))>s(i′) + e
(i′)
0 .

– Construct an NIWI proof π for the gap language Lσ,ε by using the witness

{s(i′), i′}i′∈[N ′].

– If i′ 6= i�, compute one-time signature ΣOTS ← ΠOTS.Sign(sk
(s)
OTS,µ). If i′ =

i�, send µ to one-time signature challenger and then receive the response
ΣOTS.

– Return the signature Σ = (ΣOTS, vk
(s)
OTS, echk, e

′
chk, {e

(i′)
1 , z(i′)}i′∈[N ′], π) to A

and adds (µ,R, Σ) to a list L which S initialized in prior.

Probing Corrupting Oracle. A adaptively issues index i for querying the
corrupting oracle OCorrupt(·), S returns sk(i) to A and adds vk(i) to a set C
which S initialized in prior, while if i = i� then S aborts.

Exploiting the Forgery. A outputs one forgery (µ∗,R∗, Σ∗). Let N∗ = |R∗|.
Parse µ∗ = (µ∗1, . . . , µ

∗
t ) and R∗ = (vk∗

(1)
, . . . , vk∗

(N∗)
) where each vk(i∗) =

(A(i∗), (A
(i∗)
0 ,A

(i∗)
1 ),B(i∗), {B(i∗)

j }j∈[k], (C
(i∗)
0 ,C

(i∗)
1 )). ParseΣ∗ = (Σ∗OTS, vk∗OTS,

e∗chk, e
′∗
chk, {e

(i∗)
1 , z(i∗)}i∗∈[N∗], π

∗). S does the following to exploit the forgery.

16



– Check if Ver(µ∗,R∗, Σ∗) = 1 and (µ∗,R∗, Σ∗) /∈ L and R∗ ⊆ S \C, otherwise
S aborts.

– Compute d = PRF(k(i�),µ∗).

– For i∗ = i�:

• Compute A
(i�)
CPRF,µ∗

= A(i�)R
(i�)
CPRF,µ∗

+ PRF(k(i�),µ∗)G by invoking the

Eval(CPRF, ({B(i�)
j }j∈[k],C

(i�)
µ∗1

,C
(i�)
µ∗2

, . . . ,C
(i�)
µ∗t

)).

• Set F
(i�)
CPRF,µ∗,d

=
[
A(i�)|A(i�)

d −A
(i�)
CPRF,µ∗

]
.

– Use TB(i�) to recover e
(i�)
0 . Then check if ‖e(i�)

0 ‖ ≤ σ
√
m and F

(i�)
CPRF,µ∗,d

·
(z(i�); e

(i�)
1 ) = 0 (mod q) holds, otherwise S aborts.

– Note that the equation F
(i�)
CPRF,µ∗,d

· (z(i�); e
(i�)
1 ) = 0 (mod q) can be trans-

formed to the following[
A(i�)|A(i�)

d −A
(i�)
CPRF,µ∗

]
· (z(i�); e

(i�)
1 ) = 0 (mod q)

[
A(i�)|A(i�)(R

A
(i�)
d

−R
(i�)
CPRF,µ∗

)+(d−PRF(k(i�),µ∗))
]
·(z(i�); e

(i�)
1 ) = 0 (mod q)[

A(i�)|A(i�)(R
A

(i�)
d

−R
(i�)
CPRF,µ∗

)
]
· ((B(i�))>s(i�) + e

(i�)
0 ; e

(i�)
1 ) = 0 (mod q)

A(i�) · (e(i�)
0 + (R

A
(i�)
d

−R
(i�)
CPRF,µ∗

) · e(i�)
1 ) = 0 (mod q)

– Return e
(i�)
0 + (R

A
(i�)
d

−R
(i�)
CPRF,µ∗

) · e(i�)
1 as a SISq,n,m,β solution, and return

(Σ∗OTS,µ
∗) as the forged one-time signature.

Claim 1. The public parameters PP and the set of verifications keys S that
simulated by S is statistically close to those in the real attack.

Proof. In the real scheme and the simulation, the matrix Acom is chosen in
random or sampled by the extendable output function [40]. Therefore, the dis-
tribution of Acom and PP in the simulation is statistically indistinguishable
with real attack. The matrices {A(i)}i∈[N ] in the real scheme and the matri-

ces {A(i)}i∈[N ]\i� in the simulation were generated by SuperTrapGen while the

matrix A(i�) is formed by m uniformly random and independent samples from
Znq from the SIS challenger. By Lemma 7, we know the {A(i)}i∈[N ] in both real
and simulated world have distribution that is statistically indistinguishable with
real attack. For the matrices {B(i)}i∈[N ], it were uniformly random selected in

the real scheme, in the simulation, the matrices {B(i)}i∈[N ]\i�) were generated

by TrapGen while the matrix B(i�) was generated by SuperTrapGen. By Lemma
6 and 7, we know the {B(i)}i∈[N ] in both real and simulated world have distri-
bution that is statistically indistinguishable with real attack. For the matrices
{B(i)}i∈[N ], both real and simulated world select that in uniformly random, so

17



it is immediate. For the matrices (A
(i)
0 ,A

(i)
1 ), {B(i)

j }j∈[k], and (C
(i)
0 ,C

(i)
1 ) for

all i ∈ [N ] generated in the simulation have distribution that is statistically in-
distinguishable with real attack by Lemma 5. Therefore, the set of verifications
keys S given to A is statistically close to those in the real attack.

Claim 2. The replies of the signing oracle OSign(·, ·, ·) simulated by S is statis-
tically close to those in the real attack when set σ = O(`2c ·m3/2) · ω(

√
log m).

Proof. By Definition 4, in our parameters setting, the entries z(1), . . . , z(N ′) in
the signature tuples output from the oracle OSign(·, ·, ·) are statistically close to
those in the real attack. By the witness indistinguishability of the proof system,
the proof π in the signature tuples output from the oracle OSign(·, ·, ·) is statis-
tically close to those in the real attack. For the vkOTS, there is no change in the
simulation and real attack. For the ΣOTS, it is immediate since we directly in-
voke the one-time signature signing algorithm in both simulated and real world.

Therefore, we focus on the entries (echk, e
′
chk, (e

(1)
1 , . . . , e

(N ′)
1 )).

By Lemma 10, for sufficient large Gaussian parameter σ, the distribution of

the entries (echk, e
′
chk, (e

(1)
1 , . . . , e

(N ′)
1 )) generated by SamplePre are statistically

close to the distribution of signatures generated in the real scheme. So we next
analyze how to set the parameter σ. In the simulating signing oracle phase,

we constructed F
(i�)
CPRF,µ,1−d =

[
A(i�)|A(i�)(R

(i�)
1−d − R

(i�)
CPRF,µ

) + (1 − 2d)G
]
. Let

R̄(i�) = R
(i�)
1−d − R

(i�)
CPRF,µ

. By Lemma 1, we know
∥∥˜̄R(i�)

∥∥ ≤ O(`2c · m3/2) for

some constant c. By Lemma 9, we know
∥∥∥T̃F

(i�)
CPRF ,µ,1−d

∥∥∥ < (
∥∥R̄(i�) +1

∥∥) ·
∥∥T̃G

∥∥.

By Lemma 12, we know ‖T̃G‖ ≤
√

5. By Lemma 10, it requires to set σ >∥∥∥T̃F
(i�)
CPRF ,µ,1−d

∥∥∥ · ω(
√

log m). Therefore, to satisfy these requirements, set σ =

O(`2c ·m3/2) · ω(
√

log m) is sufficient.

Claim 3. A can produce a valid SISq,n,m,β solution with overwhelming probabil-
ity.

Proof. We argue that e
(i�)
0 + (R

A
(i�)
d

− R
(i�)
CPRF,µ∗

) · e(i�)
1 that S finally output

in the simulation is a valid SISq,n,m,β solution in two steps. We first explain it

is sufficiently short, note that e
(i�)
0 and e

(i�)
1 follow the distribution DZm,σ. By

Lemma 4, ‖e(i�)
0 ‖, ‖e(i�)

1 ‖ ≤ σ
√
m. By Lemma 1,

∥∥R(i�)
CPRF,µ

∥∥ ≤ O(`2c ·m3/2). By

Lemma 3, the norm of R
A

(i�)
d

is bounded by
√
m. By Lemma 12, ‖T̃G‖ ≤

√
5.

Therefore, it requires to set β ≥ O(`2c ·m2/3) · σ
√
m.

Then we prove e
(i�)
0 +(R

A
(i�)
d

−R
(i�)
CPRF,µ∗

)·e(i�)
1 is non-zero with overwhelming

probability. Suppose that the e
(i�)
1 = 0, then for a valid forgery we must have

at least one e
(i�)
0 6= 0 and thus e

(i�)
0 + (R

A
(i�)
d

− R
(i�)
CPRF,µ∗

) · e(i�)
1 is non-zero.

Suppose on the contrary, there exists one e
(i�)
1 6= 0, then we need to argue

18



(R
A

(i�)
d

−R
(i�)
CPRF,µ∗

) · e(i�)
1 is non-zero with overwhelming probability. Due to we

assume e
(i�)
1 = (e1, . . . , em) 6= 0 which means at least one coordinate of e

(i�)
1 ,

denote as eo where o ∈ [m], such that eo 6= 0. Let R̄ = (R
A

(i�)
d

−R
(i�)
CPRF,µ∗

) and

write R̄ = (r̄1, . . . , r̄m) and so R̄ · e(i�)
1 = r̄oeo +

∑
ō∈[m]\o r̄ōeō. Note that for

the fixed message µ∗ on which A made the forgery, R̄ (therefore r̄o) depends
on the low-norm matrices (R

A
(i�)
0

,R
A

(i�)
1

),
{
R

B
(i�)
j

}
j∈[k]

, (R
C

(i�)
0

,R
C

(i�)
1

) and

PRF key k. The information about eo for A is from the public matrices in the
verification set S that given to the A, and note that the PRF keys k which is not
included in S. Therefore, by the pigeonhole principle there is an exponentially
large freedom to pick a value to r̄o which is compatible with A’s view. This
completes the proof.

Theorem 2 (Anonymity). Set the parameters as Sect. 4.3, the LRS scheme
is signer-anonymous in the standard model.

Proof. The proof proceeds in a sequence of experiments E0, H0, H1, E1 such that
E0 (resp., E1) corresponds to the experiment of Anonymity in Definition 1 with
b = 0 (resp., b = 1), and such that each experiment is indistinguishable from the
one before it. This implies that A has negligible advantage in distinguishing E0

from E1, as desired.

E0 :This experiment first generate PP ← Setup(1n; γst), and
{

vk(i), sk(i)
}
i∈[N ]

by repeatedly invoking KeyGen(), and A is given (PP,S = {vk(i)}i∈[N ]) and
the randomness γst. Then A provides a challenge (µ∗,R∗, s∗0, s

∗
1) to the chal-

lenger, and requires that µ∗ ∈ M, s∗0 6= s∗1 and vk(s∗0), vk(s∗1) ∈ S
⋂

R∗.

For each tuple (µ∗,R∗, s∗0, s
∗
1) in the challenge, the experiment uses sk(s∗0) to

compute the signature tuple Σ∗ and responses to A.

H0 :This experiment is as same as experiment E0 except that we change how

the signature Σ∗ is generated: we sample e
(s∗1)
0 by SamplePre rather than

randomly select it from Zmq .

Then we show that E0 and H0 are indistinguishable for A, which we do by giving
a reduction from the hardness assumption LWEm,q,αq

√
2.

Reduction. Suppose A has non-negligible advantage in distinguishing E0 and
H0. We use A to construct an algorithm S for breaking the hardness assumption
LWEm,q,αq

√
2. S is given as input (B, z) ∈ Zn×mq × Zmq , where B is uniform and

z is either uniform or equal to B>s + e for e← DZm,αq
√

2.

Setup Phase. S takes as input a security parameter n and a randomness γ to
invoke PP← Setup(1n; γst) algorithm. S simulates as follows.

– Choose a random index ī∗
$←− {1, . . . , N}, sets B(̄i∗) = B.

– For i = ī∗+1, . . . , N, 1, . . . , ī∗−1, compute (B(i),TB(i))← TrapGen(1n, 1m, q).

19



– For i = 1 to N , compute (A(i),TA(i))← SuperTrapGen(1n, 1m, q, B(i)). Set

vk
(i)
OTS = AcomTA(i) and sk

(i)
OTS = TA(i) .

– For i = 1 to N and d ∈ {0, 1}, select A
(i)
d ,C

(i)
d

$←− Zn×mq .

– For i = 1 to N , select a PRF key k(i) $←− {0, 1}k.

– For j = 1 to k, select B
(i)
j

$←− Zn×mq .

– Set S = {vk(i)}i∈[N ], vk(i) = (A(i), (A
(i)
0 ,A

(i)
1 ),B(i), {B(i)

j }j∈[k], (C
(i)
0 ,C

(i)
1 )),

then sends (PP,S, γst) to A.

Challenge. A provides a challenge (µ∗,R∗, s∗0, s
∗
1) to the challenger. S chooses

a random bit b ∈ {0, 1} and fixes it throughout the response phase for the
challenge. For each tuple (µ∗,R∗, s∗0, s

∗
1) in the challenge, S does as following:

– LetN∗ = |R∗|. Check if s∗0 6= s∗1, vk(s∗0), vk(s∗1) ∈ S
⋂

R∗ and ī∗ = s∗1, otherwise
S aborts the simulation.

– Compute d = PRF(k(s∗1),µ∗).

– Compute Fchk, F′chk, echk, and e′chk as in Sign algorithm.

– For i∗ = s∗0, select e
(s∗0)
1

$←− Zmq and computes e
(s∗0)
0 by SamplePre such that

F
(s∗0)
CPRF,µ∗,1−d · (e

(s∗0)
0 ; e

(s∗0)
1 ) = 0 (mod q) holds as in Sign algorithm.

– For i∗ = s∗1, let z(i∗) = z, uniformly choose e
(s∗1)
1 ∈ Zmq such that F

(s∗1)
CPRF,µ∗,1−d·

(z; e
(i∗1)
1 ) = 0 (mod q) holds.

– For all i∗ ∈ [N∗] and i∗ 6= s∗0, s
∗
1, select e

(i∗)
1 ← DZm,σ and compute e

(i∗)
0 ∈

Zmq uniformly subject to the condition that F
(i∗)
CPRF,µ∗,1−d · (e

(i∗)
0 ; e

(i∗)
1 ) = 0

(mod q) holds as in Sign algorithm.

– For i∗ = s∗1 + 1, . . . , N∗, 1, . . . , s∗1 − 1, compute the ciphertext z(i∗) as in E0

and H0. Then construct an NIWI proof π for the gap language Lσ,ε as in
Sign algorithm.

– Compute one-time signature ΣOTS ← ΠOTS.Sign(skOTS,µ
∗).

– Return the signature Σ = (ΣOTS, vkOTS, echk, e
′
chk, {e

(i∗)
1 , z(i∗)}i∗∈[N∗], π) to

A.

Guess. When A outputs the guess b′, S outputs the guess b′.

Let D$ denote the above experiment when S’s input z is uniformly dis-
tributed. Let DLWE denote the above experiment when S’s input z is distributed
according to y = B>s + e for e← DZm,αq

√
2.

Claim 4. A’s view in D$ is statistically close to its view in E0.

Proof. In experiment E0, we have z(s∗1) = (B(s∗1))>s(s∗1) +e
(s∗1)
0 where e

(s∗1)
0 is cho-

sen uniformly subject to F
(s∗1)
CPRF,µ∗,1−d ·(e

(s∗1)
0 ; e

(s∗1)
1 ) = 0 (mod q) and e

(s∗1)
1

$←− Zmq .

In D$, we let z(s∗1) = z and recall that z = B>s + e for e ∈ Zmq is uniformly

selected. And e
(s∗1)
1 is chosen uniformly subject to F

(s∗1)
CPRF,µ∗,1−d · (z; e

(s∗1)
1 ) = 0

20



(mod q). Recall F
(s∗1)
CPRF,µ∗,1−d = A(s∗1)e

(s∗1)
0 +(A

(s∗1)
1−d−A

(s∗1)
CPRF,µ

)·e(s∗1)
1 = 0 (mod q).

We can view A(s∗1) and (A
(s∗1)
1−d − A

(s∗1)
CPRF,µ

) as regular function Zmq → Znq . By

Lemma 5, the randomly chosen e
(s∗1)
0 is uniform over the images of A(s∗1). For

a regular function, choosing a uniform element from the images, followed by a
uniform element from its pre-images, is equivalent to choosing a uniform ele-

ment from the domain, as is done in D$. Therefore the choice of e
(s∗1)
0 in E0 is

statistically close to uniform over Zmq , and hence z(s∗1) is statistically indistin-

guishable between E0 and D$. Similarly, this proof also can show the e
(s∗1)
1 in D$

statistically close to uniform over Zmq .
Claim 5. A’s view in DLWE is statistically close to its view in H0.

Proof. In experiment H0, z(s∗1) = (B(s∗1))>s(s∗1) + e
(s∗1)
0 where e

(s∗1)
0 is sampled by

SamplePre algorithm. In DLWE, we let z(s∗1) = z and recall that z = B>s + e for

e ← DZm,αq
√

2. The proof to show e
(s∗1)
1 in H0 and DLWE indistinguishable is as

same as the last claim. Under the setting of the parameters given in Sect. 4.3,
and by Lemma 10, z(s∗1) is indistinguishable between H0 and D$.

H1 : This experiment is the same as experiment E1 except that the proof π is now

computed using the witness {s(i∗), i∗}(s
∗
1)

i∗∈[N∗] rather than {s(i∗), i∗}(s
∗
0)

i∗∈[N∗].

The rest of the proof is straightforward. H1 is indistinguishable from E1 by
exactly the same argument used to show the indistinguishability of H0 and E0.
By the witness indistinguishability of the proof system, H0 and H1 are indistin-
guishable. This completes the proof.

Theorem 3 (Linkability). Set the parameters as Sect. 4.3, the LRS scheme
is signer-linkable in the standard model.

Proof. Setup Phase. S takes as input a security parameter n and a randomness
γst to invoke PP← Setup(1n; γst) algorithm, then send (PP, γst) to A.

Output Phase. A outputs l (l ≥ 2) (messages, ring of verification keys, signa-
ture) tuples (R∗i ,µ

∗
i , Σ

∗
i ).

Infer that there must existing a ring member in the union set ∪i=1R∗i who gen-
erated at least two signature tuples. In other words, this ring member, assuming
his index is s, had produced two valid one-time verification keys (vkOTS, vk∗OTS).
Let vkOTS = AcomTA(s) be the honest one-time verification key. Now we analyze
A how to produce the vk∗OTS. There are two ways:

– The first way is A produces a A∗com 6= Acom. In this case, we have F′chk =[
A∗comTA(s) − Acom|Acom

]
. Recall the BasisExtBindSK algorithm, A needs

to compute a low-norm basis TF′chk
=
[

−R0 −R1

T
A(s)−R0 T

A(s)−R1

]
such that F′chk ·

TF′chk
= 0 (mod q). It holds that AcomTA(s) − A∗comTA(s)R0 = 0 (mod q)

and AcomTA(s)−A∗comTA(s)R1 = 0 (mod q). Then we have A∗com(TA(s)R0−
TA(s)R1) = 0 (mod q) holds. As the parameters set in Sect. 4.3, (TA(s)R0−
TA(s)R1) will be a valid SIS solution.

21



– The second way is A produces a TA∗ 6= TA(s) . Let N∗ = | ∪i=1 R∗i |. In
this case, existing an index s′ ∈ [N∗] satisfy that, F(s′) =

[
AcomTA∗ |Acom +

A(s′)
]
, and F(s′) has the basis TF(s′) =

[
−R0 −R1

TA∗R0 TA∗R1

]
by the BasisExtBindA-

com algorithm. It holds that A(s′)TA∗R0 = 0 (mod q) and A(s′)TA∗R1 = 0
(mod q). Then we have A(s′)(TA∗R0 −TA∗R1) = 0 (mod q) holds. As the
parameters set in Sect. 4.3, (TA∗R0 −TA∗R1) will be a valid SIS solution.

This completes the proof.

Theorem 4 (Non-Slanderability). Set the parameters as Sect. 4.3, the LRS
scheme is signer-non-slanderable in the standard model.

Proof. Setup. As same as the Setup phase of unforgeability proof.

Probing. As same as the Probing phase of unforgeability proof.

Output. A outputs two signature tuples (µ∗,R∗, Σ∗) and (µ̂, R̂, Σ̂). Let

N∗ = |R∗|. Check if Ver(µ∗,R∗, Σ∗) = 1 and (µ∗,R∗, Σ∗) /∈ L and (µ̂, R̂, Σ̂) ∈ L

and R∗ ⊆ S \C and the proof π∗ is correct and Link(R∗,µ∗, Σ∗, R̂, µ̂, Σ̂) = 1 i.e.,

vk∗OTS = v̂kOTS, otherwise aborts. Let vk∗OTS = A∗comT∗A and v̂kOTS = AcomT̂A.

We analyze A how to produce vk∗OTS and make vk∗OTS = v̂kOTS holds. There are
two ways:

– The first way is A selects a basis T∗A and then computes the A∗com such that

A∗comT∗A = AcomT̂A holds. We have F′chk =
[
A∗comT∗A−Acom|Acom

]
. By the

BasisExtBindSK algorithm, A needs to generate a low-norm basis TF′chk
=[

−R0 −R1

T∗A−R0 T∗A−R1

]
such that F′chk ·TF′chk

= 0 (mod q). It holds that AcomT∗A−
A∗comT∗AR0 = 0 (mod q) and AcomT∗A−A∗comT∗AR1 = 0 (mod q). Then we
have A∗com(T∗AR0 − T∗AR1) = 0 (mod q) holds. As the parameters set in
Sect. 4.3, (T∗AR0 −T∗AR1) will be a valid SIS solution.

– The second way is A corrupts the T̂A and then computes a A∗com such
that A∗comT̂A = AcomT̂A holds. In this case, existing an index s ∈ [N∗]

satisfy that, F(s) =
[
AcomT̂A|Acom + A(s)

]
, and F(s) has the basis TF(s) =[

−R0 −R1

T̂AR0 T̂AR1

]
by the BasisExtBindAcom algorithm. It holds that AcomT̂AR0−

A∗comT̂AR0 = 0 (mod q) and AcomT̂AR1−A∗comT̂AR1 = 0 (mod q). Then

we have A∗com(T∗AR0− T̂AR0) = 0 (mod q) and A∗com(T∗AR1− T̂AR1) = 0

(mod q) holds. As the parameters set in Sect. 4.3, (T∗AR0 − T̂AR0) and

(T∗AR1 − T̂AR1) will be valid SIS solutions.

This completes the proof.

References

1. Au, M.H., Chow, S.S.M., Susilo, W., Tsang, P.P.: Short linkable ring signatures
revisited. EuroPKI 2006, 101115 (2006). https://doi.org/10.1007/11774716_9

2. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Constant-size id-based linkable and
revocable-iff-linked ring signature. INDOCRYPT 2006, 364378 (2006). https://
doi.org/10.1007/11941378_26

22

https://doi.org/10.1007/11774716_9
https://doi.org/10.1007/11941378_26
https://doi.org/10.1007/11941378_26


3. Au, M.H., Liu, J.K., Susilo,W., Yuen, T.H.:Secureid-based linkable and revocable-
iff-linked ring signature with constant-size construction. Theor. Comput. Sci. 469,
114 (2013). https://doi.org/10.1016/j.tcs.2012.10.031

4. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

5. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension
and shorter-ciphertext hierarchical IBE. In: Rabin T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 98–115. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14623-7_6

6. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices.
Theory of Computing Systems, 48(3), 535–553, https://doi.org/10.1007/
s00224-010-9278-3 (2009)

7. Backes, M., Döttling, N., Hanzlik, L., Kluczniak, K., Schneider, J.: Ring signatures:
Logarithmic-size, no setup–from standard assumptions. In: Ishai Y., Rijmen V.
(ed.) EUROCRYPT 2019. LNCS, vol. 11478. pp. 281-311. Springer, Heidelberg
(2019). https://doi.org/10.1007/978-3-030-17659-4_10

8. Boneh, D., Dagdelen, O., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, H,D., Wang, X.Y. (ed.) ASIACRYPT
2011. LNCS, vol. 7073. pp. 41-69. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25385-0_3

9. Boyen, X., Haines, T.: Forward-secure linkable ring signatures from bilinear maps.
Cryptography 2(4), 35 (2018). https://doi.org/10.3390/cryptography/2040035

10. Bender, A., Jonathan Katz, J., Morselli, R.: Ring signatures: Stronger definitions,
and constructions without random oracles. In: Halevi S., Rabin T. (ed.) TCC 2006.
LNCS, vol. 11478. pp. 60-79. Springer, Heidelberg (2006). https://doi.org/10.
1007/11681878_4

11. Baum, C., Lin, H., Oechsner, S.: Towards practical lattice-based one-time link-
able ring signatures. ICICS 2018, 303322 (2018). https://doi.org/10.1007/
978-3-030-01950-1_18

12. Branco, P., Mateus, P.: A code-based linkable ring signature scheme.ProvSec2018,
203219 (2018). https://doi.org/10.1007/978-3-030-01446-9_12

13. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikun-
tanathan, V., Vinayagamurthy, D.: Fully key- homomorphic encryption, arithmetic
circuit abe and compact garbled circuits. In: Nguyen P.Q., Oswald E. (ed.) EU-
ROCRYPT 2014. LNCS, vol. 11478. pp. 281-311. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5_30

14. Boyen, X., Li, Q.Y.: Towards tightly secure lattice short signature and id-
based encryption. In: Cheon J., Takagi T. (ed.) ASIACRYPT 2016. LNCS,
vol. 11478. pp. 404-434. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53890-6_14

15. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: Logarithmic (Link-
able) Ring Signatures from Isogenies and Lattices. In: Moriai, S., Wang, H.X. (ed.)
ASIACRYPT 2020. LNCS, vol. 12492. pp. 464–492. Springer, Heidelberg (2020).
https://doi.org/10.1007/978-3-030-64834-3_16

16. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 6273. ACM Press, New
York (1993) https://doi.org/10.1145/168588.168596

17. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Noar,
M. (ed.) ITCS 2014. LNCS, vol. 11478. pp. 1-12. Springer, Heidelberg (2014).
https://doi.org/10.1145/2554797.2554799

18. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revis-
ited. Journal. ACM, pp. 557–594. ACM Press. (2004). https://doi.org/10.1145/
1008731.1008734

23

https://doi.org/10.1016/j.tcs.2012.10.031
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/s00224-010-9278-3
https://doi.org/10.1007/s00224-010-9278-3
https://doi.org/10.1007/978-3-030-17659-4_10
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.3390/cryptography/2040035
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/978-3-030- 01950-1_18
https://doi.org/10.1007/978-3-030- 01950-1_18
https://doi.org/10.1007/978-3-030-01446-9_12
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-662-53890-6_14
https://doi.org/10.1007/978-3-662-53890-6_14
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/2554797.2554799
https://doi.org/10.1145/1008731.1008734
https://doi.org/10.1145/1008731.1008734


19. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110. pp. 523-552.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27

20. Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain
hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449466. Springer,
Heidelberg (2005). https://doi.org/10.1007/11535218_27

21. Eaton, E., Song, F.: A Note on the Instantiability of the Quantum Random Oracle.
In: Ding, J.T., Tillich, J (ed.) PQC 2020. LNCS, vol. 12100. pp. 503-523. Springer,
Heidelberg (2020). https://doi.org/10.1007/978-3-030-44223-1_27

22. Fujisaki, E.: Sub-linear size traceable ring signatures without random oracles. CT-
RSA 2011, 393415 (2011). https://doi.org/10.1007/978-3-642-19074-225

23. Fujisaki, E., Suzuki, K.: Traceable ring signature. PKC 2007, 181200 (2007). https:
//doi.org/10.1007/978-3-540-71677-8_13

24. Grilo, A., Hövelmanns, K., Hülsing, A., Majenz, C.: Tight adaptive reprogramming
in the QROM. IACR Cryptol. ePrint Archive 2020, 1361 (2020). https://eprint.
iacr.org/2020/1361

25. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ishai Y., Rijmen V. (ed.) STOC 2019. LNCS, vol.
11478. pp. 197-206. ACM (2008). https://doi.org/10.1145/1374376.1374407

26. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R.,
Garay, J.A (ed.) CRYPTO 2013. LNCS, vol. 8042. pp. 75-92. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40041-4_5

27. Gordon, S.D., C., Katz, J., Vaikuntanathan, V.: A group signature scheme
from lattice assumptions. In: Abe M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477. pp. 395-412. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-17373-8_23

28. Katz, J.: Digital Signatures. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-0-387-27712-7

29. Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Linkable ring signature with un-
conditional anonymity. IEEE Trans. Knowl. Data Eng. 26(1), 157165 (2014).
https://doi.org/10.1109/TKDE.2013.17

30. Lu, X., Au, M.H., Zhang, Z.: Raptor: a practical lattice-based (linkable) ring sig-
nature. In: Deng, R.H (ed.) ACNS 2019. LNCS, vol. 11464. pp. 110-130. Springer,
Heidelberg (2019). https://doi.org/10.1007/978-3-030-21568-2_6

31. Lai, Q.Q., Liu, F.H., Wang, Z.D.: Almost tight security in lattices with polynomial
moduliPRF, IBE, all-but-many LTF, and more. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V (ed.) PKC 2020. LNCS, vol. 12110. pp. 652-681. Springer,
Edinburgh (2020). https://doi.org/10.1007/978-3-030-45374-9_22

32. Lyubashevsky, V., Micciancio, D.: Asymptotically Efficient Lattice-Based Dig-
ital Signatures. J. Cryptol. 31(3), 774-797 (2018). https://doi.org/10.1007/
s00145-017-9270-z

33. Leurent, G., Nguyen, P.Q.: How risky is the random-oracle model?. In: Halevi, S
(ed.) CRYPTO 2009. LNCS, vol. 5677. pp. 445–464. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-030-29959-0_35

34. Liu, Z., Nguyen, K., Yang, G.M., Wang, H.X., Wong, D.S.: A Lattice-Based Link-
able Ring Signature Supporting Stealth Addresses. In: Sako, K., Schneider, S.A.,
Ryan, P (ed.) ESORICS 2019. LNCS, vol. 11735. pp. 726–746. Springer, Heidelberg
(2019). https://doi.org/10.1007/978-3-030-29959-0_35

35. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for ad hoc groups. In: Ishai Y., Rijmen V. (ed.) ACISP 2004, 325–335 (2004).
https://doi.org/10.1007/978-3-540-27800-928

36. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: a cryptographic
perspective. vol 671. Kluwer Academic Publishers, 2002. https://dblp.org/rec/
books/daglib/0018102.bib

24

https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/11535218_27
https://doi.org/10.1007/978-3-030-44223-1_27
https://doi.org/10.1007/978-3-642-19074-2 25
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/978-3-540-71677-8_13
https://eprint.iacr.org/2020/1361
https://eprint.iacr.org/2020/1361
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-17373-8_23
https://doi.org/10.1007/978-3-642-17373-8_23
https://doi.org/10.1007/978-0-387-27712-7
https://doi.org/10.1007/978-0-387-27712-7
https:// doi.org/10.1109/TKDE.2013.17
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-3-030-45374-9_22
https://doi.org/10.1007/s00145-017-9270-z
https://doi.org/10.1007/s00145-017-9270-z
https://doi.org/10.1007/978-3-030-29959-0_35
https://doi.org/10.1007/978-3-030-29959-0_35
https:// doi.org/10.1007/978-3-540-27800-9 28
https://dblp.org/rec/books/daglib/0018102.bib
https://dblp.org/rec/books/daglib/0018102.bib


37. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Pointcheval, D. (ed.) EUROCRYPT 2012. LNCS, vol. 7237. pp. 700-718.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

38. Micciancio, D., Regev., O.: Worst-case to average-case reductions based on gaussian
measures. SIAM Journal on Computing, 37 (1), 267–302. https://doi.org/10.
1137/s0097539705447360

39. Micciancio, D., Vadhan. P, S.: Statistical Zero-Knowledge Proofs with Efficient
Provers: Lattice Problems and More. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729. pp. 282–298. Springer, Heidelberg (2003). https://doi.org/10.1007/
978-3-540-45146-4_17

40. NIST. SHA-3 standard: Permutation-based hash and extendable-output func-
tions.Technical report, 2015. Available at https://doi.org/10.6028/NIST.FIPS.
202.

41. Peikert, C., Shiehian, S.: Non-interactive zero knowledge for NP from (plain)
learning with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019.
LNCS, vol. 11692, pp. 89114. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26948-7_4

42. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: 37th ACM STOC, pp. 8493 (2005). https://doi.org/10.1145/1060590.
1060603

43. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C (ed.)
ASIACRYPT 2001. LNCS, vol. 2248. pp. 552565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1_32

44. Sun, S., Au, M.H., Liu, J.K., Yuen, T.H.: Ringct 2.0: A compact accumulator-
based (linkable ring signature) protocol for blockchain cryptocurrency mon-
ero. In: ESORICS 2017 Part II. pp. 456474 (2017). https://doi.org/10.1007/
978-3-319-66399-9_25

45. Sokolov.A.A.: Lin2-Xor Lemma and Log-size Linkable Ring Signature. IACR Cryp-
tol. ePrint Archive 2020, 688 (2020). https://eprint.iacr.org/2020/688

46. Torres, W.A., Steinfeld, R., Sakzad, A., Liu, J.K., Kuchta, V., Bhattacharjee,
N., Au, M.H., Cheng, J.: Post-quantum one-time linkable ring signature and
application to ring confidential transactions in blockchain (lattice ringct v1. 0).
In: Susilo, W., Yang, G (ed.) Information Security and Privacy 2018. LNCS,
vol. 10946. pp. 558576. Springer, Heidelberg (2019). https://doi.org/10.1007/
978-3-319-93638-3_32

47. Torres, W.A., Steinfeld, R., Sakzad, A., Liu, J.K., Kuchta, V.: Post-quantum
linkable ring signature enabling distributed authorised ring confidential trans-
actions in blockchain. IACR Cryptol. ePrint Archive 2020, 1121 (2020). https:
//eprint.iacr.org/2020/1121

48. Torres,W.A., Kuchta, V., Steinfeld, R., Sakzad, A., Liu, J.K., Cheng, J:. Lattice
ringct v2. 0 with multiple input and multiple output wallets. In: Jaccard, J.J (ed.)
in Information Security and Privacy 2019. LNCS, vol. 11547. pp. 156175. Springer,
Heidelberg (2019). https://doi.org/10.1007/978-3-030-21548-4_9

49. Tsang, P.P., Wei, V.K.: Short linkable ring signatures for e-voting, e-
cash and attestation. ISPEC 2005, 4860 (2005). https://doi.org/10.1007/
978-3-540-31979-55

50. Tsang, P.P., Wei, V.K., Chan, T.K., Au, M.H., Liu, J.K., Wong, D.S.: Separable
linkable threshold ring signatures. INDOCRYPT 2004, 384398 (2004). https://
doi.org/10.1007/978-3-540-30556-9_30

51. Yuen, T.H., Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Efficient linkable and/or
threshold ring signature without random oracles. Comput. J. 56(4), 407421 (2013).
https://doi.org/10.1093/comjnl/bxs115

52. Zhang, H., Zhang, F., Tian, H., Au, M.H.: Anonymous post-quantum cryptocash.
In: Meiklejohn, S., Sako, K (ed.) Financial Cryptography and Data Security 2018.
LNCS, vol. 10957. pp. 461–479. Springer, Heidelberg (2018). https://doi.org/
10.1007/3-540-36178-2_33

25

https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1137/s0097539705447360
https://doi.org/10.1137/s0097539705447360
https://doi.org/10.1007/978-3-540-45146-4_17
https://doi.org/10.1007/978-3-540-45146-4_17
https://doi.org/10.6028/NIST.FIPS.202.
https://doi.org/10.6028/NIST.FIPS.202.
https://doi.org/10.1007/978-3-030- 26948-7_4
https://doi.org/10.1007/978-3-030- 26948-7_4
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-319-66399-9_25
https://doi.org/10.1007/978-3-319-66399-9_25
https://eprint.iacr.org/2020/688
https://doi.org/10.1007/978-3-319-93638-3_32
https://doi.org/10.1007/978-3-319-93638-3_32
https://eprint.iacr.org/2020/1121
https://eprint.iacr.org/2020/1121
https://doi.org/10.1007/978-3-030-21548-4_9
https://doi.org/10.1007/978-3-540-31979-55
https://doi.org/10.1007/978-3-540-31979-55
https:// doi.org/10.1007/978-3-540-30556-9_30
https:// doi.org/10.1007/978-3-540-30556-9_30
https://doi.org/10.1093/comjnl/bxs115
https://doi.org/10.1007/3-540-36178-2_33
https://doi.org/10.1007/3-540-36178-2_33

	Lattice-Based Linkable Ring Signature in the Standard Model

