Nonce-Misuse Resilience of
Romulus-N and GIFT-COFB

Akiko Inoue, Chun Guo, and Kazuhiko Minematsu

! NEC, Kawasaki Japan
2 School of Cyber Science and Technology, Shandong University, Qingdao, Shandong,
266237, China
3 Key Laboratory of Cryptologic Technology and Information Security of Ministry of
Education, Shandong University, Qingdao, Shandong, 266237, China
4 Shandong Research Institute of Industrial Technology, Jinan, Shandong, 250102,
China
a_inoue@nec.com,chun.guo.sc@gmail.com,k-minematsu@nec.com

Abstract. We analyze nonce-misuse resilience (NMRL) security of Ro-
mulus-N and GIFT-COFB, the two finalists of NIST Lightweight Cryp-
tography project for standardizing lightweight authenticated encryption.
NMRL, introduced by Ashur et al. at CRYPTO 2017, is a relaxed security
notion from a stronger, nonce-misuse resistance notion. We proved that
Romulus-N and GIFT-COFB have nonce-misuse resilience. For Romulus-N,
we showed the perfect privacy (NMRL-PRIV) and n/2-bit authenticity
(NMRL-AUTH) with graceful degradation with respect to nonce repeti-
tion. For GIFT-COFB, we showed n/4-bit security for both NMRL-PRIV
and NMRL-AUTH notions.
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1 Introduction

Authenticated encryption (AE) is a symmetric-key cryptographic function that
provides simultaneously confidentiality and message integrity. Popular AE schemes,
such as GCM [25], OCB [24}29,130], are nonce-based AE (NAE), where a nonce
is a value that never repeats at encryptions. In principle, the nonce uniqueness
is maintained, say by using a counter. However, the nonce may repeat in prac-
tice due to various reasons. The problem of repeating nonce is typically called
nonce-misuse, and has been recognized as a real threat shown by many practical
attacks, such as [12,/33].

Nonce-misuse attacks against NAE can be devastating. Most notably, GCM
reveals its authentication key even with a single nonce-misuse [23|, which implies
universal forgery attacks. Although these attacks do not invalidate the original
security proofs assuming a nonce-respecting adversary, they are extensively
studied for various NAE algorithms due to their practical relevance [2}20}281[32].



The problem of nonce-misuse has been formally studied by Rogaway and
Shrimpton [31]. They defined Misuse-resistant AE (MRAE) which ensures the
maximum security against nonce-misuse, called nonce-misuse resistance (NMR).
In essence, MRAE ensures that a repeat of nonce in encryption queries does
not reveal anything as long as the entire input tuple of (nonce, associated data,
plaintext) is unique. Authenticity is also maintained even if a nonce is repeated.
This is very strong protection, however, inherently requires off-line, two-pass
computation.

Reflecting the increasing need for protection for resource-constrained devices,
NIST is conducting a lightweight cryptography (LWC) project aiming at stan-
dardizing lightweight AE schemes from 201@ After two selection rounds, NIST
announced 10 finalists in March 2022. To make lightweight AE schemes, it is
natural to focus on NAE. In fact, NIST did not explicitly require any form of
security against nonce reuse/misuse, just mentioning that any security property
maintained even when nonce repeats could be advertised as a feature. As a
result, a large fraction of the initial submissions to NIST LWC are NAEs, and
among the 10 finalists, only one finalist (Romulus [18}22]) includes an MRAE
(Romulus-M, a secondary member). Considering the aforementioned potential
risk of nonce-misuse, investigating the effect of nonce-misuse on the finalists is
practically relevant. Although there is some progress, still nonce-misuse analysis
is scarce as pointed out by [1], in particular within a formal provable security
framework (see Related Work below for a detailed discussion).

In this paper, we study two NIST LWC finalists, Romulus-N (the primary
member of Romulus) and GIFT-COFB [4]. They are NAEs and not MRAEs.
Instead, we focus on a relaxed security notion against nonce-misuse, called Nonce-
Misuse ResiLience (NMRL)P} introduced by Ashur et al. at CRYPTO 2017 [2].
They defined privacy (NMRL-PRIV) and authenticity (NMRL-AUTH) notions.
Intuitively, NMRL notions tell if a repeat of a nonce N can affect messages
using nonces different from N. See [2] (also Section |2 for the definitions and
its relevance, security of popular schemes, etc. For example, GCM and OCB (of
the first version) meet neither NMRL-PRIV nor NMRL-AUTH [2]. For example,
Vanhoef and Piessen [35] mentioned the importance of resilience against nonce-
misuse as mitigation of their attack against WPA2 and suggested CCM and
MRAE:S as alternatives to GCM. NIST also mentioned Ashur et al. in their status
report [34].

Besides being finalists, our motivation to study Romulus-N and GIFT-COFB
is based on the fact that they share structural similarity (namely, COFB [13]).
Their serial structure has also some similarity to Sponges but it lacks “capacity”
part, thus most of the output blocks of a primitive are given to the adversary.
NMRL security analysis of such structure has not been done before, and we
cannot reuse any results on Sponges or other finalists. Regarding the original
proofs of Romulus-N and GIFT-COFB, some of them could be reused, however we
need dedicated analysis for the major remaining parts (see below).

® https://csrc.nist.gov/Projects/lightweight-cryptography
S This acronym is to avoid confusion with nonce-misuse resistance.
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We first show that Romulus-N and GIFT-COFB are not misuse resistant
(Sect. . Under the NMR setting, the privacy notion (NMR-PRIV) is impossible
to meet for their on-line computations, and the authenticity notion (NMR-
AUTH) is broken with few queries with a repeated nonce, which we call the chain
transition attack.

A natural question here is their NMRL security. We answer this positively
by showing that Romulus-N and GIFT-COFB have NMRL-PRIV and NMRL-
AUTH security. In particular, Romulus-N has perfect NMRL-PRIV security and
n/2-bit NMRL-AUTH security with graceful degradation with respect to the
maximum number of a nonce repeat (i.e., if nonce does not repeat too much
it achieves almost ideal, about n-bit authenticity), for n = 128. This means
that Romulus-N maintains a strong resilience against nonce-misuse. This result
is particularly relevant since Romulus-N is a primary member of Romulus, and
shows the completeness of Romulus as a family of AEs having different levels of
protection against nonce-misuse. For Romulus-N, while NMRL-PRIV security
proof is obvious thanks to the explicit domain separation via tweak, our NMRL-
AUTH proof together with graceful degradation requires a detailed analysis.

For GIFT-COFB, the original security bound is (n/2 — logn)-bit for both
privacy and authenticity. We showed n/4-bit NMRL-PRIV and NMRL-AUTH
security for n = 128. These bounds are quantitatively weak, however still not
pointless in some use cases. Say, if nonce repeat is fairly infrequent and can
be detected within a short period, the administrator can take action, e.g., by
resetting the devices, before the damage gets too large. In contrast, when nonce
repeat occurs for GCM, the adversary immediately mounts a universal forgery
with probability one.

We stress that our proofs for GIFT-COFB are quite different from the original
proofs for nonce-respecting adversary, which crucially depend on the fact that
nonces in the encryption queries are unique. Moreover, the short input mask of
n/2 bits prohibits a modular analysis via TBC such as the proofs of OCB [24}[29]
to achieve the desired bound. We found that, for NMRL analysis, such a modular
analysis indeed works from the nature of the attack. After an abstraction by
the TBC, NMRL-PRIV proof is immediate, while NMRL-AUTH proof is largely
similar to the proof of Romulus-N but the difference in the usage of tweak requires
a dedicated analysis (indeed, this difference enables the full n-bit NMRL-AUTH
security for the TBC-abstracted version). We also would like to remark that, our
NMRL proofs provide alternative nonce-respecting security proofs for GIFT-COFB
as a byproduct. The bounds are weak, only n/4 bits, but its modular structure
makes the proof more intuitive. The resulting analysis reveals the case analysis is
indeed subtle to avoid attacks (even in the nonce respecting scenario), which has
not been explicitly shown in the specification documents. We think this is a part
of our contributions: our proof eventually helps understanding the design and
implies the soundness of the construction (i.e. if n is large enough it implements
a secure NAE with sufficient NMRL security). The original proofs are rather
complex [3], and ours complement them by showing a more detailed analysis of
the domain separation, supporting its correctness.



Related Work. Two NIST LWC finalists, Ascon [16] and ISAP [15], have been
shown to have nonce-misuse resilient privacy and misuse resistant authenticity [9}
19]. NMRL security has been shown for a 2nd-round candidate Spook [8]. Elephant
showed the nonce-misuse resistance authenticity [104/11].

2 Preliminaries

Let {0,1}* be the set of all finite bit strings, including the empty string e. For
X € {0,1}*, let | X| denote its bit length. Here |¢| = 0. For integer n > 0, let
{0,1}™ be the set of n-bit strings, and let {0,1}=" = Uieto....n3 10, 1}, where
{0,1}° = {e}. Let [n] = {1,...,n} and [n] = {0,1,...,n — 1}. If X is uniformly
distributed over a set X, we write X <~ X. For two bit strings X and Y, X || Y is
their concatenation. We also write this as XY if it is clear from the context. Let 0?
(1*) be the string of 4 zero bits (i one bits), and for instance we write 10° for 1 || 0°.
We write msb; (X) (resp. 1sb;(X)) to denote the i most (resp. least) significant bits
of X. For X € {0,1}*, let | X|, = max{1, [|X|/n]}. Let (X[1],...,X[z]) <& X
be the parsing of X into n-bit blocks . Here X[1]|| X[2]] ... || X[z] = X and
x = |X|,. When X = ¢, we have X[1] <~ X and X[1] = €. Let X < i denote
the left rotation shift of X by 4 bits.

Following [29], by writing 2a for a € {0,1}*, we mean a GF(2°) multiplication
by the polynomial x, also called a doubling. Similarly, 3a means a multiplication
by x4 1, i.e. 3a = 2a ® a. They are used by GIFT-COFB with s = 64 [3].

(Tweakable) Block Cipher. A tweakable block cipher (TBC) is a keyed function
E : K x Tw x M — M, where K is the key space, Ty is the tweak space,
and M = {0,1}" is the message space, such that for any (K, Ty,) € K X Ty,
E(K, Tw,-) is a permutation over M. We interchangeably write E(K, T, M)
or Ex (T, M) or EIT((M) The decryption routine is written as (EIT()_l(),
where if C' = EZ;“’ (M) holds for some (K,T,,, M) we have M = (EIT(‘”)_l(C).
When Ty, is singleton, it is essentially a block cipher and is simply written as
E:KxM—= M.

Random Primitives. Let X, Y and T,, be non-empty finite sets. Let Func(X,))
be the set of all functions from X to ), and let Perm(X’) be the set of all
permutations over X. Moreover, let Perm(7,,X) be the set of all functions
f i Tw x X = X such that for any T € T,, f(T,-) is a permutation over
X. A uniform random permutation (URP) over X, P : X — X, is a random
permutation with uniform distribution over Perm(&X’). An n-bit URP is a URP
over {0,1}". A tweakable URP (TURP) with a tweak space T, and a message
space X, P Tw X X — X, is a random tweakable permutation with uniform
distribution over Perm(7y,, X). The decryption is written as P~* (%) for URP and

(ﬁ_l)T(*) for TURP given tweak T



Definition 1. A nonce-based authenticated encryption (NAE) is a tuple IT =
(€,D). For key space K, nonce space N, message space M and associated data
(AD) space A, the encryption algorithm & takes a key K € K and a tuple
(N,A,M) of a nonce N € N, an AD A € A, and a plaintext M € M as
input, and returns a ciphertext C € M and a tag T € T. Typically, T =
{0,1}7 for a fized, small 7. The decryption algorithm D takes K € K and the
tuple (N, A,C,T) as input, and returns M € M or the reject symbol L. The
corresponding encryption and decryption oracles are written as Ex and Dy .

An NAE scheme usually assumes each nonce in encryption queries to be
distinct. However, our security definitions consider the case that nonces may be
reused (misused) in encryption queries.

2.1 Security Definitions

Let A be an adversary that queries an oracle O and outputs a bit = € {0,1}. We
write A = 1 to denote the event that z = 1. It is a probabilistic event whose
randomness comes from those of A and O. Queries of A may be adaptive unless
otherwise specified. If there are multiple oracles O, O, .. ., AC1:92: means that
A can query any oracle in an arbitrary order unless otherwise specified.

Definition 2. For a TBC E : K x Tw X M = M, its Tweakable Pseudorandom
Permutation (TPRP)-advantage against A is defined as

AdVEP(A) i= [Pr[APE = 1] - Pr[A” = 1]

where P : Ty x M — M is a TURP and A may query any (T, M) € T, x M.
The PRP advantage of a block cipher E : K x M — M (AdV%P(A)) is similarly
defined by assuming Ty, is a singleton.

We write (¢,t)-(T)PRP adversary to mean an adversary using ¢ queries and ¢
time against the (tweakable) block cipher.

Security Notions for AE. Let II = (£,D) be an NAE scheme (Def. [I)). We
define $ oracle that takes any valid input (N, A, M) for £k and returns a random
string of |Ex (N, A, M)| bits, and L oracle that takes any valid input (N, A, C,T)
for Dg and returns L.

Definition 3 (PRIV and AUTH). The (nonce-respecting) privacy and au-
thenticity notions for I are as follows [7].

AdvPY(A;) = | Pr[Afx = 1] — Pr[Ad = 1],
Adv3"(Ay) = |Pr[ASPE = 1] — Pr{Af<+ = 1]

The adversary in the both notions are nonce-respecting, i.e., the left oracle O
takes a distinct nonce for each query. For AUTH notion, if (C,T) is returned by
the left oracle O1(N, A, M) then As cannot query the right oracle O2(N, A, C,T).

We use the term effective blocks to mean the number of actual primitive calls
invoked in a query.



Misuse Resistance. The security notions in the sense of nonce-misuse resistance
(NMR) are obtained by modifying the above notions. In particular, the privacy
notion (NMR-PRIV, Adv};"""(A1)) is obtained by allowing A; to arbitrarily
reuse nonce in encryption queries, but A; must make the entire query (N, A, M)
distinct. The authenticity notion (NMR-AUTH, Adv "™ (A;)) is obtained
similarly, by allowing As to arbitrarily reuse nonce in encryption queries, and
there is no restriction on nonces in decryption, as in the original AUTH notion.
Two-pass, off-line schemes such as SIV [31] fulfill these notions and are called
Misuse-resistant AE (MRAE). See [31] for more details.

Misuse Resilience. Nonce-Misuse ResiLience (NMRL) [2] is a relaxation
of nonce-misuse resistance. Specifically, the privacy and authenticity notions
under NMRL divide encryption queries into challenge and non-challenge ones,
and only require the adversary to be nonce-respecting among the former type
of queries. The nonce-misuse in non-challenge queries should not break the
challenge ciphertexts (for privacy) or enable forgery with the challenge nonce
(for authenticity). The definitions of |2] are as follows, where $ and L oracles as
defined earlier.

Definition 4 (NMRL-PRIV). The nonce-misuse resilience privacy advantage
against A is defined as follows.

AV (A) = [Pr[ATR < 1] — Pr[AS = 1],
A may re-use nonces with its right oracle Oz, but it may not re-use nonces with
its left oracle O1, nor may it use a nonce already queried to Os for an O1-query

and vice versa.

Definition 5 (NMRL-AUTH). The nonce-misuse resilience authenticity ad-
vantage against A is defined as follows.

AV (A) = |Pr[ATPE 1] — Pr[ATRt < 1]

)

where (i) nonces in O1 may repeat, and (i) after O1(N, A, M) returns (C,T),
O2(N,A,C,T) cannot be queried, and (iii) each monce appeared in Oy must
appear at O1 at most once, irrespective of the order of queries.

3 Brief Descriptions of Romulus-N and GIFT-COFB

3.1 Romulus-N

Romulus-N is the primary member of Romulus [18}22]. Tt is based on Skinny-128-
384+ (the 40-round variant of SKINNY [6] TBC having 128-bit block and 384-bit
tweakey). The specification of Romulus-N is given in Fig. |1} As shown in Fig.



Romulus-N uses an n x n binary matrix G defined as an n/8 x n/8 diagonal
matrix of 8 X 8 binary sub-matrices:

Gs 0 0...0
0Gs0...0
G=|: . i
0...0Gs0
0...0 0 G,

where 0 here represents the 8 x 8 zero matrix, and G, is an 8 X 8 binary matrix,
defined as

01000000
00100000
00010000
00001000
00000100
00000010
00000001
10000001

Let G for i = 0,8,16,...,n be the matrix equal to G except the (i + 1)-st
to n-th rows, which are set to all zerﬂ For our security proof, we just need the
property that G is sound:

Definition 6. A matriz G is sound, if: (1) G is regular (full-rank), and (2)
GY & I is reqular for all i = 8,16, ...,n, where I denotes the identity matriz.

The paper |22, Theorem 1] showed the perfect (nonce-respecting) PRIV bound
and n-bit AUTH bound for Romulus-N. Despite being the primary member, no
nonce-misuse security analysis has not been shown for Romulus-N in the literature.

3.2 GIFT-COFB

GIFT-COFB [4] is a block cipher-based AE that combines a variant of COFB
mode [13] and the lightweight 128-bit block cipher GIFT [5]. GIFT-COFB is a rate-
one scheme has a quite small footprint. The specification is shown in Fig. [2]in the
appendix. See also Fig. [3| for illustration. The padding padc : {0,1}* — {0,1}"
is padc(z) = z if © # € and || mod n = 0, and padc(z) = z || 107~ (l#l modn)—1
otherwise. Note that padc(e) = 10"~1. The G¢ in Fig. [2|is an n x n binary matrix
different from G of Romulus-N. It is defined as G¢ - X = (X[2], X[1] « 1) for

X[1], X[2 <22 X, X € {0,1}". Here, n = 128.
While not explicit in Fig. 2} the block process can be represented by the
following functions. Let {0,1}=" = [J;,1{0, 1}".

" This definition comes from that Romulus is defined on byte strings.



Definition 7. Let pe, : {0,1}" x {0,1}™ — {0,1}"™ such that pc, (Y, M) =
Ge Y @ M. We define pe, plp: {0,131 x {0,1}=% — {0,1}" x {0,1}=" as

pc(Y, M) = (pc, (Y, padc(M)), msbjpy (Y) & M),

pe(Y, C) = (pe, (Y, padc(msbic|(Y) ® C)),msbic (V) @ O).
The pc is used for encryption and pg is used for decryption. Note that when
(X, M) = pe(Y,C) then X = (Ge® I) - Y& C, where I is the n x n identity
matrix. We note that the matrix G¢ @ I has rank n — 1.

The designers [3] showed the security bound for the combined nonce-respecting

PRIV and AUTH notions, which is about (n/2 — logn)-bit securityff] Security
property against nonce-misusing adversary has not been shown.

4 Nonce-misuse Resistance of Romulus-N and
GIFT-COFB

Both Romulus-N and GIFT-COFB do not have NMR-PRIV and NMR-AUTH.
The lack of NMR-PRIV is clear from their on-line computation. To break NMR-
AUTH of Romulus-N, we just need two encryptions of repeating nonce and one
decryption query, which we call “chain transition” (CT) attack. The attack is
described by the following algorithm. Note that in the description, we follow the
formalism of Definition [5| and view the adversary as interacting with a pair of
oracles (01, O2) that is either (£x,Dk) or (Ex,L).

Algorithm “Chain transition” (CT) attack on Romulus-N

1 (Cl||02, T) — 01<N, A, M1 ||M2)
2 (C1]|C3, T") <= O1(N, A, Mi[| M)
3CH+— Mo G Y (M, Ch) @ (G I)(My® Cy)
4 Query Oz(N, A, C1||CY,T"), and outputs 1 iff the response is not L.
Here, M;, M/, C{ for i = 1,2, and C”, are all n bits. To understand the attack
idea, let § = Ei>""* (HashN" (4)), (X1, C1) = p(S, My), Y1 = B (X)),
(X2,Ca) = p(Vi, Ma), Yo = B2 (X), (Xo,T) = plYa, 0M); (X, CL) =
p(S. M{), Y{ = Ei "V (X7), (X5, C5) = p(¥{, M3), Y3 = E 9 (X3), (X3, ") =
p(Y5,0™) be the (intermediate) values appeared during Romulus-N encrypting
(N, A, M;||Ms) and (N, A, M{||M}). By these and by the definition of p, the n-bit
states Xo, Ya, X5,Y] can be completely recovered, i.e.,
1/'1 - G_l(MQ @ 02)7
Xo =YV1®&My =M, &G (M, & Ch),
Yll = Gil(Mé D Cé)7
X, =Y/ @ M)=Myo G (M) Ch).
8 Reflecting Inoue et al. [21], the bound was revised, maintaining the original bit
security.



By these, the decryption of (N, C1||CY, T") will compute S <+ E}N’w“ @) (HashNEK (A)),

(X1, My) < p(S,Cy), Yy + EX*D(Xy), and then (XY, M}) = p(Y1,C). It now
holds XY = V1@CY @ G(Y1) = (G1al)(Ma®Cr)o MG L ( MiaCh e (G
I)(Ms & Cy) = X). By these, it necessarily proceeds with Y3 = E%N’wM’m (X2),
(X35,T*) = p(Y2,0™) and finally finds T* = T” and returns M, ||M4 # L. This de-
viates from the ideal world response, and the attack advantage against Definition
is 1.

Almost the same attack can break NMR-AUTH of GIFT-COFB. This arises the
natural question: do they maintain any security property when nonce is misused?.
From the next sections, we answer positively by showing concrete security in the
sense of nonce-misuse resilience.

5 Nonce-misuse Resilience of Romulus-N

We establish misuse resilience security for Romulus-N in this section.

Theorem 1. Let Ay be a privacy adversary against Romulus-N using q. encryp-
tion queries with total number of effective blocks opriy, each nonce reused at most
W times, and time complexity ta,. Let Ag be an authenticity adversary using qe
encryption and qq decryption queries, with total number of effective blocks 0 autn
for encryption and decryption queries, each nonce reused at most u times, and
time complexity ta,. Further assuming ug. < 2"/6. Then

nmrl-priv tprp
dVRomulus—N[E] (Al) = AdvE (Bl)’

4 6 2
nmrl-auth tprp Hqe 944 | 444
AdvRomqus—N[E] (Ag) < AdvE (Ba) + om + on + 57

hold for some (O'priv, ta +O(apriv)) -TPRP adversary By, and for some (Uauth7 tp+
O(Jauth))—TPRP adversary Bs.

Here, 7 € [n] is the tag length. NIST submission document [18] specifies 7 = n,
thus untruncated.

5.1 Proof Intuition

For the analysis, we focus on the idealized Romulus-N oracles £[P] and D[P] that
are obtained from the real encryption and decryption oracles of Romulus-N via
replacing the TBC Ex with a TURP P. This (standard approach) introduces the
gaps Advtgp(Bl) and Advtgp(BQ) into the bounds, as indicated by Theorem

Then, the NMRL-PRIV proof just follows the nonce-respecting setting [22],
and the bound remains optimal thanks to the uniqueness of the challenge nonces.
For NMRL-AUTH, the bounds match intuitions from our attack: for every pair
of nonce-reusing encryption queries ((N7 A, M), (N, A, M’)) with wa = was and

a = d/, the distinguisher may have the equality HashN[ﬁ](A) = HashN[ﬁ](A’)



,wA,E)( ~ ~(N,w4/,a") ~

once observing ﬁ(N HashN[P](4)) = P (HashN[P](A’)) from the
ciphertexts, the probability of which should be O(ug./2™).

Such collisions “leak” useful information about the TBC ﬁ, which turns out
helpful for forgery. Therefore, (intuitively) the proof should argue that such
collisions/equalities are the “only” that can be obtained by reusing nonces.
For rigorously characterization, we employ the H-coefficient technique (see Ap-
pendix [A| for its general idea), one of the standard techniques for symmetric
provable security. In a nutshell, we show that the derived intermediate values
S; = ’Fv’(N“wM’al)(HashN[ﬁ](Ai)), i = 1,...,q., are pseudorandom modulo the
collisions. This will establish the intuition rigorously.

In the subsequent two subsections, we analyze NMRL-PRIV and NMRL-
AUTH bounds for the aforementioned idealized Romulus-N respectively.

5.2 Proof for NMRL-PRIV Bound of Theorem [

Proof for the optimal privacy security bound just follows the nonce-respecting
setting [22]: each block in {Ci,...,Cy,,T1,...,Ty, } produced by the idealized
challenge encryption oracle & [5] is generated from the output of p given to
G taking tweak unique to each block, since each nonce used by the challenge
encryption oracle £[P] is unique. As G is sound (Deﬁnitionlé[)7 if Y is independent
and random, so is G(Y). The soundness of G also ensures the uniformity of the
last ciphertext block C[m] and the tag T

5.3 Proof for NMRL-AUTH Bound of Theorem [
To apply the H-coefficient method, we fix a distinguisher D interacting either

with the real world (£[P], D[P]) or the ideal world (£[P], L). We summarize the
transcript of adversarial queries and responses in two lists Qr and Qp. The

former list
QE - ((N17A17M17017T1)7 ey (NqE7AqE7chquchqE)>

summarizes the queries to the encryption oracle, where the ¢-th tuple indi-
cates encrypting (N;, A;, M;) yielding (C;, T;) € {0, 1}Mil x {0,1}7. Let a; and
m; be the number of AD and plaintext blocks in the i-th encryption query
(N;, A, Siy, My, C;, T;), and let wa, be the corresponding w4 value. The latter list

QD = ((N17A17C15T17 bl)a cey (NQzﬂAQdJ CQd?TQd?de))7

where the i-th tuple indicates decrypting (N;, A;, C;, T;) yielding b; € {0,1}*U{L}.
Note that if Qp is attainable (i.e., can be generated in the ideal world with
non-zero probability), it has to be b; = L for all i.

At the end of the interaction, we reveal certain intermediate values to D:

— In the real world, for every encryption query (NV;, A;, M;, C;, Tﬁ, we reveal

~(N;,wa.,a; ~
the intermediate value S; < P( e )(HashN[P}(Ai)) at line [3( (see Fig.

and append it to the list Q.

10



— In the ideal world, for every pair (IV;, A;) that appears in encryption queries,
we associate a uniformly distributed n-bit string 5; and append it to the list

QF.
We thus obtain an extended list

QE = ((N17A1751aM17013T1)7"'7(NCIe7A(1e7SQe’M‘]e70(1e7T<Ie)>7

and define the adversarial transcript of queries and responses as Q = (Qg, Op).

Following the standard approach to applying the H-coefficient technique,
below we first define bad transcripts and derive the probability of obtaining bad
transcripts in the ideal world. Then, we establish the desired ratio in Eq. @ to
complete the analysis.

Bad transcripts. An attainable transcript Q is bad, if there exist two distinct
tuples (N“ A;, S;, M;, Cy, TZ), (Nj, Aj, Sj7 Mj, Cj, TJ) € Qg such that N; = Nj,
Ai # Ay, (ai,wa,;) = (aj,ws,), though S; = S;. Such transcripts are bad, since
they indicate collisions on HashN[ﬁ] and leak non-trivial information about P.
For each (4,j) such that N; = N, and A; # A;, the strings S; and S;
are uniform and independent in the ideal world, and the probability to have
S; = S; is 1/2™. For each (N, A;,Si, M;,C;,T;), the number of choices of
(N;, Aj,S;,M;,C;,T;) with N; = N, is at most g by assumption. Therefore,

Pr[Tiq4 is bad] < 'l;ie

Ratio for good transcripts. For this part, consider an arbitrary attainable

transcript @ = (Qg, Qp). For any i, let H; = HashN[P]|(A;). In the ideal world,
each pair (NV;, A;) is associated with a uniformly distributed n-bit string S;. Let
a be the number of distinct pairs (NV;, A;) in Qp. Then,

Pr[Tiqy = Q] = Pr[Si,i =1, ...,qe}
x Pr[Encrypt[P](N;, Si, My) = (Ci, T3) | Sivi =1, ..., qc]
x Pr[Tia = Qp | Qp]

=1

1 ~
2(17" X Pr[Encrypt[P](Ni, Si7 MZ) = (Cla E) | S’HZ =1,.., QG] .
The equality Pr [Tid =0p|Q E] = 1 holds because if Qp is attainable then all
the responses by, ..., bq, in Qp are L, and because the ideal world right oracle L
always returns L.

On the other hand, in the real world, we have

PrTie = Q] = Pr[P" "™ (HashN[P](A,)) = Sivi = 1, ... q.]

X Pr[Encrypt[P}(N“S“Ml) = (C“E) | S’HZ =1, "'7Q€]
X Pr[Tre =0p | QE}

11



Thus,

Pr[T = Q)
Pr[Tiq = Q]

~(Niywa,ai) =

— 297 % Pr[P (HashN[P](4;)) = Siyi =1, ..., qc]

X Pr[T,e = QD | QE] (1)

~(Ni,wa,;,a; = .

Analyzing Pr[P( A )(HashN[P] (A,)) =8;,1=1, ...,qe]. We follow
the approach of [17]. Given P, we define a “bad predicate” BadH on P: BadH(P)
holds if there exist (NiaAi7Si7MiaCi7Ti)a (Nj,Aj,Sj,Mj,Cj,Tj) S QE such

that N; = NVj, A; # Aj, (ai,aAi) = (aj,aAj), though H; = HashN[P](4;) =

HashN[P](4,) = H;.
In [22] (Case 3-2, page 78)[|it was proved that

PI"":’[H,L = Hj | NZ = Nj A Al 7& Aj A (ai,aAi) = (aj7a,4j)} < —
for any (i, 7). Therefore,

Pr[BadH(P)] < 3 3 23" < 3;‘3

(Ni,Aq,8:,M;,C;,T;) (Nj,Aj,S;,M;,C5,T;):Nj=N;

It is easy to see that, conditioned on ﬁBadH(ﬁ), H; = Hj & S; = S; holds
for any (i, j) with N; = Nj A Aj # Aj A (ai,wa,) = (aj,wa,). By this,

Pr[P(Ni,wAi 105) (Hz) —Si=1, .“7%}
2 PI‘ I:E;(Ni’wAi ’Ti) (Hz) = SMZ - 17 L] qe A _‘BadH(iS)]
> (1 - Pr[BadH(E)])
de . —_
X HPr[E(N“”“““”(Hi) = 8 [P () = 855 =1, — 1 A —~BadH(P)] .
i=1 Pi
Now:

= If (N, wa,,@;) # (Nj,wa,, a;) for all j € [i — 1], then clearly p; = 1/2";

- If (Nz;Az) = (Nj7Aj) for some _] S [Z — 1], then pi = 1,

— Finally, if (N;,wa,,@;) = (Nj,wa,,a;) (though A; # Aj) for some j € [i — 1],
then:

9 More clearly, their Case 3-2 considers the probability to have
=(Nwa,a) a/

P (HashN[E](A)) = E( ¢ )(HashN[E}(A')) for an encryption query
(N,A,M,C,T) and a decryption query (N, A’,C’,T') such that N = N, C = C’,
A # A’ though (a,wa) = (a’,war). This equals the probability to have the hash

collision HashN[P](A) = HashN[P](A’), and the probability 3/2" can be extracted
from [22].

N’,ﬂLuA/7
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e H; # H, conditioned on —BadH(P);

e S; #S; conditioned on —(B-1);

e The number of j € [i — 1] such that (N;,wa,,@;) = (Nj,wa;,a;) is at
most p by our assumption on nonce reuse.

~(Nj,wa,,a; . . ~(N;,wa,,a;
Thus, conditioned on P( 4 )(Hj) =55,j=1,...,i—1, P( . )(Hl)

remains uniformly distributed in a set of size at least 2™ — p, and the set
includes the “target” S;. By these, 1/2" < p; < 1/(2" — p) in this case.

As per our assumption, the number of distinct pairs (N, A) in the encryption
queries is . This also provides the number of ¢ such that p; < 1. By this, Eq.
is simplified to

Pr[T.. = 9]
Pr[Tiy = Q]

Y

9am 5 (1 - Pr[BadH(ﬁ)]) X (%)a x Pr[Tie = Op | Q]

(1 289) xPe[Toe = Qo | Q5]

v

Analyzing Qp. It remains to bound Pr[T,e =0p | QE]. For this, we use

PI‘[Tre = QD | QE} = 1- PI‘[D[P](N,;,A,;,C,’,T,’) 7é 1
for some (N;, A;,C;, Ti,b;) € Op | QE}

1= qa x max Pr[D[P](N;, A;, C;, T;) # L | Qp]. (2)
1€|q4

v

To analyze max;e[q,) Pr[D[iS] (N;,4;,C;,T;) # L | Qg|, we consider an arbi-
trary decryption query (N, A, C, T) (omitting the subscript), and follow the analysis
in [22]. Our analysis deviates from [22] in that, our condition that encryption
queries yield the extended transcript Qp has a non-negligible impact on the
randomness P, and this will be reflected in the subsequent Case 3. Concretely,
let o’ and m’ be AD and ciphertext block lengths of the single decryption query
(N,A,C,T), and let wy and we be the corresponding constants. Let T* be the true
tag value for (N, A, C), i.e.,

Pr[D[P](N,A,C,T) # L | Q| = Pry[T* =T| Qg].

Following Iwata et al. [22, pages 76-79], we consider three cases.

Case 1: N # N; for all i € [g.]. The analysis just follows Case 1 of |22, page 76].
Briefly, during D[P](N, A, C, T), the final “tag generation” TBC-call (line in Fig.
will use a unique tweak (N, w¢,m’) that is different from all the tweaks used

in the ¢g. encryption queries. This means the produced true tag T* is uniformly
distributed, and Pry [T*=T| Qg|] =1/2".

13



Case 2: N = N; for some i € [qe], though C # C;. Let H; = HashN[P](A;),

5 ~(N,wy,a’)

H = HashN[P](A), s =P (H). We are able to follow the analysis of Case
2 of |22, page 76]. The core idea is that, to have T = T* for the true tag T*
for (N,A,C), it has to be either H; # H and H;,H satisfy certain “non-trivial”
relations, or the two processes Encrypt[P](N;, S;, M;) and Decrypt[P](N, S, C) made
distinct calls to P with outputs satisfy certain “non-trivial” relations. But in
both cases, distinct calls to P give rise to two random n-bit intermediate values,
and the probability to have such relations is O(1/27). More precisely, it holds

Pry[T* =T | Qp] = 2/27 +2/2".

Case 3: N = N; for some i € [q.], and C = C;. This means A # A;. For simplicity,
we omit the index 7 and abbreviate N;, A;, S;, M;,... as N, A, 5, M, ... and so
on. We define X[j] and Y[j] as the j-th P input and output in the message
encryption of this encryption query. Since the number of blocks in M is m, we
have j € {1,...,m}. Moreover, when j < m, Y[j] is to encrypt M[j + 1], and

X[m] is given to P with tweak (N, wpr,m) to create Y[m] which further yields
~(N,wa,a ~

the tag T. Recall that § = P """ (HashN[P](4)). Similarly, define X[j] and
Y[;j] as the j-th p input and output in the message encryption of the decryption

query (N,A,C,T), and let S = plhma )(HashN[ﬁ} (A)). Note that C = C as we
assumed, which means

X[m]=X[m] & S=s.

Thus,
Pr[T" =T | Qp]
< Pr[1* =T X[m] # X[m] A Q] + Pr[X[m] = Xm] | Q]
< 2 4 Pr[X[m] = Xm] | Q]
< 237+Pr[S:S | Q.

Following Case 3 in |22, page 78], we further distinguish two subcases.

— Subcase 3.1: (a,wa) # (a',w,). Then S is random and independent of S as
tweaks are different. This means Pr[S =8 | Qp| = 1/2". This is the same as
Case 3-1 in |22, page 78].

— Subcase 3.2: (a,w4) = (a’,wy). This is the same as Case 3-2 in |22, page 78].
In this subcase, the event S = S is equivalent with H = H. The event H = H

~Tw
only depends on P~ with tweak Ty, of the form (%, 8, %), which is independent
~T
of P~ with T\, € {(%,24,%), (x,26,%), (x,4,%), (%,20, %), (%, 21, %)} used for
encryption. Iwata et al. |22, page 79] proved that, when an (“unextended”)
encryption query transcript Qg has no nonce repetition, it holdﬂ

3

9 This can be derived from [22, Eq. (10)] and the subsequent bound p, < 2/27 + 3/2™.
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When Qp has no nonce repetition, all the ciphertexts C1,...,C,, and tags
Ti,...,T,, are uniform and independent strings, and actually no information

~Tw
on the partial tweakable random permutation P~ with tweak T, of the form
(%,8,%) can be gained from Q. In other words, Iwata et al. actually proved

3
Prgu,g,*) [H = H] < on- (3)
In our case the situation deviates: conditioned on a good transcript
QE - ((N17A17 Slth ClyTl)a ey (qua Aqea Sqe7quche?qu))a

it holds S; # S/ for any pair of indices (7, j') with N; = Nj/, A; # Aj and
(aj,wa;) = (aj,wa,,). This means P satisfies HashN[P](A;) # HashN[P](4;)
for any pair (j,j") such that N; = Nj, A; # Ay and (aj,wa;) = (aj/,wAj,),

i.e., the bad predicate BadH(P) is not fulfilled. Thus,
Prs[H =H| Qp] = Prg.s [H =H| ~BadH(P)].
This affects the concrete bound. Though, we have
Pr_os [H = H] = Proc s [H=HA BadH(P)] + Proc s [H =HA -BadH(P)],
meaning that

~ Prcos.o [H =HA ﬁBadH(Is)]
Pr s, [H =H|-BadH(P)] = —F B
" Prs.s.) [~BadH(P)]

311qe
Pr(os.o [H = H]/(1 - ).

Under the condition that pug. < 2™/6 and using Eq. , we finally obtain

IN

=~ 6
Procan [H =1 | -BadH(P)] < T
Injecting the above results into Eq. finally yields
6ga  2qa
Pr[Tre:QD|QE] 21*27*277_
and
DT 291 (12 e (4 S0 20
Pr[Tq = Q] — 2n 2n 27
3pge  64qq 2%)
> — ¢y =2
> 1- (Te+ 2+ 1),

and thus the final bound.
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6 Nonce-misuse Resilience of GIFT-COFB

We establish misuse resilience security for GIFT-COFB.

Theorem 2. Let Ay be a privacy adversary against GIFT-COFB using g. encryp-
tion queries with total number of effective blocks oprsy, and time complexity ta,,
and let Ay be an authenticity adversary using q. encryption and qq decryption
queries, with total number of effective blocks for encryption and decryption queries
Cauth and time complexity ta,. Let {max denote the mazimum number of effective
blocks in one query of As. Then

5O-griv
on/2
5JZuth 44l max
on/2 on

AdvgrlnFr#-p(r:iZ)FB[EK](Al) < AdvEP(By) +

Advgrlr;:r#-aggFB[EK](AZ) < AdviP(B2) +

hold for some (Jpriv, ta, +O(0priv)) -PRP adversary By, and for some (Uauth, ta,+
O(aauth))—PRP adversary Bs.

6.1 Proof Overview of Theorem [2

Our proofs have two steps. At the first step, we introduce a TBC called gXE©P[E]
based on Fy. This definition is not explicitly shown in the specification docu-
ment, however, we present an equivalent representation to GIFT-COFB[Ek] using
gXE©®[Ex]. We show gXE®P[Ex] has n/4-bit TPRP security. In the second
step, we analyze the NMRL-PRIV/-AUTH advantage for the idealized variant
of GIFT-COFB that uses a TURP instead of gXE®®[Ex]. We also note that it
seems infeasible to reuse the original proof [3] for our purpose as its non-modular
approach. This requires us to take a different approach.

The underlying TBC. Let n = 128, M = {0,1}", T = {0,1}" x B, where
B=(ZxJ)UH,Z=][2%"+1], T = [5], H = {*0,*1, *2, %3, %4} be the tweak
space. For any valid tweak (N, B) for B € T x J, we assume B ¢ {(0,0), (0,1)}.

Definition 8. Let gXE®®[Ex] : T x M — M be a TBC based on an n-
bit block cipher E : K x M — M, where T, and M are as defined above.
For plaintext M € M and tweak T = (N,B) € T°", the ciphertert C =
gXE®®[E](T, M) is such that

Ex(M ® (2L||0"?) ® Ge(Ex(N))), if B=x€H
C =X Ex(M@(3L|0"?) @ Ge(Ex(N))), ifB=x€H,icl[4],
Ex (M & (2371 07/?)) ifB=(i,j) €I xJ

where L = msb,, )5(Ex(N)) and G¢ is as defined at Sect. .

Definition |8 is a variant of generalized XE/XEX mode [29]. The TPRP
advantage of gXE®P[E] is proved as follows, using [26, Theorem 4.1].
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Theorem 3. For any adversary A using q encryption queries,

AdvPP . [P](A) < 54
gXECOFB —= 277,/2’

where P is an n-bit URP.

We devote to prove Theorem [3]in the remaining of this subsection. We observe
that Definition [8| is a variant of generalized XE/XEX mode [29]. To prove its
security we rely on the following Theorem, which is obtained by simplifying |26},
Theorem 4.1]. The scheme in [26] is as followﬂ Let gXE[Ek] : Ty X M — M,
where T, = {0,1}™ x B for a finite set B, be a generalized XE mode such that,
for plaintext M € {0,1}" and tweak T = (N, B) € T, the ciphertext C is

C=Ex(M®?5),

where V = Eg(N) and S = F(B,V), for some (deterministic) function F :
B x {0,1}™ — {0,1}"™.

Definition 9. [26] Let F : Bx{0,1}™ — {0,1}". F is said to be (¢,, §)-uniform
if

max{ max Pr[F(B,V)® F(B',V) =4,
B£B,5€{0,1}n

max  Pr[F(B,V)& F(B, V') = 5]} <e,
B,B’,6€{0,1}"

Pr[F(B,V) = §] <
pana r[F(B,V) =4 <~,

Pr[F(B,V)aV =4§] <
DA r[F(B,V)® 1<¢

hold, where the probability is defined by V and V' (if exists), independently and
uniformly distributed over {0,1}™.

Theorem 4. If F is (e,v,§)-uniform and P is an n-bit URP, we have

1
tprp 2
AdngE[P](A) <q <2€+’Y+f+ 2n+1> .

for adversary A using q encryption queries.

Theorem 4] is a simplified version of |26, Theorem 4.1] obtained by removing the
decryption oracle and the “optional encryption” oraclﬂ

11 The paper [26] defines a generalized XEX mode with “optional encryption”, a form of
even more generalized TBC. Our presentation here is reduced to what we just need.

12 Since we only need a TPRP rather than a (CCA-secure) TSPRP, the conditions for
F can be slightly relaxed, in particular for £. As this relaxation does not affect us
(i-e. € is also small for our case), we keep the original condition.
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The TBC gXE“®[Ef] of Def. is an instantiation of gXE[Ex| using F' defined
as follows, using L = msb,, /5(V').

Ge(V)@2L||0™?  if B=x%o€H
F(B,V) =S Ge(V)®3L||0™? if B=x%; € H, fori € [4] (4)
237 L || 0"/2 if B=(i,j) €I xJ.

Lemma 1. The F of Eq. is (1/27/2,1/27/2,1/2"/2) -uniform.

Proof. Let L = msb,,/5(V) and L = 1sb,,/o(V'). When B € H, let 3 € {2,3,32,33,3%}
be the associated coefficient of L. From the definition of G¢ in GIFT-COFB, we ob-
serve that H(V) := Gc(V)®BL || 07/ is equal to a pair of 64 bits, (BLSL, L << 1).
Note that, when V' is uniform H (V) is also uniform because L <& 1 is uniform,
and that BL @ L is also uniform given L. From this fact and the injectivity of
2¢37 mapping for n = 128 shown by Rogaway [29], for ~y, we have

Pr[Ge(V) @ BL||0W2 =6 < & ifBeH

Pr[F(B,V) = 6] = e
HEB,V) =9 {Pr[213JL||O"/2—6}§2n1/2 if B=(i,j) €I xJ

For €, let B # B’ and we have
Pr[F(B,V)& F(B',V) =]

Pr[BL | 0"2 @ B'L|0"? = 6] < 51 if B,B' € H
= Pr[Ge(V) @ BL|| 02 @ 23 L || 0V/2 =6 < & if BeH, B = (i,5)
Pr[2i3'L & 2730 L | 0"/2 = 6] < 51 if B=(i,j),B = (i,j),

()

where 8 and 3’ are associated coefficients of B and B’ when they are in H. The
first case of Eq. follows from the uniformity of the first n/2-bit part given L
and 8 # B’. The second case follows from the uniformity of Ge¢(V'). The third
case follows from the result of [29].

For &, when B € H,

Pr[F(B, V)&V =6 =Pr[(fL& L& L, (L < 1) L) = 4]
=Pr(B@1)LeL, (L« 1)®L)=4 < 27%

from the uniformity L (while (8 ® 1)L and L <« 1 may agree on most of the
bits). When B = (i,5) € T x J,

Pr[F(B, V)&V =6] = Pr[(2'3 ¢ 1)L, L) = 6] < %

from the uniformity L and independence from L. Thus, we have € = v = &

1/2"/2, This proves Lemma O

Combining Lemma [T] and Theorem 4 we obtain Theorem [3]
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6.2 Proof for NMRL-PRIV Bound of Theorem [2

We observe that GIFT-COFB[Ex] can be seen as a mode of TBC gXE®®[Ek],
which we call idealized GIFT-COFB (iGC) shown in Fig. [4]in the appendix. As
iGC[gXE®™[P]] is equivalent to GIFT-COFB[P] for URP P, and from Theorem

we have

nmrl-priv tpr nmrl-priv
AV rerp) (A) < AdVIRE 0 (B) + AdviT™(A) (6)
50’2 ; . 50’2 .
priv nmrl-priv priv
= on/2 + viccﬁ (A) < on/2

for an adversary B using oprsy queries. The last inequality follows from the same

reason as Romulus-N: all the ciphertext blocks and the tags are generated by P
taking distinct tweak values.

6.3 Proof for NMRL-AUTH Bound of Theorem [2
Similar to Eq. @, we have

Advg;;r;_agg*FB[P] (A) < Advggmm (B) + AdVinG'::"[';;]uth (A) )
5a-guth nmrl-auth
< ol +AdviGC[,Pe]u (A)

for an adversary B using o.un queries.

We evaluate Advi"(';'CrEf)«a]“th(A). The tweak values used by iGC[P] always contain

the nonce. This significantly simplifies the security analysis.

Analysis for qz = 1. We first study the case ¢g = 1 given QO = {(N;, A;, M;,C;, T;),i €
[ge]}. The NMRL-AUTH advantage is pf := Pr[T = T*|Qg], where T* is the true
tag for the decryption query Qp = (N,A,C,T)H If N # N; for all i € [g.], we
simply observe pf = 1/2". Thus we assume that N = N; holds for some (unique
by definition) ¢ € [g.]. In this case, other tuples of encryption transcript in Qg
are completely independent of T* because all P calls in iGC[IS] take a nonce. This
implies that we just need to think about the interactions between the Qp and
i-th encryption query, and eventually makes the analysis identical to the case of
nonce-respecting AUTH adversary against iGC[P]. Due to the difference in the
tweak usage for block counting and in the feedback function, we cannot follow the
analysis of Romulus-N. We provide a case analysis below, which is similar (but
somewhat more complex because of complex domain separation) to the proof for
the idealized Remus-N, called TRemus-N [22].
We will use the following lemma.

Lemma 2. Let (Y, X, M,C) be a tuple of fixred values such that pc(Y, M) =
(X,C) (where M,C € {0,1}=%, |[M| = |C|). Let Y be a random variable uniform
over {0,1}" \ {Y'}. For fizred C € {0,1}=", let X = pc, (Y, padc(msbc (Y) & C)).
Then Pry[X = X] < 1/2"72 holds for any fized C € {0,1}<7.

13 Formally this is not a decryption transcript as it lacks the oracle response b.
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Proof. Fori € [n], let Is,, be the nxn matrix such that Iygy,-Z = msb;(Z) || 0"~
for Z € {0,1}™. Let |C| = s, and assume that the rank of G¢ @ Inep, is k. Let Y;
denote its ¢-th bit. We have

Pr[X = X] (Y) @ padc(msby(Y) & C) = X]

= PI‘[GC

= Pr[Ge(Y) & Lne, (Y) @ (C[[10"°71) = X]
= sefon)r Prl(Go © fuss,) (Y) = 0}

The rank tells that the above probability is Pr[Y;, = d,...,Y;, = d;] for some
i1,...,ix € [n] and 6, € {0,1}, 7 € [k]. Since Y has uniformity 1/(2" — 1) (i.e.
maxyeo,13» Pr[Y = y] < 1/(2" — 1)), this probability is at most

2n—k 3

< —.
2n —1 — 2k

We confirmed that the rank of G¢ @ Iysp, is n for all s € [n — 1], and that isn—1
when s = n as mentioned earlier, using a program. So we let £k = n — 1 and derive
2/27=1 =1/2"=2. This completes the proof. ad

Remark. The original proof [3] uses a similar bound on the collision probability
of X and X, however, because that bound is used when the underlying primitive
is a random function rather than a random permutation (i.e. after PRP-PRF
switching), Y has uniformity 1/2", i.e., completely random and independent of
Y. O

Classification of Tweak Sequences. For each encryption or decryption query,
iGC[P] will generate a sequence of tweak values. If a query requires ¢ calls of
ﬁ, the tweaks sequence is in (7.°®)¢ and is uniquely determined by the tuple
(A, C) for encryption or (4,C) for decryption. Let LI : {0,1}* — {e,c,p} be a
length-indicator function such that LI(X) = e (for empty) if X = ¢, LI(X) =¢
(for complete) if X # ¢ and |X| is a multiple of n, and LI(X) = p (for partial)
otherwise. For a tuple (N, A, M, C,T), we can define 9 classes depending on LI(A)
and LI(C). Note that each class may have subcases, and the final tweak of any
subcase is either B € H or B = (i,j) € Z x J for some constant j € {2, 3,4}
specific to this class, because this j is a function of (LI(A),LI(C)).

The following lists the 9 classes of tweak sequences for an encryption query.
We omit N as it is always contained. In the descriptions of subcases of a class, let
a = |Al,, m = |C|,. The same classification also applies to a decryption query
Qp = (N,A,C,T), using A and C instead of A and C, and using o’ = |A|, and
m’ =|C|,, instead of a and m.

Class 1: (LI(A),LI(C)) = (e, e)
1-1 (*4)

Class 2: (LI(A),LI(C)
2-1 m = 1: (%o, (
2-2 m > 2: (%2, (1,

Class 3: (LI(A),LI(C)) = (e, p)
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Class 6: (LI(A),LI(C)
6-1 a=1,m=1:
6-2 a=1,m > 2:
6-3 a>2, m=1:

7-1
7-2 :
Class 8: (LI(A4),

=

3
-
®3I 333
TNVl

Class 9: (LI(A),LI(C)
9-1 a=1,m=1:

9-4 a>2,m2>2:
m—2,4))

ey

(
..,((a—170),(a—1,1)7(a—1,2))

ey

m—1,1),(m—1,2))

a—1,0),(a—1,1),(a,1),...,(a+m—2,1),(a +

., (m=1,1),(m —1,3))
.y (@=1,0),(a—1,1),(a—1,3))
., (a—1,0),(a—1,1),(a,1),...,(a+m—2,1),(a +

., (m—=1,2),(m—1,3))
..y (@=1,0),(a—1,2),(a—1,3))
., (a—1,0),(a—1,2),(a,2),...,(a+m—2,2),(a +

., (m—=1,2),(m—1,4))
., (a—1,0),(a —1,2),(a — 1,4))

. (a=1,0),(a—1,2),(a,2),...,(a+m—2,2),(a+

We pick Qe = (N, A, M,C,T) and Qp = (N,A,C,T), where N = N but (N,A,C,T) #
(N, A,C,T), among these classes and show a bound for pf. Let us write Case (7, ) to
denote the case when Qg is in Class i and @Qp is in Class j, for i,5 € [9]. Let S¥
(8%) denote the tweak sequence of Qg (Qp). For example, if Qg is in Class 9 (9-1),
S¥ = (*2,(0,4)). Recall that the actual tweak sequence is (NN, *2) and (N, (0,4)).

Case (i,1) fori € [9]. Case (1,1) does not exist. For i € {2,...,9}, the analysis is
effectively the same, therefore we take Case (8,8) for example. For two non-empty
bit sequences X # X, where | X |, = |X|n, let A(X,X) € [|X|n] be the index of the first
difference: when i = A(X,X), X[i] # X[{] and X[j] = X[j] for all j € [i — 1], where X[i]
denotes the i-th block. We use £ to denote the number of maximum P calls in a query.
We further divide Case (8, 8) into the following subcases:

— Subcase (1): a = @’ and m = m'. We have S§ = SY. We either have A # A or

A=A and C # C. In the first case, let 1 = A(A, 4). Let (X,Y) be the input-output
pair of the i-th P call for Qg. Define (X,Y) similarly for Qp. By the definition of
i and pe, X # X holds, and it means ¥ < {0,1}" \ {Y'} (as P takes an identical
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tweak). From Lemma 2| the collision probability between the next P block inputs
is at most 1/2" 2. This means that Qp will create a chain of random inputs to 5,
and the encryption of the last chain value yields T™. As we have ¢ [ calls, taking
the union bound, pf < £/2"~2 holds. For the second case (A = A and C # C), the
analysis is mostly identical; due to the definition of pc, the first ciphertext difference
will create a difference in the P input, which will create a random chain with each
collision probability 1/2"~2. Thus, pf < £/2"~2 holds too.

— Subcase (2): a < a’. When a > 2 (resp. a = 1), (a,0) (resp. (%)) appears only in
S, hence the corresponding P output is completely random. This will create a
random chain for the successive P inputs and makes pf < £/2" 2.

— Subcase (3): a > a’. When a’ > 2 (resp. a’ = 1), the tweak value (a’ — 1,2) (resp.
(x2)) appears only in 8%, hence pf < £/2"72 holds in the same manner to the above
case.

— Subcase (4): a = a’, m # m'. The last value of S} is unique, hence pf < 1/2"
holds.

Hence, pf < £/2"2 holds for Case(8,8). As mentioned earlier, other Case(i,) for all
i # 8 are similarly proved with the same bound.

Case (i,7) for i # j. For most of the cases, the analysis is simple as there is a unique
value that appears only in S¥. From the same analysis as above, it makes pf < £/2" 2.

Still, there are two categories of Case (i, j) that need a different analysis. The first
category consists of Case (1,7), Case (7,1), Case (2,8), Case (8,2), Case (3,9), and
Case (9, 3). The second category consists of Case (6,4), Case (8,4), and Case (9,7).

The first category allows Siy = Si'. But all the cases included in this category have
either A is empty and A is partial (or vice versa) while the first tweak value may or
may not be identical. Thanks to the property of padc, this means that the first (tweak,
block) input tuples to P are always different, and its output in Qp will create a random

chain to the last P input, from the same reason as in Case (i,1), irrespective of the
lengths of queries. So pf < £/2" 72 holds for this category.

The second category is somewhat special because S can be a subset of S§'. We
take Case (6,4) for example, when a > 2, m = 1 (Class 6-3) and a’ > 2 and C is empty
(Class 4-2). If a # a’, the last value in S, namely (a’ — 1,3), is new, so S Z Sy
and pf < 1/2". However, when a = o/, S C S¥ holds as 8 = S§' \ {(a — 1,1)}.
Let (Xo,Y0), (X1,Y1), and (X2,Y> = T) be the I/O pairs of the last three P for Qr.
Similarly, let (Xo,Yo), (X1,Y1 = T7) be the last two I/O pairs of P for Qp. If X3 =X,
holds it leads to a forgery. Qg reveals Y1, Xs, and T. However, X; is completely random
given Qg as the corresponding tweak (a—1,1) in S¥ are used only once in Qg (together
with N). As Y is a permutation of X; given A[a], this makes Yy random too. If a = o’
and A(A,A) =a or just A = A, we have Yy = Yo, and the randomness of Yy ensures

1

PI‘[Xl = XQ} = PI‘[GC(Yo) @ A[a] = XQ] g 27
irrespective of the choice of Afa]. Unless X1 = X2, T is random, which means pf < 2/2".
If a = a’ and A(A, L) < a, there is a pair of distinct inputs to P taking the same tweak
which creates a random chain. As before, we have pf < £/2"~2. Other cases in the second

category follow similarly. Summarizing the entire case analysis, Adv_"G"’CrEZs]“th(A) <2

when g4 = 1. The bound for general g4 > 1 is obtained by multiplying gq:
qal

nmrl-auth
AdviGC[F] (A) < on—2 (8)
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for adversary A using g4 decryption queries and maximum input block length (for both
encryption and decryption) £. From Def. |8| and Fig. [4] ¢ < fmax holds for any query.
From this and Eqgs. and , we conclude the proof.

7 Conclusion

We have shown that the two finalists of NIST Lightweight Cryptography project,
Romulus-N and GIFT-COFB, have nonce-misuse resilience privacy and authenticity,
while originally defined as nonce-based authenticated encryption schemes. We also
show that they do not have stronger, misuse resistant security. Hence our results are
qualitatively tight with respect to the security guarantee under nonce misuse. Such
security features would provide an additional defense for these schemes in practical
use cases. Studying nonce-misuse resilience/resistance of other finalists, both from the
attack and provable security perspectives, would be an interesting topic for future work.
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A The H-Coefficient Technique

We use Patarin’s H-coefficient technique [27] to prove security for the involved new
TBCs. We provide a quick overview of its main ingredients here. Our presentation
borrows heavily from that of [14]. Fix a distinguisher D that makes at most g queries
to its oracles. As in the security definition presented above, D’s aim is to distinguish
between two worlds: a “real world” and an “ideal world”. Assume wlog that D is
deterministic. The execution of D defines a transcript that includes the sequence of
queries and answers received from its oracles; D’s output is a deterministic function
of its transcript. Thus, if Tt., Tiq denote the probability distributions on transcripts
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induced by the real and ideal worlds, respectively, then D’s distinguishing advantage is
upper bounded by the statistical distance

AT, T) = 5 3 | Pr{Tie = 7] = Pr{Ti = 7],

where the sum is taken over all possible transcripts 7.

Let © denote the set of attainable transcripts, i.e., transcripts that can be generated
by D in the ideal world with non-zero probability. We look for a partition of @ into
two sets Ogood and Gnaq of “good” and “bad” transcripts, respectively, along with a
constant €; € [0, 1) such that

Pr[Tie = 7]

TeETT = 7Pr[T;d —

21—61. (9)

It is then possible to show (see [14] for details) that
A(Tre, Tia) < €1 + Pr[Tiq € Opad]

is an upper bound on the distinguisher’s advantage. One should think of €; and
Pr[Ti4 € Opad] as “small”, so “good” transcripts have nearly the same probability of
appearing in the real world and the ideal world, whereas “bad” transcripts have a low
probability of occurring in the ideal world.
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Algorithm Romulus-N[Ex]-(N, A, M)

1 H <+ HashN[Ex](A)

2 if |Ala]| < n then wa + 26 else 24
3 8« EVwa®

4 return Encrypt[ﬁ;(](N7 S, M)

Algorithm p(S, M)

1C« MaG(S)
2 8« SeM
3 return (5’,C)

Algorithm HashN[Ex](A)

H <+ 0"
(A[],...,Ala]) & A
Ala] < pad,, (Ala])
for i =1 to |a/2]
(H,n) + p(H, A[2i — 1])
He E;{A[Qi],B,zi—l)(H)
end for
if a mod 2 =0 then V « 0" else Ald]
(H,n) + p(H,V)
return H

© 00 O Uk W

1

(=)

Algorithm Encrypt[EK](N, S, M)

1 (M[1),...,M[m]) < M

2 if [M[m]| < n then was < 21 else 20
3fori=1tom—1
4 (8, ClH) « p(S, M)
5 S« EX(S)
6 end for

7 M'[m] + pad, (M[m])

8 (,C'm]) < p(S, M'[m])

9 C[m] — |Sb‘1\4[m”(c/[m])

10 8« B (s)

1L (n,T) < p(S5,0")

12 C«C]l ... | Clm—=1][|C[m]
13 return (C,T)

Algorithm Romulus-N[Ex]-D(N, 4, C,T)

1 H + HashN[Ex](A)

2 if |Afa]| < n then wa + 26 else 24
3 8« BN (1)

4 return Decrypt[Ex](N, S, C)

Algorithm p~'(S,C)

1 M« CaG(s)
2 8« SeM
3 return (S’, M)

Algorithm Decrypt[ﬁx](N7 S, C)

1 (C[1],...,C[m]) & ¢
2 if |C[m]| < n then wc « 21 else 20
3fori=1tom—1
4 (S, M)+ p'(S,Cl))

5 S« ENI(9)

6 end for

78 (019 msby, ¢y (G(S)))
8 C'[m] « pad,(C[m]) & S

9 (S, M'[m]) « p~*(5,C"'[m))

10 ]\/[[m] «— |Sb‘c[m”(JW/[mD

115 e Beem(s)

12 (n,T7) « p(S,0™)

13 M+ M[]| ... || M[m —1]|| M[m]
14 if T* =T then return M else |

Fig. 1: The algorithms of Romulus-N [18]. Lines of [if (statement) then X « z
else 2] are shorthand for [if (statement) then X + z else X + 2']. The
dummy variable 7 is always discarded. Let n be a multiple of 8. For X € {0,1}="
of length multiple of 8, we define pad,(X) = X if |X| = n, and pad, (X) =
X ||on=1X¥I=8 || Leng(X) if 0 < |X| < n, where leng(X) denotes the one-byte
encoding of the byte-length of X. Note that pad,, (¢) = 0™. For integer i, i denotes
the LFSR encoding expression of i.
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Algorithm GIFT-COFB-Ex (N, A, M)

Y[0] +— Ex(N), L < msb, /»(Y[0])
(A[1],..., Ala]) <> padc(A)
if M # € then
(M[1],..., M[m]) < padc(M)
fori=1toa—1
L+2-L
X[i] « Al ® G- Y[i — 1] ® L|o"/?
Yi] + Ex(X[i])
9 if [Almod n =0and A#¢cthen L+« 3-L
10 else L + 3% L
11 if M =cthen L+ 3°-L
12 X[a] + Ala) ® G- Y[a — 1] & L||0™/?
13 Yla] < Ex(X[a])
14 fori=1tom—1
15 L<+2-L
16 Cli] « M[i]®Y[i+a—1]
17 X[i+al+ ME®G - Y]i+a—1]®L|0"/?
18  Y[i+a] + Ex(X[i+a])
19 if M # ¢ then
20 if [M| mod n =0then L+ 3-L
21 else L+ 3*-L
22 Cim]+ M[m]®Y[a+m —1]
23 X[a+m] — Mm]®G-Y[a+m—1]a Lljo™/?
24 Y[a+m] < Ex(X[a+ m])
25 C < msb(C[1]]]...||C[m])
26 T < msb,(Y[a+m])
27 else C + ¢, T + msb-(Y[a])
28 return (C,T)

0~ U= W~

Algorithm GIFT-COFB-Dx (N, A,C, T)

Y[0] < Ex(N), L < msb, 5 (Y[0])
(A[1],..., Ala]) <= padc(A)
if C # ¢ then
(Cl1],..., Cle]) = pade(C)

fori=1toa—1

L+2-L

X[i] « Alij® G-Y[i — 1] ® L|jo"/?

Y[i] < Ex(X[i])

9 if |[Almod n =0and A#¢then L<+ 3-L
10 else L + 3% - L

11 if C=cthen L« 3°-L

12 X[d] + Ala] © G- Y([a — 1] @ L||0"/?
13 Yl[a] « Ex(X[a])

14 fori=1toc—1

15 L<+2-L

16 Ml[i] « Y[i+a—1]&Cl

17 X[i+a < MG ®G Y[i+a—1]a L|j0"?
18  Y[i+a| < Ex(X[i+a])

19 if C # ¢ then
20  if |C| mod n = 0 then
21 L<+3-L

WUk W~

22 M) < Y[a+c—1] @ C[]

23  else

24 L+ 3% L, « |C|modn

25 M][d]  msby (Ya+c— 1] @ C[d)[10" !

26 Xa+cd <+ M[®G-Y]a+c—1]@ L|j0"/?
27 Yo+ « Ex(X[a+d])

28 M < msbjg|(M[1]]]...||M]c])

29 T« msb,(Y[a+(])

30 else M + ¢, T' < msb,(Y][a])

31 if 7" = T then return M, else return L

Fig.2: The algorithms of GIFT-COFB [4] with minor notation modifica-
tions. padc(z) = =z if z is not empty and |z modn = 0, and padc(z) =
|| 107~ (el mod ) =1 otherwise. Note that padc(e) = 10m~1.

Fig. 3: Example of GIFT-COFB encryption for n-bit AD and 2n-bit plaintext.
Dashed boxes denote the TBC instantiated by Ek, which is identical to the TBC
defined at Deﬁnition (gXE“™®[EK]). See also Fig. @
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Algorithm iGC[EK]—EK (N, A, M)

1 (A[1],..., Ala]) <+ padc(A)
2 if M # ¢ then

3 (M[1],...,M[m]) < M

4 if a =1 then

5 if |A] mod n = 0 and A # ¢ then
6 if M # ¢ then j+ 1

7

8

else j + 3
else
9 if M # ¢ then j + 2
10 else j + 4

11 Y[1] = Ex((N,*;), A[1])

12 if a # 1 then

13 Y[1] « Ex((N,x*0), A[1])

14 fori=2toa—1

15 ST ¢ poy (Vi — 1], AL
16 Y[i] + Ex((N, (i,0)), S[d])

Algorithm iGC[Ex]-Dx (N, A,C, T)

1 (A[1],..., Aa]) <& padc(A)

2 if C # ¢ then

3 (CM),...,C[d) & ¢

4 if a =1 then

5 if |A] mod n = 0 and A # ¢ then
6 if C # ¢ then j+ 1

7 else j < 3

8 else

9 if C' # ¢ then j + 2

10 else j <4

11 Y[1] < Ex((N,*;), A[1])

12 if a # 1 then

13 Y[1] « Ex((N,*0), A[1])

14 fori=2toa—-1

15 S[i] = po, (Y[i — 1], A[d])
16 Y[i] + Ex((N,(3,0)), S[i])

17  if |[Al mod n =0 and M # ¢ then j < 1

17 if |[Al mod n =0 and C # ¢ then j < 1

18 if |[A| mod n#0 and M # ¢ then j + 2 18 if |[A| mod n # 0 and C # ¢ then j «+ 2
19  if |[Al mod n=0and M =¢ then j <+ 3 19 if |[Al mod n =0 and C =¢ then j <+ 3
20 if |A] mod n # 0 and M =¢ then j + 4 20 if |[Al mod n#0and C =¢ then j + 4
21 Sla] < pe, (Y[a — 1], Ala]) 21 Sfa] < po, (Ya — 1], Ala])

2 Yia] & Ex((N,(a—1,5), Sla) 22 Yla] « Bx((N.(a— 1)), la)

23 fori=1tom—1 23 fori=1toc—1

24 (S[i+a],Cli]) + pe(Y[i 4+ a — 1], M[i]) 24 (S[i+ a], M[d]) — pe(Yi+a—1],Cli))

25  Y[i+a]+ Ex((N,(i+a—1,7)),S}t+a]) 25  Y[i+a]+ Ex((N,(i+a—1,5)),S[i+a])
26 if M # ¢ then 26 if C' # ¢ then

27 if [M| mod n =0 then j+ j+1 27 if |C] mod n =0 then j + j+1

28 elsej« j+2 28 elsej«j+2

29 (Sla+m], Clm]) < pe(Ya+m — 1], M[m]) 29 (S[(l+c],]\1k])(—pé(Y[a‘f’C*l],C[C])
30 Ya+m] <+ Ex((N,(a+m—2,j)),Sla+m]) 30 Ya+c]+ Ex((N,(a+c—2,7)),Sla+¢c])
31 C+« C[]|---||ICIm] 31 M+ M[]||...]|M][]

32 T <+ msb,(Y[a+m]) 32 T« msb,(Y[a+c])

33 else C « ¢, T + msb-(Y[a]) 33 else M «+ ¢, T" < msb,(Y|[a])

34 return (C,T) 34 if T' = T then return M, else return |

Fig. 4: Algorithms of iGC[EK], an abstraction of GIFT-COFB using a TBC.
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