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Abstract

A pseudorandom correlation generator (PCG) is a recent tool for securely generating useful
sources of correlated randomness, such as random oblivious transfers (OT) and vector oblivious linear
evaluations (VOLE), with low communication cost.

We introduce a simple new design for PCGs based on so-called expand-accumulate codes, which
first apply a sparse random expander graph to replicate each message entry, and then accumulate the
entries by computing the sum of each prefix. Our design offers the following advantages compared
to state-of-the-art PCG constructions:

• Competitive concrete efficiency backed by provable security against relevant classes of attacks;

• An offline-online mode that combines simple parallelization with a cache-friendly offline phase;

• Concretely efficient extensions to pseudorandom correlation functions, which enable incremental
generation of new correlation instances on demand, and to new kinds of correlated randomness
that include circuit-dependent correlations.

To further improve the concrete computational cost, we propose a method for speeding up a full-
domain evaluation of a puncturable pseudorandom function (PPRF). This is independently motivated
by other cryptographic applications of PPRFs.

1 Introduction
Correlated secret randomness is a powerful and ubiquitous resource for cryptographic applications. In the
context of secure multiparty computation (MPC) with a dishonest majority, simple sources of correlated
randomness can serve as a “one-time pad” for lightweight, concretely efficient protocols [Bea91]. As
a classical example, consider the case of a random oblivious transfer (OT) correlation, in which Alice
and Bob receive (s0, s1) and (b, sb) respectively, where s0, s1, b are random bits. Given 2n independent
instances of this simple OT correlation, Alice and Bob can evaluate any Boolean circuit with n gates
(excluding XOR and NOT gates) on their inputs, with perfect semi-honest security, by each sending 2
bits and performing a small constant number of Boolean operations per gate.

The usefulness of correlated randomness for MPC gave rise to the following popular two-phase ap-
proach. First, the parties run an input-independent preprocessing protocol for secure distributed genera-
tion of correlated randomness. This correlated randomness is then consumed by an online protocol that
performs a secure computation on the inputs. Traditional approaches for implementing the preprocess-
ing protocol (e.g., [IKNP03,DPSZ12,KPR18]) have an Ω(n) communication cost that usually forms the
main efficiency bottleneck of the entire protocol.

This situation changed in a recent line of work, initiated in [BCG+17, BCGI18, BCG+19b], that
suggested a new approach. At the heart of the new approach is the following simple observation: by
settling for generating a pseudorandom correlation, which is indistinguishable from the ideal target
correlation even from the point of view of insiders, the offline communication can be sublinear in n while
retaining the asymptotic and concrete efficiency advantages of the online protocol.
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The above approach was implemented through the notion of a pseudorandom correlation generator
(PCG) [BCGI18,BCG+19b]. A PCG enables two or more parties to locally stretch short correlated seeds
into long pseudorandom strings that emulate a specified ideal target correlation, such as n instances of
the OT correlation. This was recently extended to the notion of a pseudorandom correlation function
(PCF) [BCG+20b], which essentially emulates random access to exponentially many PCG outputs,
analogously to the way a standard pseudorandom function (PRF) extends a standard pseudorandom
generator (PRG). PCGs and PCFs naturally give rise to the paradigm of MPC with silent preprocessing.
In MPC protocols following this paradigm, the parties invoke a one-time interactive setup with low
communication and computation costs for securely generating the short, correlated seeds. These seeds
can later be used, upon demand, for “silently” generating large quantities of the correlated randomness
consumed by fast online MPC protocols.

Generating pseudorandom correlations: a template. To construct the PCG and PCF primitives,
a general template was put forth in [BCGI18], and further refined in subsequent works. At a high
level, the template combines two key ingredients: a method to generate a sparse version of the target
correlation, and a carefully chosen linear code where the syndrome decoding problem is conjectured
to be intractable. To give a concrete example, let us focus on the vector oblivious linear evaluation
(VOLE) correlation, which is in a sense a minimal step above simple linear correlations. The correlation
distributes (u⃗, v⃗) to Alice and (∆, w⃗) to Bob; here, u⃗, v⃗, w⃗ are length-n vectors over a finite field F and
∆ ∈ F is a scalar, all chosen at random subject to satisfying the correlation w⃗ = ∆ · u⃗+ v⃗. Among other
applications [WYKW21,DIO21,BMRS21,RS21b], VOLE is an appealing target correlation because (a
simple variant of) VOLE can be locally converted into n pseudorandom instances of OT correlation using
a suitable hash function [IKNP03,BCG+19b].

The aim of the second ingredient is to transform this sparse correlation into a pseudorandom corre-
lation. To this end, the parties multiply their vectors with a public compressing matrix H, obtaining
(H · u⃗,H · v⃗) and (∆, H · w⃗). When H is random, H · u⃗ is pseudorandom: this is exactly the dual variant
of the learning parity with noise (LPN) assumption over F [BFKL94, IPS09]. However, computing H · v⃗
(or H · w⃗) takes time Ω(n2). When n is in the millions, as in typical MPC applications, this is clearly in-
feasible. A better approach is to sample H from a distribution such that (1) H · u⃗ is still plausibly pseu-
dorandom, and yet (2) the mapping v⃗ 7→ H · v⃗ can be computed efficiently, ideally in time Õ(n) or even
O(n). For the first ingredient, there is a simple construction that allows generating (from short seeds)
pairs (u⃗, v⃗) and (∆, w⃗) as above, but where u⃗ is a random unit vector. This uses a puncturable pseudo-
random function (PPRF), a type of PRF where some keys can be restricted to hide the PRF value at a
fixed point. A bit more concretely, v⃗ and w⃗ will be generated by evaluating the PRF on its entire do-
main; the missing value will be at the only position i where ui ̸= 0, and the party with the punctured
key will fill it using a share of PRFK(i) + ∆ · ui. Such a PPRF can be efficiently constructed from any
length-doubling PRG [GGM86,KPTZ13,BW13,BGI14]. With a t-fold repetition of this process (keep-
ing ∆ the same across all instances), after locally summing their expanded vectors, the parties obtain
the target correlation, where u⃗ is t-sparse. As long as t remains small, the seed size is small as well.

The quest for the right code. In essence, all previous works in this area [BCGI18, BCG+19b,
BCG+19a, SGRR19,BCG+20b,YWL+20,BCG+20a,CRR21] have built upon this template, sometimes
for more general classes of correlations [BCG+20b], sometimes to achieve the more flexible notion of
PCF [BCG+20a], or trying to strike the best balance between security and efficiency [BCGI18,BCG+19a,
CRR21]. At the heart of all these works is, every time, a careful choice of which linear code to use.
In [BCGI18, BCG+19a], it is suggested that relying on LDPC codes or on quasi-cyclic codes provides
a reasonable balance between security (since the underlying LPN assumptions are well studied [Ale03,
ABB+20]) and efficiency. In contrast, [CRR21] advocates a more aggressive choice, building a new
concrete linear code which is highly optimized for correlated randomness generation and is guided by
heuristic considerations and extensive computer simulations. Taking a different route, [BCG+20a] shows
how a newly defined family of variable density linear codes allows generating a virtually unbounded
amount of correlated randomness on demand, and [BCG+20b] generates more general correlations using
an LPN variant over polynomial rings.

These works demonstrate that with a careful choice of code silent preprocessing can have an ex-
tremely high throughput [CRR21] (as fast as generating tens of millions of pseudorandom oblivious
transfers per second on one core of a standard laptop with low communication costs), broad expressive-
ness [BCG+20b] (handling richer correlations which are crucial in many MPC protocols [Bea91,BDOZ11,
DPSZ12, ANO+21, RS21a]), and optimal flexibility [BCG+20a] (generating any amount of correlated
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randomness on demand). Nonetheless, in several aspects this research area is in its infancy: some im-
portant correlations remain frustratingly out of reach (such as circuit-dependent correlations, used e.g.
in [DPSZ12,DNNR17,HOSS18,WRK17b,Cou19,BGI19], or authenticated multiplication triples over F2,
used in [HSS17,WRK17a]); the current fastest construction [CRR21] is not parallelizable and lacks any
clear theoretical security analysis whereas constructions built on firmer grounds are an order of magni-
tude slower; finally, the PCFs of [BCG+20a] are only realistically usable in a regime of parameters where
they lack any security analysis.

The quest for constructions with clear, rigorous security arguments and very high concrete efficiency
remains largely open; its fulfilment, we believe, is one of the most promising paths towards making MPC
truly efficient on a large scale.

1.1 Our Contributions
In this work, we push forward the study of efficient generation of correlated randomness, significantly
improving over the state of the art on several fronts. Our main contributions are threefold.

Expand-accumulate codes. We put forth a new simple family of linear codes, called expand-accumulate
codes (EA codes), which are related to the well-studied class of repeat-accumulate codes [DJM98]. To
encode a message with an EA code, a sparse degree-ℓ expander is first applied to the input, effectively
replicating each message entry a small number of times; the result is then accumulated by computing
the sum of all prefixes. We demonstrate that such an EA code is a particularly appealing choice of lin-
ear code in the context of generating correlated pseudorandomness, as it uniquely combines multiple at-
tractive features: firm security foundations, simplicity, high concrete efficiency, and easy parallelization.
When an EA-based PCG is implemented in an offline-online mode, the offline phase is both paralleliz-
able and cache-friendly, whereas the online phase requires accessing a small number of memory locations
per correlation instance. Finally, the special structure of EA codes allows us to obtain several advanced
constructions, including PCFs (with better efficiency and security foundations compared to [BCG+20a]),
and the first practical PCGs for useful correlations such as circuit-dependent correlations. In more detail:

1. We formally prove that the (dual-)LPN assumption for EA codes, denoted EA-LPN, cannot be
broken by a large class of attacks, which captures in particular all relevant known attacks on LPN.
Our analysis comes with concrete, usable security bounds for realistic parameters. In contrast,
previous works either only achieved provable bounds in a purely asymptotic sense [BCG+20a]
(with poor concrete efficiency), or heuristically extrapolated plausible parameters through computer
simulations on small instances [CRR21].

2. We also derive sets of more aggressive parameters through heuristics and simulations to obtain
apples-to-apples efficiency comparisons with the work of [CRR21]. We show that EA codes are
highly competitive with the code of [CRR21], while having a much simpler structure (hence simpler
to implement and more amenable to analysis).

3. The PCGs built from EA-LPN are highly parallelizable, allowing for simultaneously achieving low
latency and high throughput. This stands in stark contrast with essentially all previous construc-
tions, including the recent high-throughput construction from [CRR21].1 Hence, over multicore
architectures, we expect our new PCG to outperform alternative approaches.

4. We obtain the first practical PCG constructions for different kinds of useful correlations. This
includes circuit-dependent correlations (which show up in communication-efficient MPC proto-
cols [DNNR17, HOSS18, WRK17b, Cou19, BGI19] and in constant-round MPC protocols based
on garbled circuits [WRK17b]). Generating n bits of correlations with our construction requires
O(n log2 n) work. In contrast, the only known previous approaches either use LPN but incur a
prohibitive Ω(n2) cost [BCG+19b] or require expensive high-end cryptographic primitives, such as
multi-key threshold FHE [DHRW16,BCG+19b].

5. Finally, we construct a pseudorandom correlation function from the EA-LPN assumption, the first
such construction to be both concretely efficient and standing on firm security arguments. The only
other practically feasible constructions of PCFs are the variable-density construction of [BCG+20a]

1A notable exception is the “primal” PCG construction of [BCGI18], which is also parallelizable. However, this PCG is
limited to quadratic stretch; in practice, this makes it less efficient than other alternatives, even when using the bootstrap-
ping approach from [YWL+20].
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(which is much slower, even for aggressive parameters) and the recent construction of [OSY21]
(which relies on the standard DCR assumption, but is also slower, is restricted to OT and VOLE
correlations – our construction can handle other useful correlations – and is not post-quantum –
our construction plausibly is).

Offline-online pseudorandom correlation generators. PCGs allow one to expand, in a “silent”
fashion (i.e. without any communication), short seeds into long sources of correlated pseudorandomness.
This silent expansion largely dominates the overall computational cost of the entire protocol: in the
online phase, the computation amounts to a few cheap xor operations per gate, and the limiting factor
is communication. Even with a very high bandwidth, the latency of multi-round protocols can form a
bottleneck. This implies that, in many settings, some idle computation time is wasted during the online
phase. We put forth a new notion of PCG, called offline-online PCG, which seeks to push the vast
majority of the offline work back to the online phase, but in an incremental fashion that minimizes latency.

In more detail, most of the computational slowdown in the silent expansion of modern PCGs is
incurred by cache misses. Indeed, most of the efficiency improvements of the PCG of [CRR21] come
precisely from heuristically building a cache-friendly linear code. However, constructing such cache-
friendly codes with firm security foundations remains elusive. Moreover, the cache-friendliness of the
construction from [CRR21] comes at the expense of a fully sequential silent expansion. Instead, we
suggest a new approach: using EA codes, cache misses are bound to occur because of their expander-
based structure; however, it is relatively easy to push all these cache misses to the online phase, where
they will happen during idle moments (caused by bandwidth limitations or latency within the secure
computation application). Concretely, EA codes achieve the following:

• In the offline phase, the sparse version of the correlation is generated using a PPRF; this amounts
to computing a few hundred binary trees of hashes (a la GGM), which is highly parallelizable and
cache-friendly. In the literature, this is typically referred to as the full evaluation part, because it
amounts to evaluating several PRRFs on their entire domain.

• Still in the offline phase, an accumulation step is performed, which converts a vector (x1, x2, · · · , xN )

to an accumulated vector (x1, x1 ⊕ x2, · · · ,
⊕N

i=1 xi). This “prefix sum” computation can be done
with N−1 xors of short strings in one pass, which is extremely fast and cache-friendly; furthermore,
it is easy to parallelize with a simple two-pass algorithm while still retaining cache-friendliness.

• At the end of the offline phase, a length-N vector y⃗ of short strings is stored, where N is a small
constant factor times the target amount n of correlations (concretely, N ≈ 5·n in our instantiations).
Finally, to generate an instance of the target correlation, one must retrieve ℓ random entries of y⃗,
and xor them, where the output locality parameter ℓ corresponds to the degree of the graph defining
the EA code. This is where cache misses can occur; however, this step is still highly parallelizable,
and these random accesses can easily be arranged to fill exactly the idle computation time of the
online phase. Concretely, for conservative parameters fully within the bound of our theoretical
analysis, ℓ can be set to about 40 when producing n ≥ 220 correlations; using more aggressive
parameters, setting ℓ as low as 7 seems to nonetheless provide a sufficient security level according
to our experiments.

Our estimates suggest that relying on offline-online PCGs instead of standard PCGs will likely lead to
significant improvements in MPC protocols. The offline part of our EA-based offline-online PCGs is
extremely fast – we estimate of the order of 100ms to generate the offline material for 10 million random
OTs on a single core of a standard laptop, a runtime which can be sped up by almost a factor of k when
k processors are available, even with a few dozen processors.

Further speedups in the offline phase. Up to this point, we discussed the application of a new
family of linear codes to speed up PCGs and achieve new advanced constructions. We now turn our
attention to the other main component of a PCG: the full evaluation procedure, which boils down to
evaluating several PPRFs on their entire domain. Concretely, using the GGM PPRF [GGM86,KPTZ13,
BW13,BGI14], generating a length-N vector with this procedure requires 2N calls to a hash function
along the leaves of a full binary tree. We obtain new PPRF constructions that aim to reduce the total
number of calls to the underlying hash function. Our main construction reduces the number of calls to
1.5N ; we prove its security in the random oracle model. We also put forth a candidate construction with
the same 1.5N cost in the ideal cipher model (supporting an implementation based on standard block
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ciphers such as AES), but leave its security analysis open. We describe several additional optimizations;
in particular:

• We show that, by “flattening the GGM tree,” the number of calls can be further reduced, at the
cost of sightly increasing the seed size (and seed distribution cost). Concretely, we can reduce the
total number of calls to 1.17N , only increasing the seed size and seed distribution time by a factor
of 1.5 (this is a desirable tradeoff, since these costs vanish when N increases, and are typically
marginal with standard parameters).

• We show that, in the specific context of generating OT correlations, the cost can be further reduced
to N (without the flattening optimization) or 0.67N (with flattening) calls to the hash function.

We note that these contributions are of a very different nature compared to our previous constructions,
and add to the body of work on the analysis in idealized models of symmetric primitives for MPC
applications [GKWY20,CT21]. Since full evaluations of PPRFs have many applications beyond PCGs,
to problems such as zero-knowledge proofs [KKW18, CDG+20, KZ20, FS21], circuit garbling [HK21],
secure shuffling [CGP20] and private information retrieval [CK20, MZRA21], these results are also of
independent interest.

1.2 Technical Overview
We now survey the technical tools that we use to achieve our results.

EA codes. A generator matrix H for an EA code is of the form H = BA, where B ∈ Fn×N
2 is a matrix

with sparse rows, and A ∈ FN×N
2 is the accumulator matrix, that is, x⃗⊺A = (x1, x1+x2, . . . , x1+· · ·+xN ).

We propose the EA-LPN-assumption which states that samples of the form He⃗, where e⃗ ∈ FN
2 is a random

sparse vector, are computationally indistinguishable from uniform.
In order to provide evidence for the EA-LPN-assumption, we show that it is not susceptible to linear

tests. While this class of tests is very large, they all boil down to the same general strategy: given the
vector b⃗ (which is either uniformly random or He⃗ with e⃗ sparse), one looks at the matrix H, chooses some
nonzero vector x⃗ ∈ Fn

2 , and then checks if the dot product x⃗⊺ ·⃗b is biased towards 0. If x⃗⊺H and e⃗ are both
sufficiently dense then we can rule out the possibility that x⃗⊺ ·(He⃗) = (x⃗⊺H)· e⃗ has noticeable bias. As we
would like to keep e⃗ as sparse as possible, we need to show that for every nonzero vector x⃗ ∈ Fn

2 , x⃗⊺H has
large weight. In other words, we need to show that the code generated by H has good minimum distance.

We now briefly outline how we show that a random EA code has good minimum distance. It is
convenient for us to assume that the coordinates of B are all sampled independently as Bernoulli random
variables with probability p. Writing (y1, . . . , yN ) := x⃗⊺H = x⃗⊺(BA) we can view the sequence of
y1, . . . , yN as an N -step random walk (over the randomness of B) on a Markov chain with state space
{0, 1}, where the transition probabilities are governed by the Hamming weight HW(x⃗). Furthermore
the spectral gap of this Markov chain is easily computable, allowing us to apply an expander Hoeffding
bound which tells us that the random walk y1, . . . , yN is unlikely to spend too much time on the 0
state; equivalently, it is unlikely that HW(y⃗⊺) = HW(x⃗⊺H) is too small. By taking a union bound
over all nonzero vectors x⃗ ∈ Fn

2 and doing a case-analysis based on HW(x⃗), we can show that so long
as p = Ω(logN/N), except with probability 1 − 1/poly(N) the code has minimum distance Ω(N). If
one desires negligible in N failure probability this can also be obtained by slightly increasing p: e.g.,
p = Ω(log2 N/N) suffices to guarantee N−Ω(logN) failure probability. Further, we can show that this
analysis is (asymptotically) tight.

Offline-online PCGs from EA codes. We introduce the notion of offline-online PCGs, where an
offline and online key are generated. Each party σ uses its offline key to generate a local offline string Yσ

from which it can later use its online key to generate a (vector of) samples from the target correlation.
We call the length of Yσ the storage cost, and the number of entries that must be read from Yσ to generate
a single sample the output locality.

Recall that the goal of VOLE is to obtain correlations ((u⃗, v⃗), (∆, w⃗)), where u⃗, v⃗, w⃗ are length-
n vectors over a finite field F and ∆ ∈ F is a scalar, all chosen at random subject to satisfying the
correlation w⃗ = ∆ · u⃗ + v⃗. Using PPRFs, during the offline phase the parties expand their keys to
obtain strings w⃗′, u⃗′, v⃗′ ∈ FN , where u⃗′ is a sparse, EA-LPN noise vector and w⃗′, v⃗′ are pseudorandom
conditioned on satisfying w⃗′ = ∆ · u⃗′ + v⃗′. Further, the parties already perform the accumulation step
and output u⃗off = A · u⃗′ and v⃗off = A · v⃗′, and w⃗out = A · w⃗′ and ∆, respectively. In the online phase, the
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C(·) G0(·) G1(·)

Figure 1: Pictorial representation of our relaxed DCF construction. In our example the path α = 10 ∈ {0, 1}2 is marked
in blue, the box marked in red corresponds to box where β is added, and the boxes filled in gray correspond to the key of
P0 (in knowledge of α) and P1, respectively.

parties can then recover a tuple ((ui, vi), (∆, wi)) by checking only an expected number of p · N of the
offline strings, resulting in an online locality of p · N . We can thereby obtain offline-online PCGs with
highly parallelizable and cache-friendly offline phase, and online phase with low locality (recall that we
can choose p as low as p = c · logN/N , thereby resulting in ℓ = c · logN).

PCFs from EA codes. We have already described a general recipe for using compressing matrices H
for which the LPN assumption plausibly holds to construct PCGs; indeed, we even sketched an offline-
online PCG. However, in order to use EA codes to obtain PCFs, more care is required. Recall that
a PCF must behave in an incremental fashion, using the short correlated seeds to provide as many
pseudorandom instances of the target correlation as required. The main challenge is that to obtain a
PCF we need to set N to be superpolynomial in the security parameter, and thus computing matrix-
vector products of the form A · e⃗ is too expensive. Fortunately, we can avoid the need to explicitly
compute A · e⃗ by appealing to distributed comparison functions (DCFs). DCFs, which can be constructed
with PRGs similarly to distributed point functions [BGI16, BCG+21], allow one to efficiently share a
comparison function fβ

<α : [N ]→ F which maps every x < α to β and every x ≥ α to 0. When the noise
e⃗ has a regular structure (i.e., it consists of N/t unit vectors concatenated together) one can naturally
view A · e⃗ (after permuting the coordinates) as a concatenation of comparison functions. We furthermore
observe that for constructing PCFs for VOLE and OT we can use a relaxed version of a DCF, denoted
RDCF, as we only require α to be hidden from one of the two parties.

In the following we give a high-level overview of our RDCF construction. For simplicity we assume we
want to share a comparison function with range ({0, 1}λ,⊕), although our construction generalizes to ar-
bitrary abelian groups (G,+). Our construction follows the spirit of the DCF construction of [BCG+21],
but one party knowing α allows for significant savings. We build on PRGs G0, G1, C : {0, 1}λ → {0, 1}λ
such that the concatenation of the three is a secure PRG. In Figure 1 we give a pictorial representation
of the relaxed DCF construction, which we explain in the following.

To evaluate the RDCF on an input x, one traverses the tree and adds up all “C” values on the path
from the root to the corresponding leaf and finally adds the “G” value of this leaf. The idea is that P0

will add β (blinded by a “C” value) to the output, if and only if it leaves the path defined by α to the left
(which happens if and only if x < α). For concreteness, say one wants to evaluate the RDCF in Figure
1 on input x = 00. Then, both parties add the first box on the second level (the first “C” value, marked
in red), the first box on the third level (the second “C” value) and the second box on the third level (the
“G” value of the leaf), which P1 can both derive from its key. The corresponding output shares add up
to β as required, since β is added to the first “C” value held by P0. Further, β remains hidden from P0

by the pseudorandomness of the PRG C.
One of our improvements compared to the DCF construction of [BCG+21] is that we observe that

we only need “C” values on the left children, since only there the β value has to be hidden potentially.
This leads to shorter keys and savings on the number of PRG evaluations.

Overall, comparing with the standard DCF construction of [BCG+21] where each key is of size
2 logN(λ+ log |F|), in our RDCF one of the party’s keys is only of size λ, and the other is roughly half
the size of [BCG+21]. Further, our construction reduces the number of calls to AES (when using this to
implement a PRG) by 25% on average.

Additionally, we show that in the setting where a full evaluation is feasible (i.e., where one is interested
in an iterative PCG rather than a full-fledged PCF), the keys of our RDCF can be securely distributed
using a simple, 2-round 2-party OT-based protocol following the techniques of [Ds17,BCG+19a], whereas
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the corresponding distributed setup protocol for the DCF construction of [BCG+21] would require logN
rounds.

PCF Constructions. Given our relaxed DCF, we readily obtain PCFs for VOLE and subfield VOLE
correlations, which also imply a PCF for oblivious transfer when combined with a suitable hash func-
tion [BCG+20a]. We also show how to build a PCF for general degree-2 correlations: in particular, we
get a two-party PCF for authenticated multiplication triples over any ring R, and can also support gen-
eral, circuit-dependent correlations. For this, instead of comparison functions, we need a way to secret
share the product of comparison functions. Fortunately, this can be done using function secret sharing
for 2-dimensional interval functions [BGI16], based on any PRG.

We show that our EA-LPN-based PCFs can obtain good concrete efficiency. With conservative param-
eter choices, which our simulated experiments show resist linear attacks, our PCF for VOLE has compa-
rable key size to the most aggressive variant of the PCF from [BCG+20a] (which did not have any prov-
able security guarantees), while we need around an order of magnitude less computation. For our degree-2
PCFs, to get reasonable concrete efficiency we need to rely on more aggressive EA-LPN parameters with a
lower noise weight. With this, our PCFs for VOLE/OT have key sizes of under 1MB, and takes only a few
thousand PRG evaluations to compute each output. Our PCF for general degree-2 correlations (including
multiplication triples, matrix triples and circuit-dependent correlations) has key sizes of around 200MB,
and requires 2–3M PRG evaluations per output. The degree-2 PCF from [BCG+20a] do not come
close to this level of efficiency, since it is not compatible with the most efficient variant of LPN they use.

Speeding up the offline phase. The final task that we set for ourselves is to improve the runtime of
the offline phase for PCGs, where the offline phase requires evaluating several punctured PRFs (PPRFs)
on their entire domain, a functionality called FullEval. As alluded to earlier we apply the GGM con-
struction to obtain a PPRF from a hash function. The standard way to do this is as follows: given hash
functions H0, H1 (which can be modeled as random oracles (RO)) one generates the GGM tree corre-
sponding to secret key k, that is, the depth m binary tree where the root is labeled by k and the left
and right child of a node labeled by x are labeled by H0(x) and H1(x), respectively.To puncture a key
at a point α ∈ {0, 1}m one gives the values of the nodes of the co-path, i.e., the siblings of each node
appearing on the path indexed by α.

To save on the calls to the hash function we consider the following definition: given an RO H we
define H0(x) = H(x) and H1(x) = H(x) ⊕ x. Note that this clearly fails to give a PPRF, as given H(x)
and H(x)⊕ x one can recover x and thereby distinguish the value at the punctured point from random.
Nonetheless, we can show that the resulting construction yields a weaker primitive that we call a strong
unpredictable punctured function (strong UPF), which informally means that given a key punctured at a
point α one essentially cannot predict the value at α any better than by randomly guessing. While this
primitive is weaker, we note that it already suffices for some applications (such as PCGs for OT), reducing
the number of necessary calls to the random oracle for a full evaluation by half. If one subsequently
hashes the right child at the leaves, we can further show that this does yield a genuine PPRF. In this
way, we require only 1.5N calls to the hash function for a FullEval, whereas the standard GGM approach
requires 2N calls, providing us with a 25% cost reduction.

To prove the construction yields a strong UPF, we observe that the punctured key can be equivalently
sampled by choosing random values for the co-path and then programming the random oracle so as to be
consistent with these choices. Assuming there are no collisions, such a punctured key is then independent
of the value of the function at α, so the only way for an adversary to learn the value at α is if it happens
to query H at one of m values on the path that it does not see.

To increase our savings, we consider k-ary trees for k > 2, which informally corresponds to “flattening”
the GGM tree. This does incur a (k− 1) log2 k factor increase in the size of the punctured key; however,
with the standard GGM construction of a PPRF the number of calls to the hash function in an invocation
of FullEval now drops to (1 + 1/(k − 1))N . By combining this with the first optimization, when k = 3
we can decrease the number of calls to H to 1.33N , and when k = 4 to 1.17N .

Lastly, given the current hardware support of AES, we also put forward a candidate construction
of a weaker notion of UPF given an ideal invertible permutation. Recall that the standard strategy to
construct a hard-to-invert function from an invertible permutation is via the Davies-Meyer construction,
where H is defined as H(k) := P (k) ⊕ k for an invertible permutation P . Unfortunately, instantiating
H this way clearly breaks down with our previous construction, as H1(k) would become equal to P (k),
and hence be invertible. Instead, the idea of the construction is to set H0(k) := H(k)⊕ k and H1(k) :=
H(k) + k mod 2λ. While on first glance one might seem easy to predict given the other, we show that
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this is not the case, thereby giving some evidence that the corresponding candidate indeed achieves
unpredictability. We cannot hope to achieve the same strong notion of unpredictability as we do with our
random oracle construction though, since H(k)⊕k does in general leak some information about H1(k) :=
H(k) + k mod 2λ. Still, by subsequently hashing the right child at all leaves standard unpredictability
would be sufficient to obtain a true PPRF, thereby yielding a 25% cost reduction for PPRF constructions
implemented with fixed-key AES. We leave the full analysis of the construction to future work.

1.3 Roadmap
We start by giving the necessary preliminaries in Section 2. In Section 3 we present EA codes and
provide a security analysis of EA-LPN. In Section 4, we introduce the notion of offline-online PCGs and
present a construction of offline-online PCGs for subfield VOLE from EA codes. In Section 5 we provide
new constructions of PCFs based on the EA-LPN assumption. Finally, in Section 6.1, we describe our
optimizations for the offline costs of PCG constructions.

2 Preliminaries

2.1 Preliminaries on Bias
Definition 2.1 (Bias of a Distribution) Given a distribution D over Fn and a vector u⃗ ∈ Fn, the
bias of D with respect to u⃗, denoted biasu⃗(D), is equal to

biasu⃗(D) = |Ex⃗∼D[u⃗
⊺ · x⃗]− Ex⃗∼Un [u⃗

⊺ · x⃗]| =
∣∣∣∣Ex⃗∼D[u⃗

⊺ · x⃗]− 1

|F|

∣∣∣∣ ,
where Un denotes the uniform distribution over Fn. The bias of D, denoted bias(D), is the maximum
bias of D with respect to any nonzero vector u⃗.

Given t distributions (D1, · · · ,Dt) over Fn
2 , we denote by

⊕
i≤tDi the distribution obtained by

independently sampling v⃗i
$← Di for i = 1 to t and outputting v⃗ ← v⃗1⊕· · ·⊕ v⃗t. We will use the following

bias of the exclusive-or (cf. [Shp09]).

Lemma 2.2 Let t ∈ N be an integer, and let (D1, · · · ,Dt) be t independent distributions over Fn
2 . Then

bias(
⊕

i≤tDi) ≤ 2t−1 ·
∏t

i=1 bias(Di) ≤ mini≤t bias(Di).

Finally, let Berr(F2) denote the Bernoulli distribution that outputs 1 with probability r, and 0
otherwise. More generally, we denote by Berr(R) the distribution that outputs a uniformly random
nonzero element of a ring R with probability r, and 0 otherwise.

We will use a standard simple lemma for computing the bias of a XOR of Bernoulli samples:

Lemma 2.3 (Piling-up lemma) For any 0 < r < 1/2 and any integer n, given n random variables
X1, · · · , Xn i.i.d. to Berr(F2), it holds that Pr[

⊕n
i=1 Xi = 0] = 1/2 + (1− 2r)n/2.

2.2 Learning Parity With Noise and LPN-Friendly Codes
We define the LPN assumption over a ring R with dimension n, number of samples N , w.r.t. a code
generation algorithm C, and a noise distribution D:

Definition 2.4 (Dual LPN) Let D(R) = {Dn,N (R)}n,N∈N denote a family of efficiently sampleable
distributions over a ring R, such that for any n,N ∈ N, Im(Dn,N (R)) ⊆ RN . Let C be a probabilistic
code generation algorithm such that C(n,N,R) outputs a matrix H ∈ Rn×N . For dimension n = n(λ),
number of samples (or block length) N = N(λ), and ring R = R(λ), the (dual) (D,C,R)-LPN(n,N)
assumption states that

{(H, b⃗) | H $← C(n,N,R), e⃗ $← Dn,N (R), b⃗← H · s⃗}
c
≈ {(H, b⃗) | H $← C(n,N,R), b⃗ $← RN}.
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Note that the generator matrix H sampled from C is used in the reverse direction compared to
encoding: a codeword is a vector x⃗ ·H, where x⃗ ∈ R1×n, while the assumption is about vectors of the
form H · e⃗ for e⃗ ∈ RN . The dual LPN assumption is also called the syndrome decoding assumption in the
code-based cryptography literature; in this case, H is typically seen as the parity-check matrix of a code
generated by a matrix G such that H ·G = 0. The dual LPN assumption as written above is equivalent
to the (perhaps more common) primal LPN assumption with respect to G (a matrix G ∈ RN×N−n such
that H · G = 0), which states that G · s⃗ + e⃗ is indistinguishable from random, where s⃗

$← RN−n and
e⃗

$← Dn,N (R); the equivalence follows from the fact that H · (G · s⃗+ e⃗) = H · e⃗.
We say that a family of codes sampled by a code generation algorithm C is LPN-friendly when

instantiating the general LPN assumption with these codes leads to a secure flavor of the assumption
for standard noise distributions. Of course, when we call a code “LPN-friendly”, this implicitly means
“plausibly LPN-friendly in light of known cryptanalysis of LPN”.

Examples of noise distributions. Several choices of noise distribution are common in the literature.
Fix for example R = F2 (all the distributions below generalize to other structures) and a parameter t
which governs the average density of nonzero entry in a random noise vector. Then the following choices
are standard:

• Bernoulli noise: the noise vector e⃗ is sampled from BerNt/N (F2). This is the most common choice
in theory papers.

• Exact noise: the noise vector e⃗ is a uniformly random weight-t vector from FN
2 ; let us denote

HWN
t (F2) this distribution. This is the most common choice in concrete LPN-based constructions.

• Regular noise: the noise vector e⃗ is a concatenation of t random unit vectors from FN/t
2 ; let us denote

RegNt (F2) this distribution. This is a very natural choice in the construction of pseudorandom
correlation generators as it significantly improves efficiency [BCGI18,BCG+19b,BCG+19a] without
harming security.

Examples of LPN-friendly codes. Over the years, many codes have been conjectured to be LPN
friendly. Common choices include setting H to be a uniformly random matrix over F2 (this is the stan-
dard LPN assumption), the generating matrix of an LDPC code [Ale03] (often called the “Alekhnovich
assumption”), a quasi-cyclic code (used in several recent submissions to the NIST post-quantum compe-
tition [ABB+17,AMBD+18,MAB+18] and in previous works on pseudorandom correlation generators,
such as [BCG+19a]), Toeplitz matrices [GRS08,LM13] and many more. All these variants of LPN gen-
eralize naturally to larger fields (and LPN is typically believed to be at least as hard, if not harder, over
larger fields).

When designing new LPN-based primitives, different choices of code lead to different performance
profiles. Established codes, such as those listed above, have the advantage of having been analyzed by
experts for years or decades; however, it might happen in some applications that all established codes
lead to poor performance. Plausibly secure but yet-unstudied codes could yield considerable performance
improvements. In light of this, we require a heuristic to select plausibly LPN-friendly codes. Such
a heuristic has been implicit in the literature for some time, and was put forth explicitly in recent
works [BCG+20a,CRR21].

From large minimum distance to LPN-friendliness. The core observation is that essentially
all known attacks (attacks based on Gaussian elimination and the BKW algorithm [BKW00, Lyu05,
LF06,EKM17] and variants based on covering codes [ZJW16,BV16,BTV16,GJL20], information set de-
coding attacks [Pra62, Ste88,FS09,BLP11,MMT11,BJMM12,MO15,EKM17,BM18], statistical decod-
ing attacks [AJ01,FKI06,Ove06,DAT17], generalized birthday attacks [Wag02,Kir11], linearization at-
tacks [BM97,Saa07], attacks based on finding low weight code vectors [Zic17], or on finding correlations
with low-degree polynomials [ABG+14,BR17]) fit in a common framework of linear tests which corre-
sponds, roughly, to attacks where an adversary tries to detect a bias in the LPN samples by computing
a linear function of these samples. (The choice of the linear function itself can depend arbitrarily on the
code matrix.) Then, it is relatively easy to show that for any noise distribution D whose nonzero entries
“hit any large subset” with high enough probability, the LPN assumption with respect to a code genera-
tor C and D provably resists (exponentially) all linear tests as long as a random code from C has high
minimum distance with good probability. This is formalized below.
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Definition 2.5 (Security against Linear Tests) Let R be a ring, and let D = {Dn,N}n,N∈N de-
note a family of noise distributions over RN . Let C be a probabilistic code generation algorithm such
that C(n,N) outputs a matrix H ∈ Rn×N . Let ε, η : N 7→ [0, 1] be two functions. We say that the
(D,C,R)-LPN(n,N) is (ε, η)-secure against linear tests if for any (possibly inefficient) adversary A
which, on input H outputs a nonzero v⃗ ∈ Rn, it holds that

Pr[H
$← C(n,N), v⃗

$← A(H) : biasv⃗(DH) ≥ ε(λ)] ≤ η(λ),

where DH denotes the distribution induced by sampling e⃗← Dn,N , and outputting the LPN samples H · e⃗.

The minimum distance of a matrix H, denoted d(H), is the minimum weight of a vector in its row-
span. Then, we have the following straightforward lemma:

Lemma 2.6 Let D = {Dn,N}n,N∈N denote a family of noise distributions over RN . Let C be a proba-
bilistic code generation algorithm. Then for any d ∈ N, the (D,C,R)-LPN(n,N) assumption is (εd, ηd)-
secure against linear tests, where

εd = max
HW(v⃗)>d

biasv⃗(Dn,N ), and ηd = Pr
H

$←C(n,N)

[d(H) ≥ d].

For example, using a Bernoulli noise distribution of error rate t/N , for any v⃗ of weight at least d,
it holds that biasv⃗(Ber

n
t/N (F2)) = (1 − 2t/N)d/2 < e−2td/N ; that is, if the relative distance d/N of the

code is a constant (i.e. the code is a good code), the bias will decrease exponentially with t. Similar
calculations show that for any v⃗ of weight at least d, biasv⃗(RegNt ) ≤ (1− 2(d/t)/(N/t))t < e−2td/N .

When the minimum distance heuristic fails. From the above, one can be tempted to conjecture
that any good code, say, together with Bernoulli noise, is LPN-friendly. However, this is known to fail
in at least three situations:

1. When the code is strongly algebraic. For example, Reed-Solomon codes, which have a strong alge-
braic structure, have high minimum distance, but can be decoded efficiently with the Berlekamp-
Massey algorithm, hence they do not lead to a secure LPN instance (and indeed, Berlekamp-Massey
does not fit in the linear test framework).

2. When the noise is structured (which is the case e.g. for regular noise) and the adversary can see
enough samples. This opens the door to algebraic attacks such as the Arora-Ge attack [AG11].
However, this typically requires a large number of samples: for example, using regular noise,
one needs N = Ω((N − n)2) for the attack to apply. In contrast, all our instances will have
N = O(N − n).

3. When R has a subring, one can always project onto the subring before performing a linear attack;
this technically does not directly fit in the linear test framework. When analyzing security against
linear test, one must therefore account for all subrings the attacker could first project the problem
onto. In polynomial rings, the reducible case of cyclotomics is discussed in [BCG+20b]. In integer
rings like Z2k , one weakness is that projecting onto Z2 can make error values become zero with
probability 1/2 [LWYY22], reducing the effective noise rate. To fix this, [LWYY22] propose an
alternative noise distribution that is provably as secure as LPN over F2, but with k times the noise
rate. Alternatively, a plausible fix without increasing the noise rate is to choose error values to be
invertible, which ensures they are non-zero in all subrings.

The above three scenarios are the only exceptions we are aware of. Hence the following natural rule
of thumb: if a code is combinatorial in nature (it is not a strongly algebraic code, such as Reed-Solomon
or Reed-Müller), and if the code rate is not too close to 1 (e.g. code rate 1/2, i.e. n = N/2), then being
a good code makes it a plausible LPN-friendly candidate.

2.3 Puncturable Pseudorandom Functions
Pseudorandom functions (PRF), introduced in [GGM86], are keyed functions which are indistinguishable
from truly random functions. A puncturable pseudorandom function (PPRF) is a PRF F such that given
an input x, and a PRF key k, one can generate a punctured key, denoted k{x}, which allows evaluating
F at every point except for x, and does not reveal any information about the value F.Eval(k, x). PPRFs
have been introduced in [KPTZ13,BW13,BGI14].
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Experiment Exp-s-pPRF

Setup Phase. The adversary A sends a size-t subset S∗ ∈ X to the challenger. When it receives
S∗, the challenger picks K

$← F.KeyGen(1λ) and a random bit b
$← {0, 1}.

Challenge Phase. The challenger sends K{S∗} ← F.Puncture(K,S∗) to A. If b = 0, the chal-
lenger additionally sends (F (K,x))x∈S∗ to A; otherwise, if b = 1, the challenger picks t ran-
dom values (yx

$← Y for every x ∈ S∗) and sends them to A.

Figure 2: Selective security game for puncturable pseudorandom functions. At the end of the experiment, A sends a guess
b′ and wins if b′ = b.

Definition 2.7 (t-Puncturable Pseudorandom Function) A puncturable pseudorandom function
(PPRF) with key space K, domain X , and range Y, is a pseudorandom function F with an additional
punctured key space Kp and three probabilistic polynomial-time algorithms (F.KeyGen, F.Puncture, F.Eval)
such that

• F.KeyGen(1λ) outputs a random key K ∈ K,

• F.Puncture(K, {S}), on input a ley K ∈ K, and a subset S ⊂ X of size t, outputs a punctured key
K{S} ∈ Kp,

• F.Eval(K{S}, x), on input a key K{S} punctured at all points in S, and a point x, outputs F (K,x)
if x /∈ S, and ⊥ otherwise,

such that no probabilistic polynomial-time adversary wins the experiment Exp-s-pPRF represented on
Figure 2 with non-negligible advantage over the random guess.

2.4 Puncturable PRFs from Length-Doubling PRGs
Here, we recall how a PPRF can be constructed from any length-doubling pseudorandom generator G,
using the GGM tree-based construction [GGM86,KPTZ13,BW13,BGI14]. The construction proceeds as
follows: On input a key K and a point x, set K(0) ← K and perform the following iterative evaluation
procedure: for i = 1 to ℓ ← log |x|, compute (K

(i)
0 ,K

(i)
1 ) ← G(K(i−1)), and set K(i) ← K

(i)
xi . Output

K(ℓ). This procedure creates a complete binary tree with edges labeled by keys; the output of the PRF
on an input x is the key labeling the leaf at the end of the path defined by x from the root of the tree.

• F.KeyGen(1λ): output a random seed for G.

• F.Puncture(K, z): on input a key K ∈ {0, 1}k and a point x, apply the above procedure and return
K{x} = (K

(1)
1−x1

, . . . ,K
(ℓ)
1−xℓ

).

• F.Eval(K{x}, x′), on input a punctured key K{x} and a point x, if x = x′, output ⊥. Otherwise,
parse K{x} as (K(1)

1−x1
, . . . ,K

(ℓ)
1−xℓ

) and start the iterative evaluation procedure from the first K(i)
1−xi

such that x′i = 1− xi.

To obtain a t-puncturable PRF with input domain [n], one can simply run t instances of the above
puncturable PRF and set the output of the PRF to be the bitwise xor of the output of each instance. With
this construction, the length of a key punctured at t points is tλ log n, where λ is the seed size of the PRG.

2.5 Pseudorandom Correlation Generators
We recall the notion of pseudorandom correlation generator (PCG) from [BCG+19b]. At a high level, a
PCG for some target ideal correlation takes as input a pair of short, correlated seeds and outputs long
correlated pseudorandom strings, where the expansion procedure is deterministic and can be applied
locally.

Definition 2.8 (Correlation Generator) A PPT algorithm C is called a correlation generator, if C
on input 1λ outputs a pair of strings in {0, 1}n × {0, 1}m for n(λ),m(λ) ∈ poly(λ).
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The security definition of PCGs requires the target correlation to satisfy a technical requirement,
which roughly says that it is possible to efficiently sample from the conditional distribution of R0 given
R1 = r1 and vice versa.

Definition 2.9 (Reverse-sampleable Correlation Generator) Let C be a correlation generator. We
say C is reverse sampleable if there exists a PPT algorithm RSample such that for σ ∈ {0, 1} the corre-
lation obtained via:

{(R′0, R′1) |(R0, R1)
$← C(1λ), R′σ := Rσ, R

′
1−σ

$← RSample(σ,Rσ)}

is computationally indistinguishable from C(1λ).

The following definition of pseudorandom correlation generators is taken almost verbatim from [BCG+19b];
it generalizes an earlier definition of pseudorandom VOLE generator in [BCGI18].

Definition 2.10 (Pseudorandom Correlation Generator (PCG) [BCG+19b]) Let C be a reverse-
sampleable correlation generator. A PCG for C is a pair of algorithms (PCG.Gen,PCG.Expand) with the
following syntax:

• PCG.Gen(1λ) is a PPT algorithm that given a security parameter λ, outputs a pair of seeds (k0, k1);

• PCG.Expand(σ, kσ) is a polynomial-time algorithm that given party index σ ∈ {0, 1} and a seed kσ,
outputs a bit string Rσ ∈ {0, 1}n.

The algorithms (PCG.Gen,PCG.Expand) should satisfy the following:

• Correctness. The correlation obtained via:

{(R0, R1) |(k0, k1) $← PCG.Gen(1λ), (Rσ ← PCG.Expand(σ, kσ))σ=0,1}

is computationally indistinguishable from C(1λ).

• Security. For any σ ∈ {0, 1}, the following two distributions are computationally indistinguishable:

{(k1−σ, Rσ) | (k0, k1) $← PCG.Gen(1λ),Rσ ← PCG.Expand(σ, kσ)} and

{(k1−σ, Rσ) | (k0, k1) $← PCG.Gen(1λ),R1−σ ← PCG.Expand(σ, k1−σ),

Rσ
$← RSample(σ,R1−σ)}

where RSample is the reverse sampling algorithm for correlation C.

Examples of Correlations. A random OT correlation is a pair (y0, y1) ∈ {0, 1}2 × {0, 1}2, where
y0 = (u, v) for two random bits u, v, and y1 = (b, u · b⊕ v) for a random bit b. OT correlations is perhaps
the most common and fundamental type of correlation in secure computation (though many others – such
as Beaver triples, authenticated Beaver triples, or function-dependent correlations – are also standard).

It is known that, to generate n pseudorandom OT correlations, it suffices to generate the following
simpler correlation: Alice gets a (pseudo)random pair of length-n vectors (u⃗, v⃗), where u⃗

$← Fn
2 and

v⃗ ∈ Fn
2λ , and Bob gets x

$← F2λ and w⃗ ← x · u⃗+ v⃗. This correlation (known as the subfield vector-OLE
correlation) can be locally converted by Alice and Bob into n pseudorandom OT correlations using a
correlation-robust hash function; see [BCG+19b] for details.

2.6 From PPRFs and LPN-Friendly Codes to PCGs
The general template for building a PCG from an LPN-friendly code was established in [BCGI18,
BCG+19b]. It uses two main ingredients: an LPN-friendly code, and a method for the two parties to
obtain a compressed form of (pseudo)random secret shares s⃗0, s⃗1, satisfying the following equation (1):
s⃗1 = s⃗0 + e⃗ · x ∈ Fn

2λ , where e⃗ ∈ {0, 1}n is a random t-parse vector held by one party, and x ∈ F2λ is
a random field element held by the other party. Given this, the parties can locally compute H · s⃗0 and
H · s⃗1 = H · s⃗0 + x · (H · e⃗). Under the LPN assumption with respect to H, those are indeed shares of
x · u⃗ where u⃗ = H · e⃗ is pseudorandom. This leads to a PCG for the vector OLE correlation; the shares
can also be locally converted into pseudorandom string-OTs with the hashing technique [IKNP03].
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To obtain a compressed form of the shares s⃗0, s⃗1 the constructions of [BCG+19a] uses a puncturable
pseudorandom function. The construction works as follows: Gen will give the sender a random key K
and x, and give to the receiver t random points αj ∈ {1, . . . , N}, t punctured keys K{αj}, and the values
zj = FK(αj) + x. Given these seeds, the sender and receiver can now define the expanded outputs, for
i = 1, . . . , n:

s⃗0[i] = FK(i), s⃗1[i] =

{
FK(i) i /∈ {α1, · · · , αt}
zj if i = αj

.

2.7 Pseudorandom Correlation Functions
Pseudorandom correlation generators allow to stretch short correlated seeds into an a priori bounded pair
of pseudorandom correlated strings, in a one-time expansion phase. Pseudorandom correlation functions
(PCF, [BCG+20a]), on the other hand, are much more versatile: they allow to locally generate, from a
pair of short correlated keys, an arbitrary polynomial amount of pseudorandom correlations on demand,
in an incremental way (i.e., the keys are indefinitely reusable). The definitions of this section are taken
almost verbatim from [BCG+20a]. To define PCFs, we must consider an incremental notion of reverse-
sampleable correlations:

Definition 2.11 (Reverse-sampleable correlation) Let 1 ≤ τ0(λ), τ1(λ) ≤ poly(λ) be output-length
functions. Let Y be a probabilistic algorithm that on input 1λ returns a pair of outputs (y0, y1) ∈
{0, 1}τ0(λ) × {0, 1}τ1(λ), defining a correlation on the outputs.

We say that Y defines a reverse-sampleable correlation, if there exists a probabilistic polynomial
time algorithm RSample that takes as input 1λ, σ ∈ {0, 1} and yσ ∈ {0, 1}τσ(λ), and outputs y1−σ ∈
{0, 1}τ1−σ(λ), such that for all σ ∈ {0, 1} the following distributions are statistically close:

{(y0, y1) | (y0, y1) $← Y(1λ)} and

{(y0, y1) | (y′0, y′1)
$← Y(1λ), yσ ← y′σ, y1−σ ← RSample(1λ, σ, yσ)}

It can also be useful to consider correlations across different inputs, as e.g. in vector oblivious linear
evaluation (VOLE). This is captured by the notion of reverse sampleable correlation with setup, which
allows all algorithms to depend on a fixed global secret, ensuring consistency across different invocations;
we omit this formal definition for conciseness and refer the reader to [BCG+20a] for more details.

Definition 2.12 (Pseudorandom correlation function (PCF)) Let Y be a reverse-sampleable cor-
relation with output length functions τ0(λ), τ1(λ) and let λ ≤ n(λ) ≤ poly(λ) be an input length function.
Let (PCF.Gen,PCF.Eval) be a pair of algorithms with the following syntax:

• PCF.Gen(1λ) is a probabilistic polynomial time algorithm that on input 1λ, outputs a pair of keys
(k0, k1); we assume that λ can be inferred from the keys.

• PCF.Eval(σ, kσ, x) is a deterministic polynomial-time algorithm that on input σ ∈ {0, 1}, key kσ
and input value x ∈ {0, 1}n(λ), outputs a value yσ ∈ {0, 1}τσ(λ).2

We say (PCF.Gen,PCF.Eval) is a (weak) (N,B, ε)-secure pseudorandom correlation function (PCF)
for Y, if the following conditions hold:

• Pseudorandom Y-correlated outputs. For every σ ∈ {0, 1} and non-uniform adversary A of
size B(λ), it holds ∣∣∣Pr[ExpprA,N,0(λ) = 1]− Pr[ExpprA,N,1(λ) = 1]

∣∣∣ ≤ ε(λ)

for all sufficiently large λ, where ExpprA,N,b(λ) for b ∈ {0, 1} is as defined in Figure 3. In particular,
the adversary is given access to N(λ) samples.

• Security. For each σ ∈ {0, 1} and non-uniform adversary A of size B(λ), it holds∣∣Pr[ExpsecA,N,σ,0(λ) = 1]− Pr[ExpsecA,N,σ,1(λ) = 1]
∣∣ ≤ ε(λ)

for all sufficiently large λ, where ExpsecA,N,σ,b(λ) for b ∈ {0, 1} is as defined in Figure 4 (again, with
N(λ) samples).

2Note that it would be sufficient for PCF.Eval to take as input kσ and x by appending σ to the key kσ . This corresponds
to the view of a PCF as a single keyed function.
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ExpprA,N,0(λ) :

for i = 1 to N(λ):
x(i) $← {0, 1}n(λ)

(y
(i)
0 , y

(i)
1 )← Y(1λ)

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1 )i∈[N(λ)])

return b

ExpprA,N,1(λ) :

(k0, k1)← PCF.Gen(1λ)
for i = 1 to N(λ):

x(i) $← {0, 1}n(λ)

for σ ∈ {0, 1}:

y
(i)
σ ← PCF.Eval(σ, kσ, x

(i))

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1 )i∈[N(λ)])

return b

Figure 3: Pseudorandom Y-correlated outputs of a PCF.

ExpsecA,N,σ,0(λ) :

(k0, k1)← PCF.Gen(1λ)
for i = 1 to N(λ):

x(i) $← {0, 1}n(λ)

y
(i)
1−σ ← PCF.Eval(1− σ, k1−σ, x

(i))

b← A(1λ, σ, kσ, (x(i), y
(i)
1−σ)i∈[N(λ)])

return b

ExpsecA,N,σ,1(λ) :

(k0, k1)← PCF.Gen(1λ)
for i = 1 to N(λ):

x(i) $← {0, 1}n(λ)

y
(i)
σ ← PCF.Eval(σ, kσ, x

(i))

y
(i)
1−σ ← RSample(1λ, σ, y

(i)
σ )

b← A(1λ, σ, kσ, (x(i), y
(i)
1−σ)i∈[N(λ)])

return b

Figure 4: Security of a PCF. Here, RSample is the algorithm for reverse sampling Y as in Definition 2.11.

We say that (PCF.Gen,PCF.Eval) is a PCF for Y if it is a (p, 1/p, p)-secure PCF for Y for every polynomial
p. If B = N , we will write (B, ε)-secure PCF for short.

The above definition captures a notion of weak pseudorandom function, where security is only required
to hold given random adversarial queries. As for PRFs, one can also strengthen the definition to strong
PCFs, which allow arbitrary adversarial queries; a formal definition is given in [BCG+20a]. As shown
in [BCG+20a], any weak PCF can be turned into a strong PCF in the random oracle model, by hashing
the input before feeding it to the function.

3 Expand-Accumulate Codes
In this section we introduce expand-accumulate codes, which are defined by the product H = BA for a
sparse expanding matrix B and the accumulator matrix A. We conjecture that the LPN problem is hard
to solve for this matrix ensemble and provide theoretical evidence for this conjecture by demonstrating
that it resists linear attacks.

3.1 Expand-Accumulate Codes, and the EA-LPN Assumption
First, we formally define the accumulator matrix.

Definition 3.1 (Accumulator Matrix) For a positive integer N and ring R, the accumulator matrix
A ∈ RN×N is the matrix with 1’s on and below the main diagonal, and 0’s elsewhere.

In particular, if Ax⃗ = y⃗ with x⃗, y⃗ ∈ RN , we have the following relations:

yi =

i∑
j=1

xj ∀i ∈ [N ] yi := xi + yi−1 ∀2 ≤ i ≤ N . (1)

Note in particular that (1) guarantees that the vector-matrix product Ax⃗ can be computed with only
N − 1 (sequential) ring addition operations. In particular, when R is the binary field F2, this requires
just N − 1 xor operations. Furthermore, this can be computed even more efficiently in parallel, which
is a major benefit of our construction. For more details, see Section 6.1. We now formally introduce
expand-accumulate (EA) codes, which underline our main constructions of offline-online PCGs.
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Definition 3.2 (Expand-Accumulate (EA) codes) Let n,N ∈ N with n ≤ N and let R be a ring.
For a desired density p ∈ (0, 1), a generator matrix for an expand-accumulate (EA) code is sampled as
follows:

• Sample row vectors r⃗⊺1 , r⃗
⊺
2 , . . . , r⃗

⊺
n

$← BerNp (R) independently and put

B =


r⃗⊺1
r⃗⊺2

...
...

...
r⃗⊺n

 .

• Output the matrix-matrix product BA, where A ∈ RN×N is the accumulator matrix.

We use EA(n,N, p,R) to denote a code sampled from this distribution, and the sampling of the corre-
sponding generator matrix is denoted H

$← EAGen(n,N, p,R). When the ring R is omitted it is assumed
R = F2.

Remark 3.3 While it is more standard in the coding-theoretic literature to use G for a generator matrix
of a code, as we are interested in the dual LPN assumption connected to a code, we actually view H as the
parity-check matrix for the code for which the EA code is the dual. Thus, as H is the standard notation
for a parity-check matrix, we have chosen to use this notation for the generator matrix of an EA code.

Remark 3.4 (Connection to RA codes) Our definition of expand-accumulate codes is heavily in-
spired by the definition of repeat-accumulate (RA) codes. For a desired rate 1 = 1/ℓ with ℓ ∈ N, such a
code has generator matrix RℓΠA, where

• Rℓ ∈ F(N/ℓ)×N
2 is the matrix which repeats each coordinate ℓ times, i.e.,

x⃗⊺Rℓ = (x1, x1, . . . , x1︸ ︷︷ ︸
ℓ times

, x2, x2, . . . , x2︸ ︷︷ ︸
ℓ times

, . . . , xN/ℓ, xN/ℓ, . . . , xN/ℓ︸ ︷︷ ︸
ℓ times

).

• Π ∈ FN×N
2 is a uniformly random permutation matrix.

• A is the accumulator matrix as defined in Definition 3.1.

Unfortunately, it is known that such codes cannot be asymptotically good: if the rate is constant, then
the minimum distance is at most N−Ω(1). One solution to this problem is to have multiple rounds
of permuting and accumulating: for example, 2 rounds of accumulating (so called RAA codes) already
achieve asymptotic goodness, and with a larger (constant) number of rounds we can approach the Gilbert-
Varshamov bound. However, for our desired applications having a single accumulation step is desirable.
Firstly, this is maximally cache-friendly. Secondly, for our construction of PCFs we crucially rely on the
structure of the noise vector after accumulating, and this structure is destroyed if we accumulate twice.

Remark 3.5 (Connection to codes of Tillich and Zémor) Upon completing our work we discov-
ered that EA codes are in fact quite similar to a class of codes studied by Tillich and Zémor [TZ06]. They
presented their codes via parity-check matrices, but careful observation shows that the codes are indeed
a natural variant of a rate 1/2 EA code (the rows of the corresponding matrix B are not independently
sampled, but they are chosen to be sparse, which is qualitatively what one wants from an EA code). Ap-
plying these codes for cryptographic tasks appears to be a promising avenue for future research.

3.2 Markov Chains
In order to analyze EA codes, we will make use of an expander Hoeffding bound. We provide in this
subsection the necessary background on the Markov chains and state the bound we use.

A (discrete-time and finite) Markov chain consists of a finite set V called the state space and a
transition matrix P ∈ RV×V with the property that all row sums are equal to 1 and the entries are all
non-negative. For u, v ∈ V, one interprets Pu,v as the probability of transitioning from state u to v,
which we denote as Pu,v = Pr [u→ v ]. P then naturally describes a random walk in the following sense.
Let ν⃗ ∈ RV denote a distribution over the state space V, so νv is the probability of sampling state v.
Consider the following procedure:
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• First, sample a state V0 ∈ V according to ν.

• Then, sample an N step random walk V0, V1, . . . , VN according to P . I.e., for i = 1, . . . , N ,
transition from state Vi−1 to state Vi with probability PVi−1,Vi

.

A distribution π⃗ ∈ RV is called a stationary distribution if

π⃗⊺P = π⃗⊺ .

In other words, it is a left eigenvector for P with eigenvalue 1.
In this work, all Markov chains are assumed to be irreducible, which means that any state can be

reached from any other any state in a finite number of steps. That is, if one constructs the directed graph
with vertex set V with edges (u, v) whenever Pu,v > 0, we require this graph to be strongly connected.
In this case, it is known that the Markov chain has a unique stationary distribution. Furthermore, an
irreducible Markov chain is reversible if

∀u, v ∈ V, πuPu,v = πvPv,u .

In this work, we will make use of tail-bounds for Markov chains. That is, suppose we have a function
f : V → [0, 1] and define µ := EV∼π⃗[f(V )] to be its expected value under the distribution π⃗. We would like
to understand the probability that the random variable SN =

∑N
i=1 f(Vi) deviates significantly from its

expected value N ·µ as N grows, where (V1, . . . , VN ) is an N -step random walk. This can be quantified via
P ’s second eigenvalue: by the classical theory of nonnegative matrices, the eigenvalues of P are 1 = λ1 >
λ2 ≥ · · · ≥ λ|V| ≥ −1, where the strict inequality between λ1 and λ2 follows from irreducibility. We call λ2

the second largest eigenvalue of P and, when λ2 is small (equivalently, the spectral gap 1−λ2 is large), we
find that the random variable SN is very concentrated. This is the topic of “expander Hoeffding/Chernoff
bounds.” The version which is most suitable for our application is due to Leon and Perron [LP04].

Theorem 3.6 (Expander Hoeffding Bound) Let (V, P ) denote a finite, irreducible and reversible
Markov chain with stationary distribution π⃗ and second largest eigenvalue λ. Let f : V → [0, 1] with
µ = EV∼π⃗[f(V )]. For any integer N ≥ 1, consider the random variable SN =

∑N
i=1 f(Vi), where V0 is

sampled uniformly at random from V and then V1, . . . , VN is a random walk starting at V0.
Then, for λ0 = max(0, λ) and any ε > 0 with µ+ ε < 1, the following bound holds:

Pr [SN ≥ N(µ+ ε) ] ≤ exp

(
−21− λ0

1 + λ0
Nε2

)
.

When we apply the above theorem, it will be for 2-state Markov chain with uniform stationary
distribution π⃗ = (1/2, 1/2), and for our function of interest µ = 1/2. However, the initial state will not
be uniform; it will be equal to one of the two states with probability 1. We can easily derive from the
above theorem a corollary which is sufficient for our purposes, wherein the above probability estimate
only degrades by a factor of 2.

Corollary 3.7 Let (V, P ) denote a finite, irreducible and reversible Markov chain with V = {v0, v1},
stationary distribution π⃗ = (1/2, 1/2) and second largest eigenvalue λ. Let f : V → [0, 1] with 1/2 =

EV∼π⃗[f(V )]. For any integer N ≥ 1, consider the random variable S̃N =
∑N

i=1 f(Vi), where V0 = v0
with probability 1 and then V1, . . . , VN is a random walk starting at v0.

Then, for λ0 = max(0, λ) and any ε > 0 with 1/2 + ε < 1, the following bound holds:

Pr
[
S̃N ≥ N(1/2 + ε)

]
≤ 2 exp

(
−21− λ0

1 + λ0
Nε2

)
.

Proof. Applying the total probability rule,

Pr [SN ≥ N(1/2 + ε) ] = Pr [SN ≥ N(1/2 + ε)|V0 = v0 ] · PrV0∼π⃗ [V0 = v0 ]

+ Pr [SN ≥ N(1/2 + ε)|V0 = v1 ] · PrV0∼π⃗ [V0 = v1 ]

= Pr [SN ≥ N(1/2 + ε)|V0 = v0 ] ·
1

2

+ Pr [SN ≥ N(1/2 + ε)|V0 = v1 ] ·
1

2

≥ Pr
[
S̃N ≥ N(1/2 + ε)

]
· 1
2
.

The result now follows readily from Theorem 3.6. □
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3.3 The EA-LPN Assumption and Security Analysis
In this work, we provide a new (dual) LPN-type assumption connected to EA codes which we term
EA-LPN. It is obtained by specializing Definition 2.4 to the case where the code generation algorithm
samples H $← EAGen. For the noise distribution D(R), we can consider Bernoulli noise BerNt/N (R), exact
noise HWN

t (R), and regular noise RegNt (R).

Definition 3.8 (EA-LPN Assumption) Let D(R) = {DN (R)}N∈N denote a family of efficiently sam-
pleable distributions over R, such that for any N ∈ N, Im(DN (R)) ⊆ RN . For a dimension n = n(λ),
number of samples N = N(λ), ring R = R(λ) and parameter p = p(λ) ∈ (0, 1) the (D,R)-EA-LPN(n(λ), N(λ), p(λ))
assumption states that

{(H, b⃗) | H $← EAGen(n,N, p,R), e⃗ $← DN (R), b⃗← H · e⃗}
c
≈ {(H, b⃗) | H $← EAGen(n,N, p,R), b⃗ $← RN}.

In order to provide evidence for the EA-LPN-assumption, we will show that it is secure against linear
tests (Definition 2.5), at least when R = F2. To do this, recalling Lemma 2.6, it suffices to show that
d(H) is large (with high probability). The technical core of our proof is the following bound on the
probability that a message vector x⃗ ∈ Fn

2 of weight r is mapped to a codeword of weight ≤ δN .

Lemma 3.9 Let n,N ∈ N with n ≤ N and put R = n
N . Fix p ∈ (0, 1/2) and δ > 0, and put β = 1/2−δ.

Let r ∈ N and let x⃗ ∈ Fn
2 be a vector of weight r. Define ξr = (1− 2p)r. Then,

Pr
[
HW(x⃗⊺H) ≤ δN | H $← EAGen(n,N, p)

]
≤ 2 exp

(
−21− ξr

1 + ξr
Nβ2

)
.

To prove this lemma, we imagine revealing the coordinates of the random vector x⃗⊺H one at a time,
and observe that this can be viewed as a random walk on a Markov chain with state space {0, 1} and
second eigenvalue ξr. We can then apply Corollary 3.7 to guarantee that such a random walk is unlikely
to spend too much time on the 0 state, which is equivalent to saying that the random vector x⃗⊺H does
not have too small weight.
Proof. Denote the columns of B as c⃗1, c⃗2, . . . , c⃗N ∈ Fn

2 , and observe that

H = BA =

 · · ·
(⃗c1 + · · ·+ c⃗N ) (c⃗2 + · · ·+ c⃗N ) · · · c⃗N

· · ·

 .

Hence, for a fixed vector x⃗ ∈ Fn
2 , if y⃗⊺ = x⃗⊺H = x⃗⊺BA, we have

(y1, y2, . . . , yN ) = (x⃗⊺ · (c⃗1 + · · ·+ c⃗N ), x⃗⊺ · (c⃗2 + · · ·+ c⃗N ), . . . , x⃗⊺ · (c⃗1 + · · ·+ c⃗N )) .

Note that each entry of B is sampled independently according to Berp(F2). Hence, the c⃗i’s are indepen-
dently sampled as c⃗i ← Bernp (F2). We furthermore have the following recursive relation:

yN := x⃗⊺ · c⃗N ,

yi := x⃗⊺ · c⃗i + yi+1 ∀1 ≤ i ≤ N − 1 .

Lastly, as HW(x⃗) = r the Piling-up Lemma (Lemma 2.3) tells us that each x⃗⊺ · c⃗i is distributed as
Berpr (F2) where

pr :=
1− (1− 2p)r

2
=

1− ξr
2

.

Defining zi = yN−i for i ∈ [N ], we may therefore view the sequence (z1, z2, . . . , zN ) as the outcome of an
N -step random walk on a Markov chain with state space {v0, v1} (corresponding to 0 and 1, respectively)
which starts in state z0 = v0. The transition probabilities are

Pr [ v0 → v0 ] = Pr [ v1 → v1 ] =
1 + ξr

2
,

Pr [ v0 → v1 ] = Pr [ v1 → v0 ] =
1− ξr

2
.
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The transition matrix of this Markov chain is[
1+ξr
2

1−ξr
2

1−ξr
2

1+ξr
2

]
=

1− ξr
2

J + ξrI ,

where J is the 2× 2 all-1’s matrix and I is the 2× 2 identity matrix. It follows readily that the second-
largest eigenvalue of this matrix is ξr and that its stationary distribution is uniform, i.e., (1/2, 1/2). It
is also immediate that this Markov chain is reversible. We are thus in position to apply Corollary 3.7
with f : V → [0, 1] defined via f(v0) = 1 and f(v1) = 0. Thus, if V1, . . . , VN denotes a N step random
walk starting at state V0 = v0 and S̃N =

∑N
i=1 f(Vi), we find

Pr
[
HW(x⃗⊺H) ≤ δN | H $← EAGen(n,N, p)

]
= Pr

[
S̃n ≥ (1/2 + β)N

]
≤ 2 exp

(
−21− ξr

1 + ξr
Nβ2

)
.

□
We now state the main theorem of this section.

Theorem 3.10 Let n,N ∈ N with n ≤ N and put R = n
N , which we assume to be a constant. Let C > 0

and set p = C lnN
N ∈ (0, 1/2). Fix δ ∈ (0, 1/2) and put β = 1/2− δ. Assume the following relation holds:

R < min

{
2

ln 2
· 1− e−1

1 + e−1
· β2,

2

e

}
(2)

Then, assuming N is sufficiently large we have

Pr
[
d(H) ≥ δN | H $← EAGen(n,N, p)

]
≥ 1− 2

n∑
r=1

(
n

r

)
exp

(
−21− ξr

1 + ξr
Nβ2

)
(3)

≥ 1− 2RN−2β
2C+2.

Informally, the conclusion is that when p = Θ(logN/N) a constant rate EA code will have distance
Ω(N) with probability 1−1/poly(N). If one would like the failure probability to be negligible in N this can
still be achieved by increasing p: for example, if p = Θ(log2 N/N) the failure probability is N−O(logN).
Proof. By the union bound, we may upper bound

Pr
[
d(H) ≤ δN | H $← EAGen(n,N, p)

]
= Pr

[
∃x⃗ ∈ Fn

2 \ {⃗0} s.t. HW(x⃗⊺H) ≤ δN | H $← EAGen(n,N, p)
]

≤
n∑

r=1

∑
x⃗∈Fn

2

HW(x⃗)=r

Pr
[
HW(x⃗⊺H) ≤ δN | H $← EAGen(n,N, p)

]
. (4)

Applying Lemma 3.9, we may upper bound

(4) ≤
k∑

r=1

∑
x⃗∈Fn

2

HW(x⃗)=r

2 exp

(
−21− ξr

1 + ξr
Nβ2

)
= 2

n∑
r=1

(
n

r

)
exp

(
−21− ξr

1 + ξr
Nβ2

)
, (5)

where we have again set ξr = (1 − 2p)r. We now bound each term in the above sum. We begin by
considering the case r = 1.

Case r = 1. For this case, we begin by noting that

1− ξ1
1 + ξ1

=
1− (1− 2p)

1 + (1− 2p)
=

2p

2(1− p)
=

p

1− p
≥ p .
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Thus, we may bound (
n

1

)
exp

(
−21− ξ1

1 + ξ1
Nβ2

)
≤ n · exp(−2pNβ2)

= RN · exp
(
−2C lnN

N
Nβ2

)
= RN · exp

(
−2Cβ2 lnN

)
= RN ·N−2Cβ2

= RN−2Cβ2+1 . (6)

We now turn to larger values of r. It is most convenient to look at

− 1

N
ln

((
n

r

)
exp

(
−21− ξr

1 + ξr
Nβ2

))
= 2β2 1− ξr

1 + ξr
− 1

N
ln

(
n

r

)
. (7)

Our target is to lower bound (7) ≥ Ω(logN/N). We consider two more cases depending on the value of r.

Case 2: 2 ≤ r ≤ N
2C lnN . First, as 1 + ξr ≤ 2, it suffices to lower bound

β2(1− ξr)−
1

N
ln

(
n

r

)
= β2

(
1−

(
1− 2C lnN

N

)r)
− 1

N
ln

(
RN

r

)
. (8)

We will use the elementary inequality e−z ≤ 1− z
2 , which is valid for all z ∈ [0, 1].3 As r ≤ N

2C lnN we have(
1− 2C lnN

N

)r

≤ e−r
2C lnN

N ≤ 1− Cr lnN

N
.

Thus, applying also the standard upper bound
(
a
b

)
≤

(
ea
b

)b, we may lower bound (8) via

β2

(
1−

(
1− 2C lnN

N

)r)
− 1

N
ln

(
RN

r

)
≥ β2

(
1−

(
1− Cr lnN

N

))
− r

N
ln

(
eRN

r

)
= β2Cr lnN

N
− r

N
ln

(
eRN

r

)
=

r

N
ln

(
NCβ2

· r

eRN

)
.

Clearly, the above bound decreases as r decreases. Hence, we substitute in r’s minimum value r = 2:

2

N
ln

(
NCβ2

· 2

eRN

)
≥ 1

N
ln
(
N2Cβ2−1

)
(9)

where the last inequality uses the assumption R ≤ 2/e. This completes the argument in this case.

Case 3: r ≥ N
2C lnN . In this case, we may bound(

1− 2C lnN

N

)r

≤ e−r
2C lnN

N ≤ e−1

and
1

N
ln

(
n

r

)
=

1

N
ln

(
RN

r

)
≤ 1

N
ln 2RN = R ln 2 .

Hence, in this case we may lower bound (7) as

2β2 1−
(
1− 2C lnN

N

)r
1 +

(
1− 2C lnN

N

)r − 1

N
ln

(
n

r

)
≥ 2β2 1− e−1

1 + e−1
−R ln 2 > 0 , (10)

3This inequality may be readily verified using calculus.
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where the strict inequality follows from (2).
Note that, for sufficiently large N , the lower bound in (9) is smaller than that in (10). Thus, for each

2 ≤ r ≤ n, we may upper bound(
n

r

)
exp

(
−21− ξr

1 + ξr
Nβ2

)
≤ e
− 1

N ln
(
N2Cβ2−1

)
= N−2Cβ2+1 .

Returning now to (4), and recalling the bound for r = 1 from (6), we therefore have

2

n∑
r=1

(
n

r

)
exp

(
−21− ξr

1 + ξr
Nβ2

)
≤ (2RN) ·N−2Cβ2+1 = 2RN−2Cβ2+2 .

This completes the proof. □

3.4 Other Variants
In our investigation of EA codes we considered many variants. We begin by discussing other models for
sampling expand-accumulate codes.

Different expanding matrices. There are other natural ways to choose the matrix for expanding
the input prior to accumulating: that is, the B matrix from Definition 3.2. In order to be useful for
efficient offline-online PCGs, we need to ensure that every row of B is as sparse as possible.

The following are natural choices for the distribution of the rows of B. We conjecture that the
behaviour of any of the random codes generated by BA should be comparable in terms of minimum
distance (and hence, in terms of resistance to linear attacks). Let ℓ ∈ N be the row-weight parameter and
let R be a ring. We consider the following distributions for independently sampling the rows r⃗1, . . . , r⃗n
of the matrix B.

• Sample each r⃗i as a uniformly random vector in RN of weight ℓ, i.e., sample r⃗i ← HWN
ℓ (R). We

denote the sampling of the matrix H = BA ∈ Rn×N by H
$← EAGenExa(n,N, ℓ,R).

• Sample each r⃗i as the concatenation of ℓ uniformly random unit vectors fromRN/ℓ, i.e., sample r⃗i ←
RegNℓ (R). We denote the sampling of the matrix H = BA ∈ Rn×N by H

$← EAGenReg(n,N, ℓ,R).4

The above distributions might be preferable in practice. For example, if the noise is exact we do not
have to worry about rows of abnormally large weight, in which case the online phase would be more
efficient.

We conjecture that EA codes when the rows of the matrix B are sampled according to the exact
distribution or the regular distribution should still be asymptotically good. Formally:

Conjecture 3.11 There exist constants R, δ, C > 0 such that the following holds. Let N ∈ N, put
n = ⌊RN⌋ and let ℓ ∈ N be an integer such that ℓ ≥ C lnN . Then

Pr
[
d(H) ≥ δN | H $← EAGenExa(n,N, ℓ,F2)

]
≥ 1− 1/poly(N) .

Assume further ℓ|N . Then also

Pr
[
d(H) ≥ δN | H $← EAGenReg(n,N, ℓ,F2)

]
≥ 1− 1/poly(N) .

While we have left the 1/poly(N) failure probability in the statement unspecified, be do not see any
reason that the failure probability should deviate significantly from the O(N−2Cβ2+2) bound provided
in Theorem 3.10.

Unfortunately, the Markov chain-based analysis of Lemma 3.9 does not appear to port over naturally
when the rows of B are sampled according to either of these distributions, as the columns of B then fail
to be independent.

Nonetheless, we endeavour to provide further evidence for this conjecture. We do this by considering
the following matrices:

4This distribution can be naturally extended when ℓ ∤ N : in this case, if a = M mod ℓ we sample a unit vectors in
R⌈N/ℓ⌉ and ℓ− a unit vectors from R⌊N/ℓ⌋.
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Figure 5: Plots of the average weight distributions for the 3 row sampling procedures: exact rows, regular rows, and
Bernoulli rows. Blue corresponds to exact; red corresponds to regular; and orange corresponds to Bernoulli.

• H1
$← EAGenExa(11, 55, 11,F2);

• H2
$← EAGenReg(11, 55, 11,F2); and

• H3
$← EAGen(11, 55, 11/55 = 0.2,F2).

For these small parameters, we are able to explicitly compute the weight distribution of the codes
generated by these (randomly sampled) matrices. That is, we can compute the vector (a0, a1, . . . , a55) ∈
N56 where aj is the number of x⃗ ∈ F11

2 for which HW(x⃗⊺Hi) = j. For each of these sampling procedures,
we ran 100 trials and computed the average weight distribution. The results are plotted in Figure 5.

While the broad conclusion is that the weight distributions all appear to be relatively similar, if
anything it appears that regular noise is best in the sense that it puts the most mass on heavier weights.
Providing theoretical guarantees for these other row distributions remains an open problem meriting
further study.

Arbitrary rings. Theorem 3.10 applies only to the case of the binary field, and one can naturally
wonder about the distance over arbitrary rings. We conjecture that the minimum distance should at
the very least not degrade over larger rings; in fact, we believe that it should increase commensurately.
However, the expander Hoeffding bound that we apply does not appear to work well in this case; in
particular, we are forced to require the rate R≪ 1

ln q , where q is the size of the ring R.
However, we believe that this is an artifact of the proof. To justify this suspicion, we consider the

following:

• H1
$← EAGenExa(4, 20, 4,F17);

• H2
$← EAGenExa(4, 20, 4,Z16);

Further, we consider the sampling procedure where each row is sampled to be a uniformly random
vector of weight ℓ where all the nonzero coordinates take value 1.5 We denote the sampling procedure as
H

$← EAGenExa∗(k, n, ℓ,R). Let also

• H3
$← EAGenExa∗(4, 20, 4,F17);

• H4
$← EAGenExa∗(4, 20, 4,Z16).

For these small parameters, we are able to explicitly compute the weight distribution of the codes
generated by these (randomly sampled) matrices. For each of these sampling procedures, we ran 100
trials and computed the average weight distribution, which we subsequently normalized by 100/q4 where
q is the ring size. The results are provided in Figure 6.

5Of course, this notion is not interesting if R = F2.
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Figure 6: In this graphic we have plotted the average weight distributions for 4 of the sampling procedures outlined in this
section, normalized by 100

q4
where q is the ring size. Blue corresponds to H1; red to H2; yellow to H3; and green to H4.

The conclusions we draw are the following. First, the weight distribution only appears to get better (in
the sense that more mass moves towards higher weight vectors) as q increases. Secondly, we do not notice
too much difference between the case where the nonzero entries are all set to 1, although the effect is more
noticeable for Z16 than F17. However, we caution that for codes over Z2k the amount of security one gets
is no greater than the amount one gets over Z2 as one can always perform a modular reduction/projection
attack to leak one bit at a time (such an attack is not covered by the linear attacks framework).

To put it concisely, our experiments suggest that the concrete time to break the EA-LPN assumption
should only increase as the characteristic of the ring increases (at least, assuming one is restricted to
modular reduction followed by linear attacks). Proving this theoretically remains an interesting challenge
for future work.

3.5 Tightness of the Security Analysis
As we are interested in concrete parameters, we are naturally motivated to ask whether or not the
analysis of Theorem 3.10 is tight. We now explore certain avenues to potentially improve the above
result, especially when dealing with concrete parameters.

Rate-Distance Tradeoff. One aspect of Theorem 3.10 that one could hope to improve is the rate-
distance tradeoff (2). Inspecting the proof, we see that this assumption was used in bounding the
probability that vectors x⃗ ∈ Fn

2 of weight at least N
C lnN have an encoding of weight at most δN . Indeed,

if n = RN is too large then we are unable to guarantee that it is not the case that there are exponentially
many vectors x⃗ of weight ≈ n

logN that have an encoding of weight at most δN .
However, even if such attack vectors exist, it is not clear to us that any efficient adversary could find

one. Recall that proving that EA codes have good minimum distance shows that they are not susceptible
to linear attacks, without the requirement that the algorithm implementing the linear attack be efficient.
On the other hand, the EA-LPN assumption only implies that it is computationally infeasible to find an
attack vector whose encoding has low weight.

Therefore, it is reasonable to believe that for values of R = n/N and δ that violate the inequality (2),
the code generated by H

$← EAGen(n,N, p) could still have pseudodistance δ. We provide below a formal
definition of pseudodistance. (For concreteness, the definition is specialized to the case of F2, although
the definition can easily be generalized to other rings.)

Definition 3.12 (Pseudodistance) Let C be a probabilistic code generation algorithm such that C(n,N)
outputs a matrix H ∈ Fn×N

2 . For a weight parameter δ(λ), we say that C(n(λ), N(λ)) has pseudodis-
tance δ(λ) if for every PPT algorithm A there is a negligible function negl such that

Pr
[
A(H) = x⃗ s.t. x⃗ ̸= 0⃗ and HW(x⃗⊺H) ≤ δN | H $← C(n,N)

]
≤ negl(λ) .
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The above definition has appeared previously in the literature, often referred to as the binary shortest
vector problem (bSVP) [AHI+17].6 We consider it reasonable to suspect that, so long as R = n/N and
δ satisfy δ < (1−R)/2,7 EAGen(n,N, p) has pseudodistance δ assuming p = Ω(logN/N).

Density of B, theoretically. As a conceptual question, one can ask how dense the matrix B must
be. Note that the density of a row of B greatly influences the efficiency of the online phase of our
PCG construction, so this is an important point to understand. Theorem 3.10 requires each row to have
(expected) density Ω(logN), and it is reasonable to wonder if the rows could have constant density.

If we are hoping for the code to be asymptotically good, i.e., both rate and relative distance constant,
this is unfortunately not possible. Indeed, in this case we can show that, in expectation, at least δℓn
vectors of weight 1 have encodings of weight at most δ. Note that e⃗⊺1B, . . . , e⃗⊺nB are a collection of n
random vectors with distribution BerNℓ/N (F2); thus, we analyze the probability that x⃗⊺A has weight ≤ δN

if x⃗ $← BerNℓ/N (F2). Note that if all of x⃗’s nonzero coordinates land in the interval {N − δN + 1, . . . , N},
then x⃗⊺A will have weight at most δN , and this event occurs with probability (1 − ℓ/N)N(1−δ) ≈
e−ℓ(1−δ) ≥ δℓ. As there are n unit vectors, this implies in expectation that there will be at least δℓn
weight one messages with weight ≤ δN encoding. If 1/ℓ, δ, and R = n/N are all Ω(1), then we find that
there are linearly many codewords of weight at most δN . A similar analysis applies for other choices of
row distribution: so long as their expected weight is ℓ, the weight of the vector after accumulation will
be at most δN with probability roughly δℓ.

The above is not too surprising in light of the known impossibility results concerning RA codes.
Recalling Remark 3.4, for such a code the matrix B ∈ FN/ℓ×N

2 is chosen so that the rows are all uniformly
random of weight ℓ, subject to the constraint that every column has weight 1. For ℓ = O(1), it is know
that the minimum distance of such codes is at most O(N1−1/(ℓ−1)) [BMS08]. Thus, we cannot hope to
have an asymptotically good code with just one round of accumulation.

Better parameters with rejection sampling. By the above discussion and, indeed, the proof of
Theorem 3.10, low-weight codewords in an EA code are typically obtained as the encodings of low-weight
messages. If one is willing to spend a bit more time to check the quality of the code after sampling it
by checking the weight of low-weight messages, it is reasonable to expect that this would improve the
failure probability.

More specifically, upon sampling the generator matrix H
$← EAGen(n,N, p), one could run the fol-

lowing tester T : for each nonzero message vector x⃗ ∈ Fn
2 of weight at most a, compute x⃗⊺H, and verify

that it has weight at least δN . When a is a small constant, such a test is feasible. Moreover, heuris-
tically one should expect that if H passes the test then the probability that it fails to have distance δ
should be at most

n∑
r=a+1

(
n

r

)
exp

(
−21− ξr

1 + ξr
Nβ2

)
(11)

which is just the bound in (5) where we have removed the terms for r ≤ a. (Of course, this assumes
that the probability HW(x⃗⊺H) ≤ δN for non x⃗ ∈ Fn

2 of weight at least a + 1 does not decrease if we
condition on the event HW(y⃗⊺H) > δN for all nonzero y⃗ ∈ Fn

2 of weight at most a. But we feel that
this is reasonable to suspect, even if it appears very difficult to prove formally.)

Already when a = 1, we can see some noticeable savings. Indeed, just with a = 1 we extrapolated the
value of (11) for n = 220, 225 and 230 with N = 5n. For C = 2.3 our estimate of the failure probability
for the EA code having distance at least 0.005N or 0.02N is noticeably better than the bound from
Figure 8. The result is summarized in Figure 7. We see that the failure probability decreases in all cases
by a factor of roughly 100.

3.6 Concrete Parameter Choices
Conservative parameters. In this section, we consider relatively conservative parameter choices,
and compute the failure probability as given by (3). That is, instead of computing the probability that

6In [AHI+17] the code is presented in terms of a parity-check matrix. In our case, presenting a code via a generator
matrix is more convenient. As one can efficiently pass between the two representations the definitions are equivalent.

7This assumption implies that the standard information set decoding attack does not succeed.
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C = 2.3

δ
n

220 225 230

0.005 0.000887 0.000405 0.000185
0.02 0.00720 0.00512 0.00374

Figure 7: In this table, we list the (extrapolated, heuristic) failure probabilities for an EA code of rate 1/5 with the given
parameters, conditioned on all the rows having weight at least δN . We see significant savings (roughly a factor of 100)
compared to Figure 8.

δ
n

220 225 230

C = 3
0.005 0.000317 0.0000686 0.0000148
0.02 0.00120 0.000347 0.000100
0.05 0.0157 0.00794 0.00402

C = 2.5
0.005 0.0133 0.00645 0.00312
0.02 0.0410 0.0253 0.0156
0.05

C = 2.3
0.005 0.0599 0.0401 0.0268
0.02 0.174 0.147 0.124
0.05

Figure 8: In this table, we list the (extrapolated) failure probabilities for various parameter choices. The rate is set to 1/5,
i.e., N = 5n. If the cell is empty it is because the extrapolated value exceeds 1.

d(H) ≤ δN for H ← EA(n,N, p) as 2RN−2Cβ2+2 (where, as in the theorem statement, β = 1/2 − δ,
R = n/N and p = C lnN

N ) we endeavour to numerically compute the bound

2

n∑
r=1

(
n

r

)
exp

(
−21− ξr

1 + ξr
Nβ2

)
,

where as before ξr = (1− 2p)r. For our applications we would like n = 220, 225 and 230. It is reasonable
to choose R = 0.2, implying N = 5 · n. However, computing (3) for these values of n,N is beyond
our computational resources, so we instead computed the failure probability for smaller values n =
29, 210, . . . , 215, and extrapolated the failure probability.8. Our results are summarized in Figure 8.

For context, we recall Lemma 2.6 which translates minimum distance into security against linear
tests. It says that if H $← EAGen(n,N, p) has minimum distance δN with probability at least η(λ) and
the error vector e⃗ ∈ FN

2 has (expected) weight t (e.g., e⃗ $← BerNt/N (F2), HWN
t/N (F2) or RegNt (F2)), then if

we want (2−λ, η(λ))-security against linear tests we require e−2tδ ≤ 2−λ, i.e., t ≥ (ln 2)·λ
2δ .

Looking at Figure 8, for n = 230 and N = 5n, if t = 664 then we have t > (ln 2)·98
2·0.05 , which implies

that H
$← EAGen

(
n,N, 3 lnN

N

)
is (2−98−log2 5, 0.00402)-secure9 against linear tests. Decreasing C, if

H
$← EAGen

(
n,N, 2.3 lnN

N

)
then so long as t ≥ 1658 it is (2−98−log2 5, 0.124)-secure against linear tests.

For all of the extrapolated values in Figure 8, we provide the necessary number of noisy coordinates
for 128 bits of security against linear tests.

Density of B, concretely. However, when it comes to concrete parameter choices, it is reasonable to
be more aggressive. Our intuition, which is guided by the proof of Theorem 3.10, tells us that if there
is to be a low-weight vector in an EA code, then it is likely obtained as the encoding of a low-weight
message. In particular, if an EA code has distance d it is probably because H

$← EAGen has a row of
weight d. Furthermore, while there could very well be lower weight vectors in the EA codes, we do not
see an easy means to find these vectors. Recalling the discussion of the notion of pseudodistance, this
already implies that the construction could be secure against efficient linear attacks.

8We used exponential regression in log2 n, which fit very well: R values in excess of .99.
9Note that as computing a dot-product requires 5 · 230 time, this is sufficient for 128 bits of security.
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δ
n

220 225 230

0.005 7326 6979 6632
0.02 1832 1745 1658
0.05 732 698 664

(a) Value of t required for 128 − log2 N-bit security against
linear tests. The failure probability for different values of C
is found in Figure 8.

n
ℓ 7 9 11

220 0.0613 0.0923 0.121
225 0.0370 0.0624 0.0879
230 0.0223 0.0422 0.06391

(b) The (extrapolated, empirical) average minimum row-
weight for H sampled as H ← EAGenReg(n, 5n, ℓ).

Being aggressive, we consider choosing smaller values of ℓ, and then empirically estimate the minimum
(relative) weight of a row of an EA matrix H. For our applications we would like n = 220, 225 and 230.
It is reasonable to choose R = 0.2, implying N = 5 · n. For ℓ = 7, 9, 11, we endeavour to empirically
estimate the minimum row weight of a matrix H

$← EAGenReg(n, 5 · n, ℓ).10
However, for this value of n this is beyond our computational resources. Instead, we computed the

average minimum row weight over 100 trials for smaller values n = 29, 210, . . . , 215, and extrapolated the
failure probability. We used exponential regression in log2 n, which fit the data very well (R values all
in excess of 0.99). The results are given in Figure 9b.

These experiments embolden us to make the following sort of conjecture: given a matrix H
$←

EAGenReg(230, 5 · 230, 7), we expect it to be hard to find a vector in the row-span of H with relative
weight less than 0.02, even though we expect there to exist (many) such vectors. We leave testing of the
validity of this assumption as an interesting challenge for future work.

Aggressive parameters. In the previous section, we could show, e.g., that when C = 3 the minimum
distance of the code generated by H

$← EAGen(230, 5 · 230, C ln(5·230)
5·230 ) is very likely to exceed 0.05 · 5 · 230.

But again, recalling our discussion of pseudodistance (Definition 3.12), it seems very difficult to find a
codeword of small weight. In particular, assuming δ < (1 − R)/2 it is plausible that it is hard to find
a codeword of weight less than δ (at least, assuming C is sufficiently large to guarantee no rows have
weight that small). Thus, taking R = 0.2 it is reasonable to suspect that it is hard to find a codeword of
weight < 0.4 ·N . This implies the following values of t are sufficient for 128 bits of security: for n = 220,
t = 94; for n = 225, t = 90; for n = 230, t = 85.

Further, if we make R smaller so that it is plausibly hard to find a codeword of weight less than
≈ 0.5N , the following values of t plausibly yield 128 bits of security: for n = 220, t = 75; for n = 225,
t = 72; for n = 230, t = 68.

Relation to Silver. [CRR21] also introduced a new code family, called Silver. However, their security
analysis is purely based on computer simulation. Concretely, the authors of [CRR21] sampled random
choices of code parameters, and sampled many instances of the code for small value of n. Then, they
approximated the minimum distance for each sample by encoding low-weight vectors, and estimated the
variance from the distance distribution. From that, they extrapolated a lower bound on the minimum
distance for multiple small values of n, which they further extrapolated, from the curve of these lower
bounds, to larger values of n. In the end, they picked the parameters that led to the best extrapolations.

We applied a relatively similar heuristic, by using computer simulations to approximate the minimum
distance of our code for small values of n, and extrapolating its behavior for large values of n, with the
purpose of enabling an apple-to-apple comparison with Silver. We observed that, already when setting the
number of ones per row of B to only 7 and using t ≈ 5000 noisy coordinates, we achieve heuristic security
guarantees roughly on par with Silver. Note that the choice of increasing t to lower the row-weight of B
is well motivated, since it vanishes when n grows and only influences the seed size, which is Ω(tλ log n).

4 Offline-Online Pseudorandom Correlation Generators from Expand-
Accumulate Codes

In this section, we introduce the notion of offline-online pseudorandom correlation generators (PCGs)
and show how to construct offline-online PCGs with a highly cache-friendly and parallelizable offline

10The regular distribution appears to us to be the most reasonable in practice; however, other distributions appear to
behave similarly.
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phase from EA codes. At a high level, the aim of offline-online PCGs is to target a better distribution
of the computational effort over time: when using a PCG in a secure computation protocol, the cost of
the online phase is largely dominated by communication (since computation typically involves extremely
cheap operations, a few XOR per gate). This means that if we can push part of the PCG seed expansion
cost to the online phase, it will be absorbed by the communication cost to some extent, allowing to reduce
the offline expansion cost without harming the runtime of the online phase. Below, we put forward a
formal definition of offline-online PCG which captures this goal.

Definition 4.1 (Offline-Online PCG) Let C be a reverse-sampleable correlation generator, where for
n = n(λ), τσ = τσ(λ), for σ = 0, 1, the σ-th output of of C is in ({0, 1}τσ )n. An offline-online PCG for C
with storage cost N(λ) and output locality ℓ(λ) is a triple of algorithms (PCG.Gen,PCG.Offline,PCG.Online)
with the following syntax:

• PCG.Gen(1λ) is a PPT algorithm that given a security parameter λ, outputs a pair of offline and
online keys ((koff0 , kon0 ), (koff1 , kon1 ));

• PCG.Offline(σ, koffσ ) is a polynomial-time offline expansion algorithm that given party index σ ∈
{0, 1} and an offline key koffσ , outputs an offline string Yσ ∈ {0, 1}N . When considering arithmetic
correlations over F = F(λ), the output of PCG.Offline is a vector Yσ ∈ FN .

• PCG.Online(σ, konσ , Yσ, x) is a polynomial-time online algorithm that on input σ ∈ {0, 1}, online key
konσ , and index 1 ≤ x ≤ n, outputs a value yσ ∈ {0, 1}τσ , or yσ ∈ Fτσ in the arithmetic case.
Furthermore, PCG.Online reads at most ℓ(λ) entries of Yσ.

The algorithms (PCG.Gen,PCG.Offline,PCG.Online) should satisfy the following: if we define PCG.Expand
that applies PCG.Offline and then concatenates the outputs of PCG.Online with x = 1, 2, . . . , n, the result-
ing (PCG.Gen,PCG.Expand) is a PCG for C according to Definition 2.10.

Definition 4.1 is purely syntactic, and allows to better discuss the concrete efficiency of existing PCG
schemes in terms of how their cost is distributed between the offline and the online phase. In particular,
we expect the locality parameter ℓ to be small, growing at most logarithmically with n.

4.1 Generic Offline-Online PCGs
We start by observing that any PCG gives a direct construction of an offline-online PCG with storage cost
n and output locality 1, where the online phase is trivial: PCG.Offline is just PCG.Expand, and PCG.Online
takes as input the full pseudorandom string Yσ and the index x, and outputs the x-th bit of Yσ. In a
sense, in such a PCG, some idle time of the online part is wasted: in concrete MPC applications, the
online runtime is dominated by communication (in essence, we have room for more computation online).

At the other end of the spectrum, a PCF also provides a direct construction of an offline-online PCG:
PCG.Gen generates PCF keys (Y0, Y1) = (k0, k1), PCG.Offline does nothing, and PCG.Online(σ,⊥, Yσ, x)
outputs PCF.Eval(kσ, x). There, the storage cost is small (it only amounts to storing the offline keys)
and PCG.Online must access Yσ (which is just the offline key) in full. With this cost distribution, the
computation during the online phase is likely to largely overflow the “available idle time” that results
from communicating during the online phase. Below, we show that our newly introduced EA codes lead
to an offline-online PCG with a much better cost balance.

4.2 Offline-Online PCGs from EA Codes
In the following we give offline-online PCGs for subfield VOLE from EA Codes, building on puncturable
pseudorandom functions. Let p, q ∈ N, such that q = pr. Recall that the goal of subfield VOLE is to
obtain output correlations (wi,∆), (ui, vi), such that wi = ∆ · ui + vi, where ui

$← Fp, vi
$← Fq, ∆

$← Fq

is the same across all evaluations, and wi := ∆ ·ui+vi. As for standard PCGs, one can use a correlation-
robust hash function to turn a PCF for subfield-VOLE over F = F2λ (where λ is a security parameter)
into a PCF for the (one out of two) OT correlation over F. Further, note that for the purpose of offline-
online PCGs for OT, the PPRF can be replaced by a strong unpredictable puncturable function, as we
show in Section 6.4 (note though that this change requires a stronger assumption on the hash function
used in the transformation from PCGs for subfield VOLE to OT).

Recall that (HWN
t ,Fp)-EA-LPN(n,N) states that for H

$← EA(n,N, ρ,Fp) it is hard to distinguish
H · e⃗ from random for sparse vectors e⃗, where H is of the form H = BA for an accumulator matrix
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A ∈ FN×N
p and a matrix B ∈ Fn×N

p with rows sampled according to BerNρ . To simplify the description
of the online keys we will slightly deviate from this and sample the rows of the matrix B by choosing
ℓ positions pi ∈ [N ] and corresponding weights ri ∈ Fp, where ℓ = ρ · N (i.e., instead of having an
expected number of ℓ non-zero entries, we will obtain exactly or less than ℓ non-zero entries). Further,
we assume a PRF F̃ : {0, 1}λ × [n] → ([N ] × Fp)

ℓ to sample {(ri, pi)}i∈[ℓ] pseudorandomly, where both
parties know the key. We will denote this by EA-LPN′(n,N, ℓ) relative to F̃ in the following. Note that
while this differs from the EA assumption we analysed in the previous section, the altered assumption
remains plausible since the combinatorial distance properties of the generated matrix stay essentially
the same. Further note that the construction generalizes to standard EA codes at the cost of storing a
matrix B ∈ Fn×N

p with rows sampled according to BerNρ , which can be reused across instantiations.
As noise distribution we choose HWN

t over Fp. Note that building on EA-LPN with regular weight-t
noise instead one can achieve a more efficient instantiation, since the domain size of the PPRF shrinks
from N to N/t.

Theorem 4.2 Let n,N ∈ N with n < N . Let p, q, ℓ ∈ N with p = qr. Let F̃ : {0, 1}λ× [n]→ ([N ]×Fp)
ℓ

be a PRF and let (F.KeyGen, F.Puncture, F.Eval) be a puncturable PRF over domain [N ] and range
Fq. Then, assuming the (HWN

t ,Fp)-EA-LPN′(n,N, ℓ) assumption relative to F̃ (as defined above), the
construction in Fig. 10 is an offline-online PCG for subfield VOLE to generate n correlations with storage
cost N and output locality ℓ.

Note that we ignore the cost for storing and accessing u⃗off here, since u⃗off is an accumulated unit vector
which can be stored and accessed in compact representation and therefore does not affect the overall
costs significantly.

Note that the proof that the given strategies is indeed a subfield VOLE is identical to the analysis
in [BCG+19b,BCG+19a] up to swapping the code to the EA code. We therefore omit it here.

4.3 The Offline-Online Balance
Since the point of offline-online PCG is to push some of the offline work back to the offline phase
to happen during idle times of the computation, the right choice of balance is of course application-
dependent. Here, we make a few estimations to help the reader getting a high level intuition of what to
expect. Concretely, there are two causes of slowdown in the online phase that create available idle time:
bandwidth and latency.

Bandwidth limitations. Suppose for example that the parties use the GMW protocol on a circuit
with 220 and gates; ignoring for now all latency issues (hence the round complexity), they will have to
communicate 222 bits. Over a 10MB network, this ≈ 1/20 second; for 100MB networks, this becomes
≈ 1/200 seconds. To generate the necessary correlations, the parties have expanded 5 · 221 machine
words of preprocessing material, which can all fit in the L3 cache of a modern computer. Randomly
an entry of the L3 cache takes a few nanoseconds; hence, in the time used to communicate, around 106

(with a 100MB bandwidth) to 107 (with 10MB) accesses to the cache can be made. With a reasonable
parameter (midway between aggressive and conservative) of 20 accesses per output and 220 outputs to
compute, this is already roughly in the range of the available idle time.

Latency. When latency is involved, the amount of available idle time skyrockets: cross-continent
communication can easily incur ≈ 150ms of latency per round, and even same-continent communication
can be of the order of a few dozen milliseconds. As soon as the protocol takes a few rounds, this is more
than enough idle time to perform the required 20 · 220 random memory accesses.

5 Pseudorandom Correlated Functions from Expand-Accumulate
Codes

In this section, we put forth new constructions of pseudorandom correlation functions (PCFs) under the
EA-LPN assumption. We show how to obtain PCFs for the subfield VOLE, OT and general degree-two
correlations over a ring. We do this by combining EA-LPN with a distributed comparison function, a
special type of FSS for comparisons. Below we give a high-level summary of the ideas behind the PCF
for subfield-VOLE.
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Parameters:

• Security parameter 1λ, integers N > n, q = pr, and noise weight t.

• A PPRF scheme (F.KeyGen, F.Puncture, F.Eval) over domain [N ] and range Fq to share the noise vector.

• A PRF F̃ : {0, 1}λ×[n]→ ([N ]×Fp)ℓ to generate a pseudorandom sparse matrix B defining the EA code.

Correlation: Outputs ((ui, vi), (wi,∆)), such that wi = ∆ · ui + vi, where ui
$← Fp, vi

$← Fq , ∆
$← Fq and

wi := ∆ · ui + vi.

Gen:

• Pick a random size-t set S = {s1, . . . , st} ⊂ [N ], sorted in increasing order.

• Pick a random vector y⃗ = (y1, . . . , yt) ∈ (F∗
p)

t and ∆
$← Fq .

• For i ∈ [t] proceed as follows:

– Draw k
$← {0, 1}λ.

– Draw ki ← F.KeyGen(1λ).

– Compute k∗i ← F.Puncture(ki, {si}).
– Compute ∆i := F (ki, si)−∆ · yi.
– Set Ki

0 := (k∗i ,∆i) and Ki
1 := ki.

• Let koff0 := (n,N, {Ki
0}i∈[t], S, y⃗), koff1 := (n,N, {Ki

1}i∈[t],∆) and kon0 := kon1 := k.

• Output ((koff0 , kon0 ), (koff1 , kon1 )).
Offline: On input (σ, koffσ ):

1. If σ = 0, parse koff0 as (n,N, {Ki
0}i∈[t], S, y⃗) and proceed as follows:

• Define µ⃗ ∈ FN
p to be the vector with

µj :=

{
yi if j = si for some i ∈ [t]

0 else
.

• For all i ∈ [t], define v⃗i0 ∈ FN
p to be the vector with

vi0,j :=

{
F.Eval(k∗i , {si}, j) if j ̸= si

∆i else
.

• Set u⃗off := A · µ⃗ ∈ FN
p and v⃗off := A ·

(∑t
i=1 v⃗

i
0

)
∈ FN

q .

• Output Y0 := (u⃗off , v⃗off)

2. If σ = 1, parse koff1 as (n,N, {Ki
1}i∈[t],∆) and proceed as follows:

• Define w⃗i
0 ∈ FN

p to be the vector with wi
0,j := F (ki, j) for all i ∈ [t].

• Compute w⃗off := A ·
(∑t

i=1 v
i
1

)
∈ FN

q .

• Output Y1 := (w⃗off ,∆).

Online: On input (σ, konσ , Yσ , x):
1. If σ = 0, parse kon0 as k and Y0 as (u⃗off , v⃗off) and proceed as follows:

• For i ∈ [ℓ] set (pi, ri) := F̃ (k, x)i ∈ [N ]× Fp. Compute

– ux :=
∑ℓ

i=1 ri · uoff,pi ,

– vx :=
∑ℓ

i=1 ri · voff,pi
• Output (ux, vx).

2. If σ = 1, parse kon0 as k and Y1 as (w⃗off ,∆) and proceed as follows:

• For i ∈ [ℓ] set (pi, ri) := F̃ (k, x)i ∈ [N ]× Fp. Compute

– wx :=
∑ℓ

i=1 ri · woff,pi

• Output (wx,∆).

Figure 10: Offline-online PCG for n sets of subfield VOLE.
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Fix an extension field F of F2; we target PCF for the (subfield) VOLE correlation over F. That
is, PCF.Gen outputs a pair (k0, k1) of correlated keys such that for any input x, writing (u, v) ←
PCF.Eval(0, k0, x) and w ← PCF.Eval(1, k1, x), it always holds that w = ∆ · u + v, where ∆ ∈ F is the
same accross all evaluations, (v, w) ∈ F2, and u ∈ F2. The security properties of PCF are defined in Sec-
tion 2.7. As for PCGs, one can use a correlation-robust hash function to turn a PCF for subfield-VOLE
over F = F2λ (where λ is a security parameter) into a PCF for the (one out of two) oblivious transfer
correlation over F.

The main difference between an offline-online PCG and a PCF is that the latter must operate in a
fully incremental fashion: given the short correlated keys, the parties should be able to obtain pseudo-
random instances of the target correlation on demand, without having to stretch the entire pseudoran-
dom correlation. At a high level, our PCF construction proceeds as follows: given the two keys k0, k1,
the parties will be able to locally retrieve (in time logarithmic in N) additive shares (over F) of any given
position in the vector ∆ ·A · e⃗, where ∆ ∈ F is a scalar known to P1, e⃗ is a sparse noise vector (over F2)
known to P0, and A is the accumulator matrix of Definition 3.1.

Suppose we manage to achieve the above. Then, a random input x to the PCF is parsed by both
players as defining a random row Bx of the sparse matrix B; that is, x is the randomness used to sample
a row Bx from BerNp (F2). Let ℓ be the number of ones in the sampled row; with the parameters of our
analysis, ℓ = O(logN) with overwhelming probability. Let e⃗′ = A·e⃗ denote the accumulated noise vector.
To evaluate PCF.Eval on x, the parties compute shares of ∆ ·e′i for all ℓ positions i corresponding to non-
zero entries in Bx, and locally sum their shares. This procedure takes total time O(ℓ logN) = O(log2 N),
polylogarithmic in N : we can therefore set N to be exponential in the security parameter λ to allow for
an exponential stretch. Defining ui ← B · e′i and (−vi, wi) to be the shares computed this way, it is easy
to check that the relation ∆ · ui + vi = wi holds, and that ui is indeed pseudorandom under the EA-LPN
assumption.

It remains to find a way to locally construct these shares of ∆ · e′i. Here, observe that we cannot
use anymore a puncturable pseudorandom function as in our construction of offline-online PCG: the
accumulation step, while very efficient and parallelizable, runs in time linear in N . For a PCF, however,
N is necessarily superpolynomial, since a PCF allows to stretch (on demand) an arbitrary polynomial
amount of correlated pseudorandomness. Fortunately, we can sidestep this unaffordable accumulation
step by relying on a primitive known as a distributed comparison function (DCF), of which very efficient
instantiations (from any one-way function) were recently proposed in [BGI19, BCG+21]. For subfield
VOLE, it’s enough to use a weaker form of distributed comparison function, where one party knows part
of the function, which we show can be constructed more efficiently. We elaborate below.

5.1 Distributed Comparison Functions
In this section, as in previous works on PCG and PCF, we assume that the noise e⃗ has a regular
structure. That is, e⃗ is a concatenation of t unit vectors of length N/t, for some noise parameter t. All
our constructions easily extend to the setting where e⃗ is an arbitrary weight-t vector, albeit at the cost
of a loss in efficiency.

Given a regular noise vector e⃗, the accumulated noise e⃗′ = A · e⃗ (over group G)11 has the following
structure:

e⃗′ = (e⃗′)(1)∥(e⃗′)2∥ · · · = (0, . . . , 0, β, . . . , β)∥(β, . . . , β, 0 . . . , 0), ∥ . . .

where depending on the parity of i, each (e⃗′)(i) starts with a non-zero β ∈ G or zero.
For simplicity, consider the case that i is even (we will later explain how to handle odd cases), then

(e⃗′)(i) can be described as the output of a comparison function:

(e⃗′)
(i)
j =

{
β if x < α

0 else

for some α ∈ [N/t].
This suggest the following approach: we use t instances of a function secret sharing (FSS) scheme

for comparison functions, also known as a distributed comparison function [BGI19,BCG+21] (DCF). A
DCF allows to share a comparison function fβ

<α into two functions (F0, F1) such that F0(j) + F1(j) =

fβ
<α(j) = β · [j < α] for all j, yet (α, β) remain computationally hidden given Fσ (for σ = 0 or 1). Then,
11For concreteness, one can assume G is the additive group of a field, but as this will be useful later we state it in this

generality.
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we can simply set kσ = (K0
σ, · · · ,Kt−1

σ ) for σ = 0, 1, where the K
(i)
σ are independent FSS keys for the

comparison functions Fji,β , where each ji denotes the position of the 1 in the i-th block of e⃗.
Our construction follows the above outline, with a twist: as in previous works on PCG [BCG+19a,

SGRR19], we observe that we do not need the full power of FSS. Indeed, the latter guarantees that
(α, β) remains hidden to both parties, while in our construction it is okay for P0 to know α; we call such
a primitive a relaxed distributed comparison function (RDCF).

Relaxed Distributed Comparison Function In the following we consider the space {0, 1}m as
ordered set, by interpreting bit-strings as numbers in the interval [0, 2m − 1 ] and taking the order
induced by < on N.

Definition 5.1 (Relaxed distributed comparison function) Let G be an additive group, m ∈ N,
α ∈ {0, 1}m, β ∈ G and

fβ
<α : {0, 1}m → G, fβ

<α(x) :=

{
β if x < α

0 else

be the comparison function defined by α and β.
We say a tuple of PPT algorithms RDCF = (Setup,Eval) is a relaxed distributed comparison function

if:

• Setup(1λ, α, β) on input of 1λ, α ∈ {0, 1}m, β ∈ G outputs a pair of keys (k0, k1)

• Eval(σ, kσ, x) is a deterministic function that on input σ ∈ {0, 1}, key kσ and value x ∈ {0, 1}m
outputs a value y ∈ G

such that the following holds:

Correctness: For all λ ∈ N, for all α ∈ {0, 1}m, β ∈ G, for all (k0, k1) in the image of Setup(1λ, α, β),
and for all x ∈ {0, 1}m it holds:

Eval(0, k0, x)− Eval(1, k1, x) = fβ
<α(x).

Security: The security requirement, intuitively, is that the party holding k0 learns nothing about the
payload β and the party holding k1 learns nothing about the path α and the payload β. More
formally, we require:

• For all PPT adversaries A, there exists a negligible function negl such that for all α ∈ {0, 1}m,
β, β′ ∈ G and for all λ ∈ N :

|Pr[A(k0) = 1 | (k0, k1)← Setup(1λ, α, β)]

− Pr[A(k0) = 1 | (k0, k1)← Setup(1λ, α, β′)] ≤ negl(λ).

• For all PPT adversaries A, there exists a negligible function negl such that for all α, α′ ∈
{0, 1}m, β, β′ ∈ G and for all λ ∈ N :

|Pr[A(k1) = 1 | (k0, k1)← Setup(1λ, α, β)]

− Pr[A(k1) = 1 | (k0, k1)← Setup(1λ, α′, β′)] ≤ negl(λ).

Pseudorandomness: Eval(0, k0, ·) and Eval(1, k1, ·) define pseudorandom functions.

Constructing RDCF. In Figure 11, we show our construction based on any PRG that maps a λ-
bit string to an output of 2λ bits plus one element of the group G. Compared with the standard DCF
construction from [BCG+21], where each key is of size 2m(λ+log |G|), one of the party’s keys in our RDCF
is only of size λ, and the other is around half the size of [BCG+21]. Further, our construction saves on
average m/2 calls to the PRG C : {0, 1}λ → G per Eval operation, since C has only be invoked #{i | xi =
0} times on input x ∈ {0, 1}m (instead of m times for the standard DCF construction). Additionally, we
show that in the setting where a full evaluation is feasible (i.e., when one is interested in constructing an
incremental PCG) keys can be distributed in 2-PC with a simple, 2-round protocol based on 2-round OT.

Lemma 5.2 If G : {0, 1}λ → {0, 1}ℓ+2λ is a pseudorandom generator, then RDCF = (Setup,Eval) as
defined in Figure 11 is a relaxed distributed comparison function.
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Let (G,+) be an abelian group and ConvertG : {0, 1}λ → G be a map converting a random λ-bit
string to a pseudorandom group element in G.
Let G0, G1 : {0, 1}λ → {0, 1}λ and C : {0, 1}λ → G to be such that G(k) := C(k)∥G0(k)∥G1(k) is a
secure PRG.

• Setup on input 1λ, α ∈ {0, 1}m, β ∈ {0, 1}ℓ proceeds as follows:

– Draw k
$← {0, 1}λ at random.

– For all j ∈ [m] define

∗ kj := Gαj (Gαj−1(. . . , Gα1(k) . . . )),
∗ γj := C(Gαj−1

(. . . , Gα1
(k) . . . )),

∗ (cj , cj) :=

{
(γj , 0) if αj = 0

(0, γj) else
,

∗ Sj := cj +
∑j−1

i=1 ci and
∗ Bj := Sj + αj · β.

– Define ỹ := Gαm
(Gαm−1

(. . . , Gα1
(k) . . . )) and y := ConvertG(ỹ) +

∑m
i=1 ci

– Set K0 := (α, {kj}j∈[m], {Bj}j∈[m], y} and K1 := k.

– Output (K0,K1).

• Eval on input index σ ∈ {0, 1}, key kσ and x ∈ {0, 1}m proceeds as follows.

– If σ = 0:

∗ Parse K0 as K0 =: (α, {kj}j∈[m], {Bj}j∈[m], y}.
∗ If x = α, output y0 := y.
∗ Else, let j ∈ [m] be the minimal index such that xj ̸= αj and proceed as follows:

1. For all i ∈ {j + 1, . . . ,m} set

c0i :=

{
C(Gxi−1

(. . . , Gxj+1
(kj) . . . )) if xi = 0

0 else
.

2. Compute ỹ0 := Gxm
(. . . , Gxj+1

(kj) . . . )).

3. Output y0 := ConvertG(ỹ
0) +Bj +

∑m
i=j+1 c

0
i .

– If σ = 1:

∗ Set k := K1.

∗ For all i ∈ [m] set c1i :=

{
C(Gxi−1

(. . . , Gx1
(k) . . . )) if xi = 0

0 else
.

∗ Compute ỹ1 := Gxm
(. . . , Gx1

(k) . . . )).

∗ Output y1 := ConvertG(ỹ
1) +

∑m
i=1 c

1
i .

Figure 11: Relaxed distributed comparison function RDCF = (Setup,Eval) from a PRG G : {0, 1}λ → G× {0, 1}2λ.
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Proof. Correctness. Let x ∈ {0, 1}m and λ ∈ N. We have to show that for all (k0, k1) in the image of
Setup(1λ) it holds that

Eval(0, k0, x)− Eval(1, k1, x) = fβ
<α(x).

We distinguish the following cases:

• Case x < α: Let j ∈ [m] be the smallest index such that xj ̸= αj . Since x < α, it must hold that
xj = 0 and αj = 1. Therefore, for Bj as defined in the Setup procedure on input α, we have

Bj = Sj + αj · β = Sj + β = cj +

j−1∑
i=1

ci + β.

Further, it holds cj = c1j and ci = c1i for all i ∈ [j − 1] (where cj , {ci} are as defined in the Setup
procedure on input α and c1j , {c1i } are as defined in the Eval procedure on input 1, k1, x).

Next, observe that

kj = Gαj
(Gαj−1

(. . . , Gα1
(k) . . . ) = Gxj

(Gxj−1
(. . . , Gx1

(k) . . . ).

This implies c0i = c1i for all j + 1 ≤ i ≤ m, as well as ỹ0 = ỹ1.

Altogether, this yields

y0 = ConvertG(ỹ
0) +Bj +

m∑
i=j+1

c0i = ConvertG(ỹ
0) + cj +

j−1∑
i=1

ci + β +

m∑
i=j+1

c0i

= ConvertG(ỹ
1) + c1j +

j−1∑
i=1

c1i + β +

m∑
i=j+1

c1i = y1 + β,

as required.

• Case x = α: In this case, we have c1i = ci for all i ∈ [m], as well as ỹ = ỹ1. This implies

y0 = y = ConvertG(ỹ) +
m∑
i=1

ci = ConvertG(ỹ
1) +

m∑
i=1

c1i = y1.

• Case x > α: This case is similar to the case x < α, except that we have xj = 1 and αj = 0 and thus

Bj = Sj + αj · β = Sj = cj +

j−1∑
i=1

ci.

With the considerations above it follows

y0 = ConvertG(ỹ
0) +Bj +

m∑
i=j+1

c0i = ConvertG(ỹ
0) + cj +

j−1∑
i=1

ci +

m∑
i=j+1

c0i

= ConvertG(ỹ
1) + c1j +

j−1∑
i=1

c1i +

m∑
i=j+1

c1i = y1.

Security. Since k $← {0, 1}λ is chosen uniformly at random, independent from α and β, the second part
of the security requirement (i.e., security against the holder of the key K1 = k) follows immediately. It is
left to show that an adversary holding K0 cannot distinguish between a key obtained via Setup(1λ, α, β)
and a key obtained via Setup(1λ, α, β′).

We show this via a sequence of hybrid games, where in the ι-th hybrid, we replace the ι-th level of
the tree by random. More precisely, in hybrid Hι we setup the key K0 as follows:

• Draw k
$← {0, 1}λ at random and define k0 := k.

• For all j ∈ [m] define
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– If j ≤ ι:

∗ (γj , κj,0, κj,1)
$← {0, 1}ℓ+2λ.

– If j > ι:

∗ (γj , κj,0, κj,1) := G(kj−1).

– (kj , kj) := (κj,αj
, κj,αj

),

– (cj , cj) :=

{
(γj , 0) if αj = 0

(0, γj) else
,

– Sj := cj +
∑j−1

i=1 ci and

– Bj := Sj + αj · β.

• Define ỹ := km and y := ConvertG(ỹ) +
∑m

i=1 ci.

• Set K0 := (α, {kj}j∈[m], {Bj}j∈[m], y} and K1 := k.

• Output (K0,K1).

We have the following:

• Hybrid H0: Note that the hybrid H0 corresponds to the standard setup algorithm, since in this
case it holds k0 = k as well as kj = κj,αj

= Gαj
(kj−1) and thus

kj = Gαj (Gαj−1(. . . , Gα1(k) . . . )).

Together with kj = κj,αj
= Gαj

(kj−1) this implies

kj = Gαj
(Gαj−1

(. . . , Gα1
(k) . . . ))

and
γj = C(Gαj−1

(. . . , Gα1
(k) . . . ))

as required.

• Hybrid Hι−1 ⇝ Hι: We have to show that if G is a pseudorandom generator, then the hybrids
Hι−1 and Hι are computationally indistinguishable for all ι ∈ [m]. This is straightforward, since
an adversary attacking the pseudorandomness of G can embed its input as (γι,0, κι,0, κι,1) (and
otherwise follow the setup algorithm of game Hι−1). If it obtained a pseudorandom input, then
it perfectly simulates Hι−1. If it obtained a truly random input, then it perfectly simulates Hι.
A distinguisher between the two games could thus be used to break pseudorandomness of the
underlying PRG G, yielding a contradiction as required.

• Hybrid Hm. In hybrid Hm the parts {kj}j∈[m], {Bj}j∈[m], y of K0 are distributed independently
uniformly at random and are therefore in particular independent of β. This concludes the proof.

Pseudorandomness. Note that since correctness holds, it is sufficient to show Eval(σ, kσ, ·) for either
σ = 0 or σ = 1, since the pseudorandomness of the other follows immediately. Since the proof for σ = 1
follows the proof of [GGM86] very closely, we omit it here. □

Distributed setup protocol. Following the strategy of [Ds17, BCG+19a] for setting up the GGM-
based PPRF in 2 rounds in the semi-honest setting, we describe a setup protocol for setting up our
RCDF in 2 rounds, given a 2-round OT protocol, if the domain size 2m is polynomially bounded (i.e., a
full evaluation is feasible to compute). For simplicity, we assume that party P1 knows the offset β ∈ G
(as is the case in our PCF constructions). Since the protocol follows the protocol of [BCG+19a] very
closely, we only give a sketch here. Recall that the underlying idea is for the party P1 to prepare the sum
of all left leaves and the sum of all right leaves for each level, and P0 will learn one of these sums via OT.
Since for each level, P0 can already compute all but one of either the left or right leaves from information
about previous levels, the OT allows recovering the missing node corresponding to the key kj .

• P1(β) proceeds as follows:

– Draw k
$← {0, 1}λ.
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– For all i ∈ [m], x ∈ {0, 1}i compute:

∗ kx := Gxi
(Gxi−1

(· · · , Gx1
(k) · · · )).

∗ γx := C(Gxi−1(Gxi−2(· · · , Gx1(k) · · · ))).
– For all i ∈ [m] compute:

∗ Si,0 :=
∑

x∈{0,1}i−1 kx∥0 and Si,1 :=
∑

x∈{0,1}i−1 kx∥1.

∗ Γi :=
∑

x∈{0,1}i−1 γx∥0.

• P0(α) and P1(β) run m OT’s in parallel, where P0 acts as receiver and P1 acts as sender, and the
two parties proceed as follows in the j-th OT instance:

– P0 inputs αj as choice bit.

– If j < m, P1 inputs messages M j
0 := (Sj,0,Γj + β), M j

1 := (Sj,1,Γj).

– If j = m, P1 inputs messages M j
0 := Γm + β, M j

1 := Γm and sends both Sm,0 and Sm,1 to P0.

• P0(α) recovers K1 as follows: Parse M j
αj

= (S∗j ,Γ
∗
j ) for j ∈ [m− 1], as well as Mm

αm
= Γ∗m.

– For j = 1:

∗ Set k1 := S⋆
1 .

∗ Set (c′1, c
′
1) :=

{
(Γ∗1, 0) if α1 = 0

(0,Γ∗1) else

∗ For all i ∈ [m], x ∈ {0, 1}i with x1 = α1, compute:
· kx := Gxi

(Gxi−1
(· · · , Gx2

(k1) · · · )).
· γ∗x := C(Gxi−1(· · · , Gx2(k1) · · · )).

∗ Define B1 := c′1.

– For 1 < j < m:

∗ Set kj := S⋆
j −

∑
x∈{0,1}j−1,x̸=α1∥...∥αj−1

kx∥αj
.

∗ Set γ∗j := Γ∗j −
∑

x∈{0,1}j−1,x ̸=α1∥...∥αj−1
γx∥0.

∗ Set (c′j , c
′
j) :=

{
(γ∗j , 0) if α1 = 0

(0, γ∗j ) else
.

∗ For all i ∈ [m], x ∈ {0, 1}i with x1∥ . . . ∥xj−1∥xj = α1∥ . . . ∥αj−1∥αj , compute:
· kx := Gxi(Gxi−1(· · · , Gxj+1(kj) · · · )).
· γx := C(Gxi−1(· · · , Gxj+1(kj) · · · )).

∗ Define Bj := c′j +
∑j−1

i=1 c′i.

– For j = m:

∗ Set km := Sm,αm −
∑

x∈{0,1}m−1,x ̸=α1∥...∥αm−1
kx∥αm

.

∗ Set km := Sm,αm −
∑

x∈{0,1}m−1,x ̸=α1∥...∥αm−1
kx∥αm

.
∗ Set γ∗m := Γ∗m −

∑
x∈{0,1}m−1,x ̸=α1∥...∥αm−1

γx∥0.

∗ Set (c′m, c′m) :=

{
(γ∗m, 0) if α1 = 0

(0, γ∗m) else
.

∗ Define Bm := c′m +
∑m−1

i=1 c′i.
∗ Define ỹ := km and y := ConvertG(ỹ) +

∑m
i=1 c

′
i.

– Output K0 := (α, {kj}j∈m, {Bj}j∈[m], y}.

In the following we give a brief sketch of correctness. Note that security against semi-honest adversaries
is quite straightforward, since P0 does not receive more information than it can derive from K0. Since
the proof of security further closely follows [Ds17,BCG+19a], we omit it here.

Correctness. First, note that for j = 1 we have

k1 = S⋆
1 = Sj,α1

= k1 = Gα1
(k)
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and

(c′1, c
′
1) =

{
(Γ∗1, 0) if α1 = 0

(0,Γ∗1) else
=

{
(C(k), 0) if α1 = 0

(0, C(k) + β) else
.

This implies

B1 =

{
0 if α1 = 0

C(k) + β else

as required. Further, note that kx and γx for x ∈ {0, 1}i with x1 = α1 are computed as by P1 and

c′1 =

{
C(k) if α1 = 0

0 else
.

For 1 < j < m, we proceed inductively. Assume that kx and γx are computed as by P1 for all i ∈ [m],
x ∈ {0, 1}i with x1∥ . . . ∥xj−1 ̸= α1∥ . . . ∥αj−1 and for all i ∈ [j − 1]

c′i =

{
C(Gαi−1

(· · · , Gα1
(k) . . . )) if α1 = 0

0 else
.

Then, we have

kj = S⋆
j −

∑
x∈{0,1}j−1,x ̸=α1∥...∥αj−1

kx∥αj

=
∑

x∈{0,1}j−1

kx∥αj
−

∑
x∈{0,1}j−1,x ̸=α1∥...∥αj−1

kx∥αj
= kα1∥...∥αj−1∥αj

.

Further, we have

γ∗j = Γ∗j −
∑

x∈{0,1}j−1,x ̸=α1∥...∥αj−1

γx∥0

=
∑

x∈{0,1}j−1

γx∥0 + αj · β −
∑

x∈{0,1}j−1,x ̸=α1∥...∥αj−1

γx∥0

= γα1∥...∥αj−1∥0 + αj · β.

This implies

c′j =

{
0 if α1 = β

C(Gαj−1
(· · · , Gα1

(k) . . . )) + β else

and

c′j =

{
C(Gαj−1

(· · · , Gα1
(k) . . . )) if α1 = β

0 else
.

We thus obtain Bj is of the required form. Further, note that the above considerations imply that
kx and γx computed in the j-th iteration are computed as by P1 for all i ∈ [m], x ∈ {0, 1}i with
x1∥ . . . ∥xj ̸= α1∥ . . . ∥αj .

Finally, we have

km = Sm,αm
−

∑
x∈{0,1}m−1,x ̸=α1∥...∥αm−1

kx∥αm

=
∑

x∈{0,1}m−1

kx∥αm
−

∑
x∈{0,1}m−1,x ̸=α1∥...∥αm−1

kx∥αm
= kα1∥...∥αm−1∥αm

.

This shows that ỹ is computed as required, and since km, γ∗m, (c′m, c′m, Bm are computed as in case
1 < j < m, correctness follows.

5.2 PCFs for VOLE and OT from EA Codes and RDCF
We now show how to combine EA-LPN and RDCF to get a PCF for the subfield VOLE correlation. This
also implies a PCF for OT, by applying a correlation-robust hash function [BCG+20a]. Recall that in
subfield VOLE over a base field Fp and extension Fq with p|q, each output of the correlation gives (r, y0)
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to one party and (∆, y1) to another party, satisfying y0 = y1 + r ·∆. Here, r is uniform in Fp, while ∆
and y0 are uniform over Fq, but ∆ is fixed for every output.

To simplify the presentation we will slightly modify the noise distribution used in EA-LPN (without
changing the assumption). Recall that the accumulated noise e⃗′ = A · e⃗ has an alternating structure

e⃗′ = (e⃗′)(1)∥(e⃗′)2∥ · · · = (0, . . . , 0, 1, . . . , 1)∥(1, . . . , 1, 0 . . . , 0), ∥ . . .

where depending on the parity of i, each (e⃗′)(i) starts with a one or zero. We tweak this by reversing
the order of the odd-indexed sub-vectors, so each (e⃗′)(i) always begins with a 1 (or, with a random non-
zero noise value, for the general assumption over rings). When using EA-LPN with this distribution, this
is equivalent to using the original error distribution and permuting the columns of the matrix H. Since
the columns are independent, the assumption with the modified error distribution is equivalent.

With this modification, we present a PCF for the subfield VOLE correlation in Fig. 12. Given the
relaxed DCF, the construction is very similar to prior LPN-based PCGs and PCFs.

PCF.Gen(1λ):

1. Sample ∆
$← Fq

2. For i ∈ [t], sample αi
$← {0, . . . , N/t− 1}, βi

$← Fp \ {0}

3. For i ∈ [t], sample (Kdcf
i,0 ,K

dcf
i,1 )← RDCF.Setup(1λ, αi, βi ·∆)

4. Output k0 =
(
Kdcf

i,0 , αi, βi

)
i∈[t] and k1 =

(
∆, (Kdcf

i,1 )i∈[t]
)

PCF.Eval(σ, kσ, x):

1. Let x define a row Bx of B, with ℓ non-zero entries x1, . . . , xℓ ∈ Fp at indices i1, . . . , iℓ ∈
{0, . . . , N − 1}

2. For each j ∈ [ℓ], write ij = γj · (N/t) + δj , for δj ∈ {0, . . . , N/t− 1} and γj ∈ {0, . . . , t− 1}.

3. Compute over Fq:

yσ =

ℓ∑
j=1

xj · RDCF.Eval(Kdcf
γj ,σ, δj))

4. If σ = 0, compute r =
∑

j xj · βγj · ((δj
?
< αγj )) and output (r, y0) ∈ Fp × Fq

5. If σ = 1, output (∆, y1) ∈ F2
q

Figure 12: PCF for subfield VOLE from EA codes and RDCF

Lemma 5.3 If RDCF is a secure relaxed distributed comparison function with pseudorandom outputs,
and the EA-LPN assumption with regular, weight-t noise is secure, then the construction in Fig. 12 is a
PCF for subfield VOLE.

Proof. (sketch) We first argue that the outputs of the PCF are pseudorandomly correlated according
to the VOLE correlation. Let e⃗ = (e⃗)(1), . . . , (e⃗)(t) be the accumulated noise vector defined by αi, βi, so
that (e⃗)(i) begins with repeated βi’s, until entry αi when it becomes zero.

Note that for each ij defined by the input x, γj +1 ∈ [t] gives the index of the length-N/t sub-vector
in Bx which contains the non-zero value xj , while δj gives the index within this sub-vector where xj lies.
It follows that the output r satisfies r = ⟨Bx, e⃗⟩. This implies that r is pseudorandom under the EA-LPN
assumption.

Also, by the correctness of RDCF, we have

RDCF.Eval(Kdcf
γj+1,0, δj)− RDCF.Eval(Kdcf

γj+1,1, δj) = (δj
?
< αγj+1) · βγj+1 ·∆

36



Then, we have y0 − y1 =
∑

j xj · (δj
?
< αγj+1) · βγj+1 · ∆ = r · ∆, as required. Finally, from the

pseudorandom outputs property of RDCF, it holds that each individual share yσ is also pseudorandom.
To argue security, we need to show that given one of the keys kσ, the other party’s outputs are

indistinguishable from an ideal VOLE output that is sampled conditioned on the VOLE outputs from kσ.
We start by considering the case when party 0 is corrupted. In this case, the reverse-sampled outputs

of party 1 are the pairs (∆, y1), where ∆ ← Fq and y1 is computed as y0 − r ·∆ (using y0, r from k0).
The only difference between this experiment and the real outputs is that the real output of party 1 uses
a random ∆ which is also used to generate the RDCF keys in k0. These two cases are indistinguishable
due to security property of RDCF, which guarantees that k0 hides ∆.

When party 1 is corrupted, the reverse-sampled outputs of party 0 are defined by sampling are
random r, and computing y0 using r and the outputs from key k1. To argue security, we start with the
experiment where the distinguisher gets the key k1 together with the real outputs of party 0, derived
from k0. We then consider a hybrid where instead of computing y0 from k0, we use y0 = y1 + r · ∆;
from the correctness of RDCF, this is indistinguishable from the first experiment. Next, we switch to
a hybrid where the RDCF keys in k1 are replaced with ones generated with independent αi values; this
is indistinguishable due to the RDCF security property. Finally, we replace the r values, which are
computed from the EA-LPN distribution, with uniformly random ones. This is identical to the reverse-
sampled distribution, and indistinguishable from the previous hybrid under EA-LPN. □

5.3 PCF for Degree-2 Correlations
In our PCF for VOLE, each random output r is obtained by taking a random row of B defined by x,

and computing r =
∑

j xjβγj
· ((δj

?
< αγj

)). The RDCF was used to compute shares of ((δj
?
< αγj

))
multiplied by ∆. To generate multiplication triples in a ring R, we want to sample two such random
values a, b ∈ R, and output shares of these together with shares of c = ab. Computing shares of a, b
can be done by defining them similarly to r, and using (non-relaxed) DCFs. Computing shares of c then
boils down to being able to compute shares of values of the form

(x
?
< α) · (y

?
< α′) · β

where x and y are public while α, α′, β are secret. This can be seen as the product of two comparison
functions, or a two-dimensional interval function.

On its own, a distributed comparison function is not sufficient to obtain shares of a two-dimensional
interval. However, function secret-sharing for two-dimensional intervals has been constructed using the
FSS for decision tree construction from [BGI16], based on any PRG. Formally, we define the function
class of two-dimensional N ×N intervals over a ring R, where each function in the class is specified by
a pair of indices α1, α2 ∈ [N ] and β ∈ R, and defined by

fα1,α2,β : [N ]× [N ]→ R

(x1, x2) 7→

{
β if x1 < α1 and x2 < α2

0 otherwise

The FSS construction from [BGI16] has a key size bounded by 2 |V | (λ+ 1) bits, where V is the set
of nodes in the binary decision tree; a 2m× 2m interval function can be expressed as a decision tree with
2m(m + 1) + 1 nodes, giving a key size of roughly 4m2λ bits for the FSS scheme. In our construction,
we use m = log2(N/t).

PCF for Multiplication Triples. Given these tools, we present a PCF for the multiplication triple
correlation in Figure 13. Correctness of the construction follows from the explanation above, and its
security follows from the pseudorandomness of both DCF and FSS outputs, together with the EA-LPN
assumption. Note that the noise values β⃗(0), β⃗(1) are sampled from R∗, the set of invertible elements, to
prevent the subring projection attacked mentioned in Section 2.2. The proof of the following is similar
to the previous lemma, except instead of RDCF, we rely on the security of standard DCF and FSS.

Lemma 5.4 If DCF is a secure distributed comparison function with pseudorandom outputs and FSS is
a secure function secret-sharing scheme with pseudorandom outputs, then the construction in Fig. 13 is
a PCF for multiplication triples over R under the EA-LPN assumption with regular, weight-t noise.
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PCF.Gen(1λ):

1. Sample α⃗(0), α⃗(1) $← {0, . . . , N/t− 1}t and β⃗(0), β⃗(1) $← (R∗)t

2. Sample the following DCF and FSS keys:

• (Ka
i,j,0,K

a
i,j,1)← DCF.Gen(1λ, (α

(0)
i , β

(0)
i ), for i ∈ [t]

• (Kb
i,j,0,K

b
i,j,1)← DCF.Gen(1λ, (α

(1)
i , β

(1)
j ), for i ∈ [t]

• (Kc
i,j,0,K

c
i,j,1)← FSS.Gen(1λ, f

α
(0)
i ,α

(1)
j ,β

(0)
i ·β

(1)
j

), for i, j ∈ [t]

3. Output kσ =
(
(Ka

i,σ,K
b
i,σ)i∈[t], (K

c
i,j,σ)i,j∈[t]

)
, for σ = 0, 1

PCF.Eval(kσ, (x, y)):

• Let x, y define two rows Bx, By of B, with ℓ non-zero entries x1, . . . , xℓ ∈ R at indices i1, . . . , iℓ
and y1, . . . , yℓ at ι1, . . . , ιℓ (for x, y resp.)

• For each j ∈ [ℓ], write ij = γj · (N/t) + δj , for δj ∈ {0, . . . , n/t − 1} and γj ∈ {0, . . . , t − 1}.
Similarly, write ιj = γ̃j · (N/t) + δ̃j .

• Compute

aσ = (−1)σ
ℓ∑

j=1

xj · DCF.Eval(Ka
γj ,σ, δj)),

bσ = (−1)σ
ℓ∑

j=1

yj · DCF.Eval(Kb
γ̃j ,σ

, δ̃j)),

cσ = (−1)σ ·
ℓ∑

j=1

ℓ∑
k=1

xj · yk · FSS.Eval(Kc
γj ,γ̃k,σ

, (δj , δ̃j))

• Output (aσ, bσ, cσ)

Figure 13: PCF for multiplication triples over R from EA codes, DCF and FSS for 2-dimensional intervals
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Extensions: Degree-2 Correlations, Authenticated Correlations and Multi-Party. The PCF
in Fig. 13 can be easily extended to obtain a PCF for any degree-two correlation. By this, we mean that
on input a random nonce to Eval, the two parties obtain shares of a random vector y⃗ over R, as well
as shares of z = P (y⃗), where P is any degree-two polynomial (with polynomially many terms). In fact,
the polynomial P can be chosen adaptively, such that if desired, different yi terms can be reused in later
queries.

To do this, the key generation procedure is unchanged from Fig. 13. In Eval, instead of using two
public inputs (x, y), we now input a vector (x1, . . . , xm) which will be used to define the pseudorandom
vector y⃗ using m rows of B and the EA-LPN assumption. Each degree two term in P (y⃗) can now be
evaluated by taking a sum of ℓ2 FSS evaluations, the same way as the shares of ab are computed in
Fig. 13. Then, the final share of P (y⃗) is obtained as a linear combination of these.

The cost of each evaluation is essentially m times that of a single Eval for a multiplication triple,
where m is the number of degree-2 monomials in P (y⃗).

Authenticated Correlations. The above PCFs can also easily be extended to produce authenticated
correlations, by applying the technique used for multiplication triples in [BCG+20b]. Here, in addition
to shares of the polynomial P (y⃗), the parties obtain shares of MACs ∆ ·P (y⃗), where ∆ ∈ R is a random,
secret-shared MAC key (fixed for each correlation). This can be done with roughly a factor 2 overhead in
computation by extending the output of the FSS scheme from 1 to 2 ring elements, where the 2nd output
is multiplied by the fixed value ∆. More generally, if R is small e.g. F2, we can pick ∆ ∈ Rλ and obtain
shares of each component of ∆ multiplied by P (y⃗); this allows us to increase the size of the MAC key, and
obtain PCFs for authenticated boolean triples, as needed for the TinyOT protocol [NNOB12,WRK17a].

Multi-Party PCFs. When considering unauthenticated degree-two correlations, our PCF can also
be extended to the multi-party setting. This follows from a natural programmability property of the
construction, meaning that with multiplication triples, for instance, the a values can be programmed to
be the same across two PCF instances. This allows a multi-party degree-two correlation to be produced
by splitting it up into a sum of n(n − 1) two-party correlations, following the approach used for PCGs
in [BCG+19b].

5.4 Efficiency Analysis
VOLE and OT. The PCF for subfield VOLE has a key size dominated by t keys for an RDCF on an
m-bit domain, where m = log2(N/t), with outputs in R. With our optimized RDCF, we get a total key
size of around tm(λ+ log |R|) bits. The computational cost in a call to Eval mainly consists of a linear
combination of ℓ RDCF.Eval outputs, which has a cost of ℓ ·m PRG evaluations.

For instance, plugging in the conservative choice (cf. Fig. 9a) of t = 664, N = 5n and up to n = 230

samples over a 64-bit ring R, we get a key size of around 370kB. This is around twice the size of the
estimated key size for the more aggressive PCF candidate from [BCG+20a], however, their aggressive
assumption did not have a security analysis against linear attacks. Regarding computational complexity,
with row weight ℓ = 3 lnn for the matrix B, we require around 1300 PRG evaluations per PCF output,
which is more than 10x cheaper than the PCF of [BCG+20a]. Increasing the number of samples to 248

(in line with the parameters from [BCG+20a], the number of PRG evaluations is 3900, while the key
size becomes 650kB. So we see that even using our conservative parameter estimates, we see significant
performance benefits from using EA-LPN compared with previous PCF candidates.

If we use instead aggressive parameters for our construction, we get the following costs (based on
parameters from Section 3.6):

• (seed-size optimized, t = 68, ℓ = 62) seed size: 65kB; evaluation time: 3700 PRG calls.

• (evaluation-time optimized, t = 1000, ℓ = 7) seed size: 960kB; evaluation time: 660 PRG calls.

To give a rough runtime estimation, the PRG can be instantiated using two calls to fixed-key AES.
Using the AES-NI instructions of modern CPUs, one byte of AES-128 can be computed in ∼ 1.3 cycles.
Concretely, using a 3GHz processor and our conservative instantiation with n = 230 (1300 PRG calls
per evaluation), we estimate around 1.4 ·105 evaluations per second. The number doubles with our most
aggressive, evaluation-time optimized variant. Since the calls are perfectly independent and therefore
parallelizable, these numbers can be scaled up linearly with the number of processors. This shows that
our PCF already provide high real world performances.
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Multiplication triples and degree-2 correlations. Our degree-2 PCF needs t2 FSS keys for a 2-
dimensional interval function on a 2m-bit domain, which gives a main storage cost of around 4(mt)2λ
bits. Meanwhile, the computation involves ℓ2 calls to FSS.Eval, which costs a total of ≈ (ℓm)2 PRG
operations. Using the conservative parameters (N = 5n, t = 664, ℓ = 3 lnn) with n = 230 outputs, the
computation per output is 2M PRG operations, and seeds are around 15GB. However, if we instead use
more aggressive parameters, for instance, with a much smaller noise weight of t = 85, the storage cost
falls down to around 300MB, while the computation increases by less than a factor of two. So, it seems
that with our aggressive parameter choices, EA-LPN gives the first, plausible candidate for a practical
PCG and PCF for degree-2 correlations over a ring R. (The PCF from [BCG+20a] does not have good
concrete efficiency, since their degree-2 construction does not seem compatible with their most aggressive
LPN candidate, and using their conservative candidate leads to much worse performance.)

Distributed setup costs. To setup the PCF keys in a distributed manner, we unfortunately cannot
use the efficient, 2-round protocol for our RDCF (and similar protocols for FSS [Ds17], since they require
a polynomial-sized domain. The setup therefore involves a more expensive, non-black-box protocol with
higher communication. However, importantly, with a PCF this is a cost that only happens once and for
all.

6 Optimizing Offline Cost
Up to now, focus has been placed on optimizing the online portion of the offline-online PCG constructions,
corresponding to the choice and analysis of advantageous linear codes. In this section, we turn attention
to the offline portion of our construction, consisting of two primary components:

1. Evaluating several punctured PRFs (PPRFs) on their entire domain (a functionality called FullEval),
and

2. Performing an accumulation step, which converts a vector (x1, · · · , xN ) to an accumulated vector
(x1, x1 ⊕ x2, · · · ,

⊕N
i=1 xi).

Recall that with respect to the general template of PCG construction, the combination of the accumula-
tion step and the online process in our construction jointly play the role of applying a compressing linear
map x⃗ 7→ H · x⃗ as dictated by the selected linear code.

We remark that all previous works in this line (of constructing PCGs from the linear code plus PPRF
template) focused almost exclusively on optimizing this x⃗ 7→ H · x⃗ step, which was for a long time
the dominant cost of the construction. We now instead focus on reducing the cost of the FullEval (and
accumulation) component. Our motivations are threefold:

1. First, in the recent work of [CRR21], the cost of the mapping is reduced so significantly that, ac-
cording to their evaluation, the cost of FullEval now accounts for about half of the total computa-
tion. Reducing the cost of FullEval has therefore an important impact on the total runtime.

2. Second, using our new notion of offline-online PCGs and instantiating them with expand-accumulate
codes, the offline part boils down solely to a FullEval computation and an accumulation. The cost
of accumulate is exceptionally small, and dominated by the cost of FullEval (by several orders of
magnitude). Hence, reducing the cost of FullEval directly translate to reducing the cost of the of-
fline PCG expansion, by the same factor.

3. Eventually, PCGs are not the sole target: other cryptographic primitives also sometimes rely on
the FullEval algorithm of a PPRF. Reducing the cost of FullEval directly translates to improvements
for these primitives.

The high-level intuition of our main results in this section correspond to the observation that for PCG
construction, in fact a PPRF is a stronger tool than necessary. In doing so, we put forth and explore a
weaker notion with the aim of improved efficiency.

The results in this section. In Section 6.1, we begin with high-level optimizations for the offline
operations. This includes procedures for parallelizing the accumulation step, as well as methods for
improving the computation cost of FullEval for GGM-type constructions such as PPRF in exchange for
increased key size, by “flattening” the depth of the GGM tree.

40



In Section 6.2 we define a relaxed version of PPRF, a (strong) unpredictable punctured function (UPF).
We provide constructions of (strong) UPFs in the random oracle (RO) model (ROM) that require half
the number of RO calls for FullEval as compared with the standard RO-based PPRF construction. Given
the current existence of hardware support for AES, we additionally provide a conjectured construction
given access to the Random Invertible Permutation Model (RIPM).

In Section 6.3 we explore conversions from UPF to the (stronger) standard notion of PPRF in the
random oracle model, beginning with a generic compiler that simply applies the random oracle to each
UPF output. For our specific RO-based UPF construction of the previous subsection, we show that this
same goal can be achieved by applying the RO to only half of the UPF outputs. In turn, this provides a
construction of standard PPRF in the RO model in which FullEval on a domain of size N requires only
1.5N calls to the random oracle.

In Section 6.4 we prove that for some PCG constructions, strong UPFs already suffice in the place of
PPRFs. In particular, this holds for the PCG constructions of subfield VOLE and Silent OT. In these
applications, we can thus replace the PPRF by our RO-based strong UPF, in which FullEval on a domain
of size N requires only N calls to the random oracle, in comparison to 2N when based on PPRF.

Applications and bottom line. Using the baseline GGM PPRF with domain size N , the cost of
FullEval (i.e., evaluating the entire binary tree with N leaves) boils down to 2N calls to the underlying
primitives (in concrete instantiations, this can translate to 2N evaluations of fixed-key AES). To reduce
this cost, we suggest to replace the GGM PPRF by the PPRF of Section 6.3, instantiated with some of the
UPF constructions of Section 6.2. Concretely, computing all leaves of the UPF requires exactly N calls
to the underlying primitive (modeled either as a random oracle or as a random invertible permutation)
in each of our two constructions. Converting the UPF to a PPRF requires further hashing half of the
leaves, leading to a total cost of 1.5N calls to the underlying primitive. This is a 25% cost reduction
compared to the GGM PPRF approach.

The “tree-flattening” optimizations from Section 6.1 translate to a 41.5% reduction of the FullEval
time, hence of the entire offline time of our offline-online PCG construction. Since FullEval also amounts
to roughly 50% of the cost of the full PCG expansion in [CRR21], plugging our new constructions should
directly translate to a reduction of the total cost by about 20% (which is quite significant given how fast
the construction already is).

As mentioned, for certain PCG constructions, such as Silent OT, these numbers jump already to
50% cost reduction of FullEval, corresponding to roughly 25% reduction in the overall cost of full PCG
expansion.

These results also have further implications beyond PCGs. The FullEval algorithm of PPRFs and
related primitives is also used in some zero-knowledge applications, typically in the MPC-in-the-head
paradigm. Some examples include Picnic [KKW18, CDG+20] and its variants [KZ20], the signature
schemes of [Beu20], or the zero-knowledge proof of [FS21]. FullEval is also used in some constructions
of private information retrieval, such as [MZR+13]; the list is not exhaustive. In all these applications,
replacing FullEval by our improved variant leads to computational savings (the amount of which depends
on how dominant the cost of FullEval is in each application).

6.1 High-Level Optimizations
Further reduction using a flatter tree. We observe that for FullEval in GGM tree based construc-
tions of PPRFs and related primitives (such as our weaker unpredictable puncturable functions (UPFs)
in the upcoming sections) we can get even better savings in exchange for slightly larger seed sizes (trans-
lating, in turn, to slightly larger PCG seed sizes), by “flattening” the GGM tree. Concretely, all con-
structions (the GGM PPRF, and our two UPF constructions of Section 6.2) compute hashes along the
nodes of a binary tree. This can be naturally generalized to a k-ary tree.

When using a k-ary tree instead of a binary tree, the size of a punctured key increases by a factor
(k − 1) · logk(2) (because the punctured key contains all nodes on the co-path to the target point). For
example, using k = 3 leads to a factor 1.26 increase in the punctured key, and using k = 4 leads to a factor
1.5 increase. However, in exchange for this mild key size increase (which leads to an increased runtime of
the distributed seed generation by a comparable factor), the running time of FullEval drops from 2N calls
to (1+1/(k−1))N calls to the hash function (a 25% reduction for k = 3, and a 33% reduction for k = 4).

Looking ahead, this optimization can be combined with our UPF constructions, leading to further
savings. Concretely, setting k = 3 (hence increasing the seed size by a factor 1.26), the cost of our RIPM-
based UPF drops to 1.33N , and our ROM-based UPF drops to 1.17N . Going to k = 4 (a factor 1.5
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increase in the seed size), the cost of the RIPM-based UPF further drops to 1.17N .

Accumulating in Parallel. We now turn our attention to the accumulation step. Here, a single-pass
algorithm can perform this step using n − 1 xor in total; however, this cannot benefit from multicore
architectures. When multiple processors are available, a much better strategy consists in using a simple
two-pass algorithm, which we describe below.

Let c be the number of cores available. Suppose that the array size N is divisible by c + 1. The
algorithm proceeds as follows: partition the array into c + 1 blocks of size N/(c + 1) and compute in
parallel prefix-sums of each block except the last one; this takes N/(c+1) parallel time. Then, compute
the sum of each interval [1, N ′] for N ′ = c′N/(c + 1) + 1, where c′ = 1, . . . , c, by computing the prefix-
sum of the c sums computed before; this takes c parallel time. Eventually, add to the internal prefix sum
of each block (except the first) the sum of all values to the left of this block, which was computed before.
This again takes N/(c+1) parallel time. Overall, the above algorithm takes ≈ 2N/(c+1) parallel time.
Concretely, this translates to a 1.5x speedup with 2 cores, 8.5x with 16 cores, or a 32.5x with 64 cores.

We note that more cache-friendly variants of this two-pass algorithm have been studied in the liter-
ature, to benefit from GPU architectures. For example, the work of [ZWR] provides such an optimized
variant variant. Using 48 threads, they report extremely impressive number, around 2 · 1010 values pro-
cessed per second. The bottom line is, implementing the accumulation with a simple parallelizable algo-
rithm suffices to makes its cost completely negligible compared to the rest of the computation.

6.2 Unpredictable Puncturable Functions
We begin by defining a weakened version of punctured PRFs (PPRF), where the pseudorandomness
requirement is relaxed to unpredictability.

Definition 6.1 (Unpredictable punctured function) An unpredictable punctured function (UPF)
over domain X = {Xλ}λ∈N and range Y = {Yλ}λ∈N consists of a tuple of PPT algorithms UPF = (Setup,
Puncture,Eval,PuncEval) such that

• Setup on input 1λ outputs a key k.

• Puncture on input of key k and value α ∈ Xλ outputs a punctured key k∗.

• Eval on input of key k and value x ∈ Xλ outputs value y ∈ Yλ.

• PuncEval on input of punctured key k∗, restriction α ∈ Xλ and value x ∈ Xλ outputs value y ∈ Yλ
or ⊥.

Further, the following properties are required to hold:

Correctness: For all λ ∈ N, for all keys k in the image of Setup(1λ), for all α ∈ Xλ and for all k∗ in
the image of Puncture(k, α) it holds:

Eval(k, x) = PuncEval(k∗, α, x)

for all x ∈ Xλ with x ̸= α.

Unpredictability: For all PPT adversaries A, there exists a negligible function negl : N → R≥0 such
that for all λ ∈ N:

Pr[ExpunpUPF,A(λ) = 1] ≤ negl(λ),

where ExpunpUPF,A(λ) is as defined in Figure 14.

For the purpose of using the UPF as a plug-in replacement for a puncturable PRF in the Silent OT
extension, we require a stronger definition, where we capture that except with some small probability, the
adversary has no information about Eval(k, α) on the punctured point α. We capture this in the following
definition of strong unpredictability. Note that strong unpredictability in particular implies unpredictabil-
ity, it therefore suffices to show that our constructions satisfy the notion of strong unpredictability.

Definition 6.2 (Strong unpredictability) Let H : {0, 1}∗ → {0, 1}∗ be modeled as a random oracle
and let UPF = (Setup,Puncture,Eval,PuncEval) be an UPF over domain X = {Xλ}λ∈N and range Y =
{Yλ}λ∈N having access to H. We say UPF satisfies strong unpredictability relative to H, if for every
PPT adversary A the following holds: There exists an event bad = badλ over the random choice of the
random oracle H, the random choice of α

$← Xλ, as well as the random coins of k ← Setup(1λ) and
AH(·)(1λ, α, k∗), where k∗ ← Puncture(α, k), such that the following holds:
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ExpunpUPF,A(λ) :

α
$← Xλ

k ← Setup(1λ)

k∗ ← Puncture(k, α)

y ← A(k∗, α)
If y = Eval(k, α) return 1

Else return 0.

Figure 14: Unpredictability experiment

• There exists a negligible function negl : N→ R≥0 such that for all λ ∈ N, Pr[badλ] ≤ negl(λ).

• For all λ ∈ N, α ∈ Xλ, k in the image of Setup(1λ) and k∗ ← Puncture(k, α) it holds that
conditioned on ¬badλ, Eval(k, α) strongly unpredictable from the view of AH(·)(1λ, α, k∗), that is,

Pr[AH(·)(1λ, α, k∗) = Eval(k, α) | ¬badλ] ≤
1

|Yλ| −Q(λ)
,

where Q is the number of oracle queries by A to H (and the randomness is taken over the choice
of the random oracle H and the choice of k∗).

To give some intuition behind these definitions, suppose H is a bijection on {0, 1}λ → {0, 1}λ, and
consider a randomly chosen x

$← {0, 1}λ. Then x is strongly unpredictable given z := H(x), in the sense
that unless an adversary is lucky enough to have x among its Q queries to H, then its ability to predict x
is no better than uniform among the remaining 2λ−Q possible values. More formally, the corresponding
event badλ in the definition above is an adversary that on input z queries x to H. Since z does not reveal
any information about x, the probability of this event can be upper bounded by

Pr[badλ] ≤
Q(λ)

2λ
,

where Q corresponds to the number of queries asked by A. Further, the adversary cannot gain any more
information about x than potentially ruling out the Q(λ) previously asked values. It therefore holds

Pr[AH(·)(z) = x | ¬badλ] ≤
1

2λ −Q(λ)
,

as desired.
Note, however, that even strong unpredictability does not imply that x is indistinguishable from

random from the view of the adversary. This is because given a candidate value x̃, the adversary can
efficiently check whether H(x̃) = z.

An important difference between unpredictability and strong unpredictability is that for an unpre-
dictable value x ∈ {0, 1}λ giving out x ⊕ r for r

$← {0, 1}λ uniformly at random could potentially leak,
e.g., half the bits of r (since one half of x might be predictable), therefore giving out x ⊕ r and x′ ⊕ r
for two unpredictable values x and x′ could potentially leak r completely. If x is strongly unpredictable,
on the other hand, giving out x⊕ r, the adversary obtains almost no information about r (except with
negligible probability). Therefore, even given xi⊕ r for polynomially many strongly unpredictable values
xi, r remains unpredictable to an adversary. This will be a necessary condition to prove that a strong
UPF suffices to instantiate Silent OT extension, in Section 6.4.

Strong unpredictable punctured function in the random oracle model. We present in Fig-
ure 15 a generic template for a a strong unpredictable punctured function, parameterized by two length-
preserving functions H0,H1. For an appropriate choice of H0,H1, this construction is exactly the stan-
dard GGM construction of puncturable pseudorandom function; for example, instantiating H0 and H1

as two independent random oracles gives a PPRF in the ROM. In the following, we will put forth alter-
native choices for the functions H0,H1 such that:
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• on an input x, H0(x) and H1(x) can be simultaneously computed using a single call to a length-
preserving cryptographic primitive, and

• with this instantiation, the construction of Figure 15 is indeed a strong unpredictable punctured
function.

• Setup on input 1λ outputs a key k
$← {0, 1}λ.

• Puncture on input of a key k and a value α = (α1, . . . , αm) ∈ {0, 1}m outputs the punctured
key k∗ = (k∗1 , . . . , k

∗
m), where

k∗i := Hαi
(Hαi−1

(Hαi−2
(. . . (Hα1

(k)) . . . ))).

• Eval on input of a key k and a value x ∈ {0, 1}m outputs

y := Hxm(Hxm−1(. . . (Hx1(k)) . . . )) ∈ {0, 1}λ.

• PuncEval on input of a key k∗ = (k∗1 , . . . , k
∗
m) ∈ ({0, 1}λ)m, restriction α and value x ̸= α sets

j ∈ {1, . . . ,m} as the minimal index such that xj ̸= αj and outputs

y := Hxm(Hxm−1(. . . (Hxj+1(k
∗
j )) . . . )) ∈ {0, 1}λ.

Figure 15: General template for a strong unpredictable punctured function UPF = (Setup,Puncture,Eval,PuncEval) over
domain [N ] and range {0, 1}, based on public functions H0,H1, where [N ] is interpreted as {0, 1}m for m := logN .

Our first theorem shows that instantiating H0,H1 as H0(k) := H(k) and H1(k) := H(k) ⊕ k, where
H is modeled as a random oracle, indeed leads to a strong unpredictable punctured function (note that
evaluating H0 and H1 on a common input k requires a single call to the random oracle).

Theorem 6.3 Let N be a power of 2. For all λ ∈ N, let H : {0, 1}λ → {0, 1}λ be modeled as a random
oracle, and define H0(k) := H(k) and H1(k) := H(k) ⊕ k for all k ∈ {0, 1}λ. Then, UPF as defined in
Figure 15 with domain [N ] and range {0, 1}λ, instantiated with H0,H1 is a strong unpredictable punctured
function, where for any PPT adversary A asking at most Q queries to H the probability of the bad event
bad = badλ occurring is bounded by

Pr[badλ] ≤
2 · log2 N + · logN

2λ
+

2 ·Q · logN
2λ

for all sufficiently large λ ∈ N.

Proof. Let m := logN and let α
$← [N ] denote the value sampled by the experiment interpreted as

bitstring α = α1∥ . . . ∥αm ∈ {0, 1}m. By the path of α in the tree defined by k we denote the values
p∗ := (p∗1, . . . , p

∗
m), where

p∗i := Hαi
(Hαi−1

(Hαi−2
(. . . (Hα1

(k)) . . . )) ∈ {0, 1}λ

(recall that m = logN) on the path of α. Note that k∗ = (k∗1 , . . . , k
∗
m) as defined in Figure 15 is equal

to the co-path of α, that is all values in the tree defined by k neighboring the path of α.
By the event bad we denote the event bad := bad1 ∨ bad2, where

• bad1: There is a collision on the values k, p∗1, . . . , p
∗
m−1, k

∗
1 , . . . k

∗
m.

• bad2: The adversary A queries H on any of the values k, p∗1, . . . , p
∗
m−1.

Claim 1: If bad does not occur, then Eval(k, x) is strongly unpredictable. That is,

Pr[AH(·)(1λ, α, k⋆) = Eval(k, α) | badλ] ≤
1

2λ −Q(λ)
,
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where Q is the number of oracle queries by A to H (and the probability is taken over the random choice
of H and k∗).

Proof. We change the setup procedure as follows. Instead of sampling k ← Setup(1λ) and setting
k∗ ← Puncture(k, α), the experiment now proceeds as follows:

• Sample k∗1 , . . . , k
∗
m

$← {0, 1}λ uniformly at random.

• Sample p∗m
$← {0, 1}λ uniformly at random.

• For j ∈ [m− 1] set p∗j := p∗j+1 ⊕ k∗j+1.

• Set k := p∗1 ⊕ k∗1 .

• If there is any collision on the values k, p∗1, . . . , p∗m−1, k∗1 , . . . , k∗m resample, else program the random
oracle as:

– H(k) :=

{
p∗1 if α1 = 0

k∗1 else

– For j ∈ [m− 1]: H(p∗j ) :=

{
p∗j+1 if αj+1 = 0

k∗j+1 else

We will first show that the distribution of the experiment above is identical to the original experiment if
bad1 does not occur, i.e., if there is no collision on the values k, p∗1, . . . , p

∗
m−1, k

∗
1 , . . . , k

∗
m.

To this end, note that for all j ∈ [m− 1] we have

p∗j+1 ⊕ k∗j+1 = Hαj (p
∗
j )⊕ Hαj+1(p

∗
j )

= H(p∗j )⊕ H(p∗j )⊕ p∗j

= p∗j

and similarly
p∗1 ⊕ k∗1 = k.

Further, since H is modeled as a random oracle and there are no collisions on k, p∗1, . . . , p
∗
m−1, k

∗
1 , . . . , k

∗
m,

we have that k, k∗1 , . . . , k
∗
m, p∗1, . . . , p

∗
m

$← {0, 1}λ are sampled uniformly at random from {0, 1}λ condi-
tioned on

1. no collision occurring on k, p∗1, . . . , p
∗
m−1, k

∗
1 , . . . , k

∗
m

2. the above equations being satisfied.

This is equivalent to sampling k∗1 , . . . , k
∗
m

$← {0, 1}λ and p∗m
$← {0, 1}λ uniformly at random and defining

k, p∗1, . . . , p
∗
m−1 as done in the alternative experiment above.

Now, if A does not query any of the values k, p∗1, . . . , p∗m−1 to H, then the distribution of Eval(k, α) =
p∗m is fully independent of k∗1 , . . . , k

∗
m, and therefore the adversary can at most rule out Q(λ) of the

possible 2λ candidate values for p∗m. This concludes the proof of Claim 1.
□

It is left to show that we can upper bound the probability of the event bad = bad1 ∨ bad2 occurring.
We have Pr[bad] = Pr[bad1 ∨ bad2] ≤ Pr[bad1] + Pr[bad2 | ¬bad1]. We can thus proceed the proof by
considering the two cases separately.

Claim 2: There is no collision on the values k, p∗1, . . . , p
∗
m−1, k

∗
1 , . . . , k

∗
m except with negligible proba-

bility. More precisely, it holds

Pr[bad1] ≤
2 log2 N + logN

2λ

(where the probability is taken over the random choice of α, k and the randomness of H).

Proof. For all j ∈ [m] let Lj := {k, p∗1, . . . , p∗j , k∗1 , . . . , k∗j }. Then, we define the event badj as follows:

• b̃adj : The set Lj does not contain 2j + 1 distinct values.
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For Pr[b̃ad1] it holds

Pr[b̃ad1] = Pr[H(k) ̸= k ∧ H(k)⊕ k ̸= k ∧ H(k) ̸= H(k)⊕ k]

= Pr[H(k) ̸= k ∧ H(k) ̸= 0 ∧ k ̸= 0] ≤ 3

2λ
.

For all j ∈ [m] with j ≥ 2 in the following we will bound Pr[b̃adj | ¬b̃adj−1]. Since we condition
on the event that Lj−1 contains 2j + 1 distinct values, we have that H(p∗j−1) is distributed uniformly at
random (independently from all values in Lj−1). It thus follows

Pr[b̃adj | ¬b̃adj−1]
= Pr

[
H(p∗j−1) /∈ Lj−1 ∧ H(p∗j−1)⊕ p∗j /∈ Lj−1 ∧ H(p∗j−1) ̸= H(p∗j−1)⊕ p∗j−1

]
≤ 2 · (2(j − 1) + 1) + 1

2λ
=

4j − 1

2λ
.

With this we obtain

Pr[bad1] = Pr[b̃adlogN ] ≤ Pr[b̃ad1] +

logN∑
j=2

Pr[b̃adj | ¬b̃adj−1] =
logN∑
j=1

4j − 1

2λ

=
4 · logN · (logN + 1)

2 · 2λ
− logN

2λ
≤ 2 log2 n+ logN

2λ

as required. □

Claim 3: If there are no collisions on k, p∗1, . . . , p
∗
m−1, k

∗
1 , . . . , k

∗
m, then the adversary does not query

any of the values k, p∗1, . . . , p
∗
m−1 to H except with negligible probability. More precisely, it holds

Pr[bad2 | ¬bad1] ≤
2 ·Q · logN

2λ
.

Proof. Recall that if there are no collisions on k, p∗1, . . . , p
∗
m−1, k

∗
1 , . . . , k

∗
m (i.e., bad1 does not occur), we

have that k, k∗1 , . . . , k∗m, p∗1, . . . , p
∗
m

$← {0, 1}λ are sampled uniformly at random from {0, 1}λ conditioned
on

1. no collision occurring on k, p∗1, . . . , p
∗
m−1, k

∗
1 , . . . , k

∗
m, and

2. for all j ∈ [m− 1] it holds

p∗j+1 ⊕ k∗j+1 = Hαj
(p∗j )⊕ Hαj+1(p

∗
j )

= H(p∗j )⊕ H(p∗j )⊕ p∗j

= p∗j

as well as
p∗1 ⊕ k∗1 = k.

This implies that from the view of A (before asking any queries to H) each of the values p∗i individually
is distributed uniformly at random conditioned on yielding pairwise distinct values k, p∗1, . . . , p∗m−1, k∗1 , . . . , k∗m.

We can loosely lower bound the set of possible values to be of size at least 3
4 ·2

λ, since m2 = log2 N ≪
1
4 · 2

λ for all sufficiently large λ ∈ N. Note that the choice of 3
4 here is somewhat arbitrary, but allows

that even after Q attempts, the set of possible values is still of size at least 1
2 · 2

λ, since Q ≪ 1
4 · 2

λ for
all sufficiently large λ ∈ N.

Therefore, the adversary A that cannot do better than guessing from this restricted set of values. The
probability that bad2 occurs, i.e. A queries any of the m = logN values k, p∗1, . . . , p

∗
m−1 to H, therefore

happens at most with probability Q · logN · 2/2λ by a union bound.
This yields

Pr[bad2 | ¬bad1] ≤
2 ·Q · logN

2λ

as claimed.
□

This concludes the proof. □
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Unpredictable punctured function in the random permutation model. When instantiating the
construction of Figure 15 in the real world, it might be desirable to build upon an invertible permutation
rather than a random oracle: this is because fixed-key AES provides such an invertible permutation, and
the current Intel support for AES (the AES-NI instructions) make the use of this primitive significantly
faster than most alternatives. The standard strategy to construct a hard-to-invert function from an
invertible permutation is via the Davies-Meyer construction, where H is defined as H(k) := P (k)⊕k for an
invertible permutation P . Unfortunately, instantiating H this way clearly breaks down with our previous
construction, as H1(k) would become equal to P (k), and hence be invertible. We believe, nonetheless,
that our construction from Theorem 6.3 remains the most natural efficient construction. Its inefficiency
compared to an AES-based construction is an unfortunate artifact of the fact that AES has hardware
support while hash functions do not; but were hash functions to have hardware support in a not-so-
distant future, they would likely be even faster than AES, since invertible permutations are a much more
structured object.

Still, given the current state of hardware support, it is interesting to investigate whether one can
construct an unpredictable punctured function with the same efficiency gains (a single call to the primitive
for computing the two children of a node) in the random invertible permutation model; this question
is also a natural question of theoretical interest. We bring forward a candidate construction which we
believe to satisfy unpredictability. In the following we describe the candidate and give an explanation
why we believe it secure. We leave a full analysis for future work.

The idea of the construction is to set H0(k) := H(k) ⊕ k and H1(k) := H(k) + k mod 2λ. While on
first glance one might seem easy to predict given the other, we show that this is not the case, thereby
giving some evidence that the corresponding candidate indeed achieves unpredictability.

Note though that we cannot hope to show strong unpredictability for this candidate. To see this,
suppose that H(x)⊕ x equals 1 at the i-th position. By the property of the ⊕-operation, we know that
in this case either H(x)i = 1 and xi = 0, or H(x)i = 0 and xi = 1 must hold. Therefore, whenever there
is a length-ℓ sequence of 1’s, we know that there has to be a length-(ℓ− 1) sequence of 1’s in H(x) + x
mod 2λ, contradicting strong unpredictability of H(x)+x mod 2λ. It is therefore not secure to use this
candidate directly within the Silent OT extension, but by applying the transformation of Section 6.3 as
done for the RO candidate (where we implement the hash functions to hash the left leaves of the last
level with H0) we conjecture that one can achieve a 25% improvement compared to the standard PPRF
construction based on AES.

Conjecture 6.4 Let N be a power of 2. For all λ ∈ N, let H : {0, 1}λ → {0, 1}λ be modeled as a random
invertible permutation oracle, and define H0(k) := H(k) ⊕ k and H1(k) := H(k) + k mod 2λ for all
k ∈ {0, 1}λ (where k is also viewed as an integer between 0 and 2λ− 1). Then, UPF as defined in Figure
15 with domain [N ] and range {0, 1}λ, instantiated with H0,H1 is an unpredictable punctured function.

Underlying intuition. As before, let m := logN , let α ∈ [N ] denote the value sampled by the
experiment interpreted as bitstring α = α1∥ . . . ∥αm ∈ {0, 1}m, let p∗ = (p∗1 · · · p∗m) the path of α defined
by the key k, and let (k∗1 · · · k∗m) the co-path of α. A possible strategy to prove unpredictability is as
follows:

1. Show that given the punctured key (k∗1 . . . k
∗
m) except with negligible probability it is hard to

predict the root key k with probability εA using significantly less than 2
λ−log 1

εA queries to H.

2. Show that given the punctured key (k∗1 . . . k
∗
m) if there was an adversary who could predict Eval(k, α)

with probability εA using at most Q hash queries, then there is an adversary A′ which can predict
k with probability at least εA using on average (over the randomness of k and H) ≪ 2

λ−log 1
εA

queries to H.

In the following we provide a proof of the latter claim and leave it for future work to provide a proof
of the former. (Note that for a depth-1 tree the former is obviously true, since both H(k) ⊕ k and
H(k) + k mod 2λ individually reveal no information about k.)

Claim: If an adversary A can predict p∗m with probability ϵA using at most Q hash queries, then there
is an adversary A′ which can predict k with probability ϵA using on average (over the randomness of k
and H) Q+m · 2c·λ−log

1
εA hash queries, where c ≈ 0.58 is a constant.
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Proof. We show that given {p∗m, k∗m} = {x⊕H(x), x+H(x) mod 2λ}, it is possible to recover x = p∗m−1
using on average 2λ/2 queries; the claim will follow directly by traversing the tree back to its root,
spending 2λ/2 to recover the parent node from two children nodes.

Let y = H(x), z = x⊕H(x), a = x+H(x) mod 2λ, and define carry0 = 0. Then for any i ∈ {1, · · · , λ},
it holds that ai = xi ⊕ yi ⊕ carryi−1, and carryi = majority(xi, yi, carryi−1). Now, given (a, z), A′ can
reconstruct carryi−1 = ai ⊕ zi. Whenever zi = 0, observe that xi ⊕ yi = 0, hence either xi = yi = 1
or xi = yi = 0; in both cases, it holds that carryi = majority(xi, yi, carryi−1) = xi. Therefore, for all
positions where zi = 0, A′ recovers xi = carryi. To recover the missing bits, A′ can query the 2HW(z)

possible inputs x to H until it finds an input that matches z and a.
By linearity of expectation, when traversing the entire tree, A′ can recover the root key k using on

average m · E[2HW(z)] queries. Given a uniformly random key k and a random permutation H, each k∗i
(resp. p∗i ) is individually distributed as a uniformly random bitstring – in particular, z is. However, some
care must be taken with the expectation in this formula, since the random variable z is conditioned on
A succeeding (which happens with probability εA). We can bound EA wins[2

HW(z)] as follows:

EA wins[2
HW(z)] =

λ∑
i=0

2i · Pr[HW(z) = i | A wins]

= εA ·
λ∑

i=0

2i · Pr[HW(z) = i ∧ A wins]

≤ εA ·
λ∑

i=0

2i · Pr[HW(z) = i]

= εA · E[2HW(z)] = εA ·
λ∏

i=1

E[2zi ] = εA · 1.5λ = 2cλ+log εA ,

where the third to last equality is because the bits zi of z are independently random and equal to 1/2
(when we do not condition anymore on A winning the game), and c = log(1.5) is a constant. This
concludes the proof of the claim. □

6.3 From UPF to Puncturable Pseudorandom Functions
In the following we show that a UPF implies a PPRF in the random oracle model by hashing the outputs
of the Eval algorithm, if the size of the input domain X is polynomially bounded (i.e., |Xλ| ≤ poly(λ) for
some polynomial poly ∈ N[X]).12 This general approach will render the optimizations of the previous
section in general ineffective (since it requires |Xλ| extra RO calls for a full evaluation), but we will
show that using a more careful tailored reduction we obtain PPRFs with a 25% and more improvement
regarding the RO calls required for a full evaluation.

PPRF from Generic UPF

• F on input of a key k and x ∈ Xλ, computes y ← Eval(k, x) and outputs z := H(y).

• F.KeyGen on input 1λ outputs k ← Setup(1λ).

• F.Puncture on input of a key k and a singleton set {α}, computes k∗ ← Puncture(k, α) and
outputs (k∗, α).

• F.Eval on input of a punctured key (k, α) and input value x, computes y ← PuncEval(k∗, α, x)
and outputs z := H(y).

Figure 16: Puncturable PRF (F.KeyGen, F.Puncture, F.Eval) from UPF UPF = (Setup,Puncture,Eval,PuncEval) and hash
function H : Yλ → Yλ modeled as a random oracle.

12Note that while this is a limitation, it constitutes the only regime where computing a full evaluation is feasible.

48



Theorem 6.5 Let X = {Xλ}λ∈N, Y = {Yλ}λ∈N be ensembles of sets, such that |Xλ| ≤ poly(λ) for some
polynomial poly ∈ N[X]. Let UPF = (Setup,Puncture,Eval,PuncEval) be a UPF over domain X and
range Y. Let H : Yλ → Yλ be modeled as a random oracle. Then F together with the tuple of algorithms
(F.KeyGen, F.Puncture, F.Eval) as given in Figure 16 defines a 1-puncturable pseudorandom function.

Proof. Note that since the input domain X is polynomially bounded, it suffices to show that (F.KeyGen,
F.Puncture, F.Eval) satisfies selective security. From this it automatically follows that F is a PRF, since
one can transform an adversary on the PRF security of F into an adversary on the selective security of
(F.KeyGen, F.Puncture, F.Eval) by guessing the point x∗ on which the adversary wants to be challenged
ahead of time and answering all oracle queries of the adversary by the key punctured on x∗. This incurs
a loss of 1

|Xλ| ≤
1

poly(λ) for some polynomial poly ∈ N[X], yielding the required.
It is left to show that (F.KeyGen, F.Puncture, F.Eval) indeed satisfies selective security. To that

end, let A be a PPT adversary on the selective security of (F.KeyGen, F.Puncture, F.Eval) with success
probability εA. Then, we construct an adversary B breaking the unpredictability of UPF as follows. The
adversary B obtains α, k∗ by its own security experiment and awaits input {α′} by A. If α ̸= α′ it aborts.
Otherwise, it forwards k∗ to A and additionally a value y

$← Yλ sampled at random. Further, B records
all queries to H by A and answers consistently by keeping a list of queries and sampling a fresh value
from Yλ uniformly at random for each fresh query. When A outputs its guess after, say, Q hash queries,
B samples a random index i

$← [Q] and outputs the i-th query of B to H as its guess on Eval(k, α).
First, note that since α is sampled at random, the probability that B aborts can be upper bounded

by 1− 1/|Xλ|. Further, the probability that B aborts is independent of the behaviour of A, we thus have

Pr[A breaks PPRF ∧ α = α′] ≥ ϵA(λ)

|Xλ|
.

If A is successful in distinguishing the case b = 0 (i.e., obtaining y = H(Eval(k, α))) and b = 1 (i.e.,
obtaining y

$← {0, 1}λ) with probability at least εA, given k∗ it must query H on Y := Eval(k, α) with
at least probability εA (since otherwise the two distributions are identical from the view of A). Further
note that up to the point where A potentially queries Y , the adversary B perfectly simulates the selective
security game for PPRFs.

Overall, we thus obtain that B succeeds with probability at least

Pr[B breaks UPF] ≥ ϵA(λ)

|Xλ| ·Q(λ)

and thus
ϵA(λ) ≤ |Xλ| ·Q(λ) · Pr[B breaks UPF].

Since Pr[B breaks UPF] is negligible by assumption, |Xλ| ≤ poly(λ) for some polynomial poly ∈ N[X],
and Q ∈ N[X], we obtain that also ϵA has to be negligible, which concludes the proof.

□
We next show that our specific UPF construction from the previous section (Theorem 6.3) can be

converted into a PPRF by applying the random oracle to only half the output evaluations (instead of
all), thus saving 0.5N calls from the generic transformation.

Theorem 6.6 Let N = N(λ) be a power of 2, such that N(λ) ≤ poly(λ) for some polynomial poly ∈
N[X]. For all λ ∈ N, let H : {0, 1}λ → {0, 1}λ be modeled as a random oracle. Let UPF = (Setup,Puncture,
Eval,PuncEval) be the UPF with over domain [N ] and range {0, 1}λ from Theorem 6.3. Then, F together
with the tuple of algorithms (F.KeyGen, F.Puncture, F.Eval) as given in Figure 17 defines a 1-puncturable
pseudorandom function.

Proof. Again, we only have to show that (F.KeyGen, F.Puncture, F.Eval) satisfies selective security.
Let A be an adversary on the selective security of (F.KeyGen, F.Puncture, F.Eval) that succeeds with
probability εA and let {α′} denote the input by A. Again, we construct an adversary B that receives
α, k∗ by its own security experiment. If α ̸= α′, B aborts. Else, B proceeds as follows. If αlogN = 1, B
proceeds as in the proof of Theorem 6.5. Else, B parses k∗ =: (k∗1 , . . . , k

∗
logN ) and forwards

K∗ := (k∗1 , . . . , k
∗
logN−1,H(k

∗
logN ))

together with a random value y
$← {0, 1}λ to A. Recall that A attempts to distinguish p∗logN =

H(p∗logN−1) from random, where p∗logN−1 is such that H(p∗logN−1) ⊕ p∗logN−1 = k∗logN . Similar to the
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PPRF from UPF Construction of Theorem 6.3

• F on input of a key k and x ∈ Xλ, computes y ← Eval(k, x) and outputs

z :=

{
y if xlogN = 0

H(y) else
.

• F.KeyGen on input 1λ outputs k ← Setup(1λ).

• F.Puncture on input of a key k and a singleton set {α}, computes k∗ = (k∗1 , . . . , k
∗
logN ) ←

Puncture(k, α) and outputs (k∗, α), where

K∗ :=

{
k∗ if 1− αlogN = 0

(k∗1 , . . . , k
∗
logN−1,H(k

∗
logN )) else

.

• F.Eval on input of a punctured key (k, α) and input value x, computes y ← PuncEval(k∗, α, x)
and outputs

z :=

{
y if xlogN = 0 ∨ x = α

H(y) else
.

Figure 17: Puncturable PRF (F.KeyGen, F.Puncture, F.Eval) from UPF UPF = (Setup,Puncture,Eval,PuncEval) over domain
[N ] and range {0, 1} from Theorem 6.3.

proof of Theorem 6.5, we have that if A is successful in distinguishing the case b = 0 (i.e., obtaining
y = H(p∗N−1)) and b = 1 (i.e., obtaining y

$← {0, 1}λ) with probability at least εA, it must query H on
p∗N−1 with at least probability εA. Further, again we have that up to the point where A queries p∗N−1,
the adversary perfectly simulates the selective secuirty game for PPRFs. The adversary B thus proceeds
by guessing a query qi for i

$← [Q(λ)] and for this query outputting H(qi) to its own experiment. Note
that B succeeds if indeed qi = p∗N−1. We thus obtain that B succeeds with probability at least

Pr[B breaks UPF] ≥ ϵA(λ)

|Xλ| ·Q(λ)
,

which concludes the proof. □

Corollary 6.7 Let H : {0, 1}λ → {0, 1}λ be modeled as a random oracle. Then, there exists a puncturable
pseudorandom function over domain [N ] and range {0, 1}λ, which requires 1.5N calls to the random
oracle for a full evaluation.

Instantiating the construction in Figure 17 with the candidate construction of Conjecture 6.4 we
obtain the following.

Corollary 6.8 Let H : {0, 1}λ → {0, 1}λ be modeled as a random permutation (with publicly accessible
inverse). If Conjecture 6.4 is true, then there exists a puncturable pseudorandom function over domain
[N ] and range {0, 1}λ, which requires 1.5N calls to the random permutation for a full evaluation.

6.4 From UPF to Silent OT Extension
In this section we show that for some applications a strong unpredictable pseudorandom functions can
serve as a replacement for a puncturable pseudorandom functions, thereby reducing the costs required
for a full evaluation from 2N to N (where N is the domain size).

More precisely, we show that the protocol for silent OT extension of [BCG+19b,BCG+19a], which
allows to generate n instances of random OT with sublinear communication complexity, can directly be
instantiated with a strong UPF instead of a PPRF.
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Construction GOT

Parameters:

• Security parameter 1λ, integers N > n, q = pr = λω(1), and noise weight t.

• A code generation algorithm C and Hn,N
$← C(n,N,Fp) returning matrices in Fn×N

p .

• A UPF scheme UPF = (Setup,Puncture,Eval,PuncEval) over domain [N ] and range Fq.

• A hash function H : [n]× Fq → {0, 1}λ modeled as a random oracle.

Correlation: Outputs (R0, R1) =
(
{(ui, wi,ui

)}i∈[n], {wi,j}i∈[n],j∈[p]
)
, where wi,j

$← {0, 1}λ

and ui
$← {1, . . . , p}, for i ∈ [n], j ∈ [p].

Gen:

• Pick a random size-t subset S = {s1, . . . , st} of [N ], sorted in increasing order.

• Pick a random vector y⃗ = (y1, . . . , yt) ∈ (F∗p)t and x
$← Fq.

• For i ∈ [t] proceed as follows:

– Draw ki ← Setup(1λ).

– Compute k∗i ← Puncture(ki, si).

– Compute ∆i := Eval(k, si)− yi · x.
– Set Ki

0 := (k∗i ,∆i) and Ki
1 := ki.

• Let k0 := (n,N, {Ki
0}i∈[t], S, y⃗) and k1 := (n,N, {Ki

1}i∈[t], x).

• Output (k0, k1).

Expand: On input (σ, kσ):

1. If σ = 0, parse k0 as (n,N, {Ki
0}i∈[t], S, y⃗) and proceed as follows:

• Define µ⃗ ∈ FN
p to be the vector with

µj :=

{
yi if j = si for some i ∈ [t]

0 else
.

• For all i ∈ [t], define v⃗i0 ∈ FN
p to be the vector with

vi0,j :=

{
PuncEval(k∗i , si, j) if j ̸= si

∆i else
.

• Set u⃗ := Hn,N · µ⃗ ∈ Fn
p and v⃗0 := Hn,N ·

(∑t
i=1 v⃗

i
0

)
∈ Fn

q .

• Compute w′i := H(i, v0,i) for i = 1, . . . , n and output {(ui, w
′
i)}i,j∈[n].

2. If σ = 1, parse k1 as (n,N, {Ki
1}i∈[t], x) and proceed as follows:

• Define v⃗i1 ∈ FN
p to be the vector with vi1,j := Eval(ki, j) for all i ∈ [t].

• Compute v⃗1 := Hn,N ·
(∑t

i=1 v
i
1

)
∈ Fn

q .

• Compute wi,j := H(i, v1,i − j · x) ∀i ∈ [n], j ∈ Fp.

• Output {wi,j}i∈[n],j∈[p].

Figure 18: PCG for n sets of 1-out-of-p random OT
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Theorem 6.9 Suppose H : [n] × Fq → {0, 1}λ is a hash function modeled as a random oracle, the
(HWN

t ,C,Fp)-dual-LPN(n,N) assumption holds, and UPF = (Setup,Puncture,Eval,PuncEval) is a UPF
over domain [N ] and range Fq that satisfies strong unpredictability relative to oracle H̃. Then the silent
OT construction GOT (Fig. 18) is a secure PCG for the random 1-out-of-p OT correlation.

Proof. Correctness. We first have to show that the correlation (R0, R1) obtained via the PCG is
computationally indistinguishable from (R0, R1) sampled truly at random conditioned on satisfying the
OT correlation.

First, note that µ⃗ is sampled as a random vector over FN
p conditioned on having exactly t non-zero

entries, which corresponds exactly to the distributed HWt. The choice vector u⃗ = Hn,N · µ⃗ ∈ Fn
p is

thus computationally indistinguishable to a truly random vector by the (HWN
t ,C,Fp)-dual-LPN(n,N)

assumption.
It is left to show that the following holds:

• {wi,j}i∈[n],j∈[p] are computationally indistinguishable from values drawn uniformly at random from
{0, 1}λ, and

• for all i ∈ [n]: w′i = wi,ui
.

The former is a straightforward consequence from assuming H is modeled as a random oracle. If
x ̸= 0, then we have vi − j · x ̸= vi − j′ · x for all j ̸= j′ ∈ Fp. Since additionally i is an input to H, we
have that {wi,j}i∈[n],j∈[p] corresponds to the output on H on n · p pairwise distinct values (unless x = 0)
and is therefore even perfectly indistinguishable from chosen uniformly at random. Since by assumption
we have q = λω(1), the case x = 0 only occurs with negligible probability, therefore yielding the required.

Further, by the correctness of UPF, for all i ∈ Fp, j ̸= si we have that

vi0,j = PuncEval(k∗i , si, j) = Eval(ki, j) = vi1,j

as well as
vi0,si = ∆i = Eval(ki, si)− yi · x = vi1,si − µsi · x.

This implies
t∑

i=1

v⃗i0 =

t∑
i=1

v⃗i1 − µ⃗ · x,

since µj = 0 for all j ∈ [N ]\S. Altogether, we obtain

v⃗0 = v⃗1 − u⃗ · x,

which implies
w′i = H(i, v0,i) = H(i, v0,i − ui · x) = wi,ui

as required.
Security. First, consider the case (k0, R1). Here, in the real distribution, the adversary is given

a key k0 = (n,N, {Ki
0}i∈[t], S, y⃗) as well as the expanded output R1 = {wi,j}i∈[n],j∈[p], where wi,j =

H(i, v1,i − j · x). We need to show that this is indistinguishable from the ideal distribution, where
R1

$← RSample(0, R0).
Recall that RSample(0, R0) proceeds by setting wi,ui := w′i (where w′i is as specified in Expand(0, k0))

and sampling the remaining values {wi,j}i∈[n],j∈[p]\{ui} uniformly at random. By correctness, we have
wi,ui

:= w′i, it is thus left to show that the remaining values are distributed uniformly at random from
the view of the adversary, even given k0.

We first assume x ̸= 0, which happens except with probability 1
q . Further, for simplicity we will

assume the t UPF instances to be t independent instances punctured at a random position si. Note that
in typical instances we have t ≪

√
N and therefore expect no collision to occur for positions s1, . . . , st

chosen uniformly at random (instead of uniformly at random conditioned on being distinct). For the
general case, note that we can consider the UPF punctured at a chosen instead of random point add the
cost of an additional loss of factor N in the bad event of the strong unpredictability definition.

Let bad = badλ be the bad event from the strong unpredictability definition relative to UPF. Then,
by assumption there exists a negligible function negl : N→ R≥0 such that

Pr[badλ] ≤ negl(λ)
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for all λ ∈ N. By a union bound, we thus obtain that except with probability at most t · negl(λ), it holds
that

Pr

[
t∨

i=1

badiλ

]
︸ ︷︷ ︸

=:bad′λ

≤ t · negl(λ),

where by badiλ we denote the badλ event relative to the i-th instance of the UPF.
Thus, we have that except with negligible probability, Eval(ki, si) is strongly unpredictable for all

i ∈ [t], i.e.,

Pr[AH̃(·)(1λ, k∗i , si) = Eval(ki, si) | ¬badiλ] ≤
1

q −QH̃(λ)
.

Recall that ∆i = Eval(k, si)− yi · x. Since x
$← Fq is chosen uniformly at random, the above implies

Pr[AH̃(·)(1λ, k∗i , si,∆i, yi) = x | ¬badiλ ∧ x ̸= 0] ≤ 1

q −QH̃(λ)
.

Phrased differently, for each i the adversary can rule out at most QH̃(λ) out of q potential values for x.
Altogether, the adversary can thus rule out at most t ·QH̃(λ) out of q potential values for x. This implies

Pr[AH̃(·)(1λ, {k∗i , si,∆i, yi}i∈[t]) = x︸ ︷︷ ︸
=:b̃adλ

| bad′λ ∧ x ̸= 0] ≤ 1

q − t ·QH̃(λ)
.

Since x is independent from all other values of the protocol, we obtain that the probability that A
queries H on (i, v1,i − j · x) for some j ̸= si if b̃adλ does not occur is bounded by

Pr[A queries H on (i, v1,i − j · x) for j ̸= si︸ ︷︷ ︸
=:badi,j

| ¬bad′λ ∧ ¬b̃adλ ∧ x ̸= 0] ≤ QH(λ)

q
,

where QH is the number of queries by A to H.
Altogether, we obtain that {wi,j}i∈[n],j∈[p]\{si} is distributed perfectly uniformly at random from the

view of AH̃(·),H(·)(1λ, k0) except with probability at most

Pr[x = 0] + Pr[bad′λ] + Pr[b̃adλ | bad′λ ∧ x ̸= 0]

+ Pr

 ∨
i∈[n],j∈[p]\{si}

badi,j
∣∣∣∣ ¬bad′λ ∧ ¬b̃adλ ∧ x ̸= 0


≤ 1

q
+ t · negl(λ) + 1

q − t ·QH̃(λ)
+

n · (p− 1) ·QH(λ)

q
,

which is negligible as required.
It is left to consider the case (k1, R0). Here, in the real distribution the adversary is given a key k1 =

(m,n, {Ki
1}i∈[t], x) as well as the expanded output {(ui, w

′
i)}i,j∈[n], where u⃗ = Hn,N · µ⃗ and w′i = wi,ui

.
Therefore, it suffices to show that the distribution of u⃗ is computationally indistinguishable from uni-
formly at random even given k1. First note that k1 does not leak any information about S, y⃗, since the
distribution of ki ← Setup(1λ) is independent of si, yi. It therefore follows that u⃗ is distributed compu-
tationally indistinguishable from uniformly at random by the (HWN

t ,C,Fp)-dual-LPN(n,N) assumption,
as in the proof of correctness.

□
Together with the two-round distributed setup for a PPRF scheme of [BCG+19a] which directly

applies to our UPF constructions given in 6.2, we obtain the following corollary, reducing the random
oracle calls to H̃ from 2 · t · n to t · n per party.

Corollary 6.10 Assuming the (HWN
t ,C,Fp)-dual-LPN(n,N) assumption, there exists a semi-honest 2-

round OT extension with silent preprocessing for generating n 1-out-of-p OTs, which makes o(n) black-
box uses of a 2-round semi-honest 1-out-of-2 OT, and t ·n black-box calls to a random oracle H̃ ·{0, 1}λ →
{0, 1}λ and n · (p− 1) calls to a random oracle H · [n]× Fq → {0, 1}λ per party.
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